NAND01GW3B2BZA1F [NUMONYX]

1-Gbit, 2-Gbit, 2112-byte/1056-word page, 1.8 V/3 V, NAND flash memory; 1千兆位, 2千兆位, 2112字节/ 1056字的页面, 1.8 / 3V , NAND快闪存储器
NAND01GW3B2BZA1F
型号: NAND01GW3B2BZA1F
厂家: NUMONYX B.V    NUMONYX B.V
描述:

1-Gbit, 2-Gbit, 2112-byte/1056-word page, 1.8 V/3 V, NAND flash memory
1千兆位, 2千兆位, 2112字节/ 1056字的页面, 1.8 / 3V , NAND快闪存储器

闪存 存储
文件: 总60页 (文件大小:1343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND01G-B2B  
NAND02G-B2C  
1-Gbit, 2-Gbit,  
2112-byte/1056-word page, 1.8 V/3 V, NAND flash memory  
Features  
High density NAND flash memories  
– Up to 2 Gbits of memory array  
– Cost effective solutions for mass storage  
applications  
NAND interface  
– x8 or x16 bus width  
TSOP48 12 x 20 mm  
– Multiplexed address/ data  
– Pinout compatibility for all densities  
FBGA  
Supply voltage: 1.8 V/3.0 V  
Page size  
VFBGA63 9.5 x 12 x 1 mm  
VFBGA63 9 x 11 x 1 mm  
– x8 device: (2048 + 64 spare) bytes  
– x16 device: (1024 + 32 spare) words  
Serial number option  
Block size  
Data protection  
– x8 device: (128 K + 4 K spare) bytes  
– x16 device: (64 K + 2 K spare) words  
– Hardware block locking  
– Hardware program/erase locked during  
power transitions  
Page read/program  
– Random access: 25 µs (max)  
– Sequential access: 30 ns (min)  
– Page program time: 200 µs (typ)  
Data integrity  
– 100 000 program/erase cycles per block  
(with ECC)  
Copy back program mode  
Cache program and cache read modes  
Fast block erase: 2 ms (typ)  
Status register  
– 10 years data retention  
®
ECOPACK packages  
Development tools  
– Error correction code models  
Electronic signature  
– Bad blocks management and wear leveling  
algorithms  
Chip enable ‘don’t care’  
– Hardware simulation models  
Table 1.  
Device summary  
Reference  
Part number  
NAND01GR3B2B, NAND01GW3B2B  
NAND01GR4B2B, NAND01GW4B2B(1)  
NAND02GR3B2C, NAND02GW3B2C  
NAND02GR4B2C, NAND02GW4B2C(1)  
NAND01G-B2B  
NAND02G-B2C  
1. x16 organization only available for MCP products.  
April 2008  
Rev 5  
1/60  
www.numonyx.com  
1
Contents  
NAND01G-B2B, NAND02G-B2C  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
Bad blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3
Signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
Inputs/outputs (I/O0-I/O7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inputs/outputs (I/O8-I/O15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Enable (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Ready/Busy (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
V
DD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.11 VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Command input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Address input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
6
Command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Device operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1  
Read memory array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1.1  
6.1.2  
Random read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Page read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/60  
NAND01G-B2B, NAND02G-B2C  
Contents  
6.2  
6.3  
Cache read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.3.1  
6.3.2  
Sequential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Random data input in a page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.4  
6.5  
6.6  
6.7  
6.8  
Copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Cache program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Read status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
6.8.6  
Write protection bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
P/E/R controller and cache ready/busy bit (SR6) . . . . . . . . . . . . . . . . . 30  
P/E/R controller bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Cache program error bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Error bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SR4, SR3 and SR2 are reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.9  
Read electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7
8
Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Software algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Bad block management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
NAND flash memory failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Wear-leveling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Error correction code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Hardware simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.6.1  
8.6.2  
Behavioral simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
IBIS simulations models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 39  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10  
11  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
11.1 Ready/Busy signal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 52  
11.2 Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3/60  
Contents  
12  
NAND01G-B2B, NAND02G-B2C  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
13  
14  
4/60  
NAND01G-B2B, NAND02G-B2C  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Valid blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address insertion, x8 devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address insertion, x16 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Address definitions, x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Address definitions, x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Copy back program x8 addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Copy back program x16 addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electronic signature byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electronic signature byte/word 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
NAND flash failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Program, erase times and program erase endurance cycles . . . . . . . . . . . . . . . . . . . . . . . 39  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
DC characteristics, 1.8 V devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
DC characteristics, 3 V devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
AC characteristics for command, address, data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
AC characteristics for operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data. . . . . 55  
VFBGA63 9.5 x 12 mm - 6 x 8 ball array, 0.80 mm pitch, package mechanical data. . . . . 56  
VFBGA63 9 x 11 mm - 6 x 8 active ball array, 0.80 mm pitch, package mechanical data . 57  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
5/60  
List of figures  
NAND01G-B2B, NAND02G-B2C  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TSOP48 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
VFBGA63 connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Random data output during sequential data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Cache read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Page program operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 10. Random data input during sequential data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 11. Copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 12. Page copy back program with random data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 13. Cache program operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 14. Block erase operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 15. Bad block management flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 17. Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18. Equivalent testing circuit for AC characteristics measurement. . . . . . . . . . . . . . . . . . . . . . 42  
Figure 19. Command latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 20. Address latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 21. Data Input Latch AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 22. Sequential data output after read AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 23. Read status register AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 24. Read electronic signature AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 25. Page read operation AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 26. Page program AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 27. Block erase AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 28. Reset AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 29. Program/erase enable waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 30. Program/erase disable waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 31. Ready/Busy AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 32. Ready/Busy load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 33. Resistor value versus waveform timings for Ready/Busy signal. . . . . . . . . . . . . . . . . . . . . 54  
Figure 34. Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 35. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline . . . . . . . . . . . . 55  
Figure 36. VFBGA63 9.5 x 12 mm - 6 x 8 active ball array, 0.80 mm pitch, package outline . . . . . . . 56  
Figure 37. VFBGA63 9 x 11 mm - 6 x 8 active ball array, 0.80 mm pitch, package outline. . . . . . . . . 57  
6/60  
NAND01G-B2B, NAND02G-B2C  
Description  
1
Description  
NAND01G-B2B and NAND02G-B2C flash 2112-byte/1056-word page is a family of non-  
volatile flash memories that uses NAND cell technology. The devices range from 1 Gbit to 2  
Gbits and operate with either a 1.8 V or 3 V voltage supply. The size of a page is either 2112  
bytes (2048 + 64 spare) or 1056 words (1024 + 32 spare) depending on whether the device  
has a x8 or x16 bus width.  
The address lines are multiplexed with the Data Input/Output signals on a multiplexed x8 or  
x16 input/output bus. This interface reduces the pin count and makes it possible to migrate  
to other densities without changing the footprint.  
Each block can be programmed and erased over 100 000 cycles (with ECC on). To extend  
the lifetime of NAND flash devices it is strongly recommended to implement an error  
correction code (ECC).  
The devices feature a write protect pin that allows performing hardware protection against  
program and erase operations.  
The devices feature an open-drain ready/busy output that can be used to identify if the  
program/erase/read (P/E/R) controller is currently active. The use of an open-drain output  
allows the ready/busy pins from several memories to be connected to a single pull-up  
resistor.  
A Copy Back Program command is available to optimize the management of defective  
blocks. When a page program operation fails, the data can be programmed in another page  
without having to resend the data to be programmed.  
Each device has cache program and cache read features which improve the program and  
read throughputs for large files. During cache programming, the device loads the data in a  
cache register while the previous data is transferred to the page buffer and programmed into  
the memory array. During cache reading, the device loads the data in a cache register while  
the previous data is transferred to the I/O buffers to be read.  
All devices have the chip enable don’t care feature, which allows code to be directly  
downloaded by a microcontroller, as chip enable transitions during the latency time do not  
stop the read operation.  
All devices have the option of a unique identifier (serial number), which allows each device  
to be uniquely identified.  
The unique identifier options is subject to an NDA (non disclosure agreement) and so not  
described in the datasheet. For more details of this option contact your nearest Numonyx  
sales office.  
The devices are available in the following packages:  
TSOP48 (12 x 20 mm)  
VFBGA63 (9.5 x 12 x 1 mm, 0.8 mm pitch) for NAND02G-B2C devices  
VFBGA63 (9 x 11 x 1 mm, 0.8 mm pitch) for NAND01G-B2B devices.  
For information on how to order these options refer to Table 29: Ordering information  
scheme. Devices are shipped from the factory with Block 0 always valid and the memory  
content bits, in valid blocks, erased to ’1’.  
See Table 2: Product description, for all the devices available in the family.  
7/60  
Description  
Table 2.  
NAND01G-B2B, NAND02G-B2C  
Product description  
Timings  
Bus Page Block Memory Operating  
Random Sequential  
Page  
Progra  
m time erase  
Bloc  
k
Reference  
Part number  
Density  
Package  
width size  
size  
array  
voltage  
access  
time  
access  
time  
(max)  
(min)  
(typ)  
(typ)  
1.7 to  
1.95 V  
VFBGA63  
9 x 11 mm  
NAND01GR3B2B  
NAND01GW3B2B  
NAND01GR4B2B  
NAND01GW4B2B  
25 µs  
25 µs  
25 µs  
25 µs  
50 ns  
30 ns  
50 ns  
30 ns  
2048 128K  
+64 +4K  
bytes bytes  
x8  
2.7 to  
3.6 V  
64  
pages x  
1024  
TSOP48  
(1)  
NAND01G  
-B2B  
1Gbit  
2 ms  
1.7 to  
1.95 V  
blocks  
1024 64K+  
x16  
+32  
2K  
2.7 to  
3.6 V  
words words  
(1)  
200 µs  
VFBGA63  
9.5 x 12 m  
m
1.7 to  
1.95 V  
NAND02GR3B2C  
25 µs  
50 ns  
2048 128K  
x8  
+64  
+4K  
bytes bytes  
64  
pages x  
2048  
2.7 to  
3.6 V  
NAND02GW3B2C  
NAND02GR4B2C  
NAND02GW4B2C  
25 µs  
25 µs  
25 µs  
30 ns  
50 ns  
30 ns  
TSOP48  
(1)  
NAND02G  
-B2C  
2Gbits  
2 ms  
1.7 to  
1.95 V  
blocks  
1024 64K+  
x16  
+32  
2K  
2.7 to  
3.6 V  
words words  
(1)  
1. x16 organization only available for MCP.  
Figure 1.  
Logic block diagram  
Address  
register/counter  
AL  
NAND flash  
CL  
W
memory array  
P/E/R controller,  
high voltage  
generator  
Command  
interface  
logic  
E
WP  
R
Page buffer  
Cache register  
Y decoder  
Command register  
I/O buffers & latches  
RB  
I/O0-I/O7, x8/x16  
I/O8-I/O15, x16  
AI12799  
8/60  
NAND01G-B2B, NAND02G-B2C  
Description  
Figure 2.  
Logic diagram  
V
DD  
I/O8-I/O15, x16  
E
R
I/O0-I/O7, x8/x16  
W
NAND01G-B2B  
NAND02G-B2C  
RB  
AL  
CL  
WP  
V
SS  
AI13101  
1. x16 organization only available for MCP.  
Table 3.  
Signal names  
Signal  
Function  
Direction  
I/O8-15  
I/O0-7  
Data input/outputs for x16 devices  
I/O  
I/O  
Data input/outputs, address inputs, or command inputs  
for x8 and x16 devices  
AL  
CL  
E
Address Latch Enable  
Command Latch Enable  
Chip Enable  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Supply  
Supply  
R
Read Enable  
RB  
W
Ready/Busy (open-drain output)  
Write Enable  
WP  
VDD  
VSS  
NC  
DU  
Write Protect  
Supply voltage  
Ground  
Not connected internally  
Do not use  
9/60  
Description  
Figure 3.  
NAND01G-B2B, NAND02G-B2C  
TSOP48 connections  
NC  
NC  
NC  
NC  
NC  
NC  
RB  
R
1
48  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
E
NC  
NC  
NC  
NC  
V
12 NAND01GW3B2B37  
NAND02GW3B2C  
36  
V
V
DD  
DD  
SS  
V
13  
SS  
NC  
NC  
CL  
AL  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI13102  
1. Available only for NAND01GW3B2B and NAND02GW3B2C 8-bit devices.  
10/60  
NAND01G-B2B, NAND02G-B2C  
Description  
Figure 4.  
VFBGA63 connections (top view through package)  
1
2
3
4
5
6
7
8
9
10  
DU  
DU  
DU  
A
B
DU  
DU  
DU  
DU  
AL  
V
SS  
C
WP  
E
W
RB  
D
E
F
NC  
NC  
NC  
NC  
R
CL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O3  
NC  
NC  
G
H
J
NC  
NC  
NC  
NC  
I/O0  
I/O1  
I/O2  
NC  
V
DD  
V
I/O5  
I/O6  
I/O7  
DD  
V
K
L
I/O4  
V
SS  
SS  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
M
AI13103  
1. Available only for NAND01GR3B2B and NAND02GR3B2C 8-bit devices.  
11/60  
Memory array organization  
NAND01G-B2B, NAND02G-B2C  
2
Memory array organization  
The memory array is made up of NAND structures where 32 cells are connected in series.  
The memory array is organized in blocks where each block contains 64 pages. The array is  
split into two areas, the main area and the spare area. The main area of the array is used to  
store data whereas the spare area is typically used to store error correction codes, software  
flags or bad block identification.  
In x8 devices the pages are split into a 2048-byte main area and a spare area of 64 bytes. In  
the x16 devices the pages are split into a 1,024-word main area and a 32-word spare area.  
Refer to Figure 5: Memory array organization.  
2.1  
Bad blocks  
The NAND flash 2112-byte/1056-word page devices may contain bad blocks, that is blocks  
that contain one or more invalid bits whose reliability is not guaranteed. Additional bad  
blocks may develop during the lifetime of the device.  
The bad block Information is written prior to shipping (refer to Section 8.1: Bad block  
management for more details).  
Table 4: Valid blocks shows the minimum number of valid blocks in each device. The values  
shown include both the bad blocks that are present when the device is shipped and the bad  
blocks that could develop later on.  
These blocks need to be managed using bad blocks management, block replacement or  
error correction codes (refer to Section 8: Software algorithms).  
Table 4.  
Valid blocks  
Density of device  
Min  
Max  
2 Gbits  
1 Gbit  
2008  
1004  
2048  
1024  
12/60  
NAND01G-B2B, NAND02G-B2C  
Memory array organization  
Figure 5.  
Memory array organization  
x8 DEVICES  
x16 DEVICES  
Block = 64 pages  
Block = 64 pages  
Page = 2112 bytes (2,048 + 64)  
Page = 1056 words (1024 + 32)  
Spare area  
Spare area  
Main area  
Main area  
Block  
Page  
Block  
Page  
8 bits  
16 bits  
2048 bytes  
1024 words  
64  
bytes  
32  
words  
Page buffer, 1056 words  
32  
Page buffer, 2112 bytes  
64  
1,024 words  
words  
2,048 bytes  
16 bits  
bytes  
8 bits  
AI09854  
13/60  
Signals description  
NAND01G-B2B, NAND02G-B2C  
3
Signals description  
See Figure 2: Logic diagram, and Table 3: Signal names, for a brief overview of the signals  
connected to this device.  
3.1  
Inputs/outputs (I/O0-I/O7)  
Input/outputs 0 to 7 are used to input the selected address, output the data during a read  
operation or input a command or data during a write operation. The inputs are latched on  
the rising edge of Write Enable. I/O0-I/O7 are left floating when the device is deselected or  
the outputs are disabled.  
3.2  
Inputs/outputs (I/O8-I/O15)  
Input/outputs 8 to 15 are only available in x16 devices. They are used to output the data  
during a read operation or input data during a write operation. Command and address  
Inputs only require I/O0 to I/O7.  
The inputs are latched on the rising edge of Write Enable. I/O8-I/O15 are left floating when  
the device is deselected or the outputs are disabled.  
3.3  
3.4  
3.5  
Address Latch Enable (AL)  
The Address Latch Enable activates the latching of the address inputs in the command  
interface. When AL is High, the inputs are latched on the rising edge of Write Enable.  
Command Latch Enable (CL)  
The Command Latch Enable activates the latching of the command inputs in the command  
interface. When CL is High, the inputs are latched on the rising edge of Write Enable.  
Chip Enable (E)  
The Chip Enable input activates the memory control logic, input buffers, decoders and  
sense amplifiers. When Chip Enable is Low, V , the device is selected. If Chip Enable goes  
IL  
High, v , while the device is busy, the device remains selected and does not go into standby  
IH  
mode.  
3.6  
Read Enable (R)  
The Read Enable pin, R, controls the sequential data output during read operations. Data is  
valid t  
after the falling edge of R. The falling edge of R also increments the internal  
RLQV  
column address counter by one.  
14/60  
NAND01G-B2B, NAND02G-B2C  
Signals description  
3.7  
Write Enable (W)  
The Write Enable input, W, controls writing to the command interface, input address and  
data latches. Both addresses and data are latched on the rising edge of Write Enable.  
During power-up and power-down a recovery time of 10 µs (min) is required before the  
command interface is ready to accept a command. It is recommended to keep Write Enable  
High during the recovery time.  
3.8  
3.9  
Write Protect (WP)  
The Write Protect pin is an input that gives a hardware protection against unwanted program  
or erase operations. When Write Protect is Low, V , the device does not accept any  
program or erase operations.  
IL  
It is recommended to keep the Write Protect pin Low, V , during power-up and power-down.  
IL  
Ready/Busy (RB)  
The Ready/Busy output, RB, is an open-drain output that can be used to identify if the P/E/R  
controller is currently active. When Ready/Busy is Low, V , a read, program or erase  
OL  
operation is in progress. When the operation completes Ready/Busy goes High, V  
.
OH  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low will then indicate that one, or more, of the  
memories is busy.  
Refer to the Section 11.1: Ready/Busy signal electrical characteristics for details on how to  
calculate the value of the pull-up resistor.  
During power-up and power-down a minimum recovery time of 10 µs is required before the  
command interface is ready to accept a command. During this period the RB signal is Low,  
V
.
OL  
3.10  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (read, program and erase).  
An internal voltage detector disables all functions whenever V is below V  
(see  
LKO  
DD  
Table 22 and Table 23) to protect the device from any involuntary program/erase during  
power-transitions.  
Each device in a system should have V decoupled with a 0.1 µF capacitor. The PCB track  
DD  
widths should be sufficient to carry the required program and erase currents.  
3.11  
VSS ground  
Ground, V  
ground.  
is the reference for the power supply. It must be connected to the system  
SS,  
15/60  
Bus operations  
NAND01G-B2B, NAND02G-B2C  
4
Bus operations  
There are six standard bus operations that control the memory. Each of these is described  
in this section, see Table 5: Bus operations, for a summary.  
Typically, glitches of less than 5 ns on Chip Enable, Write Enable and Read Enable are  
ignored by the memory and do not affect bus operations.  
4.1  
Command input  
Command input bus operations are used to give commands to the memory. Commands are  
accepted when Chip Enable is Low, Command Latch Enable is High, Address Latch Enable  
is Low and Read Enable is High. They are latched on the rising edge of the Write Enable  
signal.  
Only I/O0 to I/O7 are used to input commands.  
See Figure 19 and Table 24 for details of the timings requirements.  
4.2  
Address input  
Address input bus operations are used to input the memory addresses. Four bus cycles are  
required to input the addresses for 1-Gbit devices whereas five bus cycles are required for  
the 2-Gbit device (refer to Table 6 and Table 7, Address insertion).  
The addresses are accepted when Chip Enable is Low, Address Latch Enable is High,  
Command Latch Enable is Low and Read Enable is High. They are latched on the rising  
edge of the Write Enable signal. Only I/O0 to I/O7 are used to input addresses.  
See Figure 20 and Table 24 for details of the timings requirements.  
4.3  
4.4  
Data input  
Data input bus operations are used to input the data to be programmed.  
Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command  
Latch Enable is Low and Read Enable is High. The data is latched on the rising edge of the  
Write Enable signal. The data is input sequentially using the Write Enable signal.  
See Figure 21 and Table 24 and Table 25 for details of the timings requirements.  
Data output  
Data output bus operations are used to read: the data in the memory array, the status  
register, the lock status, the electronic signature and the unique identifier.  
Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,  
and Command Latch Enable is Low. The data is output sequentially using the Read Enable  
signal.  
See Figure 22 and Table 25 for details of the timings requirements.  
16/60  
NAND01G-B2B, NAND02G-B2C  
Bus operations  
4.5  
Write Protect  
Write Protect bus operations are used to protect the memory against program or erase  
operations. When the Write Protect signal is Low the device will not accept program or erase  
operations and so the contents of the memory array cannot be altered. The Write Protect  
signal is not latched by Write Enable to ensure protection even during power-up.  
4.6  
Standby  
When Chip Enable is High the memory enters standby mode, the device is deselected,  
outputs are disabled and power consumption is reduced.  
Table 5.  
Bus operations  
Bus operation  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
I/O8 - I/O15(1)  
Command input  
Address input  
Data input  
VIL  
VIL  
VIL  
VIL  
X
VIL  
VIH  
VIL  
VIL  
X
VIH  
VIL  
VIL  
VIH  
VIH  
VIH  
Rising  
Rising  
Rising  
VIH  
X(2)  
X
Command  
Address  
Data input  
Data output  
X
X
X
VIH  
X
Data input  
Data output  
X
Data output  
VIL Falling  
Write Protect  
X
X
X
X
X
VIL  
VIL/VD  
Standby  
VIH  
X
X
X
X
D
1. Only for x16 devices.  
2. WP must be VIH when issuing a program or erase command.  
Table 6.  
Address insertion, x8 devices  
Bus cycle(1)  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
1st  
2nd  
3rd  
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
A11  
A15  
A23  
VIL  
A2  
A10  
A14  
A22  
VIL  
A1  
A9  
A0  
A8  
A19  
A27  
VIL  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A13  
A21  
VIL  
A12  
A20  
A28  
4th  
5th(2)  
1. Any additional address input cycles will be ignored.  
2. The fifth cycle is valid for 2-Gbit devices. A28 is for 2-Gbit devices only.  
17/60  
Bus operations  
NAND01G-B2B, NAND02G-B2C  
Table 7.  
Address insertion, x16 devices  
I/O8-  
Bus  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
cycle(1)  
I/O15  
1st  
2nd  
3rd  
X
X
X
X
X
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
VIL  
A2  
A10  
A13  
A21  
VIL  
A1  
A9  
A0  
A8  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A15  
A23  
VIL  
A14  
A22  
VIL  
A12  
A20  
VIL  
A11  
A19  
A27  
4th  
5th(2)  
1. Any additional address input cycles will be ignored.  
2. The fifth cycle is valid for 2-Gbit devices. A27 is for 2-Gbit devices only.  
Table 8.  
Address definitions, x8  
Address  
Definition  
A0 - A11  
A12 - A17  
A18 - A27  
A18 - A28  
Column address  
Page address  
Block address  
Block address  
1-Gbit device  
2-Gbit device  
Table 9.  
Address definitions, x16  
Address  
Definition  
A0 - A10  
A11 - A16  
A17 - A26  
A17 - A27  
Column address  
Page address  
Block address  
Block address  
1-Gbit device  
2-Gbit device  
18/60  
NAND01G-B2B, NAND02G-B2C  
Command set  
5
Command set  
All bus write operations to the device are interpreted by the command interface. The  
commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when  
the Command Latch Enable signal is High. Device operations are selected by writing  
specific commands to the command register. The two-step command sequences for  
program and erase operations are imposed to maximize data security.  
The commands are summarized in Table 10: Commands.  
Table 10. Commands  
Bus write operations(1)  
Commands  
accepted  
during  
Command  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
busy  
Read  
00h  
05h  
00h  
34h  
30h  
E0h  
31h  
Random Data Output  
Cache Read  
Exit Cache Read  
Yes(2)  
Page Program  
80h  
10h  
(Sequential Input default)  
Random Data Input  
Copy Back Program  
Cache Program  
Block Erase  
85h  
00h  
80h  
60h  
FFh  
90h  
70h  
35h  
15h  
D0h  
85h  
10h  
Reset  
Yes  
Yes  
Read Electronic Signature  
Read Status Register  
1. The bus cycles are only shown for issuing the codes. The cycles required to input the  
addresses or input/output data are not shown.  
2. Only during Cache Read busy.  
19/60  
Device operations  
NAND01G-B2B, NAND02G-B2C  
6
Device operations  
The following section gives the details of the device operations.  
6.1  
Read memory array  
At power-up the device defaults to read mode. To enter read mode from another mode the  
Read command must be issued, see Table 10: Commands.  
Once a Read command is issued two types of operations are available: random read and  
page read.  
6.1.1  
6.1.2  
Random read  
Each time the Read command is issued the first read is random read.  
Page read  
After the first random read access, the page data (2112 bytes or 1056 words) is transferred  
to the page buffer in a time of t  
(refer to Table 25 for value). Once the transfer is  
WHBH  
complete the Ready/Busy signal goes High. The data can then be read out sequentially  
(from selected column address to last column address) by pulsing the Read Enable signal.  
The device can output random data in a page, instead of the consecutive sequential data, by  
issuing a Random Data Output command.  
The Random Data Output command can be used to skip some data during a sequential  
data output.  
The sequential operation can be resumed by changing the column address of the next data  
to be output, to the address which follows the Random Data Output command.  
The Random Data Output command can be issued as many times as required within a  
page.  
The Random Data Output command is not accepted during cache read operations.  
20/60  
NAND01G-B2B, NAND02G-B2C  
Device operations  
Figure 6.  
Read operations  
CL  
E
W
AL  
R
tBLBH1  
30h  
RB  
I/O  
Address input  
00h  
Data output (sequentially)  
Command  
code  
Command  
code  
Busy  
ai08657b  
1. Highest address depends on device density.  
21/60  
Device operations  
NAND01G-B2B, NAND02G-B2C  
Figure 7.  
Random data output during sequential data output  
tBLBH1  
(Read Busy time)  
RB  
Busy  
R
Address  
Address  
inputs  
30h  
E0h  
I/O  
00h  
05h  
Data output  
Data output  
inputs  
Cmd  
Cmd  
Cmd  
Cmd  
code  
code  
code  
code  
5 Add cycles  
2Add cycles  
Row Add 1,2,3 Col Add 1,2  
Col Add 1,2  
Spare  
area  
Spare  
Main area  
area  
Main area  
ai08658  
22/60  
NAND01G-B2B, NAND02G-B2C  
Device operations  
6.2  
Cache read  
The cache read operation is used to improve the read throughput by reading data using the  
cache register. As soon as the user starts to read one page, the device automatically loads  
the next page into the cache register.  
A cache read operation consists of three steps (see Table 10: Commands):  
1. One bus cycle is required to setup the Cache Read command (the same as the  
standard Read command)  
2. Four or five (refer to Table 6 and Table 7) bus cycles are then required to input the start  
address  
3. One bus cycle is required to issue the Cache Read Confirm command to start the  
P/E/R controller.  
The start address must be at the beginning of a page (column address = 00h, see Table 8  
and Table 9). This allows the data to be output uninterrupted after the latency time (t  
see Figure 8.  
),  
BLBH1  
The Ready/Busy signal can be used to monitor the start of the operation. During the latency  
period the Ready/Busy signal goes Low, after this the Ready/Busy signal goes High, even if  
the device is internally downloading page n+1.  
Once the cache read operation has started, the status register can be read using the Read  
Status Register command.  
During the operation, SR5 can be read, to find out whether the internal reading is ongoing  
(SR5 = ‘0’), or has completed (SR5 = ‘1’), while SR6 indicates whether the cache register is  
ready to download new data.  
To exit the cache read operation an Exit Cache Read command must be issued (see  
Table 10).  
If the Exit Cache Read command is issued while the device is internally reading page n+1,  
pages n and n+1 will not be output.  
Figure 8.  
Cache read operation  
tBLBH1  
tBLBH4  
(Read Busy time)  
RB  
R
Busy  
Address  
inputs  
last page  
34h  
I/O  
31h  
00h  
1st page  
2nd page 3rd page  
Block N  
Exit  
Cache  
Read  
code  
Read  
Setup  
code  
Cache  
Read  
Confirm  
code  
Data output  
ai13104b  
23/60  
Device operations  
NAND01G-B2B, NAND02G-B2C  
6.3  
Page program  
The page program operation is the standard operation to program data to the memory array.  
Generally, the page is programmed sequentially, however the device does support random  
input within a page. It is recommended to address pages sequentially within a given block.  
The memory array is programmed by page, however partial page programming is allowed  
where any number of bytes (1 to 2112) or words (1 to 1056) can be programmed.  
The maximum number of consecutive partial page program operations allowed in the same  
page is four. After exceeding this a Block Erase command must be issued before any further  
program operations can take place in that page.  
6.3.1  
Sequential input  
To input data sequentially the addresses must be sequential and remain in one block.  
For sequential input each page program operation consists of five steps (see Figure 9):  
1. one bus cycle is required to setup the Page Program (sequential input) command (see  
Table 10)  
2. four or five bus cycles are then required to input the program address (refer to Table 6  
and Table 7)  
3. the data is then loaded into the data registers  
4. one bus cycle is required to issue the Page Program Confirm command to start the  
P/E/R controller. The P/E/R will only start if the data has been loaded in step 3  
5. the P/E/R controller then programs the data into the array.  
6.3.2  
Random data input in a page  
During a sequential input operation, the next sequential address to be programmed can be  
replaced by a random address, by issuing a Random Data Input command. The following  
two steps are required to issue the command:  
1. one bus cycle is required to setup the Random Data Input command (see Table 10)  
2. two bus cycles are then required to input the new column address (refer to Table 6).  
Random Data Input can be repeated as often as required in any given page.  
Once the program operation has started the status register can be read using the Read  
Status Register command. During program operations the status register will only flag errors  
for bits set to '1' that have not been successfully programmed to '0'.  
During the program operation, only the Read Status Register and Reset commands will be  
accepted, all other commands will be ignored.  
Once the program operation has completed the P/E/R controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High.  
The device remains in read status register mode until another valid command is written to  
the command interface.  
24/60  
NAND01G-B2B, NAND02G-B2C  
Device operations  
Figure 9.  
Page program operation  
tBLBH2  
(Program Busy time)  
RB  
Busy  
I/O  
Data Input  
10h  
Address Inputs  
80h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai08659  
Figure 10. Random data input during sequential data input  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Address  
Inputs  
Address  
Inputs  
I/O  
80h  
85h  
10h  
Data Intput  
Data Input  
70h  
SR0  
Cmd  
Code  
Cmd  
Confirm  
Code  
Read Status Register  
Code 2 Add cycles  
5 Add cycles  
Col Add 1,2  
Row Add 1,2,3 Col Add 1,2  
Spare  
area  
Spare  
area  
Main area  
Main area  
ai08664  
25/60  
Device operations  
NAND01G-B2B, NAND02G-B2C  
6.4  
Copy back program  
The copy back program operation is used to copy the data stored in one page and  
reprogram it in another page.  
The copy back program operation does not require external memory and so the operation is  
faster and more efficient because the reading and loading cycles are not required. The  
operation is particularly useful when a portion of a block is updated and the rest of the block  
needs to be copied to the newly assigned block.  
If the copy back program operation fails an error is signalled in the status register. However  
as the standard external ECC cannot be used with the copy back program operation bit error  
due to charge loss cannot be detected. For this reason it is recommended to limit the  
number of copy back program operations on the same data and or to improve the  
performance of the ECC.  
The copy back program operation requires four steps:  
1. The first step reads the source page. The operation copies all 1056 words/ 2112 bytes  
from the page into the data buffer. It requires:  
one bus write cycle to setup the command  
4 or 5 bus write cycles to input the source page address (see Table 6 and Table 7)  
one bus write cycle to issue the confirm command code  
2. When the device returns to the ready state (Ready/Busy High), the next bus write cycle  
of the command is given with the 4 or 5 bus cycles to input the target page address  
(see Table 6 and Table 7). Refer to Table 11 for the addresses that must be the same  
for the source and target pages  
3. Then the confirm command is issued to start the P/E/R controller.  
To see the data input cycle for modifying the source page and an example of the copy back  
program operation refer to Figure 11.  
A data input cycle to modify a portion or a multiple distant portion of the source page, is  
shown in Figure 12.  
Table 11. Copy back program x8 addresses  
Density  
Same address for source and target pages  
1 Gbit  
no constraint  
A28  
2 Gbits  
Table 12. Copy back program x16 addresses  
Density Same address for source and target pages  
1 Gbit  
no constraint  
A27  
2 Gbits  
26/60  
NAND01G-B2B, NAND02G-B2C  
Figure 11. Copy back program  
Device operations  
Source  
Target  
Add Inputs  
I/O  
10h  
70h  
SR0  
35h  
85h  
00h  
Add Inputs  
Read  
Code  
Copy Back  
Code  
Read Status Register  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai09858b  
Figure 12. Page copy back program with random data input  
2 Cycle  
Target  
Add Inputs  
Source  
Add Inputs  
I/O  
35h  
SR0  
00h  
85h  
Data 85h  
Data 10h  
70h  
Add Inputs  
Read  
Code  
Copy Back  
Code  
Unlimited number of repetitions  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai11001  
27/60  
Device operations  
NAND01G-B2B, NAND02G-B2C  
6.5  
Cache program  
The cache program operation is used to improve the programming throughput by  
programming data using the cache register. The cache program operation can only be used  
within one block. The cache register allows new data to be input while the previous data that  
was transferred to the page buffer is programmed into the memory array.  
The following sequence is required to issue a cache program operation (refer to Figure 13):  
1. First of all the program setup command is issued: one bus cycle to issue the program  
setup command then 4 or 5 bus write cycles to input the address (see Table 6 and  
Table 7). The data is then input (up to 2112 bytes/1056 words) and loaded into the  
cache register  
2. One bus cycle is required to issue the confirm command to start the P/E/R controller  
3. The P/E/R controller then transfers the data to the page buffer. During this the device is  
busy for a time of t  
BLBH5  
4. Once the data is loaded into the page buffer the P/E/R controller programs the data into  
the memory array. As soon as the cache registers are empty (after t ) a new  
BLBH5  
Cache Program command can be issued, while the internal programming is still  
executing.  
Once the program operation has started the status register can be read using the Read  
Status Register command. During cache program operations SR5 can be read to find out  
whether the internal programming is ongoing (SR5 = ‘0’) or has completed (SR5 = ‘1’) while  
SR6 indicates whether the cache register is ready to accept new data. If any errors have  
been detected on the previous page (Page N-1), the cache program error bit SR1 will be set  
to ‘1', while if the error has been detected on page N the error bit SR0 will be set to '1’.  
When the next page (Page N) of data is input with the Cache Program command, t  
is  
BLBH5  
affected by the pending internal programming. The data will only be transferred from the  
cache register to the page buffer when the pending program cycle is finished and the page  
buffer is available.  
If the system monitors the progress of the operation using only the Ready/Busy signal, the  
last page of data must be programmed with the Page Program Confirm command (10h).  
If the Cache Program Confirm command (15h) is used instead, status register bit SR5 must  
be polled to find out if the last programming is finished before starting any other operations.  
Figure 13. Cache program operation  
tBLBH5  
tBLBH5  
tCACHEPG  
(Cache Busy time)  
RB  
Busy  
Busy  
10h  
Busy  
Address Data  
Inputs Inputs  
Address Data  
Inputs Inputs  
Address Data  
I/O  
80h  
15h  
80h  
15h  
80h  
70h SR0  
Inputs  
Inputs  
Cache Program  
Confirm Code  
Page  
Program  
Confirm Code  
Read Status  
Register  
Page  
Program  
Code  
Cache  
Page  
Program Program  
Code  
Code  
First Page  
Second Page  
Last Page  
(can be repeated up to 63 times)  
ai08672  
1. Up to 64 pages can be programmed in one cache program operation.  
2. tCACHEPG is the program time for the last page + the program time for the (last 1)th page (Program command cycle time  
+ Last page data loading time).  
28/60  
NAND01G-B2B, NAND02G-B2C  
Device operations  
6.6  
Block erase  
Erase operations are done one block at a time. An erase operation sets all of the bits in the  
addressed block to ‘1’. All previous data in the block is lost.  
An erase operation consists of three steps (refer to Figure 14):  
1. One bus cycle is required to setup the Block Erase command. Only addresses A18-  
A28 (x8) or A17-A27 (x16) are used, the other address inputs are ignored  
2. Two or three bus cycles are then required to load the address of the block to be erased.  
Refer to Table 8 and Table 9 for the block addresses of each device  
3. One bus cycle is required to issue the Block Erase Confirm command to start the P/E/R  
controller.  
The operation is initiated on the rising edge of write Enable, W, after the Confirm command  
is issued. The P/E/R controller handles block erase and implements the verify process.  
During the block erase operation, only the Read Status Register and Reset commands will  
be accepted, all other commands will be ignored.  
Once the program operation has completed the P/E/R controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High. If the operation completed successfully, the write status bit  
SR0 is ‘0’, otherwise it is set to ‘1’.  
Figure 14. Block erase operation  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Block Erase  
Setup Code  
ai07593  
6.7  
Reset  
The Reset command is used to reset the command interface and status register. If the  
Reset command is issued during any operation, the operation will be aborted. If it was a  
program or erase operation that was aborted, the contents of the memory locations being  
modified will no longer be valid as the data will be partially programmed or erased.  
If the device has already been reset then the new Reset command will not be accepted.  
The Ready/Busy signal goes Low for t  
after the Reset command is issued. The value  
BLBH4  
of t  
depends on the operation that the device was performing when the command was  
BLBH4  
issued, refer to Table 25: AC characteristics for operations for the values.  
29/60  
Device operations  
NAND01G-B2B, NAND02G-B2C  
6.8  
Read status register  
The device contains a status register which provides information on the current or previous  
program or erase operation. The various bits in the status register convey information and  
errors on the operation.  
The status register is read by issuing the Read Status Register command. The status  
register information is present on the output data bus (I/O0-I/O7) on the falling edge of Chip  
Enable or Read Enable, whichever occurs last. When several memories are connected in a  
system, the use of Chip Enable and Read Enable signals allows the system to poll each  
device separately, even when the Ready/Busy pins are common-wired. It is not necessary to  
toggle the Chip Enable or Read Enable signals to update the contents of the status register.  
After the Read Status Register command has been issued, the device remains in read  
status register mode until another command is issued. Therefore if a Read Status Register  
command is issued during a random read cycle a new Read command must be issued to  
continue with a page read operation.  
The Status Register bits are summarized in Table 13: Status register bits,. Refer to Table 13  
in conjunction with the following text descriptions.  
6.8.1  
6.8.2  
Write protection bit (SR7)  
The write protection bit can be used to identify if the device is protected or not. If the write  
protection bit is set to ‘1’ the device is not protected and program or erase operations are  
allowed. If the write protection bit is set to ‘0’ the device is protected and program or erase  
operations are not allowed.  
P/E/R controller and cache ready/busy bit (SR6)  
Status register bit SR6 has two different functions depending on the current operation.  
During cache program operations SR6 acts as a cache program ready/busy bit, which  
indicates whether the cache register is ready to accept new data. When SR6 is set to '0', the  
cache register is busy and when SR6 is set to '1', the cache register is ready to accept new  
data.  
During all other operations SR6 acts as a P/E/R controller bit, which indicates whether the  
P/E/R controller is active or inactive. When the P/E/R controller bit is set to ‘0’, the P/E/R  
controller is active (device is busy); when the bit is set to ‘1’, the P/E/R controller is inactive  
(device is ready).  
6.8.3  
P/E/R controller bit (SR5)  
The program/erase/read controller bit indicates whether the P/E/R controller is active or  
inactive. When the P/E/R controller bit is set to ‘0’, the P/E/R controller is active (device is  
busy); when the bit is set to ‘1’, the P/E/R controller is inactive (device is ready).  
30/60  
NAND01G-B2B, NAND02G-B2C  
Device operations  
6.8.4  
Cache program error bit (SR1)  
The cache program error bit can be used to identify if the previous page (page N-1) has been  
successfully programmed or not in a cache program operation. SR1 is set to ’1’ when the  
cache program operation has failed to program the previous page (page N-1) correctly. If  
SR1 is set to ‘0’ the operation has completed successfully.  
The cache program error bit is only valid during cache program operations, during other  
operations it is don’t care.  
6.8.5  
6.8.6  
Error bit (SR0)  
The error bit is used to identify if any errors have been detected by the P/E/R controller. The  
error bit is set to ’1’ when a program or erase operation has failed to write the correct data to  
the memory. If the error bit is set to ‘0’ the operation has completed successfully. The error  
bit SR0, in a cache program operation, indicates a failure on page N.  
SR4, SR3 and SR2 are reserved  
Table 13. Status register bits  
Bit  
Name  
Logic level  
Definition  
'1'  
Not protected  
Protected  
SR7  
Write protection  
'0'  
'1'  
P/E/R C inactive, device ready  
Program/ erase/ read  
controller  
'0'  
P/E/R C active, device busy  
SR6  
'1'  
Cache register ready (cache operation only)  
Cache register busy (cache operation only)  
P/E/R C inactive, device ready  
Cache ready/busy  
'0'  
'1'  
Program/ erase/ read  
controller(1)  
SR5  
SR4, SR3, SR2  
SR1  
'0'  
P/E/R C active, device busy  
Reserved  
Don’t care  
'1'  
'0'  
‘1’  
‘0’  
‘1’  
‘0’  
Page N-1 failed in cache program operation  
Page N-1 programmed successfully  
Error – operation failed  
Cache program error(2)  
Generic error  
No Error – operation successful  
SR0  
Page N failed in cache program operation  
Page N programmed successfully  
Cache program error  
1. Only valid for cache program operations, for other operations it is same as SR6.  
2. Only valid for cache operations, for other operations it is don’t care.  
31/60  
Device operations  
NAND01G-B2B, NAND02G-B2C  
6.9  
Read electronic signature  
The device contains a manufacturer code and device code. To read these codes three steps  
are required:  
1. One bus write cycle to issue the Read Electronic Signature command (90h)  
2. One bus write cycle to input the address (00h)  
3. Four bus read cycles to sequentially output the data (as shown in Table 14: Electronic  
signature).  
Table 14. Electronic signature  
byte/word 1  
byte/word 2  
Device code  
byte/word 3  
byte/word 4  
Part number  
Manufacturer  
code  
(see Table 15)  
(see Table 16)  
NAND01GR3B2B  
NAND01GW3B2B  
NAND01GR4B2B  
NAND01GW4B2B  
NAND02GR3B2C  
NAND02GW3B2C  
NAND02GR4B2C  
NAND02GW42C  
A1h  
F1h  
B1h  
C1h  
AAh  
DAh  
BAh  
CAh  
15h  
1Dh  
55h  
5Dh  
15h  
1Dh  
55h  
5Dh  
20h  
0020h  
20h  
80h  
0020h  
Table 15. Electronic signature byte 3  
I/O  
Definition  
Value  
Description  
0 0  
0 1  
1 0  
1 1  
1
2
4
8
I/O1-I/O0  
Internal chip number  
0 0  
0 1  
1 0  
1 1  
2-level cell  
4-level cell  
8-level cell  
16-level cell  
I/O3-I/O2  
I/O5-I/O4  
Cell type  
0 0  
0 1  
1 0  
1 1  
1
2
4
8
Number of simultaneously  
programmed pages  
0
1
Not supported  
supported  
Interleaved programming  
between multiple devices  
I/O6  
I/O7  
0
1
Not supported  
supported  
Cache program  
32/60  
NAND01G-B2B, NAND02G-B2C  
Device operations  
Description  
Table 16. Electronic signature byte/word 4  
I/O  
Definition  
Value  
0 0  
0 1  
1 0  
1 1  
1 Kbyte  
2 Kbytes  
Reserved  
Reserved  
Page size  
I/O1-I/O0  
(without spare area)  
Spare area size  
(byte / 512-byte)  
0
1
8
I/O2  
16  
0 0  
0 1  
1 0  
1 1  
50 ns  
30 ns  
Minimum sequential  
access time  
I/O7, I/O3  
25 ns  
Reserved  
0 0  
0 1  
1 0  
1 1  
64 Kbytes  
128 Kbytes  
256 Kbytes  
Reserved  
Block size  
I/O5-I/O4  
I/O6  
(without spare area)  
0
1
X8  
Organization  
X16  
33/60  
Data protection  
NAND01G-B2B, NAND02G-B2C  
7
Data protection  
The device has hardware features to protect against program and erase operations.  
It features a Write Protect, WP, pin, which can be used to protect the device against program  
and erase operations. It is recommended to keep WP at V during power-up and power-  
IL  
down.  
In addition, to protect the memory from any involuntary program/erase operations during  
power-transitions, the device has an internal voltage detector which disables all functions  
whenever V is below V  
(see Table 22 and Table 23).  
DD  
LKO  
34/60  
NAND01G-B2B, NAND02G-B2C  
Software algorithms  
8
Software algorithms  
This section gives information on the software algorithms that Numonyx recommends to  
implement to manage the bad blocks and extend the lifetime of the NAND device.  
NAND flash memories are programmed and erased by Fowler-Nordheim tunneling using a  
high voltage. Exposing the device to a high voltage for extended periods can cause the  
oxide layer to be damaged. For this reason, the number of program and erase cycles is  
limited (see Table 18 for value) and it is recommended to implement garbage collection, a  
wear-leveling algorithm and an error correction code, to extend the number of program and  
erase cycles and increase the data retention.  
To help integrate a NAND memory into an application, Numonyx can provide a file system  
OS native reference software, which supports the basic commands of file management.  
Contact the nearest Numonyx sales office for more details.  
8.1  
Bad block management  
Devices with bad blocks have the same quality level and the same AC and DC  
characteristics as devices where all the blocks are valid. A bad block does not affect the  
performance of valid blocks because it is isolated from the bit line and common source line  
by a select transistor.  
The devices are supplied with all the locations inside valid blocks erased (FFh). The bad  
block information is written prior to shipping. Any block, where the 1st and 6th bytes, or 1st  
word, in the spare area of the 1st page, does not contain FFh, is a bad block.  
The bad block Information must be read before any erase is attempted as the bad block  
information may be erased. For the system to be able to recognize the bad blocks based on  
the original information it is recommended to create a bad block table following the flowchart  
shown in Figure 15.  
8.2  
NAND flash memory failure modes  
Over the lifetime of the device additional bad blocks may develop.  
To implement a highly reliable system, all the possible failure modes must be considered:  
Program/erase failure: in this case the block has to be replaced by copying the data to  
a valid block. These additional bad blocks can be identified as attempts to program or  
erase them will give errors in the status register  
As the failure of a page program operation does not affect the data in other pages in the  
same block, the block can be replaced by re-programming the current data and copying  
the rest of the replaced block to an available valid block. The Copy Back Program  
command can be used to copy the data to a valid block. See Section 6.4: Copy back  
program for more details  
Read failure: in this case, ECC correction must be implemented. To efficiently use the  
memory space, it is recommended to recover single-bit error in read by ECC, without  
replacing the whole block.  
Refer to Table 17 for the procedure to follow if an error occurs during an operation.  
35/60  
Software algorithms  
NAND01G-B2B, NAND02G-B2C  
Procedure  
Table 17. NAND flash failure modes  
Operation  
Erase  
Program  
Read  
Block replacement  
Block replacement or ECC  
ECC  
Figure 15. Bad block management flowchart  
START  
Block Address =  
Block 0  
Increment  
Block Address  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
AI07588C  
Figure 16. Garbage collection  
Old area  
New area (after GC)  
Valid  
page  
Invalid  
page  
Free  
page  
(erased)  
AI07599B  
36/60  
NAND01G-B2B, NAND02G-B2C  
Software algorithms  
8.3  
Garbage collection  
When a data page needs to be modified, it is faster to write to the first available page, and  
the previous page is marked as invalid. After several updates it is necessary to remove  
invalid pages to free some memory space.  
To free this memory space and allow further program operations it is recommended to  
implement a garbage collection algorithm. In a garbage collection software the valid pages  
are copied into a free area and the block containing the invalid pages is erased (see  
Figure 16).  
8.4  
Wear-leveling algorithm  
For write-intensive applications, it is recommended to implement a wear-leveling algorithm  
to monitor and spread the number of write cycles per block.  
In memories that do not use a wear-leveling algorithm not all blocks get used at the same  
rate. Blocks with long-lived data do not endure as many write cycles as the blocks with  
frequently-changed data.  
The wear-leveling algorithm ensures that equal use is made of all the available write cycles  
for each block. There are two wear-leveling levels:  
First level wear-leveling, new data is programmed to the free blocks that have had the  
fewest write cycles  
Second level wear-leveling, long-lived data is copied to another block so that the  
original block can be used for more frequently-changed data.  
The second level wear-leveling is triggered when the difference between the maximum and  
the minimum number of write cycles per block reaches a specific threshold.  
8.5  
Error correction code  
An error correction code (ECC) can be implemented in the NAND flash memories to identify  
and correct errors in the data.  
For every 2048 bits in the device it is recommended to implement 22 bits of ECC (16 bits for  
line parity plus 6 bits for column parity).  
An ECC model is available in VHDL or Verilog. Contact the nearest Numonyx sales office for  
more details.  
37/60  
Software algorithms  
NAND01G-B2B, NAND02G-B2C  
Figure 17. Error detection  
New ECC generated  
during read  
XOR previous ECC  
with new ECC  
NO  
NO  
>1 bit  
= zero?  
All results  
= zero?  
YES  
YES  
22 bit data = 0  
11 bit data = 1  
1 bit data = 1  
ECC Error  
Correctable  
Error  
No Error  
ai08332  
8.6  
Hardware simulation models  
8.6.1  
Behavioral simulation models  
Denali Software Corporation models are platform independent functional models designed  
to assist customers in performing entire system simulations (typical VHDL/Verilog). These  
models describe the logic behavior and timings of NAND flash devices, and so allow  
software to be developed before hardware.  
8.6.2  
IBIS simulations models  
IBIS (I/O buffer information specification) models describe the behavior of the I/O buffers  
and electrical characteristics of flash devices.  
These models provide information such as AC characteristics, rise/fall times and package  
mechanical data, all of which are measured or simulated at voltage and temperature ranges  
wider than those allowed by target specifications.  
IBIS models are used to simulate PCB connections and can be used to resolve compatibility  
issues when upgrading devices. They can be imported into SPICETOOLS.  
38/60  
NAND01G-B2B, NAND02G-B2C  
Program and erase times and endurance cycles  
9
Program and erase times and endurance cycles  
The program and erase times and the number of program/erase cycles per block are shown  
in Table 18.  
Table 18. Program, erase times and program erase endurance cycles  
NAND flash  
Parameters  
Unit  
Min  
Typ  
Max  
Page program time  
200  
2
700  
3
µs  
ms  
Block erase time  
Program/erase cycles per block (with ECC)  
Data retention  
100 000  
10  
cycles  
years  
39/60  
Maximum ratings  
NAND01G-B2B, NAND02G-B2C  
10  
Maximum ratings  
Stressing the device above the ratings listed in Table 19: Absolute maximum ratings, may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 19. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature under bias  
– 50  
– 65  
125  
150  
2.7  
4.6  
2.7  
4.6  
°C  
°C  
V
Storage temperature  
1.8 V devices  
3 V devices  
1.8 V devices  
3 V devices  
– 0.6  
– 0.6  
– 0.6  
– 0.6  
(1)  
VIO  
Input or output voltage  
V
V
VDD  
Supply voltage  
V
1. Minimum voltage may undershoot to –2 V for less than 20 ns during transitions on input and I/O pins.  
Maximum voltage may overshoot to VDD + 2 V for less than 20 ns during transitions on I/O pins.  
40/60  
NAND01G-B2B, NAND02G-B2C  
DC and AC parameters  
11  
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics tables that  
follow, are derived from tests performed under the measurement conditions summarized in  
Table 20: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the measurement conditions when relying on the  
quoted parameters.  
Table 20. Operating and AC measurement conditions  
NAND flash  
Parameter  
Units  
Min  
Max  
1.8 V devices  
3 V devices  
1.7  
2.7  
0
1.95  
3.6  
70  
V
V
Supply voltage (VDD  
)
Grade 1  
°C  
°C  
pF  
pF  
V
Ambient temperature (TA)  
Grade 6  
–40  
85  
1.8 V devices  
3 V devices (2.7 - 3.6 V)  
1.8 V devices  
3 V devices  
30  
50  
Load capacitance (CL)  
(1 TTL GATE and CL)  
0
VDD  
2.4  
Input pulses voltages  
0.4  
V
Input and output timing ref. voltages  
Output circuit resistor Rref  
Input rise and fall times  
VDD/2  
8.35  
5
V
kΩ  
ns  
(1)  
Table 21. Capacitance  
Symbol  
Parameter  
Input capacitance  
Input/output capacitance(2)  
Test condition  
Typ  
Max  
Unit  
CIN  
VIN = 0 V  
VIL = 0 V  
10  
10  
pF  
pF  
CI/O  
1. TA = 25 °C, f = 1 MHz. CIN and CI/O are not 100% tested.  
2. Input/output capacitances double in stacked devices.  
41/60  
DC and AC parameters  
NAND01G-B2B, NAND02G-B2C  
Figure 18. Equivalent testing circuit for AC characteristics measurement  
V
DD  
2R  
ref  
NAND flash  
C
L
2R  
ref  
GND  
GND  
Ai11085  
42/60  
NAND01G-B2B, NAND02G-B2C  
DC and AC parameters  
Table 22. DC characteristics, 1.8 V devices  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Sequential  
read  
tRLRL minimum  
IDD1  
-
8
15  
mA  
E = VIL, OUT = 0 mA  
I
Operating current  
IDD2  
IDD3  
Program  
Erase  
-
-
8
8
15  
15  
mA  
mA  
E = VDD – 0.2,  
WP = 0/VDD  
IDD5  
Standby current (CMOS)(1)  
-
10  
50  
µA  
ILI  
ILO  
Input leakage current(1)  
Output leakage current(1)  
Input high voltage  
VIN = 0 to VDDmax  
VOUT = 0 to VDDmax  
-
4
±10  
±10  
µA  
µA  
V
-
VIH  
VDD - 0.4  
VDD + 0.3  
0.4  
VIL  
Input low voltage  
-0.3  
V
VOH  
VOL  
Output high voltage level  
Output low voltage level  
Output low current (RB)  
IOH = –100 µA  
IOL = 100 µA  
VOL = 0.1 V  
VDD - 0.1  
V
3
0.1  
V
IOL (RB)  
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
1.1  
V
1. Leakage current and standby current double in stacked devices.  
Table 23. DC characteristics, 3 V devices  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Sequential  
Read  
tRLRL minimum  
IDD1  
10  
20  
mA  
E = VIL, OUT = 0 mA  
I
Operating current  
IDD2  
IDD3  
Program  
Erase  
10  
10  
20  
20  
1
mA  
mA  
mA  
I
Standby current (TTL)(1)  
E = VIH, WP = 0/VDD  
DD4  
E = VDD – 0.2,  
WP = 0/VDD  
IDD5  
Standby current (CMOS)(1)  
10  
50  
µA  
ILI  
ILO  
Input leakage current(1)  
Output leakage current(1)  
Input high voltage  
VIN = 0 to VDDmax  
VOUT = 0 to VDDmax  
±10  
±10  
µA  
µA  
V
VIH  
0.8VDD  
-0.3  
2.4  
VDD + 0.3  
0.2VDD  
VIL  
Input low voltage  
V
VOH  
VOL  
Output high voltage level  
Output low voltage level  
Output low current (RB)  
IOH = –400 µA  
IOL = 2.1 mA  
VOL = 0.4 V  
V
0.4  
V
IOL (RB)  
8
10  
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
1.7  
V
1. Leakage current and standby current double in stacked devices.  
43/60  
DC and AC parameters  
NAND01G-B2B, NAND02G-B2C  
Table 24. AC characteristics for command, address, data input  
Alt.  
1.8 V  
devices devices  
3 V  
Symbol  
Parameter  
Unit  
symbol  
tALLWH  
tALHWH  
Address Latch Low to Write Enable High  
Address Latch High to Write Enable High  
tALS  
AL setup time  
CL setup time  
Min  
Min  
25  
25  
15  
15  
ns  
Command Latch High to Write Enable  
High  
tCLHWH  
tCLLWH  
tCLS  
ns  
Command Latch Low to Write Enable  
High  
tDVWH  
tELWH  
tWHALH  
tWHALL  
tDS  
tCS  
Data Valid to Write Enable High  
Data setup time Min  
20  
35  
15  
20  
ns  
ns  
Chip Enable Low to Write Enable High  
E setup time  
Min  
Min  
Min  
Write Enable High to Address Latch High AL hold time  
Write Enable High to Address Latch Low AL hold time  
Write Enable High to Command Latch  
tALH  
10  
5
ns  
tWHCLH  
tWHCLL  
High  
tCLH  
CL hold time  
Min  
10  
5
ns  
Write Enable High to Command Latch  
Low  
tWHDX  
tWHEH  
tWHWL  
tWLWH  
tWLWL  
tDH  
tCH  
tWH  
tWP  
tWC  
Write Enable High to Data Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Write Enable Low to Write Enable Low  
Data hold time  
E hold time  
Min  
Min  
10  
10  
15  
25  
45  
5
ns  
ns  
ns  
ns  
ns  
5
W High hold time Min  
W pulse width Min  
Write cycle time Min  
10  
15  
30  
44/60  
NAND01G-B2B, NAND02G-B2C  
DC and AC parameters  
(1)  
Table 25. AC characteristics for operations  
Alt.  
1.8 V  
devices devices  
3 V  
Symbol  
Parameter  
Unit  
symbol  
tALLRL1  
tALLRL2  
tBHRL  
Read electronic signature  
Read cycle  
Min  
Min  
10  
10  
20  
25  
700  
3
10  
10  
20  
25  
700  
3
ns  
ns  
ns  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
Address Latch Low to  
Read Enable Low  
tAR  
tRR  
Ready/Busy High to Read Enable Low  
Read busy time  
Min  
tBLBH1  
tBLBH2  
tBLBH3  
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Typ  
tPROG  
tBERS  
Program busy time  
Erase busy time  
Reset busy time, during ready  
5
5
Ready/Busy Low to  
Ready/Busy High  
Reset busy time, during read  
Reset busy time, during program  
Reset busy time, during erase  
5
5
tBLBH4  
tRST  
10  
500  
3
10  
500  
3
tBLBH5  
tCBSY  
Cache busy time  
Max  
Min  
700  
10  
0
700  
10  
0
tCLLRL  
tDZRL  
tEHQZ  
tRHQZ  
tCLR  
tIR  
tCHZ  
tRHZ  
Command Latch Low to Read Enable Low  
Data Hi-Z to Read Enable Low  
Min  
Chip Enable High to Output Hi-Z  
Read Enable High to Output Hi-z  
Max  
Max  
30  
30  
30  
30  
Last address latched to data loading time during program  
operations  
(2)  
tWHWH  
tADL  
Min  
100  
100  
ns  
tVHWH  
tVLWH  
tELQV  
(3)  
tWW  
Write protection time  
Min  
Max  
Min  
100  
45  
100  
25  
ns  
ns  
ns  
tCEA  
tREH  
Chip Enable Low to Output Valid  
Read Enable High to  
Read Enable High hold time  
Read Enable Low  
tRHRL  
15  
10  
tEHQX  
tRHQX  
TOH  
Chip Enable High or Read Enable high to Output Hold  
Min  
10  
10  
ns  
Read Enable Low to  
Read Enable pulse width  
Read Enable High  
tRLRH  
tRLRL  
tRP  
tRC  
Min  
Min  
25  
50  
15  
30  
ns  
ns  
Read Enable Low to  
Read cycle time  
Read Enable Low  
Read Enable access time  
Read ES access time(4)  
Read Enable Low to  
Output Valid  
tRLQV  
tREA  
Max  
Max  
30  
25  
20  
25  
ns  
µs  
Write Enable High to  
Ready/Busy High  
tWHBH  
tR  
Read busy time  
tWHBL  
tWHRL  
tWB  
Write Enable High to Ready/Busy Low  
Write Enable High to Read Enable Low  
Max  
Min  
100  
60  
100  
60  
ns  
ns  
tWHR  
1. The time to ready depends on the value of the pull-up resistor tied to the ready/busy pin. See Figure 31, Figure 32 and  
Figure 33.  
2. tWHWH is the time from W rising edge during the final address cycle to W rising edge during the first data cycle.  
3. During a program/erase enable operation, tWW is the delay from WP high to W High.  
During a program/erase disable Operation, tWW is the delay from WP Low to W High.  
4. ES = electronic signature.  
45/60  
DC and AC parameters  
NAND01G-B2B, NAND02G-B2C  
Figure 19. Command latch AC waveforms  
CL  
tCLHWH  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
(E Hold time)  
tELWH  
H(E Setup time)  
E
tWLWH  
W
tALLWH  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
tDVWH  
(Data Setup time)  
tWHDX  
(Data Hold time)  
I/O  
Command  
ai13105  
Figure 20. Address latch AC waveforms  
tCLLWH  
(CL Setup time)  
CL  
tWLWL  
tELWH  
(E Setup time)  
tWLWL  
tWLWL  
tWLWL  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHWL  
tWHWL  
tWHWL  
tALHWH  
(AL Setup time)  
tWHALL  
tWHALL  
tWHALL  
tWHALL  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
tWHDX  
ai13106  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 5  
Adrress  
cycle 1  
1. A fifth address cycle is required for 2-Gbit devices only.  
46/60  
NAND01G-B2B, NAND02G-B2C  
DC and AC parameters  
Figure 21. Data Input Latch AC waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWH  
(ALSetup time)  
tWLWL  
AL  
tWLWH  
tWLWH  
tWLWH  
W
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai13107  
1. Data in last is 2112 in x8 devices and 1056 in x16 devices.  
Figure 22. Sequential data output after read AC waveforms  
tRLRL  
(Read Cycle time)  
E
tRHRL  
(R High Holdtime)  
tEHQZ  
R
tRHQZ  
tRHQZ  
tRLQV  
tRLQV  
tRLQV  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai08031  
1. CL = Low, AL = Low, W = High.  
47/60  
DC and AC parameters  
NAND01G-B2B, NAND02G-B2C  
Figure 23. Read status register AC waveforms  
tCLLRL  
CL  
tWHCLL  
tWHEH  
tCLHWH  
E
tELWH  
tWLWH  
W
R
tELQV  
tWHRL  
tDZRL  
tEHQZ  
tRHQZ  
tDVWH  
(Data Setup time)  
tWHDX  
tRLQV  
(Data Hold time)  
Status Register  
Output  
I/O  
70h  
ai13108  
Figure 24. Read electronic signature AC waveforms  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
I/O  
90h  
00h  
Byte1  
Byte2  
Byte3  
00h  
Byte4  
Man.  
code  
Device  
code  
Read Electronic 1st Cycle  
Signature  
Command  
see Note.1  
Address  
ai08667  
1. Refer to Table 14 for the values of the manufacturer and device codes, and to Table 15 and Table 16 for the information  
contained in byte 3 and 4.  
48/60  
NAND01G-B2B, NAND02G-B2C  
DC and AC parameters  
Figure 25. Page read operation AC waveforms  
CL  
E
tWLWL  
tEHQZ  
W
tWHBL  
AL  
tALLRL2  
tWHBH  
tRLRL  
tRHQZ  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
Add.N Add.N Add.N Add.N  
cycle 1 cycle 2 cycle 3 cycle 4  
Add.N  
cycle 5  
I/O  
30h  
00h  
Data Output  
from Address N to Last Byte or Word in Page  
Command Address N Input  
Code  
Busy  
ai13109b  
1. A fifth address cycle is required for 2-Gbit devices only.  
49/60  
DC and AC parameters  
NAND01G-B2B, NAND02G-B2C  
Figure 26. Page program AC waveforms  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tWHWH  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N Add.N  
cycle 4 cycle 5  
Add.N  
Add.N  
Add.N  
cycle 3  
I/O  
RB  
80h  
Last  
N
10h  
70h  
SR0  
cycle 1 cycle 2  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai13110b  
1. A fifth address cycle is required for 2-Gbit devices only.  
50/60  
NAND01G-B2B, NAND02G-B2C  
DC and AC parameters  
Figure 27. Block erase AC waveforms  
CL  
E
tWLWL  
(Write Cycle time)  
W
tBLBH3  
tWHBL  
(Erase Busy time)  
AL  
R
Add.  
Add.  
Add.  
cycle 3  
I/O  
70h  
SR0  
60h  
D0h  
cycle 1 cycle 2  
RB  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038b  
1. Address cycle 3 is required for 2-Gbit devices only.  
Figure 28. Reset AC waveforms  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
51/60  
DC and AC parameters  
NAND01G-B2B, NAND02G-B2C  
Figure 29. Program/erase enable waveforms  
W
tVHWH  
WP  
RB  
I/O  
80h  
10h  
ai12477  
Figure 30. Program/erase disable waveforms  
W
tVLWH  
WP  
High  
RB  
I/O  
80h  
10h  
ai12478  
11.1  
Ready/Busy signal electrical characteristics  
Figure 32, Figure 31 and Figure 33 show the electrical characteristics for the Ready/Busy  
signal. The value required for the resistor R can be calculated using the following equation:  
P
(
)
V
V
DDmax  
OLmax  
+ I  
R min= -------------------------------------------------------------  
P
I
L
OL  
So,  
1.85V  
R min(1.8V)= ---------------------------  
P
+
3mA  
I
L
3.2V  
R min(3V)= ---------------------------  
P
+
8mA  
I
L
where I is the sum of the input currents of all the devices tied to the Ready/Busy signal. R  
L
P
max is determined by the maximum value of t .  
r
52/60  
NAND01G-B2B, NAND02G-B2C  
DC and AC parameters  
Figure 31. Ready/Busy AC waveform  
ready V  
DD  
V
OH  
V
OL  
busy  
t
t
r
f
AI07564B  
Figure 32. Ready/Busy load circuit  
ibusy  
R
P
V
DD  
DEVICE  
RB  
Open Drain Output  
V
SS  
AI07563B  
53/60  
DC and AC parameters  
NAND01G-B2B, NAND02G-B2C  
Figure 33. Resistor value versus waveform timings for Ready/Busy signal  
V
= 1.8V, C = 30pF  
V = 3.3V, C = 100pF  
DD L  
DD  
L
400  
300  
200  
400  
300  
200  
4
3
2
4
3
2
400  
300  
2.4  
200  
1.7  
120  
1.2  
100  
0
1
100  
0
1
0.85  
0.8  
100  
3.6  
90  
0.57  
0.6  
3.6  
60  
1.7  
0.43  
1.7  
30  
1.7  
3.6  
3.6  
1.7  
1
2
3
4
1
2
3
4
R
(KΩ)  
R (KΩ)  
P
P
t
t
r
ibusy  
f
ai07565B  
1. T = 25°C.  
11.2  
Data protection  
The Numonyx NAND device is designed to guarantee data protection during power  
transitions.  
A V detection circuit disables all NAND operations, if V is below the V threshold.  
LKO  
DD  
DD  
In the V range from V  
to the lower limit of nominal range, the WP pin should be kept  
DD  
LKO  
low (V ) to guarantee hardware protection during power transitions as shown in the below  
IL  
figure.  
Figure 34. Data protection  
Nominal Range  
V
DD  
V
LKO  
Locked  
Locked  
W
Ai11086  
54/60  
NAND01G-B2B, NAND02G-B2C  
Package mechanical  
12  
Package mechanical  
In order to meet environmental requirements, Numonyx offers these devices in ECOPACK®  
packages. ECOPACK® packages are lead-free. The category of second level interconnect  
is marked on the package and on the inner box label, in compliance with JEDEC Standard  
JESD97. The maximum ratings related to soldering conditions are also marked on the inner  
box label.  
Figure 35. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 26. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.20  
0.15  
1.05  
0.27  
0.21  
0.08  
12.10  
20.20  
18.50  
0.047  
0.006  
0.041  
0.011  
0.008  
0.003  
0.476  
0.795  
0.728  
0.10  
1.00  
0.22  
0.05  
0.95  
0.17  
0.10  
0.004  
0.039  
0.009  
0.002  
0.037  
0.007  
0.004  
C
CP  
D1  
E
12.00  
20.00  
18.40  
0.50  
0.60  
0.80  
3°  
11.90  
19.80  
18.30  
0.472  
0.787  
0.724  
0.020  
0.024  
0.031  
3°  
0.468  
0.779  
0.720  
E1  
e
L
0.50  
0.70  
0.020  
0.028  
5°  
L1  
α
0°  
5°  
0°  
55/60  
Package mechanical  
NAND01G-B2B, NAND02G-B2C  
Figure 36. VFBGA63 9.5 x 12 mm - 6 x 8 active ball array, 0.80 mm pitch, package outline  
D
D2  
D1  
FD1  
SD  
FD  
e
e
SE  
E
E2 E1  
ddd  
BALL "A1"  
FE1  
FE  
e
b
A
A2  
A1  
BGA-Z67  
1. Drawing is not to scale  
Table 27. VFBGA63 9.5 x 12 mm - 6 x 8 ball array, 0.80 mm pitch, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.05  
0.041  
0.25  
0.010  
0.70  
0.50  
9.60  
0.028  
0.020  
0.378  
0.45  
9.50  
4.00  
7.20  
0.40  
9.40  
0.018  
0.374  
0.157  
0.283  
0.016  
0.370  
D
D1  
D2  
ddd  
E
0.10  
0.004  
0.476  
12.00  
5.60  
8.80  
0.80  
2.75  
1.15  
3.20  
1.60  
0.40  
0.40  
11.90  
12.10  
0.472  
0.220  
0.346  
0.031  
0.108  
0.045  
0.126  
0.063  
0.016  
0.016  
0.468  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
56/60  
NAND01G-B2B, NAND02G-B2C  
Package mechanical  
Figure 37. VFBGA63 9 x 11 mm - 6 x 8 active ball array, 0.80 mm pitch, package outline  
D
D2  
D1  
FD1  
FE  
e
SE  
b
E
E2 E1  
ddd  
BALL "A1"  
FE1  
A
A2  
e
SD  
FD  
A1  
BGA-Z75  
1. Drawing is not to scale  
Table 28. VFBGA63 9 x 11 mm - 6 x 8 active ball array, 0.80 mm pitch, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.05  
0.041  
0.25  
0.010  
0.70  
0.50  
9.10  
0.028  
0.020  
0.358  
0.45  
9.00  
4.00  
7.20  
0.40  
8.90  
0.018  
0.354  
0.157  
0.283  
0.016  
0.350  
D
D1  
D2  
ddd  
E
0.10  
0.004  
0.437  
11.00  
5.60  
8.80  
0.80  
2.50  
0.90  
2.70  
1.10  
0.40  
0.40  
10.90  
11.10  
0.433  
0.220  
0.346  
0.031  
0.098  
0.035  
0.106  
0.043  
0.016  
0.016  
0.429  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
57/60  
Ordering information  
NAND01G-B2B, NAND02G-B2C  
13  
Ordering information  
Table 29. Ordering information scheme  
Example:  
NAND02GR3B2C ZA 6  
E
Device type  
NAND flash memory  
Density  
01G = 1 Gbit  
02G = 2 Gbits  
Operating voltage  
R = VDD = 1.7 to 1.95 V  
W = VDD = 2.7 to 3.6 V  
Bus width  
3 = x8  
4 = x16(1)  
Family identifier  
B = 2112-byte/ 1056-word page  
Device options  
2 = chip enable don't care enabled  
Product version  
B = second version (1-Gbit devices)  
C = third version (2-Gbit devices)  
Package  
N = TSOP48 12 x 20 mm  
ZA = VFBGA63 9.5 x 12 x 1 mm, 0.8 mm pitch(2)  
ZA= VFBGA63 9 x 11 x 1 mm, 0.8 mm pitch(3)  
Temperature range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
E = ECOPACK® package, standard packing  
F = ECOPACK® package, tape & reel packing  
1. x16 organization only available for MCP products.  
2. For NAND02G-B2C devices only.  
3. For NAND01G-B2B devices only.  
Note:  
Devices are shipped from the factory with the memory content bits, in valid blocks, erased to  
’1’. For further information on any aspect of this device, please contact your nearest  
Numonyx sales office.  
58/60  
NAND01G-B2B, NAND02G-B2C  
Revision history  
14  
Revision history  
Table 30. Document revision history  
Date  
Version  
Changes  
18-May-2006  
01-Jun-2006  
0.1  
1
Initial release.  
Document status changed to preliminary data.  
VFBGA63 9 x 11 x 1 mm package added for NAND01G-B2B devices  
and VFBGA63 9.5 x 12 x 1 mm dedicated to NAND02G-B2C devices.  
09-Jun-2006  
23-Nov-2006  
2
3
Note 2 below Commands removed.  
Overview of Section 6.1: Read memory array updated. Paragraph  
concerning Exit Cache Read command updated in Section 6.2: Cache  
read. Block replacement section replaced by Section 8.2: NAND flash  
memory failure modes.  
tWHALL added in Table 24: AC characteristics for command, address,  
data input.  
RB waveform updated in Figure 25: Page read operation AC  
waveforms, and CL waveform modified in Figure 26: Page program AC  
waveforms.  
An error correction code (ECC) is required to obtain a data integrity of  
100 000 program/erase cycles per block.  
Section 3.9: Ready/Busy (RB) modified.  
tRHRL2 timing removed from Figure 9: Page program operation and  
Table 25: AC characteristics for operations.  
20-Apr-2007  
14-Apr-2008  
4
5
Note removed below Figure 11: Copy back program.  
tWHBH2 replaced by tBLBH5, cash busy time, in Section 6.5: Cache  
program.  
Alt. symbol for tBLBH4 is tRST in Table 25: AC characteristics for  
operations.  
Applied Numonyx branding.  
59/60  
NAND01G-B2B, NAND02G-B2C  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
60/60  

相关型号:

NAND01GW3B2BZA1T

Flash, 128MX8, 35ns, PBGA63, 9.50 X 12 MM, 1 MM HEIGHT, 0.80 MM PITCH, VFBGA-63
NUMONYX

NAND01GW3B2BZA1T

128MX8 FLASH 3V PROM, 35ns, PBGA63, 9.50 X 12 MM, 1 MM HEIGHT, 0.80 MM PITCH, VFBGA-63
STMICROELECTR

NAND01GW3B2BZA6

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR

NAND01GW3B2BZA6E

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR

NAND01GW3B2BZA6E

1-Gbit, 2-Gbit, 2112-byte/1056-word page, 1.8 V/3 V, NAND flash memory
NUMONYX

NAND01GW3B2BZA6F

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR

NAND01GW3B2BZA6F

1-Gbit, 2-Gbit, 2112-byte/1056-word page, 1.8 V/3 V, NAND flash memory
NUMONYX

NAND01GW3B2BZA6T

Flash, 128MX8, 35ns, PBGA63, 9.50 X 12 MM, 1 MM HEIGHT, 0.80 MM PITCH, VFBGA-63
STMICROELECTR

NAND01GW3B2BZB1

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR

NAND01GW3B2BZB6

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR

NAND01GW3B2CN1

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR

NAND01GW3B2CN1E

1 Gbit, 2 Gbit, 2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory
STMICROELECTR