M58WR032QB60ZB6E [NUMONYX]

16 Mbit and 32 Mbit (x16, Multiple Bank, Burst) 1.8V supply Flash memories; 16兆和32兆比特( X16 ,多个银行,连拍), 1.8V电源闪存
M58WR032QB60ZB6E
型号: M58WR032QB60ZB6E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

16 Mbit and 32 Mbit (x16, Multiple Bank, Burst) 1.8V supply Flash memories
16兆和32兆比特( X16 ,多个银行,连拍), 1.8V电源闪存

闪存 内存集成电路
文件: 总110页 (文件大小:2029K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58WR016QT M58WR016QB  
M58WR032QT M58WR032QB  
16 Mbit and 32 Mbit (x16, Multiple Bank, Burst)  
1.8V supply Flash memories  
Feature summary  
Supply voltage  
– V = 1.7V to 2V for Program, Erase and  
DD  
Read  
FBGA  
– V  
= 1.7V to 2.24V for I/O Buffers  
DDQ  
– V = 12V for fast Program (optional)  
PP  
Synchronous / Asynchronous Read  
– Synchronous Burst Read mode: 66MHz  
– Asynchronous/ Synchronous Page Read  
mode  
VFBGA56 (ZB)  
7.7 x 9 mm  
– Random access: 60ns, 70ns, 80ns  
Synchronous Burst Read Suspend  
Programming time  
Electronic signature  
– 8µs by Word typical for Fast Factory  
Program  
– Manufacturer Code: 20h  
– Device Codes:  
– Double/Quadruple Word Program option  
– Enhanced Factory Program options  
M58WR016QT (Top): 8812h.  
M58WR016QB (Bottom): 8813h  
M58WR032QT (Top): 8814h  
M58WR032QB (Bottom): 8815h  
Memory blocks  
– Multiple Bank memory array: 4 Mbit Banks  
– Parameter blocks (top or bottom location)  
ECOPACK® package available  
Dual operations  
– Program Erase in one bank while Read in  
others  
– No delay between Read and Write  
operations  
Block locking  
– All blocks locked at Power up  
– Any combination of blocks can be locked  
– WP for Block Lock-Down  
Security  
– 128 bit user programmable OTP cells  
– 64 bit unique device number  
Common Flash Interface (CFI)  
100,000 program/erase cycles per block  
November 2007  
Rev 2  
1/110  
www.numonyx.com  
1
Contents  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Contents  
1
2
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address Inputs (A0-Amax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Input/Output (DQ0-DQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reset (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Latch Enable (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.10 Wait (WAIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.11  
2.12  
2.13  
VDD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
VDDQ supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
VPP Program supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.14 VSS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.15 SSQ Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
V
3
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4
5
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Command interface - standard commands . . . . . . . . . . . . . . . . . . . . . 20  
5.1  
5.2  
Read Array command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Contents  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Read Electronic Signature command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clear Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Program/Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program/Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.10 Protection Register Program command . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.11 Set Configuration Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.12 Block Lock command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.13 Block Unlock command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.14 Block Lock-Down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6
Command interface - factory program commands . . . . . . . . . . . . . . . 28  
6.1  
6.2  
6.3  
6.4  
Bank Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Double Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Quadruple Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Enhanced Factory Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Program Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Verify Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.5  
Quadruple Enhanced Factory Program command . . . . . . . . . . . . . . . . . . 32  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Load Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Program and Verify Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.0.1  
7.0.2  
7.0.3  
7.0.4  
7.0.5  
7.0.6  
Program/Erase Controller Status Bit (SR7) . . . . . . . . . . . . . . . . . . . . . . 35  
Erase Suspend Status Bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Erase Status Bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Program Status Bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
V
Status Bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
PP  
Program Suspend Status Bit (SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3/110  
Contents  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
7.0.7  
7.0.8  
Block Protection Status Bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Bank Write/Multiple Word Program Status Bit (SR0) . . . . . . . . . . . . . . . 37  
8
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Read Select Bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
X-Latency Bits (CR13-CR11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Wait Polarity Bit (CR10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Data Output Configuration Bit (CR9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Wait Configuration Bit (CR8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Burst Type Bit (CR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Valid Clock Edge Bit (CR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Wrap Burst Bit (CR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Burst length Bits (CR2-CR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9
Read modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.1  
9.2  
Asynchronous Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Synchronous Burst Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
9.2.1  
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
9.3  
Single Synchronous Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10  
11  
Dual operations and Multiple Bank architecture . . . . . . . . . . . . . . . . . 49  
Block locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
11.1 Reading a Block’s lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
11.2 Locked state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
11.3 Unlocked state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
11.4 Lock-Down state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
11.5 Locking operations during Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . 52  
12  
13  
14  
15  
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 54  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
4/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Contents  
16  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Appendix A Block address tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Appendix B Common Flash Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Appendix C Flowcharts and pseudo codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
C.1  
C.2  
Enhanced Factory Program pseudo code. . . . . . . . . . . . . . . . . . . . . . . . 102  
Quadruple Enhanced Factory Program Pseudo Code . . . . . . . . . . . . . . 104  
Appendix D Command interface state tables. . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
17  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
5/110  
List of tables  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
M58WR016QT/B Bank architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
M58WR032QT/B Bank architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Standard commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Electronic signature codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Factory Program commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Status Register bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Configuration Register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Burst type definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Dual operations allowed in other banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Dual operations allowed in same bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Program/Erase times and endurance cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
DC characteristics - currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
DC characteristics - voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Asynchronous Read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Synchronous Read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Write AC characteristics, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Write AC characteristics, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Reset and Power-up AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
VFBGA56 - 7.7x9mm, 8x7 ball array, 0.75mm pitch, package mechanical  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Daisy chain ordering scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Top boot block addresses, M58WR016QT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Bottom boot block addresses, M58WR016QB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Top boot block addresses, M58WR032QT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Bottom boot block addresses, M58WR032QB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Query structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
CFI Query identification string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
CFI query system interface information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Device geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Primary algorithm-specific extended query table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Protection Register Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Burst Read information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Bank and erase block region information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Bank and erase block region 1 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Bank and erase block region 2 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Command interface states - modify table, next state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Command interface states - modify table, next output state. . . . . . . . . . . . . . . . . . . . . . . 106  
Command interface states - lock table, next state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Command interface states - lock table, next output state. . . . . . . . . . . . . . . . . . . . . . . . . 108  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
6/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
VFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
M58WR016QT/B memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
M58WR032QT/B memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
X-Latency and data output configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Wait configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 10. Asynchronous Random Access Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 11. Asynchronous Page Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 12. Synchronous Burst Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 13. Single Synchronous Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 14. Synchronous Burst Read Suspend AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 15. Clock input AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 16. Write AC waveforms, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 17. Write AC waveforms, Chip Enable controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 18. Reset and Power-up AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 19. VFBGA56 - 7.7x9mm, 8x7 ball array, 0.75mm pitch, Bottom View Package Outline. . . . . 73  
Figure 20. Program flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 21. Double Word Program flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 22. Quadruple Word Program flowchart and pseudo code. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 23. Program Suspend & Resume flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 24. Block Erase flowchart and pseudo code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 25. Erase Suspend & Resume flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 26. Locking operations flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 27. Protection Register Program flowchart and pseudo code . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 28. Enhanced Factory Program flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 29. Quadruple Enhanced Factory Program flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
7/110  
Summary description  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
1
Summary description  
The M58WR016QT/B and M58WR032QT/B are 16 Mbit (1 Mbit x16) and 32 Mbit (2 Mbit  
x16) non-volatile Flash memories, respectively. They will be referred to as M58WRxxxQT/B  
throughout the document unless otherwise specified.  
The M58WRxxxQT/B may be erased electrically at block level and programmed in-system  
on a Word-by-Word basis using a 1.7V to 2V V supply for the circuitry and a 1.7V to  
DD  
2.24V V  
supply for the Input/Output pins. An optional 12V V power supply is provided  
DDQ  
PP  
to speed up customer programming.  
The V pin can also be used as a control pin to provide absolute protection against  
PP  
program or erase.  
The device features an asymmetrical block architecture.  
M58WR016QT/B has an array of 39 blocks, and is divided into 4 Mbit banks. There are  
3 banks each containing 8 main blocks of 32 KWords, and one parameter bank  
containing 8 parameter blocks of 4 KWords and 7 main blocks of 32 KWords.  
M58WR032QT/B has an array of 71 blocks, and is divided into 4 Mbit banks. There are  
7 banks each containing 8 main blocks of 32 KWords, and one parameter bank  
containing 8 parameter blocks of 4 KWords and 7 main blocks of 32 KWords.  
The Multiple Bank Architecture allows Dual Operations, while programming or erasing in  
one bank, Read operations are possible in other banks. Only one bank at a time is allowed  
to be in Program or Erase mode. It is possible to perform burst reads that cross bank  
boundaries. The bank architectures are summarized in Table 2 and Table 3, and the  
memory maps are shown in Figure 3 and Figure 4. The Parameter Blocks are located at the  
top of the memory address space for the M58WR016QT and M58WR032QT, and at the  
bottom for the M58WR016QB and M58WR032QB.  
Each block can be erased separately. Erase can be suspended, in order to perform program  
in any other block, and then resumed. Program can be suspended to read data in any other  
block and then resumed. Each block can be programmed and erased over 100,000 cycles  
using the supply voltage V . There are two Enhanced Factory programming commands  
DD  
available to speed up programming.  
Program and Erase commands are written to the Command Interface of the memory. An  
internal Program/Erase Controller takes care of the timings necessary for program and  
erase operations. The end of a program or erase operation can be detected and any error  
conditions identified in the Status Register. The command set required to control the  
memory is consistent with JEDEC standards.  
The device supports synchronous burst read and asynchronous read from all blocks of the  
memory array; at power-up the device is configured for asynchronous read. In synchronous  
burst mode, data is output on each clock cycle at frequencies of up to 66MHz. The  
synchronous burst read operation can be suspended and resumed.  
The device features an Automatic Standby mode. When the bus is inactive during  
Asynchronous Read operations, the device automatically switches to the Automatic Standby  
mode. In this condition the power consumption is reduced to the standby value I  
outputs are still driven.  
and the  
DD4  
The M58WRxxxQT/B features an instant, individual block locking scheme that allows any  
block to be locked or unlocked with no latency, enabling instant code and data protection. All  
blocks have three levels of protection. They can be locked and locked-down individually  
8/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Summary description  
preventing any accidental programming or erasure. There is an additional hardware  
protection against program and erase. When V V all blocks are protected against  
PP  
PPLK  
program or erase. All blocks are locked at Power- Up.  
The device includes a Protection Register to increase the protection of a system’s design.  
The Protection Register is divided into two segments: a 64 bit segment containing a unique  
device number written by Numonyx, and a 128 bit segment One-Time-Programmable (OTP)  
by the user. The user programmable segment can be permanently protected. Figure 5  
shows the Protection Register Memory Map.  
The memory is offered in a VFBGA56, 7.7 x 9mm, 8x7 active ball array, 0.75 mm pitch  
package and is supplied with all the bits erased (set to ’1’).  
In order to meet environmental requirements, Numonyx offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
9/110  
Summary description  
Figure 1.  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Logic Diagram  
V
V
V
DD DDQ PP  
16  
(1)  
A0-Amax  
DQ0-DQ15  
WAIT  
W
E
G
M58WR016QT  
M58WR016QB  
M58WR032QT  
M58WR032QB  
RP  
WP  
L
K
V
V
SSQ  
SS  
AI10170  
1. Amax is equal to A19 for the M58WR016QT/B and to A20 for the M58WR032QT/B.  
Table 1.  
Signal names  
A0-Amax(1)  
Address Inputs  
DQ0-DQ15  
E
Data Input/Outputs, Command Inputs  
Chip Enable  
G
Output Enable  
W
Write Enable  
RP  
Reset  
WP  
K
Write Protect  
Clock  
L
Latch Enable  
WAIT  
VDD  
VDDQ  
VPP  
VSS  
VSSQ  
NC  
Wait  
Supply Voltage  
Supply Voltage for Input/Output Buffers  
Optional Supply Voltage for Fast Program & Erase  
Ground  
Ground Input/Output Supply  
Not Connected Internally  
1. Amax is equal to A19 for the M58WR016QT/B and to A20 for the M58WR032QT/B.  
10/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Summary description  
Figure 2.  
VFBGA Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A11  
A12  
A13  
A15  
A8  
A9  
V
V
V
A18  
A17  
A19  
WP  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
G
SS  
DD  
K
PP  
A20  
NC  
RP  
W
A10  
L
A7  
A14  
WAIT  
DQ6  
DQ13  
DQ5  
A16  
DQ4  
DQ12  
DQ2  
DQ10  
DQ3  
NC  
E
V
DQ15  
DQ14  
DQ1  
DQ9  
DDQ  
V
DQ11  
DQ0  
DQ8  
SS  
G
DQ7  
V
V
V
V
SSQ  
SSQ  
DD  
DDQ  
AI09301  
1. Ball B3 is A20 in the M58WR032QT/B and it is Not Connected internally (NC) in the M58WR016QT/B.  
Table 2.  
Number  
Parameter Bank  
M58WR016QT/B Bank architecture  
Bank Size  
Parameter Blocks  
Main Blocks  
4 Mbits  
4 Mbits  
4 Mbits  
4 Mbits  
8 blocks of 4 KWords  
7 blocks of 32 KWords  
8 blocks of 32 KWords  
8 blocks of 32 KWords  
8 blocks of 32 KWords  
Bank 1  
Bank 2  
Bank 3  
-
-
-
11/110  
Summary description  
Table 3.  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
M58WR032QT/B Bank architecture  
Number Bank Size Parameter Blocks  
Parameter Bank  
Main Blocks  
4 Mbits  
4 Mbits  
4 Mbits  
4 Mbits  
8 blocks of 4 KWords  
7 blocks of 32 KWords  
8 blocks of 32 KWords  
8 blocks of 32 KWords  
8 blocks of 32 KWords  
Bank 1  
Bank 2  
Bank 3  
-
-
-
Bank 6  
Bank 7  
4 Mbits  
4 Mbits  
-
-
8 blocks of 32 KWords  
8 blocks of 32 KWords  
Figure 3.  
M58WR016QT/B memory map  
M58WR016QT - Top Boot Block  
Address lines A0-A19  
M58WR016QB - Bottom Boot Block  
Address lines A0-A19  
00000h  
07FFFh  
00000h  
4 KWord  
00FFFh  
32 KWord  
8 Parameter  
8 Main  
Blocks  
Blocks  
Bank 3  
Bank 2  
Bank 1  
38000h  
32 KWord  
3FFFFh  
07000h  
07FFFh  
08000h  
0FFFFh  
4KWord  
Parameter  
Bank  
40000h  
47FFFh  
32 KWord  
32 KWord  
8 Main  
Blocks  
7 Main  
Blocks  
78000h  
32 KWord  
7FFFFh  
38000h  
3FFFFh  
40000h  
47FFFh  
32 KWord  
32 KWord  
80000h  
87FFFh  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 1  
Bank 2  
B8000h  
32 KWord  
BFFFFh  
78000h  
7FFFFh  
80000h  
87FFFh  
32 KWord  
32 KWord  
C0000h  
C7FFFh  
32 KWord  
7 Main  
Blocks  
8 Main  
Blocks  
F0000h  
32 KWord  
F7FFFh  
F8000h  
4 KWord  
F8FFFh  
B8000h  
BFFFFh  
C0000h  
C7FFFh  
32 KWord  
32 KWord  
Parameter  
Bank  
8 Parameter  
Blocks  
8 Main  
Blocks  
Bank 3  
FF000h  
FFFFFh  
F8000h  
FFFFFh  
4 KWord  
32 KWord  
AI10171  
12/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Summary description  
Figure 4.  
M58WR032QT/B memory map  
M58WR032QT - Top Boot Block  
Address lines A0-A20  
M58WR032QB - Bottom Boot Block  
Address lines A0-A20  
000000h  
007FFFh  
000000h  
000FFFh  
32 KWord  
4 KWord  
8 Main  
8 Parameter  
Blocks  
Blocks  
Bank 7  
038000h  
03FFFFh  
007000h  
007FFFh  
008000h  
00FFFFh  
32 KWord  
4KWord  
Parameter  
Bank  
32 KWord  
7 Main  
Blocks  
038000h  
03FFFFh  
040000h  
047FFFh  
32 KWord  
32 KWord  
100000h  
107FFFh  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 3  
Bank 2  
Bank 1  
Bank 1  
Bank 2  
Bank 3  
138000h  
13FFFFh  
140000h  
147FFFh  
078000h  
07FFFFh  
080000h  
087FFFh  
32 KWord  
32 KWord  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
178000h  
17FFFFh  
180000h  
187FFFh  
0B8000h  
0BFFFFh  
0C0000h  
0C7FFFh  
32 KWord  
32 KWord  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
1B8000h  
1BFFFFh  
1C0000h  
1C7FFFh  
0F8000h  
0FFFFFh  
32 KWord  
32 KWord  
32 KWord  
7 Main  
Blocks  
1F0000h  
1F7FFFh  
1F8000h  
1F8FFFh  
32 KWord  
4 KWord  
Parameter  
Bank  
1C0000h  
1C7FFFh  
32 KWord  
32 KWord  
8 Parameter  
Blocks  
8 Main  
Blocks  
Bank 7  
1FF000h  
1FFFFFh  
1F8000h  
1FFFFFh  
4 KWord  
AI10172  
13/110  
Signal descriptions  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
2
Signal descriptions  
See Figure 1: Logic Diagram and Table 1: Signal names, for a brief overview of the signals  
connected to this device.  
2.1  
Address Inputs (A0-Amax)  
Amax is equal to A19 in the M58WR016QT/B and to A20 in the M58WR032QT/B.  
The Address Inputs select the cells in the memory array to access during Bus Read  
operations. During Bus Write operations they control the commands sent to the Command  
Interface of the internal state machine.  
2.2  
2.3  
Data Input/Output (DQ0-DQ15)  
The Data I/O outputs the data stored at the selected address during a Bus Read operation  
or inputs a command or the data to be programmed during a Bus Write operation.  
Chip Enable (E)  
The Chip Enable input activates the memory control logic, input buffers, decoders and  
sense amplifiers. When Chip Enable is at V and Reset is at V the device is in active  
IL  
IH  
mode. When Chip Enable is at V the memory is deselected, the outputs are high  
IH  
impedance and the power consumption is reduced to the stand-by level.  
2.4  
2.5  
Output Enable (G)  
The Output Enable controls data outputs during the Bus Read operation of the memory.  
Write Enable (W)  
The Write Enable controls the Bus Write operation of the memory’s Command Interface.  
The data and address inputs are latched on the rising edge of Chip Enable or Write Enable  
whichever occurs first.  
2.6  
Write Protect (WP)  
Write Protect is an input that gives an additional hardware protection for each block. When  
Write Protect is at V , the Lock-Down is enabled and the protection status of the Locked-  
IL  
Down blocks cannot be changed. When Write Protect is at V , the Lock-Down is disabled  
IH  
and the Locked-Down blocks can be locked or unlocked. (refer to Table 14: Lock status).  
14/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Signal descriptions  
2.7  
Reset (RP)  
The Reset input provides a hardware reset of the memory. When Reset is at V , the  
IL  
memory is in reset mode: the outputs are high impedance and the current consumption is  
reduced to the Reset Supply Current I  
. Refer to Table 19: DC characteristics - currents  
DD2  
for the value of I  
After Reset all blocks are in the Locked state and the Configuration  
DD2.  
Register is reset. When Reset is at V , the device is in normal operation. Exiting reset  
IH  
mode the device enters asynchronous read mode, but a negative transition of Chip Enable  
or Latch Enable is required to ensure valid data outputs.  
The Reset pin can be interfaced with 3V logic without any additional circuitry. It can be tied  
to V  
(refer to Table 20: DC characteristics - voltages).  
RPH  
2.8  
Latch Enable (L)  
Latch Enable latches the address bits on its rising edge. The address latch is transparent  
when Latch Enable is at V and it is inhibited when Latch Enable is at V . Latch Enable can  
IL  
IH  
be kept Low (also at board level) when the Latch Enable function is not required or  
supported.  
2.9  
Clock (K)  
The clock input synchronizes the memory to the microcontroller during synchronous read  
operations; the address is latched on a Clock edge (rising or falling, according to the  
configuration settings) when Latch Enable is at V . Clock is don't care during asynchronous  
IL  
read and in write operations.  
2.10  
Wait (WAIT)  
Wait is an output signal used during synchronous read to indicate whether the data on the  
output bus are valid. This output is high impedance when Chip Enable is at V or Reset is  
IH  
at V . It can be configured to be active during the wait cycle or one clock cycle in advance.  
IL  
The WAIT signal is not gated by Output Enable.  
2.11  
2.12  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (Read, Program and Erase).  
VDDQ supply voltage  
V
provides the power supply to the I/O pins and enables all Outputs to be powered  
DDQ  
independently from V . V  
can be tied to V or can use a separate supply.  
DD DDQ  
DD  
15/110  
Signal descriptions  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
2.13  
VPP Program supply voltage  
V
is a power supply pin. The Supply Voltage V and the Program Supply Voltage V  
DD PP  
PP  
can be applied in any order. The pin can also be used as a control input.  
The two functions are selected by the voltage range applied to the pin. If V is kept in a low  
PP  
voltage range (0V to V  
) V is seen as a control input. In this case a voltage lower than  
DDQ  
PP  
V
gives an absolute protection against program or erase, while V in the V  
range  
PPLK  
PP  
PP1  
enables these functions (see Tables 19 and 20, DC Characteristics for the relevant values).  
is only sampled at the beginning of a program or erase; a change in its value after the  
V
PP  
operation has started does not have any effect and program or erase operations continue.  
If V is in the range of V it acts as a power supply pin. In this condition V must be  
PP  
PPH  
PP  
stable until the Program/Erase algorithm is completed.  
2.14  
VSS Ground  
V
ground is the reference for the core supply. It must be connected to the system ground.  
SS  
2.15  
VSSQ Ground  
V
ground is the reference for the input/output circuitry driven by V  
. V  
must be  
SSQ  
SSQ  
DDQ  
connected to V  
.
SS  
Note:  
Each device in a system should have V , V  
and V decoupled with a 0.1µF ceramic  
DD DDQ PP  
capacitor close to the pin (high frequency, inherently low inductance capacitors should be as  
close as possible to the package). See Figure 9: AC measurement load circuit. The PCB  
track widths should be sufficient to carry the required V program and erase currents.  
PP  
16/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Bus operations  
3
Bus operations  
There are six standard bus operations that control the device. These are Bus Read, Bus  
Write, Address Latch, Output Disable, Standby and Reset. See Table 4: Bus operations, for  
a summary.  
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the  
memory and do not affect Bus Write operations.  
3.1  
Bus Read  
Bus Read operations are used to output the contents of the Memory Array, the Electronic  
Signature, the Status Register and the Common Flash Interface. Both Chip Enable and  
Output Enable must be at V in order to perform a read operation. The Chip Enable input  
IL  
should be used to enable the device. Output Enable should be used to gate data onto the  
output. The data read depends on the previous command written to the memory (see  
Command Interface section). See Figures 10, 11, 12 and 13 Read AC Waveforms, and  
Tables 21 and 22 Read AC Characteristics, for details of when the output becomes valid.  
3.2  
Bus Write  
Bus Write operations write Commands to the memory or latch Input Data to be  
programmed. A bus write operation is initiated when Chip Enable and Write Enable are at  
V with Output Enable at V . Commands, Input Data and Addresses are latched on the  
IL  
IH  
rising edge of Write Enable or Chip Enable, whichever occurs first. The addresses can also  
be latched prior to the write operation by toggling Latch Enable. In this case the Latch  
Enable should be tied to V during the bus write operation.  
IH  
See Figures 16 and 17, Write AC Waveforms, and Tables 23 and 24, Write AC  
Characteristics, for details of the timing requirements.  
3.3  
3.4  
Address Latch  
Address latch operations input valid addresses. Both Chip enable and Latch Enable must be  
at V during address latch operations. The addresses are latched on the rising edge of  
IL  
Latch Enable.  
Output Disable  
The outputs are high impedance when the Output Enable is at V .  
IH  
17/110  
Bus operations  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
3.5  
Standby  
Standby disables most of the internal circuitry allowing a substantial reduction of the current  
consumption. The memory is in stand-by when Chip Enable and Reset are at V . The  
IH  
power consumption is reduced to the stand-by level and the outputs are set to high  
impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable  
switches to V during a program or erase operation, the device enters Standby mode when  
IH  
finished.  
3.6  
Reset  
During Reset mode the memory is deselected and the outputs are high impedance. The  
memory is in Reset mode when Reset is at V . The power consumption is reduced to the  
IL  
Standby level, independently from the Chip Enable, Output Enable or Write Enable inputs. If  
Reset is pulled to V during a Program or Erase, this operation is aborted and the memory  
SS  
content is no longer valid.  
(1)  
Table 4.  
Bus operations  
Operation  
E
G
W
L
RP  
WAIT(2)  
DQ15-DQ0  
(3)  
Bus Read  
Bus Write  
VIL  
VIL  
VIL  
VIL  
VIH  
X
VIL  
VIH  
X
VIH  
VIL  
VIH  
VIH  
X
VIL  
VIL  
VIH  
VIH  
VIH  
VIH  
VIH  
VIL  
Data Output  
(3)  
Data Input  
Address Latch  
Output Disable  
Standby  
VIL  
Data Output or Hi-Z(4)  
VIH  
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Reset  
X
X
1. X = Don't care.  
2. WAIT signal polarity is configured using the Set Configuration Register command.  
3. L can be tied to VIH if the valid address has been previously latched.  
4. Depends on G.  
18/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Command interface  
4
Command interface  
All Bus Write operations to the memory are interpreted by the Command Interface.  
Commands consist of one or more sequential Bus Write operations. An internal  
Program/Erase Controller handles all timings and verifies the correct execution of the  
Program and Erase commands. The Program/Erase Controller provides a Status Register  
whose output may be read at any time to monitor the progress or the result of the operation.  
The Command Interface is reset to read mode when power is first applied, when exiting from  
Reset or whenever V is lower than V  
. Command sequences must be followed exactly.  
DD  
LKO  
Any invalid combination of commands will be ignored.  
Refer to Table 5: Command codes and Appendix D, Tables 43, 44, 45 and 46, Command  
Interface States - Modify and Lock Tables, for a summary of the Command Interface.  
The Command Interface is split into two types of commands: Standard commands and  
Factory Program commands. The following sections explain in detail how to perform each  
command.  
Table 5.  
Command codes  
Hex Code  
Command  
01h  
03h  
10h  
20h  
2Fh  
30h  
35h  
40h  
50h  
56h  
Block Lock Confirm  
Set Configuration Register Confirm  
Alternative Program Setup  
Block Erase Setup  
Block Lock-Down Confirm  
Enhanced Factory Program Setup  
Double Word Program Setup  
Program Setup  
Clear Status Register  
Quadruple Word Program Setup  
Block Lock Setup, Block Unlock Setup, Block Lock Down Setup and Set  
Configuration Register Setup  
60h  
70h  
75h  
80h  
90h  
98h  
B0h  
C0h  
Read Status Register  
Quadruple Enhanced Factory Program Setup  
Bank Erase Setup  
Read Electronic Signature  
Read CFI Query  
Program/Erase Suspend  
Protection Register Program  
Program/Erase Resume, Block Erase Confirm, Bank Erase Confirm, Block  
Unlock Confirm or Enhanced Factory Program Confirm  
D0h  
FFh  
Read Array  
19/110  
Command interface - standard commands  
M58WR016QT, M58WR016QB, M58WR032QT,  
5
Command interface - standard commands  
The following commands are the basic commands used to read, write to and configure the  
device. Refer to Table 6: Standard commands, in conjunction with the following text  
descriptions.  
5.1  
Read Array command  
The Read Array command returns the addressed bank to Read Array mode. One Bus Write  
cycle is required to issue the Read Array command and return the addressed bank to Read  
Array mode. Subsequent read operations will read the addressed location and output the  
data. A Read Array command can be issued in one bank while programming or erasing in  
another bank. However if a Read Array command is issued to a bank currently executing a  
Program or Erase operation the command will be executed but the output data is not  
guaranteed.  
5.2  
Read Status Register command  
The Status Register indicates when a Program or Erase operation is complete and the  
success or failure of operation itself. Issue a Read Status Register command to read the  
Status Register content. The Read Status Register command can be issued at any time,  
even during Program or Erase operations.  
The following read operations output the content of the Status Register of the addressed  
bank. The Status Register is latched on the falling edge of E or G signals, and can be read  
until E or G returns to V . Either E or G must be toggled to update the latched data. See  
IH  
Table 9 for the description of the Status Register Bits. This mode supports asynchronous or  
single synchronous reads only.  
5.3  
Read Electronic Signature command  
The Read Electronic Signature command reads the Manufacturer and Device Codes, the  
Block Locking Status, the Protection Register, and the Configuration Register.  
The Read Electronic Signature command consists of one write cycle to an address within  
one of the banks. A subsequent Read operation in the same bank will output the  
Manufacturer Code, the Device Code, the protection Status of the blocks in the targeted  
bank, the Protection Register, or the Configuration Register (see Table 7).  
If a Read Electronic Signature command is issued in a bank that is executing a Program or  
Erase operation the bank will go into Read Electronic Signature mode, subsequent Bus  
Read cycles will output the Electronic Signature data and the Program/Erase controller will  
continue to program or erase in the background. This mode supports asynchronous or  
single synchronous reads only, it does not support page mode or synchronous burst reads.  
20/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB Command interface - standard com-  
5.4  
Read CFI Query command  
The Read CFI Query command is used to read data from the Common Flash Interface  
(CFI). The Read CFI Query Command consists of one Bus Write cycle, to an address within  
one of the banks. Once the command is issued subsequent Bus Read operations in the  
same bank read from the Common Flash Interface.  
If a Read CFI Query command is issued in a bank that is executing a Program or Erase  
operation the bank will go into Read CFI Query mode, subsequent Bus Read cycles will  
output the CFI data and the Program/Erase controller will continue to Program or Erase in  
the background. This mode supports asynchronous or single synchronous reads only, it  
does not support page mode or synchronous burst reads.  
The status of the other banks is not affected by the command (see Table 12). After issuing a  
Read CFI Query command, a Read Array command should be issued to the addressed  
bank to return the bank to Read Array mode.  
See Appendix B, Tables 33, 34, 35, 36, 37, 38, 39, 40, 41 and 42 for details on the  
information contained in the Common Flash Interface memory area.  
5.5  
Clear Status Register command  
The Clear Status Register command can be used to reset (set to ‘0’) error bits SR1, SR3,  
SR4 and SR5 in the Status Register. One bus write cycle is required to issue the Clear  
Status Register command. The Clear Status Register command does not change the Read  
mode of the bank.  
The error bits in the Status Register do not automatically return to ‘0’ when a new command  
is issued. The error bits in the Status Register should be cleared before attempting a new  
Program or Erase command.  
21/110  
Command interface - standard commands  
M58WR016QT, M58WR016QB, M58WR032QT,  
5.6  
Block Erase command  
The Block Erase command can be used to erase a block. It sets all the bits within the  
selected block to ’1’. All previous data in the block is lost. If the block is protected then the  
Erase operation will abort, the data in the block will not be changed and the Status Register  
will output the error. The Block Erase command can be issued at any moment, regardless of  
whether the block has been programmed or not.  
Two Bus Write cycles are required to issue the command.  
The first bus cycle sets up the Erase command.  
The second latches the block address in the internal state machine and starts the  
Program/Erase Controller.  
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits SR4 and SR5  
are set and the command aborts. Erase aborts if Reset turns to V . As data integrity cannot  
IL  
be guaranteed when the Erase operation is aborted, the block must be erased again.  
Once the command is issued the device outputs the Status Register data when any address  
within the bank is read. At the end of the operation the bank will remain in Read Status  
Register mode until a Read Array, Read CFI Query or Read Electronic Signature command  
is issued.  
During Erase operations the bank containing the block being erased will only accept the  
Read Array, Read Status Register, Read Electronic Signature, Read CFI Query and the  
Program/Erase Suspend command, all other commands will be ignored. Refer to Dual  
Operations section for detailed information about simultaneous operations allowed in banks  
not being erased. Typical Erase times are given in Table 15: Program/Erase times and  
endurance cycles.  
See Appendix C, Figure 24: Block Erase flowchart and pseudo code, for a suggested  
flowchart for using the Block Erase command.  
5.7  
Program command  
The memory array can be programmed Word-by-Word. Only one Word in one bank can be  
programmed at any one time. If the block is protected, the program operation will abort, the  
data in the block will not be changed and the Status Register will output the error.  
Two bus write cycles are required to issue the Program Command.  
The first bus cycle sets up the Program command.  
The second latches the Address and the Data to be written and starts the  
Program/Erase Controller.  
After programming has started, read operations in the bank being programmed output the  
Status Register content.  
During Program operations the bank being programmed will only accept the Read Array,  
Read Status Register, Read Electronic Signature, Read CFI Query and the Program/Erase  
Suspend command. Refer to Dual Operations section for detailed information about  
simultaneous operations allowed in banks not being programmed. Typical Program times  
are given in Table 15: Program/Erase times and endurance cycles.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory location must be reprogrammed.  
See Appendix C, Figure 20: Program flowchart and pseudo code, for the flowchart for using  
the Program command.  
22/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB Command interface - standard com-  
5.8  
Program/Erase Suspend command  
The Program/Erase Suspend command is used to pause a Program or Block Erase  
operation. A Bank Erase operation cannot be suspended.  
One bus write cycle is required to issue the Program/Erase command. Once the  
Program/Erase Controller has paused bits SR7, SR6 and/ or SR2 of the Status Register will  
be set to ‘1’. The command can be addressed to any bank.  
During Program/Erase Suspend the Command Interface will accept the Program/Erase  
Resume, Read Array (cannot read the erase-suspended block or the program-suspended  
Word), Read Status Register, Read Electronic Signature and Read CFI Query commands.  
Additionally, if the suspend operation was Erase then the Clear status Register, Program,  
Block Lock, Block Lock-Down or Block Unlock commands will also be accepted. The block  
being erased may be protected by issuing the Block Lock, Block Lock-Down or Protection  
Register Program commands. Only the blocks not being erased may be read or  
programmed correctly. When the Program/Erase Resume command is issued the operation  
will complete. Refer to the Dual Operations section for detailed information about  
simultaneous operations allowed during Program/Erase Suspend.  
During a Program/Erase Suspend, the device can be placed in standby mode by taking Chip  
Enable to V . Program/Erase is aborted if Reset turns to V .  
IH  
IL  
See Appendix C, Figure 23: Program Suspend & Resume flowchart and pseudo code, and  
Figure 25: Erase Suspend & Resume flowchart and pseudo code for flowcharts for using the  
Program/Erase Suspend command.  
5.9  
Program/Erase Resume command  
The Program/Erase Resume command can be used to restart the Program/Erase Controller  
after a Program/Erase Suspend command has paused it. One Bus Write cycle is required to  
issue the command. The command can be written to any address.  
The Program/Erase Resume command does not change the read mode of the banks. If the  
suspended bank was in Read Status Register, Read Electronic signature or Read CFI  
Query mode the bank remains in that mode and outputs the corresponding data. If the bank  
was in Read Array mode subsequent read operations will output invalid data.  
If a Program command is issued during a Block Erase Suspend, then the erase cannot be  
resumed until the programming operation has completed. It is possible to accumulate  
suspend operations. For example: suspend an erase operation, start a programming  
operation, suspend the programming operation then read the array. See Appendix C,  
Figure 23: Program Suspend & Resume flowchart and pseudo code, and Figure 25: Erase  
Suspend & Resume flowchart and pseudo code, for flowcharts for using the Program/Erase  
Resume command.  
23/110  
Command interface - standard commands  
M58WR016QT, M58WR016QB, M58WR032QT,  
5.10  
Protection Register Program command  
The Protection Register Program command is used to Program the 128 bit user One-Time-  
Programmable (OTP) segment of the Protection Register and the Protection Register Lock.  
The segment is programmed 16 bits at a time. When shipped all bits in the segment are set  
to ‘1’. The user can only program the bits to ‘0’.  
Two write cycles are required to issue the Protection Register Program command.  
The first bus cycle sets up the Protection Register Program command.  
The second latches the Address and the Data to be written to the Protection Register  
and starts the Program/Erase Controller.  
Read operations output the Status Register content after the programming has started.  
The segment can be protected by programming bit 1 of the Protection Lock Register (see  
Figure 5: Protection Register Memory Map). Attempting to program a previously protected  
Protection Register will result in a Status Register error. The protection of the Protection  
Register is not reversible.  
The Protection Register Program cannot be suspended. See Appendix C, Figure 27:  
Protection Register Program flowchart and pseudo code, for a flowchart for using the  
Protection Register Program command.  
5.11  
Set Configuration Register command  
The Set Configuration Register command is used to write a new value to the Configuration  
Register which defines the burst length, type, X latency, Synchronous/Asynchronous Read  
mode and the valid Clock edge configuration.  
Two Bus Write cycles are required to issue the Set Configuration Register command.  
The first cycle writes the setup command and the address corresponding to the  
Configuration Register content.  
The second cycle writes the Configuration Register data and the confirm command.  
Read operations output the memory array content after the Set Configuration Register  
command is issued.  
The value for the Configuration Register is always presented on A0-A15. CR0 is on A0, CR1  
on A1, etc.; the other address bits are ignored.  
24/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB Command interface - standard com-  
5.12  
Block Lock command  
The Block Lock command is used to lock a block and prevent Program or Erase operations  
from changing the data in it. All blocks are locked at power-up or reset.  
Two Bus Write cycles are required to issue the Block Lock command.  
The first bus cycle sets up the Block Lock command.  
The second Bus Write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Table 14 shows the Lock Status after issuing a Block Lock command.  
The Block Lock bits are volatile, once set they remain set until a hardware reset or power-  
down/power-up. They are cleared by a Block Unlock command. Refer to the section, Block  
Locking, for a detailed explanation. See Appendix C, Figure 26: Locking operations  
flowchart and pseudo code, for a flowchart for using the Lock command.  
5.13  
Block Unlock command  
The Block Unlock command is used to unlock a block, allowing the block to be programmed  
or erased. Two Bus Write cycles are required to issue the Block Unlock command.  
The first bus cycle sets up the Block Unlock command.  
The second Bus Write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Table 14 shows the protection status after issuing a Block Unlock command.  
Refer to the section, Block Locking, for a detailed explanation and Appendix C, Figure 26:  
Locking operations flowchart and pseudo code, for a flowchart for using the Unlock  
command.  
5.14  
Block Lock-Down command  
A locked or unlocked block can be locked-down by issuing the Block Lock-Down command.  
A locked-down block cannot be programmed or erased, or have its protection status  
changed when WP is low, V . When WP is high, V the Lock-Down function is disabled  
IL  
IH,  
and the locked blocks can be individually unlocked by the Block Unlock command.  
Two Bus Write cycles are required to issue the Block Lock-Down command.  
The first bus cycle sets up the Block Lock command.  
The second Bus Write cycle latches the block address.  
The lock status can be monitored for each block using the Read Electronic Signature  
command. Locked-Down blocks revert to the locked (and not locked-down) state when the  
device is reset on power-down. Table 14 shows the Lock Status after issuing a Block Lock-  
Down command. Refer to the section, Block Locking, for a detailed explanation and  
Appendix C, Figure 26: Locking operations flowchart and pseudo code, for a flowchart for  
using the Lock-Down command.  
25/110  
Command interface - standard commands  
M58WR016QT, M58WR016QB, M58WR032QT,  
Bus Operations  
(1)  
Table 6.  
Standard commands  
Commands  
1st Cycle  
Add  
2nd Cycle  
Add  
Op.  
Data  
Op.  
Data  
Read Array  
1+  
1+  
Write  
Write  
BKA  
BKA  
FFh  
70h  
Read  
Read  
WA  
RD  
Read Status Register  
BKA(2)  
SRD  
Read Electronic  
Signature  
1+  
Write  
BKA  
90h  
Read  
Read  
BKA(2)  
BKA(2)  
ESD  
QD  
Read CFI Query  
1+  
1
Write  
Write  
BKA  
X
98h  
50h  
Clear Status Register  
BKA or  
BA(3)  
Block Erase  
Program  
2
2
Write  
Write  
20h  
Write  
Write  
BA  
D0h  
PD  
BKA or  
WA(3)  
40h or  
10h  
WA  
Program/Erase Suspend  
Program/Erase Resume  
1
1
Write  
Write  
X
X
B0h  
D0h  
Protection Register  
Program  
2
2
2
2
2
Write  
Write  
Write  
Write  
Write  
PRA  
CRD  
C0h  
60h  
60h  
60h  
60h  
Write  
Write  
Write  
Write  
Write  
PRA  
CRD  
BA  
PRD  
03h  
01h  
D0h  
2Fh  
Set Configuration  
Register  
BKA or  
BA(3)  
Block Lock  
BKA or  
BA(3)  
Block Unlock  
Block Lock-Down  
BA  
BKA or  
BA(3)  
BA  
1. X = Don't Care, WA=Word Address in targeted bank, RD=Read Data, SRD=Status Register Data,  
ESD=Electronic Signature Data, QD=Query Data, BA=Block Address, BKA= Bank Address, PD=Program  
Data, PRA=Protection Register Address, PRD=Protection Register Data, CRD=Configuration Register  
Data.  
2. Must be same bank as in the first cycle. The signature addresses are listed in Table 7.  
3. Any address within the bank can be used.  
26/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB Command interface - standard com-  
Table 7.  
Electronic signature codes  
Code  
Address (h)  
Data (h)  
Manufacturer Code  
Device Code  
Bank Address + 00  
0020  
8812h (M58WR016QT)  
8814h (M58WR032QT)  
Top  
Bank Address + 01  
Bank Address + 01  
8813h (M58WR016QB)  
8815h (M58WR032QB)  
Bottom  
Locked  
0001  
0000  
Unlocked  
Locked and Locked-  
Down  
Block Protection  
Block Address + 02  
0003  
0002  
Unlocked and Locked-  
Down  
Reserved  
Bank Address + 03  
Bank Address + 05  
Reserved  
CR(1)  
Configuration Register  
Numonyx Factory Default  
0002  
Protection Register  
Lock  
Bank Address + 80  
OTP Area Permanently  
Locked  
0000  
Bank Address + 81  
Bank Address + 84  
Unique Device Number  
OTP Area  
Protection Register  
Bank Address + 85  
Bank Address + 8C  
1. CR = Configuration Register.  
Figure 5.  
Protection Register Memory Map  
PROTECTION REGISTER  
8Ch  
User Programmable OTP  
Unique device number  
85h  
84h  
81h  
80h  
Protection Register Lock  
1
0
AI08149  
27/110  
Command interface - factory program commands M58WR016QT, M58WR016QB, M58WR032QT,  
6
Command interface - factory program commands  
The Factory Program commands are used to speed up programming. They require V to  
PP  
be at V  
except for the Bank Erase command which also operates at V = V . Refer to  
PPH  
PP DD  
Table 8: Factory Program commands, in conjunction with the following text descriptions.  
The use of Factory Program commands requires certain operating conditions.  
V
V
must be set to V  
(except for Bank Erase comand),  
PPH  
PP  
DD  
must be within operating range,  
Ambient temperature, T must be 25°C 5°C,  
A
The targeted block must be unlocked.  
6.1  
Bank Erase command  
The Bank Erase command can be used to erase a bank. It sets all the bits within the  
selected bank to ’1’. All previous data in the bank is lost. The Bank Erase command will  
ignore any protected blocks within the bank. If all blocks in the bank are protected then the  
Bank Erase operation will abort and the data in the bank will not be changed. The Status  
Register will not output any error.  
Bank Erase operations can be performed at both V = V  
and V = V  
.
DD  
PP  
PPH  
PP  
Two Bus Write cycles are required to issue the command.  
The first bus cycle sets up the Bank Erase command.  
The second latches the bank address in the internal state machine and starts the  
Program/Erase Controller.  
If the second bus cycle is not Write Bank Erase Confirm (D0h), Status Register bits SR4 and  
SR5 are set and the command aborts. Erase aborts if Reset turns to V . As data integrity  
IL  
cannot be guaranteed when the Erase operation is aborted, the bank must be erased again.  
Once the command is issued the device outputs the Status Register data when any address  
within the bank is read. At the end of the operation the bank will remain in Read Status  
Register mode until a Read Array, Read CFI Query or Read Electronic Signature command  
is issued.  
During Bank Erase operations the bank being erased will only accept the Read Array, Read  
Status Register, Read Electronic Signature and Read CFI Query command, all other  
commands will be ignored.  
For optimum performance, Bank Erase commands should be limited to a maximum of 100  
Program/Erase cycles per Block. After 100 Program/Erase cycles the internal algorithm will  
still operate properly but some degradation in performance may occur.  
Dual Operations are not supported during Bank Erase operations and the command cannot  
be suspended.  
Typical Erase times are given in Table 15: Program/Erase times and endurance cycles.  
28/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Command interface - factory pro-  
6.2  
Double Word Program command  
The Double Word Program command improves the programming throughput by writing a  
page of two adjacent words in parallel. The two words must differ only for the address A0. If  
the block is protected, the Double Word Program operation will abort, the data in the block  
will not be changed and the Status Register will output the error.  
Three bus write cycles are necessary to issue the Double Word Program command.  
The first bus cycle sets up the Double Word Program Command.  
The second bus cycle latches the Address and the Data of the first word to be written.  
The third bus cycle latches the Address and the Data of the second word to be written  
and starts the Program/Erase Controller.  
Read operations in the bank being programmed output the Status Register content after the  
programming has started.  
During Double Word Program operations the bank being programmed will only accept the  
Read Array, Read Status Register, Read Electronic Signature and Read CFI Query  
command, all other commands will be ignored. Dual operations are not supported during  
Double Word Program operations and the command cannot be suspended. Typical Program  
times are given in Table 15: Program/Erase times and endurance cycles.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory locations must be reprogrammed.  
See Appendix C, Figure 21: Double Word Program flowchart and pseudo code, for the  
flowchart for using the Double Word Program command.  
29/110  
Command interface - factory program commands M58WR016QT, M58WR016QB, M58WR032QT,  
6.3  
Quadruple Word Program command  
The Quadruple Word Program command improves the programming throughput by writing a  
page of four adjacent words in parallel. The four words must differ only for the addresses A0  
and A1. If the block is protected, the Quadruple Word Program operation will abort, the data  
in the block will not be changed and the Status Register will output the error.  
Five bus write cycles are necessary to issue the Quadruple Word Program command.  
The first bus cycle sets up the Double Word Program Command.  
The second bus cycle latches the Address and the Data of the first word to be written.  
The third bus cycle latches the Address and the Data of the second word to be written.  
The fourth bus cycle latches the Address and the Data of the third word to be written.  
The fifth bus cycle latches the Address and the Data of the fourth word to be written  
and starts the Program/Erase Controller.  
Read operations to the bank being programmed output the Status Register content after the  
programming has started.  
Programming aborts if Reset goes to V . As data integrity cannot be guaranteed when the  
IL  
program operation is aborted, the memory locations must be reprogrammed.  
During Quadruple Word Program operations the bank being programmed will only accept  
the Read Array, Read Status Register, Read Electronic Signature and Read CFI Query  
command, all other commands will be ignored.  
Dual operations are not supported during Quadruple Word Program operations and the  
command cannot be suspended. Typical Program times are given in Table 15:  
Program/Erase times and endurance cycles.  
See Appendix C, Figure 22: Quadruple Word Program flowchart and pseudo code, for the  
flowchart for using the Quadruple Word Program command.  
6.4  
Enhanced Factory Program command  
The Enhanced Factory Program command can be used to program large streams of data  
within any one block. It greatly reduces the total programming time when a large number of  
Words are written to a block at any one time.  
Dual operations are not supported during the Enhanced Factory Program operation and the  
command cannot be suspended.  
For optimum performance the Enhanced Factory Program commands should be limited to a  
maximum of 10 program/erase cycles per block. If this limit is exceeded the internal  
algorithm will continue to work properly but some degradation in performance is possible.  
Typical Program times are given in Table 15. If the block is protected, the Enhanced Factory  
Program operation will abort, the data in the block will not be changed and the Status  
Register will output the error.  
The Enhanced Factory Program command has four phases: the Setup Phase, the Program  
Phase to program the data to the memory, the Verify Phase to check that the data has been  
correctly programmed and reprogram if necessary and the Exit Phase. Refer to Table 8:  
Factory Program commands, and Figure 28: Enhanced Factory Program flowchart.  
30/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Command interface - factory pro-  
6.4.1  
Setup Phase  
The Enhanced Factory Program command requires two Bus Write operations to initiate the  
command.  
The first bus cycle sets up the Enhanced Factory Program command.  
The second bus cycle confirms the command.  
The Status Register P/E.C. Bit SR7 should be read to check that the P/E.C. is ready. After  
the confirm command is issued, read operations output the Status Register data. The read  
Status Register command must not be issued as it will be interpreted as data to program.  
6.4.2  
Program Phase  
The Program Phase requires n+1 cycles, where n is the number of Words (refer to Table 8:  
Factory Program commands, and Figure 28: Enhanced Factory Program flowchart).  
Three successive steps are required to issue and execute the Program Phase of the  
command.  
1. Use one Bus Write operation to latch the Start Address and the first Word to be  
programmed. The Status Register Bank Write Status bit SR0 should be read to check  
that the P/E.C. is ready for the next Word.  
2. Each subsequent Word to be programmed is latched with a new Bus Write operation.  
The address can either remain the Start Address, in which case the P/E.C. increments  
the address location or the address can be incremented in which case the P/E.C.  
jumps to the new address. If any address that is not in the same block as the Start  
Address is given with data FFFFh, the Program Phase terminates and the Verify Phase  
begins. The Status Register bit SR0 should be read between each Bus Write cycle to  
check that the P/E.C. is ready for the next Word.  
3. Finally, after all Words have been programmed, write one Bus Write operation with data  
FFFFh to any address outside the block containing the Start Address, to terminate the  
programming phase. If the data is not FFFFh, the command is ignored.  
The memory is now set to enter the Verify Phase.  
31/110  
Command interface - factory program commands M58WR016QT, M58WR016QB, M58WR032QT,  
6.4.3  
Verify Phase  
The Verify Phase is similar to the Program Phase in that all Words must be resent to the  
memory for them to be checked against the programmed data. The Program/Erase  
Controller checks the stream of data with the data that was programmed in the Program  
Phase and reprograms the memory location if necessary.  
Three successive steps are required to execute the Verify Phase of the command.  
1. Use one Bus Write operation to latch the Start Address and the first Word, to be  
verified. The Status Register bit SR0 should be read to check that the Program/Erase  
Controller is ready for the next Word.  
2. Each subsequent Word to be verified is latched with a new Bus Write operation. The  
Words must be written in the same order as in the Program Phase. The address can  
remain the Start Address or be incremented. If any address that is not in the same  
block as the Start Address is given with data FFFFh, the Verify Phase terminates.  
Status Register bit SR0 should be read to check that the P/E.C. is ready for the next  
Word.  
3. Finally, after all Words have been verified, write one Bus Write operation with data  
FFFFh to any address outside the block containing the Start Address, to terminate the  
Verify Phase.  
If the Verify Phase is successfully completed the memory remains in Read Status Register  
mode. If the Program/Erase Controller fails to reprogram a given location, the error will be  
signaled in the Status Register.  
6.4.4  
Exit Phase  
Status Register P/E.C. bit SR7 set to ‘1’ indicates that the device has returned to Read  
mode. A full Status Register check should be done to ensure that the block has been  
successfully programmed. See the section on the Status Register for more details.  
6.5  
Quadruple Enhanced Factory Program command  
The Quadruple Enhanced Factory Program command can be used to program one or more  
pages of four adjacent words in parallel. The four words must differ only for the addresses  
A0 and A1.  
Dual operations are not supported during Quadruple Enhanced Factory Program operations  
and the command cannot be suspended. If the block is protected, the Quadruple Enhanced  
Factory Program operation will abort, the data in the block will not be changed and the  
Status Register will output the error.  
The Quadruple Enhanced Factory Program command has four phases: the Setup Phase,  
the Load Phase where the data is loaded into the buffer, the combined Program and Verify  
Phase where the loaded data is programmed to the memory and then automatically  
checked and reprogrammed if necessary and the Exit Phase. Unlike the Enhanced Factory  
Program it is not necessary to resubmit the data for the Verify Phase. The Load Phase and  
the Program and Verify Phase can be repeated to program any number of pages within the  
block.  
32/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Command interface - factory pro-  
6.5.1  
Setup Phase  
The Quadruple Enhanced Factory Program command requires one Bus Write operation to  
initiate the load phase. After the setup command is issued, read operations output the  
Status Register data. The Read Status Register command must not be issued as it will be  
interpreted as data to program.  
6.5.2  
Load Phase  
The Load Phase requires 4 cycles to load the data (refer to Table 8: Factory Program  
commands, and Figure 29: Quadruple Enhanced Factory Program flowchart). Once the first  
Word of each Page is written it is impossible to exit the Load phase until all four Words have  
been written.  
Two successive steps are required to issue and execute the Load Phase of the Quadruple  
Enhanced Factory Program command.  
1. Use one Bus Write operation to latch the Start Address and the first Word of the first  
Page to be programmed. For subsequent Pages the first Word address can remain the  
Start Address (in which case the next Page is programmed) or can be any address in  
the same block. If any address with data FFFFh is given that is not in the same block as  
the Start Address, the device enters the Exit Phase. For the first Load Phase Status  
Register bit SR7 should be read after the first Word has been issued to check that the  
command has been accepted (bit SR7 set to ‘0’). This check is not required for  
subsequent Load Phases.  
2. Each subsequent Word to be programmed is latched with a new Bus Write operation.  
The address is only checked for the first Word of each Page as the order of the Words  
to be programmed is fixed.  
The memory is now set to enter the Program and Verify Phase.  
6.5.3  
Program and Verify Phase  
In the Program and Verify Phase the four Words that were loaded in the Load Phase are  
programmed in the memory array and then verified by the Program/Erase Controller. If any  
errors are found the Program/Erase Controller reprograms the location. During this phase  
the Status Register shows that the Program/Erase Controller is busy, Status Register bit  
SR7 set to ‘0’, and that the device is not waiting for new data, Status Register bit SR0 set to  
‘1’. When Status Register bit SR0 is set to ‘0’ the Program and Verify phase has terminated.  
Once the Verify Phase has successfully completed subsequent pages in the same block can  
be loaded and programmed. The device returns to the beginning of the Load Phase by  
issuing one Bus Write operation to latch the Address and the first of the four new Words to  
be programmed.  
6.5.4  
Exit Phase  
Finally, after all the pages have been programmed, write one Bus Write operation with data  
FFFFh to any address outside the block containing the Start Address, to terminate the Load  
and Program and Verify Phases.  
Status Register bit SR7 set to ‘1’ and bit SR0 set to ‘0’ indicate that the Quadruple  
Enhanced Factory Program command has terminated. A full Status Register check should  
be done to ensure that the block has been successfully programmed. See the section on the  
Status Register for more details.  
33/110  
Command interface - factory program commands M58WR016QT, M58WR016QB, M58WR032QT,  
If the Program and Verify Phase has successfully completed the memory returns to Read  
mode. If the P/E.C. fails to program and reprogram a given location, the error will be  
signaled in the Status Register.  
(1)  
Table 8.  
Factory Program commands  
Bus Write Operations  
3rd  
Command  
Phase  
1st  
2nd  
Add  
Final -1  
Final  
Add  
Data  
Data Add Data  
Add Data Add  
Data  
Bank Erase  
2
3
BKA  
80h  
BKA  
WA1  
D0h  
BKA or  
WA1(3)  
Double Word Program(2)  
35h  
56h  
30h  
PD1 WA2 PD2  
PD1 WA2 PD2  
Quadruple Word  
Program(4)  
BKA or  
WA1(3)  
5
WA1  
WA3 PD3 WA4  
NOT  
PD4  
2+  
Setup,  
BKA or  
WA1(3)  
BA or  
D0h WA1(7) PD1  
WAn(8) PAn  
FFFFh  
FFFFh  
WA1(6)  
n+1  
WA1(7)  
Enhanced  
Program  
Factory  
Program(5)  
NOT  
Verify, Exit  
n+1 WA1(7) PD1 WA2(8) PD2 WA3(8) PD3  
WAn(8) PAn  
WA1(7)  
Setup,  
BKA or  
WA1(3)  
5
4
1
75h WA1(7) PD1 WA2(9) PD2  
WA3(9) PD3 WA4(9) PD4  
first Load  
First  
Program &  
Verify  
Automatic  
Quadruple  
Enhanced  
Factory  
Subsequent  
Loads  
WA1i(7) PD1i WA2i(9) PD2i WA3i(9) PD3i  
WA4i(9) PD4i  
Program(4)(5)  
Subsequent  
Program &  
Verify  
Automatic  
NOT  
Exit  
FFFFh  
WA1(7)  
1. WA=Word Address in targeted bank, BKA= Bank Address, PD=Program Data, BA=Block Address.  
2. Word Addresses 1 and 2 must be consecutive Addresses differing only for A0.  
3. Any address within the bank can be used.  
4. Word Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.  
5. A Bus Read must be done between each Write cycle where the data is programmed or verified to read the Status Register  
and check that the memory is ready to accept the next data. n = number of Words, i = number of Pages to be programmed.  
6. Any address within the block can be used.  
7. WA1 is the Start Address. NOT WA1 is any address that is not in the same block as WA1.  
8. Address can remain Starting Address WA1 or be incremented.  
9. Address is only checked for the first Word of each Page as the order to program the Words in each page is fixed so  
subsequent Words in each Page can be written to any address.  
34/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Status Register  
7
Status Register  
The Status Register provides information on the current or previous Program or Erase  
operations. Issue a Read Status Register command to read the contents of the Status  
Register, refer to Read Status Register Command section for more details. To output the  
contents, the Status Register is latched and updated on the falling edge of the Chip Enable  
or Output Enable signals and can be read until Chip Enable or Output Enable returns to V .  
IH  
The Status Register can only be read using single asynchronous or single synchronous  
reads. Bus Read operations from any address within the bank, always read the Status  
Register during Program and Erase operations.  
The various bits convey information about the status and any errors of the operation. Bits  
SR7, SR6, SR2 and SR0 give information on the status of the device and are set and reset  
by the device. Bits SR5, SR4, SR3 and SR1 give information on errors, they are set by the  
device but must be reset by issuing a Clear Status Register command or a hardware reset.  
If an error bit is set to ‘1’ the Status Register should be reset before issuing another  
command. SR7 to SR1 refer to the status of the device while SR0 refers to the status of the  
addressed bank.  
The bits in the Status Register are summarized in Table 9: Status Register bits. Refer to  
Table 9 in conjunction with the following text descriptions.  
7.0.1  
Program/Erase Controller Status Bit (SR7)  
The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is  
active or inactive in any bank. When the Program/Erase Controller Status bit is Low (set to  
‘0’), the Program/Erase Controller is active; when the bit is High (set to ‘1’), the  
Program/Erase Controller is inactive, and the device is ready to process a new command.  
The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend  
command is issued until the Program/Erase Controller pauses. After the Program/Erase  
Controller pauses the bit is High.  
During Program, Erase, operations the Program/Erase Controller Status bit can be polled to  
find the end of the operation. Other bits in the Status Register should not be tested until the  
Program/Erase Controller completes the operation and the bit is High.  
After the Program/Erase Controller completes its operation the Erase Status, Program  
Status, V Status and Block Lock Status bits should be tested for errors.  
PP  
7.0.2  
Erase Suspend Status Bit (SR6)  
The Erase Suspend Status bit indicates that an Erase operation has been suspended or is  
going to be suspended in the addressed block. When the Erase Suspend Status bit is High  
(set to ‘1’), a Program/Erase Suspend command has been issued and the memory is  
waiting for a Program/Erase Resume command.  
The Erase Suspend Status should only be considered valid when the Program/Erase  
Controller Status bit is High (Program/Erase Controller inactive). SR7 is set within the Erase  
Suspend Latency time of the Program/Erase Suspend command being issued therefore the  
memory may still complete the operation rather than entering the Suspend mode.  
When a Program/Erase Resume command is issued the Erase Suspend Status bit returns  
Low.  
35/110  
Status Register  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
7.0.3  
Erase Status Bit (SR5)  
The Erase Status bit can be used to identify if the memory has failed to verify that the block  
or bank has erased correctly. When the Erase Status bit is High (set to ‘1’), the  
Program/Erase Controller has applied the maximum number of pulses to the block or bank  
and still failed to verify that it has erased correctly. The Erase Status bit should be read once  
the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).  
Once set High, the Erase Status bit can only be reset Low by a Clear Status Register  
command or a hardware reset. If set High it should be reset before a new Program or Erase  
command is issued, otherwise the new command will appear to fail.  
7.0.4  
Program Status Bit (SR4)  
The Program Status bit is used to identify a Program failure or an attempt to program a ‘1’ to  
an already programmed bit when V = V  
.
PP  
PPH  
When the Program Status bit is High (set to ‘1’), the Program/Erase Controller has applied  
the maximum number of pulses to the byte and still failed to verify that it has programmed  
correctly.  
After an attempt to program a '1' to an already programmed bit, the Program Status bit SR4  
only goes High (set to '1') if V = V  
(if V is different from V  
, SR4 remains Low (set  
PP  
PPH  
PP  
PPH  
to '0') and the attempt is not shown).  
The Program Status bit should be read once the Program/Erase Controller Status bit is High  
(Program/Erase Controller inactive).  
Once set High, the Program Status bit can only be reset Low by a Clear Status Register  
command or a hardware reset. If set High it should be reset before a new command is  
issued, otherwise the new command will appear to fail.  
7.0.5  
V
Status Bit (SR3)  
PP  
The V Status bit can be used to identify an invalid voltage on the V pin during Program  
PP  
PP  
and Erase operations. The V pin is only sampled at the beginning of a Program or Erase  
PP  
operation. Indeterminate results can occur if V becomes invalid during an operation.  
PP  
When the V Status bit is Low (set to ‘0’), the voltage on the V pin was sampled at a valid  
PP  
PP  
voltage; when the V Status bit is High (set to ‘1’), the V pin has a voltage that is below  
PP  
PP  
the V Lockout Voltage, V  
, the memory is protected and Program and Erase  
PP  
PPLK  
operations cannot be performed.  
Once set High, the V Status bit can only be reset Low by a Clear Status Register  
PP  
command or a hardware reset. If set High it should be reset before a new Program or Erase  
command is issued, otherwise the new command will appear to fail.  
36/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Status Register  
7.0.6  
Program Suspend Status Bit (SR2)  
The Program Suspend Status bit indicates that a Program operation has been suspended in  
the addressed block. When the Program Suspend Status bit is High (set to ‘1’), a  
Program/Erase Suspend command has been issued and the memory is waiting for a  
Program/Erase Resume command. The Program Suspend Status should only be  
considered valid when the Program/Erase Controller Status bit is High (Program/Erase  
Controller inactive). SR2 is set within the Program Suspend Latency time of the  
Program/Erase Suspend command being issued therefore the memory may still complete  
the operation rather than entering the Suspend mode.  
When a Program/Erase Resume command is issued the Program Suspend Status bit  
returns Low.  
7.0.7  
Block Protection Status Bit (SR1)  
The Block Protection Status bit can be used to identify if a Program or Block Erase operation  
has tried to modify the contents of a locked block.  
When the Block Protection Status bit is High (set to ‘1’), a Program or Erase operation has  
been attempted on a locked block.  
Once set High, the Block Protection Status bit can only be reset Low by a Clear Status  
Register command or a hardware reset. If set High it should be reset before a new  
command is issued, otherwise the new command will appear to fail.  
7.0.8  
Bank Write/Multiple Word Program Status Bit (SR0)  
The Bank Write Status bit indicates whether the addressed bank is programming or erasing.  
In Enhanced Factory Program mode the Multiple Word Program bit shows if a Word has  
finished programming or verifying depending on the phase. The Bank Write Status bit  
should only be considered valid when the Program/Erase Controller Status SR7 is Low (set  
to ‘0’).  
When both the Program/Erase Controller Status bit and the Bank Write Status bit are Low  
(set to ‘0’), the addressed bank is executing a Program or Erase operation. When the  
Program/Erase Controller Status bit is Low (set to ‘0’) and the Bank Write Status bit is High  
(set to ‘1’), a Program or Erase operation is being executed in a bank other than the one  
being addressed.  
In Enhanced Factory Program mode if Multiple Word Program Status bit is Low (set to ‘0’),  
the device is ready for the next Word, if the Multiple Word Program Status bit is High (set to  
‘1’) the device is not ready for the next Word.  
Note:  
Refer to Appendix C: Flowcharts and pseudo codes, for using the Status Register.  
37/110  
Status Register  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 9.  
Bit  
Status Register bits  
Logic  
Name  
Type  
Status  
Status  
Error  
Definition  
Level(1)  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
Ready  
SR7 P/E.C. Status  
Busy  
Erase Suspended  
Erase Suspend  
Status  
SR6  
Erase In progress or Completed  
Erase Error  
SR5 Erase Status  
Erase Success  
Program Error  
SR4 Program Status  
Error  
Program Success  
VPP Invalid, Abort  
SR3  
SR2  
SR1  
V
PP Status  
Error  
VPP OK  
Program Suspended  
Program Suspend  
Status  
Status  
Error  
Program In Progress or Completed  
Program/Erase on protected Block, Abort  
No operation to protected blocks  
SR7 = ‘1’ Not Allowed  
Block Protection  
Status  
'1'  
'0'  
Program or erase operation in a bank  
SR7 = ‘0’  
other than the addressed bank  
Bank Write Status Status  
No Program or erase operation in the  
SR7 = ‘1’  
device  
Program or erase operation in  
SR7 = ‘0’  
SR0  
addressed bank  
SR7 = ‘1’ Not Allowed  
'1'  
'0'  
Multiple Word  
Program Status  
(Enhanced Factory  
Program mode)  
the device is NOT ready for the next  
SR7 = ‘0’  
word  
Status  
SR7 = ‘1’ the device is exiting from EFP  
SR7 = ‘0’ the device is ready for the next Word  
1. Logic level '1' is High, '0' is Low.  
38/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Configuration Register  
8
Configuration Register  
The Configuration Register is used to configure the type of bus access that the memory will  
perform. Refer to Read Modes section for details on read operations.  
The Configuration Register is set through the Command Interface. After a Reset or Power-  
Up the device is configured for asynchronous page read (CR15 = 1). The Configuration  
Register bits are described in Table 10. They specify the selection of the burst length, burst  
type, burst X latency and the Read operation. Refer to Figures 6 and 7 for examples of  
synchronous burst configurations.  
8.1  
8.2  
Read Select Bit (CR15)  
The Read Select bit, CR15, is used to switch between asynchronous and synchronous Bus  
Read operations. When the Read Select bit is set to ’1’, read operations are asynchronous;  
when the Read Select bit is set to ’0’, read operations are synchronous. Synchronous Burst  
Read is supported in both parameter and main blocks and can be performed across banks.  
On reset or power-up the Read Select bit is set to’1’ for asynchronous access.  
X-Latency Bits (CR13-CR11)  
The X-Latency bits are used during Synchronous Read operations to set the number of  
clock cycles between the address being latched and the first data becoming available. For  
correct operation the X-Latency bits can only assume the values in Table 10: Configuration  
Register bits.  
The correspondence between X-Latency settings and the maximum sustainable frequency  
must be calculated taking into account some system parameters. Two conditions must be  
satisfied:  
1. Depending on whether t  
or t  
is supplied either one of the following two  
DELAY  
AVK_CPU  
equations must be satisfied:  
(n + 1) t t  
- t  
+ t  
K
ACC AVK_CPU QVK_CPU  
(n + 2) t t  
+ t  
+ t  
K
ACC  
DELAY QVK_CPU  
2. and also  
t > t  
+ t  
QVK_CPU  
K
KQV  
where:  
n is the chosen X-Latency configuration code  
t is the clock period  
K
t
t
t
t
t
is clock to address valid, L Low, or E Low, whichever occurs last  
AVK_CPU  
is address valid, L Low, or E Low to clock, whichever occurs last  
DELAY  
is the data setup time required by the system CPU,  
QVK_CPU  
is the clock to data valid time  
KQV  
ACC  
is the random access time of the device.  
Refer to Figure 6: X-Latency and data output configuration example.  
39/110  
Configuration Register  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
8.3  
Wait Polarity Bit (CR10)  
In synchronous burst mode the Wait signal indicates whether the output data are valid or a  
WAIT state must be inserted. The Wait Polarity bit is used to set the polarity of the Wait  
signal. When the Wait Polarity bit is set to ‘0’ the Wait signal is active Low. When the Wait  
Polarity bit is set to ‘1’ the Wait signal is active High (default).  
8.4  
Data Output Configuration Bit (CR9)  
The Data Output Configuration bit determines whether the output remains valid for one or  
two clock cycles. When the Data Output Configuration Bit is ’0’ the output data is valid for  
one clock cycle, when the Data Output Configuration Bit is ’1’ the output data is valid for two  
clock cycles.  
The Data Output Configuration depends on the condition:  
t > t  
+ t  
K
KQV QVK_CPU  
where t is the clock period, t  
is the data setup time required by the system CPU  
K
QVK_CPU  
and t  
is the clock to data valid time. If this condition is not satisfied, the Data Output  
KQV  
Configuration bit should be set to ‘1’ (two clock cycles). Refer to Figure 6: X-Latency and  
data output configuration example.  
8.5  
8.6  
Wait Configuration Bit (CR8)  
In burst mode the Wait bit controls the timing of the Wait output pin, WAIT. When WAIT is  
asserted, Data is Not Valid and when WAIT is deasserted, Data is Valid. When the Wait bit  
is ’0’ the Wait output pin is asserted during the wait state. When the Wait bit is ’1’ (default)  
the Wait output pin is asserted one clock cycle before the wait state.  
Burst Type Bit (CR7)  
The Burst Type bit is used to configure the sequence of addresses read as sequential or  
interleaved. When the Burst Type bit is ’0’ the memory outputs from interleaved addresses;  
when the Burst Type bit is ’1’ (default) the memory outputs from sequential addresses. See  
Table 11: Burst type definition, for the sequence of addresses output from a given starting  
address in each mode.  
8.7  
Valid Clock Edge Bit (CR6)  
The Valid Clock Edge bit, CR6, is used to configure the active edge of the Clock, K, during  
Synchronous Burst Read operations. When the Valid Clock Edge bit is ’0’ the falling edge of  
the Clock is the active edge; when the Valid Clock Edge bit is ’1’ the rising edge of the Clock  
is active.  
8.8  
Wrap Burst Bit (CR3)  
The burst reads can be confined inside the 4 or 8 Word boundary (wrap) or overcome the  
boundary (no wrap). The Wrap Burst bit is used to select between wrap and no wrap. When  
40/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Configuration Register  
the Wrap Burst bit is set to ‘0’ the burst read wraps; when it is set to ‘1’ the burst read does  
not wrap.  
8.9  
Burst length Bits (CR2-CR0)  
The Burst Length bits set the number of Words to be output during a Synchronous Burst  
Read operation as result of a single address latch cycle. They can be set for 4 Words, 8  
Words, 16 Words or continuous burst, where all the words are read sequentially.  
In continuous burst mode the burst sequence can cross bank boundaries.  
In continuous burst mode or in 4, 8, 16 Words no-wrap, depending on the starting address,  
the device asserts the WAIT output to indicate that a delay is necessary before the data is  
output.  
If the starting address is aligned to a 4 Word boundary no wait states are needed and the  
WAIT output is not asserted.  
If the starting address is shifted by 1,2 or 3 positions from the four word boundary, WAIT will  
be asserted for 1, 2 or 3 clock cycles when the burst sequence crosses the first 16 Word  
boundary, to indicate that the device needs an internal delay to read the successive words in  
the array. WAIT will be asserted only once during a continuous burst access. See also  
Table 11: Burst type definition.  
CR14, CR5 and CR4 are reserved for future use.  
41/110  
Configuration Register  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 10. Configuration Register bits  
Bit  
Description  
Read Select  
Reserved  
Value  
Description  
0
Synchronous Read  
CR15  
CR14  
1
Asynchronous Read (Default at power-on)  
010  
011  
100  
101  
111  
2 clock latency  
3 clock latency  
4 clock latency  
5 clock latency  
Reserved (default)  
CR13-CR11 X-Latency  
Other configurations reserved  
0
1
0
1
0
1
0
1
0
1
WAIT is active Low  
CR10  
CR9  
CR8  
CR7  
CR6  
Wait Polarity  
WAIT is active high (default)  
Data held for one clock cycle  
Data held for two clock cycles (default)  
WAIT is active during wait state  
WAIT is active one data cycle before wait state (default)  
Interleaved  
Data Output  
Configuration  
Wait Configuration  
Burst Type  
Sequential (default)  
Falling Clock edge  
Valid Clock Edge  
Rising Clock edge (default)  
CR5-CR4 Reserved  
CR3 Wrap Burst  
0
Wrap  
1
No Wrap (default)  
001  
010  
011  
111  
4 Words  
8 Words  
CR2-CR0 Burst Length  
16 Words  
Continuous (CR7 must be set to ‘1’) (default)  
42/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 11. Burst type definition  
Configuration Register  
4 Words  
Sequential Interleaved Sequential Interleaved  
0-1-2-3-4-5- 0-1-2-3-4-5- 0-1-2-3-4-5-6-7-8-9-  
8 Words  
16 Words  
Start  
Add  
Continuous  
Burst  
Sequential Interleaved  
0-1-2-3-4-5-6-  
7-8-9-10-11- 0-1-2-3-4-5-6...  
12-13-14-15  
0
1
2
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
6-7  
6-7  
10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9- 1-0-3-2-5-4-7- 1-2-3-4-5-6-7-  
10-11-12-13-14-15- 6-9-8-11-10- ...15-WAIT-16-  
1-2-3-4-5-6- 1-0-3-2-5-4-  
7-0 7-6  
0
13-12-15-14  
17-18...  
2-3-0-1-6-7-4- 2-3-4-5-6-7...15-  
5-10-11-8-9- WAIT-WAIT-16-  
14-15-12-13  
2-3-4-5-6-7- 2-3-0-1-6-7- 2-3-4-5-6-7-8-9-10-  
0-1 4-5 11-12-13-14-15-0-1  
17-18...  
3-4-5-6-7-8-9-10- 3-2-1-0-7-6-5- 3-4-5-6-7...15-  
11-12-13-14-15-0- 4-11-10-9-8-  
3-4-5-6-7-0- 3-2-1-0-7-6-  
3
WAIT-WAIT-  
1-2  
5-4  
1-2  
15-14-13-12 WAIT-16-17-18...  
...  
7-8-9-10-11-12-  
7-6-5-4-3-2-1-  
13-14-15-WAIT-  
0-15-14-13-  
7-0-1-2-3-4- 7-6-5-4-3-2- 7-8-9-10-11-12-13-  
5-6 1-0 14-15-0-1-2-3-4-5-6  
7
7-4-5-6  
7-6-5-4  
WAIT-WAIT-16-  
12-11-10-9-8  
17...  
...  
12-13-14-15-16-  
17-18...  
12  
13-14-15-WAIT-  
16-17-18...  
13  
14  
15  
14-15-WAIT-  
WAIT-16-17-  
18....  
15-WAIT-WAIT-  
WAIT-16-17-18...  
43/110  
Configuration Register  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 11. Burst type definition (continued)  
4 Words  
8 Words  
16 Words  
Sequential Interleaved  
Start  
Add  
Continuous  
Burst  
Sequential Interleaved Sequential Interleaved  
0-1-2-3-4-5-  
0-1-2-3-4-5-6-7-8-9-  
10-11-12-13-14-15  
0
1
0-1-2-3  
6-7  
1-2-3-4-5-6-7-8-9-  
10-11-12-13-14-15-  
WAIT-16  
1-2-3-4-5-6-  
1-2-3-4  
7-8  
2-3-4-5-6-7-8-9-10-  
11-12-13-14-15-  
WAIT-WAIT-16-17  
2-3-4-5-6-7-  
2
2-3-4-5  
8-9...  
3-4-5-6-7-8-9-10-  
11-12-13-14-15-  
WAIT-WAIT-WAIT-  
16-17-18  
3-4-5-6-7-8-  
3
...  
7
3-4-5-6  
9-10  
7-8-9-10-11-12-13-  
14-15-WAIT-WAIT-  
WAIT-16-17-18-19-  
20-21-22  
Same as for  
Wrap (Wrap /No  
Wrap has no  
effect on  
7-8-9-10-11-  
7-8-9-10  
12-13-14  
Continuous  
Burst)  
...  
12-13-14-  
12-13-14-15-16-17-  
18-19-20-21-22-23-  
24-25-26-27  
12-13-14-  
15-16-17-  
15  
12  
18-19  
13-14-15-  
13-14-15-WAIT-16-  
17-18-19-20-21-22-  
23-24-25-26-27-28  
13-14-15-  
WAIT-16-17-  
WAIT-16  
13  
14  
18-19-20  
14-15-  
14-15-WAIT-WAIT-  
16-17-18-19-20-21-  
22-23-24-25-26-27-  
28-29  
14-15-WAIT-  
WAIT-  
WAIT-16-17-  
WAIT-16-  
18-19-20-21  
17  
15-WAIT-  
WAIT-  
WAIT-16-  
17-18  
15-WAIT-  
WAIT-WAIT-  
16-17-18-  
15-WAIT-WAIT-  
WAIT-16-17-18-19-  
20-21-22-23-24-25-  
26-27-28-29-30  
15  
19-20-21-22  
Figure 6.  
X-Latency and data output configuration example  
X-latency  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
K
E
L
Amax-A0  
4
VALID ADDRESS  
tAVK_CPU  
tDELAY  
tQVK_CPU  
tK  
tACC  
tKQV  
tQVK_CPU  
DQ15-DQ0  
VALID DATA VALID DATA  
Notes: 1. Settings shown: X-latency = 4, Data Output held for one clock cycle.  
2. Amax is equal to A19 in the M58WR016QT/B and to A20 in the M58WR032QT/B.  
AI10174  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Configuration Register  
Figure 7.  
Wait configuration example  
E
K
L
(1)  
Amax-A0  
VALID ADDRESS  
DQ15-DQ0  
VALID DATA VALID DATA NOT VALID VALID DATA  
WAIT  
CR8 = '0'  
CR10 = '0'  
WAIT  
CR8 = '1'  
CR10 = '0'  
WAIT  
CR8 = '0'  
CR10 = '1'  
WAIT  
CR8 = '1'  
CR10 = '1'  
Note: Amax is equal to A19 in the M58WR016QT/B and to A20 in the M58WR032QT/B.  
AI10175  
45/110  
Read modes  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
9
Read modes  
Read operations can be performed in two different ways depending on the settings in the  
Configuration Register. If the clock signal is ‘don’t care’ for the data output, the read  
operation is Asynchronous; if the data output is synchronized with clock, the read operation  
is Synchronous.  
The Read mode and data output format are determined by the Configuration Register. (See  
Configuration Register section for details). All banks supports both asynchronous and  
synchronous read operations. The Multiple Bank architecture allows read operations in one  
bank, while write operations are being executed in another (see Tables 12 and 13).  
9.1  
Asynchronous Read mode  
In Asynchronous Read operations the clock signal is ‘don’t care’. The device outputs the  
data corresponding to the address latched, that is the memory array, Status Register,  
Common Flash Interface or Electronic Signature depending on the command issued. CR15  
in the Configuration Register must be set to ‘1’ for Asynchronous operations.  
In Asynchronous Read mode a Page of data is internally read and stored in a Page Buffer.  
The Page has a size of 4 Words and is addressed by A0 and A1 address inputs. The  
address inputs A0 and A1 are not gated by Latch Enable in Asynchronous Read mode.  
The first read operation within the Page has a longer access time (T , Random access  
acc  
time), subsequent reads within the same Page have much shorter access times. If the Page  
changes then the normal, longer timings apply again.  
Asynchronous Read operations can be performed in two different ways, Asynchronous  
Random Access Read and Asynchronous Page Read. Only Asynchronous Page Read  
takes full advantage of the internal page storage so different timings are applied.  
During Asynchronous Read operations, after a bus inactivity of 150ns, the device  
automatically switches to the Automatic Standby mode. In this condition the power  
consumption is reduced to the standby value and the outputs are still driven.  
In Asynchronous Read mode, the WAIT signal is always asserted.  
See Table 21: Asynchronous Read AC characteristics, Figure 10: Asynchronous Random  
Access Read AC waveforms, and Figure 11: Asynchronous Page Read AC waveforms for  
details.  
46/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Read modes  
9.2  
Synchronous Burst Read mode  
In Synchronous Burst Read mode the data is output in bursts synchronized with the clock. It  
is possible to perform burst reads across bank boundaries.  
Synchronous Burst Read mode can only be used to read the memory array. For other read  
operations, such as Read Status Register, Read CFI and Read Electronic Signature, Single  
Synchronous Read or Asynchronous Random Access Read must be used.  
In Synchronous Burst Read mode the flow of the data output depends on parameters that  
are configured in the Configuration Register.  
A burst sequence is started at the first clock edge (rising or falling depending on Valid Clock  
Edge bit CR6 in the Configuration Register) after the falling edge of Latch Enable or Chip  
Enable, whichever occurs last. Addresses are internally incremented and after a delay of 2  
to 5 clock cycles (X latency bits CR13-CR11) the corresponding data are output on each  
clock cycle.  
The number of Words to be output during a Synchronous Burst Read operation can be  
configured as 4, 8, 16 Words, or Continuous (Burst Length bits CR2-CR0). The data can be  
configured to remain valid for one or two clock cycles (Data Output Configuration bit CR9).  
The order of the data output can be modified through the Burst Type and the Wrap Burst bits  
in the Configuration Register. The burst sequence may be configured to be sequential or  
interleaved (CR7). The burst reads can be confined inside the 4, 8 or 16 Word boundary  
(Wrap) or overcome the boundary (No Wrap). If the starting address is aligned to the Burst  
Length (4, 8 or 16 Words) the wrapped configuration has no impact on the output sequence.  
Interleaved mode is not allowed in Continuous Burst Read mode or with No Wrap  
sequences.  
A WAIT signal may be asserted to indicate to the system that an output delay will occur. This  
delay will depend on the starting address of the burst sequence; the worst case delay will  
occur when the sequence is crossing a 16 Word boundary and the starting address was at  
the end of a four word boundary.  
WAIT is asserted during X latency, the Wait state and at the end of 4-, 8- or 16-Word burst.  
It is only deasserted when output data are valid. In Continuous Burst Read mode a Wait  
state will occur when crossing the first 16 Word boundary. If the burst starting address is  
aligned to a 4 Word Page, the Wait state will not occur.  
The WAIT signal can be configured to be active Low or active High (default) by setting CR10  
in the Configuration Register. The WAIT signal is meaningful only in Synchronous Burst  
Read mode, in other modes, WAIT is always asserted (except for Read Array mode).  
See Table 22: Synchronous Read AC characteristics, and Figure 12: Synchronous Burst  
Read AC waveforms, for details.  
47/110  
Read modes  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
9.2.1  
Synchronous Burst Read Suspend  
A Synchronous Burst Read operation can be suspended, freeing the data bus for other  
higher priority devices. It can be suspended during the initial access latency time (before  
data is output) in which case the initial latency time can be reduced to zero, or after the  
device has output data. When the Synchronous Burst Read operation is suspended, internal  
array sensing continues and any previously latched internal data is retained. A burst  
sequence can be suspended and resumed as often as required as long as the operating  
conditions of the device are met.  
A Synchronous Burst Read operation is suspended when E is low and the current address  
has been latched (on a Latch Enable rising edge or on a valid clock edge). The clock signal  
is then halted at V or at V , and G goes high.  
IH  
IL  
When G becomes low again and the clock signal restarts, the Synchronous Burst Read  
operation is resumed exactly where it stopped.  
WAIT being gated by E remains active and will not revert to high-impedance when G goes  
high. So if two or more devices are connected to the system’s READY signal, to prevent bus  
contention the WAIT signal of the Flash memory should not be directly connected to the  
system’s READY signal.  
See Table 22: Synchronous Read AC characteristics and Figure 14: Synchronous Burst  
Read Suspend AC waveforms, for details.  
9.3  
Single Synchronous Read mode  
Single Synchronous Read operations are similar to Synchronous Burst Read operations  
except that only the first data output after the X latency is valid. Synchronous Single Reads  
are used to read the Electronic Signature, Status Register, CFI, Block Protection Status,  
Configuration Register Status or Protection Register. When the addressed bank is in Read  
CFI, Read Status Register or Read Electronic Signature mode, the WAIT signal is always  
asserted.  
See Table 22: Synchronous Read AC characteristics and Figure 13: Single Synchronous  
Read AC waveforms, for details.  
48/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB Dual operations and Multiple Bank  
10  
Dual operations and Multiple Bank architecture  
The Multiple Bank Architecture of the M58WRxxxQT/B provides flexibility for software  
developers by allowing code and data to be split with 4Mbit granularity. The Dual Operations  
feature simplifies the software management of the device and allows code to be executed  
from one bank while another bank is being programmed or erased.  
The Dual operations feature means that while programming or erasing in one bank, Read  
operations are possible in another bank with zero latency (only one bank at a time is allowed  
to be in Program or Erase mode). If a Read operation is required in a bank which is  
programming or erasing, the Program or Erase operation can be suspended. Also if the  
suspended operation was Erase then a Program command can be issued to another block,  
so the device can have one block in Erase Suspend mode, one programming and other  
banks in Read mode. Bus Read operations are allowed in another bank between setup and  
confirm cycles of program or erase operations. The combination of these features means  
that read operations are possible at any moment.  
Tables 12 and 13 show the dual operations possible in other banks and in the same bank.  
For a complete list of possible commands refer to Appendix D: Command interface state  
tables.  
Table 12. Dual operations allowed in other banks  
Commands allowed in another bank  
Status of  
bank  
Read  
Status  
Read  
CFI  
Read  
Electronic Program  
Program/ Program/  
Erase Erase  
Suspend Resume  
Read  
Array  
Block  
Erase  
Register Query Signature  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Programming  
Erasing  
Program  
Suspended  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Erase  
Suspended  
Yes  
49/110  
Dual operations and Multiple Bank architecture  
M58WR016QT, M58WR016QB, M58WR032QT,  
Table 13. Dual operations allowed in same bank  
Commands allowed in same bank  
Status of  
bank  
Read  
Status  
Read  
CFI  
Read  
Electronic Program  
Program/ Program/  
Erase Erase  
Suspend Resume  
Read  
Array  
Block  
Erase  
Register Query Signature  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(1)  
Programming  
Erasing  
(1)  
Program  
Suspended  
Yes(2)  
Yes(2)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Erase  
Suspended  
Yes(2)  
1. The Read Array command is accepted but the data output is not guaranteed until the Program or Erase  
has completed.  
2. Not allowed in the Block or Word that is being erased or programmed.  
50/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Block locking  
11  
Block locking  
The M58WRxxxQT/B features an instant, individual block locking scheme that allows any  
block to be locked or unlocked with no latency. This locking scheme has three levels of  
protection.  
Lock/Unlock - this first level allows software-only control of block locking.  
Lock-Down - this second level requires hardware interaction before locking can be  
changed.  
V
V  
- the third level offers a complete hardware protection against program and  
PPLK  
PP  
erase on all blocks.  
The protection status of each block can be set to Locked, Unlocked, and Lock-Down.  
Table 14, defines all of the possible protection states (WP, DQ1, DQ0), and Appendix C,  
Figure 26, shows a flowchart for the locking operations.  
11.1  
Reading a Block’s lock status  
The lock status of every block can be read in the Read Electronic Signature mode of the  
device. To enter this mode write 90h to the device. Subsequent reads at the address  
specified in Table 7, will output the protection status of that block. The lock status is  
represented by DQ0 and DQ1. DQ0 indicates the Block Lock/Unlock status and is set by the  
Lock command and cleared by the Unlock command. It is also automatically set when  
entering Lock-Down. DQ1 indicates the Lock-Down status and is set by the Lock-Down  
command. It cannot be cleared by software, only by a hardware reset or power-down.  
The following sections explain the operation of the locking system.  
11.2  
11.3  
Locked state  
The default status of all blocks on power-up or after a hardware reset is Locked (states  
(0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any  
program or erase operations attempted on a locked block will return an error in the Status  
Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the  
appropriate software commands. An Unlocked block can be Locked by issuing the Lock  
command.  
Unlocked state  
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked  
blocks return to the Locked state after a hardware reset or when the device is powered-  
down. The status of an unlocked block can be changed to Locked or Locked-Down using the  
appropriate software commands. A locked block can be unlocked by issuing the Unlock  
command.  
51/110  
Block locking  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
11.4  
Lock-Down state  
Blocks that are Locked-Down (state (0,1,x))are protected from program and erase  
operations (as for Locked blocks) but their protection status cannot be changed using  
software commands alone. A Locked or Unlocked block can be Locked-Down by issuing the  
Lock-Down command. Locked-Down blocks revert to the Locked state when the device is  
reset or powered-down.  
The Lock-Down function is dependent on the WP input pin. When WP=0 (V ), the blocks in  
IL  
the Lock-Down state (0,1,x) are protected from program, erase and protection status  
changes. When WP=1 (V ) the Lock-Down function is disabled (1,1,x) and Locked-Down  
IH  
blocks can be individually unlocked to the (1,1,0) state by issuing the software command,  
where they can be erased and programmed. These blocks can then be re-locked (1,1,1) and  
unlocked (1,1,0) as desired while WP remains high. When WP is Low, blocks that were  
previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes  
made while WP was high. Device reset or power-down resets all blocks, including those in  
Lock-Down, to the Locked state.  
11.5  
Locking operations during Erase Suspend  
Changes to block lock status can be performed during an erase suspend by using the  
standard locking command sequences to unlock, lock or lock-down a block. This is useful in  
the case when another block needs to be updated while an erase operation is in progress.  
To change block locking during an erase operation, first write the Erase Suspend command,  
then check the status register until it indicates that the erase operation has been  
suspended. Next write the desired Lock command sequence to a block and the lock status  
will be changed. After completing any desired lock, read, or program operations, resume the  
erase operation with the Erase Resume command.  
If a block is locked or locked-down during an erase suspend of the same block, the locking  
status bits will be changed immediately, but when the erase is resumed, the erase operation  
will complete. Locking operations cannot be performed during a program suspend. Refer to  
Appendix Appendix D: Command interface state tables, for detailed information on which  
commands are valid during erase suspend.  
52/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Block locking  
Table 14. Lock status  
Current Protection Status(1)  
Next Protection Status(1) (WP, DQ1, DQ0)  
(WP, DQ1, DQ0)  
After Block  
Lock  
Command  
After Block  
Unlock  
Command  
After Block  
Lock-Down  
Command  
Current  
State  
Program/Erase  
Allowed  
After WP  
transition  
1,0,0  
1,0,1(2)  
1,1,0  
yes  
no  
1,0,1  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
0,0,1  
0,1,1  
1,0,0  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
0,0,0  
0,1,1  
1,1,1  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,1,1  
0,1,1  
0,0,0  
0,0,1  
yes  
no  
0,1,1  
1,1,1  
0,1,1  
0,0,0  
yes  
no  
1,0,0  
0,0,1(2)  
1,0,1  
0,1,1  
no  
1,1,1 or 1,1,0(3)  
1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for  
a locked block) as read in the Read Electronic Signature command with A1 = VIH and A0 = VIL.  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.  
3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
53/110  
Program and erase times and endurance cycles  
M58WR016QT, M58WR016QB, M58WR032QT,  
12  
Program and erase times and endurance cycles  
The Program and Erase times and the number of Program/ Erase cycles per block are  
shown in Table 15. Exact erase times may change depending on the memory array  
condition. The best case is when all the bits in the block or bank are at ‘0’ (preprogrammed).  
The worst case is when all the bits in the block or bank are at ‘1’ (not preprogrammed).  
Usually, the system overhead is negligible with respect to the erase time.  
In the M58WRxxxQT/B the maximum number of Program/ Erase cycles depends on the V  
voltage supply used.  
PP  
(1)  
Table 15. Program/Erase times and endurance cycles  
Typical  
after 100k  
Parameter  
Condition  
Min  
Typ  
Max Unit  
W/E  
Cycles  
Parameter Block (4 KWord)(2)  
0.3  
0.8  
1.1  
3
1
3
2.5  
4
s
s
s
s
s
Preprogrammed  
Main Block  
(32 KWord)  
Erase  
Not Preprogrammed  
4
Preprogrammed  
Bank (4Mbit)  
Not Preprogrammed  
4.5  
10  
32  
256  
5
Word  
10  
100  
µs  
ms  
Program(3)  
Parameter Block (4 KWord)  
Main Block (32 KWord)  
Program  
ms  
10  
20  
µs  
Suspend  
Latency  
Erase  
5
µs  
Program/Erase Main Blocks  
Cycles (per  
Block)  
100,000  
100,000  
cycles  
Parameter Blocks  
cycles  
54/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QBProgram and erase times and endur-  
(1)  
Table 15. Program/Erase times and endurance cycles (continued)  
Typical  
after 100k  
Parameter  
Condition  
Min  
Typ  
Max Unit  
W/E  
Cycles  
Parameter Block (4 KWord)  
0.25  
0.8  
2.5  
4
s
s
s
Erase  
Main Block (32 KWord)  
Bank (4Mbit)  
3.5  
Word/ Double Word/ Quadruple  
Word(4)  
8
100  
µs  
Quad-Enhanced  
Factory  
10  
ms  
Parameter  
Block (4  
Quadruple Word(4)  
KWord)  
Enhanced Factory  
25  
8
ms  
ms  
ms  
Word  
32  
Program(3)  
Quad-Enhanced  
Factory  
80  
ms  
Main Block  
(32 KWord)  
Enhanced Factory  
Quadruple Word(4)  
Word  
200  
64  
ms  
ms  
ms  
256  
Quad-Enhanced  
Factory(4)  
520  
510  
s
Bank (4Mbit)  
Quadruple Word(4)  
ms  
Program/Erase Main Blocks  
Cycles (per  
Block)  
1000 cycles  
2500 cycles  
Parameter Blocks  
1. TA = –40 to 85°C; VDD = 1.7V to 2.2V; VDDQ = 2.2V to 3.3V.  
2. The difference between Preprogrammed and not preprogrammed is not significant (‹30ms).  
3. Values are liable to change with the external system-level overhead (command sequence and Status  
Register polling execution).  
4. Measurements performed at 25°C. TA = 25°C 5°C for Quadruple Word, Double Word and Quadruple  
Enhanced Factory Program.  
55/110  
Maximum rating  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
13  
Maximum rating  
Stressing the device above the rating listed in the Absolute Maximum Ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the Numonyx SURE Program  
and other relevant quality documents.  
Table 16. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TA  
TBIAS  
TSTG  
VIO  
Ambient Operating Temperature  
Temperature Under Bias  
Storage Temperature  
–40  
–40  
85  
125  
°C  
°C  
°C  
V
–65  
155  
Input or Output Voltage  
Supply Voltage  
–0.5  
–0.2  
–0.2  
–0.2  
VDDQ+0.6  
2.45  
2.45  
14  
VDD  
VDDQ  
VPP  
V
Input/Output Supply Voltage  
Program Voltage  
V
V
IO  
Output Short Circuit Current  
Time for VPP at VPPH  
100  
mA  
hours  
tVPPH  
100  
56/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
DC and AC parameters  
14  
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 17: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 17. Operating and AC measurement conditions  
M58WRxxxQT/B  
Parameter  
60  
70  
80  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
V
DD Supply Voltage  
DDQ Supply Voltage  
1.7  
1.7  
2
1.7  
1.7  
2
1.7  
1.7  
2
V
V
V
2.24  
2.24  
2.24  
VPP Supply Voltage (Factory  
environment)  
11.4  
12.6  
11.4  
12.6  
11.4  
12.6  
V
V
VPP Supply Voltage (Application  
–0.4 VDDQ+0.4 –0.4 VDDQ+0.4 –0.4 VDDQ+0.4  
environment)  
Ambient Operating Temperature  
Load Capacitance (CL)  
Input Rise and Fall Times  
Input Pulse Voltages  
–40  
85  
–40  
85  
–40  
85  
°C  
pF  
ns  
V
30  
30  
30  
5
5
5
0 to VDDQ  
VDDQ/2  
0 to VDDQ  
VDDQ/2  
0 to VDDQ  
VDDQ/2  
Input and Output Timing Ref.  
Voltages  
V
Figure 8.  
AC measurement I/O waveform  
V
DDQ  
V
/2  
DDQ  
0V  
AI06161  
57/110  
DC and AC parameters  
Figure 9.  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
AC measurement load circuit  
V
DDQ  
V
DDQ  
V
DD  
16.7kΩ  
DEVICE  
UNDER  
TEST  
C
L
16.7kΩ  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI06162  
(1)  
Table 18. Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
Unit  
CIN  
VIN = 0V  
6
8
8
pF  
pF  
COUT  
VOUT = 0V  
12  
1. Sampled only, not 100% tested.  
58/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 19. DC characteristics - currents  
DC and AC parameters  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
0V VIN VDDQ  
1
1
µA  
µA  
ILO  
0V VOUT VDDQ  
Supply Current  
Asynchronous Read (f=6MHz)  
E = VIL, G = VIH  
3
6
mA  
4 Word  
8 Word  
7
16  
18  
22  
25  
17  
20  
25  
30  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
10  
12  
13  
8
Supply Current  
Synchronous Read (f=54MHz)  
16 Word  
IDD1  
Continuous  
4 Word  
8 Word  
11  
14  
16  
10  
Supply Current  
Synchronous Read (f=66MHz)  
16 Word  
Continuous  
RP = VSS 0.2V  
IDD2  
IDD3  
Supply Current (Reset)  
E = VDDQ 0.2V  
K = VSS  
Supply Current (Standby)  
10  
10  
50  
50  
µA  
µA  
Supply Current (Automatic  
Standby)  
IDD4  
E = VIL, G = VIH  
VPP = VPPH  
VPP = VDD  
8
10  
8
15  
20  
15  
20  
mA  
mA  
mA  
mA  
Supply Current (Program)  
Supply Current (Erase)  
(1)  
IDD5  
VPP = VPPH  
VPP = VDD  
10  
Program/Erase in one  
Bank, Asynchronous  
Read in another Bank  
13  
26  
mA  
Supply Current (Dual  
Operations)  
(1)(2)  
IDD6  
Program/Erase in one  
Bank, Synchronous  
Read in another Bank  
23  
10  
45  
50  
mA  
µA  
Supply Current Program/  
Erase Suspended (Standby)  
E = VDDQ 0.2V  
K = VSS  
(1)  
IDD7  
VPP = VPPH  
VPP = VDD  
2
5
5
5
5
5
5
mA  
µA  
mA  
µA  
µA  
µA  
VPP Supply Current (Program)  
0.2  
2
(1)  
IPP1  
VPP = VPPH  
VPP Supply Current (Erase)  
VPP = VDD  
0.2  
0.2  
0.2  
IPP2  
VPP Supply Current (Read)  
VPP VDD  
VPP VDD  
(1)  
IPP3  
VPP Supply Current (Standby)  
1. Sampled only, not 100% tested.  
2. VDD Dual Operation current is the sum of read and program or erase currents.  
59/110  
DC and AC parameters  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 20. DC characteristics - voltages  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.5  
0.4  
VDDQ + 0.4  
0.1  
V
V
V
V
VDDQ –0.4  
VOL  
VOH  
IOL = 100µA  
IOH = –100µA  
VDDQ –0.1  
1.3  
VPP Program Voltage-  
Logic  
VPP1  
VPPH  
VPPLK  
Program, Erase  
Program, Erase  
1.8  
12  
3.3  
V
V
VPP Program Voltage  
Factory  
11.4  
12.6  
Program or Erase  
Lockout  
0.4  
1
V
V
V
VLKO VDD Lock Voltage  
RP pin Extended High  
Voltage  
VRPH  
3.3  
60/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 10. Asynchronous Random Access Read AC waveforms  
DC and AC parameters  
A0-Amax(2)  
VALID  
VALID  
tAVAV  
tAXQX  
tAVLH  
tLHAX  
L
tLLLH  
tLLQV  
tELQV  
tELQX  
tELLH  
tLHGL  
E
tEHQZ  
tEHQX  
G
tGLQV  
tGLQX  
tGHQX  
tGHQZ  
tELTV  
tEHTZ  
Hi-Z  
Hi-Z  
WAIT  
tAVQV  
DQ0-DQ15  
VALID  
Valid Address Latch  
Outputs Enabled  
Data Valid  
Standby  
Notes: 1. Write Enable, W, is High, WAIT is active Low.  
2. Amax is equal to A19 in the M58WR016QT/B and to A20 in the M58WR032QT/B.  
AI10178  
61/110  
DC and AC parameters  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 11. Asynchronous Page Read AC waveforms  
62/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 21. Asynchronous Read AC characteristics  
DC and AC parameters  
M58WRxxxQT/B  
Unit  
Symbol  
Alt  
Parameter  
60  
70  
80  
tAVAV  
tAVQV  
tAVQV1  
tRC  
Address Valid to Next Address Valid  
Min  
Max  
Max  
60  
70  
80  
ns  
ns  
Address Valid to Output Valid  
(Random)  
tACC  
60  
70  
80  
tPAGE  
tOH  
Address Valid to Output Valid (Page)  
20  
0
20  
0
25  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
tAXQX  
Address Transition to Output Transition Min  
tELTV  
Chip Enable Low to Wait Valid  
Max  
Max  
Min  
11  
60  
0
14  
70  
0
14  
80  
0
(2)  
tELQV  
tCE  
tLZ  
Chip Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Chip Enable High to Wait Hi-Z  
(1)  
tELQX  
tEHTZ  
Max  
Min  
14  
0
17  
0
17  
0
(1)  
tEHQX  
tEHQZ  
tGLQV  
tGLQX  
tOH  
tHZ  
tOE  
tOLZ  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
(1)  
(2)  
(1)  
Max  
Max  
14  
20  
0
17  
20  
0
17  
25  
0
Output Enable Low to Output Transition Min  
Output Enable High to Output  
Transition  
(1)  
tGHQX  
tOH  
Min  
0
0
0
ns  
(1)  
tGHQZ  
tAVLH  
tELLH  
tDF  
Output Enable High to Output Hi-Z  
Max  
Min  
14  
7
14  
9
14  
9
ns  
ns  
ns  
tAVADVH Address Valid to Latch Enable High  
tELADVH Chip Enable Low to Latch Enable High Min  
Latch Enable High to Address  
10  
10  
10  
tLHAX  
tLLLH  
tLLQV  
tADVHAX  
Min  
Min  
Max  
7
7
9
9
9
9
ns  
ns  
ns  
Transition  
tADVLADVH Latch Enable Pulse Width  
Latch Enable Low to Output Valid  
(Random)  
tADVLQV  
60  
70  
80  
Latch Enable High to Output Enable  
tLHGL  
tADVHGL  
Low  
Min  
0
0
0
ns  
1. Sampled only, not 100% tested.  
2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV  
.
63/110  
DC and AC parameters  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 12. Synchronous Burst Read AC waveforms  
64/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 13. Single Synchronous Read AC waveforms  
DC and AC parameters  
65/110  
DC and AC parameters  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 14. Synchronous Burst Read Suspend AC waveforms  
66/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
DC and AC parameters  
Figure 15. Clock input AC waveform  
tKHKL  
tKHKH  
tr  
tf  
tKLKH  
AI06981  
(1) (2)  
Table 22. Synchronous Read AC characteristics  
M58WRxxxQT/B  
Unit  
Symbol  
Alt  
Parameter  
60  
70  
80  
tAVKH  
tELKH  
tELTV  
tAVCLKH Address Valid to Clock High  
tELCLKH Chip Enable Low to Clock High  
Chip Enable Low to Wait Valid  
Min  
7
7
9
9
9
9
ns  
ns  
ns  
Min  
Max  
11  
14  
14  
Chip Enable Pulse Width  
(subsequent synchronous reads)  
tEHEL  
Min  
14  
14  
14  
ns  
tEHTZ  
tKHAX  
tKHQV  
tKHTV  
tKHQX  
tKHTX  
tLLKH  
Chip Enable High to Wait Hi-Z  
Max  
Min  
11  
7
14  
9
14  
9
ns  
ns  
tCLKHAX Clock High to Address Transition  
Clock High to Output Valid  
tCLKHQV  
Max  
Min  
11  
14  
4
14  
4
ns  
ns  
Clock High to WAIT Valid  
Clock High to Output Transition  
tCLKHQX  
3
7
Clock High to WAIT Transition  
tADVLCLKH Latch Enable Low to Clock High  
Min  
Min  
Min  
9
9
ns  
ns  
ns  
Clock Period (f=54MHz)  
tCLK  
18.5  
18.5  
tKHKH  
Clock Period (f=66MHz)  
15  
tKHKL  
tKLKH  
Clock High to Clock Low  
Clock Low to Clock High  
Min  
3.5  
4.5  
3
4.5  
3
ns  
ns  
tf  
tr  
Clock Fall or Rise Time  
Max  
3
1. Sampled only, not 100% tested.  
2. For other timings please refer to Table 21: Asynchronous Read AC characteristics.  
67/110  
DC and AC parameters  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 16. Write AC waveforms, Write Enable controlled  
68/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 23. Write AC characteristics, Write Enable controlled  
DC and AC parameters  
(1)  
M58WRxxxQT/B  
Symbol  
Alt  
Parameter  
Unit  
60  
70  
80  
tAVAV  
tAVLH  
tWC Address Valid to Next Address Valid  
Address Valid to Latch Enable High  
Address Valid to Write Enable High  
tDS Data Valid to Write Enable High  
Chip Enable Low to Latch Enable High  
tCS Chip Enable Low to Write Enable Low  
Chip Enable Low to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
60  
7
70  
9
80  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tAVWH  
tDVWH  
tELLH  
tELWL  
tELQV  
tELKV  
40  
40  
10  
0
45  
45  
10  
0
50  
50  
10  
0
60  
7
70  
9
80  
9
Chip Enable Low to Clock Valid  
Output Enable High to Write Enable  
Low  
tGHWL  
Min  
Min  
14  
7
17  
9
17  
9
ns  
ns  
Latch Enable High to Address  
Transition  
tLHAX  
tLLLH  
Latch Enable Pulse Width  
Min  
Min  
7
0
9
0
9
0
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tWHAV  
Write Enable High to Address Valid  
(2)  
tWHAX  
tWHDX  
tWHEH  
tAH Write Enable High to Address Transition Min  
0
0
0
tDH Write Enable High to Input Transition  
tCH Write Enable High to Chip Enable High  
Write Enable High to Chip Enable Low  
Min  
Min  
Min  
0
0
0
0
0
0
(3)  
tWHEL  
tWHGL  
tWHLL  
20  
25  
25  
Write Enable High to Output Enable  
Low  
Min  
0
0
0
ns  
Write Enable High to Latch Enable Low Min  
0
0
0
ns  
ns  
ns  
tWHWL tWPH Write Enable High to Write Enable Low  
Min  
Min  
20  
40  
25  
45  
25  
50  
tWLWH  
tQVVPL  
tWP Write Enable Low to Write Enable High  
Output (Status Register) Valid to VPP  
Low  
Min  
Min  
0
0
0
0
0
0
ns  
ns  
Output (Status Register) Valid to Write  
Protect Low  
tQVWPL  
tVPHWH tVPS VPP High to Write Enable High  
Min  
Min  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
ns  
ns  
ns  
ns  
tWHVPL  
tWHWPL  
tWPHWH  
Write Enable High to VPP Low  
Write Enable High to Write Protect Low Min  
Write Protect High to Write Enable High Min  
1. Sampled only, not 100% tested.  
2. Meaningful only if L is always kept low.  
3. tWHEL has this value when reading from the targeted bank or when reading from any address after a Set  
Configuration Register command has been issued. System designers should take this into account and  
may insert a software No-Op instruction to delay the first read in the same bank after issuing any  
command, or to delay the first read to any address after issuing a Set Configuration Register command. If  
the first read after the command is a Read Array operation in a different bank and no changes to the  
Configuration Register have been issued, tWHEL is 0ns.  
69/110  
DC and AC parameters  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 17. Write AC waveforms, Chip Enable controlled  
70/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 24. Write AC characteristics, Chip Enable controlled  
DC and AC parameters  
(1)  
M58WRxxxQT/B  
Unit  
Symbol  
Alt  
Parameter  
60  
70  
80  
tAVAV  
tAVEH  
tAVLH  
tDVEH  
tEHAX  
tEHDX  
tEHEL  
tEHGL  
tEHWH  
tELKV  
tELEH  
tELLH  
tELQV  
tGHEL  
tLHAX  
tLLLH  
tWC Address Valid to Next Address Valid  
Address Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
60  
40  
7
70  
45  
9
80  
50  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Latch Enable High  
tDS Data Valid to Chip Enable High  
tAH Chip Enable High to Address Transition  
tDH Chip Enable High to Input Transition  
tCPH Chip Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
tCH Chip Enable High to Write Enable High  
Chip Enable Low to Clock Valid  
40  
0
45  
0
50  
0
0
0
0
20  
0
25  
0
25  
0
0
0
0
7
9
9
tCP Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
Chip Enable Low to Output Valid  
40  
10  
60  
14  
7
45  
10  
70  
17  
9
50  
10  
80  
17  
9
Output Enable High to Chip Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
7
9
9
(2)  
tWHEL  
tWLEL  
Write Enable High to Chip Enable Low  
tCS Write Enable Low to Chip Enable Low  
Chip Enable High to VPP Low  
20  
0
25  
0
25  
0
tEHVPL  
tEHWPL  
tQVVPL  
200  
200  
0
200  
200  
0
200  
200  
0
Chip Enable High to Write Protect Low  
Output (Status Register) Valid to VPP Low  
Output (Status Register) Valid to Write  
Protect Low  
tQVWPL  
Min  
0
0
0
ns  
tVPHEH tVPS VPP High to Chip Enable High  
tWPHEH Write Protect High to Chip Enable High  
Min  
Min  
200  
200  
200  
200  
200  
200  
ns  
ns  
1. Sampled only, not 100% tested.  
2. tWHEL has this value when reading from the targeted bank or when reading from any address after a Set  
Configuration Register command has been issued. System designers should take this into account and  
may insert a software No-Op instruction to delay the first read in the same bank after issuing any  
command, or to delay the first read to any address after issuing a Set Configuration Register command. If  
the first read after the command is a Read Array operation in a different bank and no changes to the  
Configuration Register have been issued, tWHEL is 0ns.  
71/110  
DC and AC parameters  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 18. Reset and Power-up AC waveforms  
tPHWL  
tPHEL  
tPHGL  
tPHLL  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
W, E, G, L  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI06976  
Table 25. Reset and Power-up AC characteristics  
Symbol  
Parameter  
Test Condition  
During Program  
60  
70  
80  
Unit  
Reset Low to  
Min  
10  
20  
10  
20  
10  
20  
µs  
µs  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
Write Enable Low,  
Chip Enable Low,  
Output Enable Low,  
Latch Enable Low  
During Erase  
Min  
Other Conditions  
Min  
80  
80  
80  
ns  
Reset High to  
tPHWL  
tPHEL  
tPHGL  
tPHLL  
Write Enable Low  
Chip Enable Low  
Output Enable Low  
Latch Enable Low  
Min  
30  
30  
30  
ns  
(1),(2)  
tPLPH  
RP Pulse Width  
Min  
Min  
50  
50  
50  
50  
50  
50  
ns  
µs  
Supply Voltages High to Reset  
High  
(3)  
tVDHPH  
1. The device Reset is possible but not guaranteed if tPLPH < 50ns.  
2. Sampled only, not 100% tested.  
3. It is important to assert RP in order to allow proper CPU initialization during Power-Up or Reset.  
72/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Package mechanical  
15  
Package mechanical  
Figure 19. VFBGA56 - 7.7x9mm, 8x7 ball array, 0.75mm pitch, Bottom View Package  
Outline  
D
D1  
FD  
FE  
SD  
E
E1  
ddd  
BALL "A1"  
e
e
b
A
A2  
A1  
BGA-Z38  
1. Drawing is not to scale.  
Table 26. VFBGA56 - 7.7x9mm, 8x7 ball array, 0.75mm pitch, package mechanical  
data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.000  
0.0394  
0.200  
0.0079  
0.660  
0.350  
7.700  
5.250  
0.0260  
0.0138  
0.3031  
0.2067  
0.300  
7.600  
0.400  
0.0118  
0.2992  
0.0157  
D
7.800  
0.3071  
D1  
ddd  
e
0.080  
0.0031  
0.750  
9.000  
4.500  
1.225  
2.250  
0.375  
0.0295  
0.3543  
0.1772  
0.0482  
0.0886  
0.0148  
E
8.900  
9.100  
0.3504  
0.3583  
E1  
FD  
FE  
SD  
73/110  
Part numbering  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
16  
Part numbering  
Table 27. Ordering information scheme  
Example:  
M58WR016QT  
70 ZB 6 T  
Device Type  
M58  
Architecture  
W = Multiple Bank, Burst Mode  
Operating Voltage  
R = VDD = 1.7V to 2V, VDDQ = 1.7V to 2.24V  
Density  
016 = 16 Mbit (x16)  
032 = 32 Mbit (x16)  
Technology  
Q = 0.11µm technology  
Parameter Location  
T = Top Boot  
B = Bottom Boot  
Speed  
60 = 60ns  
70 = 70ns  
80 = 80ns  
Package  
ZB = VFBGA56, 7.7x9mm, 0.75mm pitch  
Temperature Range  
6 = –40 to 85°C  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = ECOPACK® Package, Standard Packing  
F = ECOPACK® Package, Tape & Reel Packing  
74/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 28. Daisy chain ordering scheme  
Part numbering  
Example:  
M58WR016QT  
ZB T  
Device Type  
M58WR016Q  
Daisy Chain  
ZB = VFBGA56, 7.7x9mm, 0.75mm pitch  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = ECOPACK® Package, Standard Packing  
F = ECOPACK®, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of  
available options (Speed, Package, etc.) or for further information on any aspect of this  
device, please contact the Numonyx Sales Office nearest to you.  
75/110  
Block address tables  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Appendix A Block address tables  
Table 29. Top boot block addresses, M58WR016QT  
Bank(1)  
#
Size (KWord)  
Address Range  
0
4
FF000-FFFFF  
FE000-FEFFF  
FD000-FDFFF  
FC000-FCFFF  
FB000-FBFFF  
FA000-FAFFF  
F9000-F9FFF  
F8000-F8FFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
76/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Block address tables  
Table 29. Top boot block addresses, M58WR016QT (continued)  
31  
32  
33  
34  
35  
36  
37  
38  
32  
32  
32  
32  
32  
32  
32  
32  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
1. There are two Bank Regions: Bank Region 1 contains all the banks that are made up of main blocks only;  
Bank Region 2 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
Table 30. Bottom boot block addresses, M58WR016QB  
Bank(1)  
#
Size (KWord)  
Address Range  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
F8000-FFFFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
77/110  
Block address tables  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 30. Bottom boot block addresses, M58WR016QB (continued)  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
4
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
1. There are two Bank Regions: Bank Region 2 contains all the banks that are made up of main blocks only;  
Bank Region 1 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
Table 31. Top boot block addresses, M58WR032QT  
Bank(1)  
#
Size (KWord)  
Address Range  
0
1
4
4
1FF000-1FFFFF  
1FE000-1FEFFF  
1FD000-1FDFFF  
1FC000-1FCFFF  
1FB000-1FBFFF  
1FA000-1FAFFF  
1F9000-1F9FFF  
1F8000-1F8FFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
78/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Block address tables  
Table 31. Top boot block addresses, M58WR032QT (continued)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
79/110  
Block address tables  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 31. Top boot block addresses, M58WR032QT (continued)  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
1. There are two Bank Regions: Bank Region 1 contains all the banks that are made up of main blocks only;  
Bank Region 2 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
Table 32. Bottom boot block addresses, M58WR032QB  
Bank(1)  
#
Size (KWord)  
Address Range  
70  
69  
68  
67  
66  
65  
64  
63  
32  
32  
32  
32  
32  
32  
32  
32  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
80/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Block address tables  
Table 32. Bottom boot block addresses, M58WR032QB (continued)  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
81/110  
Block address tables  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 32. Bottom boot block addresses, M58WR032QB (continued)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
1. There are two Bank Regions: Bank Region 2 contains all the banks that are made up of main blocks only;  
Bank Region 1 contains the banks that are made up of the parameter and main blocks (Parameter Bank).  
82/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Common Flash Interface  
Appendix B Common Flash Interface  
The Common Flash Interface is a JEDEC approved, standardized data structure that can be  
read from the Flash memory device. It allows a system software to query the device to  
determine various electrical and timing parameters, density information and functions  
supported by the memory. The system can interface easily with the device, enabling the  
software to upgrade itself when necessary.  
When the Read CFI Query Command is issued the device enters CFI Query mode and the  
data structure is read from the memory. Tables 33, 34, 35, 36, 37, 38, 39, 40, 41 and 42  
show the addresses used to retrieve the data. The Query data is always presented on the  
lowest order data outputs (DQ0-DQ7), the other outputs (DQ8-DQ15) are set to 0.  
The CFI data structure also contains a security area where a 64 bit unique security number  
is written (see Figure 5: Protection Register Memory Map). This area can be accessed only  
in Read mode by the final user. It is impossible to change the security number after it has  
been written by Numonyx. Issue a Read Array command to return to Read mode.  
(1)  
Table 33. Query structure overview  
Offset  
Sub-section Name  
Description  
00h  
10h  
Reserved  
CFI Query Identification String  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
1Bh System Interface Information  
27h  
P
Device Geometry Definition  
Primary Algorithm-specific Extended Query Additional information specific to the Primary  
table Algorithm (optional)  
Alternate Algorithm-specific Extended Query Additional information specific to the  
A
table  
Alternate Algorithm (optional)  
Lock Protection Register  
Unique device Number and  
User Programmable OTP  
80h  
Security Code Area  
1. The Flash memory display the CFI data structure when CFI Query command is issued. In this table are  
listed the main sub-sections detailed in Tables 34, 35, 36 and 37. Query data is always presented on the  
lowest order data outputs.  
83/110  
Common Flash Interface  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 34. CFI Query identification string  
Sub-section  
Name  
Offset  
Description  
Manufacturer Code  
Value  
00h  
0020h  
Numonyx  
8812h  
8813h  
8814h  
8815h  
Top (M58WR016QT)  
Bottom (M58WR016QB)  
Top (M58WR032QT)  
Bottom (M58WR032QB)  
01h  
Device Code  
02h  
03h  
reserved  
reserved  
reserved  
0051h  
Reserved  
Reserved  
reserved  
04h-0Fh  
10h  
"Q"  
"R"  
"Y"  
11h  
0052h  
Query Unique ASCII String "QRY"  
12h  
0059h  
13h  
0003h  
Primary Algorithm Command Set and  
Control Interface ID code 16 bit ID code  
defining a specific algorithm  
14h  
0000h  
15h  
16h  
17h  
offset = P = 0039h  
0000h  
Address for Primary Algorithm extended  
Query table (see Table 36)  
p = 39h  
NA  
0000h  
Alternate Vendor Command Set and  
Control Interface ID Code second vendor -  
specified algorithm supported  
18h  
0000h  
19h  
1Ah  
value = A = 0000h  
0000h  
Address for Alternate Algorithm extended  
Query table  
NA  
84/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 35. CFI query system interface information  
Common Flash Interface  
Value  
Offset  
Data  
Description  
V
V
V
V
DD Logic Supply Minimum Program/Erase or Write voltage  
1Bh  
0017h  
1.7V  
2V  
bit 7 to 4BCD value in volts  
bit 3 to 0BCD value in 100 millivolts  
DD Logic Supply Maximum Program/Erase or Write voltage  
bit 7 to 4BCD value in volts  
bit 3 to 0BCD value in 100 millivolts  
1Ch  
1Dh  
1Eh  
0020h  
00B4h  
00C6h  
PP [Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 millivolts  
11.4V  
12.6V  
PP [Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 millivolts  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h Typical time-out per single byte/word program = 2n µs  
0000h Typical time-out for multi-Byte program = 2n µs  
16µs  
NA  
000Ah Typical time-out per individual block erase = 2n ms  
0000h Typical time-out for full chip erase = 2n ms  
1s  
NA  
0003h Maximum time-out for word program = 2n times typical  
0000h Maximum time-out for multi-Byte program = 2n times typical  
0002h Maximum time-out per individual block erase = 2n times typical  
0000h Maximum time-out for chip erase = 2n times typical  
128µs  
NA  
4s  
NA  
85/110  
Common Flash Interface  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 36. Device geometry definition  
Offset  
Word Mode  
Data  
Description  
Value  
0015h(1)  
0016h(2)  
2 MBytes  
4 MBytes  
27h  
Device Size = 2n in number of bytes  
28h  
29h  
0001h  
0000h  
x16  
Flash Device Interface Code description  
Async.  
2Ah  
2Bh  
0000h  
0000h  
Maximum number of bytes in multi-byte program or page = 2n  
NA  
2
Number of identical sized erase block regions within the  
device  
2Ch  
0002h  
bit 7 to 0 = x = number of Erase Block Regions  
001Eh M58WR016QT/B Erase Block Region 1 Information  
0000h Number of identical-size erase blocks = 001Eh+1  
31  
63  
2Dh  
2Eh  
003Eh M58WR032QT/B Erase Block Region 1 Information  
0000h Number of identical-size erase blocks = 003Eh+1  
2Fh  
30h  
0000h Erase Block Region 1 Information  
64 KByte  
8
0001h Block size in Region 1 = 0100h * 256 byte  
31h  
32h  
0007h Erase Block Region 2 Information  
0000h Number of identical-size erase blocks = 0007h+1  
33h  
34h  
0020h Erase Block Region 2 Information  
8 KByte  
NA  
0000h Block size in Region 2 = 0020h * 256 byte  
35h  
38h  
Reserved for future erase block region information  
2Dh  
2Eh  
0007h Erase Block Region 1 Information  
8
0000h Number of identical-size erase block = 0007h+1  
2Fh  
30h  
0020h Erase Block Region 1 Information  
8 KByte  
31  
0000h Block size in Region 1 = 0020h * 256 byte  
001Eh M58WR016QT/B Erase Block Region 2 Information  
0000h Number of identical-size erase block = 001Eh+1  
31h  
32h  
003Eh M58WR032QT/B Erase Block Region 2 Information  
0000h Number of identical-size erase block = 003Eh+1  
63  
33h  
34h  
0000h Erase Block Region 2 Information  
64 KByte  
NA  
0001h Block size in Region 2 = 0100h * 256 byte  
35h  
38h  
Reserved for future erase block region information  
1. Applies to M58WR016QT/B only.  
2. Applies to M58WR032QT/B only.  
86/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 37. Primary algorithm-specific extended query table  
Common Flash Interface  
Offset  
Data  
Description  
Value  
(P)h = 39h  
0050h  
0052h  
0049h  
"P"  
Primary Algorithm extended Query table unique ASCII string  
“PRI”  
"R"  
"I"  
(P+3)h = 3Ch 0031h Major version number, ASCII  
"1"  
"3"  
(P+4)h = 3Dh 0033h Minor version number, ASCII  
(P+5)h = 3Eh 00E6h Extended Query table contents for Primary Algorithm. Address  
(P+5)h contains less significant byte.  
0003h  
(P+7)h = 40h  
(P+8)h = 41h  
0000h  
0000h  
No  
Yes  
Yes  
No  
bit 0Chip Erase supported (1 = Yes, 0 = No)  
bit 1Erase Suspend supported (1 = Yes, 0 = No)  
bit 2Program Suspend supported (1 = Yes, 0 = No)  
bit 3Legacy Lock/Unlock supported (1 = Yes, 0 = No)  
bit 4Queued Erase supported (1 = Yes, 0 = No)  
bit 5Instant individual block locking supported (1 = Yes, 0 = No)  
bit 6Protection bits supported (1 = Yes, 0 = No)  
bit 7Page mode read supported (1 = Yes, 0 = No)  
bit 8Synchronous read supported (1 = Yes, 0 = No)  
bit 9Simultaneous operation supported (1 = Yes, 0 = No)  
bit 10 to 31Reserved; undefined bits are ‘0’. If bit 31 is ’1’ then  
another 31 bit field of optional features follows at the end of the  
bit-30 field.  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Supported Functions after Suspend  
Read Array, Read Status Register and CFI Query  
(P+9)h = 42h  
0001h  
Yes  
bit 0Program supported after Erase Suspend (1 = Yes, 0 = No)  
bit 7 to 1Reserved; undefined bits are ‘0’  
(P+A)h = 43h 0003h Block Protect Status  
Defines which bits in the Block Status Register section of the  
Query are implemented.  
bit 0Block protect Status Register Lock/Unlock  
bit active(1 = Yes, 0 = No)  
(P+B)h = 44h 0000h  
bit 1Block Lock Status Register Lock-Down bit active (1 = Yes,  
0 = No)  
bit 15 to 2Reserved for future use; undefined bits are ‘0’  
Yes  
Yes  
VDD Logic Supply Optimum Program/Erase voltage (highest  
performance)  
(P+C)h = 45h 0018h  
(P+D)h = 46h 00C0h  
1.8V  
12V  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
V
PP Supply Optimum Program/Erase voltage  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
87/110  
Common Flash Interface  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 38. Protection Register Information  
Offset  
Data  
Description  
Value  
Number of protection register fields in JEDEC ID space.  
0000h indicates that 256 fields are available.  
(P+E)h = 47h  
(P+F)h = 48h  
0001h  
1
0080h Protection Field 1: Protection Description  
Bits 0-7 Lower byte of protection register address  
0080h  
(P+10)h = 49h 0000h  
(P+11)h = 4Ah 0003h  
(P+12)h = 4Bh 0004h  
Bits 8-15 Upper byte of protection register address  
Bits 16-23 2n bytes in factory pre-programmed region  
Bits 24-31 2n bytes in user programmable region  
8 Bytes  
16 Bytes  
Table 39. Burst Read information  
Offset Data  
Description  
Page-mode read capability  
Value  
bits 0-7’n’ such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device word width to  
determine page-mode data output width.  
8
(P+13)h = 4Ch 0003h  
(P+14)h = 4Dh 0004h  
Bytes  
Number of synchronous mode read configuration fields that  
follow.  
4
4
Synchronous mode read capability configuration 1  
bit 3-7Reserved  
bit 0-2’n’ such that 2n+1 HEX value represents the maximum  
number of continuous synchronous reads when the device is  
configured for its maximum word width. A value of 07h  
indicates that the device is capable of continuous linear bursts  
that will output data until the internal burst counter reaches the  
end of the device’s burstable address space. This field’s 3-bit  
value can be written directly to the read configuration register  
bit 0-2 if the device is configured for its maximum word width.  
See offset 28h for word width to determine the burst data  
output width.  
(P+15)h = 4Eh 0001h  
(P+16)h = 4Fh 0002h Synchronous mode read capability configuration 2  
(P+17)h = 50h 0003h Synchronous mode read capability configuration 3  
(P+18)h = 51h 0007h Synchronous mode read capability configuration 4  
8
16  
Cont.  
(1) (2)  
Table 40. Bank and erase block region information  
TOP DEVICES  
BOTTOM DEVICES  
Description  
Offset  
Data  
02h  
Offset  
Data  
(P+19)h = 52h  
(P+19)h = 52h  
02h Number of Bank Regions within the device  
1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, see Table 29 and Table 30 for the M58WR016QT/B and see  
Table 31 and Table 32 for the M58WR032QT/B.  
88/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 41. Bank and erase block region 1 information  
Common Flash Interface  
(1)  
TOP DEVICES  
BOTTOM DEVICES  
Offset Data  
(P+1A)h = 53h 01h  
Description  
Offset  
Data  
03h(2)  
07h(3)  
(P+1A)h = 53h  
Number of identical banks within Bank Region 1  
(P+1B)h = 54h 00h (P+1B)h = 54h 00h  
Number of program or erase operations allowed in  
Bank region 1:  
(P+1C)h = 55h 11h (P+1C)h = 55h 11h Bits 0-3: Number of simultaneous program  
operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in  
other banks while a bank in same region is  
programming  
(P+1D)h = 56h 00h (P+1D)h = 56h 00h  
Bits 0-3: Number of simultaneous program  
operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in  
other banks while a bank in this region is erasing  
(P+1E)h = 57h 00h (P+1E)h = 57h 00h Bits 0-3: Number of simultaneous program  
operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in Bank region 1  
n = number of erase block regions with contiguous  
(P+1F)h = 58h 01h (P+1F)h = 58h 02h same-size erase blocks.  
Symmetrically blocked banks have one blocking  
region.(4)  
(P+20)h = 59h 07h (P+20)h = 59h 07h  
(P+21)h = 5Ah 00h (P+21)h = 5Ah 00h  
(P+22)h = 5Bh 00h (P+22)h = 5Bh 20h  
(P+23)h = 5Ch 01h (P+23)h = 5Ch 00h  
(P+24)h = 5Dh 64h (P+24)h = 5Dh 64h  
(P+25)h = 5Eh 00h (P+25)h = 5Eh 00h  
Bank Region 1 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase  
blocks in each bank  
Bits 16-31: n×256 = number of bytes in erase block  
region  
Bank Region 1 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 1 (Erase Block Type 1): BIts per cell,  
internal ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved 5Eh 01 5Eh 01  
(P+26)h = 5Fh 01h (P+26)h = 5Fh 01h  
Bank Region 1 (Erase Block Type 1): Page mode  
and synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+27)h = 60h 03h (P+27)h = 60h 03h  
89/110  
Common Flash Interface  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
(1)  
Table 41. Bank and erase block region 1 information (continued)  
TOP DEVICES  
Offset Data  
BOTTOM DEVICES  
Description  
Offset  
Data  
(P+28)h = 61h 06h Bank Region 1 Erase Block Type 2 Information  
(P+29)h = 62h 00h  
(P+2A)h = 63h 00h  
Bits 0-15: n+1 = number of identical-sized  
erase blocks  
Bits 16-31: n×256 = number of bytes in erase block  
region  
(P+2B)h = 64h 01h  
(P+2C)h = 65h 64h  
(P+2D)h = 66h 00h  
Bank Region 1 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Region 1 (Erase Block Type 2): BIts per cell,  
internal ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
(P+2E)h = 67h 01h  
(P+2F)h = 68h 03h  
Bank Region 1 (Erase Block Type 2): Page mode  
and synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Applies to the M58WR016QT/B only.  
3. Applies to the M58WR032QT/B only.  
4. Bank Regions. There are two Bank Regions, see Table 29 and Table 30 for the M58WR016QT/B and see  
Table 31 and Table 32 for the M58WR032QT/B.  
90/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 42. Bank and erase block region 2 information  
Common Flash Interface  
(1)  
TOP DEVICES  
Offset Data  
BOTTOM DEVICES  
Description  
Offset  
Data  
03h(2)  
(P+28)h = 61h 01h (P+30)h = 69h  
07h(3) Number of identical banks within bank region 2  
(P+29)h = 62h 00h (P+31)h = 6Ah 00h  
Number of program or erase operations allowed in  
bank region 2:  
(P+2A)h = 63h 11h (P+32)h = 6Bh 11h Bits 0-3: Number of simultaneous program  
operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in  
other banks while a bank in this region is  
programming  
(P+2B)h = 64h 00h (P+33)h = 6Ch 00h  
Bits 0-3: Number of simultaneous program  
operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in  
other banks while a bank in this region is erasing  
(P+2C)h = 65h 00h (P+34)h = 6Dh 00h Bits 0-3: Number of simultaneous program  
operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in Bank region 2  
n = number of erase block regions with contiguous  
(P+2D)h = 66h 02h (P+35)h = 6Eh 01h same-size erase blocks.  
Symmetrically blocked banks have one blocking  
region.(4)  
(P+2E)h = 67h 06h (P+36)h = 6Fh 07h  
(P+2F)h = 68h 00h (P+37)h = 70h 00h  
(P+30)h = 69h 00h (P+38)h = 71h 00h  
(P+31)h = 6Ah 01h (P+39)h = 72h 01h  
(P+32)h = 6Bh 64h (P+3A)h = 73h 64h  
(P+33)h = 6Ch 00h (P+3B)h = 74h 00h  
Bank Region 2 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase  
blocks in each bank  
Bits 16-31: n×256 = number of bytes in erase block  
region  
Bank Region 2 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 1): BIts per cell,  
internal ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
(P+34)h = 6Dh 01h (P+3C)h = 75h 01h  
91/110  
Common Flash Interface  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
(1)  
Table 42. Bank and erase block region 2 information (continued)  
TOP DEVICES  
Offset Data  
BOTTOM DEVICES  
Offset Data  
Description  
Bank Region 2 (Erase Block Type 1): Page mode  
and synchronous mode capabilities (defined in  
Table 39)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+35)h = 6Eh 03h (P+3D)h = 76h 03h  
(P+36)h = 6Fh 07h  
(P+37)h = 70h 00h  
(P+38)h = 71h 20h  
(P+39)h = 72h 00h  
(P+3A)h = 73h 64h  
(P+3B)h = 74h 00h  
Bank Region 2 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase  
blocks  
Bits 16-31: n×256 = number of bytes in erase block  
region  
Bank Region 2 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 2): BIts per cell,  
internal ECC  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
(P+3C)h = 75h 01h  
Bank Region 2 (Erase Block Type 2): Page mode  
and synchronous mode capabilities (defined in  
Table 39)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+3D)h = 76h 03h  
(P+3E)h = 77h  
(P+3F)h = 78h  
(P+3E)h = 77h  
(P+3F)h = 78h  
Feature Space definitions  
Reserved  
1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Applies to the M58WR016QT/B only.  
3. Applies to the M58WR032QT/B only.  
4. Bank Regions. There are two Bank Regions, see Table 29 and Table 30 for the M58WR016QT/B and see  
Table 31 and Table 32 for the M58WR032QT/B.  
92/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Flowcharts and pseudo codes  
Appendix C Flowcharts and pseudo codes  
Figure 20. Program flowchart and pseudo code  
Start  
program_command (addressToProgram, dataToProgram) {:  
"
writeToFlash (addressToProgram, 0x40);  
/*writeToFlash (addressToProgram, 0x10);*/  
/*see note (3)*/  
Write 40h or 10h (3)  
"
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram);  
"see note (3)";  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
error_handler ( ) ;  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06170b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
93/110  
Flowcharts and pseudo codes  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 21. Double Word Program flowchart and pseudo code  
Start  
Write 35h  
double_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2)  
{
writeToFlash (addressToProgram1, 0x35);  
/*see note (4)*/  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 1  
& Data 1 (3, 4)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
/*Memory enters read status state after  
the Program command*/  
Write Address 2  
& Data 2 (3)  
do {  
status_register=readFlash (addressToProgram) ;  
"see note (4)"  
/* E or G must be toggled*/  
Read Status  
Register (4)  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06171b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.  
4. Any address within the bank can equally be used.  
94/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Flowcharts and pseudo codes  
Figure 22. Quadruple Word Program flowchart and pseudo code  
Start  
quadruple_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2,  
addressToProgram3, dataToProgram3,  
addressToProgram4, dataToProgram4)  
{
Write 56h  
Write Address 1  
& Data 1 (3, 4)  
writeToFlash (addressToProgram1, 0x56);  
/*see note (4) */  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 2  
& Data 2 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
writeToFlash (addressToProgram3, dataToProgram3) ;  
/*see note (3) */  
Write Address 3  
& Data 3 (3)  
writeToFlash (addressToProgram4, dataToProgram4) ;  
/*see note (3) */  
Write Address 4  
& Data 4 (3)  
/*Memory enters read status state after  
the Program command*/  
do {  
status_register=readFlash (addressToProgram) ;  
/"see note (4) "/  
/* E or G must be toggled*/  
Read Status  
Register (4)  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06977b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.  
4. Any address within the bank can equally be used.  
95/110  
Flowcharts and pseudo codes  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 23. Program Suspend & Resume flowchart and pseudo code  
Start  
program_suspend_command ( ) {  
writeToFlash (any_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
program has already completed */  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
SR2 = 1  
Program Complete  
Write FFh  
if (status_register.SR2==0) /*program completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Read Data  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
Read data from  
another address  
read_data ( ); /*read data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume program*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if program has completed */  
Write 70h(1)  
}
Program Continues with  
Bank in Read Status  
Register Mode  
}
AI10117b  
1. The Read Status Register command (Write 70h) can be issued just before or just after the Program Resume command.  
96/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 24. Block Erase flowchart and pseudo code  
Flowcharts and pseudo codes  
Start  
erase_command ( blockToErase ) {  
writeToFlash (blockToErase, 0x20) ;  
/*see note (2) */  
Write 20h (2)  
writeToFlash (blockToErase, 0xD0) ;  
(3)  
/* only A12-Amax are significant */  
Write Block  
/* Memory enters read status state after  
the Erase Command */  
Address & D0h  
do {  
Read Status  
Register (2)  
status_register=readFlash (blockToErase) ;  
/* see note (2) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
YES  
NO  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
Error (1)  
PP  
SR3 = 0  
YES  
if ( (status_register.SR4==1) && (status_register.SR5==1) )  
/* command sequence error */  
Command  
Sequence Error (1)  
SR4, SR5 = 1  
NO  
error_handler ( ) ;  
if ( (status_register.SR5==1) )  
/* erase error */  
SR5 = 0  
YES  
Erase Error (1)  
error_handler ( ) ;  
Erase to Protected  
Block Error (1)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI10185  
1. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
2. Any address within the bank can be used also.  
3. Amax is equal to A19 in the M58WR016QT/B and to A20 in the M58WR032QT/B.  
97/110  
Flowcharts and pseudo codes  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 25. Erase Suspend & Resume flowchart and pseudo code  
Start  
erase_suspend_command ( ) {  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0xB0) ;  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
erase has already completed */  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
NO  
} while (status_register.SR7== 0) ;  
SR7 = 1  
YES  
SR6 = 1  
Erase Complete  
Write FFh  
if (status_register.SR6==0) /*erase completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
Read Data  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
read_program_data ( );  
Read data from another block  
or  
Program/Protection Register Program  
or  
/*read or program data from another block*/  
Block Lock/Unlock/Lock-Down  
writeToFlash (bank_address, 0xD0) ;  
/*write 0xD0 to resume erase*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if erase has completed */  
Write 70h(1)  
}
}
Erase Continues with  
Bank in Read Status  
Register Mode  
AI10116b  
1. The Read Status Register command (Write 70h) can be issued just before or just after the Erase Resume command.  
98/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 26. Locking operations flowchart and pseudo code  
Flowcharts and pseudo codes  
Start  
locking_operation_command (address, lock_operation) {  
writeToFlash (address, 0x60) ; /*configuration setup*/  
Write 60h (1)  
/* see note (1) */  
if (lock_operation==LOCK) /*to protect the block*/  
writeToFlash (address, 0x01) ;  
else if (lock_operation==UNLOCK) /*to unprotect the block*/  
writeToFlash (address, 0xD0) ;  
Write  
01h, D0h or 2Fh  
else if (lock_operation==LOCK-DOWN) /*to lock the block*/  
writeToFlash (address, 0x2F) ;  
writeToFlash (address, 0x90) ;  
/*see note (1) */  
Write 90h (1)  
Read Block  
Lock States  
if (readFlash (address) ! = locking_state_expected)  
error_handler () ;  
NO  
Locking  
change  
/*Check the locking state (see Read Block Signature table )*/  
confirmed?  
YES  
writeToFlash (address, 0xFF) ; /*Reset to Read Array mode*/  
/*see note (1) */  
Write FFh (1)  
}
End  
AI06176b  
1. Any address within the bank can equally be used.  
99/110  
Flowcharts and pseudo codes  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 27. Protection Register Program flowchart and pseudo code  
Start  
protection_register_program_command (addressToProgram, dataToProgram) {:  
Write C0h (3)  
writeToFlash (addressToProgram, 0xC0) ;  
/*see note (3) */  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram) ;  
/* see note (3) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06177b  
1. Status check of SR1 (Protected Block), SR3 (VPP Invalid) and SR4 (Program Error) can be made after each program  
operation or after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
100/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 28. Enhanced Factory Program flowchart  
Flowcharts and pseudo codes  
SETUP PHASE  
Start  
VERIFY PHASE  
Write PD1  
Address WA1  
Write 30h  
Address WA1  
1)  
(
Write D0h  
Address WA1  
Read Status  
Register  
Read Status  
Register  
NO  
SR0 = 0?  
YES  
NO  
SR7 = 0?  
Check SR4, SR3  
Write PD2  
Address WA2  
YES  
1)  
and SR1 for program,  
(
V
and Lock Errors  
PP  
NO  
SR0 = 0?  
YES  
Exit  
Read Status  
Register  
Write PD1  
Address WA1  
PROGRAM PHASE  
NO  
SR0 = 0?  
Read Status  
Register  
YES  
Write PDn  
Address WAn  
NO  
1)  
(
SR0 = 0?  
YES  
Read Status  
Register  
Write PD2  
Address WA2  
1)  
(
NO  
Read Status  
Register  
SR0 = 0?  
YES  
NO  
Write FFFFh  
SR0 = 0?  
Address Block WA1  
=
/
YES  
EXIT PHASE  
Write PDn  
Address WAn  
1)  
(
Read Status  
Register  
Read Status  
Register  
NO  
SR7 = 1?  
YES  
NO  
SR0 = 0?  
YES  
Check Status  
Register for Errors  
Write FFFFh  
=
Address Block WA1  
/
End  
AI06160  
1. Address can remain Starting Address WA1 or be incremented.  
101/110  
Flowcharts and pseudo codes  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
C.1  
Enhanced Factory Program pseudo code  
efp_command(addressFlow,dataFlow,n)  
/* n is the number of data to be programmed */  
{
/* setup phase */  
writeToFlash(addressFlow[0],0x30);  
writeToFlash(addressFlow[0],0xD0);  
status_register=readFlash(any_address);  
if (status_register.SR7==1){  
/*EFP aborted for an error*/  
if (status_register.SR4==1) /*program error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block error*/  
error_handler();  
}
else{  
/*Program Phase*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1)  
/*Ready for first data*/  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* Verify Phase */  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* exit program phase */  
/* Exit Phase */  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.SR7==0);  
if (status_register.SR4==1) /*program failure error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block error*/  
error_handler();  
}
}
102/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Figure 29. Quadruple Enhanced Factory Program flowchart  
Flowcharts and pseudo codes  
SETUP PHASE  
Start  
LOAD PHASE  
Write PD1  
1)  
Write 75h  
Address WA1  
Address WA1(  
FIRST  
LOAD PHASE  
Write PD2  
Write PD1  
Address WA1  
2)  
Address WA2(  
Read Status  
Register  
Write PD3  
2)  
Address WA3(  
NO  
SR7 = 0?  
YES  
Write PD4  
2)  
Address WA4(  
EXIT PHASE  
Write FFFFh  
Check SR4, SR3  
and SR1 for program,  
PROGRAM AND  
VERIFY PHASE  
VPP and Lock Errors  
Read Status  
Register  
Address =Block WA1  
/
Exit  
Check SR4 for  
Programming Errors  
NO  
NO  
SR0 = 0?  
YES  
End  
Last Page?  
YES  
AI06178b  
1. Address can remain Starting Address WA1 (in which case the next Page is programmed) or can be any address in the  
same block.  
2. The address is only checked for the first Word of each Page as the order to program the Words is fixed, so subsequent  
Words in each Page can be written to any address.  
103/110  
Flowcharts and pseudo codes  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
C.2  
Quadruple Enhanced Factory Program Pseudo Code  
quad_efp_command(addressFlow,dataFlow,n)  
/* n is the number of pages to be programmed.*/  
{
/* Setup phase */  
writeToFlash(addressFlow[0],0x75);  
for (i=0; i++; i< n){  
/*Data Load Phase*/  
/*First Data*/  
writeToFlash(addressFlow[i],dataFlow[i,0]);  
/*at the first data of the first page, Quad-EFP may be aborted*/  
if (First_Page) {  
status_register=readFlash(any_address);  
if (status_register.SR7==1){  
/*EFP aborted for an error*/  
if (status_register.SR4==1) /*program error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block  
error*/  
error_handler();  
}
}
/*2nd data*/  
writeToFlash(addressFlow[i],dataFlow[i,1]);  
/*3rd data*/  
writeToFlash(addressFlow[i],dataFlow[i,2]);  
/*4th data*/  
writeToFlash(addressFlow[i],dataFlow[i,3]);  
/* Program&Verify Phase */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
}while (status_register.SR0==1)  
}
/* Exit Phase */  
writeToFlash(another_block_address,FFFFh);  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.SR7==0);  
if (status_register.SR1==1) /*program to protected block error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR4==1) /*program failure error*/  
error_handler();  
}
}
104/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Command interface state tables  
Appendix D Command interface state tables  
(1)  
Table 43. Command interface states - modify table, next state  
Command Input  
Read  
Clear Electronic  
Status Status signature,  
Suspend Register Register Read CFI  
Block  
Erase,  
Erase Confirm  
P/E Resume,  
Block Unlock  
confirm, EFP  
Confirm (D0h)  
DWP,  
QWP  
Setup  
(35h, 56h)  
Quad-  
EFP  
Setup  
(75h)  
Program/  
Erase  
Read  
WP  
setup  
(10/40h)  
Current CI State  
Read  
Array  
(FFh)  
EFP  
Setup  
(30h)  
(3)(4)  
(2)  
BankErase  
(3)(4)  
(3)(4)  
Setup  
(5)  
(B0h)  
(70h)  
(50h)  
Query  
(90h, 98h)  
(20h, 80h)  
Quad-  
EFP  
Setup  
Program Program  
Erase  
Setup  
EFP  
Setup  
Ready  
Ready  
Ready  
Setup  
Setup  
Lock/CR Setup  
Ready (Lock Error)  
Ready  
Ready (Lock Error)  
Setup  
OTP  
OTP Busy  
Busy  
Setup  
Program Busy  
Program  
Suspended  
Program Busy  
Program Busy  
Program Busy  
Suspend  
Setup  
Program Suspended  
Ready (error)  
Program Busy  
Program Suspended  
Ready (error)  
Erase Busy  
Erase  
Suspended  
Busy  
Erase Busy  
Erase Busy  
Erase  
Program  
in Erase  
Suspend  
Erase  
Suspended  
Suspend  
Erase Suspended  
Erase Busy  
Erase Suspended  
Setup  
Program Busy in Erase Suspend  
Program  
Suspend in  
Erase  
Program  
in Erase  
Suspend  
Program Busy in Erase  
Suspend  
Busy  
Program Busy in Erase Suspend  
Suspend  
Program Busy in  
Erase Suspend  
Suspend  
Program Suspend in Erase Suspend  
Program Suspend in Erase Suspend  
Lock/CR Setup in  
Erase Suspend  
Erase Suspend (Lock Error)  
Ready (error)  
Erase Suspend  
Erase Suspend (Lock Error)  
Ready (error)  
Setup  
EFP Busy  
(6)  
EFP  
Busy  
Verify  
Setup  
Busy  
EFP Busy  
(6)  
EFP Verify  
(6)  
(6)  
Quad EFP Busy  
Quad  
EFP  
Quad EFP Busy  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Factory  
Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase Controller.  
2. At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined data output.  
3. The two cycle command should be issued to the same bank address.  
4. If the P/E.C. is active, both cycles are ignored.  
5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
6. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’.EFP and Quad EFP are busy if Block Address is first EFP  
Address. Any other commands are treated as data.  
105/110  
Command interface state tables  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 44. Command interface states - modify table, next output state  
(1) (2)  
Command Input  
EraseConfirm  
Quad- P/E Resume, Program/ Read  
EFP Block Unlock  
Setup confirm, EFP Suspend Register Register  
Confirm  
Read  
WP  
DWP,  
QWP  
Setup  
Block Erase,  
Bank Erase  
Setup  
Clear  
status  
Electronic  
signature,  
Read CFI  
Query  
EFP  
Setup  
Current CI State  
Read  
Array  
FFh)  
(4)  
Erase  
Status  
Setup  
(
(5)  
(3)  
(4)(5)  
(4)(5)  
(6)  
(30h)  
(35h, 56h) (20h, 80h)  
(75h)  
(B0h)  
(70h)  
(50h)  
(10/40h)  
(D0h)  
(90h, 98h)  
Program Setup  
Erase Setup  
OTP Setup  
Program in Erase  
Suspend  
EFP Setup  
EFP Busy  
Status Register  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Lock/CR Setup in  
Erase Suspend  
Status  
Register  
OTP Busy  
Ready  
Program Busy  
Erase Busy  
Status  
Register Unchanged  
Output  
Array  
Status Register  
Output Unchanged  
Electronic  
Signature/CFI  
Program/Erase  
Program Busy in  
Erase Suspend  
ProgramSuspend  
in Erase Suspend  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase  
Controller.  
2. The output state shows the type of data that appears at the outputs if the bank address is the same as the command  
address. A bank can be placed in Read Array, Read Status Register, Read Electronic Signature or Read CFI Query mode,  
depending on the command issued. Each bank remains in its last output state until a new command is issued. The next  
state does not depend on the bank’s output state.  
3. At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined  
data output.  
4. The two cycle command should be issued to the same bank address.  
5. If the P/E.C. is active, both cycles are ignored.  
6. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
106/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Command interface state tables  
Table 45. Command interface states - lock table, next state  
(1)  
Command Input  
Current CI State  
Lock/CR  
Setup  
(60h)  
OTP  
Setup  
(C0h)  
Block Lock  
Confirm  
(01h)  
Block Lock-  
Down  
Confirm (2Fh)  
Set CR  
Confirm  
(03h)  
EFP Exit,  
Illegal  
P/E. C.  
Operation  
Completed  
(2)  
(2)  
Quad EFP Command  
(3)  
(4)  
Exit  
Lock/CR  
Setup  
Ready  
OTP Setup  
Ready  
N/A  
Lock/CR Setup  
Ready (Lock error)  
Ready  
Ready (Lock error)  
N/A  
N/A  
Setup  
OTP  
OTP Busy  
Busy  
Ready  
N/A  
Setup  
Program Busy  
Program Busy  
Program  
Busy  
Suspend  
Setup  
Ready  
N/A  
Program Suspended  
Ready (error)  
N/A  
Busy  
Erase Busy  
Ready  
Erase  
Lock/CR  
Setup in  
Erase  
Suspend  
Erase Suspended  
N/A  
N/A  
Suspend  
Setup  
Busy  
Program Busy in Erase Suspend  
Program Busy in Erase Suspend  
Program Suspend in Erase Suspend  
Programin  
Erase  
Erase  
Suspended  
Suspend  
Suspend  
N/A  
N/A  
Lock/CR Setup in  
Erase Suspend  
Erase Suspend (Lock  
error)  
Erase Suspend (Lock error)  
Erase Suspend  
Ready (error)  
Setup  
N/A  
N/A  
EFP  
(5)  
Busy  
EFP  
EFP Busy  
EFP Verify  
Ready  
(5)  
Busy  
EFP  
(5)  
Verify  
Setup  
EFP Verify  
Ready  
N/A  
(5)  
Verify  
(5)  
Quad EFP Busy  
QuadEFP  
Busy  
Quad EFP  
Busy  
(5)  
Quad EFP Busy  
Ready  
Ready  
(5)  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple  
Enhanced Factory Program, P/E. C. = Program/Erase Controller.  
2. If the P/E.C. is active, both cycles are ignored.  
3. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
4. Illegal commands are those not defined in the command set.  
5. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’. EFP and Quad EFP are busy if Block  
Address is first EFP Address. Any other commands are treated as data.  
107/110  
Command interface state tables  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Table 46. Command interface states - lock table, next output state  
(1)  
Command Input  
Block  
Lock  
Confirm  
(01h)  
EFP Exit,  
Quad  
Current CI State  
Lock/CR  
Setup  
(60h)  
OTP  
Setup  
(C0h)  
Block Lock-  
Down Confirm Confirm  
Set CR  
Illegal  
P/E. C.  
Operation  
Completed  
(2)  
(2)  
Command  
EFP  
(4)  
(2Fh)  
(03h)  
(3)  
Exit  
Program Setup  
Erase Setup  
OTP Setup  
Program in Erase  
Suspend  
Output  
Unchanged  
Status Register  
EFP Setup  
EFP Busy  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Output  
Unchanged  
Status Register  
Array  
Status Register  
Lock/CR Setup in  
Erase Suspend  
Output  
Unchanged Unchanged  
Output  
OTP Busy  
Status Register  
Output Unchanged  
Array  
Ready  
Program Busy  
EraseBusy  
Output  
Unchanged Unchanged  
Output  
Status Register  
Output Unchanged  
Array  
Program/Erase  
Program Busy in  
Erase Suspend  
Program Suspend  
in Erase Suspend  
1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP =  
Quadruple Enhanced Factory Program, P/E. C. = Program/Erase Controller.  
2. If the P/E.C. is active, both cycles are ignored.  
3. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
4. Illegal commands are those not defined in the command set.  
108/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Revision history  
17  
Revision history  
Table 47. Document revision history  
Date  
Revision  
Changes  
15-Sep-2004  
0.1  
First Issue  
Document status promoted from Target Specificaton to full  
Datasheet.  
Small text changes. Address modified for Clear Status Register  
command in Table 6: Standard commands.  
Test condition modified for IDD3 and IDD7 in Table 19: DC  
characteristics - currents. VPP1 min modified and VLKO value moved  
from Min to Max in Table 20: DC characteristics - voltages.  
14-Apr-2006  
12-Nov-2007  
1
2
tWHQV removed from Figure 16, Table 23, Figure 17 and Table 24.  
Note 3 modified. Data modified at address offset 31h in Table 36.  
Figure 23: Program Suspend & Resume flowchart and pseudo code  
and Figure 25: Erase Suspend & Resume flowchart and pseudo  
code modified.  
Applied Numonyx branding.  
109/110  
M58WR016QT, M58WR016QB, M58WR032QT, M58WR032QB  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
110/110  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY