NAND02GW3B2DZA6E [NUMONYX]

2-Gbit, 2112-byte/1056-word page multiplane architecture, 1.8 V or 3 V, NAND flash memories; 2千兆位, 2112字节/ 1056字的页面多平面架构, 1.8 V或3V时, NAND快闪存储器
NAND02GW3B2DZA6E
型号: NAND02GW3B2DZA6E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

2-Gbit, 2112-byte/1056-word page multiplane architecture, 1.8 V or 3 V, NAND flash memories
2千兆位, 2112字节/ 1056字的页面多平面架构, 1.8 V或3V时, NAND快闪存储器

闪存 存储 内存集成电路
文件: 总69页 (文件大小:1812K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND02G-B2D  
2-Gbit, 2112-byte/1056-word page  
multiplane architecture, 1.8 V or 3 V, NAND flash memories  
Preliminary Data  
Features  
High density NAND flash memory  
– Up to 2 Gbits of memory array  
– Cost-effective solution for mass storage  
applications  
NAND interface  
– x8 or x16 bus width  
– Multiplexed address/data  
TSOP48 12 x 20 mm (N)  
Supply voltage: 1.8 V or 3.0 V device  
FBGA  
Page size  
– x8 device: (2048 + 64 spare) bytes  
– x16 device: (1024 + 32 spare) words  
VFBGA63 9.5 x 12 mm (ZA)  
Block size  
Status register  
– x8 device: (128 K + 4 K spare) bytes  
– x16 device: (64 K + 2 K spare) words  
Electronic signature  
Chip Enable ‘don’t care’  
Serial number option  
Data protection:  
Multiplane architecture  
– Array split into two independent planes  
– Program/erase operations can be  
performed on both planes at the same time  
– Hardware program/erase disabled during  
power transitions  
Page read/program  
– Non-volatile protection option  
– Random access: 25 µs (max)  
– Sequential access: 25 ns (min)  
– Page program time: 200 µs (typ)  
ONFI 1.0 compliant command set  
Data integrity  
– Multiplane page program time (2 pages):  
200 µs (typ)  
– 100,000 program/erase cycles (with ECC)  
– 10 years data retention  
Copy back program with automatic EDC (error  
®
ECOPACK packages  
detection code)  
Cache read mode  
Table 1.  
Device summary  
Part number  
Fast block erase  
Reference  
– Block erase time: 1.5 ms (typ)  
NAND02GR3B2D  
NAND02GW3B2D  
NAND02GR4B2D(1)  
NAND02GW4B2D(1)  
– Multiblock erase time (2 blocks): 1.5 ms  
(typ)  
NAND02G-B2D  
1. x 16 organization only available for MCP products.  
April 2008  
Rev 3  
1/69  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.numonyx.com  
1
Contents  
NAND02G-B2D  
Contents  
1
2
3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
3.11  
Inputs/outputs (I/O0-I/O7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Inputs/outputs (I/O8-I/O15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read Enable (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Ready/Busy (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
V
V
DD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Command input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Address input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5
6
Command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Device operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.1  
Read memory array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.1.1  
6.1.2  
Random read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Page read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.2  
Cache read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/69  
NAND02G-B2D  
Contents  
6.3  
Page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.3.1  
6.3.2  
Sequential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Random data input in page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Multiplane page program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Multiplane copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Multiplane block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Error detection code (EDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.10 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.11 Read status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.11.1 Write protection bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.11.2 P/E/R controller and cache ready/busy bit (SR6) . . . . . . . . . . . . . . . . . 36  
6.11.3 P/E/R controller bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.11.4 Error bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.11.5 SR4, SR3, SR2 and SR1 are reserved . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.12 Read status enhanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.13 Read EDC status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.14 Read electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.15 Read ONFI signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
6.16 Read parameter page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7
8
Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Software algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.1  
8.2  
8.3  
8.4  
8.5  
Bad block management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
NAND flash memory failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Wear-leveling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Error correction code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
9
Program and erase times and endurance cycles . . . . . . . . . . . . . . . . . 48  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10  
3/69  
Contents  
NAND02G-B2D  
11  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
11.1 Ready/busy signal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . 63  
11.2 Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
12  
13  
14  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
4/69  
NAND02G-B2D  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Address insertion (x 8 devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Address insertion (x 16 devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address definition (x 8 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Address definition (x 16 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Address definition for EDC units (x8 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Address definition for EDC units (x16 devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
EDC status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Electronic signature byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Electronic signature byte 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Electronic signature byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Read ONFI signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Parameter page data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Block failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Program erase times and program erase endurance cycles . . . . . . . . . . . . . . . . . . . . . . . 48  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
DC characteristics (1.8 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
DC characteristics (3 V devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
AC characteristics for command, address, data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
AC Characteristics for operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data. . . . . 65  
VFBGA63 9.5 x 12 mm - 6 x 8 active ball array, 0.80 mm pitch, package mechanical  
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
5/69  
List of figures  
NAND02G-B2D  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TSOP48 connections for NAND02G-B2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VFBGA63 connections for NAND02G-B2D devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Memory array organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Random data output during sequential data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Cache read (sequential) operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Cache read (random) operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 10. Page program operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11. Random data input during sequential data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 12. Multiplane page program waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 13. Copy back program (without readout of data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 14. Copy back program (with readout of data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 15. Page copy back program with random data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16. Multiplane copy back program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17. Block erase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 18. Multiplane block erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 19. Page organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 20. Bad block management flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 21. Garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 22. Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 23. Equivalent testing circuit for AC characteristics measurement. . . . . . . . . . . . . . . . . . . . . . 51  
Figure 24. Command latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 25. Address latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 26. Data input latch AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 27. Sequential data output after read AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 28. Sequential data output after read AC waveforms (EDO mode) . . . . . . . . . . . . . . . . . . . . . 56  
Figure 29. Read Status register or read EDC Status register AC waveform . . . . . . . . . . . . . . . . . . . . 57  
Figure 30. Read status enhanced waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 31. Read electronic signature AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 32. Read ONFI signature waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 33. Page read operation AC waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 34. Page program AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 35. Block erase AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 36. Reset AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 37. Program/erase enable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 38. Program/erase disable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 39. Read parameter page waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 40. Ready/busy AC waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 41. Ready/busy load circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 42. Resistor value versus waveform timings for ready/busy signal . . . . . . . . . . . . . . . . . . . . . 64  
Figure 43. Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 44. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline . . . . . . . . . . . . 65  
Figure 45. VFBGA63 9.5 x 12 mm - 6 x 8 active ball array, 0.80 mm pitch, package outline . . . . . . . 66  
6/69  
NAND02G-B2D  
Description  
1
Description  
The NAND02G-B2D devices are part of the NAND flash 2112-byte/1056-word page family  
of non-volatile flash memories. They use NAND cell technology and have a density of  
2 Gbits.  
These devices have a memory array that is split into 2 planes of 1024 blocks each. This  
multiplane architecture makes it possible to program 2 pages at a time (one in each plane),  
or to erase 2 blocks at a time (one in each plane). This feature reduces the average program  
and erase times by 50%.  
The NAND02G-B2D devices operate from a 1.8 V or 3 V voltage supply. Depending on  
whether the device has a x8 or x16 bus width, the page size is 2112 bytes (2048 + 64 spare)  
or 1056 words (1024 + 32 spare), respectively.  
The address lines are multiplexed with the data input/output signals on a multiplexed x 8  
input/output bus. This interface reduces the pin count and makes it possible to migrate to  
other densities without changing the footprint.  
Each block can be programmed and erased over 100,000 cycles with ECC (error correction  
code) on. To extend the lifetime of NAND flash devices, the implementation of an ECC is  
mandatory.  
A write protect pin is available to provide hardware protection against program and erase  
operations.  
The devices feature an open-drain ready/busy output that identifies if the P/E/R  
(program/erase/read) controller is currently active. The use of an open-drain output allows  
the ready/busy pins from several memories to connect to a single pull-up resistor.  
A Copy Back Program command is available to optimize the management of defective  
blocks. When a page program operation fails, the data can be programmed in another page  
without having to resend the data to be programmed. An embedded error detection code is  
automatically executed after each copy back operation: 1 error bit can be detected for every  
528 bits. With this feature it is no longer necessary to use an external 2-bit ECC to detect  
copy back operation errors.  
The devices have a cache read feature that improves the read throughput for large files.  
During cache reading, the device loads the data in a Cache register while the previous data  
is transferred to the I/O buffers to be read.  
The devices have the Chip Enable ‘don’t care’ feature, which allows code to be directly  
downloaded by a microcontroller. This is possible because Chip Enable transitions during  
the latency time do not stop the read operation.  
The NAND02G-B2D devices support the ONFI 1.0 specification.  
7/69  
Description  
NAND02G-B2D  
Two further features are available as options:  
Extra non-volatile protection  
An individual serial number that acts as an unique identifier.  
More information is available, upon completion of an NDA (non-disclosure agreement), and  
are, therefore, not described in this datasheet. For more details of this option contact your  
nearest Numonyx sales office.  
The devices are available in the TSOP48 (12 x 20 mm) and VFBGA63 (9.5 x 12 mm)  
packages.  
For information on how to order these options, refer to Table 31: Ordering information  
scheme. Devices are shipped from the factory with block 0 always valid and the memory  
content bits, in valid blocks, erased to ’1’.  
Table 2: Product description lists the part numbers and other information for all the devices  
in the family.  
Table 2.  
Product description  
Timings  
Bus  
width  
Page  
size  
Block  
size  
Memory Operating  
Part number  
Density  
Package  
Sequential  
access  
Random  
access  
Page  
Program Erase  
Block  
array  
voltage  
time (min) time (max)  
(typ)  
(typ)  
1.7 to  
1.95 V  
NAND02GR3B2D  
NAND02GW3B2D  
NAND02GR4B2D  
NAND02GW4B2D  
45 ns  
VFBGA63  
2048+64 128 K+4 K  
x8  
bytes  
bytes  
2.7 to  
3.6 V  
25 ns  
25 µs  
45 ns  
64 pages  
x 2048  
blocks  
2 Gb  
200 µs  
1.5 ms  
1.7 to  
1.95 V  
TSOP48  
VFBGA63  
1024+  
32 words  
64 K+2 K  
words  
x16  
2.7 to  
3.6 V  
25 ns  
8/69  
NAND02G-B2D  
Description  
Figure 1.  
Logic block diagram  
Address  
Register/Counter  
AL  
CL  
W
NAND Flash  
Memory Array  
P/E/R Controller,  
High Voltage  
Generator  
Command  
Interface  
Logic  
E
WP  
R
Page Buffer  
Cache Register  
Y Decoder  
Command Register  
I/O Buffers & Latches  
RB  
I/O0-I/O7 (x8/x16)  
I/O8-I/O15 (x16)  
AI13166b  
Figure 2.  
Logic diagram  
V
DD  
I/O0-I/O7 (x8/x16)  
E
I/O8-I/O15 (x16)  
R
W
NAND FLASH  
RB  
AL  
CL  
WP  
V
SS  
AI13167b  
9/69  
Description  
NAND02G-B2D  
Table 3.  
Signal  
Signal names  
Function  
Direction  
Data input/outputs, address inputs, or command inputs (x8/x16  
devices)  
I/O0-7  
Input/output  
I/O8-15  
AL  
Data input/outputs (x16 devices)  
Address Latch Enable  
Command Latch Enable  
Chip Enable  
Input/output  
Input  
CL  
Input  
E
Input  
R
Read Enable  
Input  
RB  
W
Ready/Busy (open-drain output)  
Write Enable  
Output  
Input  
WP  
VDD  
VSS  
NC  
DU  
Write Protect  
Input  
Supply voltage  
Power supply  
Ground  
N/A  
Ground  
Not connected internally  
Do not use  
N/A  
10/69  
NAND02G-B2D  
Description  
Figure 3.  
TSOP48 connections for NAND02G-B2D  
NC  
NC  
NC  
NC  
NC  
NC  
RB  
R
1
48  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
E
NC  
NC  
NC  
NC  
V
12  
13  
37  
36  
V
V
DD  
DD  
SS  
NAND FLASH  
V
SS  
NC  
NC  
CL  
AL  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI13168b  
11/69  
Description  
NAND02G-B2D  
Figure 4.  
VFBGA63 connections for NAND02G-B2D devices  
1
2
3
4
5
6
7
8
9
10  
DU  
DU  
DU  
A
B
DU  
DU  
DU  
DU  
AL  
V
SS  
C
WP  
E
W
RB  
D
E
F
NC  
NC  
NC  
NC  
R
CL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O3  
NC  
NC  
G
H
J
NC  
NC  
NC  
NC  
I/O0  
I/O1  
I/O2  
NC  
V
DD  
V
I/O5  
I/O6  
I/O7  
DD  
V
K
L
I/O4  
V
SS  
SS  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
M
AI13103  
12/69  
NAND02G-B2D  
Memory array organization  
2
Memory array organization  
The memory array is made up of NAND structures where 32 cells are connected in series. It  
is organized into blocks where each block contains 64 pages. The array is split into two  
areas, the main area and the spare area. The main area of the array is used to store data,  
and the spare area typically stores error correction codes, software flag, or bad block  
identification.  
In x 8 devices, the pages are split into a 2048-byte main area and a spare area of 64 bytes.  
In x 16 devices, the pages are split into a 1024-word main area and a spare area of  
32 words. Refer to Figure 5: Memory array organization.  
Bad blocks  
In the x8 devices, the NAND flash 2112-byte/1056-word page devices may contain bad  
blocks, which are blocks that contain one or more invalid bits whose reliability is not  
guaranteed. Additional bad blocks may develop during the lifetime of the device.  
The bad block information is written prior to shipping (refer to Section 8.1: Bad block  
management for more details).  
There are a minimum of 2008 and a maximum of 2048 valid blocks. These numbers include  
both the bad blocks that are present when the device is shipped and the bad blocks that  
could develop later on.  
These blocks need to be managed using bad blocks management, block replacement, or  
error correction codes (refer to Section 8: Software algorithms).  
13/69  
Memory array organization  
NAND02G-B2D  
Figure 5.  
Memory array organization  
x 8 bus width  
Plane = 1024 blocks, block = 64 pages, page = 2112 bytes (2048 + 64)  
First plane  
Second plane  
Main area  
Main area  
Block  
Page  
8 bits  
2048 bytes  
2048 bytes  
64  
bytes  
64  
bytes  
Page buffer, 2112 bytes  
64  
Page buffer, 2112 bytes  
64  
2048 bytes  
2048 bytes  
bytes  
bytes  
8 bits  
2-page buffer, 2 x 2112 bytes  
x 16 bus width  
plane = 2048 blocks, block = 64 pages, page = 1056 words (1024 + 32)  
First plane  
Second plane  
Main area  
Main area  
Block  
Page  
16 bits  
1024 words  
1024 words  
32  
words  
32  
words  
Page buffer, 1056 bytes  
32  
Page buffer, 1056 bytes  
32  
1024 words  
1024 words  
words  
words  
16 bits  
2-page buffer, 2 x 1056 bytes  
AI13170C  
14/69  
NAND02G-B2D  
Signal descriptions  
3
Signal descriptions  
See Figure 2: Logic diagram, and Table 3: Signal names for a brief overview of the signals  
connected to this device.  
3.1  
Inputs/outputs (I/O0-I/O7)  
Input/outputs 0 to 7 input the selected address, output the data during a read operation, or  
input a command or data during a write operation. The inputs are latched on the rising edge  
of Write Enable. I/O0-I/O7 are left floating when the device is deselected or the outputs are  
disabled.  
3.2  
Inputs/outputs (I/O8-I/O15)  
Input/outputs 8 to 15 are only available in x 16 devices. They output the data during a read  
operation or input data during a write operation. Command and address inputs only require  
I/O0 to I/O7.  
The inputs are latched on the rising edge of Write Enable. I/O8-I/O15 are left floating when  
the device is deselected or the outputs are disabled.  
3.3  
3.4  
3.5  
Address Latch Enable (AL)  
The Address Latch Enable activates the latching of the address inputs in the command  
interface. When AL is High, the inputs are latched on the rising edge of Write Enable.  
Command Latch Enable (CL)  
The Command Latch Enable activates the latching of the command inputs in the command  
interface. When CL is High, the inputs are latched on the rising edge of Write Enable.  
Chip Enable (E)  
The Chip Enable input, E, activates the memory control logic, input buffers, decoders and  
sense amplifiers. When Chip Enable is Low, V , the device is selected. If Chip Enable goes  
IL  
High, V , while the device is busy, the device remains selected and does not go into  
IH  
standby mode.  
3.6  
Read Enable (R)  
The Read Enable pin, R, controls the sequential data output during read operations. Data is  
valid t  
after the falling edge of R. The falling edge of R also increments the internal  
RLQV  
column address counter by one.  
15/69  
Signal descriptions  
NAND02G-B2D  
3.7  
Write Enable (W)  
The Write Enable input, W, controls writing to the command interface, input address, and  
data latches. Both addresses and data are latched on the rising edge of Write Enable.  
During power-up and power-down a recovery time of 10 µs (min) is required before the  
command interface is ready to accept a command. It is recommended to keep Write Enable  
high during the recovery time.  
3.8  
3.9  
Write Protect (WP)  
The Write Protect pin is an input that gives a hardware protection against unwanted program  
or erase operations. When Write Protect is Low, V , the device does not accept any  
program or erase operations.  
IL  
It is recommended to keep the Write Protect pin Low, V , during power-up and power-down.  
IL  
Ready/Busy (RB)  
The Ready/Busy output, RB, is an open-drain outputs that can be used to identify if the  
P/E/R controller is currently active.  
When Ready/Busy is Low, V , a read, program or erase operation is in progress. When the  
OL  
operation completes, Ready/Busy goes High, V  
.
OH  
The use of an open-drain output allows the Ready/Busy pins from several memories to be  
connected to a single pull-up resistor. A Low then indicates that one or more of the  
memories is busy.  
During power-up and power-down a minimum recovery time of 10 µs is required before the  
command interface is ready to accept a command. During this period the RB signal is Low,  
V
.
OL  
Refer to Section 11.1: Ready/busy signal electrical characteristics for details on how to  
calculate the value of the pull-up resistor.  
3.10  
VDD supply voltage  
V
provides the power supply to the internal core of the memory device. It is the main  
DD  
power supply for all operations (read, program and erase).  
An internal voltage detector disables all functions whenever V is below V  
(see  
LKO  
DD  
Table 26) to protect the device from any involuntary program/erase during power transitions.  
Each device in a system should have V decoupled with a 0.1 µF capacitor. The PCB track  
DD  
widths should be sufficient to carry the required program and erase currents.  
3.11  
VSS ground  
Ground, V  
ground.  
is the reference for the power supply. It must be connected to the system  
SS,  
16/69  
NAND02G-B2D  
Bus operations  
4
Bus operations  
There are six standard bus operations that control the memory, as described in this section.  
See Table 4: Bus operations for a summary of these operations.  
Typically, glitches of less than 5 ns on Chip Enable, Write Enable, and Read Enable are  
ignored by the memory and do not affect bus operations.  
4.1  
Command input  
Command input bus operations give commands to the memory.  
Commands are accepted when Chip Enable is Low, Command Latch Enable is High,  
Address Latch Enable is Low, and Read Enable is High. They are latched on the rising edge  
of the Write Enable signal.  
Only I/O0 to I/O7 input commands.  
See Figure 24 and Table 27 for details of the timings requirements.  
4.2  
Address input  
Address input bus operations input the memory addresses. Five bus cycles are required to  
input the addresses (refer to Table 5: Address insertion (x 8 devices) and Table 6: Address  
insertion (x 16 devices)).  
The addresses are accepted when Chip Enable is Low, Address Latch Enable is High,  
Command Latch Enable is Low, and Read Enable is High. They are latched on the rising  
edge of the Write Enable signal.  
Only I/O0 to I/O7 are used to input addresses.  
See Figure 25 and Table 27 for details of the timings requirements.  
4.3  
4.4  
Data input  
Data input bus operations input the data to be programmed.  
Data is accepted only when Chip Enable is Low, Address Latch Enable is Low, Command  
Latch Enable is Low, and Read Enable is High. The data is latched on the rising edge of the  
Write Enable signal. The data is input sequentially using the Write Enable signal.  
See Figure 26 and Table 27 and Table 28 for details of the timings requirements.  
Data output  
Data output bus operations read the data in the memory array, the Status register, the  
electronic signature, and the unique identifier.  
Data is output when Chip Enable is Low, Write Enable is High, Address Latch Enable is Low,  
and Command Latch Enable is Low.  
The data is output sequentially using the Read Enable signal.  
17/69  
Bus operations  
NAND02G-B2D  
If the Read Enable pulse frequency is lower then 33 MHz (t  
higher than 30 ns), the  
RLRL  
output data is latched on the rising edge of Read Enable signal (see Figure 27).  
For higher frequencies (t lower than 30 ns), the EDO (extended data out) mode must be  
RLRL  
used. In this mode, Data Output bus operations are valid on the input/output bus for a time  
of t after the falling edge of Read Enable signal (see Figure 28).  
RLQX  
See Table 28 for details on the timings requirements.  
4.5  
4.6  
Write protect  
Write protect bus operations are used to protect the memory against program or erase  
operations. When the Write Protect signal is Low, the device does not accept program or  
erase operations, and, therefore, the contents of the memory array cannot be altered. The  
Write Protect signal is not latched by Write Enable to ensure protection, even during power-  
up.  
Standby  
When Chip Enable is High the memory enters standby mode, the device is deselected,  
outputs are disabled, and power consumption is reduced.  
Table 4.  
Bus operation  
Command input VIL  
Bus operations  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
I/O8 - I/O15(1)  
VIL  
VIH  
VIL  
VIL  
X
VIH  
VIL  
VIL  
VIL  
X
VIH  
VIH  
VIH  
Falling  
X
Rising  
Rising  
Rising  
VIH  
X(2)  
X
Command  
Address  
Data input  
Data output  
X
X
Address input  
Data input  
VIL  
VIL  
VIL  
X
X
VIH  
Data input  
Data output  
Write protect  
Standby  
X
Data output  
X
VIL  
X
X
VIH  
X
X
X
X
VIL/VDD  
X
1. Only for x 16 devices.  
2. WP must be VIH when issuing a Program or Erase command.  
Table 5.  
Address insertion (x 8 devices)  
Bus  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
cycle(1)  
1st  
2nd  
3rd  
4th  
5th  
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
A11  
A15  
A23  
VIL  
A2  
A10  
A14  
A22  
VIL  
A1  
A9  
A0  
A8  
A19  
A27  
VIL  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A13  
A21  
VIL  
A12  
A20  
A28  
1. Any additional address input cycles are ignored.  
18/69  
NAND02G-B2D  
Bus operations  
Table 6.  
Address insertion (x 16 devices)  
Bus  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
cycle(1)  
1st  
2nd  
3rd  
4th  
5th  
A7  
VIL  
A6  
VIL  
A5  
VIL  
A4  
VIL  
A3  
VIL  
A2  
A10  
A13  
A21  
VIL  
A1  
A9  
A0  
A8  
A18  
A26  
VIL  
A17  
A25  
VIL  
A16  
A24  
VIL  
A15  
A23  
VIL  
A14  
A22  
VIL  
A12  
A20  
VIL  
A11  
A19  
A27  
1. Any additional address input cycles are ignored.  
Table 7.  
Address definition (x 8 devices)  
Address  
Definition  
A0 - A11  
A12 - A17  
A18 - A28  
A18 = 0  
Column address  
Page address  
Block address  
First plane  
A18 = 1  
Second plane  
Table 8.  
Address definition (x 16 devices)  
Address  
Definition  
A0 - A10  
A11 - A16  
A17 - A27  
A17 = 0  
Column address  
Page address  
Block address  
First plane  
A17 = 1  
Second plane  
19/69  
Command set  
NAND02G-B2D  
5
Command set  
All bus write operations sent to the device are interpreted by the command interface. The  
commands are input on I/O0-I/O7 and are latched on the rising edge of Write Enable when  
the command Latch Enable signal is High. Device operations are selected by writing specific  
commands to the Command register. The two-step command sequences for program and  
erase operations are imposed to maximize data security.  
Table 9 summarizes the commands.  
Table 9.  
Commands  
Command(1)  
Bus write operations  
Commands  
accepted  
during busy  
1st cycle 2nd cycle 3rd cycle 4th cycle  
Read  
00h  
05h  
31h  
00h  
3Fh  
30h  
E0h  
Random Data Output  
Cache Read (sequential)  
Enhanced Cache Read (random)  
Exit Cache Read  
31h  
Yes(2)  
Page Program  
80h  
10h  
(sequential input default)  
Random Data Input  
85h  
80h  
80h  
00h  
85h  
85h  
85h  
60h  
60h  
60h  
FFh  
90h  
70h  
78h  
ECh  
7Bh  
11h  
11h  
35h  
10h  
11h  
11h  
D0h  
60h  
D1h  
81h  
80h  
10h  
10h  
Multiplane Page Program(3)  
Multiplane Page Program  
Copy Back Read  
Copy Back Program  
Multiplane Copy Back Program(3)  
Multiplane Copy Back Program  
Block Erase  
81h  
85h  
10h  
10h  
Multiplane Block Erase(3)  
Multiplane Block Erase  
Reset  
D0h  
60h  
D0h  
Yes  
Read Electronic Signature  
Read Status register  
Read Status Enhanced  
Read Parameter Page  
Read EDC Status register  
Yes  
Yes  
1. Commands in bold are referring to ONFI 1.0 specifications.  
2. Only during cache read busy.  
3. Command maintained for backward compatibility.  
20/69  
NAND02G-B2D  
Device operations  
6
Device operations  
This section provides details of the device operations.  
6.1  
Read memory array  
At power-up the device defaults to read mode. To enter read mode from another mode, the  
read command must be issued (see Table 9: Commands).  
6.1.1  
6.1.2  
Random read  
Each time the read command is issued, the first read is random read.  
Page read  
After the first random read access, the page data (2112 bytes or 1056 words) is transferred  
to the page buffer in a time of t  
(see Table 28). Once the transfer is complete, the  
WHBH  
Ready/Busy signal goes High. The data can then be read sequentially (from selected  
column address to last column address) by pulsing the Read Enable signal.  
The devices can output random data in a page, instead of consecutive sequential data, by  
issuing a Random Data Output command. The Random Data Output command can be used  
to skip some data during a sequential data output.  
The sequential operation can be resumed by changing the column address of the next data  
to be output, to the address which follows the Random Data Output command. The Random  
Data Output command can be issued as many times as required within a page.  
The Random Data Output command is not accepted during cache read operations.  
21/69  
Device operations  
NAND02G-B2D  
Figure 6.  
Read operations  
CL  
E
W
AL  
R
tBLBH1  
30h  
RB  
I/O  
Address Input  
00h  
Data Output (sequentially)  
Command  
Code  
Command  
Code  
Busy  
ai12469  
22/69  
NAND02G-B2D  
Device operations  
Figure 7.  
Random data output during sequential data output  
tBLBH1  
(Read Busy time)  
RB  
Busy  
tRHWL  
W
R
Address  
Address  
Inputs  
30h  
E0h  
I/O  
00h  
05h  
Data Output  
Data Output  
Inputs  
Cmd  
Cmd  
Cmd  
Cmd  
Code  
Code  
Code  
Code  
5 Add cycles  
2 Add cycles  
Col Add 1,2  
Row Add 1,2,3 Col Add 1,2  
Spare  
Area  
Spare  
Area  
Main Area  
Main Area  
ai08658b  
6.2  
Cache read  
The cache read operation improves the read throughput by reading data using the Cache  
register. As soon as the user starts to read one page, the device automatically loads the  
next page into the Cache register.  
A Read Page command, as defined in Section 6.1.1: Random read, is issued prior to the  
first Cache Read command in a cache read sequence. Once the Read Page command  
execution is terminated, the Cache Read command can be issued as follows:  
1. Issue a Sequential Cache Read command to copy the next page in sequential order to  
the Cache register  
2. Issue a Random Cache Read command to copy the page addressed in this command  
to the Cache register.  
The two commands can be used interchangeably, in any order. When there are no more  
pages to be read, the final page is copied into the Cache register by issuing the Exit Cache  
Read command. A Read Cache command must not be issued after the last page of the  
device is read. Data output only starts after issuing the 31h command for the first time.  
See Figure 8: Cache read (sequential) operation and Figure 9: Cache read (random)  
operation for examples of the two sequences.  
23/69  
Device operations  
NAND02G-B2D  
After the Sequential Cache Read or Random Cache Read command has been issued, the  
Ready/Busy signal goes Low and the Status register bits are set to SR5 =' 0' and SR6 ='0'.  
This is for a period of Cache Read busy time, t  
into the Cache register.  
while the device copies the next page  
RCBSY  
After the Cache Read busy time has passed, the Ready/Busy signal goes High and the  
Status register bits are set to SR5 = '0' and SR6 = '1', signifying that the Cache register is  
ready to download new data. Data of the previously read page can be output from the page  
buffer by toggling the Read Enable signal. Data output always begins at column address  
00h, but the Random Data Output command is also supported.  
Figure 8.  
Cache read (sequential) operation  
tBLBH1  
tRCBSY  
tRCBSY  
(Read Busy time)  
(Read Cache Busy time)  
(Read Cache Busy time)  
RB  
R
Busy  
Data  
Data  
Outputs  
Address  
Inputs  
31h  
I/O0-7  
30h  
00h  
3Fh  
Exit  
Cache  
Read  
Code  
Outputs  
Read  
Setup  
Code  
Read  
Code  
Cache  
Read  
Sequential  
Code  
ai13176b  
Repeat as many times as ncessary.  
Figure 9.  
Cache read (random) operation  
tBLBH1  
tRCBSY  
tRCBSY  
(Read Busy time)  
(Read Cache Busy time)  
(Read Cache Busy time)  
RB  
R
Busy  
Address  
31h  
Data  
Outputs  
Address  
Data  
Outputs  
00h  
3Fh  
Exit  
Cache  
Read  
Code  
I/O0-7  
30h  
00h  
Inputs  
Inputs  
Read  
Setup  
Code  
Read  
Code  
Read  
Setup  
Code  
Enhanced  
Cache  
Read  
(random)  
Code  
ai13176c  
Repeat as many times as ncessary.  
24/69  
NAND02G-B2D  
Device operations  
6.3  
Page program  
The page program operation is the standard operation to program data to the memory array.  
Generally, the page is programmed sequentially, however, the device does support random  
input within a page.  
It is recommended to address pages sequentially within a given block.  
The memory array is programmed by page, however, partial page programming is allowed  
where any number of bytes (1 to 2112) or words (1 to 1056) can be programmed.  
The maximum number of consecutive, partial-page program operations allowed in the same  
page is four. After exceeding four operations, a Block Erase command must be issued  
before any further program operations can take place in that page.  
6.3.1  
Sequential input  
To input data sequentially the addresses must be sequential and remain in one block.  
For sequential input each page program operation consists of the following five steps:  
1. One bus cycle is required to set up the Page Program (sequential input) command (see  
Table 9: Commands)  
2. Five bus cycles are then required to input the program address (refer to Table 5:  
Address insertion (x 8 devices) and Table 6: Address insertion (x 16 devices))  
3. The data is then loaded into the Data registers  
4. One bus cycle is required to issue the Page Program Confirm command to start the  
P/E/R controller. The P/E/R controller only starts if the data has been loaded in step 3.  
5. The P/E/R controller then programs the data into the array.  
See Figure 10: Page program operation for more information.  
6.3.2  
Random data input in page  
During a sequential input operation, the next sequential address to be programmed can be  
replaced by a random address by issuing a Random Data Input command. The following  
two steps are required to issue the command:  
1. One bus cycle is required to set up the Random Data Input command (see Table 9:  
Commands)  
2. Two bus cycles are then required to input the new column address (refer to Table 5:  
Address insertion (x 8 devices))  
Random data input can be repeated as often as required in any given page.  
Once the program operation has started, the Status register can be read using the Read  
Status register command. During program operations the Status register only flags errors for  
bits set to '1' that have not been successfully programmed to '0'.  
During the program operation, only the Read Status register and Reset commands are  
accepted; all other commands are ignored.  
Once the program operation has completed, the P/E/R controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High.  
The device remains in read status register mode until another valid command is written to  
the command interface.  
25/69  
Device operations  
NAND02G-B2D  
Figure 10. Page program operation  
tBLBH2  
(Program Busy time)  
RB  
I/O  
Busy  
Data Input  
10h  
Address Inputs  
80h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai08659  
Figure 11. Random data input during sequential data input  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Address  
Inputs  
Address  
Inputs  
I/O  
80h  
85h  
10h  
Data Intput  
Data Input  
70h  
SR0  
Cmd  
code  
Cmd  
code  
Confirm  
code  
Read Status register  
2 Add cycles  
Col Add 1,2  
5 Add cycles  
Row Add 1,2,3 Col Add 1,2  
Spare  
area  
Spare  
area  
Main area  
Main area  
ai08664  
26/69  
NAND02G-B2D  
Device operations  
6.4  
Multiplane page program  
The devices support multiplane page program operations, which enables the programming  
of two pages in parallel, one in each plane.  
A multiplane page program operation requires the following two steps:  
1. The first step serially loads up to two pages of data (4224 bytes) into the data buffer. It  
requires:  
1 clock cycle to set up the Page Program command (see Section 6.3.1: Sequential  
input)  
5 bus write cycles to input the first page address and data. The address of the first  
page must be within the first plane (A18 = 0 for x 8 devices, A17 = 0 for x 16  
devices)  
1 bus write cycle to issue the page program confirm code. After this, the device is  
busy for a time of t  
IPBSY  
When the device returns to the ready state (Ready/Busy High), a multiplane page  
program setup code must be issued, followed by the 2nd page address (5 write  
cycles) and data. The address of the second page must be within the second  
plane (A18 = 1 for x 8 devices, A17 = 1 for x 16 devices)  
2. Parallel programming of both pages starts after the issue of Page Confirm command.  
Refer to Figure 12: Multiplane page program waveform for differences between ONFI  
and traditional sequences.  
As for standard page program operation, the device supports random data input during both  
data loading phases.  
Once the multiplane page program operation has started, that is during a delay of t  
Status register can be read using the Read Status register command.  
, the  
IPBSY  
Once the multiplane page program operation has completed, the P/E/R controller bit SR6 is  
set to ‘1’ and the Ready/Busy signal goes High.  
If the multiplane page program fails, an error is signaled on bit SR0 of the Status register. To  
know which page of the two planes failed, the Read Status Enhanced command must be  
issued twice, once for each plane (see Section 6.12).  
Figure 12 provides a description of the multiplane operation while showing the restrictions  
related to the multiplane page program and the differences between ONFI 1.0 and  
traditional sequences.  
27/69  
Device operations  
NAND02G-B2D  
Figure 12. Multiplane page program waveform  
tIPBSY  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Busy  
1
I/O  
2
Data input  
11h  
Data input  
10h  
Address inputs  
A0-A11 = Valid  
Address inputs  
A0-A11 = Valid  
80h  
81h  
70h  
SR0  
Confirm  
code  
Confirm  
code  
Multiplane Page  
Program setup  
code  
Read Status register  
Page Program  
setup code  
A12-A17 = set to 'Low'  
A18 = set to 'Low'  
A12-A17 = Valid  
A18 = set to 'High'  
A19-A28 = Valid  
A19-A28 = set to 'Low'  
1) The same row address, except for A18, is applied to the two blocks.  
2) Any command between 11h and 81h is prohibited except 70h and FFh.  
11h  
10h  
80h  
81h  
Data  
input  
First plane  
Second plane  
(1024 block)  
(1024 block)  
Block 0  
Block 1  
Block 2  
Block 3  
.
.
.
.
Block 2044  
Block 2046  
Block 2045  
Block 2047  
a) Traditional protocol  
CL  
W
AL  
R
I/O  
80h C1A C2A R1A R2A R3A  
D0A D1A ... DnA  
11h  
... DnB  
10h  
80h C1B C2B R1B R2B R3B  
D0B D1B  
tIPBSY  
tBLBH2  
(Program Busy time)  
RB  
Busy  
b) ONFI 1.0 protocol  
Busy  
ai13171c  
1. This address scheme refers to x 8 devices. Please, remember to use the appropriate scheme for x 16 devices.  
6.5  
Copy back program  
The copy back program operation is used to copy the data stored in one page and  
reprogram it in another page.  
The copy back program operation does not require external memory and so the operation is  
faster and more efficient because the reading and loading cycles are not required. The  
operation is particularly useful when a portion of a block is updated and the rest of the block  
needs to be copied to the newly assigned block.  
28/69  
NAND02G-B2D  
Device operations  
The NAND02G-B2D device features automatic EDC (error detection code) during a copy  
back operation. Consequently, external ECC is no longer required. The errors detected  
during copy back operations can be read by performing a read EDC Status register  
operation (see Section 6.13: Read EDC status register). See also Section 6.9 for details of  
EDC operations.  
The copy back program operation requires the following four steps:  
1. The first step reads the source page. The operation copies all 2112 bytes from the  
page into the data buffer. It requires:  
1 bus write cycle to set up the command  
5 bus write cycles to input the source page address  
1 bus write cycle to issue the confirm command code  
2. When the device returns to the ready state (Ready/Busy High), optional data readout is  
allowed by pulsing R; the next bus write cycle of the command is given with the 5 bus  
cycles to input the target page address. The address A18 in x 8 devices (A17 in x 16  
devices) must be the same for the source and target page  
3. Then, the confirm command is issued to start the P/E/R controller.  
To see the data input cycle for modifying the source page and an example of the copy back  
program operation, refer to Figure 13: Copy back program (without readout of data).  
Figure 15: Page copy back program with random data input shows a data input cycle to  
modify a portion or a multiple distant portion of the source page.  
Figure 13. Copy back program (without readout of data)  
Source  
Add Inputs  
Target  
Add Inputs  
I/O  
10h  
70h  
SR0  
35h  
85h  
00h  
Read  
Code  
Copy Back  
Code  
Read Status Register  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai09858b  
1. Copy back program is only permitted between odd address pages or even address pages.  
Figure 14. Copy back program (with readout of data)  
Source  
Add Inputs  
Target  
Add Inputs  
I/O  
10h  
70h  
SR0  
35h  
85h  
00h  
Data Outputs  
Read  
Code  
Copy Back  
Code  
Read Status  
Register  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai09858c  
29/69  
Device operations  
NAND02G-B2D  
Figure 15. Page copy back program with random data input  
2 Cycle  
Add Inputs  
Target  
Add Inputs  
Source  
Add Inputs  
I/O  
35h  
SR0  
00h  
85h  
Data 85h  
Data 10h  
70h  
Read  
Code  
Copy Back  
Code  
Unlimited number of repetitions  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai11001  
6.6  
Multiplane copy back program  
In addition to multiplane page program, the NAND02G-B2D device supports multiplane  
copy back program.  
A Multiplane Copy Back Program command requires exactly the same steps as a multiplane  
page program and must satisfy the same time constraints (see Section 6.4: Multiplane page  
program).  
Prior to executing the multiplane copy back program, two single page read operations must  
be executed to copy back the first page from the first plane and the second page from the  
second plane.  
Two different sequences are allowed for the multiplane copy back operation:  
1. A traditional one (85h command, address insertion for the first plane, 11h command,  
81h command, address insertion for the second plane, 10h command)  
2. ONFI 1.0 (85h command, address insertion for the first plane, 11h command, 85h  
command, address insertion for the second plane, 10h command).  
The EDC check is also performed during the multiplane copy back program. Errors during  
multiplane copy back operations can be detected by performing a read EDC Status register  
operation (see Section 6.13: Read EDC status register).  
If the multiplane copy back program fails, an error is signaled on bit SR0 of the Status  
register. To know which page of the two planes failed, the Read Status Enhanced command  
must be executed twice, once for each plane (see Section 6.12). Figure 16 provides a  
description of multiplane copy back program waveforms.  
30/69  
NAND02G-B2D  
Device operations  
Figure 16. Multiplane copy back program  
Copy back  
code  
Copy back  
code  
Read Status Register  
Read  
code  
Read  
code  
2
Add. 5  
cycles  
Add. 5  
cycles  
Add. 5  
cycles  
Add. 5  
cycles  
I/O  
35h  
10h  
70h SR0  
35h  
00h  
85h  
11h  
81h  
00h  
Col. Add. 1, 2  
Col. Add. 1, 2  
Col. Add. 1, 2  
Col. Add. 1, 2  
Row Add. 1, 2, 3  
Row Add. 1, 2, 3  
Row Add. 1, 2, 3  
Row Add. 1, 2, 3  
Source address on 1st plane  
Source address on 2nd plane  
Destination address  
A0-A11 = set to 'Low'  
A12-A17 = set to 'Low'  
A18 = set to 'Low'  
Destination address  
A0-A11 = set to 'Low'  
A12-A17 = Valid  
A18 = set to 'High'  
A19-A28 = Valid  
A19-A28 = set to 'Low'  
tBLBH1  
tBLBH1  
tIPBSY  
tBLBH2  
(Read Busy time)  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
Busy  
Busy  
Second plane  
First plane  
Source page  
Source page  
Target page  
(1): Read for copy back on first plane  
(2): Read for copy back on second plane  
(3): Two-plane copy back program  
Target page  
(1)  
(3)  
(2)  
(3)  
Main area  
a) Traditional sequence.  
Main area  
Spare area  
Spare area  
CL  
W
AL  
R
O 0-7  
60h R1A R2A R3A D1h  
tIPBSY  
60h R1B R2B R3B  
D0h  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Busy  
b) ONFI 1.0 sequence.  
ai13172c  
1. This address scheme refers to x 8 devices. Please, remember to use the appropriate scheme for x 16 devices.  
2. Any command between 11h and 81h is prohibited except 70h and FFh.  
31/69  
Device operations  
NAND02G-B2D  
6.7  
Block erase  
Erase operations are done one block at a time. An erase operation sets all of the bits in the  
addressed block to ‘1’. All previous data in the block is lost.  
An erase operation consists of the following three steps (refer to Figure 17: Block erase):  
1. One bus cycle is required to set up the Block Erase command. Only addresses A18-  
A28 are used; the other address inputs are ignored  
2. Three bus cycles are then required to load the address of the block to be erased. Refer  
to Table 7: Address definition (x 8 devices) for the block addresses of each device  
3. One bus cycle is required to issue the Block Erase Confirm command to start the P/E/R  
controller.  
The operation is initiated on the rising edge of Write Enable, W, after the Confirm command  
is issued. The P/E/R controller handles block erase and implements the verify process.  
During the block erase operation, only the Read Status Register and Reset commands are  
accepted; all other commands are ignored.  
Once the program operation has completed, the P/E/R controller bit SR6 is set to ‘1’ and the  
Ready/Busy signal goes High. If the operation completed successfully, the Write Status bit  
SR0 is ‘0’, otherwise it is set to ‘1’.  
Figure 17. Block erase  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block address  
inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
code  
Read Status Register  
Block erase  
setup code  
ai07593  
32/69  
NAND02G-B2D  
Device operations  
6.8  
Multiplane block erase  
The multiplane block erase operation allows the erasure of two blocks in parallel, one in  
each plane.  
This operation consists of the following three steps (refer to Figure 18: Multiplane block  
erase):  
1. 10 bus cycles are required to set up the Block Erase command and load the addresses  
of the blocks to be erased. The Setup command followed by the address of the block to  
be erased must be issued for each block. t  
busy time is required between the  
IEBSY  
insertion of first and the second block addresses. As for multiplane page program, the  
address of the first and second page must be within the first plane (A18 = 0 for x8  
devices, A17 = 0 for x16 devices) and second plane (A18 = 1 for x8 devices, A17 = 1 for  
x16 devices), respectively  
2. one bus cycle is then required to issue the Multiplane Block Erase Confirm command  
and start the P/E/R controller  
If the multiplane block erase fails, an error is signaled on bit SR0 of the Status register. To  
know which page of the two planes failed, the Read Status Enhanced command must be  
issued twice, once for each plane (see Section 6.12).  
Figure 18. Multiplane block erase  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block address  
inputs  
Block address  
inputs  
I/O  
60h  
60h  
D0h  
70h  
SR0  
A18=1  
A12-A17=0  
A17-A29=valid  
A18=0  
A12-A17=0  
A17-A29=0  
Block Erase  
Setup code  
Confirm  
code  
Read Status  
register  
Block Erase  
Setup code  
a) Traditional sequence  
CL  
W
AL  
R
I/O 0-7  
60h R1A R2A R3A D1h  
tIPBSY  
60h R1B R2B R3B  
D0h  
tBLBH2  
(Program Busy time)  
RB  
Busy  
Busy  
b) ONFI 1.0 sequence.  
ai13173c  
1. This address scheme refers to x 8 devices. Please remember to use the appropriate scheme for x 16 devices.  
33/69  
Device operations  
NAND02G-B2D  
6.9  
Error detection code (EDC)  
The EDC is performed automatically during all copy back operations. It starts immediately  
after the device becomes busy.  
The EDC detects 1 single bit error per EDC unit. Each EDC unit has a density of 528 bytes  
(or 264 words), split into 512 bytes of main area and 16 bytes of spare area (or 256 + 8  
words). Refer to Table 10 and Figure 19 for EDC unit addresses definition. EDC results can  
only be retrieved during copy back program and multiplane copy back operations using the  
Read EDC Status Register command (see Section 6.13).  
To properly use the EDC, the following conditions apply:  
Page program operations must be performed on a whole page, or on whole EDC unit(s)  
The modification of the content of an EDC unit using a random data input before the  
copy back program, must be performed on the whole EDC unit. It can only be done  
once per EDC unit. Any partial modification of the EDC unit results in the corruption of  
the on-chip EDCs.  
Figure 19. Page organization  
Page = 4 EDC units  
Main area (2048 bytes/1024 words)  
Spare area (64 bytes/32 words)  
A area  
B area  
C area  
D area  
E area  
F area  
G area  
H area  
(512 bytes/ (512 bytes/ (512 bytes/ (512 bytes/ (16 bytes/ (16 bytes/ (16 bytes/ (16 bytes/  
256 words) 256 words) 256 words) 256 words) 8 words)  
8 words) 8 words)  
8 words)  
AI13179b  
Table 10. Address definition for EDC units (x8 devices)  
Main area  
EDC unit  
Spare area  
Area name  
Column address  
Area name  
Column address  
1st 528-byte EDC unit  
2nd 528-byte EDC unit  
3rd 528-byte EDC unit  
4th 528-byte EDC unit  
A
B
C
D
0 to 511  
E
F
2048 to 2063  
2064 to 2079  
2080 to 2095  
2096 to 2111  
512 to 1023  
1024 to1535  
1536 to 2047  
G
H
34/69  
NAND02G-B2D  
Device operations  
Table 11. Address definition for EDC units (x16 devices)  
Main area  
EDC unit  
Spare area  
Area name  
Column address  
Area name  
Column address  
1st 264-word EDC unit  
2nd 264-word EDC unit  
3rd 264-word EDC unit  
4th 264-word EDC unit  
A
B
C
D
0 to 255  
256 to 511  
512 to 767  
768 to 1023  
E
F
1024 to 1031  
1032 to 1039  
1040 to 1047  
1048 to 1055  
G
H
6.10  
Reset  
The Reset command is used to reset the command interface and Status register. If the  
Reset command is issued during any operation, the operation is aborted. If the aborted  
operation is a program or erase operation, the contents of the memory locations being  
modified are no longer valid as the data is partially programmed or erased.  
If the device has already been reset, then the new Reset command is not accepted.  
The Ready/Busy signal goes Low for t  
after the Reset command is issued. The value  
BLBH4  
of t  
depends on the operation that the device was performing when the command was  
BLBH4  
issued. Refer to Table 28 for the values.  
6.11  
Read status register  
The devices contain a Status register that provides information on the current or previous  
program or erase operation. The various bits in the Status register convey information and  
errors on the operation.  
The Status register is read by issuing the Read Status Register command. The Status  
register information is present on the output data bus (I/O0-I/O7) on the falling edge of Chip  
Enable or Read Enable, whichever occurs last. When several memories are connected in a  
system, the use of Chip Enable and Read Enable signals allows the system to poll each  
device separately, even when the Ready/Busy pins are common-wired. It is not necessary to  
toggle the Chip Enable or Read Enable signals to update the contents of the Status register.  
After the Read Status Register command has been issued, the device remains in read  
status register mode until another command is issued. Therefore, if a Read Status Register  
command is issued during a Random Read cycle, a new Read command must be issued to  
continue with a Page Read operation.  
The Status register bits are summarized in Table 12: Status register bits. Refer to Table 12  
in conjunction with the following sections.  
6.11.1  
Write protection bit (SR7)  
The Write Protection bit identifies if the device is protected or not. If the Write Protection bit  
is set to ‘1’ the device is not protected and program or erase operations are allowed. If the  
Write Protection bit is set to ‘0’ the device is protected and program or erase operations are  
not allowed.  
35/69  
Device operations  
NAND02G-B2D  
6.11.2  
P/E/R controller and cache ready/busy bit (SR6)  
Status register bit SR6 has two different functions depending on the current operation.  
During cache operations, SR6 acts as a Cache Ready/Busy bit, which indicates whether the  
Cache register is ready to accept new data. When SR6 is set to '0', the Cache register is  
busy, and when SR6 is set to '1', the Cache register is ready to accept new data.  
During all other operations, SR6 acts as a P/E/R controller bit, which indicates whether the  
P/E/R controller is active or inactive. When the P/E/R controller bit is set to ‘0’, the P/E/R  
controller is active (device is busy); when the bit is set to ‘1’, the P/E/R controller is inactive  
(device is ready).  
6.11.3  
P/E/R controller bit (SR5)  
The Program/Erase/Read controller bit indicates whether the P/E/R controller is active or  
inactive during cache operations. When the P/E/R controller bit is set to ‘0’, the P/E/R  
controller is active (device is busy); when the bit is set to ‘1’, the P/E/R controller is inactive  
(device is ready).  
Note:  
This bit is only valid for cache operations.  
6.11.4  
Error bit (SR0)  
The Error bit is used to identify if any errors have been detected by the P/E/R controller. The  
Error bit is set to ’1’ when a program or erase operation has failed to write the correct data to  
the memory. If the Error bit is set to ‘0’ the operation has completed successfully.  
6.11.5  
SR4, SR3, SR2 and SR1 are reserved  
Table 12. Status register bits  
Bit  
Name  
Logic level  
Definition  
'1'  
'0'  
'1'  
'0'  
'1'  
'0'  
Not protected  
Protected  
SR7  
Write protection  
P/E/R controller inactive, device ready  
P/E/R controller active, device busy  
P/E/R controller inactive, device ready  
P/E/R controller active, device busy  
Program/Erase/Read  
controller  
SR6  
SR5  
Program/Erase/Read  
controller(1)  
SR4, SR3,  
SR2, SR1  
Reserved  
Don’t care  
‘1’  
‘0’  
Error – operation failed  
SR0  
Generic error  
No error – operation successful  
1. Only valid for cache operations.  
36/69  
NAND02G-B2D  
Device operations  
6.12  
Read status enhanced  
In NAND flash devices with multiplane architecture, it is possible to independently read the  
status register of a single plane using the Read Status Enhanced command. If the error bit  
of the Status register, SR0, reports an error during or after a multiplane operation, the Read  
Status Enhanced command is used to know which of the two planes contains the page that  
failed the operation. Three address cycles are required to address the selected block and  
page (A12-A28 for x 8 devices and A11-A27 for x 16 devices).  
The output of the Read Status Enhanced command has the same coding as the Read  
Status command. See Table 12 for a full description and Figure 30 for the Read Status  
Enhanced waveform.  
6.13  
Read EDC status register  
The devices contain an EDC Status register, which provides information on the errors that  
occurred during the read cycles of the copy back and multiplane copy back operations. In  
the case of multiplane copy back program it is not possible to distinguish which of the two  
read operations caused the error.  
The EDC Status register is read by issuing the Read EDC Status Register command.  
After issuing the Read EDC Status Register command, a read cycle outputs the content of  
the EDC Status register to the I/O pins on the falling edge of Chip Enable or Read Enable  
signals, whichever occurs last. The operation is similar to the Read Status Register  
command.  
Table 13: EDC status register bits summarizes the EDC Status register bits. See Figure 29  
for a description of register EDC Status register waveforms.  
Table 13. EDC status register bits  
Bit  
Name  
Logic level  
Definition  
Copy back or multiplane copy back  
operation failed  
‘1’  
0
Pass/Fail  
Copy back or multiplane copy back  
operation succeeded  
‘0’  
‘1’  
Error  
1
2
EDC status  
EDC validity  
‘0’  
No error  
Valid  
‘1’  
‘0’  
Invalid  
-
3
4
Reserved  
Reserved  
‘Don’t care’  
‘Don’t care’  
-
‘1’  
‘0’  
‘1’  
‘0’  
‘1’  
‘0’  
Ready  
Busy  
5
6
7
Ready/Busy(1)  
Ready/Busy(1)  
Write Protect  
Ready  
Busy  
Not protected  
Protected  
1. See Table 12: Status register bits for a description of SR5 and SR6 bits.  
37/69  
Device operations  
NAND02G-B2D  
6.14  
Read electronic signature  
The devices contain a manufacturer code and device code. The following three steps are  
required to read these codes:  
1. One bus write cycle to issue the Read Electronic Signature command (90h)  
2. One bus write cycle to input the address (00h)  
3. Five bus read cycles to sequentially output the data (as shown in Table 14: Electronic  
signature).  
The device remains in this state until a new command is issued  
Table 14. Electronic signature  
Byte 3  
Byte 4  
Byte 5  
Root part number  
Byte 1  
Byte 2  
(see Table 15)  
(see Table 16)  
(see Table 17)  
NAND02GR3B2D  
NAND02GW3B2D  
NAND02GR4B2D  
NAND02GW4B2D  
20h  
20h  
AAh  
DAh  
BAh  
CAh  
10h  
10h  
10h  
10h  
15h  
95h  
55h  
D5h  
44h  
44h  
44h  
44h  
0020h  
0020h  
Table 15. Electronic signature byte 3  
I/O  
Definition  
Value  
Description  
0 0  
0 1  
1 0  
1 1  
1
2
4
8
I/O1-I/O0  
Internal chip number  
Cell type  
0 0  
0 1  
1 0  
1 1  
2-level cell  
4-level cell  
8-level cell  
I/O3-I/O2  
I/O5-I/O4  
16-level cell  
0 0  
0 1  
1 0  
1 1  
1
2
4
8
Number of simultaneously  
programmed pages  
0
1
Not supported  
Supported  
Interleaved programming  
between multiple devices  
I/O6  
I/O7  
0
1
Not supported  
Supported  
Cache program  
38/69  
NAND02G-B2D  
Device operations  
Description  
Table 16. Electronic signature byte 4  
I/O  
Definition  
Value  
0 0  
0 1  
1 0  
1 1  
1 Kbytes  
2 Kbytes  
4 Kbytes  
8 Kbytes  
Page size  
I/O1-I/O0  
(without spare area)  
Spare area size  
(byte/512 byte)  
0
1
8
I/O2  
16  
0 0  
1 0  
0 1  
1 1  
30/50 ns  
25 ns  
Minimum sequential access  
time  
I/O7, I/O3  
Reserved  
Reserved  
0 0  
0 1  
1 0  
1 1  
64 Kbytes  
128 Kbytes  
256 Kbytes  
512 Kbytes  
Block size  
I/O5-I/O4  
I/O6  
(without spare area)  
0
1
x8  
Organization  
x16  
Table 17. Electronic signature byte 5  
I/O  
Definition  
Value  
Description  
I/O1 - I/O0  
Reserved  
0 0  
0 0  
0 1  
1 0  
1 1  
1 plane  
2 planes  
4 planes  
8 planes  
I/O3 - I/O2  
Plane number  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
64 Mbits  
128 Mbits  
256 Mbits  
512 Mbits  
1 Gb  
Plane size  
I/O6 - I/O4  
(without spare area)  
2 Gb  
4 Gb  
8 Gb  
I/O7  
Reserved  
0
39/69  
Device operations  
NAND02G-B2D  
6.15  
Read ONFI signature  
To recognize NAND flash devices that are compatible with the ONFI 1.0 command set, the  
Read Electronic Signature command can be issued, followed by an address of 20h. The  
next four bytes output is the ONFI signature, which is the ASCII encoding of the ‘ONFI’ word.  
Reading beyond four bytes produces indeterminate values. The device remains in this state  
until a new command is issued.  
Figure 32 provides a description of the read ONFI signature waveform and Table 18  
provides the definition of the output bytes.  
Table 18. Read ONFI signature  
Value  
ASCII character  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
4Fh  
4Eh  
O
N
46h  
F
49h  
I
Undefined  
Undefined  
6.16  
Read parameter page  
The Read Parameter Page command retrieves the data structure that describes the NAND  
flash organization, features, timings and other behavioral parameters. This data structure  
enables the host processor to automatically recognize the NAND flash configuration of a  
device. The whole data structure is repeated at least five times.  
See Figure 39 for a description of the read parameter page waveform.  
The Random Data Read command can be issued during execution of the read parameter  
page to read specific portions of the parameter page.  
The Read Status command may be used to check the status of read parameter page during  
execution. After completion of the Read Status command, 00h is issued by the host on the  
command line to continue with the data output flow for the Read Parameter Page command.  
Read status enhanced is not be used during execution of the Read Parameter Page  
command.  
Table 19 defines the parameter page data structure. For parameters that span multiple  
bytes, the least significant byte of the parameter corresponds to the first byte.  
Values are reported in the parameter page in bytes when referring to items related to the  
size of data access (as in an x 8 data access device). For example, the chip returns how  
many data bytes are in a page. For a device that supports x 16 data access, the host is  
required to convert byte values to word values for its use. Unused fields are set to 0h.  
For more detailed information about parameter page data bits, refer to ONFI Specification  
1.0 section 5.4.1.  
40/69  
NAND02G-B2D  
Device operations  
Table 19. Parameter page data structure  
Byte  
O/M(1)  
Description  
Parameter page signature  
– Byte 0: 4Fh, ‘O’  
– Byte 1: 4Eh, ‘N’  
– Byte 2: 46h, ‘F’  
0-3  
M
– Byte 3: 49h, ‘I’  
Revision number  
Bit 2 to bit 15 Reserved (0)  
4-5  
M
Bit 1  
Bit 0  
1 = supports ONFI version 1.0  
Reserved (0)  
Features supported  
Bit 5 to bit 15 Reserved (0)  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1 = supports odd to even page copy back  
1 = supports interleaved operations  
6-7  
M
1 = supports non-sequential page programming  
1 = supports multiple LUN operations  
1 = supports 16-bit data bus width  
Optional commands supported  
Bit 6 to bit 15 Reserved (0)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1 = supports read unique ID  
1 = supports copy back  
8-9  
M
1 = supports read status enhanced  
1 = supports get features and set features  
1 = supports read cache commands  
1 = supports page cache program command  
Reserved (0)  
10-31  
32-43  
44-63  
64  
M
M
M
O
Device manufacturer (12 ASCII characters)  
Device model (20 ASCII characters)  
JEDEC manufacturer ID  
65-66  
67-79  
80-83  
84-85  
86-89  
90-91  
92-95  
Date code  
Reserved (0)  
M
M
M
M
M
Number of data bytes per page  
Number of spare bytes per page  
Number of data bytes per partial page  
Number of spare bytes per partial page  
Number of pages per block  
41/69  
Device operations  
NAND02G-B2D  
Table 19. Parameter page data structure (continued)  
Byte  
O/M(1)  
Description  
96-99  
100  
M
M
Number of blocks per logical unit (LUN)  
Number of logical units (LUNs)  
Number of address cycles  
101  
M
Bit 4 to bit 7  
Bit 0 to bit 3  
Column address cycles  
Row address cycles  
102  
103-104  
105-106  
107  
M
M
M
M
M
M
Number of bits per cell  
Bad blocks maximum per LUN  
Block endurance  
Guaranteed valid blocks at beginning of target  
Block endurance for guaranteed valid blocks  
Number of programs per page  
108-109  
110  
Partial programming attributes  
Bit 5 to bit 7  
4
Reserved  
1 = partial page layout is partial page data followed by  
partial page spare  
111  
M
Bit 1 to bit 3  
0
Reserved  
1 = partial page programming has constraints  
Number of bits ECC correctability  
112  
113  
M
M
Number of interleaved address bits  
Bit 4 to bit 7  
Bit 0 to bit 3  
Reserved (0)  
Number of interleaved address bits  
Interleaved operation attributes  
Bit 4 to bit 7  
Bit 3  
Reserved (0)  
Address restrictions for program cache  
1 = program cache supported  
1 = no block address restrictions  
Overlapped / concurrent interleaving support  
Reserved (0)  
114  
O
M
Bit 2  
Bit 1  
Bit 0  
115-127  
128  
I/O pin capacitance  
42/69  
NAND02G-B2D  
Device operations  
Table 19. Parameter page data structure (continued)  
Byte  
O/M(1)  
Description  
Timing mode support  
Bit 6 to bit 15 Reserved (0)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1 = supports timing mode 5  
1 = supports timing mode 4  
1 = supports timing mode 3  
1 = supports timing mode 2  
1 = supports timing mode 1  
1 = supports timing mode 0, shall be 1  
129-130  
M
Program cache timing mode support  
Bit 6 to bit 15 Reserved (0)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1 = supports timing mode 5  
1 = supports timing mode 4  
1 = supports timing mode 3  
1 = supports timing mode 2  
1 = supports timing mode 1  
1 = supports timing mode 0  
tPROG maximum page program time (µs)  
131-132  
O
133-134  
135-136  
137-138  
139-163  
164-165  
166-253  
254-255  
256-511  
512-767  
M
M
M
M
M
M
M
M
M
tBERS maximum block erase time (µs)  
tR maximum page read time (µs)  
Reserved (0)  
Vendor specific revision number  
Vendor specific  
Integrity CRC  
Value of bytes 0-255  
Value of bytes 0-255  
768+  
O
Additional redundant parameter pages  
1. O = optional, M = mandatory.  
43/69  
Data protection  
NAND02G-B2D  
7
Data protection  
The devices feature a Write Protect, WP, pin, which protects the device against program and  
erase operations. It is recommended to keep WP at V during power-up and power-down.  
IL  
8
Software algorithms  
This section provides information on the software algorithms that Numonyx recommends  
implementing to manage the bad blocks and extend the lifetime of the NAND device.  
NAND flash memories are programmed and erased by Fowler-Nordheim tunnelling using  
high voltage. Exposing the device to high voltage for extended periods damages the oxide  
layer.  
To extend the number of program and erase cycles and increase the data retention, the:  
Number of program and erase cycles is limited (see Table 21: Program erase times and  
program erase endurance cycles for the values)  
Implementation of a garbage collection, a wear-leveling algorithm and an error  
correction code is recommended.  
To help integrate a NAND memory into an application, Numonyx provides a file system OS  
native reference software, which supports the basic commands of file management.  
Contact the nearest Numonyx sales office for more details.  
8.1  
Bad block management  
Devices with bad blocks have the same quality level and the same AC and DC  
characteristics as devices that have all valid blocks. A bad block does not affect the  
performance of valid blocks because it is isolated from the bit and common source lines by a  
select transistor.  
The devices are supplied with all the locations inside valid blocks erased (FFh). The bad  
block information is written prior to shipping. Any block, where the 1st and 6th bytes or the  
1st word in the spare area of the 1st page, does not contain FFh, is a bad block.  
The bad block information must be read before any erase is attempted as the bad block  
Information may be erased. For the system to be able to recognize the bad blocks based on  
the original information, the creation of a bad block table following the flowchart shown in  
Figure 20: Bad block management flowchart is recommended.  
44/69  
NAND02G-B2D  
Software algorithms  
8.2  
NAND flash memory failure modes  
Over the lifetime of the device bad blocks may develop. To implement a highly reliable  
system, the possible failure modes must be considered.  
Program/erase failure  
In this case, the block has to be replaced by copying the data to a valid block. These  
additional bad blocks can be identified because attempts to program or erase them  
gives errors in the Status register. As the failure of a page program operation does not  
affect the data in other pages in the same block, the block can be replaced by  
reprogramming the current data and copying the rest of the replaced block to an  
available valid block. The Copy Back Program command copies the data to a valid  
block. See Section 6.5: Copy back program for more details.  
Read failure  
In this case, ECC correction must be implemented. To efficiently use the memory  
space, the recovery of a single-bit error in read by ECC, without replacing the whole  
block, is recommended.  
Refer to Table 20: Block failure for the recommended procedure to follow if an error occurs  
during an operation.  
Table 20. Block failure  
Operation  
Procedure  
Erase  
Program  
Read  
Block replacement  
Block replacement  
ECC  
Figure 20. Bad block management flowchart  
START  
Block Address =  
Block 0  
Increment  
Block Address  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
AI07588C  
45/69  
Software algorithms  
NAND02G-B2D  
8.3  
Garbage collection  
When a data page needs to be modified, it is faster to write to the first available page,  
resulting in the previous page being marked as invalid. After several updates it is necessary  
to remove invalid pages to free memory space.  
To free this memory space and allow further program operations, the implementation of a  
garbage collection algorithm is recommended. In garbage collection software, the valid  
pages are copied into a free area and the block containing the invalid pages is erased as  
show in Figure 21.  
Figure 21. Garbage collection  
Old area  
New area (After GC)  
Valid  
page  
Invalid  
page  
Free  
page  
(Erased)  
AI07599B  
8.4  
Wear-leveling algorithm  
For write-intensive applications, the implementation of a wear-leveling algorithm is  
recommended to monitor and spread the number of write cycles per block.  
In memories that do not use a wear-leveling algorithm, not all blocks get used at the same  
rate. The wear-leveling algorithm insures that equal use is made of all the available write  
cycles for each block. There are two wear-leveling levels:  
First level wear-leveling, where new data is programmed to the free blocks that have  
had the fewest write cycles  
Second level wear-leveling, where long-lived data is copied to another block so that the  
original block can be used for more frequently-changed data.  
The second level wear-leveling is triggered when the difference between the maximum and  
the minimum number of write cycles per block reaches a specific threshold.  
46/69  
NAND02G-B2D  
Software algorithms  
8.5  
Error correction code  
The user must implement an error correction code (ECC) to identify and correct errors in the  
data stored in the NAND flash memories. For every 2048 bits in the device, the  
implementation of 22 bits of ECC (16 bits for line parity plus 6 bits for column parity) is  
required.  
Figure 22. Error detection  
New ECC generated  
during read  
XOR previous ECC  
with new ECC  
NO  
NO  
>1 bit  
= zero?  
All results  
= zero?  
YES  
YES  
22 bit data = 0  
11 bit data = 1  
1 bit data = 1  
ECC Error  
Correctable  
Error  
No Error  
ai08332  
47/69  
Program and erase times and endurance cycles  
NAND02G-B2D  
9
Program and erase times and endurance cycles  
The program and erase times and the number of program/erase cycles per block are shown  
in Table 21.  
Table 21. Program erase times and program erase endurance cycles  
NAND flash  
Parameters  
Unit  
Min  
Typ  
Max  
Page program time  
200  
200  
250  
1.5  
1.5  
2
700  
700  
800  
2
µs  
µs  
3.0 V  
1.8 V  
Multiplane program time  
Block erase time  
µs  
ms  
3.0 V  
1.8 V  
2
ms  
Multiplane block erase time  
Multiplane program busy time (tIPBSY  
2.5  
1
ms  
)
0.5  
0.5  
3
µs  
Multiplane erase busy time (tIEBSY  
)
1
µs  
Cache read busy time (tRCBSY  
)
tR  
µs  
Program/erase cycles per block (with ECC)  
Data retention  
100,000  
10  
cycles  
years  
48/69  
NAND02G-B2D  
Maximum ratings  
10  
Maximum ratings  
Stressing the device above the ratings listed in Table 22: Absolute maximum ratings may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 22. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TBIAS  
TSTG  
Temperature under bias  
– 50  
– 65  
– 0.6  
– 0.6  
125  
150  
4.6  
°C  
°C  
V
Storage temperature  
Input or output voltage  
Supply voltage  
(1)  
VIO  
VDD  
4.6  
V
1. Minimum voltage may undershoot to –2 V for less than 20 ns during transitions on input and I/O pins.  
Maximum voltage may overshoot to VDD + 2 V for less than 20 ns during transitions on I/O pins.  
49/69  
DC and AC parameters  
NAND02G-B2D  
11  
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the following DC and AC characteristics  
tables are derived from tests performed under the measurement conditions summarized in  
Table 23. Designers should check that the operating conditions in their circuit match the  
measurement conditions when relying on the quoted parameters.  
Table 23. Operating and AC measurement conditions  
NAND flash  
Parameter  
Units  
Min  
Max  
1.8 V device  
3.0 V device  
Grade 1  
1.7  
2.7  
0
1.95  
3.6  
70  
Supply voltage (VDD  
)
V
°C  
°C  
pF  
pF  
V
Ambient temperature (TA)  
Grade 6  
–40  
30  
50  
0
85  
1.8 V device  
3.0 V device  
Load capacitance (CL) (1 TTL GATE  
and CL)  
Input pulses voltages  
VDD  
Input and output timing ref. voltages  
Output circuit resistor Rref  
Input rise and fall times  
V
DD/2  
V
8.35  
5
k  
ns  
(1)  
Table 24. Capacitance  
Symbol  
Parameter  
Test condition  
Typ  
Max  
Unit  
CIN  
Input capacitance  
VIN = 0 V  
10  
pF  
Input/output  
CI/O  
VIL = 0 V  
10  
pF  
capacitance(2)  
1.  
TA = 25 °C, f = 1 MHz. CIN and CI/O are not 100% tested.  
2. Input/output capacitances double in stacked devices.  
50/69  
NAND02G-B2D  
DC and AC parameters  
Figure 23. Equivalent testing circuit for AC characteristics measurement  
V
DD  
2R  
ref  
NAND Flash  
C
L
2R  
ref  
GND  
GND  
Ai11085  
Table 25. DC characteristics (1.8 V devices)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
Read  
IDD1  
-
10  
20  
mA  
E=VIL, OUT = 0 mA  
I
Operating  
current  
IDD2  
IDD3  
Program  
Erase  
-
-
-
-
10  
10  
20  
20  
mA  
mA  
E=VDD-0.2,  
WP=0/VDD  
IDD5  
Standby current (CMOS(1)  
-
10  
50  
µA  
ILI  
ILO  
Input leakage current(1)  
Output leakage current(1)  
Input high voltage  
VIN= 0 to VDDmax  
VOUT= 0 to VDDmax  
-
-
-
-
-
-
-
-
-
±10  
µA  
µA  
V
-
±10  
VIH  
0.8 * VDD  
VDD + 0.3  
VIL  
Input low voltage  
-
-0.3  
0.2 * VDD  
V
VOH  
VOL  
Output high voltage level  
Output low voltage level  
Output low current (RB)  
IOH = -100 µA  
IOL = 100 µA  
VOL = 0.1 V  
VDD - 0.1  
-
0.1  
4
V
-
V
IOL (RB)  
3
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
-
-
-
1.1  
V
1. Leakage current and standby current double in stacked devices.  
51/69  
DC and AC parameters  
NAND02G-B2D  
Table 26. DC characteristics (3 V devices)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
tRLRL minimum  
Sequential  
read  
IDD1  
-
15  
30  
mA  
E=VIL, OUT = 0 mA  
I
Operating  
current  
IDD2  
IDD3  
Program  
Erase  
-
-
-
-
15  
15  
30  
30  
1
mA  
mA  
mA  
I
Standby current (TTL)(1)  
E=VIH, WP=0/VDD  
DD4  
E=VDD-0.2,  
WP=0/VDD  
IDD5  
Standby current (CMOS)(1)  
-
10  
50  
µA  
ILI  
ILO  
Input leakage current(1)  
Output leakage current(1)  
Input high voltage  
VIN= 0 to VDDmax  
VOUT= 0 to VDDmax  
-
-
-
-
-
-
-
-
-
±10  
±10  
µA  
µA  
V
-
VIH  
0.8 VDD  
VDD+0.3  
0.2 VDD  
-
VIL  
Input low voltage  
-
-0.3  
2.4  
-
V
VOH  
VOL  
Output high voltage level  
Output low voltage level  
Output low current (RB)  
IOH = -400 µA  
IOL = 2.1 mA  
VOL = 0.4 V  
V
0.4  
V
IOL (RB)  
8
10  
mA  
VDD supply voltage (erase and  
program lockout)  
VLKO  
-
-
-
1.8  
V
1. Leakage current and standby current double in stacked devices.  
Table 27. AC characteristics for command, address, data input  
Alt.  
Symbol  
Parameter  
1.8 V  
25  
3 V  
12  
Unit  
ns  
symbol  
tALLWH  
tALHWH  
tCLHWH  
tCLLWH  
tDVWH  
tELWH  
Address Latch Low to Write Enable High  
Address Latch High to Write Enable High  
Command Latch High to Write Enable High  
Command Latch Low to Write Enable High  
Data Valid to Write Enable High  
tALS  
AL setup time  
CL setup time  
Min  
tCLS  
Min  
25  
12  
ns  
tDS  
tCS  
Data setup time  
E setup time  
AL hold time  
Min  
Min  
Min  
20  
35  
10  
12  
20  
5
ns  
ns  
ns  
Chip Enable Low to Write Enable High  
Write Enable High to Address Latch High  
Write Enable High to Command Latch High  
Write Enable High to Command Latch Low  
Write Enable High to Data Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Write Enable Low to Write Enable Low  
tWHALH  
tWHCLH  
tWHCLL  
tWHDX  
tWHEH  
tWHWL  
tWLWH  
tWLWL  
tALH  
tCLH  
CL hold time  
Min  
10  
5
ns  
tDH  
tCH  
tWH  
tWP  
tWC  
Data hold time  
E hold time  
Min  
Min  
10  
10  
15  
25  
45  
5
ns  
ns  
ns  
ns  
ns  
5
W high hold time Min  
10  
12  
25  
W pulse width  
Min  
Min  
Write cycle time  
52/69  
NAND02G-B2D  
DC and AC parameters  
(1)  
Table 28. AC Characteristics for operations  
Alt.  
Symbol  
Parameter  
1.8 V  
3 V  
Unit  
symbol  
tALLRL1  
tALLRL2  
tBHRL  
Read electronic signature  
Read cycle  
Min  
Min  
10  
10  
20  
25  
700  
2
10  
10  
20  
25  
700  
2
ns  
ns  
ns  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
Address Latch Low to  
Read Enable Low  
tAR  
tRR  
Ready/Busy High to Read Enable Low  
Read Busy time  
Min  
tBLBH1  
tBLBH2  
tBLBH3  
Max  
Max  
Max  
Max  
Max  
Max  
Max  
Min  
tPROG  
tBERS  
Program Busy time  
Erase Busy time  
Ready/Busy Low to  
Ready/Busy High  
Reset Busy time, during ready  
5
5
Reset Busy time, during read  
Reset Busy time, during program  
Reset Busy time, during erase  
5
5
tBLBH4  
tRST  
10  
500  
10  
0
10  
500  
10  
0
tCLLRL  
tDZRL  
tCLR  
tIR  
Command Latch Low to Read Enable Low  
Data Hi-Z to Read Enable Low  
Min  
tEHQZ  
tEHALX  
tEHCLX  
tRHQZ  
tELQV  
tCHZ  
Chip Enable High to Output Hi-Z  
Max  
30  
30  
Chip Enable High to Address Latch ‘don’t care’  
Chip Enable High to Command Latch ‘don’t care’  
Read Enable High to Output Hi-z  
tCSD  
Min  
10  
10  
ns  
tRHZ  
tCEA  
Max  
Max  
100  
45  
100  
25  
ns  
ns  
Chip Enable Low to Output Valid  
Read Enable High to  
Read Enable High Hold time  
Read Enable Low  
tRHRL  
tREH  
tCOH  
Min  
15  
10  
ns  
tEHQX  
tRHQX  
tRLQX  
Chip Enable high to Output Hold  
Min  
Min  
Min  
15  
15  
5
15  
15  
5
ns  
ns  
ns  
tRHOH Read Enable High to Output Hold  
tRLOH Read Enable Low to Output Hold (EDO mode)  
Read Enable Low to  
tRLRH  
tRLRL  
tRP  
Read enable pulse width  
Min  
Min  
25  
45  
12  
25  
ns  
ns  
Read Enable High  
Read Enable Low to  
Read Enable Low  
tRC  
Read cycle time  
Read enable access time  
Read ES Access time(2)  
Read Enable Low to  
Output Valid  
tRLQV  
tREA  
Max  
Max  
30  
25  
20  
25  
ns  
µs  
Write Enable High to  
Ready/Busy High  
tWHBH  
tR  
Read Busy time  
tWHBL  
tWHRL  
tRHWL  
tWB  
Write Enable High to Ready/Busy Low  
Write Enable High to Read Enable Low  
Max  
Min  
Min  
100  
60  
100  
60  
ns  
ns  
ns  
tWHR  
tRHW Read Enable High to Write Enable Low  
100  
100  
Last address latched to data loading time during program  
operations  
(3)  
tWHWH  
tADL  
Min  
Min  
100  
100  
70  
ns  
ns  
tVHWH  
tVLWH  
(4)  
tWW  
Write Protection time  
100  
1. The time to ready depends on the value of the pull-up resistor tied to the ready/busy pin. See Figure 40, Figure 41 and  
Figure 42.  
53/69  
DC and AC parameters  
NAND02G-B2D  
2. ES = electronic signature.  
3. tADL is the time from W rising edge during the final address cycle to W rising edge during the first data cycle.  
4. During a program/erase enable operation, tWW is the delay from WP high to W High. During a program/erase disable  
operation, tWW is the delay from WP Low to W High.  
Figure 24. Command latch AC waveforms  
CL  
tCLHWH  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
(E Hold time)  
tELWH  
H(E Setup time)  
E
tWLWH  
W
tALLWH  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
I/O  
tDVWH  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Command  
ai12470b  
54/69  
NAND02G-B2D  
DC and AC parameters  
Figure 25. Address latch AC waveforms  
tCLLWH  
(CL Setup time)  
CL  
tWLWL  
tELWH  
(E Setup time)  
tWLWL  
tWLWL  
tWLWL  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHWL  
tWHWL  
tWHWL  
tWHALL  
tALHWH  
(AL Setup time)  
tWHALL  
tWHALL  
tWHALL  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
tDVWH  
(Data Setup time)  
tWHDX  
tWHDX  
tWHDX  
ai12471  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 5  
Adrress  
cycle 1  
Figure 26. Data input latch AC waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWH  
(ALSetup time)  
tWLWL  
AL  
tWLWH  
tWLWH  
tWLWH  
W
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai12472  
1. The last data input is the 2112th.  
55/69  
DC and AC parameters  
NAND02G-B2D  
Figure 27. Sequential data output after read AC waveforms  
tRLRL  
(Read Cycle time)  
E
tEHQX  
tEHQZ  
tRHRL  
(R High Holdtime)  
R
tRHQZ  
tRHQZ  
(2)  
tRHQX  
tRLQV  
tRLQV  
tRLQV  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai13174  
1. CL = Low, AL = Low, W = High.  
2. tRHQX is applicable for frequencies lower than 33 MHz (for instance, tRLRL higher than 30 ns).  
Figure 28. Sequential data output after read AC waveforms (EDO mode)  
tRLRL  
E
tEHQX  
tEHQZ  
tRLRH  
tRLQV  
tRHRL  
R
tRHQZ  
tELQV  
tRLQX  
tRLQV  
(2)  
tRHQX  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai13175  
1. In EDO mode, CL and AL are Low, VIL, and W is High, VIH  
.
2. tRLQX is applicable for frequencies high than 33 MHz (for instance, tRLRL lower than 30 ns).  
56/69  
NAND02G-B2D  
DC and AC parameters  
Figure 29. Read Status register or read EDC Status register AC waveform  
tCLLRL  
CL  
tWHCLL  
tCLHWH  
tWHEH  
E
tELWH  
tWLWH  
W
R
tELQV  
tEHQZ  
tWHRL  
tEHQX  
tDZRL  
tRHQZ  
tRHQX  
tDVWH  
(Data Setup time)  
tWHDX  
tRLQV  
(Data Hold time)  
Status Register  
Output  
I/O  
70h or 7Bh  
ai13177  
Figure 30. Read status enhanced waveform  
CL  
tWHRL  
W
tALLRL2  
AL  
R
I/O 0-7  
Status Register  
output  
78h  
Address 1  
Address 2  
Address 3  
ai14408b  
57/69  
DC and AC parameters  
NAND02G-B2D  
Figure 31. Read electronic signature AC waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
I/O  
90h  
00h  
Byte1  
Byte2  
Byte3  
Byte4  
Byte5  
Man.  
code  
Device  
code  
Read Electronic 1st Cycle  
see Note.1  
Signature  
Command  
Address  
ai13178  
1. Refer to Table 14 for the values of the manufacturer and device codes, and to Table 15, Table 16, and Table 17 for the  
information contained in byte 3, byte 4, and byte 5.  
Figure 32. Read ONFI signature waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES access time)  
I/O  
90h  
20h  
4Fh  
4Eh  
46h  
49h  
XXh  
Read Electronic 1st cycle  
Signature  
command  
address  
ai13178b  
58/69  
NAND02G-B2D  
DC and AC parameters  
Figure 33. Page read operation AC waveform  
tEHALX  
tEHCLX  
CL  
E
tWLWL  
tEHQZ  
W
tWHBL  
AL  
tALLRL2  
tWHBH  
tRLRL  
tRHQZ  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
Add.N Add.N Add.N Add.N  
cycle 1 cycle 2 cycle 3 cycle 4  
Add.N  
cycle 5  
I/O  
30h  
00h  
Data Output  
from Address N to Last Byte or Word in Page  
Command Address N Input  
Code  
Busy  
ai12474b  
59/69  
DC and AC parameters  
NAND02G-B2D  
Figure 34. Page program AC waveform  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tWHWH  
tWHRL  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N Add.N  
cycle 4 cycle 5  
Add.N  
Add.N  
Add.N  
I/O  
RB  
80h  
Last  
N
10h  
70h  
SR0  
cycle 1 cycle 2  
cycle 3  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai12475b  
60/69  
NAND02G-B2D  
DC and AC parameters  
Figure 35. Block erase AC waveform  
CL  
E
tWLWL  
(Write Cycle time)  
W
AL  
R
tBLBH3  
tWHBL  
(Erase Busy time)  
tWHRL  
Add.  
Add.  
Add.  
I/O  
RB  
70h  
SR0  
60h  
D0h  
cycle 1 cycle 2  
cycle 3  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038c  
Figure 36. Reset AC waveform  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
61/69  
DC and AC parameters  
NAND02G-B2D  
Figure 37. Program/erase enable waveform  
W
W
tVHWH  
tVHWH  
WP  
RB  
WP  
RB  
I/O  
80h  
I/O  
60h  
Program setup  
Erase setup  
ai12477b  
Figure 38. Program/erase disable waveform  
W
W
tVLWH  
tVLWH  
WP  
RB  
WP  
High  
High  
RB  
I/O  
60h  
I/O  
80h  
Program disable  
Erase disable  
ai12478b  
Figure 39. Read parameter page waveform  
CL  
W
AL  
R
I/O0-7  
R/B  
ECh  
00h  
P0  
P1  
...  
P0  
1
P1  
1
...  
0
0
tBLBH1  
ai14409  
62/69  
NAND02G-B2D  
DC and AC parameters  
11.1  
Ready/busy signal electrical characteristics  
Figure 41, Figure 40 and Figure 42 show the electrical characteristics for the ready/busy  
signal. The value required for the resistor R can be calculated using the following equation:  
P
(
)
V
V
DDmax  
OLmax  
R min= -------------------------------------------------------------  
P
+ I  
I
L
OL  
This is an example for 3 V devices:  
3.2V  
R min= ---------------------------  
P
+
8mA  
I
L
where I is the sum of the input currents of all the devices tied to the ready/busy signal. R  
L
P
max is determined by the maximum value of t .  
r
Figure 40. Ready/busy AC waveform  
ready V  
DD  
V
OH  
V
OL  
busy  
t
t
f
r
AI07564B  
Figure 41. Ready/busy load circuit  
ibusy  
R
P
V
DD  
DEVICE  
RB  
Open Drain Output  
V
SS  
AI07563B  
63/69  
DC and AC parameters  
NAND02G-B2D  
Figure 42. Resistor value versus waveform timings for ready/busy signal  
V
= 3.3 V, C = 100 pF  
V
= 1.8 V, C = 30 pF  
L
DD  
L
DD  
400  
300  
200  
4
3
2
400  
300  
4
3
2
400  
300  
2.4  
200  
1.7  
200  
1.2  
120  
1
90  
100  
0
1
100  
30  
0.8  
3.6  
0.85  
100  
3.6  
0.57  
0.6  
3.6  
0.43  
1.7  
60  
1.7  
3.6  
1.7  
0
1.7  
1
2
3
4
1
2
3
4
R
(K)  
R
(K)  
P
P
t
f
t
r
ibusy  
ai13640b  
1. T = 25 °C.  
11.2  
Data protection  
The Numonyx NAND devices are designed to guarantee data protection during power  
transitions.  
A V detection circuit disables all NAND operations, if V is below the V threshold.  
LKO  
DD  
DD  
In the V range from V  
to the lower limit of nominal range, the WP pin should be kept  
DD  
LKO  
low (V ) to guarantee hardware protection during power transitions as shown in the below  
IL  
figure.  
Figure 43. Data protection  
Nominal range  
V
DD  
V
LKO  
Locked  
Locked  
W
Ai11086  
64/69  
NAND02G-B2D  
Package mechanical  
12  
Package mechanical  
In order to meet environmental requirements, Numonyx offers these devices in ECOPACK®  
packages. ECOPACK® packages are lead-free. The category of second level interconnect  
is marked on the package and on the inner box label, in compliance with JEDEC Standard  
JESD97. The maximum ratings related to soldering conditions are also marked on the inner  
box label.  
Figure 44. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 29. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.20  
0.15  
1.05  
0.27  
0.21  
0.08  
12.10  
20.20  
18.50  
0.047  
0.006  
0.041  
0.011  
0.008  
0.003  
0.476  
0.795  
0.728  
0.10  
1.00  
0.22  
0.05  
0.95  
0.17  
0.10  
0.004  
0.039  
0.009  
0.002  
0.037  
0.007  
0.004  
C
CP  
D1  
E
12.00  
20.00  
18.40  
0.50  
0.60  
0.80  
3°  
11.90  
19.80  
18.30  
0.472  
0.787  
0.724  
0.020  
0.024  
0.031  
3°  
0.468  
0.779  
0.720  
E1  
e
L
0.50  
0.70  
0.020  
0.028  
5°  
L1  
a
0°  
5°  
0°  
65/69  
Package mechanical  
NAND02G-B2D  
Figure 45. VFBGA63 9.5 x 12 mm - 6 x 8 active ball array, 0.80 mm pitch, package outline  
D
D2  
D1  
FD1  
SD  
FD  
e
e
SE  
E
E2 E1  
ddd  
BALL "A1"  
FE1  
FE  
e
b
A
A2  
A1  
BGA-Z67  
1. Drawing is not to scale  
Table 30. VFBGA63 9.5 x 12 mm - 6 x 8 active ball array, 0.80 mm pitch, package mechanical  
data  
Millimeters  
Inches  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.05  
0.041  
0.25  
0.010  
0.70  
0.50  
9.60  
0.028  
0.020  
0.378  
0.45  
9.50  
4.00  
7.20  
0.40  
9.40  
0.018  
0.374  
0.157  
0.283  
0.016  
0.370  
D
D1  
D2  
ddd  
E
0.10  
0.004  
0.476  
12.00  
5.60  
8.80  
0.80  
2.75  
1.15  
3.20  
1.60  
0.40  
0.40  
11.90  
12.10  
0.472  
0.220  
0.346  
0.031  
0.108  
0.045  
0.126  
0.063  
0.016  
0.016  
0.468  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
66/69  
NAND02G-B2D  
Ordering information  
13  
Ordering information  
Table 31. Ordering information scheme  
Example:  
NAND02GW3B2D N  
6
E
Device type  
NAND flash memory  
Density  
02 G = 2 Gb  
Operating voltage  
W = VDD = 2.7 to 3.6 V  
R = VDD = 1.7 to 1.95 V  
Bus width  
3 = x8  
4 = x16(1)  
Family identifier  
B = 2112-byte page  
Device options  
2 = Chip Enable ‘don't care’ enabled  
Product version  
D = Fourth version  
Package  
N = TSOP48 12 x 20 mm  
ZA = VFBGA63 9.5 x 12 x 1 mm, 0.8 mm pitch  
Temperature range  
6 = –40 to 85 °C  
Option  
E = ECOPACK package, standard packing  
F = ECOPACK package, tape and reel packing  
1. x16 organization only available for MCP products.  
Note:  
Devices are shipped from the factory with the memory content bits, in valid blocks, erased to  
’1’. For further information on any aspect of this device, please contact your nearest  
Numonyx sales office.  
67/69  
Revision history  
NAND02G-B2D  
14  
Revision history  
Table 32. Document revision history  
Date  
Revision  
Changes  
07-Sep-2007  
1
Initial release.  
Document status promoted from target specification to  
preliminary data.  
Modified: Figure 12: Multiplane page program waveform,  
Figure 16: Multiplane copy back program, Figure 18: Multiplane  
block erase, Figure 30: Read status enhanced waveform,  
Figure 37: Program/erase enable waveform, Figure 38:  
Program/erase disable waveform, Figure 42: Resistor value  
versus waveform timings for ready/busy signal, Section 6.4:  
Multiplane page program, Section 8.5: Error correction code,  
Table 8: Address definition (x 16 devices), Table 21: Program  
erase times and program erase endurance cycles, Table 23:  
Operating and AC measurement conditions.  
13-Feb-2008  
03-Apr-2008  
2
3
Minor text changes.  
Applied Numonyx branding.  
68/69  
NAND02G-B2D  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
69/69  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY