M29W320ET90N6E [NUMONYX]

32 Mbit (4Mbx8 or 2Mbx16, Uniform Parameter Blocks, Boot Block) 3V supply Flash memory; 32兆位( 4Mbx8或2Mbx16 ,统一参数块,引导块) 3V供应闪存
M29W320ET90N6E
型号: M29W320ET90N6E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

32 Mbit (4Mbx8 or 2Mbx16, Uniform Parameter Blocks, Boot Block) 3V supply Flash memory
32兆位( 4Mbx8或2Mbx16 ,统一参数块,引导块) 3V供应闪存

闪存 存储 内存集成电路 光电二极管
文件: 总63页 (文件大小:1191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W320ET  
M29W320EB  
32 Mbit (4Mbx8 or 2Mbx16, Uniform Parameter Blocks, Boot Block)  
3V supply Flash memory  
Features  
Supply voltage  
– V = 2.7V to 3.6V for Program, Erase and  
CC  
Read  
– V =12V for Fast Program (optional)  
PP  
Access times: 70, 90ns  
Programming time  
– 10µs per byte/word typical  
– Double word/ Quadruple byte Program  
TSOP48 (N)  
12 x 20mm  
Memory Blocks  
– Memory Array: 63 Main Blocks  
FBGA  
– 8 Parameter Blocks (Top or Bottom  
Location)  
Erase Suspend and Resume modes  
– Read and Program another Block during  
Erase Suspend  
TFBGA48 (ZE)  
6 x 8mm  
Unlock Bypass Program command  
– Faster Production/Batch Programming  
V /WP pin for fast Program and Write Protect  
PP  
Temporary Block Unprotection mode  
Common Flash Interface  
– 64 bit Security code  
Extended memory Block  
– Extra block used as security block or to  
store additional information  
Low power consumption  
– Standby and Automatic Standby  
100,000 Program/Erase cycles per block  
Electronic signature  
– Manufacturer code: 0020h  
Top Device code M29W320ET: 2256h  
– Bottom Device code M29W320EB: 2257h  
®
ECOPACK packages available  
March 2008  
Rev 6  
1/63  
www.numonyx.com  
1
Contents  
M29W320ET, M29W320EB  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address Inputs (A0-A20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Inputs/Outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Inputs/Outputs (DQ8-DQ14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Input/Output or Address Input (DQ15A–1) . . . . . . . . . . . . . . . . . . . 13  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
VPP/Write Protect (VPP/WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reset/Block Temporary Unprotect (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.10 Ready/Busy Output (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.11 Byte/word Organization Select (BYTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.12  
2.13  
V
CC Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
V
3
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Automatic Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Special bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.6.1  
3.6.2  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block Protect and Chip Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.1  
4.2  
4.3  
4.4  
Read/Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Auto Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/63  
M29W320ET, M29W320EB  
Contents  
4.5  
Fast Program commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.5.1  
4.5.2  
Quadruple byte Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Double word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.6  
4.7  
4.8  
4.9  
Unlock Bypass command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Unlock Bypass Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Unlock Bypass Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Chip Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.10 Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.11 Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.12 Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.13 Enter Extended Block command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.14 Exit Extended Block command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.15 Block Protect and Chip Unprotect commands . . . . . . . . . . . . . . . . . . . . . 25  
5
Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5.1  
5.2  
5.3  
5.4  
5.5  
Data Polling bit (DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Toggle bit (DQ6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Error bit (DQ5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Erase Timer bit (DQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Alternative Toggle bit (DQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6
7
8
9
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DC and ac parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Appendix A Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Appendix B Common Flash Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Appendix C Extended memory Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
9.1  
9.2  
Factory Locked Extended Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Customer Lockable Extended Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3/63  
Contents  
M29W320ET, M29W320EB  
Appendix D Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
D.1  
D.2  
Programmer technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
In-system technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4/63  
M29W320ET, M29W320EB  
List of tables  
List of tables  
Table 1.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2.  
Table 3.  
Bus operations, BYTE = V  
Bus operations, BYTE = V  
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
IH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 4.  
Commands, 16-bit mode, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
IH  
Table 5.  
Commands, 8-bit mode, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
IL  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Program, Erase times and Program, Erase Endurance cycles. . . . . . . . . . . . . . . . . . . . . . 28  
Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Operating and ac measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Device capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Read ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Write ac characteristics, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Write ac characteristics, Chip Enable controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Toggle and alternative Toggle bits ac characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Reset/Block Temporary Unprotect ac characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, package mechanical data . . . . . . . 42  
TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, package mechanical data. . . . . . . . . . . 43  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Top Boot Block Addresses, M29W320ET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Bottom Boot Block Addresses, M29W320EB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Primary Algorithm-specific extended Query table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Security code area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Extended Block Address and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Programmer technique Bus operations, BYTE = V or V  
IH  
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
5/63  
List of figures  
M29W320ET, M29W320EB  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
TSOP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TFBGA48 connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Addresses (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Block Addresses (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Polling flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Toggle flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
AC measurement Load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 10. Read mode ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 11. Write ac waveforms, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 12. Write ac waveforms, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 13. Toggle and alternative Toggle bits mechanism, Chip Enable controlled . . . . . . . . . . . . . . 40  
Figure 14. Toggle and alternative Toggle bits mechanism, Output Enable controlled. . . . . . . . . . . . . 40  
Figure 15. Reset/Block Temporary Unprotect ac waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 16. Accelerated Program Timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 17. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, top view package outline. . . . . . . . 42  
Figure 18. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, bottom view package outline . . . . . . . . 43  
Figure 19. Programmer Equipment Group Protect flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 20. Programmer Equipment Chip Unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 21. In-system Equipment Group Protect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 22. In-system Equipment Chip Unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6/63  
M29W320ET, M29W320EB  
Description  
1
Description  
The M29W320E is a 32 Mbit (4Mb x8 or 2Mb x16) non-volatile memory that can be read,  
erased and reprogrammed. These operations can be performed using a single low voltage  
(2.7 to 3.6V) supply. On power-up the memory defaults to its Read mode.  
The device features an asymmetrical block architecture. The M29W320E has an array of 8  
parameter and 63 main blocks. M29W320ET locates the Parameter Blocks at the top of the  
memory address space while the M29W320EB locates the Parameter Blocks starting from  
the bottom.  
M29W320E has an extra 32 Kword (x16 mode) or 64 Kbyte (x8 mode) block, the Extended  
Block, that can be accessed using a dedicated command. The Extended Block can be  
protected and so is useful for storing security information. However the protection is  
irreversible, once protected the protection cannot be undone.  
Each block can be erased independently so it is possible to preserve valid data while old  
data is erased. The blocks can be protected to prevent accidental Program or Erase  
commands from modifying the memory. Program and Erase commands are written to the  
Command interface of the memory. An on-chip Program/Erase Controller simplifies the  
process of programming or erasing the memory by taking care of all of the special  
operations that are required to update the memory contents. The end of a program or erase  
operation can be detected and any error conditions identified. The command set required to  
control the memory is consistent with JEDEC standards.  
Chip Enable, Output Enable and Write Enable signals control the bus operation of the  
memory. They allow simple connection to most microprocessors, often without additional  
logic.  
The memory is offered in TSOP48 (12x20mm), and TFBGA48 (6x8mm, 0.8mm pitch)  
packages. In order to meet environmental requirements, Numonyx offers the M29W320E in  
®
ECOPACK packages. ECOPACK packages are Lead-free. The category of second Level  
Interconnect is marked on the package and on the inner box label, in compliance with  
JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also  
marked on the inner box label.  
The memory is supplied with all the bits erased (set to ’1’).  
7/63  
Description  
M29W320ET, M29W320EB  
Figure 1.  
Logic diagram  
V
V
/WP  
CC PP  
21  
15  
A0-A20  
DQ0-DQ14  
W
E
DQ15A–1  
BYTE  
RB  
M29W320ET  
M29W320EB  
G
RP  
V
SS  
AI09346  
Table 1.  
Signal names  
Address Inputs  
A0-A20  
DQ0-DQ7  
Data Inputs/Outputs  
Data Inputs/Outputs  
DQ8-DQ14  
DQ15A–1  
Data Input/Output or Address Input  
Chip Enable  
E
G
Output Enable  
W
Write Enable  
RP  
RB  
BYTE  
VCC  
Reset/Block Temporary Unprotect  
Ready/Busy Output  
Byte/word Organization Select  
Supply voltage  
VPP/WP  
VPP/Write Protect  
VSS  
NC  
Ground  
Not Connected Internally  
8/63  
M29W320ET, M29W320EB  
Figure 2. TSOP connections  
Description  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
A16  
BYTE  
V
SS  
DQ15A–1  
DQ7  
DQ14  
DQ6  
A8  
DQ13  
DQ5  
A19  
A20  
W
M29W320ET  
M29W320EB  
DQ12  
DQ4  
RP  
NC  
/WP  
RB  
A18  
A17  
A7  
12  
13  
37  
36  
V
CC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
V
PP  
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
24  
25  
A0  
AI09347  
9/63  
Description  
Figure 3.  
M29W320ET, M29W320EB  
TFBGA48 connections (top view through package)  
1
2
3
4
5
6
RB  
W
RP  
NC  
A
B
A3  
A4  
A7  
A17  
A6  
A9  
A8  
A13  
A12  
V
/WP  
PP  
A2  
A1  
A0  
E
A18  
A10  
A14  
C
D
A5  
A20  
A19  
A11  
A15  
DQ2  
DQ5  
DQ0  
DQ8  
DQ9  
DQ1  
DQ7  
DQ14  
DQ13  
DQ6  
A16  
E
F
BYTE  
DQ10  
DQ11  
DQ3  
DQ12  
DQ15  
A–1  
G
V
G
H
CC  
V
DQ4  
V
SS  
SS  
AI08084  
10/63  
M29W320ET, M29W320EB  
Figure 4. Block Addresses (x8)  
Description  
Top Boot Block (x8)  
Bottom Boot Block (x8)  
Address lines A20-A0, DQ15A-1  
Address lines A20-A0, DQ15A-1  
000000h  
000000h  
64 KByte or  
32 KWord  
8 KByte or  
4 KWord  
00FFFFh  
001FFFh  
Total of 8  
Parameter  
(1)  
Blocks  
2F0000h  
00E000h  
64 KByte or  
32 KWord  
8 KByte or  
4 KWord  
Total of 63  
Main Blocks  
2FFFFFh  
300000h  
00FFFFh  
010000h  
64 KByte or  
32 KWord  
64 KByte or  
32 KWord  
30FFFFh  
01FFFFh  
3E0000h  
0F0000h  
64 KByte or  
32 KWord  
64 KByte or  
32 KWord  
Total of 63  
Main Blocks  
3EFFFFh  
3F0000h  
0FFFFFh  
100000h  
8 KByte or  
4 KWord  
64 KByte or  
32 KWord  
3F1FFFh  
10FFFFh  
Total of 8  
Parameter  
(1)  
Blocks  
3FE000h  
3FFFFFh  
3F0000h  
3FFFFFh  
8 KByte or  
4 KWord  
64 KByte or  
32 KWord  
Note 1. Used as Extended Block Addresses in Extended Block mode.  
1. See also Appendix A: Block Addresses, Table 20 and Table 21 for a full listing of the Block Addresses.  
AI09348  
11/63  
Description  
Figure 5.  
M29W320ET, M29W320EB  
Block Addresses (x16)  
Top Boot Block (x16)  
Address lines A20-A0  
Bottom Boot Block (x16)  
Address lines A20-A0  
000000h  
000000h  
000FFFh  
64 KByte or  
32 KWord  
8 KByte or  
4 KWord  
007FFFh  
Total of 8  
Parameter  
(1)  
Blocks  
178000h  
007000h  
64 KByte or  
32 KWord  
8 KByte or  
4 KWord  
17FFFFh  
180000h  
Total of 63  
Main Blocks  
007FFFh  
008000h  
64 KByte or  
32 KWord  
64 KByte or  
32 KWord  
187FFFh  
00FFFFh  
078000h  
1F0000h  
64 KByte or  
32 KWord  
64 KByte or  
32 KWord  
1F7FFFh  
1F8000h  
07FFFFh  
080000h  
Total of 63  
Main Blocks  
8 KByte or  
4 KWord  
64 KByte or  
32 KWord  
1F8FFFh  
087FFFh  
Total of 8  
Parameter  
(1)  
Blocks  
1FF000h  
1F8000h  
1FFFFFh  
8 KByte or  
4 KWord  
64 KByte or  
32 KWord  
1FFFFFh  
Note 1. Used as Extended Block Addresses in Extended Block mode.  
AI09349  
1. See also Appendix A: Block Addresses, Table 20 and Table 21 for a full listing of the Block Addresses.  
12/63  
M29W320ET, M29W320EB  
Signal descriptions  
2
Signal descriptions  
See Figure 1: Logic diagram, and Table 1: Signal names, for a brief overview of the signals  
connected to this device.  
2.1  
2.2  
2.3  
Address Inputs (A0-A20)  
The Address Inputs select the cells in the memory array to access during Bus Read  
operations. During Bus Write operations they control the commands sent to the Command  
interface of the Program/Erase Controller.  
Data Inputs/Outputs (DQ0-DQ7)  
The Data I/O outputs the data stored at the selected address during a Bus Read operation.  
During Bus Write operations they represent the commands sent to the Command interface  
of the Program/Erase Controller.  
Data Inputs/Outputs (DQ8-DQ14)  
The Data I/O outputs the data stored at the selected address during a Bus Read operation  
when BYTE is High, V . When BYTE is Low, V , these pins are not used and are high  
IH  
IL  
impedance. During Bus Write operations the Command Register does not use these bits.  
When reading the Status register these bits should be ignored.  
2.4  
Data Input/Output or Address Input (DQ15A–1)  
When BYTE is High, V , this pin behaves as a Data Input/Output pin (as DQ8-DQ14).  
IH  
When BYTE is Low, V , this pin behaves as an address pin; DQ15A–1 Low will select the  
IL  
LSB of the addressed word, DQ15A–1 High will select the MSB. Throughout the text  
consider references to the Data Input/Output to include this pin when BYTE is High and  
references to the Address Inputs to include this pin when BYTE is Low except when stated  
explicitly otherwise.  
2.5  
2.6  
Chip Enable (E)  
The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to  
be performed. When Chip Enable is High, V , all other pins are ignored.  
IH  
Output Enable (G)  
The Output Enable, G, controls the Bus Read operation of the memory.  
13/63  
Signal descriptions  
M29W320ET, M29W320EB  
2.7  
2.8  
Write Enable (W)  
The Write Enable, W, controls the Bus Write operation of the memory’s Command interface.  
VPP/Write Protect (VPP/WP)  
The V /Write Protect pin provides two functions. The V function allows the memory to  
PP  
PP  
use an external high voltage power supply to reduce the time required for Program  
operations. This is achieved by bypassing the unlock cycles and/or using the Double word or  
Quadruple byte Program commands.  
The Write Protect function provides a hardware method of protecting the two outermost boot  
blocks. When V /Write Protect is Low, V , the memory protects the two outermost boot  
PP  
IL  
blocks; Program and Erase operations in these blocks are ignored while V /Write Protect is  
PP  
Low, even when RP is at V .  
ID  
When V /Write Protect is High, V , the memory reverts to the previous protection status  
PP  
IH  
of the two outermost boot blocks. Program and Erase operations can now modify the data  
in these blocks unless the blocks are protected using Block Protection.  
When V /Write Protect is raised to V the memory automatically enters the Unlock  
PP  
PP  
Bypass mode. When V /Write Protect returns to V or V normal operation resumes.  
PP  
IH  
IL  
During Unlock Bypass Program operations the memory draws I from the pin to supply the  
PP  
programming circuits. See the description of the Unlock Bypass command in the Command  
interface section. The transitions from V to V and from V to V must be slower than  
IH  
PP  
PP  
IH  
t
, see Figure 16  
VHVPP  
Never raise V /Write Protect to V from any mode except Read mode, otherwise the  
PP  
PP  
memory may be left in an indeterminate state.  
The V /Write Protect pin must not be left floating or unconnected or the device may  
PP  
become unreliable. A 0.1µF capacitor should be connected between the V /Write Protect  
PP  
pin and the V Ground pin to decouple the current surges from the power supply. The PCB  
SS  
track widths must be sufficient to carry the currents required during Unlock Bypass Program,  
I .  
PP  
2.9  
Reset/Block Temporary Unprotect (RP)  
The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the  
memory or to temporarily unprotect all Blocks that have been protected.  
Note that if V /WP is at V , then the two outermost boot blocks will remain protected even  
PP  
IL  
if RP is at V .  
ID  
A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low, V , for at  
IL  
least t  
. After Reset/Block Temporary Unprotect goes High, V , the memory will be  
PLPX  
IH  
ready for Bus Read and Bus Write operations after t  
or t  
, whichever occurs last.  
RHEL  
PHEL  
See the Ready/Busy Output section, Table 16 and Figure 15: Reset/Block Temporary  
Unprotect ac waveforms, for more details.  
Holding RP at V will temporarily unprotect the protected Blocks in the memory. Program  
ID  
and Erase operations on all blocks will be possible. The transition from V to V must be  
IH  
ID  
slower than t  
.
PHPHH  
14/63  
M29W320ET, M29W320EB  
Signal descriptions  
2.10  
Ready/Busy Output (RB)  
The Ready/Busy pin is an open-drain output that can be used to identify when the device is  
performing a Program or Erase operation. During Program or Erase operations Ready/Busy  
is Low, V . Ready/Busy is high-impedance during Read mode, Auto Select mode and  
OL  
Erase Suspend mode.  
After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy  
becomes high-impedance. See Table 16 and Figure 15: Reset/Block Temporary Unprotect  
ac waveforms.  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
2.11  
2.12  
Byte/word Organization Select (BYTE)  
The byte/word Organization Select pin is used to switch between the x8 and x16 Bus modes  
of the memory. When byte/word Organization Select is Low, V , the memory is in x8 mode,  
IL  
when it is High, V , the memory is in x16 mode.  
IH  
VCC Supply voltage  
V
provides the power supply for all operations (Read, Program and Erase).  
CC  
The Command interface is disabled when the V Supply voltage is less than the Lockout  
CC  
voltage, V  
. This prevents Bus Write operations from accidentally damaging the data  
LKO  
during power up, power down and power surges. If the Program/Erase Controller is  
programming or erasing during this time then the operation aborts and the memory contents  
being altered will be invalid.  
A 0.1µF capacitor should be connected between the V Supply voltage pin and the V  
CC  
SS  
Ground pin to decouple the current surges from the power supply. The PCB track widths  
must be sufficient to carry the currents required during Program and Erase operations, I  
.
CC3  
2.13  
VSS Ground  
V
is the reference for all voltage measurements. The device features two V pins which  
SS  
SS  
must be both connected to the system ground.  
15/63  
Bus operations  
M29W320ET, M29W320EB  
3
Bus operations  
There are five standard bus operations that control the device. These are Bus Read, Bus  
Write, Output Disable, Standby and Automatic Standby.  
See Table 2 and Table 3, Bus operations, for a summary. Typically glitches of less than 5ns  
on Chip Enable or Write Enable are ignored by the memory and do not affect bus  
operations.  
3.1  
3.2  
Bus Read  
Bus Read operations read from the memory cells, or specific registers in the Command  
interface. A valid Bus Read operation involves setting the desired address on the Address  
Inputs, applying a Low signal, V , to Chip Enable and Output Enable and keeping Write  
Enable High, V . The Data Inputs/Outputs will output the value, see Figure 10: Read mode  
ac waveforms, and Table 12: Read ac characteristics, for details of when the output  
IL  
IH  
becomes valid.  
Bus Write  
Bus Write operations write to the Command interface. A valid Bus Write operation begins by  
setting the desired address on the Address Inputs. The Address Inputs are latched by the  
Command interface on the falling edge of Chip Enable or Write Enable, whichever occurs  
last. The Data Inputs/Outputs are latched by the Command interface on the rising edge of  
Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V ,  
IH  
during the whole Bus Write operation. See Figure 11 and Figure 12, Write ac waveforms,  
and Table 13 and Table 14, Write ac characteristics, for details of the timing requirements.  
3.3  
3.4  
Output Disable  
The Data Inputs/Outputs are in the high impedance state when Output Enable is High, V .  
IH  
Standby  
When Chip Enable is High, V , the memory enters Standby mode and the Data  
IH  
Inputs/Outputs pins are placed in the high-impedance state. To reduce the Supply current to  
the Standby Supply current, I  
, Chip Enable should be held within V  
0.2V. For the  
CC2  
CC  
Standby current level see Table 11: DC characteristics.  
During program or erase operations the memory will continue to use the Program/Erase  
Supply current, I , for Program or Erase operations until the operation completes.  
CC3  
16/63  
M29W320ET, M29W320EB  
Bus operations  
3.5  
Automatic Standby  
If CMOS levels (V  
0.2V) are used to drive the bus and the bus is inactive for 300ns or  
CC  
more the memory enters Automatic Standby where the internal Supply current is reduced to  
the Standby Supply current, I . The Data Inputs/Outputs will still output data if a Bus  
CC2  
Read operation is in progress.  
3.6  
Special bus operations  
Additional bus operations can be performed to read the Electronic signature and also to  
apply and remove Block Protection. These bus operations are intended for use by  
programming equipment and are not usually used in applications. They require V to be  
ID  
applied to some pins.  
3.6.1  
3.6.2  
Electronic signature  
The memory has two codes, the manufacturer code and the device code, that can be read  
to identify the memory. These codes can be read by applying the signals listed in Table 2  
and Table 3, Bus operations.  
Block Protect and Chip Unprotect  
Groups of blocks can be protected against accidental Program or Erase. The Protection  
groups are shown in Appendix A: Block Addresses, Table 20 and Table 21, Block  
Addresses. The whole chip can be unprotected to allow the data inside the blocks to be  
changed.  
The V /Write Protect pin can be used to protect the two outermost boot blocks. When  
PP  
V
/Write Protect is at V the two outermost boot blocks are protected and remain  
PP  
IL  
protected regardless of the Block Protection Status or the Reset/Block Temporary  
Unprotect pin status.  
Block Protect and Chip Unprotect operations are described in Appendix D: Block Protection.  
17/63  
Bus operations  
M29W320ET, M29W320EB  
Data Inputs/Outputs  
(1)  
Table 2.  
Bus operations, BYTE = V  
IL  
Address Inputs  
DQ15A–1, A0-A20  
Operation  
E
G
W
DQ14-  
DQ7-DQ0  
DQ8  
Bus Read  
Bus Write  
Output Disable  
Standby  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH Cell Address  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Data Output  
Data Input  
Hi-Z  
VIL Command Address  
VIH  
X
X
X
VIH  
Hi-Z  
Read Manufacturer  
code  
A0 = VIL, A1 = VIL, A9 = VID,  
Others VIL or VIH  
VIL  
VIL  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
VIH  
Hi-Z  
Hi-Z  
Hi-Z  
20h  
56h (M29W320ET)  
57h (M29W320EB)  
A0 = VIH, A1 = VIL,  
A9 = VID, Others VIL or VIH  
Read Device code  
81h (factory locked)  
Extended memory  
Block Verify code  
A0 = VIH, A1 = VIH, A6 = VIL,  
A9 = VID, Others VIL or VIH  
01h (factory unlocked)  
1. X = VIL or VIH  
.
18/63  
M29W320ET, M29W320EB  
Bus operations  
(1)  
Table 3.  
Bus operations, BYTE = V  
IH  
Address Inputs  
A0-A20  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
Bus Read  
Bus Write  
Output Disable  
Standby  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH Cell Address  
Data Output  
Data Input  
Hi-Z  
VIL Command Address  
VIH  
X
X
X
VIH  
Hi-Z  
Read Manufacturer  
code  
A0 = VIL, A1 = VIL, A9 = VID,  
Others VIL or VIH  
VIL  
VIL  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
VIH  
0020h  
2256h (M29W320ET)  
2257h (M29W320EB)  
A0 = VIH, A1 = VIL, A9 = VID,  
Others VIL or VIH  
Read Device code  
81h (factory locked)  
Extended memory  
Block Verify code  
A0 = VIH, A1 = VIH, A6 = VIL,  
A9 = VID, Others VIL or VIH  
01h (factory unlocked)  
1. X = VIL or VIH  
.
19/63  
Command interface  
M29W320ET, M29W320EB  
4
Command interface  
All Bus Write operations to the memory are interpreted by the Command interface.  
Commands consist of one or more sequential Bus Write operations. Failure to observe a  
valid sequence of Bus Write operations will result in the memory returning to Read mode.  
The long command sequences are imposed to maximize data security.  
The address used for the commands changes depending on whether the memory is in 16-  
bit or 8-bit mode. See either Table 4, or Table 5, depending on the configuration that is being  
used, for a summary of the commands.  
4.1  
Read/Reset command  
The Read/Reset command returns the memory to its Read mode. It also resets the errors in  
the Status register. Either one or three Bus Write operations can be used to issue the  
Read/Reset command.  
The Read/Reset command can be issued, between Bus Write cycles before the start of a  
program or erase operation, to return the device to read mode. If the Read/Reset command  
is issued during the time-out of a Block erase operation then the memory will take up to  
10µs to abort. During the abort period no valid data can be read from the memory. The  
Read/Reset command will not abort an Erase operation when issued while in Erase  
Suspend.  
4.2  
Auto Select command  
The Auto Select command is used to read the Manufacturer code, the Device code, the  
Block Protection Status and the Extended memory Block Verify code. Three consecutive  
Bus Write operations are required to issue the Auto Select command. The memory remains  
in Auto Select mode until a Read/Reset or CFI Query command is issued.  
In Auto Select mode the Manufacturer code can be read using a Bus Read operation with  
A0 = V and A1 = V . The other address bits may be set to either V or V .  
IL  
IL  
IL  
IH  
The Device code can be read using a Bus Read operation with A0 = V and A1 = V . The  
IH  
IL  
other address bits may be set to either V or V .  
IL  
IH  
The Block Protection Status of each block can be read using a Bus Read operation with A0  
= V , A1 = V and A12-A20 specifying the block address. The other address bits may be  
IL  
IH  
set to either V or V . If the addressed block is protected then 01h is output on Data  
IL  
IH  
Inputs/Outputs DQ0-DQ7, otherwise 00h is output.  
20/63  
M29W320ET, M29W320EB  
Command interface  
4.3  
Read CFI Query command  
The Read CFI Query Command is used to read data from the Common Flash Interface  
(CFI) memory Area. This command is valid when the device is in the Read Array mode, or  
when the device is in Auto Select mode.  
One Bus Write cycle is required to issue the Read CFI Query Command. Once the  
command is issued subsequent Bus Read operations read from the Common Flash  
Interface memory Area.  
The Read/Reset command must be issued to return the device to the previous mode (the  
Read Array mode or Auto Select mode). A second Read/Reset command would be needed  
if the device is to be put in the Read Array mode from Auto Select mode.  
See Appendix B: Common Flash Interface (CFI), Table 22, Table 23, Table 24, Table 25,  
Table 26 and Table 27 for details on the information contained in the Common Flash  
Interface (CFI) memory area.  
4.4  
Program command  
The Program command can be used to program a value to one address in the memory array  
at a time. The command requires four Bus Write operations, the final write operation latches  
the address and data, and starts the Program/Erase Controller.  
If the address falls in a protected block then the Program command is ignored, the data  
remains unchanged. The Status register is never read and no error condition is given.  
During the program operation the memory will ignore all commands. It is not possible to  
issue any command to abort or pause the operation. After programming has started, Bus  
Read operations output the Status register content. See Section 5: Status register for more  
details. Typical program times are given in Table 6  
After the program operation has completed the memory will return to the Read mode, unless  
an error has occurred. When an error occurs Bus Read operations will continue to output  
the Status register. A Read/Reset command must be issued to reset the error condition and  
return to Read mode.  
Note that the Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase  
Commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.  
21/63  
Command interface  
M29W320ET, M29W320EB  
4.5  
Fast Program commands  
There are two Fast Program commands available to improve the programming throughput,  
by writing several adjacent words or bytes in parallel. The Quadruple byte Program  
command is available for x8 operations, while the Double word Program command is  
available for x16 operations.  
Fast Program commands should not be attempted when V WP is not at V . Care must  
PP/  
PP  
be taken because applying a 12V V voltage to the VPP/WP pin will temporarily unprotect  
PP  
any protected block.  
After programming has started, Bus Read operations output the Status register content.  
After the program operation has completed the memory will return to the Read mode, unless  
an error has occurred. When an error occurs Bus Read operations will continue to output  
the Status register. A Read/Reset command must be issued to reset the error condition and  
return to Read mode.  
Note that the Fast Program commands cannot change a bit set at ’0’ back to ’1’. One of the  
Erase Commands must be used to set all the bits in a block or in the whole memory from ’0’  
to ’1’.  
Typical Program times are given in Table 6: Program, Erase times and Program, Erase  
Endurance cycles  
4.5.1  
Quadruple byte Program command  
The Quadruple byte Program command is used to write a page of four adjacent bytes in  
parallel. The four bytes must differ only for addresses A0, DQ15A-1. Five bus write cycles  
are necessary to issue the Quadruple byte Program command.  
1. The first bus cycle sets up the Quadruple byte Program command.  
2. The second bus cycle latches the Address and the Data of the first byte to be written.  
3. The third bus cycle latches the Address and the Data of the second byte to be written.  
4. The fourth bus cycle latches the Address and the Data of the third byte to be written.  
5. The fifth bus cycle latches the Address and the Data of the fourth byte to be written and  
starts the Program/Erase Controller.  
4.5.2  
Double word Program command  
The Double word Program command is used to write a page of two adjacent words in  
parallel. The two words must differ only for the address A0.  
Three bus write cycles are necessary to issue the Double word Program command.  
1. The first bus cycle sets up the Double word Program command.  
2. The second bus cycle latches the Address and the Data of the first word to be written.  
3. The third bus cycle latches the Address and the Data of the second word to be written  
and starts the Program/Erase Controller.  
22/63  
M29W320ET, M29W320EB  
Command interface  
4.6  
Unlock Bypass command  
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program  
command to program the memory faster than with the standard program commands. When  
the cycle time to the device is long, considerable time saving can be made by using these  
commands. Three Bus Write operations are required to issue the Unlock Bypass command.  
Once the Unlock Bypass command has been issued the memory enters Unlock Bypass  
mode. The Unlock Bypass Program command can then be issued to program addresses or  
the Unlock Bypass Reset command can be issued to return to Read mode. In Unlock  
Bypass mode the memory can be read as if in Read mode.  
When V is applied to the V /Write Protect pin the memory automatically enters the  
PP  
PP  
Unlock Bypass mode and the Unlock Bypass Program command can be issued  
immediately. Care must be taken because applying a 12V V voltage to the VPP/WP pin  
PP  
will temporarily unprotect any protected block.  
4.7  
Unlock Bypass Program command  
The Unlock Bypass Program command can be used to program one address in the memory  
array at a time. The command requires two Bus Write operations, the final write operation  
latches the address and data, and starts the Program/Erase Controller.  
The Program operation using the Unlock Bypass Program command behaves identically to  
the Program operation using the Program command. The operation cannot be aborted, a  
Bus Read operation outputs the Status register. See the Program command for details on  
the behavior.  
4.8  
4.9  
Unlock Bypass Reset command  
The Unlock Bypass Reset command can be used to return to Read/Reset mode from  
Unlock Bypass mode. Two Bus Write operations are required to issue the Unlock Bypass  
Reset command. Read/Reset command does not exit from Unlock Bypass mode.  
Chip Erase command  
The Chip Erase command can be used to erase the entire chip. Six Bus Write operations  
are required to issue the Chip Erase Command and start the Program/Erase Controller.  
If any blocks are protected then these are ignored and all the other blocks are erased. If all  
of the blocks are protected the Chip Erase operation appears to start but will terminate  
within about 100µs, leaving the data unchanged. No error condition is given when protected  
blocks are ignored.  
During the erase operation the memory will ignore all commands, including the Erase  
Suspend command. It is not possible to issue any command to abort the operation. Typical  
chip erase times are given in Table 6. All Bus Read operations during the Chip Erase  
operation will output the Status register on the Data Inputs/Outputs. See the section on the  
Status register for more details.  
After the Chip Erase operation has completed the memory will return to the Read mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
23/63  
Command interface  
M29W320ET, M29W320EB  
Status register. A Read/Reset command must be issued to reset the error condition and  
return to Read mode.  
The Chip Erase Command sets all of the bits in unprotected blocks of the memory to ’1’. All  
previous data is lost.  
4.10  
Block Erase command  
The Block Erase command can be used to erase a list of one or more blocks. It sets all of  
the bits in the unprotected selected blocks to ’1’. All previous data in the selected blocks is  
lost.  
Six Bus Write operations are required to select the first block in the list. Each additional  
block in the list can be selected by repeating the sixth Bus Write operation using the address  
of the additional block. The Block Erase operation starts the Program/Erase Controller after  
a time-out period of 50µs after the last Bus Write operation. Once the Program/Erase  
Controller starts it is not possible to select any more blocks. Each additional block must  
therefore be selected within 50µs of the last block. The 50µs timer restarts when an  
additional block is selected. After the sixth Bus Write operation a Bus Read operation will  
output the Status register. See the Status register section for details on how to identify if the  
Program/Erase Controller has started the Block Erase operation.  
If any selected blocks are protected then these are ignored and all the other selected blocks  
are erased. If all of the selected blocks are protected the Block Erase operation appears to  
start but will terminate within about 100µs, leaving the data unchanged. No error condition is  
given when protected blocks are ignored.  
During the Block Erase operation the memory will ignore all commands except the Erase  
Suspend command and the Read/Reset command which is only accepted during the 50µs  
time-out period. Typical block erase times are given in Table 6.  
After the Erase operation has started all Bus Read operations will output the Status register  
on the Data Inputs/Outputs. See the section on the Status register for more details.  
After the Block Erase operation has completed the memory will return to the Read mode,  
unless an error has occurred. When an error occurs Bus Read operations will continue to  
output the Status register. A Read/Reset command must be issued to reset the error  
condition and return to Read mode.  
4.11  
Erase Suspend command  
The Erase Suspend Command may be used to temporarily suspend a Block Erase  
operation and return the memory to Read mode. The command requires one Bus Write  
operation.  
The Program/Erase Controller will suspend within the Erase Suspend Latency time of the  
Erase Suspend Command being issued. Once the Program/Erase Controller has stopped  
the memory will be set to Read mode and the Erase will be suspended. If the Erase  
Suspend command is issued during the period when the memory is waiting for an additional  
block (before the Program/Erase Controller starts) then the Erase is suspended immediately  
and will start immediately when the Erase Resume Command is issued. It is not possible to  
select any further blocks to erase after the Erase Resume.  
24/63  
M29W320ET, M29W320EB  
Command interface  
During Erase Suspend it is possible to Read and Program cells in blocks that are not being  
erased; both Read and Program operations behave as normal on these blocks. If any  
attempt is made to program in a protected block or in the suspended block then the Program  
command is ignored and the data remains unchanged. The Status register is not read and  
no error condition is given. Reading from blocks that are being erased will output the Status  
register.  
It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands  
during an Erase Suspend. The Read/Reset command must be issued to return the device to  
Read Array mode before the Resume command will be accepted.  
During Erase Suspend a Bus Read operation to the Extended Block will output the  
Extended Block data.  
4.12  
4.13  
Erase Resume command  
The Erase Resume command must be used to restart the Program/Erase Controller after an  
Erase Suspend. The device must be in Read Array mode before the Resume command will  
be accepted. An erase can be suspended and resumed more than once.  
Enter Extended Block command  
The M29W320E has an extra 64Kbyte block (Extended Block) that can only be accessed  
using the Enter Extended Block command. Three Bus write cycles are required to issue the  
Extended Block command. Once the command has been issued the device enters  
Extended Block mode where all Bus Read or Program operations to the Boot Block  
addresses access the Extended Block. The Extended Block (with the same address as the  
boot block) cannot be erased, and can be treated as one-time programmable (OTP)  
memory. In Extended Block mode the Boot Blocks are not accessible.  
To exit from the Extended Block mode the Exit Extended Block command must be issued.  
The Extended Block can be protected, however once protected the protection cannot be  
undone.  
4.14  
4.15  
Exit Extended Block command  
The Exit Extended Block command is used to exit from the Extended Block mode and return  
the device to Read mode. Four Bus Write operations are required to issue the command.  
Block Protect and Chip Unprotect commands  
Groups of blocks can be protected against accidental Program or Erase. The Protection  
groups are shown in Appendix A: Block Addresses, Table 20 and Table 21, Block  
Addresses. The whole chip can be unprotected to allow the data inside the blocks to be  
changed.  
Block Protect and Chip Unprotect operations are described in Appendix D: Block Protection.  
25/63  
Command interface  
M29W320ET, M29W320EB  
(1)(2)  
Table 4.  
Commands, 16-bit mode, BYTE = V  
IH  
Bus Write operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
X
F0  
Read/Reset  
Auto Select  
555  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
X
F0  
90  
A0  
(BA)  
555  
3
555  
AA  
Program  
4
3
3
555  
555  
555  
AA  
50  
555  
PA  
PD  
Double word Program  
Unlock Bypass  
PA0 PD0 PA1 PD1  
AA  
2AA  
PA  
55  
555  
20  
Unlock Bypass  
Program  
2
X
A0  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
B0  
30  
X
00  
55  
55  
555  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
BA  
10  
30  
Block Erase  
6+ 555  
Erase Suspend  
Erase Resume  
1
1
1
3
4
BA  
BA  
55  
Read CFI Query  
Enter Extended Block  
Exit Extended Block  
98  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
X
00  
1. X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in  
hexadecimal.  
2. The Command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15  
are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
26/63  
M29W320ET, M29W320EB  
Command interface  
(1)(2)  
Table 5.  
Commands, 8-bit mode, BYTE = V  
IL  
Bus Write operations  
3rd 4th  
Add Data Add Data Add Data Add Data Add Data Add Data  
Command  
1st  
2nd  
5th  
6th  
1
3
X
F0  
Read/Reset  
Auto Select  
AAA  
AA  
555  
555  
555  
55  
55  
55  
X
F0  
90  
A0  
(BA)  
AAA  
3
AAA  
AA  
Program  
4
5
3
2
2
6
AAA  
AAA  
AAA  
X
AA  
55  
AAA  
PA1  
AAA  
PA  
PD  
Quadruple byte Program  
Unlock Bypass  
PA0 PD0  
PD1 PA2 PD2 PA3 PD3  
20  
AA  
A0  
90  
555  
PA  
55  
PD  
00  
55  
55  
Unlock Bypass Program  
Unlock Bypass Reset  
Chip Erase  
X
X
AAA  
AA  
AA  
B0  
30  
555  
555  
AAA  
AAA  
80  
80  
AAA AA  
AAA AA  
555  
555  
55 AAA 10  
Block Erase  
6+ AAA  
55  
BA  
30  
Erase Suspend  
1
1
1
3
4
BA  
BA  
Erase Resume  
Read CFI Query  
Enter Extended Block  
Exit Extended Block  
AA  
98  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
AAA  
88  
90  
X
00  
1. X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in  
hexadecimal.  
2. The Command interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15  
are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
27/63  
Command interface  
M29W320ET, M29W320EB  
Table 6.  
Program, Erase times and Program, Erase Endurance cycles  
Parameter  
Min  
Typ(1)(2)  
Max(2)  
Unit  
Chip Erase  
40  
200(3)  
6(3)  
s
Block Erase (64 Kbytes)  
0.8  
s
µs  
Erase Suspend Latency time  
Program (byte or word)  
50(4)  
10  
10  
40  
20  
10  
200(4)  
200(3)  
200(3)  
100(3)  
100(3)  
µs  
Double word Program (byte or word)  
Chip Program (byte by byte)  
Chip Program (word by word)  
Chip Program (Quadruple byte or Double word)  
Program/Erase Cycles (per Block)  
Data Retention  
µs  
s
s
s
100,000  
20  
cycles  
years  
1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and VCC after 100,00 program/erase cycles.  
4. Maximum value measured at worst case conditions for both temperature and VCC  
.
28/63  
M29W320ET, M29W320EB  
Status register  
5
Status register  
The M29W320E has one Status register. It provides information on the current or previous  
Program or Erase operations. The various bits convey information and errors on the  
operation. Bus Read operations from any address, always read the Status register during  
Program and Erase operations. It is also read during Erase Suspend when an address  
within a block being erased is accessed.  
The bits in the Status register are summarized in Table 7: Status register bits.  
5.1  
Data Polling bit (DQ7)  
The Data Polling bit can be used to identify whether the Program/Erase Controller has  
successfully completed its operation or if it has responded to an Erase Suspend. The Data  
Polling bit is output on DQ7 when the Status register is read.  
During Program operations the Data Polling bit outputs the complement of the bit being  
programmed to DQ7. After successful completion of the Program operation the memory  
returns to Read mode and Bus Read operations from the address just programmed output  
DQ7, not its complement.  
During Erase operations the Data Polling bit outputs ’0’, the complement of the erased state  
of DQ7. After successful completion of the Erase operation the memory returns to Read  
mode.  
In Erase Suspend mode the Data Polling bit will output a ’1’ during a Bus Read operation  
within a block being erased. The Data Polling bit will change from a ’0’ to a ’1’ when the  
Program/Erase Controller has suspended the Erase operation.  
Figure 6: Data Polling flowchart, gives an example of how to use the Data Polling bit. A Valid  
Address is the address being programmed or an address within the block being erased.  
5.2  
Toggle bit (DQ6)  
The Toggle bit can be used to identify whether the Program/Erase Controller has  
successfully completed its operation or if it has responded to an Erase Suspend. The Toggle  
bit is output on DQ6 when the Status register is read.  
During Program and Erase operations the Toggle bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive Bus Read operations at any address. After successful completion of the  
operation the memory returns to Read mode.  
During Erase Suspend mode the Toggle bit will output when addressing a cell within a block  
being erased. The Toggle bit will stop toggling when the Program/Erase Controller has  
suspended the Erase operation.  
Figure 7: Toggle flowchart, gives an example of how to use the Data Toggle bit. Figure 13  
and Figure 14 describe Toggle bit timing waveform.  
29/63  
Status register  
M29W320ET, M29W320EB  
5.3  
Error bit (DQ5)  
The Error bit can be used to identify errors detected by the Program/Erase Controller. The  
Error bit is set to ’1’ when a Program, Block Erase or Chip Erase operation fails to write the  
correct data to the memory. If the Error bit is set a Read/Reset command must be issued  
before other commands are issued. The Error bit is output on DQ5 when the Status register  
is read.  
Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to  
do so will set DQ5 to ‘1’. A Bus Read operation to that address will show the bit is still ‘0’.  
One of the Erase commands must be used to set all the bits in a block or in the whole  
memory from ’0’ to ’1’.  
5.4  
5.5  
Erase Timer bit (DQ3)  
The Erase Timer bit can be used to identify the start of Program/Erase Controller operation  
during a Block Erase command. Once the Program/Erase Controller starts erasing the  
Erase Timer bit is set to ’1’. Before the Program/Erase Controller starts the Erase Timer bit  
is set to ’0’ and additional blocks to be erased may be written to the Command interface.  
The Erase Timer bit is output on DQ3 when the Status register is read.  
Alternative Toggle bit (DQ2)  
The alternative Toggle bit can be used to monitor the Program/Erase controller during Erase  
operations. The alternative Toggle bit is output on DQ2 when the Status register is read.  
During Chip Erase and Block Erase operations the Toggle bit changes from ’0’ to ’1’ to ’0’,  
etc., with successive Bus Read operations from addresses within the blocks being erased. A  
protected block is treated the same as a block not being erased. Once the operation  
completes the memory returns to Read mode.  
During Erase Suspend the alternative Toggle bit changes from ’0’ to ’1’ to ’0’, etc. with  
successive Bus Read operations from addresses within the blocks being erased. Bus Read  
operations to addresses within blocks not being erased will output the memory cell data as if  
in Read mode.  
After an Erase operation that causes the Error bit to be set the alternative Toggle bit can be  
used to identify which block or blocks have caused the error. The alternative Toggle bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read Operations from addresses  
within blocks that have not erased correctly. The alternative Toggle bit does not change if the  
addressed block has erased correctly.  
30/63  
M29W320ET, M29W320EB  
Status register  
(1)  
Table 7.  
Status register bits  
Address  
Operation  
DQ7  
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Program  
Any Address  
Any Address  
DQ7  
Toggle  
0
0
Program during  
Erase Suspend  
DQ7  
Toggle  
0
0
Program Error  
Chip Erase  
Any Address  
Any Address  
Erasing Block  
DQ7  
Toggle  
Toggle  
Toggle  
1
0
0
1
0
Hi-Z  
0
0
0
Toggle  
Toggle  
0
Block Erase before  
timeout  
No  
Toggle  
Non-Erasing Block  
Erasing Block  
0
0
0
Toggle  
Toggle  
Toggle  
0
0
0
0
1
1
0
0
0
Toggle  
Block Erase  
No  
Toggle  
Non-Erasing Block  
No  
Toggle  
Erasing Block  
1
0
Toggle  
Hi-Z  
Hi-Z  
Hi-Z  
Erase Suspend  
Non-Erasing Block  
Data read as normal  
Good Block  
Address  
No  
Toggle  
0
0
Toggle  
Toggle  
1
1
1
1
Erase Error  
Faulty Block  
Address  
Toggle  
Hi-Z  
1. Unspecified data bits should be ignored.  
31/63  
Status register  
Figure 6.  
M29W320ET, M29W320EB  
Data Polling flowchart  
START  
READ DQ5 & DQ7  
at VALID ADDRESS  
DQ7  
=
YES  
DATA  
NO  
NO  
DQ5  
= 1  
YES  
READ DQ7  
at VALID ADDRESS  
DQ7  
=
YES  
DATA  
NO  
FAIL  
PASS  
AI90194  
32/63  
M29W320ET, M29W320EB  
Figure 7. Toggle flowchart  
Status register  
START  
READ DQ6  
ADDRESS = BA  
READ  
DQ5 & DQ6  
ADDRESS = BA  
DQ6  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
YES  
READ DQ6  
TWICE  
ADDRESS = BA  
DQ6  
=
NO  
TOGGLE  
YES  
FAIL  
PASS  
AI08929b  
1. BA = Address of Block being Programmed or Erased.  
33/63  
Maximum rating  
M29W320ET, M29W320EB  
6
Maximum rating  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability. These are stress ratings only and  
operation of the device at these or any other conditions above those indicated in the  
Operating sections of this specification is not implied. Refer also to the Numonyx SURE  
Program and other relevant quality documents.  
Table 8.  
Symbol  
Absolute maximum ratings  
Parameter  
Min  
Max  
Unit  
TBIAS  
TSTG  
VIO  
Temperature under Bias  
Storage Temperature  
Input or Output voltage (1)(2)  
Supply voltage  
–50  
–65  
125  
150  
°C  
°C  
V
–0.6  
–0.6  
–0.6  
–0.6  
VCC +0.6  
4
VCC  
VID  
V
Identification voltage  
Program voltage  
13.5  
V
(3)  
VPP  
13.5  
V
1. Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions.  
2. Maximum voltage may overshoot to VCC +2V during transition and for less than 20ns during transitions.  
3. VPP must not remain at 12V for more than a total of 80hrs.  
34/63  
M29W320ET, M29W320EB  
DC and ac parameters  
7
DC and ac parameters  
This section summarizes the operating measurement conditions, and the dc and ac  
characteristics of the device. The parameters in the dc and ac characteristics tables that  
follow, are derived from tests performed under the measurement conditions summarized in  
Table 9: Operating and ac measurement conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 9.  
Operating and ac measurement conditions  
M29W320ET, M29W320EB  
Parameter  
70  
90  
Unit  
Min  
Max  
Min  
Max  
V
CC Supply voltage  
2.7  
3.6  
85  
2.7  
3.6  
85  
V
°C  
pF  
ns  
V
Ambient operating temperature  
Load capacitance (CL)  
–40  
–40  
30  
30  
Input Rise and Fall times  
10  
10  
Input Pulse voltages  
0 to VCC  
VCC/2  
0 to VCC  
VCC/2  
Input and Output Timing Ref. voltages  
V
Figure 8.  
AC measurement I/O waveform  
V
CC  
V
/2  
CC  
0V  
AI05557  
Figure 9.  
AC measurement Load circuit  
V
V
V
CC  
PP  
CC  
25kΩ  
DEVICE  
UNDER  
TEST  
25kΩ  
C
L
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI05558  
35/63  
DC and ac parameters  
M29W320ET, M29W320EB  
(1)  
Table 10. Device capacitance  
Symbol  
Parameter  
Test condition  
Min  
Max  
Unit  
CIN  
Input capacitance  
Output capacitance  
VIN = 0V  
6
pF  
pF  
COUT  
VOUT = 0V  
12  
1. Sampled only, not 100% tested.  
Table 11. DC characteristics  
Symbol  
Parameter  
Test condition  
Min  
Max  
Unit  
ILI  
Input Leakage current  
Output Leakage current  
0V VIN VCC  
1
1
µA  
µA  
ILO  
0V VOUT VCC  
E = VIL, G = VIH,  
f = 6MHz  
(1)  
ICC1  
Supply current (Read)  
10  
100  
20  
mA  
E = VCC 0.2V,  
RP = VCC 0.2V  
ICC2  
Supply current (Standby)  
µA  
mA  
mA  
VPP/WP =  
VIL or VIH  
Program/Erase  
ICC3  
Supply current  
(Program/Erase)  
Controller  
active  
(2)(1)  
VPP/WP =  
20  
VPP  
VIL  
VIH  
Input Low voltage  
Input High voltage  
–0.5  
0.8  
V
V
0.7VCC  
VCC +0.3  
12.5  
Voltage for VPP/WP  
Program Acceleration  
VPP  
IPP  
V
CC = 2.7V 10%  
11.5  
V
Current for VPP/WP  
Program Acceleration  
VCC = 2.7V 10%  
15  
mA  
VOL  
VOH  
VID  
Output Low voltage  
Output High voltage  
Identification voltage  
IOL = 1.8mA  
0.45  
V
V
V
IOH = –100µA  
VCC –0.4  
11.5  
12.5  
2.3  
Program/Erase Lockout  
Supply voltage  
VLKO  
1.8  
V
1. In Dual operations the Supply current will be the sum of ICC1(read) and ICC3 (program/erase).  
2. Sampled only, not 100% tested.  
36/63  
M29W320ET, M29W320EB  
DC and ac parameters  
Figure 10. Read mode ac waveforms  
tAVAV  
VALID  
A0-A20/  
A–1  
tAVQV  
tAXQX  
E
tELQV  
tELQX  
tEHQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
DQ0-DQ7/  
DQ8-DQ15  
VALID  
tBHQV  
BYTE  
tELBL/tELBH  
tBLQZ  
AI05559  
Table 12. Read ac characteristics  
M29W320ET, M29W320EB  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
70  
90  
E = VIL,  
Min  
tAVAV  
tAVQV  
tRC Address Valid to Next Address Valid  
tACC Address Valid to Output Valid  
70  
90  
ns  
ns  
G = VIL  
E = VIL,  
Max  
70  
90  
G = VIL  
(1)  
tELQX  
tLZ Chip Enable Low to Output Transition  
tCE Chip Enable Low to Output Valid  
G = VIL  
G = VIL  
Min  
0
0
ns  
ns  
tELQV  
Max  
70  
90  
Output Enable Low to Output  
Transition  
(1)  
tGLQX  
tOLZ  
E = VIL  
Min  
0
0
ns  
tGLQV  
tOE Output Enable Low to Output Valid  
tHZ Chip Enable High to Output Hi-Z  
tDF Output Enable High to Output Hi-Z  
E = VIL  
G = VIL  
E = VIL  
Max  
Max  
Max  
30  
25  
25  
35  
30  
30  
ns  
ns  
ns  
(1)  
tEHQZ  
(1)  
tGHQZ  
tEHQX  
tGHQX  
Chip Enable, Output Enable or  
tOH  
Min  
0
5
0
5
ns  
ns  
Address Transition to Output Transition  
tAXQX  
tELBL  
tELBH  
tBLQZ  
tBHQV  
tELFL  
Chip Enable to BYTE Low or High  
tELFH  
Max  
tFLQZ BYTE Low to Output Hi-Z  
tFHQV BYTE High to Output Valid  
Max  
Max  
25  
30  
30  
40  
ns  
ns  
1. Sampled only, not 100% tested.  
37/63  
DC and ac parameters  
M29W320ET, M29W320EB  
Figure 11. Write ac waveforms, Write Enable controlled  
tAVAV  
A0-A20/  
VALID  
A–1  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
tGHWL  
tWLWH  
W
tWHWL  
tDVWH  
VALID  
tWHDX  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHEL  
RB  
tWHRL  
AI05560  
Table 13. Write ac characteristics, Write Enable controlled  
M29W320ET, M29W320EB  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
tAVAV  
tELWL  
tWLWH  
tDVWH  
tWHDX  
tWHEH  
tWHWL  
tAVWL  
tWLAX  
tGHWL  
tWHGL  
tWC  
tCS  
tWP  
tDS  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
70  
0
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
45  
45  
0
50  
50  
0
tDH  
tCH  
tWPH  
tAS  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
30  
0
30  
0
tAH  
45  
0
50  
0
tOEH  
tBUSY  
tVCS  
0
0
(1)  
tWHRL  
30  
50  
35  
50  
tVCHEL  
VCC High to Chip Enable Low  
1. Sampled only, not 100% tested.  
38/63  
M29W320ET, M29W320EB  
DC and ac parameters  
Figure 12. Write ac waveforms, Chip Enable controlled  
tAVAV  
A0-A20/  
VALID  
A–1  
tELAX  
tAVEL  
tEHWH  
W
tWLEL  
tEHGL  
G
tGHEL  
tELEH  
E
tEHEL  
tDVEH  
tEHDX  
DQ0-DQ7/  
DQ8-DQ15  
VALID  
V
CC  
tVCHWL  
RB  
tEHRL  
AI05561  
Table 14. Write ac characteristics, Chip Enable controlled  
M29W320ET, M29W320EB  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
tAVAV  
tWLEL  
tELEH  
tDVEH  
tEHDX  
tEHWH  
tEHEL  
tAVEL  
tELAX  
tGHEL  
tEHGL  
tWC  
tWS  
tCP  
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
70  
0
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
45  
45  
0
50  
50  
0
tDS  
tDH  
tWH  
tCPH  
tAS  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
30  
0
30  
0
tAH  
45  
0
50  
0
tOEH  
tBUSY  
tVCS  
0
0
(1)  
tEHRL  
30  
50  
35  
50  
tVCHWL  
VCC High to Write Enable Low  
1. Sampled only, not 100% tested.  
39/63  
DC and ac parameters  
M29W320ET, M29W320EB  
Figure 13. Toggle and alternative Toggle bits mechanism, Chip Enable controlled  
A0-A20  
VALID ADDRESS  
VALID ADDRESS  
VALID ADDRESS  
tAXEL  
E
G
tELQV  
tELQV  
Alternative Toggle/  
Toggle Bit  
Alternative Toggle/  
Toggle Bit  
Data  
Data  
(1)  
(2)  
DQ2 /DQ6  
AI09350  
1. The Toggle bit is output on DQ6.  
2. The alternative Toggle bit is output on DQ2.  
Figure 14. Toggle and alternative Toggle bits mechanism, Output Enable controlled  
A0-A20  
VALID ADDRESS  
VALID ADDRESS  
VALID ADDRESS  
tAXGL  
G
E
tGLQV  
tGLQV  
Alternative Toggle/  
Toggle Bit  
Alternative Toggle/  
Toggle Bit  
(1)  
(2)  
Data  
Data  
DQ2 /DQ6  
AI09351  
1. The Toggle bit is output on DQ6.  
2. The alternative Toggle bit is output on DQ2.  
(1)  
Table 15. Toggle and alternative Toggle bits ac characteristics  
M29W320ET,  
M29W320EB  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
tAXEL  
tAXGL  
Address Transition to Chip Enable Low  
Address Transition to Output Enable Low  
Min  
Min  
10  
10  
10  
10  
ns  
ns  
1. tELQV and tGLQV values are presented in Table 12: Read ac characteristics.  
40/63  
M29W320ET, M29W320EB  
DC and ac parameters  
Figure 15. Reset/Block Temporary Unprotect ac waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPLPX  
RP  
tPHPHH  
tPLYH  
AI02931B  
Table 16. Reset/Block Temporary Unprotect ac characteristics  
M29W320ET,  
M29W320EB  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
(1)  
tPHWL  
RP High to Write Enable Low, Chip Enable  
Low, Output Enable Low  
tPHEL  
tRH  
Min  
Min  
50  
50  
ns  
ns  
(1)  
tPHGL  
(1)  
tRHWL  
RB High to Write Enable Low, Chip Enable  
Low, Output Enable Low  
(1)  
tRHEL  
tRB  
0
0
(1)  
tRHGL  
tPLPX  
tRP  
RP Pulse Width  
Min  
Max  
Min  
Min  
500  
50  
500  
50  
ns  
µs  
ns  
ns  
tPLYH  
tREADY RP Low to Read mode  
(1)  
tPHPHH  
tVIDR  
RP Rise time to VID  
500  
250  
500  
250  
(1)  
tVHVPP  
VPP Rise and Fall time  
1. Sampled only, not 100% tested.  
Figure 16. Accelerated Program Timing waveforms  
V
PP  
V
/WP  
PP  
V
or V  
IH  
IL  
tVHVPP  
tVHVPP  
AI05563  
41/63  
Package mechanical  
M29W320ET, M29W320EB  
8
Package mechanical  
Figure 17. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, top view package outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing not to scale.  
Table 17. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
L1  
α
0
5
0
5
42/63  
M29W320ET, M29W320EB  
Package mechanical  
Figure 18. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, bottom view package outline  
D
D1  
FD  
FE  
SD  
SE  
BALL "A1"  
E
E1  
ddd  
e
e
b
A
A2  
A1  
BGA-Z32  
1. Drawing not to scale.  
Table 18. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.260  
0.0102  
0.900  
0.0354  
0.350  
5.900  
0.450  
0.0138  
0.2323  
0.0177  
D
6.000  
4.000  
6.100  
0.2362  
0.1575  
0.2402  
D1  
ddd  
E
0.100  
0.0039  
8.000  
5.600  
0.800  
1.000  
1.200  
0.400  
0.400  
7.900  
8.100  
0.3150  
0.2205  
0.0315  
0.0394  
0.0472  
0.0157  
0.0157  
0.3110  
0.3189  
E1  
e
FD  
FE  
SD  
SE  
43/63  
Part numbering  
M29W320ET, M29W320EB  
9
Part numbering  
Table 19. Ordering information scheme  
Example:  
M29W320EB  
70  
N
1
T
Device type  
M29  
Operating voltage  
W = VCC = 2.7 to 3.6V  
Device function  
320E = 32 Mbit (x8/x16), Uniform Parameter Blocks,  
Boot Block  
Array matrix  
T = Top Boot  
B = Bottom Boot  
Speed  
70 = 70 ns  
90 = 90 ns  
Package  
N = TSOP48: 12 x 20 mm  
ZE = TFBGA48: 6 x 8mm, 0.8mm pitch  
Temperature range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
Blank = standard packing  
T = Tape & Reel packing  
E = ECOPACK package, standard packing  
F = ECOPACK package, Tape & Reel packing  
Note:  
This product is also available with the Extended Block factory locked. For further details and  
ordering information contact your nearest Numonyx sales office.  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc.) or for further information on any aspect  
of this device, please contact the Numonyx Sales Office nearest to you.  
44/63  
M29W320ET, M29W320EB  
Block Addresses  
Appendix A Block Addresses  
Table 20. Top Boot Block Addresses, M29W320ET  
Block size  
Protection Block  
group  
Block  
(x8)  
(x16)  
(Kbytes/Kwords)  
0
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
000000h–07FFFh  
008000h–0FFFFh  
010000h–17FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
1
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
45/63  
Block Addresses  
M29W320ET, M29W320EB  
Table 20. Top Boot Block Addresses, M29W320ET (continued)  
Block size  
Protection Block  
group  
Block  
(x8)  
(x16)  
(Kbytes/Kwords)  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
46/63  
M29W320ET, M29W320EB  
Table 20. Top Boot Block Addresses, M29W320ET (continued)  
Block Addresses  
(x16)  
Block size  
Protection Block  
group  
Block  
(x8)  
(Kbytes/Kwords)  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
64/32  
64/32  
64/32  
8/4  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
3F0000h–3F1FFFh(1) 1F8000h–1F8FFFh(1)  
3F2000h–3F3FFFh(1) 1F9000h–1F9FFFh(1)  
3F4000h–3F5FFFh(1) 1FA000h–1FAFFFh(1)  
3F6000h–3F7FFFh(1) 1FB000h–1FBFFFh(1)  
3F8000h–3F9FFFh(1) 1FC000h–1FCFFFh(1)  
3FA000h–3FBFFFh(1) 1FD000h–1FDFFFh(1)  
3FC000h–3FDFFFh(1) 1FE000h–1FEFFFh(1)  
3FE000h–3FFFFFh(1) 1FF000h–1FFFFFh(1)  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
1. Used as the Extended Block Addresses in Extended Block mode.  
Table 21. Bottom Boot Block Addresses, M29W320EB  
Block size  
(Kbytes/Kwords)  
Protection Block  
group  
Block  
(x8)  
(x16)  
0
1
8/4  
8/4  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
000000h-001FFFh(1) 000000h–000FFFh(1)  
002000h-003FFFh(1) 001000h–001FFFh(1)  
004000h-005FFFh(1) 002000h–002FFFh(1)  
006000h-007FFFh(1) 003000h–003FFFh(1)  
008000h-009FFFh(1) 004000h–004FFFh(1)  
00A000h-00BFFFh(1) 005000h–005FFFh(1)  
00C000h-00DFFFh(1) 006000h–006FFFh(1)  
00E000h-00FFFFh(1) 007000h–007FFFh(1)  
2
8/4  
3
8/4  
4
8/4  
5
8/4  
6
8/4  
7
8/4  
8
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
9
Protection group  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Protection group  
Protection group  
47/63  
Block Addresses  
Block  
M29W320ET, M29W320EB  
(x16)  
Table 21. Bottom Boot Block Addresses, M29W320EB (continued)  
Block size  
Protection Block  
group  
(x8)  
(Kbytes/Kwords)  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
48/63  
M29W320ET, M29W320EB  
Block Addresses  
(x16)  
Table 21. Bottom Boot Block Addresses, M29W320EB (continued)  
Block size  
(Kbytes/Kwords)  
Protection Block  
group  
Block  
(x8)  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Protection group  
Protection group  
Protection group  
Protection group  
Protection group  
1. Used as the Extended Block Addresses in Extended Block mode.  
49/63  
Common Flash Interface (CFI)  
M29W320ET, M29W320EB  
Appendix B Common Flash Interface (CFI)  
The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from  
the Flash memory device. It allows a system software to query the device to determine various electrical  
and timing parameters, density information and functions supported by the memory. The system can  
interface easily with the device, enabling the software to upgrade itself when necessary. When the CFI  
Query Command is issued the device enters CFI Query mode and the data structure is read from the  
memory. Table 22, Table 23, Table 24, Table 25, Table 26 and Table 27 show the addresses used to  
retrieve the data.  
The CFI data structure also contains a security area where a 64 bit unique security number is written  
(see Table 27: Security code area). This area can be accessed only in Read mode by the final user. It is  
impossible to change the security number after it has been written by Numonyx.  
(1)  
Table 22. Query Structure Overview  
Address  
Sub-section name  
Description  
x16  
x8  
10h  
1Bh  
27h  
20h  
36h  
4Eh  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Primary Algorithm-specific extended  
Query table  
Additional information specific to the Primary  
Algorithm (optional)  
40h  
61h  
80h  
C2h  
Security code area  
64 bit unique device number  
1. Query data are always presented on the lowest order data outputs.  
(1)  
Table 23. CFI Query Identification String  
Address  
Data  
Description  
Value  
x16  
x8  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
0051h  
“Q”  
"R"  
"Y"  
0052h Query unique ASCII string "QRY"  
0059h  
0002h  
AMD  
Primary Algorithm Command Set and Control Interface ID code 16 bit  
ID code defining a specific algorithm  
Compatible  
0000h  
0040h  
Address for Primary Algorithm extended query table (see Table 26)  
P = 40h  
NA  
0000h  
0000h  
Alternate Vendor Command Set and Control Interface ID code second  
vendor - specified algorithm supported  
0000h  
0000h  
Address for Alternate Algorithm extended Query table  
0000h  
NA  
1. Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
50/63  
M29W320ET, M29W320EB  
Common Flash Interface (CFI)  
Table 24. CFI Query System Interface Information  
Address  
Data  
0027h  
0036h  
00B5h  
00C5h  
Description  
Value  
x16  
x8  
VCC Logic Supply Minimum Program/Erase voltage  
1Bh  
36h  
bit 7 to 4BCD value in volts  
2.7V  
3.6V  
bit 3 to 0BCD value in 100 mV  
VCC Logic Supply Maximum Program/Erase voltage  
bit 7 to 4BCD value in volts  
1Ch  
1Dh  
1Eh  
38h  
3Ah  
3Ch  
bit 3 to 0BCD value in 100 mV  
VPP [Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4HEX value in volts  
11.5V  
12.5V  
bit 3 to 0BCD value in 100 mV  
V
PP [Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0004h  
0000h  
000Ah  
0000h  
0004h  
0000h  
0003h  
0000h  
Typical timeout per single byte/word program = 2n µs  
Typical timeout for minimum size write buffer program = 2n µs  
Typical timeout per individual block erase = 2n ms  
16µs  
NA  
1s  
Typical timeout for full Chip Erase = 2n ms  
NA  
Maximum timeout for byte/word program = 2n times typical  
Maximum timeout for write buffer program = 2n times typical  
Maximum timeout per individual block erase = 2n times typical  
Maximum timeout for Chip Erase = 2n times typical  
256 µs  
NA  
8 s  
NA  
51/63  
Common Flash Interface (CFI)  
M29W320ET, M29W320EB  
(1)  
Table 25.  
Device Geometry Definition  
Address  
Data  
Description  
Value  
x16  
x8  
27h  
4Eh  
0016h  
Device Size = 2n in number of bytes  
4 Mbyte  
28h  
29h  
50h  
52h  
0002h  
0000h  
x8, x16  
Async.  
Flash Device Interface code description  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Maximum number of bytes in multi-byte program or page = 2n  
NA  
2
Number of Erase Block regions. It specifies the number of  
regions containing contiguous Erase Blocks of the same size.  
2Ch  
58h  
0002h  
2Dh  
2Eh  
5Ah  
5Ch  
0007h  
0000h  
Region 1 information  
8
Number of Erase Blocks of identical size = 0007h+1  
2Fh  
30h  
5Eh  
60h  
0020h  
0000h  
Region 1 information  
8Kbyte  
63  
Block size in Region 1 = 0020h * 256 byte  
31h  
32h  
62h  
64h  
003Eh  
0000h  
Region 2 information  
Number of Erase Blocks of identical size = 003Eh+1  
33h  
34h  
66h  
68h  
0000h  
0001h  
Region 2 information  
64Kbyte  
Block size in region 2 = 0100h * 256 byte  
1. For the M29W320EB, Region 1 corresponds to addresses 000000h to 007FFFh and Region 2 to addresses 008000h to  
1FFFFFh. For the M29W320ET, Region 1 corresponds to addresses 1F8000h to 1FFFFFh and Region 2 to addresses  
000000h to 1F7FFFh.  
Table 26. Primary Algorithm-specific extended Query table  
Address  
Data  
Description  
Value  
x16  
x8  
40h  
41h  
42h  
43h  
44h  
80h  
82h  
84h  
86h  
88h  
0050h  
"P"  
"R"  
"I"  
0052h Primary Algorithm extended Query table unique ASCII string “PRI”  
0049h  
0031h Major version number, ASCII  
0030h Minor version number, ASCII  
"1"  
"0"  
Address Sensitive Unlock (bits 1 to 0)  
0000h 00 = required, 01= not required  
Silicon Revision Number (bits 7 to 2)  
45h  
8Ah  
Yes  
Erase Suspend  
46h  
47h  
48h  
49h  
8Ch  
8Eh  
90h  
92h  
0002h  
2
1
00 = not supported, 01 = Read only, 02 = Read and Write  
Block Protection  
0001h  
00 = not supported, x = number of blocks in per group  
Temporary Block Unprotect  
0001h  
Yes  
04  
00 = not supported, 01 = supported  
Block Protect /Unprotect  
0004h  
04 = M29W320E  
52/63  
M29W320ET, M29W320EB  
Common Flash Interface (CFI)  
Table 26. Primary Algorithm-specific extended Query table (continued)  
Address  
Data  
Description  
Value  
x16  
x8  
4Ah  
4Bh  
4Ch  
94h  
96h  
98h  
0000h Simultaneous operations, 00 = not supported  
No  
No  
No  
0000h Burst mode, 00 = not supported, 01 = supported  
0000h Page mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word  
VPP Supply Minimum Program/Erase voltage  
4Dh  
9Ah  
00B5h bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
11.5V  
VPP Supply Maximum Program/Erase voltage  
00C5h bit 7 to 4 HEX value in volts  
4Eh  
4Fh  
9Ch  
9Eh  
12.5V  
bit 3 to 0 BCD value in 100 mV  
Top/Bottom Boot Block Flag  
000xh  
02h = Bottom Boot device, 03h = Top Boot device  
Table 27. Security code area  
Address  
Data  
Description  
x16  
x8  
61h  
62h  
63h  
64h  
C3h, C2h  
C5h, C4h  
C7h, C6h  
C9h, C8h  
XXXX  
XXXX  
XXXX  
XXXX  
64 bit: unique device number  
53/63  
Extended memory Block  
M29W320ET, M29W320EB  
Appendix C Extended memory Block  
The M29W320E has an extra block, the Extended Block, that can be accessed using a  
dedicated command.  
This Extended Block is 32 Kwords in x16 mode and 64 Kbytes in x8 mode. It is used as a  
security block (to provide a permanent security identification number) or to store additional  
information.  
The Extended Block is either Factory Locked or Customer Lockable, its status is indicated  
by bit DQ7. This bit is permanently set to either ‘1’ or ‘0’ at the factory and cannot be  
changed. When set to ‘1’, it indicates that the device is factory locked and the Extended  
Block is protected. When set to ‘0’, it indicates that the device is customer lockable and the  
Extended Block is unprotected. Bit DQ7 being permanently locked to either ‘1’ or ‘0’ is  
another security feature which ensures that a customer lockable device cannot be used  
instead of a factory locked one.  
Bit DQ7 is the most significant bit in the Extended Block Verify code and a specific  
procedure must be followed to read it. See “Extended memory Block Verify code” in Table 2  
and Section Table 3. on page 19, Table 2: Bus operations, BYTE = V and Table 3: Bus  
IL  
operations, BYTE = V , respectively, for details of how to read bit DQ7.  
IH  
The Extended Block can only be accessed when the device is in Extended Block mode. For  
details of how the Extended Block mode is entered and exited, refer to Section 4.13: Enter  
Extended Block command and Section 4.14: Exit Extended Block command, and to Table 4  
and Table 5, Table 4: Commands, 16-bit mode, BYTE = V and Table 5: Commands, 8-bit  
IH  
mode, BYTE = V , respectively.  
IL  
9.1  
9.2  
Factory Locked Extended Block  
In devices where the Extended Block is factory locked, the Security Identification Number is  
written to the Extended Block address space (see Table 28: Extended Block Address and  
data) in the factory. The DQ7 bit is set to ‘1’ and the Extended Block cannot be unprotected.  
Customer Lockable Extended Block  
A device where the Extended Block is customer lockable is delivered with the DQ7 bit set to  
‘0’ and the Extended Block unprotected. It is up to the customer to program and protect the  
Extended Block but care must be taken because the protection of the Extended Block is not  
reversible.  
There are two ways of protecting the Extended Block:  
Issue the Enter Extended Block command to place the device in Extended Block mode,  
then use the In-system technique with RP either at V or at V (refer to Appendix D:  
IH  
ID  
Block Protection, Section D.2: In-system technique and to the corresponding  
flowcharts, Figure 21 and Figure 22, for a detailed explanation of the technique).  
Issue the Enter Extended Block command to place the device in Extended Block mode,  
then use the Programmer technique (refer to Appendix D: Block Protection,  
Section D.1: Programmer technique and to the corresponding flowcharts, Figure 19  
and Figure 20, for a detailed explanation of the technique).  
54/63  
M29W320ET, M29W320EB  
Extended memory Block  
Once the Extended Block is programmed and protected, the Exit Extended Block command must be  
issued to exit the Extended Block mode and return the device to Read mode.  
Table 28. Extended Block Address and data  
Address(1)  
Data  
Device  
x8  
x16  
Factory Locked  
Customer Lockable  
Security identification  
number  
3F0000h-3F000Fh  
3F0010h-3FFFFFh  
000000h-00000Fh  
000010h-00FFFFh  
1F8000h-1F8007h  
1F8008h-1FFFFFh  
000000h-000007h  
000008h-007FFFh  
Determined by  
customer  
M29W320ET  
Unavailable  
Security identification  
number  
Determined by  
customer  
M29W320EB  
Unavailable  
1. See Table 20 and Table 21, Top and Bottom Boot Block Addresses.  
55/63  
Block Protection  
M29W320ET, M29W320EB  
Appendix D Block Protection  
Block protection can be used to prevent any operation from modifying the data stored in the  
memory. The blocks are protected in groups, refer to Appendix A: Block Addresses,  
Table 20 and Table 21. for details of the Protection groups. Once protected, Program and  
Erase operations within the protected group fail to change the data.  
There are three techniques that can be used to control Block Protection, these are the  
Programmer technique, the In-system technique and Temporary Unprotection. Temporary  
Unprotection is controlled by the Reset/Block Temporary Unprotection pin, RP; this is  
described in the Signal Descriptions section.  
D.1  
Programmer technique  
The Programmer technique uses high (V ) voltage levels on some of the bus pins. These  
ID  
cannot be achieved using a standard microprocessor bus, therefore the technique is  
recommended only for use in programming equipment.  
To protect a group of blocks follow the flowchart in Figure 19, Programmer Equipment Block  
Protect flowchart. To unprotect the whole chip it is necessary to protect all of the groups first,  
then all groups can be unprotected at the same time. To unprotect the chip follow Figure 20:  
Programmer Equipment Chip Unprotect flowchart. Table 29: Programmer technique Bus  
operations, BYTE = V or V , gives a summary of each operation.  
IH  
IL  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not abort the procedure before  
reaching the end. Chip Unprotect can take several seconds and a user message should be  
provided to show that the operation is progressing.  
D.2  
In-system technique  
The In-system technique requires a high voltage level on the Reset/Blocks Temporary  
(1)  
Unprotect pin, RP . This can be achieved without violating the maximum ratings of the  
components on the microprocessor bus, therefore this technique is suitable for use after the  
memory has been fitted to the system.  
To protect a group of blocks follow the flowchart in Figure 21: In-system Equipment Group  
Protect flowchart. To unprotect the whole chip it is necessary to protect all of the groups first,  
then all the groups can be unprotected at the same time. To unprotect the chip follow  
Figure 22: In-system Equipment Chip Unprotect flowchart.  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not allow the microprocessor to  
service interrupts that will upset the timing and do not abort the procedure before reaching  
the end. Chip Unprotect can take several seconds and a user message should be provided  
to show that the operation is progressing.  
Note:  
RP can be either at V or at V when using the In-system technique to protect the  
IH ID  
Extended Block.  
56/63  
M29W320ET, M29W320EB  
Block Protection  
Table 29. Programmer technique Bus operations, BYTE = V or V  
IH  
IL  
Address Inputs  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
A0-A20  
A9 = VID, A12-A20 Block Address  
others = X  
Block (group)  
Protect(1)  
VIL  
VID VIL Pulse  
X
X
A9 = VID, A12 = VIH, A15 = VIH  
others = X  
Chip Unprotect  
VID VID VIL Pulse  
A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID,  
A12-A20 Block Address  
Pass = XX01h  
Retry = XX00h  
Block (group)  
Protection Verify  
VIL  
VIL  
VIL  
VIL  
VIH  
others = X  
A0 = VIL, A1 = VIH, A6 = VIH,  
A9 = VID, A12-A20 Block Address  
Retry = XX01h  
Pass = XX00h  
Block (group)  
Unprotection Verify  
VIH  
others = X  
1. Block Protection groups are shown in Appendix A: Block Addresses, Table 20 and Table 21.  
57/63  
Block Protection  
M29W320ET, M29W320EB  
Figure 19. Programmer Equipment Group Protect flowchart  
START  
ADDRESS = GROUP ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4µs  
W = V  
IL  
Wait 100µs  
W = V  
IH  
E, G = V  
,
IH  
A0, A6 = V  
A1 = V  
,
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
Wait 60ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
E, G = V  
IH  
IH  
YES  
PASS  
A9 = V  
IH  
E, G = V  
IH  
AI05574  
FAIL  
1. Block Protection groups are shown in Appendix A: Block Addresses, Table 20 and Table 21.  
58/63  
M29W320ET, M29W320EB  
Block Protection  
Figure 20. Programmer Equipment Chip Unprotect flowchart  
START  
PROTECT ALL GROUPS  
n = 0  
CURRENT GROUP = 0  
(1)  
A6, A12, A15 = V  
IH  
E, G, A9 = V  
ID  
Wait 4µs  
W = V  
IL  
Wait 10ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT GROUP ADDRESS  
A0 = V , A1, A6 = V  
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
INCREMENT  
CURRENT GROUP  
Wait 60ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
GROUP  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
A9 = V  
IH  
IH  
E, G = V  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI05575  
1. Block Protection groups are shown in Appendix A: Block Addresses, Table 20 and Table 21.  
59/63  
Block Protection  
M29W320ET, M29W320EB  
Figure 21. In-system Equipment Group Protect flowchart  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
WRITE 60h  
ADDRESS = GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 100µs  
WRITE 40h  
IL  
ADDRESS = GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 4µs  
READ DATA  
ADDRESS = GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
DATA  
NO  
=
01h  
YES  
++n  
= 25  
NO  
RP = V  
IH  
YES  
ISSUE READ/RESET  
COMMAND  
RP = V  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI05576  
1. Block Protection groups are shown in Appendix A: Block Addresses, Table 20 and Table 21.  
2. RP can be either at VIH or at VID when using the In-system technique to protect the Extended Block.  
60/63  
M29W320ET, M29W320EB  
Block Protection  
Figure 22. In-system Equipment Chip Unprotect flowchart  
START  
PROTECT ALL GROUPS  
n = 0  
CURRENT GROUP = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 10ms  
WRITE 40h  
ADDRESS = CURRENT GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 4µs  
INCREMENT  
CURRENT GROUP  
READ DATA  
ADDRESS = CURRENT GROUP ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
DATA  
NO  
YES  
=
00h  
++n  
= 1000  
NO  
NO  
LAST  
GROUP  
YES  
YES  
RP = V  
IH  
RP = V  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI05577  
1. Block Protection groups are shown in Appendix A: Block Addresses, Table 20 and Table 21.  
61/63  
Revision history  
M29W320ET, M29W320EB  
Revision history  
Table 30. Document revision history  
Date  
Version  
Changes  
15-Apr-2004  
1.0  
First Issue.  
Protection group for Blocks 0 to 3 and and Blocks 67 to 70 modifed in  
Table 20: Top Boot Block Addresses, M29W320ET and Table 21:  
Bottom Boot Block Addresses, M29W320EB, respectively.  
18-Nov-2004  
2.0  
TFBGA48 Commercial code changed from ZA to ZE.  
RB updated in Table 7: Status register bits.  
14-Mar-2005  
28-Mar-2006  
3.0  
4.0  
Section 4.5: Fast Program commands restructured and updated.  
Section 4.6: Unlock Bypass command updated.  
Datasheet title modified.  
ECOPACK text added.  
Changed DQ7 to DQ7 for ‘Program’, ‘Program during Erase Suspend’,  
and ‘Program Error’ in Table 7: Status register bits.  
16-Jan-2007  
26-Mar-2008  
5
6
Applied Numonyx branding.  
62/63  
M29W320ET, M29W320EB  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
63/63  

相关型号:

M29W320ET90N6F

32 Mbit (4Mb x8 or 2Mb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W320ET90N6F

32 Mbit (4Mbx8 or 2Mbx16, Uniform Parameter Blocks, Boot Block) 3V supply Flash memory
NUMONYX

M29W320ET90N6T

32 Mbit (4Mb x8 or 2Mb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W320ET90N6T

32 Mbit (4Mbx8 or 2Mbx16, Uniform Parameter Blocks, Boot Block) 3V supply Flash memory
NUMONYX

M29W320ET90ZA1

2MX16 FLASH 3V PROM, 90ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, TFBGA-48
STMICROELECTR

M29W320ET90ZA1E

Flash, 2MX16, 90ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, LEAD FREE, TFBGA-48
STMICROELECTR

M29W320ET90ZA1F

2MX16 FLASH 3V PROM, 90ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, LEAD FREE, TFBGA-48
STMICROELECTR

M29W320ET90ZA1T

Flash, 2MX16, 90ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, TFBGA-48
STMICROELECTR

M29W320ET90ZA6F

Flash, 2MX16, 90ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, LEAD FREE, TFBGA-48
STMICROELECTR

M29W320ET90ZA6T

Flash, 2MX16, 90ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, TFBGA-48
STMICROELECTR

M29W320ET90ZE1

32 Mbit (4Mb x8 or 2Mb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W320ET90ZE1

32 Mbit (4Mbx8 or 2Mbx16, Uniform Parameter Blocks, Boot Block) 3V supply Flash memory
NUMONYX