PC48F1000W0YU00 [NUMONYX]

Flash, 2MX16, 60ns, PBGA44,;
PC48F1000W0YU00
型号: PC48F1000W0YU00
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 2MX16, 60ns, PBGA44,

文件: 总90页 (文件大小:1196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Numonyx™ Wireless Flash Memory (W18)  
with AD Multiplexed IO  
Datasheet  
Product Features  
„ High Performance Read-While-Write/Erase  
— Burst frequency at 66 MHz  
„ Security  
— 128 bit Protection Register  
— 64 Unique Bits Programmed by Numonyx  
— 64 User-Programmable Bits  
— Absolute Write Protection with VPP at  
Ground  
— Individual and Instantaneous Block  
Locking/Unlocking with Lock-Down  
Capability  
— 60 ns Initial Access Read Speed  
— 11 ns Burst-Mode Read Speed  
— 20 ns Page-Mode Read Speed  
— 4-, 8-, 16-, and Continuous-Word Burst  
Mode Reads  
— Burst and Page Mode Reads in all Blocks,  
across all partition boundaries  
— Burst Suspend Feature  
„ Software  
— 5 µs (typ.) Program and Erase Suspend  
Latency Time  
— Enhanced Factory Programming at  
3.1 µs/word (typ. for 0.13 µm)  
— Numonyx™ Flash Data Integrator  
(Numonyx™ FDI) and Common Flash  
Interface Compatible  
„ Architecture  
— Multiple 4 Mbit Partitions  
— Dual Operation: Read-while-Write and  
Read-while-Erase  
— 8 KB parameter blocks  
— 64 KB main blocks  
Top or Bottom Parameter Configurations  
— 16 bit wide data bus  
— Programmable WAIT Signal Polarity  
„ Quality and Reliability  
Temperature Range: –40 °C to +85 °C  
— 100k Erase Cycles per Block  
— 130 nm ETOX™ VIII Process  
— 90 nm ETOX™ IX Process  
— Multiplexed Address data bus  
„ Power  
„ Density and Package Ballout  
— 130 nm: 32-, 64-, and 128-Mbit  
— 90 nm: 32-, 64-Mbit  
— VCC = 1.70 V to 1.95 V  
— VCCQ = 1.70 V to 2.24 V or 1.35 V to 1.80 V  
— Standby current (0.13 µm): 8 µA (typ.)  
— Read current: 7 mA (typ.)  
— 44-ball VF BGA  
— 88-ball QUAD+  
Order Number: 313272-06  
November 2007  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx B.V. may make changes to specifications and product descriptions at any time, without notice.  
Numonyx B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and StrataFlash are trademarks or registered trademarks of Numonyx B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007, Numonyx B.V., All Rights Reserved.  
Datasheet  
2
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Contents  
1.0 Introduction..............................................................................................................6  
1.1  
1.2  
1.3  
Document Purpose ..............................................................................................6  
Nomenclature.....................................................................................................6  
Conventions .......................................................................................................6  
2.0 Functional Overview..................................................................................................8  
2.1 Memory Map and Partitioning................................................................................9  
3.0 Package Information...............................................................................................12  
4.0 Ballout and Signal Descriptions ...............................................................................14  
4.1  
4.2  
Ballouts ........................................................................................................... 14  
Signal Descriptions............................................................................................ 15  
5.0 Maximum Ratings and Operating Conditions............................................................ 20  
5.1  
5.2  
Absolute Maximum Ratings.................................................................................20  
Operating Conditions .........................................................................................20  
6.0 Electrical Specifications........................................................................................... 21  
6.1  
6.2  
DC Current Characteristics.................................................................................. 21  
DC Voltage Characteristics.................................................................................. 22  
7.0 AC Characteristics ................................................................................................... 24  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
AC I/O Test Conditions.......................................................................................24  
Device Capacitance ........................................................................................... 24  
AC Read Characteristics, AD-Mux ........................................................................25  
AC Write Characteristics, AD-Mux........................................................................32  
Program and Erase Characteristics....................................................................... 34  
Reset Specifications........................................................................................... 35  
8.0 Power and Reset Specifications...............................................................................37  
8.1  
8.2  
8.3  
8.4  
Active Power..................................................................................................... 37  
Automatic Power Savings ................................................................................... 37  
Standby Power.................................................................................................. 37  
Power-Up/Down Characteristics........................................................................... 37  
8.4.1 System Reset and RST#..........................................................................37  
8.4.2 VCC, VPP, and RST# Transitions............................................................... 38  
Power Supply Decoupling ................................................................................... 38  
8.5  
9.0 Device Operations ................................................................................................... 39  
9.1  
Bus Operations .................................................................................................39  
9.1.1 Read .................................................................................................... 39  
9.1.2 Burst Suspend .......................................................................................40  
9.1.3 Standby................................................................................................40  
9.1.4 Reset.................................................................................................... 40  
9.1.5 Write.................................................................................................... 41  
Device Commands............................................................................................. 41  
Command Sequencing .......................................................................................44  
9.2  
9.3  
10.0 Read Operations......................................................................................................45  
10.1 Read Array.......................................................................................................45  
10.2 Read Device ID.................................................................................................45  
10.3 Read Query (CFI).............................................................................................. 46  
10.4 Read Status Register .........................................................................................46  
10.5 Clear Status Register.........................................................................................47  
November 2007  
Order Number: 313272-06  
Datasheet  
3
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
11.0 Program Operations.................................................................................................48  
11.1 Word Program...................................................................................................48  
11.2 Factory Programming.........................................................................................49  
11.3 Enhanced Factory Program (EFP) .........................................................................50  
11.3.1 EFP Requirements and Considerations .......................................................50  
11.3.2 Setup....................................................................................................51  
11.3.3 Program................................................................................................51  
11.3.4 Verify....................................................................................................51  
11.3.5 Exit.......................................................................................................52  
12.0 Program and Erase Operations.................................................................................53  
12.1 Program/Erase Suspend and Resume ...................................................................53  
12.2 Block Erase.......................................................................................................55  
12.3 Read-While-Write and Read-While-Erase...............................................................57  
13.0 Security Modes ........................................................................................................59  
13.1 Block Lock Operations ........................................................................................59  
13.1.1 Lock......................................................................................................60  
13.1.2 Unlock...................................................................................................60  
13.1.3 Lock-Down ............................................................................................60  
13.1.4 Block Lock Status ...................................................................................61  
13.1.5 Lock During Erase Suspend......................................................................61  
13.1.6 Status Register Error Checking .................................................................61  
13.1.7 WP# Lock-Down Control..........................................................................62  
13.2 Protection Register.............................................................................................62  
13.2.1 Reading the Protection Register................................................................63  
13.2.2 Programing the Protection Register ...........................................................63  
13.2.3 Locking the Protection Register.................................................................63  
13.3 VPP Protection ...................................................................................................65  
14.0 Set Configuration Register .......................................................................................66  
14.1 Read Mode (CR[15]) ..........................................................................................67  
14.2 First Access Latency Count (CR[13:11])................................................................67  
14.2.1 Latency Count Settings............................................................................68  
14.3 WAIT Signal Polarity (CR[10]) .............................................................................68  
14.4 WAIT Signal Function .........................................................................................68  
14.5 Data Hold (CR[9])..............................................................................................69  
14.6 WAIT Delay (CR[8])...........................................................................................70  
14.7 Burst Sequence (CR[7])......................................................................................70  
14.8 Clock Edge (CR[6]) ............................................................................................71  
14.9 Burst Wrap (CR[3])............................................................................................71  
14.10 Burst Length (CR[2:0]).......................................................................................72  
15.0 Write State Machine States ......................................................................................73  
16.0 Common Flash Interface..........................................................................................76  
16.1 Query Structure Output ......................................................................................76  
16.2 Query Structure Overview...................................................................................77  
16.3 Block Status Register .........................................................................................77  
16.4 CFI Query Identification String ............................................................................78  
16.5 Device Geometry Definition.................................................................................80  
16.6 Numonyx-Specific Extended Query Table ..............................................................81  
A
Ordering Information...............................................................................................87  
Datasheet  
4
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Revision History  
Date  
Revision  
Description  
June 2006  
July 2006  
001  
002  
Initial Release.  
Made minor formatting changes.  
Changed Burst Frequency from 54 MHz to 66 MHz and Burst Mode Read speed from 14 ns to 11 ns  
per specification improvements.  
December 2006  
003  
Removed 80 ns and extended voltage range (1.35-1.8) I/O specifications because feature is no  
longer supported.  
Added the 44 Ball VF BGA package and ballouts and line items.  
Updated ordering information: HR28F320W18BE  
Updated ordering information.  
February 2007  
August 2007  
004  
005  
06  
November 2007  
Applied Numonyx branding.  
November 2007  
Order Number: 313272-06  
Datasheet  
5
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
1.0  
Introduction  
The Numonyx™ Wireless Flash Memory device provides high-performance  
asynchronous and synchronous burst reads, ideal for low-voltage burst CPUs.  
Combining high read performance with flash memory’s intrinsic non-volatility, the W18  
device reduces the total memory requirement while increasing reliability and reducing  
overall system power consumption and cost. Its flexible, multi-partition architecture  
allows programming or erasing to occur in one partition while reading from another  
partition, providing higher data write throughput compared to single partition  
architectures. The dual-operation architecture also allows two processors to interleave  
code operations while program and erase operations take place in the background. The  
designer can also choose the size of the code and data partitions via the flexible multi-  
partition architecture.  
1.1  
1.2  
Document Purpose  
This datasheet contains information about the Numonyx™ Wireless Flash Memory  
(W18) with AD Multiplexed IO device family.  
Nomenclature  
Many acronyms that describe product features or usage are defined as follows:  
APS  
BBA  
CFI  
Automatic Power Savings  
Block Base Address  
Common Flash Interface  
Command User Interface  
Enhanced Factory Programming  
Flash Data Integrator  
No Connect  
CUI  
EFP  
FDI  
NC  
OTP  
PBA  
RWE  
RWW  
SCSP  
SRD  
WSM  
One-Time Programmable  
Partition Base Address  
Read-While-Erase  
Read-While-Write  
Quad ballout  
Status Register Data  
Write State Machine  
1.3  
Conventions  
The following abbreviated terms and phrases are used throughout this document:  
Refers to the full VCC voltage range of 1.7 V – 1.95 V (except where noted) and “VPP = 12  
V” refers to 12 V ±5%.  
1.8 V  
Set  
Clear  
When referring to registers, the term set means the bit is a logical 1, and clear means the  
bit is a logical 0.  
Pin  
Signal  
The terms pin and signal are often used interchangeably to refer to the external signal  
connections on the package. (ball is the term used for SCSP).  
Word  
2 bytes or 16 bits.  
All CAPS  
Signal Names  
Datasheet  
6
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Voltage  
Voltage applied to the signal is subscripted, for example, VPP.  
Throughout this document, references are made to top, bottom, parameter, and partition. To clarify these references, the  
following conventions have been adopted:  
Block  
A group of bits (or words) that erase simultaneously with one block erase instruction.  
Main block  
Contains 32 Kwords.  
Parameter Block  
Block Base Address (BBA)  
Partition  
Contains 4 Kwords.  
The first address of a block.  
A group of blocks that share erase and program circuitry and a common status register.  
The first address of a partition. For example, on a 32-Mbit top-parameter device,  
partition number 5 has a PBA of 140000h.  
Partition Base Address (PBA)  
Top Partition  
Located at the highest physical device address. This partition may be a main partition or  
a parameter partition.  
Located at the lowest physical device address. This partition may be a main partition or a  
parameter partition.  
Bottom Partition  
Main Partition  
Contains only the main blocks.  
Parameter Partition  
Contains a mixture of main blocks and parameter blocks.  
TPD has the parameter partition at the top of the memory map with the parameter blocks  
at the top of that partition. This was formerly referred to as top-boot flash device.  
Top Parameter Device (TPD)  
BPD has the parameter partition at the bottom of the memory map with the parameter  
blocks at the bottom of that partition. This was formerly referred to as bottom-boot flash  
device.  
Bottom Parameter Device (BPD)  
November 2007  
Order Number: 313272-06  
Datasheet  
7
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
2.0  
Functional Overview  
This section provides an overview of the Numonyx™ Wireless Flash Memory (W18) with  
AD Multiplexed IO device features, packaging, signal naming, and device architecture.  
The W18 device provides Read-While-Write (RWW) and Read-While-Erase (RWE)  
capability with high-performance synchronous and asynchronous reads on package-  
compatible densities with a 16-bit data bus. Individually-erasable memory blocks are  
optimally sized for code and data storage. Eight 4-Kword parameter blocks are located  
in the parameter partition at either the top or bottom of the memory map. The rest of  
the memory array is grouped into 32-Kword main blocks.  
The memory architecture for the W18 device consists of multiple 4 Mbit partitions, the  
exact number depending on device density. By dividing the memory array into  
partitions, program or erase operations can take place simultaneously during read  
operations. Burst reads can traverse partition boundaries, but the user application code  
is responsible for ensuring that they do not extend into a partition that is actively  
programming or erasing. Although each partition has burst read, write, and erase  
capabilities, simultaneous operation is limited to write or erase in one partition while  
other partitions are in a read mode.  
Augmented erase-suspend functionality further enhances the RWW capabilities of this  
device. An erase can be suspended to perform a program or read operation within any  
block, except that which is erase-suspended. A program operation nested within a  
suspended erase can subsequently be suspended to read yet another memory location.  
After device power-up or reset, the W18 device defaults to asynchronous read  
configuration. Writing to the device’s configuration register enables synchronous burst-  
mode read operation. In synchronous mode, the CLK input increments an internal burst  
address generator. CLK also synchronizes the flash memory with the host CPU and  
outputs data on every, or on every other, valid CLK cycle after an initial latency. A  
programmable WAIT output signals to the CPU when data from the flash memory  
device is ready.  
In addition to its improved architecture and interface, the W18 device incorporates  
Enhanced Factory Programming (EFP), a feature that enables fast programming and  
low-power designs. The EFP feature provides the fastest currently-available program  
performance, which can increase a factory’s manufacturing throughput.  
The device supports read operations at 1.8 V and erase and program operations at  
1.8 V or 12 V. With the 1.8 V option, VCC and VPP can be tied together for a simple,  
ultra-low-power design. In addition to voltage flexibility, the dedicated VPP input  
provides complete data protection when VPP VPPLK  
.
A 128-bit protection register enhances the user’s ability to implement new security  
techniques and data protection schemes. Unique flash device identification and fraud-,  
cloning-, or content- protection schemes are possible through a combination of factory-  
programmed and user-OTP data cells. Zero-latency locking/unlocking on any memory  
block provides instant and complete protection for critical system code and data. An  
additional block lock-down capability provides hardware protection where software  
commands alone cannot change the block’s protection status.  
The W18 device Command User Interface (CUI) is the system processor’s link to  
internal flash memory operation. A valid command sequence written to the CUI initiates  
device Write State Machine (WSM) operation that automatically executes the  
algorithms, timings, and verifications necessary to manage flash memory program and  
erase. An internal status register provides ready/busy indication results of the  
operation (success, fail, and so on).  
Datasheet  
8
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Three power-saving features, Automatic Power Savings (APS), standby, and RST#, can  
significantly reduce power consumption. The device automatically enters APS mode  
following read cycle completion. Standby mode begins when the system deselects the  
flash memory by de-asserting CE#. Driving RST# low produces power savings similar  
to standby mode. It also resets the part to read-array mode (important for system-  
level reset), clears internal status registers, and provides an additional level of flash  
write protection.  
2.1  
Memory Map and Partitioning  
The W18 device is divided into 4-Mbit physical partitions, which allows simultaneous  
RWW or RWE operations and allows users to segment code and data areas on 4 Mbit  
boundaries. The device’s memory array is asymmetrically blocked, which enables  
system code and data integration within a single flash device. Each block can be erased  
independently in block erase mode. Simultaneous program and erase operations are  
not allowed; only one partition at a time can be actively programming or erasing. See  
Table 1, “Bottom Parameter Memory Map” on page 10 and Table 2, “Top Parameter  
Memory Map” on page 11.  
The 32-Mbit device has eight partitions; the 64-Mbit device has 16 partitions, and the  
128-Mbit device has 32 partitions. Each device density contains one parameter  
partition and several main partitions. The 4-Mbit parameter partition contains eight  
4-Kword parameter blocks and seven 32-Kword main blocks. Each 4-Mbit main  
partition contains eight 32-Kword blocks each.  
The bulk of the array is divided into main blocks that can store code or data, and  
parameter blocks that allow storage of frequently updated small parameters that are  
normally stored in EEPROM. By using software techniques, the word-rewrite  
functionality of EEPROMs can be emulated.  
November 2007  
Order Number: 313272-06  
Datasheet  
9
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
.
Table 1:  
Bottom Parameter Memory Map  
Size  
(KW)  
Blk #  
32 Mbit  
Blk #  
64 Mbit  
Blk #  
128 Mbit  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
262  
7F8000-7FFFFF  
135  
134  
71  
70  
39  
38  
31  
30  
23  
22  
15  
14  
400000-407FFF  
3F8000-3FFFFF  
200000-207FFF  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
040000-047FFF  
038000-03FFFF  
134  
71  
70  
39  
38  
31  
30  
23  
22  
15  
14  
3F8000-3FFFFF  
200000-207FFF  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
040000-047FFF  
038000-03FFFF  
70  
39  
38  
31  
30  
23  
22  
15  
14  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
040000-047FFF  
038000-03FFFF  
32  
4
8
7
008000-00FFFF  
007000-007FFF  
8
7
008000-00FFFF  
007000-007FFF  
8
7
008000-00FFFF  
007000-007FFF  
4
0
000000-000FFF  
0
000000-000FFF  
0
000000-000FFF  
128 Mbit is not available at 90 nm.  
Datasheet  
10  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 2:  
Top Parameter Memory Map  
Size  
(KW)  
Blk #  
32 Mbit  
Blk #  
64 Mbit  
Blk #  
128 Mbit  
4
70  
1FF000-1FFFFF  
134  
3FF000-3FFFFF  
262  
7FF000-7FFFFF  
4
63  
62  
1F8000-1F8FFF  
1F0000-1F7FFF  
127  
126  
3F8000-3F8FFF  
3F0000-3F7FFF  
255  
254  
7F8000-7F8FFF  
7F0000-7F7FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
56  
55  
48  
47  
40  
39  
32  
31  
0
1C0000-1C7FFF  
1B8000-1BFFFF  
18000-187FFF  
178000-17FFFF  
140000-147FFF  
138000-13FFFF  
100000-107FFF  
0F8000-0FFFFF  
000000-007FFF  
120  
119  
112  
111  
104  
103  
96  
3C0000-3C7FFF  
3B8000-3BFFFF  
380000-387FFF  
378000-37FFFF  
340000-347FFF  
338000-33FFFF  
300000-307FFF  
2F8000-2FFFFF  
200000-207FFF  
1F8000-1FFFFF  
000000-007FFF  
248  
247  
240  
239  
232  
231  
224  
223  
192  
191  
128  
127  
0
7C0000-7C7FFF  
7B8000-7BFFFF  
780000-787FFF  
778000-77FFFF  
740000-747FFF  
738000-73FFFF  
700000-707FFF  
6F8000-6FFFFF  
600000-607FFF  
5F8000-5FFFFF  
400000-407FFF  
3F8000-3FFFFF  
000000-007FFF  
95  
64  
63  
0
Note: 128 Mbit is not available at 90 nm.  
November 2007  
Order Number: 313272-06  
Datasheet  
11  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
3.0  
Package Information  
Figure 1, ”88-ball QUAD+ Ballout (8x10x1.2 mm) Package and Dimensions”  
Figure 2, ”44-Ball (40 Active) VF BGA Ballout (7.7x6.2x1.0 mm) Package” and  
Table 3, “44-Ball (40 Active) VF BGA Ballout (7.7x6.2x1.0 mm) Package  
Dimensions”  
Figure 1: 88-ball QUAD+ Ballout (8x10x1.2 mm) Package and Dimensions  
A 1 I n d e x  
M a rk  
S 1  
8
7
6
5
4
3
2
1
2
3
4
5
6
7
8
1
S
2
A
A
B
C
B
C
D
D
E
E
F
F
D
e
G
G
H
H
J
J
K
K
L
L
M
M
b
E
B o t t o m V ie w  
Up  
-
B a ll  
T o p V ie w  
-
B a ll  
D
o w n  
A
2
A
1
A
Y
D r a w in g n o t to s c a le .  
M il li m e te r s  
N o m  
Inc h e s  
D i m e n s io n s  
S y m bo l  
M i n  
M a x  
N o t e s  
M in  
N o m  
M a x  
Pa c k a g e H e ig h t  
A
1 . 2 0 0  
0 . 0 4 7 2  
Ba ll H e ig h t  
A 1  
A 2  
0 .2 0 0  
0 . 0 0 7 9  
Pa c k a g e B o d y T h ic k n e s s  
Ba ll (L e a d ) id th  
Pa c k a g e B o d y L e n g th  
0 . 8 6 0  
0 .0 3 3 9  
W
b
0 .3 2 5  
9 .9 0 0  
7 .9 0 0  
0 . 3 7 5  
1 0 .0 0 0  
8 . 0 0 0  
0 . 8 0 0  
8 8  
0 . 4 2 5  
0 . 0 1 2 8  
0 . 3 8 9 8  
0 . 3 1 1 0  
0 .0 1 4 8  
0 .3 9 3 7  
0 .3 1 5 0  
0 .0 3 1 5  
8 8  
0 . 0 1 6 7  
0 . 3 9 7 6  
0 . 3 1 8 9  
D
E
e
1 0 .1 0 0  
8 . 1 0 0  
Pa c k a g e B o d y  
Pitc h  
W i d th  
Ba ll (L e a d ) C o u n t  
Se a tin g P la n e C o p la n a rity  
N
Y
0 . 1 0 0  
1 . 3 0 0  
0 . 7 0 0  
0 . 0 0 3 9  
0 . 0 5 1 2  
0 . 0 2 7 6  
Co r n e r t o B a ll A 1 D i s ta n c e A lo n g  
Co r n e r t o B a ll A 1 D i s ta n c e 
A lo n g  
E
S 1  
S 2  
1 .1 0 0  
0 .5 0 0  
1 . 2 0 0  
0 . 6 0 0  
0 . 0 4 3 3  
0 . 0 1 9 7  
0 .0 4 7 2  
0 .0 2 3 6  
D
Datasheet  
12  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 2: 44-Ball (40 Active) VF BGA Ballout (7.7x6.2x1.0 mm) Package  
Pin 1  
Corner  
Pin 1  
Corner  
D
S1  
S2  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
14 13 12 11 10  
9
8
7
6
5
4
3
2 1  
A
B
A
B
C
D
E
F
C
D
E
F
Support  
Solder  
Balls  
e
E
G
H
G
H
b
Top View - PlasticBackside  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Note: Drawing not to Scale  
Table 3:  
44-Ball (40 Active) VF BGA Ballout (7.7x6.2x1.0 mm) Package Dimensions  
Millimeters  
Nom  
-
Inches  
Symbol  
A
Min  
Max  
1.000  
-
Min  
Nom  
Max  
Package Height  
-
-
-
0.0394  
Ball Height  
A1  
A2  
b
0.150  
-
-
0.0059  
-
-
-
-
Package Body Thickness  
Ball (Lead) Width  
0.665  
0.309  
7.700  
6.200  
0.500  
44  
-
0.0262  
0.259  
7.600  
6.100  
-
0.359  
7.800  
6.300  
-
0.0102 0.0122 0.0141  
0.2992 0.3031 0.3071  
0.2402 0.2441 0.2480  
Package Body Width  
Package Body Length  
Pitch  
D
E
[e]  
N
-
-
-
0.0197  
-
Ball Count  
-
-
44  
-
-
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along D  
Corner to Ball A1 Distance Along E  
Y
-
-
0.080  
0.700  
1.450  
0.0031  
S1  
0.500  
1.250  
0.600  
1.350  
0.0197 0.0236 0.0276  
0.0492 0.0531 0.0571  
S2  
November 2007  
Order Number: 313272-06  
Datasheet  
13  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
4.0  
Ballout and Signal Descriptions  
4.1  
Ballouts  
Figure 3, ”QUAD+ Ballout”  
Figure 4, ”40-Ball VF BGA Ballout”  
Figure 3: QUAD+ Ballout  
Pin 1  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
DU  
A4  
DU  
DU  
DU  
A
B
C
D
E
F
A18  
R-LB#  
A17  
A19  
A23  
VSS  
VSS  
F1-VCC  
S-CS2  
R-WE#  
ADV#  
F-WE#  
DQ5  
F2-VCC  
CLK  
A21  
A22  
A11  
A12  
A5  
A3  
A24  
F-VPP  
F-WP#  
F-RST#  
DQ10  
DQ3  
P1-CS#  
A20  
A9  
A13  
A2  
A7  
A25  
A10  
A15  
A1  
A6  
R-UB#  
DQ2  
A8  
A14  
A16  
G
H
J
A0  
DQ8  
DQ13  
DQ14  
DQ6  
WAIT  
DQ7  
DQ15  
VCCQ  
VSS  
F2-CE#  
F2-OE#  
VCCQ  
G
H
J
R-OE#  
S-CS1#  
F1-CE#  
VSS  
DQ0  
DQ1  
DQ12  
DQ4  
F1-OE#  
P2-CS#  
VSS  
DQ9  
DQ11  
S-VCC  
F1-VCC  
P-Mode# /  
P-CRE  
F3-CE#  
VCCQ  
P-VCC  
VSS  
F2-VCC  
VSS  
K
L
K
L
VSS  
DU  
DU  
DU  
DU  
M
M
1
2
3
4
5
6
7
8
Top View - Ball Side Down  
Legend:  
Active Signals  
De-Populated Balls  
Do Not Use  
Datasheet  
14  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 4: 40-Ball VF BGA Ballout  
1
2
3
4
5
6
7
8
9
1 0  
6 4 - M b it  
W A IT  
A 2 1  
A 1 6  
V S S  
C L K  
V C C  
W E #  
V P P  
A 1 9  
A 1 7  
N C  
A
B
C
D
3 2 -M b it  
A 2 0  
V C C Q  
V S S  
A D V #  
A /D Q 1 3  
A /D Q 5  
N C  
W P #  
A 1 8  
C E #  
V S S Q  
O E #  
R S T #  
A /D Q 7  
A /D Q 1 4  
A /D Q 6  
V S S Q  
A /D Q 1 2  
A /D Q 4  
A /D Q 3  
A /D Q 2  
A /D Q 1 0  
A /D Q 9  
V C C Q  
A /D Q 8  
A /D Q 1  
A /D Q 1 5  
A /D Q 1 1  
A /D Q 0  
T o p V ie w  
B a ll s id e D o w n  
1 0  
9
8
7
6
5
4
3
2
1
6 4 - M b it  
N C  
A 1 7  
A 1 9  
V P P  
W E #  
V C C  
N C  
C L K  
V S S  
A 2 1  
W A IT  
A
B
C
D
3 2 -M b it  
A 2 0  
R S T #  
V S S Q  
O E #  
C E #  
A 1 8  
W P #  
A D V #  
A 1 6  
V C C Q  
V S S  
A /D Q 8  
A /D Q 1  
A /D Q 9  
V C C Q  
A /D Q 2  
A /D Q 1 0  
A /D Q 3  
A /D Q 1 2  
A /D Q 4  
A /D Q 1 3  
A /D Q 5  
A /D Q 6  
V S S Q  
A /D Q 7  
A /D Q 1 4  
A /D Q 0  
A /D Q 1 1  
A /D Q 1 5  
B o tto m V ie w  
— B a ll s id e U p  
4.2  
Signal Descriptions  
Table 4, “Signal Descriptions, QUAD+ Ballout”  
Table 5, “Signal Descriptions”  
November 2007  
Order Number: 313272-06  
Datasheet  
15  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 4:  
Signal Descriptions, QUAD+ Ballout (Sheet 1 of 3)  
Symbol  
Type  
Signal Descriptions  
Notes  
Address and Data Signals, A/D-Mux  
ADDRESS: Global device signals.  
Shared address inputs for all memory die during Read and Write operations.  
128-Mbit: AMAX = A22  
64-Mbit: AMAX = A21  
32-Mbit: AMAX = A20  
A[MAX:16]  
A/DQ[15:0]  
Input  
A0 is the lowest-order word address.  
Unused address inputs should be treated as RFU.  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: A/D-Mux I/O flash signals.  
During A/D-Mux Read cycles, DQ[15:0] are used to input the lower address followed by read-  
data output. During A/D-Mux Write cycles, DQ[15:0] are used to input the lower address  
followed by commands or data.  
Input /  
Output  
1
DQ[15:0] are High-Z when the device is deselected or its output is disabled.  
DQ[15:0] is only used with A/D-Mux I/O flash device.  
Control Signals  
ADDRESS VALID: Flash- and Synchronous PSRAM-specific signal; low-true input.  
During a synchronous flash Read operation, the address is latched on the rising edge of  
ADV# or the first active CLK edge whichever occurs first. In an asynchronous flash Read  
operation, the address is latched on the rising edge of ADV# or continuously flows through  
while ADV# is low.  
ADV#  
Input  
During synchronous PSRAM read and synchronous write modes, the address is either  
latched on the first rising clock edge after ADV# assertion or on the rising edge of ADV#  
whichever edge comes first. In asynchronous read and asynchronous write modes, ADV#  
can be used to latch the address, but can be held low for the entire operation as well.  
Note: During A/D-Mux I/O operation, ADV# must remain deasserted during the data phase.  
FLASH CHIP ENABLE: Flash-specific signal; low-true input.  
When low, F-CE# selects the associated flash memory die. When high, F-CE# deselects the  
associated flash die. Flash die power is reduced to standby levels, and its data and F-WAIT  
outputs are placed in a High-Z state.  
F[3:1]-CE#  
Input  
F1-CE# is dedicated to flash die #1.  
F[3:2]-CE# are dedicated to flash die #3 through #2, respectively, if present. Otherwise,  
any unused flash chip enable should be treated as RFU.  
CLOCK: Flash- and Synchronous PSRAM-specific input signal.  
CLK  
Input  
Input  
CLK synchronizes the flash and/or synchronous PSRAM with the system clock during  
synchronous operations.  
FLASH OUTPUT ENABLE: Flash-specific signal; low-true input.  
When low, F-OE# enables the output drivers of the selected flash die. When high, F-OE#  
disables the output drivers of the selected flash die and places the output drivers in High-Z.  
F[2:1]-OE#  
F2-OE# common to all other flash dies, if present. Otherwise it is an RFU, however, it is  
highly recommended to always common F1-OE# and F2-OE# on the PCB.  
RAM OUTPUT ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-OE# enables the output drivers of the selected memory die. When high, R-OE#  
disables the output drivers of the selected memory die and places the output drivers in High-Z.  
If device not present, treat as RFU.  
R-OE#  
Input  
Input  
2
FLASH RESET: Flash-specific signal; low-true input.  
When low, F-RST# resets internal operations and inhibits writes. When high, F-RST# enables  
normal operation.  
F-RST#  
Datasheet  
16  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 4:  
Signal Descriptions, QUAD+ Ballout (Sheet 2 of 3)  
Symbol  
Type  
Signal Descriptions  
Notes  
WAIT: Flash -and Synchronous PSRAM-specific signal; configurable true-level output.  
When asserted, WAIT indicates invalid output data. When deasserted, WAIT indicates valid  
output data.  
WAIT  
Output  
WAIT is driven whenever the flash or the synchronous PSRAM is selected and its output  
enable is low.  
WAIT is High-Z whenever flash or the synchronous PSRAM is deselected, or its output  
enable is high.  
FLASH WRITE ENABLE: Flash-specific signal; low-true input.  
F-WE#  
R-WE#  
Input  
Input  
When low, F-WE# enables Write operations for the enabled flash die. Address and data are  
latched on the rising edge of F-WE#.  
RAM WRITE ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-WE# enables Write operations for the selected memory die. Data is latched on  
2
the  
rising edge of R-WE#. If device not present, treat as RFU.  
FLASH WRITE PROTECT: Flash-specific signals; low-true inputs.  
When low, F-WP# enables the Lock-Down mechanism. When high, F-WP# overrides the Lock-  
Down function, enabling locked-down blocks to be unlocked with the Unlock command.  
F-WP#  
Input  
F-WP1# is dedicated to flash die #1.  
F-WP2# is common to all other flash dies, if present. Otherwise it is an RFU.  
PSRAM CONTROL REGISTER ENABLE: Synchronous PSRAM-specific signal; high-true input.  
When high, P-CRE enables access to the Refresh Control Register (P-RCR) or Bus Control  
Register (P-BCR). When low, P-CRE enables normal Read or Write operations. If PSRAM not  
present, treat as RFU.  
P-CRE  
Input  
Input  
3
3
PSRAM MODE#: Asynchronous only PSRAM-specific signal; low-true input.  
When low, P-MODE# enables access to the configuration register, and to enter or exit Low-  
Power mode. When high, P-MODE# enables normal Read or Write operations. If PSRAM not  
present, treat as RFU.  
P-MODE#  
PSRAM CHIP SELECT: PSRAM-specific signal; low-true input.  
When low, P-CS# selects the associated PSRAM memory die. When high, P-CS# deselects the  
associated PSRAM die. PSRAM die power is reduced to standby levels, and its data and WAIT  
outputs are placed in a High-Z state.  
P[2:1]-CS#  
Input  
P1-CS# is dedicated to PSRAM die #1. If PSRAM not present, treat as RFU.  
P2-CS# is dedicated to PSRAM die #2. If PSRAM not present, treat as RFU.  
SRAM CHIP SELECTS: SRAM-specific signals; S-CS1# low-true input, S-CS2 high-true input.  
When both S-CS1# and S-CS2 are asserted, the SRAM die is selected. When either S-CS1# or  
S-CS2 is deasserted, the SRAM die is deselected.  
S-CS1#  
S-CS2  
Input  
Input  
2
2
S-CS1# and S-CS2 are dedicated to SRAM when present. If SRAM not present, treat as  
RFU.  
RAM UPPER/LOWER BYTE ENABLES: PSRAM- and SRAM-specific signals; low-true inputs.  
R-UB#  
R-LB#  
When low, R-UB# enables DQ[15:8] and R-LB# enables DQ[7:0] during PSRAM or SRAM Read  
and Write cycles. When high, R-UB# masks DQ[15:8] and R-LB# masks DQ[7:0]. If device not  
present, treat as RFU./  
Power Signals  
FLASH PROGRAM/ERASE VOLTAGE: Flash specific.  
F-VPP  
Power  
F-VPP supplies program or erase power to the flash die.  
FLASH CORE POWER SUPPLY: Flash specific.  
Power F[2:1]-VCC supplies the core power to the flash die.  
F2-VCC is recommended to be tied to F1-VCC, else it is an RFU.  
F[2:1]-VCC  
I/O POWER SUPPLY: Global device I/O power.  
Power  
VCCQ  
P-VCC  
S-VCC  
VCCQ supplies the device input/output driver voltage.  
PSRAM CORE POWER SUPPLY: PSRAM specific.  
P-VCC supplies the core power to the PSRAM die. If PSRAM not present, treat as RFU.  
Power  
2
2
SRAM POWER SUPPLY: SRAM specific.  
S-VCC supplies the core power to the SRAM die. If SRAM not present, treat as RFU.  
Power  
November 2007  
Order Number: 313272-06  
Datasheet  
17  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 4:  
Signal Descriptions, QUAD+ Ballout (Sheet 3 of 3)  
Symbol  
Type  
Signal Descriptions  
Notes  
DEVICE GROUND: Global ground reference for all signals and power supplies.  
Connect all VSS balls to system ground. Do not float any VSS connections.  
Groun  
d
VSS  
DU  
DO NOT USE:  
This ball should not be connected to any power supplies, signals, or other balls. This ball can  
be left floating.  
RESERVED for FUTURE USE:  
Reserved by Numonyx for future device functionality and enhancement. This ball must be left  
floating.  
RFU  
Notes:  
1.  
2.  
3.  
Only used when A/D-Mux I/O flash is present.  
Only available on stacked device combinations with PSRAM, and/or SRAM die. Otherwise treated as RFU.  
P-CRE and P-MODE# share the same package ball at location K8. Only one signal function is available, depending on the  
stacked device combination.  
Table 5:  
Signal Descriptions  
Symbol  
Type  
Name and Function  
A[21:16]  
Input  
ADDRESS INPUTS: for memory addresses. 32 Mbit: A[20:16]; 64 Mbit: A[21:16].  
ADDRESS/DATA INPUT/OUTPUTS:  
Input/  
Output  
Multiplexed address/data pins act as address inputs while ADV# is low.  
A/D[15:0]  
ADV#  
Addresses are internally latched when ADV# goes high; these signals then become data inputs/  
outputs.  
ADDRESS VALID: ADV# indicates valid address presence on address inputs. During synchronous read  
operations, all addresses are latched on the ADV# rising edge or on the CLK rising (or falling) edge,  
whichever occurs first.  
Input  
Input  
CHIP ENABLE:  
CE#-low activates internal control logic, I/O buffers, decoders, and sense amps.  
CE#  
CE#-high deselects the device, places it in standby state, and places data and WAIT outputs at  
High-Z.  
CLOCK: CLK synchronizes the device to the bus frequency in synchronous-read configuration, and  
increments an internal burst address generator. During synchronous read operations, addresses are  
latched on the ADV# rising edge or on the CLK rising (or falling) edge, whichever occurs first.  
CLK  
OE#  
Input  
Input  
Input  
OUTPUT ENABLE: Active low OE# enables the device’s output data buffers during a read cycle. With OE#  
at VIH, the device data outputs are placed in a High-Z state.  
RESET: When low, RST# resets internal automation and inhibits write operations. This reset provides data  
protection during power transitions. De-asserting RST# enables normal operation and places the flash  
device in asynchronous read array mode.  
RST#  
WAIT: The WAIT signal indicates valid data during synchronous read modes. This signal can be configured  
Output to be active-high or active-low based on bit 10 of the Configuration Register. WAIT is tristated if CE# is de-  
asserted. WAIT is not gated by OE#.  
WAIT  
WE#  
WP#  
WRITE ENABLE: WE# controls writes to the CUI and array. Addresses and data are latched on the WE#  
rising edge.  
Input  
WRITE PROTECT: Disables/enables the lock-down function. When WP# is asserted, the lock-down  
Input  
mechanism is enabled and blocks marked lock-down cannot be unlocked through software. See Section  
13.1, “Block Lock Operations” on page 59 for details about block locking.  
Erase and Program Power: A valid voltage on this pin allows erase or programming. Memory contents  
cannot be altered when VPP < VPPLK. Do not attempt block erase and program operations at invalid VPP  
voltages.  
Set VPP = VCC for in-circuit program and erase operations. To accommodate resistor or diode drops, the  
Power VIH level of VPP can be as low as VPP1 (min). VPP must remain above VPP1 min to perform in-circuit flash  
array modification. VPP can be 0 V during read operations.  
VPP  
VPP2 can be applied to main blocks for 1000 cycles maximum and to parameter blocks for 2500 cycles  
maximum. VPP can be connected to VPP2 for a cumulative total not to exceed 80 hours maximum.  
Extended use of this pin at VPP2 might reduce block cycling capability.  
Datasheet  
18  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 5:  
Signal Descriptions  
Symbol  
Type  
Name and Function  
Device Power Supply: Writes are inhibited at VCC < VLKO. Do not attempt flash device operations at  
invalid VCC voltages.  
VCC  
Power  
VCCQ  
VSS  
Power  
Power  
Output Power Supply: Enables all outputs to be driven at VCCQ. This input can be tied directly to VCC.  
Ground: Pins for all internal device circuitry; must be connected to ground.  
Output Ground: Provides ground to all outputs which are driven by VCCQ. This signal can be tied directly  
to VSS.  
VSSQ  
DU  
Power  
Do Not Use: Do not use this pin. Do not connect this pin to any power supplies, signals, or other pins.  
This pin must be floated.  
November 2007  
Order Number: 313272-06  
Datasheet  
19  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent  
damage. These are stress ratings only.  
Table 6:  
Absolute Maximum Ratings  
Parameter  
Maximum Rating  
–40 °C to +85 °C  
Notes  
Temperature under Bias  
Storage Temperature  
–65 °C to +125 °C  
–0.5 V to +2.45 V  
–0.2 V to +14 V  
–0.2 V to +2.45 V  
100 mA  
Voltage on Any Pin (except VCC, VCCQ, VPP)  
VPP Voltage  
1,2,3  
1
VCC and VCCQ Voltage  
Output Short Circuit Current  
Notes:  
4
1.  
All specified voltages are relative to VSS. Minimum DC voltage is –0.5 V on input/output pins and  
–0.2 V on VCC and VPP pins. During transitions, this level may undershoot to –2.0 V for periods < 20 ns which, during  
transitions, may overshoot to VCC +2.0 V for periods < 20 ns.  
Maximum DC voltage on VPP may overshoot to +14.0 V for periods < 20 ns.  
VPP program voltage is normally VPP1. VPP can be 12 V ± 0.6 V for 1000 cycles on the main blocks and 2500 cycles on  
the parameter blocks during program/erase.  
Output shorted for no more than one second. No more than one output shorted at a time.  
2.  
3.  
4.  
5.2  
Operating Conditions  
Warning:  
Operation beyond the “Operating Conditions” is not recommended and extended  
exposure beyond the “Operating Conditions” may affect device reliability.  
Table 7:  
Extended Temperature Operation  
Symbol  
Parameter1  
Min  
Nom  
Max  
Unit  
Notes  
TA  
Operating Temperature  
–40  
1.7  
25  
1.8  
1.8  
1.80  
12.0  
85  
1.95  
2.24  
1.95  
12.6  
80  
°C  
2
2
1
1
1
1
1
1
VCC  
VCCQ  
VPP1  
VPP2  
tPPH  
VCC Supply Voltage  
V
I/O Supply Voltage  
1.7  
V
V
VPP Voltage Supply (Logic Level)  
Factory Programming VPP  
Maximum VPP Hours  
Main and Parameter Blocks  
Main Blocks  
0.90  
11.4  
V
VPP = 12 V  
VPP VCC  
Hours  
100,000  
Block  
Erase  
Cycles  
VPP = 12 V  
VPP = 12 V  
1000  
2500  
Cycles  
Parameter Blocks  
Notes:  
1.  
VPP is normally VPP1. VPP can be connected to 11.4 V–12.6 V for 1000 cycles on main blocks for extended temperatures  
and 2500 cycles on parameter blocks at extended temperature.  
2.  
Contact your Numonyx field representative for VCC/VCCQ operations down to 1.65 V.  
Datasheet  
20  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
6.0  
Electrical Specifications  
6.1  
DC Current Characteristics  
Note:  
Specifications are for 130 nm and 90 nm devices unless otherwise stated; the 128 Mbit  
density is supported ONLY on 90 nm.  
Table 8:  
DC Current Characteristics (Sheet 1 of 2)  
VCCQ= 1.8 V  
Symbol  
Parameter (1)  
32/64-Mbit  
128-Mbit  
Typ Max  
Unit  
Test Condition  
Note  
Typ  
Max  
VCC = VCCMax  
VCCQ = VCCQMax  
VIN = VCCQ or GND  
ILI  
Input Load  
±1  
±1  
µA  
µA  
8
VCC = VCCMax  
VCCQ = VCCQMax  
VIN = VCCQ or GND  
Output  
Leakage  
ILO  
D[15:0]  
±1  
8
±1  
70  
130 nm  
ICCS  
VCC = VCCMax  
VCCQ = VCCQMax  
CE# = VCC  
8
22  
8
50  
50  
50  
50  
VCC Standby  
µA  
9
90 nm  
ICCS  
RST# =VCCQ  
130 nm  
ICCAPS  
VCC = VCCMax  
VCCQ = VCCQMax  
CE# = VSSQ  
RST# =VCCQ  
All other inputs =VCCQ or VSSQ  
8
70  
APS  
µA  
10  
3
90 nm  
ICCAPS  
22  
Asynchronous  
Page Mode  
f=13 MHz  
3
6
4
7
mA  
4 Word Read  
6
13  
14  
18  
20  
16  
18  
22  
25  
17  
20  
25  
30  
6
13  
14  
19  
20  
16  
18  
22  
25  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Burst length = 4  
8
8
Burst length = 8  
Synchronous CLK  
= 40 MHz  
3
3
10  
11  
7
11  
11  
7
Burst length =16  
Average  
VCC Read  
ICCR  
Burst length = Continuous  
Burst length = 4  
10  
12  
13  
8
10  
12  
13  
Burst length = 8  
Synchronous CLK  
= 54 MHz  
Burst length = 16  
Burst length = Continuous  
Burst length = 4  
11  
14  
16  
Burst length = 8  
Average  
VCC Read  
Synchronous CLK  
= 66 MHz  
ICCR  
3, 4  
Burst length = 16  
Burst length = Continuous  
VPP = VPP1, Program in Progress  
18  
8
40  
15  
18  
8
40  
15  
mA  
mA  
ICCW  
VCC Program  
4,5,6  
4,5,6  
VPP = VPP2, Program in Progress  
VPP = VPP1, Block Erase in  
Progress  
18  
8
40  
15  
18  
8
40  
15  
mA  
mA  
ICCE  
VCC Block Erase  
VPP = VPP2, Block Erase in  
Progress  
November 2007  
Order Number: 313272-06  
Datasheet  
21  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 8:  
DC Current Characteristics (Sheet 2 of 2)  
VCCQ= 1.8 V  
32/64-Mbit 128-Mbit  
Typ Max  
25  
Symbol  
Parameter (1)  
Unit  
Test Condition  
Note  
Typ  
Max  
130nm  
ICCWS  
CE# = VCC, Program Suspended  
8
50  
5
µA  
µA  
µA  
µA  
VCC Program Suspend  
VCC Erase Suspend  
7
90nm  
ICCWS  
22  
8
50  
50  
50  
130nm  
ICCES  
CE# = VCC, Erase Suspended  
5
25  
7
4
90nm  
ICCWS  
22  
V
PP Standby  
VPP Program Suspend  
VPP Erase Suspend  
IPPS  
(IPPWS,  
0.2  
2
5
0.2  
2
5
µA  
VPP <VCC  
IPPES  
)
VPP VCC  
IPPR  
VPP Read  
15  
15  
µA  
5
0.05  
8
0.10  
22  
0.05  
16  
0.10  
37  
VPP = VPP1, Program in Progress  
IPPW  
VPP Program  
mA  
VPP = VPP2, Program in Progress  
VPP = VPP1, Erase in Progress  
0.05  
8
0.10  
22  
0.05  
8
0.10  
22  
IPPE  
VPP Erase  
mA  
5
V
PP = VPP2, Erase in Progress  
Notes:  
1.  
2.  
3.  
All currents are RMS unless noted. Typical values at typical VCC, TA = +25° C.  
VCCQ = 1.35 V - 1.8V is available on 130 nm products only.  
Automatic Power Savings (APS) reduces ICCR to approximately standby levels in static operation. See ICCRQ specification  
for details.  
Sampled, not 100% tested.  
VCC read + program current is the sum of VCC read and VCC program currents.  
VCC read + erase current is the sum of VCC read and VCC erase currents.  
ICCES is specified with device deselected. If device is read while in erase suspend, current is ICCES plus ICCR  
If VIN>VCC the input load current increases to 10 µA max.  
ICCS is the average current measured over any 5 ms time interval 5 μs after a CE# de-assertion.  
Refer to section Section 8.2, “Automatic Power Savings” on page 37 for ICCAPS measurement details.  
4.  
5.  
6.  
7.  
8.  
9.  
10.  
.
6.2  
DC Voltage Characteristics  
Note:  
Specifications are for 130 nm and 90 nm devices unless otherwise stated.  
Table 9:  
DC Voltage Characteristics (Sheet 1 of 2)  
VCCQ= 1.8 V  
Sym  
Parameter (1)  
32/64 Mbit  
128 Mbit  
Unit  
Test Condition  
Notes  
Min  
Max  
Min  
Max  
VIL  
Input Low  
Input High  
Output Low  
0
0.4  
0
0.4  
V
V
3
VIH  
VOL  
VCCQ – 0.4  
VCCQ  
VCCQ – 0.4  
VCCQ  
V
CC = VCCMin  
VCCQ = VCCQMin  
IOL = 100 µA  
0.1  
0.1  
V
V
V
CC = VCCMin  
VCCQ = VCCQMin  
IOH = –100 µA  
VOH  
Output High  
VCCQ – 0.1  
VCCQ – 0.1  
Datasheet  
22  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 9:  
DC Voltage Characteristics (Sheet 2 of 2)  
VCCQ= 1.8 V  
Sym  
Parameter (1)  
32/64 Mbit  
128 Mbit  
Unit  
Test Condition  
Notes  
Min  
Max  
Min  
Max  
VPPLK  
VLKO  
VPP Lock-Out  
VCC Lock  
0.4  
0.4  
V
V
V
2
1.0  
0.9  
1.0  
0.9  
VILKOQ  
VCCQ Lock  
Note:  
1.  
2.  
3.  
All currents are RMS unless noted. Typical values at typical VCC, TA = +25 °C  
VPP <= VPPLK inhibits erase and program operations. Don’t use VPPL and VPPH outside their valid ranges.  
VIL can undershoot to –0.4V and VIH can overshoot to VCCQ+0.4V for durations of 20 ns or less.  
November 2007  
Order Number: 313272-06  
Datasheet  
23  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
7.0  
AC Characteristics  
7.1  
AC I/O Test Conditions  
Figure 5: AC Input/Output Reference Waveform  
VCCQ  
Input  
VCCQ/2  
Test Points  
VCCQ/2  
Output  
0V  
Note: Input timing begins, and output timing ends, at VCCQ/2.  
Figure 6: Transient Equivalent Testing Load Circuit  
VCCQ  
R1  
Device  
Under Test  
Out  
CL  
R2  
Table 10: Test Configuration Component Values  
Test Configuration  
CL (pF)  
30  
R1 (kΩ)  
16.7  
R2 (kΩ)  
V
CCQMin (1.7 V) Standard Test  
16.7  
Note: CL includes jig capacitance.  
Figure 7: Clock Input AC Waveform  
R201  
VIH  
VIL  
CLK [C]  
R202  
R203  
7.2  
Device Capacitance  
Symbol  
Parameter§  
Typ  
Max  
Unit  
Condition  
CIN  
Input Capacitance  
Output Capacitance  
CE# Input Capacitance  
6
8
8
pF  
pF  
pF  
VIN = 0.0 V  
VOUT = 0.0 V  
VIN = 0.0 V  
COUT  
CCE  
12  
12  
10  
§TA = +25 °C; f = 1 MHz; Sampled, not 100% tested.  
Datasheet  
24  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
7.3  
AC Read Characteristics, AD-Mux  
For timing measurements and maximum allowable slew rate, see Figure 5, “AC Input/  
Output Reference Waveform” on page 24. AC specifications assume the data bus  
voltage is less than or equal to VCCQ when a read operation is initiated.  
Note:  
Specifications are for 130 nm and 90 nm devices unless otherwise stated.  
Table 11: AC Read Characteristics, AD-Mux (Sheet 1 of 2)  
60 ns  
#
Sym  
Parameter (1,2)  
Unit  
Notes  
Min  
Max  
Asynchronous Specifications  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
Read Cycle Time  
60  
0
60  
60  
20  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
5
Address to Output Delay  
CE# Low to Output Delay  
5
OE# Low to Output Delay  
2
RST# High to Output Delay  
CE# Low to Output in Low-Z  
OE# Low to Output in Low-Z  
CE# High to Output in High-Z  
OE# High to Output in High-Z  
CE# (OE#) High to Output in Low-Z  
3
0
2,3  
3
0
14  
14  
2,3  
2,3  
Latching Specifications  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
tAVVH  
tELVH  
tVLQV  
tVLVH  
tVHVL  
tVHAX  
tVHGL  
Address Setup to ADV# High  
CE# Low to ADV# High  
ADV# Low to Output Delay  
ADV# Pulse Width Low  
7
10  
7
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
1
ADV# Pulse Width High  
Address Hold from ADV# High  
ADV# High to OE# Low  
7
7
7
Note:  
1.  
Address hold in synchronous burst-mode is defined as tCHAX or tVHAX, whichever timing specification is satisfied first.  
OE# may be delayed by up to tELQV– tGLQV after the falling edge of CE# without impact to tELQV.  
Sampled, not 100% tested.  
Applies only to subsequent synchronous reads.  
2.  
3.  
4.  
5.  
During the initial access of a synchronous burst read, data from the first word may begin to be driven onto the data bus  
as early as the first clock edge after tAVQV.  
November 2007  
Order Number: 313272-06  
Datasheet  
25  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 11: AC Read Characteristics, AD-Mux (Sheet 2 of 2)  
60 ns  
(1,2)  
#
Sym  
Parameter  
Unit  
Notes  
Min  
Max  
Clock Specifications  
R200  
R201  
R202  
R203  
fCLK  
CLK Frequency  
CLK Period  
15  
3.5  
66  
MHz  
ns  
tCLK  
tCH/L  
tCHCL  
CLK High or Low Time  
CLK Fall or Rise Time  
ns  
3
ns  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R308  
R309  
R310  
tAVCH  
tVLCH  
tELCH  
tCHQV  
tCHQX  
tCHAX  
tCHTV  
tELTV  
Address Valid Setup to CLK  
ADV# Low Setup to CLK  
CE# Low Setup to CLK  
CLK to Output Valid  
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
11  
Output Hold from CLK  
Address Hold from CLK  
CLK to WAIT Valid  
3
7
14  
11  
11  
11  
4
CE# Low to WAIT Valid  
CE# High to WAIT High-Z  
CE# Pulse Width High  
tEHTZ  
tEHEL  
3,4  
4
Note:  
1.  
2.  
Address hold in synchronous burst-mode is defined as tCHAX or tVHAX, whichever timing specification is satisfied first.  
OE# may be delayed by up to tELQV– tGLQV after the falling edge of CE# without impact to tELQV  
.
3.  
4.  
Sampled, not 100% tested.  
Applies only to subsequent synchronous reads.  
5.  
During the initial access of a synchronous burst read, data from the first word may begin to be driven onto the data bus  
as early as the first clock edge after tAVQV.  
Datasheet  
26  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
.
Figure 8: Single Word Asynchronous Read, AD-Mux  
R1  
VIH  
Valid  
A[MAX:16] [A]  
Address  
VIL  
VIH/OH  
High Z  
Valid  
Valid  
A/DQ[15:0] [A/Q]  
Address  
Output  
VIL/OL  
R2  
R10  
R101  
R105  
VIH  
R106  
R103  
ADV# [V]  
VIL  
R104  
R102  
R107  
R8  
R9  
VIH  
VIL  
R3  
CE# [E]  
OE# [G]  
R7  
VIH  
VIL  
R4  
VIH  
WE# [W]  
WAIT [T]  
VIL  
VOH  
High Z  
High Z  
Note 1  
VOL  
R5  
VIH  
VIL  
RST# [P]  
Note: WAIT signal asserted low [CR.10 = 0]. WAIT signal shown de-asserted.  
November 2007  
Order Number: 313272-06  
Datasheet  
27  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 9: Single Word Synchronous Array Read, AD-Mux  
VIH  
CLK [C]  
Note 1  
VIL  
VIH  
Valid  
Address  
A[MAX:16] [A]  
VIL  
R301  
R306  
R304  
R305  
R10  
VIH/OH  
High Z  
High Z  
Valid  
Address  
Valid  
Output  
A/DQ[15:0] [A/Q]  
VIL/OL  
R2  
R101  
R105  
VIH  
R106  
R302  
R104  
ADV# [V]  
VIL  
R107  
R3  
R7  
R103  
R8  
R9  
VIH  
VIL  
CE# [E]  
OE# [G]  
WAIT [T]  
WE# [W]  
RST# [P]  
R102  
R303  
R4  
VIH  
VIL  
R308  
R309  
VOH  
VOL  
High Z  
High Z  
Note 2  
VIH  
VIL  
R5  
VIH  
VIL  
Notes:  
1.  
Section 14.2, “First Access Latency Count (CR[13:11])” on page 67 describes how to insert clock cycles  
during the initial access.  
2.  
This waveform only illustrates the case in which an x-word burst is initiated to the Main Array and it is terminated by a  
CE# de-assertion after the first word in the burst. If this access had been done to Status, ID, or Query Space, the active-  
low WAIT signal would have remained de-asserted (high) as long as CE# is asserted (low).  
Datasheet  
28  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 10: Synchronous Four-Word Burst Read, AD-Mux  
VIH  
Note 1  
CLK [C]  
VIL  
VIH  
Valid  
A[MAX:16] [A]  
Address  
VIL  
R301  
R306  
R304  
R305  
VIH/OH  
High Z  
High Z  
Valid  
Address  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
A/DQ[15:0] [A/Q]  
VIL/OL  
R2  
R10  
R101  
R105  
VIH  
R106  
R302  
R104  
ADV# [V]  
R8  
VIL  
R107  
R7  
R310  
R103  
VIH  
VIL  
R3  
CE# [E]  
OE# [G]  
WE# [W]  
WAIT [T]  
RST# [P]  
R102  
R303  
R4  
R9  
VIH  
VIL  
VIH  
VIL  
R308  
R309  
R307  
VOH  
VOL  
High Z  
High Z  
Note 2  
VIH  
VIL  
R5  
Notes:  
1.  
Section 14.2, “First Access Latency Count (CR[13:11])” on page 67 describes how to insert clock cycles  
during the initial access.  
2.  
WAIT (shown asserted low) can be configured to assert either during or one data cycle before valid data.  
November 2007  
Order Number: 313272-06  
Datasheet  
29  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 11: WAIT Functionality for EOWL (End of Word Line) Condition, AD-Mux  
V
IH  
CLK [C]  
V
IL  
R301  
R306  
R304  
R305  
V
IH  
High Z  
Valid  
Add14  
Valid  
Data14  
Valid  
Data15  
Valid  
Data16  
Valid  
Data17  
Valid  
Data18  
Valid  
Data19  
A/DQ[15:0] [A/Q]  
V
IL  
R2  
R10  
R101  
R105  
R106  
V
IH  
R302  
R104  
ADV# [V]  
CE# [E]  
R8  
V
IL  
R107  
R103  
R7  
R310  
V
IH  
R3  
V
IL  
R310  
R102  
R303  
R4  
R9  
V
IH  
OE# [G]  
V
IL  
V
IH  
WE# [W]  
WAIT [T]  
RST# [P]  
V
IL  
R309  
VOH  
VOL  
High Z  
R308  
V
IH  
R5  
V
IL  
Notes:  
1.  
Section 14.2, “First Access Latency Count (CR[13:11])” on page 67 describes how to insert clock cycles  
during the initial access.  
2.  
WAIT (shown asserted low) can be configured to assert either during or one data cycle before valid data.  
Datasheet  
30  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 12: WAIT Signal in Synchronous Non-Read Array, AD-Mux  
VIH  
CLK [C]  
Note 1  
VIL  
VIH  
Valid  
Address  
A[MAX:16] [A]  
VIL  
R301  
R306  
R304  
R305  
R10  
VIH/OH  
High Z  
High Z  
Valid  
Address  
Valid  
Output  
A/DQ[15:0] [A/Q]  
VIL/OL  
R2  
R101  
R105  
VIH  
R106  
R302  
R104  
ADV# [V]  
CE# [E]  
VIL  
R107  
R3  
R7  
R103  
R8  
R9  
VIH  
VIL  
R310  
VIH  
OE# [G]  
R102  
R303  
R4  
VIL  
VIH  
VIL  
WE# [W]  
WAIT [T]  
RST# [P]  
R307  
R309  
VOH  
VOL  
High Z  
Note 2  
R308  
VIH  
VIL  
R5  
Notes:  
1.  
Section 14.2, “First Access Latency Count (CR[13:11])” on page 67 describes how to insert clock cycles  
during the initial access.  
WAIT signal asserted low [CR.10 = 0]. WAIT signal shown de-asserted.  
2.  
November 2007  
Order Number: 313272-06  
Datasheet  
31  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 13: Burst Suspend Waveform, AD-Mux  
R304  
R304  
Q1  
CLK [C]  
Note 1  
A/DQ [A/DQ]  
A
Q0  
Q1  
Q2  
R101  
R105  
R106  
ADV# [V]  
CE# [E]  
R9  
R4  
OE# [G]  
R12  
WAIT [T]  
WE# [W]  
Note:  
1.  
During burst suspend, CLK can be held high or low.  
7.4  
AC Write Characteristics, AD-Mux  
Write timing characteristics during an Erase Suspend operation are the same as during  
Write-Only operations. A Write operation can be terminated with either CE# or WE#.  
Note:  
Specifications are for 130 nm and 90 nm devices unless otherwise stated.  
Table 12: AC Write Characteristics, AD-Mux (Sheet 1 of 2)  
60 ns  
(1,2)  
#
Sym  
Parameter  
Unit  
Notes  
Min  
Max  
tPHWL  
W1  
W2  
W3  
W4  
W5  
RST# High Recovery to WE# (CE#) Low  
CE# (WE#) Setup to WE# (CE#) Low  
WE# (CE#) Write Pulse Width Low  
Data Setup to WE# (CE#) High  
150  
ns  
ns  
ns  
ns  
ns  
1
2
(tPHEL  
)
tELWL  
(tWLEL  
0
)
tWLWH  
(tELEH  
40  
40  
40  
)
tDVWH  
(tDVEH  
)
tAVWH  
(tAVEH  
Address Setup to WE# (CE#) High  
)
Notes:  
1.  
2.  
Sampled, not 100% tested.  
Write pulse width low (tWLWH or tELEH) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
(whichever occurs first). Hence, tWLWH = tELEH = tWLEH = tELWH  
Write pulse width high (tWHWL or tEHEL) is defined from CE# or WE# high (whichever is first) to CE# or WE# low  
(whichever is last). Hence, tWHWL = tEHEL = tWHEL = tEHWL  
tWHQV is tAVQV + 50 ns. Designers should take this into account and may insert a software No-Op instruction to delay  
the first read after issuing a command.  
.
3.  
4.  
.
5.  
6.  
7.  
8.  
For non-resume commands.  
VPP should be held at VPP1 or VPP2 until block erase or word program success is determined.  
Applicable during asynchronous reads following a write.  
tWHCV and tWHVH refer to the address latching event during a synchronous read. Either tWHCV or tWHVH, whichever comes  
first, must be met.  
Datasheet  
32  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 12: AC Write Characteristics, AD-Mux (Sheet 2 of 2)  
60 ns  
#
Sym  
Parameter (1,2)  
Unit  
Notes  
Min  
Max  
tWHEH  
(tEHWH  
W6  
W7  
CE# (WE#) Hold from WE# (CE#) High  
Data Hold from WE# (CE#) High  
Address Hold from WE# (CE#) High  
WE# (CE#) Pulse Width High  
0
ns  
ns  
ns  
ns  
ns  
)
tWHDX  
0
0
(tEHDX  
)
tWHAX  
(tEHAX  
W8  
)
tWHWL  
(tEHEL  
W9  
20  
200  
3,4,5  
1
)
tVPWH  
W10  
VPP Setup to WE# (CE#) High  
(tVPEH  
tQVVL  
tQVBL  
tBHWH  
)
W11  
W12  
VPP Hold from Valid SRD  
WP# Hold from Valid SRD  
0
0
ns  
ns  
1, 5  
1, 6  
W13  
W14  
WP# Setup to WE# (CE#) High  
Write Recovery before Read  
200  
ns  
ns  
1
(tBHEH  
)
tWHGL  
0
(tEHGL  
tVHWH  
tWHQV  
tWHAV  
tWHCV  
tWHVH  
)
W15  
W16  
W18  
W19  
W20  
ADV# Setup to WE# High  
WE# High to Valid Data  
WE# High to Address Valid  
WE# High to CLK Valid  
WE# High to ADV# High  
N/A  
ns  
ns  
ns  
ns  
ns  
4
tAVQV +20  
0
7
12  
12  
8
8
Notes:  
1.  
2.  
Sampled, not 100% tested.  
Write pulse width low (tWLWH or tELEH) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
(whichever occurs first). Hence, tWLWH = tELEH = tWLEH = tELWH  
Write pulse width high (tWHWL or tEHEL) is defined from CE# or WE# high (whichever is first) to CE# or WE# low  
(whichever is last). Hence, tWHWL = tEHEL = tWHEL = tEHWL  
tWHQV is tAVQV + 50 ns. Designers should take this into account and may insert a software No-Op instruction to delay  
the first read after issuing a command.  
.
3.  
4.  
.
5.  
6.  
7.  
8.  
For non-resume commands.  
VPP should be held at VPP1 or VPP2 until block erase or word program success is determined.  
Applicable during asynchronous reads following a write.  
tWHCV and tWHVH refer to the address latching event during a synchronous read. Either tWHCV or tWHVH, whichever comes  
first, must be met.  
November 2007  
Order Number: 313272-06  
Datasheet  
33  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 14: Write Operations Waveform, AD-Mux  
VIH  
VIL  
CLK [C]  
Note 1  
VIH  
Note 2  
Note 3  
Note 4  
Note 5  
Valid  
Valid  
Valid  
A[MAX:16] [A]  
Address  
Address  
Address  
VIL  
VIH/OH  
Valid  
Address  
Valid  
Address  
Valid  
Address  
Valid  
Data  
Data In  
Data In  
A/DQ[15:0] [A/Q]  
VIL/OL  
W7  
R101  
W4  
R106  
W19  
W5  
R105  
VIH  
W18  
W20  
ADV# [V]  
CE# [E]  
VIL  
R104  
VIH  
VIL  
Note 6  
W2  
W6  
W14  
W16  
VIH  
OE# [G]  
W9  
VIL  
VIH  
WE# [W]  
VIL  
W1  
W3  
VIH  
RST# [P]  
WP# [B]  
W13  
W10  
W12  
W11  
VIL  
VIH  
VIL  
VPPH  
VPPLK  
VIL  
VPP [V]  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
VCC power-up and standby.  
Write Program or Erase Setup command.  
Write valid address and data (for program) or Erase Confirm command.  
Automated program/erase delay.  
Read status register data (SRD) to determine program/erase operation completion.  
OE# and CE# must be asserted and WE# de-asserted for read operations.  
CLK is ignored (but may be kept active/toggling).  
7.5  
Program and Erase Characteristics  
Unless noted otherwise, all Erase and Progrm parameters are measured at TA = +25 °C  
and nominal voltages, and they are sampled, not 100% tested. Some EFP performance  
degradation may occur if block cycling exceeds 10 attempts.  
Note:  
Specifications are for 130 nm and 90 nm devices unless otherwise stated.  
Datasheet  
34  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 13: Erase and Program Times  
VPP1  
VPP2  
Operation  
Symbol  
Parameter  
Description  
Unit  
Notes  
Typ  
Max  
Typ  
Max  
Erasing and Suspending  
W500  
Erase Time  
tERS/PB  
tERS/MB  
tSUSP/P  
tSUSP/E  
4-Kword Parameter Block  
32-Kword Main Block  
Program Suspend  
0.3  
0.7  
5
2.5  
4
0.25  
0.4  
5
2.5  
4
s
1,2  
1,2  
1
W501  
s
W600  
10  
20  
10  
20  
µs  
µs  
Suspend  
Latency  
W601  
Erase Suspend  
5
5
1
Programming  
W200  
tPROG/W  
tPROG/PB  
tPROG/MB  
Single Word  
12  
0.05  
0.4  
150  
0.23  
1.8  
8
130  
0.07  
0.6  
µs  
s
1
Program Time  
W201  
W202  
4-Kword Parameter Block  
32-Kword Main Block  
0.03  
0.24  
1,2  
1,2  
s
Enhanced Factory Programming  
W400  
W401  
W402  
W403  
tEFP/W  
Single Word  
N/A  
N/A  
N/A  
N/A  
3.1  
15  
16  
5
µs  
ms  
ms  
µs  
3
Program  
tEFP/PB  
4-Kword Parameter Block  
32-Kword Main Block  
EFP Setup  
1,2  
1,2  
tEFP/MB  
tEFP/SETUP  
120  
N/A  
Operation  
Latency  
Program to Verify  
Transition  
W404  
W405  
tEFP/TRAN  
N/A  
N/A  
N/A  
N/A  
2.7  
1.7  
5.6  
µs  
µs  
tEFP/VERIFY  
Verify  
130  
Notes:  
1.  
2.  
3.  
Excludes external system-level overhead.  
Exact results may vary based on system overhead.  
W400-Typ is the calculated delay for a single programming pulse. W400-Max includes the delay when programming  
within a new word-line.  
7.6  
Reset Specifications  
Note:  
Specifications are for 130 nm and 90 nm devices unless otherwise stated.  
Table 14: Reset Specifications  
#
Symbol  
tPLPH  
Parameter  
Notes  
Min  
Max  
Unit  
P1  
RST# Low to Reset during Read  
RST# Low to Reset during Block Erase  
RST# Low to Reset during Program  
VCC Power Valid to Reset  
1, 2, 3, 4  
1, 3, 4, 5  
1, 3, 4, 5  
1,3,4,5,6  
100  
20  
10  
ns  
µs  
µs  
µs  
P2  
P3  
tPLRH  
tVCCPH  
60  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
These specifications are valid for all product versions (packages and speeds).  
The device may reset if tPLPH< tPLPHMin, but this is not guaranteed.  
Not applicable if RST# is tied to VCC.  
Sampled, but not 100% tested.  
If RST# is tied to VCC, the device is not ready until tVCCPH occurs after when VCC VCCMin.  
If RST# is tied to any supply/signal with VCCQ voltage levels, the RST# input voltage must not exceed VCC until VCC  
VCCMin.  
November 2007  
Order Number: 313272-06  
Datasheet  
35  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 15: Reset Operations Waveforms  
P1  
P2  
P2  
P3  
R5  
VIH  
VIL  
(
A) Reset during  
read mode  
RST# [P]  
RST# [P]  
RST# [P]  
VCC  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
Datasheet  
36  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
8.0  
Power and Reset Specifications  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO devices have a  
layered approach to power savings that can significantly reduce overall system power  
consumption. The APS feature reduces power consumption when the device is selected  
but idle. If CE# is deasserted, the memory enters its standby mode, where current  
consumption is even lower. Asserting RST# provides current savings similar to standby  
mode. The combination of these features can minimize memory power consumption,  
and therefore, overall system power consumption.  
8.1  
8.2  
Active Power  
With CE# at VIL and RST# at VIH, the device is in the active mode. Refer to Section 6.1,  
“DC Current Characteristics” on page 21, for ICC values. When the device is in “active”  
state, it consumes the most power from the system. Minimizing device active current  
therefore reduces system power consumption, especially in battery-powered  
applications.  
Automatic Power Savings  
Automatic Power Saving (APS) provides low-power operation during a read’s active  
state. During APS mode, ICCAPS is the average current measured over any 5 ms time  
interval 5 µs after the following events happen:  
• There is no internal sense activity;  
• CE# is asserted;  
• The address lines are quiescent, and at VSSQ or VCCQ  
OE# may be asserted during APS.  
.
8.3  
Standby Power  
With CE# at VIH and the device in read mode, the flash memory is in standby mode,  
which disables most device circuitry and substantially reduces power consumption.  
Outputs are placed in a high-impedance state independent of the OE# signal state. If  
CE# transitions to VIH during erase or program operations, the device continues the  
operation and consumes corresponding active power until the operation is complete.  
ICCS is the average current measured over any 5 ms time interval 5 µs after a CE# de-  
assertion.  
8.4  
Power-Up/Down Characteristics  
The device is protected against accidental block erasure or programming during power  
transitions. Power supply sequencing is not required if VCC, VCCQ, and VPP are  
connected together; so it doesn’t matter whether VPP or VCC powers-up first. If VCCQ  
and/or VPP are not connected to the system supply, then VCC should attain VCCMIN  
before applying VCCQ and VPP. Device inputs should not be driven before supply  
voltage = VCCMIN. Power supply transitions should only occur when RST# is low.  
8.4.1  
System Reset and RST#  
The use of RST# during system reset is important with automated program/erase  
devices because the system expects to read from the flash memory when it comes out  
of reset. If a CPU reset occurs without a flash memory reset, proper CPU initialization  
November 2007  
Order Number: 313272-06  
Datasheet  
37  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
will not occur because the flash memory may be providing status information instead of  
array data. To allow proper CPU/flash initialization at system reset, connect RST# to  
the system CPU RESET# signal.  
System designers must guard against spurious writes when VCC voltages are above  
VLKO. Because both WE# and CE# must be low for a command write, driving either  
signal to VIH inhibits writes to the device. The CUI architecture provides additional  
protection because alteration of memory contents can only occur after successful  
completion of the two-step command sequences. The device is also disabled until RST#  
is brought to VIH, regardless of its control input states. By holding the device in reset  
(RST# connected to system PowerGood) during power-up/down, invalid bus conditions  
during power-up can be masked, providing yet another level of memory protection.  
8.4.2  
VCC, VPP, and RST# Transitions  
The CUI latches commands issued by system software and is not altered by VPP or CE#  
transitions or WSM actions. Read-array mode is its power-up default state after exit  
from reset mode or after VCC transitions above VLKO (Lockout voltage).  
After completing program or block erase operations (even after VPP transitions below  
V
PPLK), the Read Array command must reset the CUI to read-array mode if flash  
memory array access is desired.  
8.5  
Power Supply Decoupling  
When the W18 device is accessed, many internal conditions change. Circuits are  
enabled to charge pumps and switch voltages. This internal activity produces transient  
noise. To minimize the effect of this transient noise, device decoupling capacitors are  
required. Transient current magnitudes depend on the device outputs’ capacitive and  
inductive loading. Two-line control and proper decoupling capacitor selection  
suppresses these transient voltage peaks. Each flash device should have a 0.1 µF  
ceramic capacitor connected between each power (VCC, VCCQ, VPP), and ground (VSS,  
VSSQ) signal. High-frequency, inherently low-inductance capacitors should be as close  
as possible to package signals.  
Datasheet  
38  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
9.0  
Device Operations  
This section provides an overview of device operations. The Numonyx™ Wireless Flash  
Memory (W18) with AD Multiplexed IO family includes an on-chip WSM to manage  
block erase and program algorithms. Its CUI allows minimal processor overhead with  
RAM-like interface timings.  
9.1  
Bus Operations  
Table 15: Bus Operations  
Mode  
RST#  
CE#  
OE#  
WE#  
ADV#  
WAIT  
DQ[15:0]  
Notes  
Reset  
Write  
Read  
VIL  
VIH  
VIH  
VIH  
VIH  
X
X
X
X
VIL  
VIL  
X
High-Z  
High-Z  
DIN  
1,2  
3
VIL  
VIL  
VIL  
VIH  
VIH  
VIL  
VIH  
X
VIL  
VIH  
VIH  
X
Asserted  
DOUT  
4
Active  
Output Disable  
Standby  
Asserted  
High-Z  
High-Z  
1
X
High-Z  
1
Notes:  
1.  
2.  
3.  
4.  
X = Don’t Care (VIL or VIH).  
RST# must be at VSS ± 0.2 V to meet the maximum specified power-down current.  
Refer to the Table 17, “Bus Cycle Definitions” on page 43 for valid DIN during a write operation.  
WAIT is only valid during synchronous array read operations.  
9.1.1  
Read  
The W18 device has several read configurations:  
• Asynchronous page mode read.  
• Synchronous burst mode read — outputs four, eight, sixteen, or continuous words,  
from main blocks and parameter blocks.  
Several read modes are available in each partition:  
Read-array mode: read accesses return flash array data from the addressed  
locations.  
Read identifier mode: reads return manufacturer and device identifier data,  
block lock status, and protection register data. Identifier information can be  
accessed starting at 4-Mbit partition base addresses; the flash array is not  
accessible in read identifier mode.  
Read query mode: reads return device CFI data. CFI information can be accessed  
starting at 4-Mbit partition base addresses; the flash array is not accessible in read  
query mode.  
Read status register mode: reads return status register data from the addressed  
partition. That partition’s array data is not accessible. A system processor can  
check the status register to determine an addressed partition’s state or monitor  
program and erase progress.  
All partitions support the synchronous burst mode that internally sequences addresses  
with respect to the input CLK to select and supply data to the outputs.  
Identifier codes, query data, and status register read operations execute as single-  
synchronous or asynchronous read cycles. WAIT is asserted during these reads.  
November 2007  
Order Number: 313272-06  
Datasheet  
39  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Access to the modes listed above is independent of VPP. An appropriate CUI command  
places the device in a read mode. At initial power-up or after reset, the device defaults  
to asynchronous read-array mode.  
Asserting CE# enables device read operations. The device internally decodes upper  
address inputs to determine which partition is accessed. Asserting ADV# opens the  
internal address latches. Asserting OE# activates the outputs and gates selected data  
onto the I/O bus. In asynchronous mode, the address is latched when ADV# is  
deasserted (when the device is configured to use ADV#). In synchronous mode, the  
address is latched by either the rising edge of ADV# or the rising (or falling) CLK edge  
while ADV# remains asserted, whichever occurs first. WE# and RST# must be at  
deasserted during read operations.  
Note:  
If only asynchronous reads are to be performed in your system, CLK should be tied to a  
valid VIH level, WAIT signal can be floated and ADV# must be tied to ground.  
9.1.2  
Burst Suspend  
The Burst Suspend feature allows the system to temporarily suspend a synchronous  
burst operation if the system needs to use the flash address and data bus for other  
purposes. Burst accesses can be suspended during the initial latency (before data is  
received) or after the device has output data. When a burst access is suspended,  
internal array sensing continues and any previously latched internal data is retained.  
Burst Suspend occurs when CE# is asserted, the current address has been latched  
(either ADV# rising edge or valid CLK edge), CLK is halted, and OE# is deasserted. CLK  
can be halted when it is at VIH or VIL. To resume the burst access, OE# is reasserted  
and CLK is restarted. Subsequent CLK edges resume the burst sequence where it left  
off.  
Within the device, CE# gates WAIT. Therefore, during Burst Suspend WAIT remains  
asserted and does not revert to a high-impedance state when OE# is deasserted. This  
can cause contention with another device attempting to control the system’s READY  
signal during a Burst Suspend. System using the Burst Suspend feature should not  
connect the device’s WAIT signal directly to the system’s READY signal. Refer to  
Figure 13, “Burst Suspend Waveform, AD-Mux” on page 32.  
9.1.3  
9.1.4  
Standby  
De-asserting CE# deselects the device and places it in standby mode, substantially  
reducing device power consumption. In standby mode, outputs are placed in a high-  
impedance state independent of OE#. If deselected during a program or erase  
algorithm, the device shall consume active power until the program or erase operation  
completes.  
Reset  
The device enters a reset mode when RST# is asserted. In reset mode, internal  
circuitry is turned off and outputs are placed in a high-impedance state.  
After returning from reset, a time tPHQV is required until outputs are valid, and a delay  
(tPHWV) is required before a write sequence can be initiated. After this wake-up  
interval, normal operation is restored. The device defaults to read-array mode, the  
status register is set to 80h, and the configuration register defaults to asynchronous  
page-mode reads.  
If RST# is asserted during an erase or program operation, the operation aborts and the  
memory contents at the aborted block or address are invalid.  
Datasheet  
40  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Like any automated device, it is important to assert RST# during system reset. When  
the system comes out of reset, the processor expects to read from the flash memory  
array. Automated flash memories provide status information when read during program  
or erase operations. If a CPU reset occurs with no flash memory reset, proper CPU  
initialization may not occur because the flash memory may be providing status  
information instead of array data. Numonyx Flash memories allow proper CPU  
initialization following a system reset through the use of the RST# input. In this  
application, RST# is controlled by the same CPU reset signal, RESET#.  
9.1.5  
Write  
A write occurs when CE# and WE# are asserted and OE# is deasserted. Flash control  
commands are written to the CUI using standard microprocessor write timings. Proper  
use of the ADV# input is needed for proper latching of the addresses. Write operations  
are asynchronous; CLK is ignored (but still may be kept active/toggling).  
The CUI does not occupy an addressable memory location within any partition. The  
system processor must access it at the correct address range depending on the kind of  
command executed. Programming or erasing may occur in only one partition at a time.  
Other partitions must be in one of the read modes or erase suspend mode.  
Table 16, “Command Codes and Descriptions” on page 41 shows the available  
commands. Appendix , “Write State Machine States” on page 73 provides information  
on moving between different operating modes using CUI commands.  
9.2  
Device Commands  
The W18 device on-chip WSM manages erase and program algorithms. This local CPU  
(WSM) controls the device’s in-system read, program, and erase operations. Bus cycles  
to or from the flash memory conform to standard microprocessor bus cycles. RST#,  
CE#, OE#, WE#, and ADV# control signals dictate data flow into and out of the device.  
WAIT informs the CPU of valid data during burst reads. Table 15, “Bus Operations” on  
page 39 summarizes bus operations.  
Device operations are selected by writing specific commands into the device’s CUI.  
Table 16, “Command Codes and Descriptions” on page 41 lists all possible command  
codes and descriptions. Table 17, “Bus Cycle Definitions” on page 43 lists command  
definitions. Because commands are partition-specific, it is important to issue write  
commands within the target address range.  
Table 16: Command Codes and Descriptions (Sheet 1 of 2)  
Device  
Command  
Operation  
Code  
Description  
FFh  
70h  
Read Array  
Places selected partition in read-array mode.  
Read Status  
Register  
Places selected partition in status register read mode. The partition enters this  
mode after a Program or Erase command is issued to it.  
Puts the selected partition in read identifier mode. Device reads from partition  
addresses output manufacturer/device codes, configuration register data, block  
lock status, or protection register data on D[15:0].  
90h  
98h  
50h  
Read Identifier  
Read Query  
Read  
Puts the addressed partition in read query mode. Device reads from the partition  
addresses output CFI information on D[7:0].  
The WSM can set the status register’s block lock (SR[1]), VPP (SR[3]), program  
(SR[4]), and erase (SR[5]) status bits, but it cannot clear them. SR[5:3,1] can  
only be cleared by a device reset or through the Clear Status Register command.  
Clear Status  
Register  
November 2007  
Order Number: 313272-06  
Datasheet  
41  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 16: Command Codes and Descriptions (Sheet 2 of 2)  
Device  
Command  
Operation  
Code  
Description  
This preferred program command’s first cycle prepares the CUI for a program  
operation. The second cycle latches address and data, and executes the WSM  
program algorithm at this location. Status register updates occur when CE# or  
OE# is toggled. A Read Array command is required to read array data after  
programming.  
Word Program  
Setup  
40h  
10h  
30h  
Alternate Setup  
EFP Setup  
Equivalent to a Program Setup command (40h).  
Program  
This program command activates EFP mode. The first write cycle sets up the  
command. If the second cycle is an EFP Confirm command (D0h), subsequent  
writes provide program data. All other commands are ignored after EFP mode  
begins.  
If the first command was EFP Setup (30h), the CUI latches the address and data,  
and prepares the device for EFP mode.  
D0h  
20h  
EFP Confirm  
Erase Setup  
This command prepares the CUI for Block Erase. The device erases the block  
addressed by the Erase Confirm command. If the next command is not Erase  
Confirm, the CUI sets status register bits SR[5:4] to indicate command sequence  
error and places the partition in the read status register mode.  
Erase  
If the first command was Erase Setup (20h), the CUI latches address and data,  
and erases the block indicated by the erase confirm cycle address. During  
program or erase, the partition responds only to Read Status Register, Program  
Suspend, and Erase Suspend commands. CE# or OE# toggle updates status  
register data.  
D0h  
B0h  
Erase Confirm  
This command, issued at any device address, suspends the currently executing  
program or erase operation. Status register data indicates the operation was  
successfully suspended if SR[2] (program suspend) or SR[6] (erase suspend)  
and SR[7] are set. The WSM remains in the suspended state regardless of  
control signal states (except RST#).  
Program  
Suspend or  
Erase Suspend  
Suspend  
This command, issued at any device address, resumes the suspended program  
or erase operation.  
D0h  
60h  
01h  
D0h  
2Fh  
Suspend Resume  
Lock Setup  
This command prepares the CUI lock configuration. If the next command is not  
Lock Block, Unlock Block, or Lock-Down, the CUI sets SR[5:4] to indicate  
command sequence error.  
If the previous command was Lock Setup (60h), the CUI locks the addressed  
block.  
Lock Block  
Block Locking  
If the previous command was Lock Setup (60h), the CUI latches the address and  
unlocks the addressed block. If previously locked-down, the operation has no  
effect.  
Unlock Block  
Lock-Down  
If the previous command was Lock Setup (60h), the CUI latches the address and  
locks-down the addressed block.  
This command prepares the CUI for a protection register program operation. The  
second cycle latches address and data, and starts the WSM’s protection register  
program or lock algorithm. Toggling CE# or OE# updates the flash status register  
data. To read array data after programming, issue a Read Array command.  
Protection  
Program  
Setup  
Protection  
C0h  
This command prepares the CUI for device configuration. If Set Configuration  
Register is not the next command, the CUI sets SR[5:4] to indicate command  
sequence error.  
Configuration  
Setup  
60h  
03h  
Configuration  
Set  
If the previous command was Configuration Setup (60h), the CUI latches the  
address and writes the data from A[15:0] into the configuration register.  
Subsequent read operations access array data.  
Configuration  
Register  
Note: Do not use unassigned commands. Numonyx reserves the right to redefine these codes for future functions.  
Datasheet  
42  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 17: Bus Cycle Definitions  
First Bus Cycle  
Second Bus Cycle  
Bus  
Operation  
Command  
Cycles  
Oper  
Addr1  
Data2,3  
Oper  
Addr1  
Data2,3  
Read  
Address  
Array  
Data  
Read Array/Reset  
1  
Write  
PnA  
FFh  
Read  
Read Identifier  
Read Query  
2  
2  
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
PnA  
PnA  
PnA  
XX  
90h  
98h  
Read  
Read  
Read  
PBA+IA  
PBA+QA  
PnA  
IC  
QD  
SRD  
Read  
Read Status Register  
Clear Status Register  
Block Erase  
70h  
1
50h  
2
BA  
20h  
Write  
Write  
Write  
BA  
D0h  
WD  
D0h  
Word Program  
EFP  
2
WA  
WA  
XX  
40h/10h  
30h  
WA  
Program  
and  
Erase  
>2  
1
WA  
Program/Erase Suspend  
Program/Erase Resume  
Lock Block  
B0h  
1
XX  
D0h  
60h  
2
BA  
Write  
Write  
Write  
BA  
01h  
D0h  
2Fh  
Lock  
Unlock Block  
2
BA  
60h  
BA  
Lock-Down Block  
2
BA  
60h  
BA  
Protection Program  
2
2
2
Write  
Write  
Write  
PA  
LPA  
CD  
C0h  
C0h  
60h  
Write  
Write  
Write  
PA  
LPA  
CD  
PD  
FFFDh  
03h  
Protection  
Lock Protection Program  
Set Configuration Register  
Configuration  
Notes:  
1.  
First-cycle command addresses should be the same as the operation’s target address. Examples: the first-cycle address  
for the Read Identifier command should be the same as the Identification code address (IA); the first-cycle address for  
the Word Program command should be the same as the word address (WA) to be programmed; the first-cycle address  
for the Erase/Program Suspend command should be the same as the address within the block to be suspended; etc.  
XX = Any valid address within the device.  
IA = Identification code address.  
BA = Block Address. Any address within a specific block.  
LPA = Lock Protection Address is obtained from the CFI (through the Read Query command). The W18 family’s LPA is at  
0080h.  
PA = User programmable 4-word protection address.  
PnA = Any address within a specific partition.  
PBA = Partition Base Address. The very first address of a particular partition.  
QA = Query code address.  
WA = Word address of memory location to be written.  
SRD = Status register data.  
WD = Data to be written at location WA.  
IC = Identifier code data.  
PD = User programmable 4-word protection data.  
QD = Query code data on DQ[7:0].  
CD = Configuration register code data presented on device addresses A/DQ[15:0]. A[MAX:16] address bits can select  
any partition. See Table 25, “Configuration Register Definitions” on page 66 for configuration register  
bits descriptions.  
Commands other than those shown above are reserved by Numonyx for future device implementations and should not  
be used.  
2.  
3.  
November 2007  
Order Number: 313272-06  
Datasheet  
43  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
9.3  
Command Sequencing  
When issuing a 2-cycle write sequence to the flash device, a read operation is allowed  
to occur between the two write cycles. The setup phase of a 2-cycle write sequence  
places the addressed partition into read-status mode, so if the same partition is read  
before the second “confirm” write cycle is issued, status register data will be returned.  
Reads from other partitions, however, can return actual array data assuming the  
addressed partition is already in read-array mode. Figure 16 on page 44 and Figure 17  
on page 44 illustrate these two conditions.  
Figure 16: Normal Write and Read Cycles  
Address [A]  
WE# [W]  
OE# [G]  
Partition A  
Partition A  
Partition A  
Data [Q]  
20h  
Block Erase Setup  
D0h  
Block Erase Conf irm  
FFh  
Read Array  
Figure 17: Interleaving a 2-Cycle Write Sequence with an Array Read  
Address [A]  
WE# [W]  
OE# [G]  
Partition B  
Partition A  
Partition B  
Partition A  
Data [Q]  
FFh  
Read Array  
20h  
Erase Setup  
Array Data  
Bus Read  
D0h  
Erase Confirm  
By contrast, a write bus cycle may not interrupt a 2-cycle write sequence. Doing so  
causes a command sequence error to appear in the status register. Figure 18 illustrates  
a command sequence error.  
Figure 18: Improper Command Sequencing  
Address [A]  
WE# [W]  
Partition X  
Partition Y  
Partition X  
Partition X  
OE# [G]  
Data [D/Q]  
20h  
FFh  
D0h  
SR Data  
Datasheet  
44  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
10.0  
Read Operations  
10.1  
Read Array  
The Read Array command places (or resets) the partition in read-array mode and is  
used to read data from the flash memory array. Upon initial device power-up, or after  
reset (RST# transitions from VIL to VIH), all partitions default to asynchronous read-  
array mode. To read array data from the flash device, first write the Read Array  
command (FFh) to the CUI and specify the desired word address. Then read from that  
address. If a partition is already in read-array mode, the Read Array command need  
not be reissued to read from that partition.  
If the Read Array command is written to a partition that is erasing or programming, the  
device presents invalid data on the bus until the program or erase operation completes.  
After the program or erase finishes in that partition, valid array data can then be read.  
If an Erase Suspend or Program Suspend command suspends the WSM, a subsequent  
Read Array command places the addressed partition in read-array mode. The Read  
Array command functions independently of VPP.  
10.2  
Read Device ID  
The read identifier mode outputs the manufacturer/device identifier, block lock status,  
protection register codes, and configuration register data. The identifier information is  
contained within a separate memory space on the device and can be accessed along  
the 4-Mbit partition address range supplied by the Read Identifier command (90h)  
address. Reads from addresses in Table 18 retrieve ID information. Issuing a Read  
Identifier command to a partition that is programming or erasing places that partition’s  
outputs in read ID mode while the partition continues to program or erase in the  
background.  
Table 18: Device Identification Codes (Sheet 1 of 2)  
Address(1)  
Item  
Data  
Description  
Base  
Offset  
Manufacturer ID  
Partition  
00h  
0089h  
8872h  
Numonyx  
32-Mbit TPD  
Device ID (Top Parameter)  
Partition  
Partition  
01h  
01h  
8874h  
64-Mbit TPD  
8876h  
128-Mbit TPD  
8873h  
32-Mbit BPD  
Device ID (Bottom Parameter)  
Block Lock Status(2)  
8875h  
64-Mbit BPD  
8877h  
128-Mbit BPD  
A/DQ[0] = 0  
A/DQ[0] = 1  
A/DQ[1] = 0  
A/DQ[1] = 1  
Block is unlocked  
Block is locked  
Block is not locked-down  
Block is locked down  
Block  
Block  
02h  
02h  
Block Lock-Down Status(2)  
Notes:  
1.  
The address is constructed from a base address plus an offset. For example, to read the Block Lock Status for block  
number 39 in a TPD, set the address to the BBA (138000h) plus the offset (02h), i.e. 138002h. Then examine bit 0 of  
the data to determine if the block is locked.  
See Section 13.1.4, “Block Lock Status” on page 61 for valid lock status.  
2.  
November 2007  
Order Number: 313272-06  
Datasheet  
45  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 18: Device Identification Codes (Sheet 2 of 2)  
Address(1)  
Item  
Data  
Description  
Base  
Offset  
Configuration Register  
Partition  
Partition  
05h  
80h  
Register Data  
Lock Data  
Protection Register Lock Status  
Protection Register  
Notes:  
Multiple reads required to read  
the entire 128-bit Protection  
Register.  
Partition  
81h - 88h  
Register Data  
1.  
The address is constructed from a base address plus an offset. For example, to read the Block Lock Status for block  
number 39 in a TPD, set the address to the BBA (138000h) plus the offset (02h), i.e. 138002h. Then examine bit 0 of  
the data to determine if the block is locked.  
See Section 13.1.4, “Block Lock Status” on page 61 for valid lock status.  
2.  
10.3  
10.4  
Read Query (CFI)  
This device contains a separate CFI query database that acts as an “on-chip datasheet.”  
The CFI information within this device can be accessed by issuing the Read Query  
command and supplying a specific address. The address is constructed from the base  
address of a partition plus a particular offset corresponding to the desired CFI field.  
Section 16.0, “Common Flash Interface” on page 76 shows accessible CFI fields and  
their address offsets. Issuing the Read Query command to a partition that is  
programming or erasing puts that partition in read query mode while the partition  
continues to program or erase in the background.  
Read Status Register  
The device’s status register displays program and erase operation status. A partition’s  
status can be read after writing the Read Status Register command to any location  
within the partition’s address range. Read-status mode is the default read mode  
following a Program, Erase, or Lock Block command sequence. Subsequent single reads  
from that partition will return its status until another valid command is written.  
The read-status mode supports single synchronous and single asynchronous reads  
only; it doesn’t support burst reads. The first falling edge of OE# or CE# latches and  
updates status register data. The operation doesn’t affect other partitions’ modes.  
Because the status register is 8 bits wide, only DQ [7:0] contains valid status register  
data; DQ [15:8] contains zeros. See Table 19, “Status Register Definitions” on page 46  
and Table 20, “Status Register Descriptions” on page 47.  
Each 4-Mbit partition contains its own status register. Bits SR[6:0] are unique to each  
partition, but SR[7], the Device WSM Status (DWS) bit, pertains to the entire device.  
SR[7] provides program and erase status of the entire device. By contrast, the Partition  
WSM Status (PWS) bit, SR[0], provides program and erase status of the addressed  
partition only. Status register bits SR[6:1] present information about partition-specific  
program, erase, suspend, VPP, and block-lock states. Table 21, “Status Register Device  
WSM and Partition Write Status Description” on page 47 presents descriptions of DWS  
(SR[7]) and PWS (SR[0]) combinations.  
Table 19: Status Register Definitions  
DWS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
DPS  
1
PWS  
0
Datasheet  
46  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 20: Status Register Descriptions  
Bit  
Name  
State  
Description  
DWS  
Device WSM  
Status  
0 = Device WSM is Busy  
1 = Device WSM is Ready  
SR[7] indicates erase or program completion in the  
device. SR[6:1] are invalid while SR[7] = 0.  
7
ESS  
Erase Suspend  
Status  
After issuing an Erase Suspend command, the WSM halts  
and sets SR[7] and SR[6]. SR[6] remains set until the  
device receives an Erase Resume command.  
0 = Erase in progress/completed  
1 = Erase suspended  
6
ES  
0 = Erase successful  
1 = Erase error  
SR[5] is set if an attempted erase failed. A Command  
Sequence Error is indicated when SR[7,5:4] are set.  
5
4
Erase Status  
PS  
0 = Program successful  
SR[4] is set if the WSM failed to program a word.  
Program Status 1 = Program error  
The WSM indicates the VPP level after program or erase  
completes. SR[3] does not provide continuous VPP  
VPPS  
VPP Status  
0 = VPP OK  
1 = VPP low detect, operation aborted  
3
2
feedback and isn’t guaranteed when VPP VPP1/2  
.
PSS  
Program  
Suspend Status  
After receiving a Program Suspend command, the WSM  
halts execution and sets SR[7] and SR[2]. They remain  
set until a Resume command is received.  
0 = Program in progress/completed  
1 = Program suspended  
DPS  
Device Protect  
Status  
0 = Unlocked  
1 = Aborted erase/program attempt on  
locked block  
If an erase or program operation is attempted to a locked  
block (if WP# = VIL), the WSM sets SR[1] and aborts the  
operation.  
1
0
0 = This partition is busy, but only if  
SR[7]=0  
1 = Another partition is busy, but only if  
SR[7]=0  
Addressed partition is erasing or programming. In EFP  
mode, SR[0] indicates that a data-stream word has  
finished programming or verifying depending on the  
particular EFP phase.  
PWS  
Partition Write  
Status  
Table 21: Status Register Device WSM and Partition Write Status Description  
DWS:  
SR[7]  
PWS:  
SR[0]  
Description  
The addressed partition is performing a program/erase operation.  
EFP: device has finished programming or verifying data, or is ready for data.  
0
0
0
1
A partition other than the one currently addressed is performing a program/erase operation.  
EFP: the device is either programming or verifying data.  
No program/erase operation is in progress in any partition. Erase and Program suspend bits (SR[6,2])  
indicate whether other partitions are suspended. EFP: the device has exited EFP mode.  
1
1
0
1
Won’t occur in standard program or erase modes. EFP: this combination does not occur.  
10.5  
Clear Status Register  
The Clear Status Register command clears the status register and leaves all partition  
output states unchanged. The WSM can set all status register bits and clear bits  
SR[7:6,2,0]. Because bits SR[5,4,3,1] indicate various error conditions, they can only  
be cleared by the Clear Status Register command. By allowing system software to reset  
these bits, several operations, such as cumulatively programming several addresses or  
erasing multiple blocks in sequence, can be performed before reading the status  
register to determine error occurrence. If an error is detected, the Status Register must  
be cleared before beginning another command or sequence. Device reset (RST# = VIL)  
also clears the status register. This command functions independently of VPP.  
November 2007  
Order Number: 313272-06  
Datasheet  
47  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
11.0  
Program Operations  
11.1  
Word Program  
When the Word Program command is issued, the WSM executes a sequence of  
internally timed events to program a word at the desired address and verify that the  
bits are sufficiently programmed. Programming the flash array changes specifically  
addressed bits to 0; 1 bits do not change the memory cell contents.  
Programming can occur in only one partition at a time. All other partitions must be in  
either a read mode or erase suspend mode. Only one partition can be in erase suspend  
mode at a time.  
The status register can be examined for program progress by reading any address  
within the partition that is busy programming. However, while most status register bits  
are partition-specific, the Device WSM Status bit, SR[7], is device-specific; that is, if  
the status register is read from any other partition, SR[7] indicates program status of  
the entire device. This permits the system CPU to monitor program progress while  
reading the status of other partitions.  
CE# or OE# toggle (during polling) updates the status register. Several commands can  
be issued to a partition that is programming: Read Status Register, Program Suspend,  
Read Identifier, and Read Query. The Read Array command can also be issued, but the  
read data is indeterminate.  
After programming completes, three status register bits can signify various possible  
error conditions. SR[4] indicates a program failure if set. If SR[3] is set, the WSM  
couldn’t execute the Word Program command because VPP was outside acceptable  
limits. If SR[1] is set, the program was aborted because the WSM attempted to  
program a locked block.  
After the status register data is examined, clear it with the Clear Status Register  
command before a new command is issued. The partition remains in status register  
mode until another command is written to that partition. Any command can be issued  
after the status register indicates program completion.  
If CE# is deasserted while the device is programming, the devices will not enter  
standby mode until the program operation completes.  
Datasheet  
48  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 19: Word Program Flowchart  
WORD PROGRAM PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 40h  
Write  
Write  
Read  
Setup  
Addr = Location to program (WA)  
Write 40h,  
Word Address  
Data = Data to program (WD)  
Addr = Location to program (WA)  
Data  
Write Data  
Word Address  
Read SRD  
Toggle CE# or OE# to update SRD  
Suspend  
Program  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM ready  
0 = WSM busy  
Standby  
No  
Yes  
Suspend  
Program  
0
SR[7] =  
1
Repeat for subsequent programming operations.  
Full status register check can be done after each program or  
after a sequence of program operations.  
Full Program  
Status Check  
(if desired)  
Program  
Complete  
FULL PROGRAM STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]  
1 = VPP error  
Standby  
Standby  
VPP Range  
Error  
1
1
1
SR[3] =  
0
Check SR[4]  
1 = Data program error  
Check SR[1]  
Program  
Error  
SR[4] =  
0
Standby  
1 = Attempted program to locked block  
Program aborted  
SR[3] MUST be cleared before the WSM will allow further  
program attempts  
Device  
Protect Error  
SR[1] =  
0
Only the Clear Staus Register command clears SR[4:3,1].  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
Program  
Successful  
11.2  
Factory Programming  
The standard factory programming mode uses the same commands and algorithm as  
the Word Program mode (40h/10h). When VPP is at VPP1, program and erase currents  
are drawn through VCC. If VPP is driven by a logic signal, VPP1 must remain above the  
VPP1Min value to perform in-system flash modifications. When VPP is connected to a  
12 V power supply, the device draws program and erase current directly from VPP. This  
eliminates the need for an external switching transistor to control the VPP voltage.  
Figure 28, “Examples of VPP Power Supply Configurations” on page 65 shows examples  
of flash power supply usage in various configurations.  
November 2007  
Order Number: 313272-06  
Datasheet  
49  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
The 12 V VPP mode enhances programming performance during the short time period  
typically found in manufacturing processes; however, it is not intended for extended  
use.12 V may be applied to VPP during program and erase operations as specified in  
Section 5.2, “Operating Conditions” on page 20. VPP may be connected to 12 V for a  
total of tPPH hours maximum. Stressing the device beyond these limits may cause  
permanent damage.  
11.3  
Enhanced Factory Program (EFP)  
EFP substantially improves device programming performance through a number of  
enhancements to the conventional 12 Volt word program algorithm. EFP's more  
efficient WSM algorithm eliminates the traditional overhead delays of the conventional  
word program mode in both the host programming system and the flash device.  
Changes to the conventional word programming flowchart and internal WSM routine  
were developed because of today's beat-rate-sensitive manufacturing environments; a  
balance between programming speed and cycling performance was attained.  
The host programmer writes data to the device and checks the Status Register to  
determine when the data has completed programming. This modification essentially  
cuts write bus cycles in half. Following each internal program pulse, the WSM  
increments the device's address to the next physical location. Now, programming  
equipment can sequentially stream program data throughout an entire block without  
having to setup and present each new address. In combination, these enhancements  
reduce much of the host programmer overhead, enabling more of a data streaming  
approach to device programming.  
EFP further speeds up programming by performing internal code verification. With this,  
PROM programmers can rely on the device to verify that it has been programmed  
properly. From the device side, EFP streamlines internal overhead by eliminating the  
delays previously associated to switch voltages between programming and verify levels  
at each memory-word location.  
EFP consists of four phases: setup, program, verify and exit. Refer to Figure 20,  
“Enhanced Factory Program Flowchart” on page 52 for a detailed graphical  
representation of how to implement EFP.  
11.3.1  
EFP Requirements and Considerations  
Table 22: EFP Requirements and Considerations  
Ambient temperature: TA = 25 °C ±5 °C  
VCC within specified operating range  
VPP within specified VPP2 range  
Target block unlocked  
EFP Requirements  
EFP Considerations  
Block cycling below 100 erase cycles 1  
RWW not supported2  
EFP programs one block at a time  
EFP cannot be suspended  
Notes:  
1.  
Recommended for optimum performance. Some degradation in performance may occur if this limit is exceeded, but the  
internal algorithm will continue to work properly.  
2.  
Code or data cannot be read from another partition during EFP.  
Datasheet  
50  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
11.3.2  
Setup  
After receiving the EFP Setup (30h) and EFP Confirm (D0h) command sequence, SR[7]  
transitions from a 1 to a 0 indicating that the WSM is busy with EFP algorithm startup.  
A delay before checking SR[7] is required to allow the WSM time to perform all of its  
setups and checks (VPP level and block lock status). If an error is detected, status  
register bits SR[4], SR[3], and/or SR[1] are set and EFP operation terminates.  
Note:  
After the EFP Setup and Confirm command sequence, reads from the device  
automatically output status register data. Do not issue the Read Status Register  
command; it will be interpreted as data to program at WA0.  
11.3.3  
Program  
After setup completion, the host programming system must check SR[0] to determine  
“data-stream ready" status (SR[0]=0). Each subsequent write after this is a program-  
data write to the flash array. Each cell within the memory word to be programmed to 0  
receives one WSM pulse; additional pulses, if required, occur in the verify phase.  
SR[0]=1 indicates that the WSM is busy applying the program pulse.  
The host programmer must poll the device's status register for the "program done"  
state after each data-stream write. SR[0]=0 indicates that the appropriate cell(s)  
within the accessed memory location have received their single WSM program pulse,  
and that the device is now ready for the next word. Although the host may check full  
status for errors at any time, it is only necessary on a block basis, after EFP exit.  
Addresses must remain within the target block. Supplying an address outside the  
target block immediately terminates the program phase; the WSM then enters the EFP  
verify phase.  
The address can either hold constant or it can increment. The device compares the  
incoming address to that stored from the setup phase (WA0); if they match, the WSM  
programs the new data word at the next sequential memory location. If they differ, the  
WSM jumps to the new address location.  
The program phase concludes when the host programming system writes to a different  
block address, and data supplied must be FFFFh. Upon program phase completion, the  
device enters the EFP verify phase.  
11.3.4  
Verify  
A high percentage of the flash bits program on the first WSM pulse. However, for those  
cells that do not completely program on their first attempt, EFP internal verification  
identifies them and applies additional pulses as required.  
The verify phase is identical in flow to the program phase, except that instead of  
programming incoming data, the WSM compares the verify-stream data to that which  
was previously programmed into the block. If the data compares correctly, the host  
programmer proceeds to the next word. If not, the host waits while the WSM applies an  
additional pulse(s).  
The host programmer must reset its initial verify-word address to the same starting  
location supplied during the program phase. It then reissues each data word in the  
same order as during the program phase. Like programming, the host may write each  
subsequent data word to WA0 or it may increment up through the block addresses.  
The verification phase concludes when the interfacing programmer writes to a different  
block address; data supplied must be FFFFh. Upon completion of the verify phase, the  
device enters the EFP exit phase.  
November 2007  
Order Number: 313272-06  
Datasheet  
51  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
11.3.5  
Exit  
SR[7]=1 indicates that the device has returned to normal operating conditions. A full  
status check should be performed at this time to ensure the entire block programmed  
successfully. After EFP exit, any valid CUI command can be issued.  
Figure 20: Enhanced Factory Program Flowchart  
EFP Setup  
EFP Program  
EFP Verify  
EFP Exit  
Read  
Status Register  
Read  
Status Register  
Read  
Status Register  
Start  
VPP = 12V  
Unlock Block  
SR[0]=1=N  
SR[0]=1=N  
SR[7]=0=N  
Data Stream  
Ready?  
Verify Stream  
Ready?  
EFP  
Exited?  
SR[0] =0=Y  
SR[0] =0=Y  
SR[7]=1=Y  
Write 30h  
Address = WA  
0
Write Data  
Address = WA  
Write Data  
Address = WA  
Full Status Check  
Procedure  
0
0
Write D0h  
Address = WA  
0
Read  
Status Register  
Read  
Status Register  
Operation  
Complete  
EFP setup time  
Program  
Done?  
Verify  
Done?  
Read  
Status Register  
SR[0]=0=Y  
SR[0]=0=Y  
N
N
Last  
Data?  
Last  
Data?  
EFP Setup  
Done?  
Y
Y
SR[7]=1=N  
Check VPP & Lock  
errors (SR[3,1])  
Write FFFFh  
Write FFFFh  
Address BBA  
Address  
BBA  
Exit  
EFP Setup  
EFP Program  
EFP Verify  
Bus  
State  
Bus  
State  
Bus  
State  
Comments  
Comments  
Comments  
Read  
Status Register  
Check SR[0]  
Read  
Status Register  
Verify Check SR[0]  
Unlock VPP = 12V  
Block Unlock block  
Write  
Data  
Standby Stream 0 = Ready for data  
Ready? 1 = Not ready for data  
Standby Stream 0 = Ready for verify  
Ready? 1 = Not ready for verify  
EFP  
Data = 30h  
Write  
Write  
Setup Address = WA  
0
EFP  
Data = D0h  
Write  
Data = Data to program  
Write  
Data = Word to verify  
Confirm Address = WA  
(note 1)  
Address = WA  
(note 2)  
Address = WA  
0
0
0
Read  
Status Register  
Read  
Status Register  
Standby  
Read  
EFP setup time  
Check SR[0]  
0 = Program done  
1 = Program not done  
Check SR[0]  
0 = Verify done  
1 = Verify not done  
Program  
Done?  
Standby Verify  
(note 3) Done?  
Status Register  
Check SR[7]  
Standby  
EFP  
Standby Setup 0 = EFP ready  
Done? 1 = EFP not ready  
Last  
Device automatically  
Last  
Device automatically  
Standby  
Standby  
Data? increments address.  
Data? increments address.  
If SR[7] = 1:  
Error  
Exit Data = FFFFh  
Write Program Addressnot within same  
Phase BBA  
Exit Data = FFFFh  
Verify Addressnot within same  
Phase BBA  
Check SR[3,1]  
Standby Condition  
SR[3] = 1 = VPP error  
Check  
Write  
SR[1] = 1 = locked block  
EFP Exit  
Status Register  
1. WA0 = first Word Address to be programmed within the target block. The BBA (Block Base  
Read  
Address) must remain constant throughout the program phase data stream; WA can be held  
constant at the first address location, or it can be written to sequence up through the addresses  
within the block. Writing to a BBA not equal to that of the block currently being written to  
terminates the EFP program phase, and instructs the device to enter the EFP verify phase.  
2. For proper verification to occur, the verify data stream must be presented to the device in the  
same sequence as that of the program phase data stream. Writing to a BBA not equal tWo A  
terminates the EFP verify phase, and instructs the device to exit EFP.  
3. Bits that did not fully program with the single WSM pulse of the EFP program phase receive  
additional program-pulse attempts during the EFP verify phase. The device will report any  
program failure by setting SR[4]=1; this check can be performed during the full status check afte
EFP has been exited for that block, and will indicate any error within the entire data stream.  
Check SR[7]  
EFP  
Standby  
0 = Exit not finished  
Exited?  
1 = Exit completed  
Repeat for subsequent operations.  
After EFP exit, a Full Status Check can  
determine if any program error occurred.  
See the Full Status Check procedure in the  
Word Program flowchart.  
Datasheet  
52  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
12.0  
Program and Erase Operations  
12.1  
Program/Erase Suspend and Resume  
The Program Suspend and Erase Suspend commands halt an in-progress program or  
erase operation. The command can be issued at any device address. The partition  
corresponding to the command’s address remains in its previous state. A suspend  
command allows data to be accessed from memory locations other than the one being  
programmed or the block being erased.  
A program operation can be suspended only to perform a read operation. An erase  
operation can be suspended to perform either a program or a read operation within any  
block, except the block that is erase suspended. A program command nested within a  
suspended erase can subsequently be suspended to read yet another location. Once a  
program or erase process starts, the Suspend command requests that the WSM  
suspend the program or erase sequence at predetermined points in the algorithm. The  
partition that is actually suspended continues to output status register data after the  
Suspend command is written. An operation is suspended when status bits SR[7] and  
SR[6] and/or SR[2] are set.  
To read data from blocks within the partition (other than an erase-suspended block),  
you can write a Read Array command. Block erase cannot resume until the program  
operations initiated during erase suspend are complete. Read Array, Read Status  
Register, Read Identifier (ID), Read Query, and Program Resume are valid commands  
during Program or Erase Suspend. Additionally, Clear Status Register, Program,  
Program Suspend, Erase Resume, Lock Block, Unlock Block, and Lock-Down Block are  
valid commands during erase suspend.  
To read data from a block in a partition that is not programming or erasing, the  
operation does not need to be suspended. If the other partition is already in read array,  
ID, or Query mode, issuing a valid address returns corresponding data. If the other  
partition is not in a read mode, one of the read commands must be issued to the  
partition before data can be read.  
During a suspend, CE# = VIH places the device in standby state, which reduces active  
current. VPP must remain at its program level and WP# must remain unchanged while  
in suspend mode.  
A resume command instructs the WSM to continue programming or erasing and clears  
status register bits SR[2] (or SR[6]) and SR[7]. The Resume command can be written  
to any partition. When read at the partition that is programming or erasing, the device  
outputs data corresponding to the partition’s last mode. If status register error bits are  
set, the status register can be cleared before issuing the next instruction. RST# must  
remain at VIH. See Figure 21, “Program Suspend / Resume Flowchart” on page 54, and  
Figure 22, “Erase Suspend / Resume Flowchart” on page 55.  
If a suspended partition was placed in read array, read status register, read identifier  
(ID), or read query mode during the suspend, the device remains in that mode and  
outputs data corresponding to that mode after the program or erase operation is  
resumed. After resuming a suspended operation, issue the read command appropriate  
to the read operation. To read status after resuming a suspended operation, issue a  
Read Status Register command (70h) to return the suspended partition to status mode.  
November 2007  
Order Number: 313272-06  
Datasheet  
53  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 21: Program Suspend / Resume Flowchart  
PROGRAM SUSPEND / RESUME PROCEDURE  
Bus  
Start  
Command  
Operation  
Comments  
Program Data = B0h  
Write  
Program Suspend  
Write B0h  
Suspend Addr = Block to suspend (BA)  
Any Address  
Read  
Status  
Data = 70h  
Addr = Same partition  
Read Status  
Write 70h  
Same Partition  
Write  
Read  
Status register data  
Toggle CE# or OE# to update Status  
register  
Read Status  
Register  
Addr = Suspended block (BA)  
Check SR.7  
Standby  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.2  
1 = Program suspended  
0 = Program completed  
Program  
Completed  
SR.2 =  
Data = FFh  
Addr = Any address within the  
suspended partition  
1
Read  
Array  
Write  
Read  
Write  
Read Array  
Write FFh  
Susp Partition  
Read array data from block other than  
the one being programmed  
Read Array  
Data  
Program Data = D0h  
Resume Addr = Suspended block (BA)  
If the suspended partition was placed in Read Array mode:  
Done  
No  
Reading  
Return partition to Status mode:  
Read  
Write  
Data = 70h  
Yes  
Status  
Addr = Same partition  
Program Resume  
Read Array  
Write FFh  
Write D0h  
Any Address  
Pgm'd Partition  
Program  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Same Partition  
PGM_SUS.WMF  
Datasheet  
54  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 22: Erase Suspend / Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Erase  
Data = B0h  
Erase Suspend  
Write B0h  
Any Address  
Write  
Write  
Suspend Addr = Any address  
Read  
Status  
Data = 70h  
Addr = Same partition  
Read  
Status  
Write 70h  
Same Partition  
Status register data. Toggle CE# or  
OE# to update Status register  
Addr = Same partition  
Read  
Read Status  
Register  
Check SR.7  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.6  
1 = Erase suspended  
0 = Erase completed  
Standby  
Write  
Erase  
Completed  
SR.6 =  
1
Read Array Data = FFh or 40h  
or Program Addr = Block to program or read  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
Read  
Program  
Read or  
Program?  
Read Array  
Data  
Program  
Loop  
Program Data = D0h  
Resume Addr = Any address  
No  
Write  
If the suspended partition was placed in  
Read Array mode or a Program Loop:  
Done?  
Yes  
Return partition to Status mode:  
Data = 70h  
Addr = Same partition  
Read  
Status  
Erase Resume  
Read  
Array  
Write  
Write D0h  
Any Address  
Write FFh  
Erased Partition  
Read Array  
Data  
Erase Resumed  
Read  
Status  
Write 70h  
ERAS_SUS.WMF  
Same Partition  
12.2  
Block Erase  
The 2-cycle block erase command sequence, consisting of Erase Setup (20h) and Erase  
Confirm (D0h), initiates one block erase at the addressed block. Only one partition can  
be in an erase mode at a time; other partitions must be in a read mode. The Erase  
Confirm command internally latches the address of the block to be erased. Erase forces  
all bits within the block to 1. SR[7] is cleared while the erase executes.  
After writing the Erase Confirm command, the selected partition is placed in read status  
register mode and reads performed to that partition return the current status data. The  
address given during the Erase Confirm command does not need to be the same  
address used in the Erase Setup command. So, if the Erase Confirm command is given  
to partition B, then the selected block in partition B will be erased even if the Erase  
Setup command was to partition A.  
November 2007  
Order Number: 313272-06  
Datasheet  
55  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
The 2-cycle erase sequence cannot be interrupted with a bus write operation. For  
example, an Erase Setup command must be immediately followed by the Erase Confirm  
command in order to execute properly. If a different command is issued between the  
setup and confirm commands, the partition is placed in read-status mode, the status  
register signals a command sequence error, and all subsequent erase commands to  
that partition are ignored until the status register is cleared.  
The CPU can detect block erase completion by analyzing SR[7] of that partition. If an  
error bit (SR[5,3,1]) was flagged, the status register can be cleared by issuing the  
Clear Status Register command before attempting the next operation. The partition  
remains in read-status mode until another command is written to its CUI. Any CUI  
instruction can follow after erasing completes. The CUI can be set to read-array mode  
to prevent inadvertent status register reads.  
Datasheet  
56  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 23: Block Erase Flowchart  
BLOCK ERASE PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Block  
Erase  
Setup  
Data = 20h  
Addr = Block to be erased (BA)  
Write  
Write  
Read  
Write 20h  
Block Address  
Erase  
Data = D0h  
Confirm Addr = Block to be erased (BA)  
Write D0h and  
Block Address  
Read SRD  
Toggle CE# or OE# to update SRD  
Suspend  
Erase  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM ready  
0 = WSM busy  
Standby  
No  
Suspend  
Erase  
0
Yes  
SR[7] =  
1
Repeat for subsequent block erasures.  
Full status register check can be done after each block erase  
or after a sequence of block erasures.  
Full Erase  
Status Check  
(if desired)  
Block Erase  
Complete  
FULL ERASE STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]  
1 = VPP error  
Standby  
Standby  
Standby  
VPP Range  
Error  
1
1
1
1
SR[3] =  
0
Check SR[5:4]  
Both 1 = Command sequence error  
Command  
Sequence Error  
Check SR[5]  
1 = Block erase error  
SR[5:4] =  
0
Check SR[1]  
Standby  
1 = Attempted erase of locked block  
Erase aborted  
Block Erase  
Error  
SR[5] =  
0
SR[3,1] must be cleared before the WSM will allow further  
erase attempts.  
Erase of  
Locked Block  
Aborted  
SR[1] =  
0
Only the Clear Status Register command clears SR[5:3,1].  
If an error is detected, clear the Status register before  
attempting an erase retry or other error recovery.  
Block Erase  
Successful  
12.3  
Read-While-Write and Read-While-Erase  
The Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO supports flexible  
multi-partition dual-operation architecture. By dividing the flash memory into many  
separate partitions, the device can read from one partition while programing or erasing  
in another partition; hence the terms, RWW and RWE. Both of these features greatly  
enhance data storage performance.  
November 2007  
Order Number: 313272-06  
Datasheet  
57  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
The product does not support simultaneous program and erase operations. Attempting  
to perform operations such as these results in a command sequence error. Only one  
partition can be programming or erasing while another partition is reading. However,  
one partition may be in erase suspend mode while a second partition is performing a  
program operation, and yet another partition is executing a read command. Table 16,  
“Command Codes and Descriptions” on page 41 describes the command codes  
available for all functions.  
Datasheet  
58  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
13.0  
Security Modes  
The Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO offers both  
hardware and software security features to protect the flash data. The software  
security feature is used by executing the Lock Block command. The hardware security  
feature is used by executing the Lock-Down Block command and by asserting the WP#  
signal.  
Refer to Figure 24, “Block Locking State Diagram” on page 60 for a state diagram of  
the flash security features. Also see Figure 25, “Locking Operations Flowchart” on  
page 62.  
13.1  
Block Lock Operations  
Individual instant block locking protects code and data by allowing any block to be  
locked or unlocked with no latency. This locking scheme offers two levels of protection.  
The first allows software-only control of block locking (useful for frequently changed  
data blocks), while the second requires hardware interaction before locking can be  
changed (protects infrequently changed code blocks).  
The following sections discuss the locking system operation. The term “state [abc]”  
specifies locking states; for example, “state [001],where a = WP# value, b = block  
lock-down status bit  
D1, and c = Block Lock status register bit D0. Figure 24, “Block Locking State  
Diagram” on page 60 defines possible locking states.  
The following summarizes the locking functionality.  
• All blocks power-up in a locked state.  
• Unlock commands can unlock these blocks, and lock commands can lock them  
again.  
• The Lock-Down command locks a block and prevents it from being unlocked when  
WP# is asserted.  
— Locked-down blocks can be unlocked or locked with commands as long as WP#  
is deasserted  
— The lock-down status bit is cleared only when the device is reset or powered-  
down.  
Block lock registers are not affected by the VPP level. They may be modified and read  
even if VPP VPPLK  
.
Each block’s locking status can be set to locked, unlocked, and lock-down, as described  
in the following sections. See Figure 25, “Locking Operations Flowchart” on page 62.  
November 2007  
Order Number: 313272-06  
Datasheet  
59  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 24: Block Locking State Diagram  
Locked-  
Down4,5  
Hardware  
Locked5  
[011]  
Locked  
Power-Up/Reset  
[011]  
[X01]  
WP# Hardware Control  
Software  
Locked  
Unlocked  
Unlocked  
[111]  
[110]  
[X00]  
Software Block Lock (0x60/0x01) or Software Block Unlock (0x60/0xD0)  
Software Block Lock-Down (0x60/0x2F)  
WP# hardware control  
Notes:  
1. [a,b,c] represents [WP#, D1, D0]. X = Don’t Care.  
2. D1 indicates block Lock-down status. D1 = ‘0’, Lock-down has not been issued to  
this block. D1 = ‘1’, Lock-down has been issued to this block.  
3. D0 indicates block lock status. D0 = ‘0’, block is unlocked. D0 = ‘1’, block is locked.  
4. Locked-down = Hardware + Software locked.  
5. [011] states should be tracked by system software to determine difference between  
Hardware Locked and Locked-Down states.  
13.1.1  
13.1.2  
13.1.3  
Lock  
All blocks default to locked (state [x01]) after initial power-up or reset. Locked blocks  
are fully protected from alteration. Attempted program or erase operations to a locked  
block will return an error in SR[1]. Unlocked blocks can be locked by using the Lock  
Block command sequence. Similarly, a locked block’s status can be changed to  
unlocked or lock-down using the appropriate software commands.  
Unlock  
Unlocked blocks (states [x00] and [110]) can be programmed or erased. All unlocked  
blocks return to the locked state when the device is reset or powered-down. An  
unlocked block’s status can be changed to the locked or locked-down state using the  
appropriate software commands. A locked block can be unlocked by writing the Unlock  
Block command sequence if the block is not locked-down.  
Lock-Down  
Locked-down blocks (state [011]) offer the user an additional level of write protection  
beyond that of a regular locked block. A block that is locked-down cannot have it’s  
state changed by software if WP# is asserted. A locked or unlocked block can be  
locked-down by writing the Lock-Down Block command sequence. If a block was set to  
locked-down, then later changed to unlocked, a Lock-Down command should be issued  
prior asserting WP# will put that block back to the locked-down state. When WP# is  
deasserted, locked-down blocks are changed to the locked state and can then be  
unlocked by the Unlock Block command.  
Datasheet  
60  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
13.1.4  
Block Lock Status  
Every block’s lock status can be read in read identifier mode. To enter this mode, issue  
the Read Identifier command to the device. Subsequent reads at Block Base Address +  
02h will output that block’s lock status. For example, to read the block lock status of  
block 10, the address sent to the device should be 50002h (for a top-parameter  
device). The lowest two data bits of the read data, D1 and D0, represent the lock  
status. D0 indicates the block lock status. It is set by the Lock Block command and  
cleared by the Block Unlock command. It is also set when entering the lock-down state.  
D1 indicates lock-down status and is set by the Lock-Down command. The lock-down  
status bit cannot be cleared by software–only by device reset or power-down. See  
Table 23.  
Table 23: Write Protection Truth Table  
VPP  
WP#  
RST#  
Write Protection  
X
VIL  
X
X
X
VIL  
VIH  
VIH  
VIH  
Device inaccessible  
Word program and block erase prohibited  
All lock-down blocks locked  
VIL  
VIH  
X
All lock-down blocks can be unlocked  
13.1.5  
Lock During Erase Suspend  
Block lock configurations can be performed during an erase suspend operation by using  
the standard locking command sequences to unlock, lock, or lock-down a block. This  
feature is useful when another block requires immediate updating.  
To change block locking during an erase operation, first write the Erase Suspend  
command. After checking SR[6] to determine the erase operation has suspended, write  
the desired lock command sequence to a block; the lock status will be changed. After  
completing lock, unlock, read, or program operations, resume the erase operation with  
the Erase Resume command (D0h).  
If a block is locked or locked-down during a suspended erase of the same block, the  
locking status bits change immediately. When the erase operation is resumed, it will  
complete normally.  
Locking operations cannot occur during program suspend. Appendix , “Write State  
Machine States” on page 73 shows valid commands during erase suspend.  
13.1.6  
Status Register Error Checking  
Using nested locking or program command sequences during erase suspend can  
introduce ambiguity into status register results.  
Because locking changes require 2-cycle command sequences, for example, 60h  
followed by 01h to lock a block, following the Configuration Setup command (60h) with  
an invalid command produces a command sequence error (SR[5:4]=11b). If a Lock  
Block command error occurs during erase suspend, the device sets SR[4] and SR[5] to  
1 even after the erase is resumed. When erase is complete, possible errors during the  
erase cannot be detected from the status register because of the previous locking  
command error. A similar situation occurs if a program operation error is nested within  
an erase suspend.  
November 2007  
Order Number: 313272-06  
Datasheet  
61  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
13.1.7  
WP# Lock-Down Control  
The Write Protect signal, WP#, adds an additional layer of block security. WP# only  
affects blocks that once had the Lock-Down command written to them. After the lock-  
down status bit is set for a block, asserting WP# forces that block into the lock-down  
state [011] and prevents it from being unlocked. After WP# is deasserted, the block’s  
state reverts to locked [111] and software commands can then unlock the block (for  
erase or program operations) and subsequently re-lock it. Only device reset or power-  
down can clear the lock-down status bit and render WP# ineffective.  
Figure 25: Locking Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Start  
Bus  
Operation  
Command  
Comments  
Write 60h  
Block Address  
Lock  
Setup  
Data = 60h  
Addr = Block to lock/unlock/lock-down (BA)  
Write  
Write  
Write 01,D0,2Fh  
Block Address  
Lock,  
Unlock, or  
Lockdown  
Data = 01h (Lock block)  
D0h (Unlock block)  
2Fh (Lockdown block)  
Confirm Addr = Block to lock/unlock/lock-down (BA)  
Write 90h  
BBA + 02h  
Write  
Read ID Data = 90h  
(Optional)  
Plane  
Addr = BBA + 02h  
Read Block Lock  
Status  
Read  
(Optional)  
Block Lock Block Lock status data  
Status Addr = BBA + 02h  
Locking  
Change?  
No  
Confirm locking change on DQ[1:0].  
(See Block Locking State Transitions Table  
for valid combinations.)  
Standby  
(Optional)  
Yes  
Read  
Array  
Data = FFh  
Addr = Any address in same partition  
Write  
Write FFh  
Partition Address  
Lock Change  
Complete  
13.2  
Protection Register  
The W18 device includes a 128-bit protection register. This protection register is used  
to increase system security and for identification purposes. The protection register  
value can match the flash component to the system’s CPU or ASIC to prevent device  
substitution.  
The lower 64 bits within the protection register are programmed by Numonyx with a  
unique number in each flash device. The upper 64 OTP bits within the protection  
register are left for the customer to program. Once programmed, the customer  
segment can be locked to prevent further programming.  
Note:  
The individual bits of the user segment of the protection register are OTP, not the  
register in total. The user may program each OTP bit individually, one at a time, if  
desired. After the protection register is locked, however, the entire user segment is  
locked and no more user bits can be programmed.  
Datasheet  
62  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
The protection register shares some of the same internal flash resources as the  
parameter partition. Therefore, RWW is only allowed between the protection register  
and main partitions. Table 24 describes the operations allowed in the protection  
register, parameter partition, and main partition during RWW and RWE.  
Table 24: Simultaneous Operations Allowed with the Protection Register  
Parameter  
Partition  
Array Data  
Protection  
Register  
Main  
Partitions  
Description  
While programming or erasing in a main partition, the protection register can  
be read from any other partition. Reading the parameter partition data is not  
allowed if the protection register is being read from addresses within the  
parameter partition.  
See  
Description  
Read  
Write/Erase  
Write/Erase  
Write/Erase  
While programming or erasing in a main partition, read operations are allowed  
in the parameter partition. Accessing the protection registers from parameter  
partition addresses is not allowed.  
See  
Description  
Read  
Read  
While programming or erasing in a main partition, read operations are allowed  
in the parameter partition. Accessing the protection registers in a partition that  
is different from the one being programmed or erased, and also different from  
the parameter partition, is allowed.  
Read  
Write  
While programming the protection register, reads are only allowed in the other  
main partitions. Access to the parameter partition is not allowed. This is  
because programming of the protection register can only occur in the  
parameter partition, so it will exist in status mode.  
No Access  
Allowed  
Read  
Read  
While programming or erasing the parameter partition, reads of the protection  
registers are not allowed in any partition. Reads in other main partitions are  
supported.  
No Access  
Allowed  
Write/Erase  
13.2.1  
13.2.2  
Reading the Protection Register  
Writing the Read Identifier command allows the protection register data to be read 16  
bits at a time from addresses shown in Table 18, “Device Identification Codes” on  
page 45. The protection register is read from the Read Identifier command and can be  
read in any partition.Writing the Read Array command returns the device to read-array  
mode.  
Programing the Protection Register  
The Protection Program command should be issued only at the parameter (top or  
bottom) partition followed by the data to be programmed at the specified location. It  
programs the upper 64 bits of the protection register 16 bits at a time. Table 18,  
“Device Identification Codes” on page 45 shows allowable addresses. See also  
Figure 26, “Protection Register Programming Flowchart” on page 64. Issuing a  
Protection Program command outside the register’s address space results in a status  
register error (SR[4]=1).  
13.2.3  
Locking the Protection Register  
PR-LK.0 is programmed to 0 by Numonyx to protect the unique device number. PR-LK.1  
can be programmed by the user to lock the user portion (upper 64 bits) of the  
protection register (See Figure 27, ”Protection Register Locking”). This bit is set using  
the Protection Program command to program “FFFDh” into PR-LK.  
After PR-LK register bits are programmed (locked), the protection register’s stored  
values can’t be changed. Protection Program commands written to a locked section  
result in a status register error (SR[4]=1, SR[5]=1).  
November 2007  
Order Number: 313272-06  
Datasheet  
63  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 26: Protection Register Programming Flowchart  
PROTECTION REGISTER PROGRAMMINGPROCEDURE  
Bus  
Start  
Command  
Operation  
Comments  
Protection  
Program  
Setup  
Data = C0h  
Addr = Protection address  
Write  
Write  
Read  
Write C0h  
Addr=Prot addr  
Protection Data = Data to program  
Program Addr = Protection address  
Write Protect.  
Register  
Address / Data  
Read SRD  
Toggle CE# or OE# to update SRD  
Read Status  
Register  
Check SR[7]  
1 = WSM Ready  
0 = WSM Busy  
Standby  
No  
SR[7] = 1?  
Yes  
Protection Program operations addresses must be within the  
protection register address space. Addresses outside this  
space will return an error.  
Repeat for subsequent programming operations.  
Full Status  
Check  
(if desired)  
Full status register check can be done after each program or  
after a sequence of program operations.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Bus  
Operation  
Read SRD  
SR[4:3] =  
Command  
Comments  
SR[1] SR[3] SR[4]  
Standby  
Standby  
Standby  
0
0
1
0
1
1
VPP Error  
1,1  
1,0  
1,1  
VPP Range Error  
Protection register  
program error  
1
0
1
Register locked;  
SR[4,1] =  
SR[4,1] =  
Programming Error  
Operation aborted  
SR[3] MUST be cleared before the WSM will allow further  
program attempts.  
Locked-Register  
Program Aborted  
Only the Clear Staus Register command clears SR[4:3,1].  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
Program  
Successful  
Datasheet  
64  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 27: Protection Register Locking  
0x88  
User-Programmable  
0x85  
0x84  
Intel Factory-Programmed  
PR Lock Register 0  
0x81  
0x80  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
13.3  
VPP Protection  
The Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO provides in-  
system program and erase at VPP1. For factory programming, it also includes a low-  
cost, backward-compatible 12 V programming feature.(See “Factory Programming” on  
page 49.) The EFP feature can also be used to greatly improve factory program  
performance as explained in Section 11.3, “Enhanced Factory Program (EFP)” on  
page 50.  
In addition to the flexible block locking, holding the VPP programming voltage low can  
provide absolute hardware write protection of all flash-device blocks. If VPP is below  
V
PPLK, program or erase operations result in an error displayed in SR[3]. (See  
Figure 28.)  
Figure 28: Examples of VPP Power Supply Configurations  
System supply  
12 V supply  
System supply  
Prot# (logic signal)  
VCC  
VPP  
VCC  
VPP  
Ω
10K  
12 V fast programming  
Absolute write protection with VPP VPPLK  
Low-voltage programming  
Absolute write protection via logic signal  
System supply  
VCC  
(Note 1)  
System supply  
VCC  
VPP  
VPP  
12 V supply  
Low voltage and 12 V fast programming  
Low-voltage programming  
Note: If the VCC supply can sink adequate current, you can use an appropriately valued resistor.  
November 2007  
Order Number: 313272-06  
Datasheet  
65  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
14.0  
Set Configuration Register  
The Set Configuration Register command sets the burst order, frequency configuration,  
burst length, and other parameters. A two-bus cycle command sequence initiates this  
operation. The configuration register data is placed on the lower 16 bits of the address  
bus (A[15:0]) during both bus cycles. The Set Configuration Register command is  
written along with the configuration data (on the address bus). This is followed by a  
second write that confirms the operation and again presents the configuration register  
data on the address bus. The configuration register data is latched on the rising edge of  
ADV#, CE#, or WE# (whichever occurs first). This command functions independently of  
the applied VPP voltage. After executing this command, the device returns to read-array  
mode. The configuration register’s contents can be examined by writing the Read  
Identifier command and then reading location 05h. Undocumented combinations of bits  
are reserved by Numonyx for future implementations.  
Table 25: Configuration Register Definitions  
Data  
Output  
Config  
Read  
Mode  
First Access Latency  
Count  
WAIT  
Polarity  
WAIT  
Config  
Burst  
Seq  
Clock  
Config  
Burst  
Wrap  
Res’d  
Res’d Res’d  
Burst Length  
RM  
15  
R
LC2  
13  
LC1  
12  
LC0  
11  
WT  
10  
DOC  
9
WC  
8
BS  
7
CC  
6
R
5
R
4
BW  
3
BL2  
BL1  
1
BL0  
14  
2
0
Table 26: Configuration Register Descriptions  
Bit  
Name  
Description  
Notes  
0 = Synchronous Burst Reads Enabled  
1 = Asynchronous Reads Enabled (Default)  
15  
14  
RM (Read Mode)  
R
1
4
Reserved  
001 = Reserved  
010 = Code 2  
011 = Code 3  
100 = Code 4  
101 = Code 5  
111 = Reserved (Default)  
LC2-0  
13-11  
6
2
(First Access Latency Count)  
WT  
0 = WAIT signal is asserted low  
1 = WAIT signal is asserted high (Default)  
10  
9
(WAIT Signal Polarity)  
DOC  
0 = Hold Data for One Clock  
1 = Hold Data for Two Clock (Default)  
6
6
(Data Output Configuration)  
0 = WAIT Asserted During Delay  
1 = WAIT Asserted One Data Cycle before Delay (Default)  
8
7
6
WC (WAIT Configuration)  
BS (Burst Sequence)  
1 = Linear Burst Order (Default)  
CC  
0 = Burst Starts and Data Output on Falling Clock Edge  
1 = Burst Starts and Data Output on Rising Clock Edge (Default)  
(Clock Configuration)  
5
4
R
R
Reserved  
Reserved  
4
4
0 = Wrap bursts within burst length set by CR[2:0]  
1 = Don’t wrap accesses within burst length set by CR[2:0].(Default)  
3
BW (Burst Wrap)  
001 = 4-Word Burst  
010 = 8-Word Burst  
011 = 16-Word Burst  
2-0  
BL2-0 (Burst Length)  
3
111 = Continuous Burst (Default)  
Notes:  
1.  
Synchronous and page read mode configurations affect reads from main blocks and parameter blocks. Status register  
and configuration reads support single read cycles. CR[15]=1 disables configuration set by CR[14:0].  
Data is not ready when WAIT is asserted.  
Set the synchronous burst length. In asynchronous page mode, the page size equals four words.  
Set all reserved configuration register bits to zero.  
Setting the configuration register for synchronous burst-mode with a latency count of 2 (RCR[13:11] = 010), data hold  
for 2 clocks (RCR.9 = 1), and WAIT asserted one data cycle before delay (RCR8 =1) is not supported.  
2.  
3.  
4.  
5.  
Datasheet  
66  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
14.1  
14.2  
Read Mode (CR[15])  
All partitions support two high-performance read configurations: synchronous burst  
mode and asynchronous page mode (default). CR[15] sets the read configuration to  
one of these modes.  
Status register, query, and identifier modes support only asynchronous and single-  
synchronous read operations.  
First Access Latency Count (CR[13:11])  
The First Access Latency Count (CR[13:11]) configuration tells the device how many  
clocks must elapse from ADV# de-assertion (VIH) before the first data word should be  
driven onto its data pins. The input clock frequency determines this value. See  
Table 25, “Configuration Register Definitions” on page 66 for latency values. Figure 29  
shows data output latency from ADV# assertion for different latencies. Refer to Section  
14.2.1, “Latency Count Settings” on page 68 for Latency Code Settings.  
Figure 29: First Access Latency Configuration  
CLK [C]  
Valid  
Address  
Address [A]  
ADV# [V]  
Code 2  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
D[15:0] [Q]  
D[15:0] [Q]  
D[15:0] [Q]  
Code 3  
Code 4  
Code 5  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Note: Other First Access Latency Configuration settings are reserved.  
)
Figure 30: Word Boundary  
Word 0 - 3  
Word 4 - 7  
Word 8 - B  
Word C - F  
0
1 2 3 4 5 6 7 8 9 A B C D E F  
16 Word Boundary  
4 Word Boundary  
The 16-word boundary is the end of the device sense word-line.  
November 2007  
Order Number: 313272-06  
Datasheet  
67  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
14.2.1  
Latency Count Settings  
Table 27: Latency Count Setting for VCCQ = 1.7 V - 2.24 V (.13 µm lithography)  
VCCQ = 1.7 - 2.24 V  
Unit  
t
AVQV/tCHQV (60 ns/11 ns)  
Latency Count Settings  
Frequency Support  
2
3, 4, 5  
< 54  
< 40  
MHz  
Figure 31: Example: Latency Count Setting at 3  
tADD-DELAY  
tDATA  
2rd  
0st  
1nd  
3th  
4th  
CLK (C)  
CE# (E)  
ADV# (V)  
AMAX-0 (A)  
Valid Address  
High Z  
Code 3  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
R103  
14.3  
14.4  
WAIT Signal Polarity (CR[10])  
If the WT bit is cleared (CR[10]=0), then WAIT is configured to be asserted low. This  
means that a 0 on the WAIT signal indicates that data is not ready and the data bus  
contains invalid data. Conversely, if CR[10] is set, then WAIT is asserted high. In either  
case, if WAIT is deasserted, then data is ready and valid. WAIT is asserted during  
asynchronous page mode reads.  
WAIT Signal Function  
The WAIT signal indicates data valid when the device is operating in synchronous read  
array mode (CR[15] is set to 0), and when addressing a partition that is currently in  
read array mode.  
In synchronous read array mode, when the device is active (CE# = VIL) and data is  
valid, CR[10] (WT) determines if WAIT goes to VOH or VOL. The WAIT signal is only de-  
asserted when data is valid on the bus. Invalid data drives the WAIT signal to the  
asserted state.  
When the device is operating in synchronous non-array read mode (Read ID, Read  
Query, Read Status, etc.), the WAIT signal is de-asserted throughout the entire read  
operation.  
Datasheet  
68  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
From a system perspective, the WAIT signal is in the asserted state (based on CR[10])  
when the device is operating in synchronous non-read-array mode (such as Read ID,  
Read Query, or Read Status), or if the device is operating in asynchronous mode  
(CR[15]=1). In these cases, the system software should ignore (mask) the WAIT  
signal, because it does not convey any useful information about the validity of what is  
appearing on the data bus.  
Table 28: WAIT Signal Conditions  
CONDITION  
WAIT  
CE# = VIH  
CE# = VIL  
Tri-State  
Active  
OE#  
No-Effect  
Active  
Synchronous Array Read  
Synchronous Non-Array Read  
All Asynchronous Read and all Write  
Asserted  
Asserted  
14.5  
Data Hold (CR[9])  
The Data Output Configuration bit (CR[9]) determines whether a data word remains  
valid on the data bus for one or two clock cycles. The processor’s minimum data set-up  
time and the flash memory’s clock-to-data output delay determine whether one or two  
clocks are needed.  
A Data Output Configuration set at 1-clock data hold corresponds to a 1-clock data  
cycle; a Data Output Configuration set at 2-clock data hold corresponds to a 2-clock  
data cycle. The setting of this configuration bit depends on the system and CPU  
characteristics. For clarification, see Figure 32, “Data Output Configuration with WAIT  
Signal Delay” on page 70.  
A method for determining this configuration setting is shown below.  
To set the device at 1-clock data hold for subsequent reads, the following condition  
must be satisfied:  
tCHQV (ns) + tDATA (ns) One CLK Period (ns)  
As an example, use a clock frequency of 54 MHz and a clock period of 18.5 ns. Assume  
the data output hold time is one clock. Apply this data to the formula above for the  
subsequent reads:  
14 ns + 4 ns 18.5 ns  
This equation is satisfied, and data output will be available and valid at every clock  
period. If tDATA is long, hold for two cycles.  
November 2007  
Order Number: 313272-06  
Datasheet  
69  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 32: Data Output Configuration with WAIT Signal Delay  
CLK [C]  
WAIT (CR.8 = 1)  
Note 1  
Note 1  
tCHQV  
WAIT (CR.8 = 0)  
1 CLK  
Data Hold  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 [Q]  
WAIT (CR.8 = 0)  
WAIT (CR.8 = 1)  
Note 1  
Note 1  
tCHTL/H  
tCHQV  
2 CLK  
Data Hold  
Valid  
Output  
Valid  
Output  
DQ15-0 [Q]  
Note: WAIT shown asserted high (CR[10]=1).  
14.6  
WAIT Delay (CR[8])  
The WAIT configuration bit (CR[8]) controls WAIT signal delay behavior for all  
synchronous read-array modes. Its setting depends on the system and CPU  
characteristics. The WAIT can be asserted either during, or one data cycle before, a  
valid output.  
In synchronous linear read array (no-wrap mode CR[3]=1) of 4-, 8-, 16-, or  
continuous-word burst mode, an output delay may occur when a burst sequence  
crosses its first device-row boundary (16-word boundary). If the burst start address is  
4-word boundary aligned, the delay does not occur. If the start address is misaligned to  
a 4-word boundary, the delay occurs once per burst-mode read sequence. The WAIT  
signal informs the system of this delay.  
14.7  
Burst Sequence (CR[7])  
The burst sequence specifies the synchronous-burst mode data order. When operating  
in a linear burst mode (either 4-, 8-, or 16-word burst length with the burst wrap bit  
(CR[3]) set, or in continuous burst mode) the device may incur an output delay when  
the burst sequence crosses the first 16-word boundary, depending on the starting  
address. If the starting address is aligned to a 4-word boundary, there is no delay. If  
the starting address is the end of a 4-word boundary, the output delay is one clock  
cycle less than the First Access Latency Count; this is the worst-case delay. The delay  
takes place only once, and only if the burst sequence crosses a 16-word boundary. The  
WAIT pin informs the system of this delay.  
Table 29: Sequence and Burst Length (Sheet 1 of 2)  
Burst Addressing Sequence (Decimal)  
Start  
Addr.  
(Dec)  
4-Word  
Burst  
CR[2:0]=001b  
8-Word Burst  
CR[2:0]=010b  
16-Word Burst  
CR[2:0]=011b  
Continuous Burst  
CR[2:0]=111b  
Datasheet  
70  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 29: Sequence and Burst Length (Sheet 2 of 2)  
0
1
2
3
4
5
6
7
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2...14-15  
1-2-3...14-15-0  
2-3-4...15-0-1  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
6-7-8-9-10-11-12-...  
7-8-9-10-11-12-13...  
3-4-5...15-0-1-2  
4-5-6...15-0-1-2-3  
5-6-7...15-0-1...4  
6-7-8...15-0-1...5  
7-8-9...15-0-1...6  
14  
15  
0
14-15-0-1...13  
15-0-1-2-3...14  
0-1-2...14-15  
1-2-3...15-16  
2-3-4...16-17  
3-4-5...17-18  
4-5-6...18-19  
5-6-7...19-20  
6-7-8...20-21  
7-8-9...21-22  
14-15-16-17-18-19-20-...  
15-16-17-18-19-...  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
6-7-8-9-10-11-12-...  
7-8-9-10-11-12-13...  
1
2
2-3-4-5-6-7-8-9  
3
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-14  
4
5
6
7
14  
15  
14-15...28-29  
15-16...29-30  
14-15-16-17-18-19-20-...  
15-16-17-18-19-20-21-...  
14.8  
14.9  
Clock Edge (CR[6])  
Configuring the valid clock edge enables a flexible memory interface to a wide range of  
burst CPUs. Clock configuration sets the device to start a burst cycle, output data, and  
assert WAIT on the clock’s rising or falling edge.  
Burst Wrap (CR[3])  
The burst wrap bit determines whether 4-, 8-, or 16-word burst accesses wrap within  
the burst-length boundary or whether they cross word-length boundaries to perform  
linear accesses. No-wrap mode (CR[3]=1) enables WAIT to hold off the system  
processor, as it does in the continuous burst mode, until valid data is available. In no-  
wrap mode (CR[3]=0), the device operates similarly to continuous linear burst mode  
but consumes less power during 4-, 8-, or 16-word bursts.  
For example, if CR[3]=0 (wrap mode) and CR[2:0] = 1h (4-word burst), possible linear  
burst sequences are 0-1-2-3, 1-2-3-0, 2-3-0-1, 3-0-1-2.  
If CR[3]=1 (no-wrap mode) and CR[2:0] = 1h (4-word burst length), then possible  
linear burst sequences are 0-1-2-3, 1-2-3-4, 2-3-4-5, and 3-4-5-6. CR[3]=1 not only  
enables limited non-aligned sequential bursts, but also reduces power by minimizing  
the number of internal read operations.  
November 2007  
Order Number: 313272-06  
Datasheet  
71  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Setting CR[2:0] bits for continuous linear burst mode (7h) also achieves the above 4-  
word burst sequences. However, significantly more power may be consumed. The 1-2-  
3-4 sequence, for example, consumes power during the initial access, again during the  
internal pipeline lookup as the processor reads word 2, and possibly again, depending  
on system timing, near the end of the sequence as the device pipelines the next 4-word  
sequence. CR[3]=1 while in 4-word burst mode (no-wrap mode) reduces this excess  
power consumption.  
14.10  
Burst Length (CR[2:0])  
The Burst Length bit (BL[2:0]) selects the number of words the device outputs in  
synchronous read access of the flash memory array. The burst lengths are 4-word, 8-  
word, 16-word, and continuous word.  
Continuous-burst accesses are linear only, and do not wrap within any word length  
boundaries (see Table 29, “Sequence and Burst Length” on page 70). When a burst  
cycle begins, the device outputs synchronous burst data until it reaches the end of the  
“burstable” address space.  
Datasheet  
72  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
15.0  
Write State Machine States  
This table shows the command state transitions based on incoming commands. Only  
one partition can be actively programming or erasing at a time.  
Figure 33: Write State Machine — Next State Table (Sheet 1 of 2)  
C h i
p
 
N e x t S ta te a ft e r C o m m a n d In p u t  
E n h a n c e d  
F a c to ry  
P g m  
B E C o n firm ,  
C le a r  
P r o g ra m  
E ra s e  
/
R e a d  
A rr a y (3  
P r o g ra m  
E r a s e  
S e tu p (4  
P /E R e s u m e ,  
U L B  
R e a d  
R e a d  
S ta tu s  
R e g is te r( 6  
C u r r e n t C h ip  
S t a t e ( 8 )  
)
,5  
)
,5 )  
S e tu p ( 4  
S ta tu s  
ID /Q u e r y  
)
S u s p e n d  
)
(9 )  
S e tu p (4  
C o n fir m  
(F F H )  
R e a d y  
(1 0 H /4 0 H )  
(2 0 H )  
(3 0 H )  
(D 0 H )  
( B 0 H )  
( 7 0 H )  
(5 0 H )  
( 9 0 H , 9 8 H )  
P r o g ra m  
S e tu p  
E ra s e  
S e tu p  
E F P  
R e a d y  
R e a d y  
S e tu p  
L o c k /C R S e tu p  
O T P  
R e a d y ( L o c k E r ro r)  
R e a d y  
R e a d y (L o c k E rr o r )  
S e tu p  
B u s y  
O T P B u s y  
S e tu p  
B u s y  
P r o g ra m B u s y  
P ro g r a m  
P r o g ra m B u s y  
P r o g ra m S u s p e n d  
R e a d y ( E rr o r )  
E r a s e B u s y  
P g m S u s p  
P r o g ra m B u s y  
P ro g r a m S u s p e n d  
R e a d y (E r ro r)  
E ra s e B u s y  
S u s p e n d  
S e tu p  
B u s y  
P g m B u s y  
E ra s e B u s y  
E r a s e S u s p  
E ra s e  
P g m in  
E ra s e  
S u s p e n d  
E r a s e  
E ra s e S u s p e n d  
E ra s e B u s y  
E ra s e S u s p e n d  
S u s p e n d  
S u s p S e tu p  
S e tu p  
B u s y  
P r o g ra m in E r a s e S u s p e n d B u s y  
P g m S u s p in  
E r a s e S u s p  
P ro g r a m in  
P r o g ra m in E r a s e S u s p e n d B u s y  
P ro g r a m in E ra s e S u s p e n d B u s y  
E ra s e S u s p e n d  
P g m in E r a s e  
S u s p B u s y  
S u s p e n d  
P r o g ra m S u s p e n d in E r a s e S u s p e n d  
P ro g r a m S u s p e n d in E ra s e S u s p e n d  
L o c k /C R S e tu p in E r a s e  
S u s p e n d  
E ra s e S u s p e n d  
(L o c k E rro r)  
E r a s e S u s p e n d (L o c k E rr o r )  
R e a d y ( E rr o r )  
E ra s e S u s p  
S e tu p  
E F P B u s y  
R e a d y (E r ro r)  
E n h a n c e d  
F a c to r y  
E F P 
B u s y
(7  
V e r i
fy
 
B u s y
(7  
)
E F P B u s y  
E F P V e rify  
P ro g r a m  
)
O u tp u t N e x t S t a t e a f t e r C o m m a n d In p u t  
P g m S e tu p ,  
E ra s e S e tu p ,  
O T P S e tu p ,  
P g m in E ra s e S u s p S e tu p ,  
E F P S e tu p ,  
S ta tu s  
E F P B u s y ,  
V e r ify B u s y  
L o c k /C R S e tu p ,  
S ta tu s  
L o c k /C R S e tu p in E r a s e S u s p  
O T P B u s y  
S ta tu s  
R e a d y ,  
P g m B u s y ,  
O
u tp u t  
P g m S u s p e n d ,  
E ra s e B u s y ,  
)
A rr a y (3  
S ta tu s  
O u tp u t d o e s n o t c h a n g e  
S ta tu s  
d o e s n o t  
c h a n g e  
ID /Q u e r y  
E ra s e S u s p e n d ,  
P g m In E ra s e S u s p B u s y ,  
P g m S u s p In E r a s e S u s p  
November 2007  
Order Number: 313272-06  
Datasheet  
73  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Figure 33: Write State Machine — Next State Table (Sheet 2 of 2)  
C h i 
p
N e x t S t a t e a f t e r C o m m a n d In p u t  
L o c k ,  
n lo c k ,  
L o c k -  
E n h a n c e d  
F a c t P g m  
L o c k  
Ille g a l  
c o m m a n d s o r  
U
O
T P  
D
B
o w  
n
W
rite  
C
R
( 9  
W
S M  
B
lo c k  
C u r r e n t C h ip  
S t a t e ( 8 )  
)
)
S e tu p ( 5  
C
o n fir m  
O p e r a tio n  
L o c k -d o w n ,  
)
lo c k  
E x it ( b lk a d d  
( 9  
)
)
C o n fi rm  
E F P d a ta ( 2  
( 9  
)
< >  
W A 0 )  
C
R
s e tu p ( 5  
( 6 0 H )  
C
o n fir m  
C o m p le te s  
(C 0 H )  
(0 1 H  
)
(2 F H  
)
(0 3 H  
)
(X X X X H )  
( o th e r c o d e s )  
L o c k /C R  
S e tu p  
O
T P  
R e a d y  
L o c k /C  
R e a d y  
S
e tu p  
N
/A  
R
S
e tu p  
R
e a d y (L o c k E rr o r )  
R
e a d y  
R
e a d y  
R
e a d y  
R e a d y ( L o c k E r ro r)  
S
e tu p  
O T P B u s y  
O
T P  
B u s y  
R
R
e a d y  
S
e tu p  
P
P
ro g ra m B u s y  
ro g ra m B u s y  
N
/A  
P ro g r a m  
B u s y  
e a d y  
S
S
u s p e n d  
P
ro g ra m S u s p e n d  
e a d y ( E r ro r)  
E r a s e B u s y  
N
/A  
S
e tu p  
R
B u s y  
E r a s e B u s y  
R
e a d y  
E ra s e  
L o c k /C R  
S e tu p in  
u s p e n d  
E r a s e S u s p e n d  
N
/A  
E r a s e S u s p  
S
e tu p  
P
P
ro g r a m in  
ro g r a m in  
E
E
ra s e  
ra s e  
S
S
u s p e n d  
u s p e n d  
B
B
u s y  
u s y  
E ra s e  
P ro g r a m in  
E ra s e S u s p e n d  
B u s y  
S
u s p e n d  
S
u s p e n d  
P ro g r a m S u s p e n d in E ra s e S u s p e n d  
L o c k /C  
R S e tu p in E r a s e  
E r a s e S u s p e n d  
(L o c k E r ro r )  
E r a s e S u s p  
E ra s e S u s p  
E ra s e S u s p  
E r a s e S u s p e n d (L o c k E rr o r )  
N
/A  
S u s p e n d  
S
e tu p  
R
e a d y ( E r ro r)  
E n h a n c e d  
F a c to r y  
)
)
E
F P  
B
u s y
( 7  
E F P  
B
u s y
( 7  
E F P B u s y  
E F P V e rify  
E F P V e rify  
P ro g r a m  
)
)
u s y
( 7  
E F P V e r
ify
( 7  
R
e a d y  
R e a d y  
V e r
ify  
B
O u t p u t N e x t S t a t e a f te r C o m m a n d In p u t  
P g m S e tu p ,  
E ra s e S e tu p ,  
O
T P S e tu p ,  
P g m in E ra s e S u s p S e tu p ,  
E F P S e tu p ,  
S ta tu s  
E F P B u s y ,  
V e r ify B u s y  
L o c k /C  
L o c k /C  
R
R
S
S
e tu p ,  
S ta tu s  
A r ra y  
S ta tu s  
O
u tp u t d o e s  
e tu p in E r a s e S u s p  
n o t c h a n g e  
O
T P B u s y  
R e a d y ,  
P g m B u s y ,  
O
u tp u t d o e s  
P g m S u s p e n d ,  
E ra s e B u s y ,  
S ta tu s  
O
u tp u t d o e s n o t c h a n g e  
A rr a y  
n o t c h a n g e  
E ra s e S u s p e n d ,  
P g m In E ra s e  
S u s p B u s y ,  
P g m S u s p In E r a s e S u s p  
Notes:  
1.  
The output state shows the type of data that appears at the outputs if the partition address is the same as the command  
address.  
A partition can be placed in Read Array, Read Status or Read ID/CFI, depending on the command issued.  
Each partition stays in its last output state (Array, ID/CFI or Status) until a new command changes it. The next WSM state  
does not depend on the partition's output state.  
For example, if partition #1's output state is Read Array and partition #4's output state is Read Status, every read from  
partition #4 (without issuing a new command) outputs the Status register.  
Illegal commands are those not defined in the command set.  
2.  
Datasheet  
74  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
3.  
4.  
All partitions default to Read Array mode at power-up. A Read Array command issued to a busy partition results in  
undermined data when a partition address is read.  
Both cycles of 2 cycles commands should be issued to the same partition address. If they are issued to different partitions,  
the second write determines the active partition. Both partitions will output status information when read.  
If the WSM is active, both cycles of a 2 cycle command are ignored. This differs from previous Numonyx devices.  
The Clear Status command clears status register error bits except when the WSM is running (Pgm Busy, Erase Busy, Pgm  
Busy In Erase Suspend, OTP Busy, EFP modes) or suspended (Erase Suspend, Pgm Suspend, Pgm Suspend In Erase  
Suspend).  
5.  
6.  
7.  
EFP writes are allowed only when status register bit SR.0 = 0. EFP is busy if Block Address = address at EFP Confirm  
command. Any other commands are treated as data.  
8.  
9.  
The "current state" is that of the WSM, not the partition.  
Confirm commands (Lock Block, Unlock Block, Lock-down Block, Configuration Register) perform the operation and then  
move to the Ready State.  
10.  
In Erase suspend, the only valid two cycle commands are "Program Word", "Lock/Unlock/Lockdown Block", and  
"CR Write". In Program suspend or Program suspend in Erase suspend, both cycles of all two cycle commands will be  
ignored.  
November 2007  
Order Number: 313272-06  
Datasheet  
75  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
16.0  
Common Flash Interface  
This appendix defines the data structure or “database” returned by the Common Flash  
Interface (CFI) Query command. Software should parse this structure to gain critical  
information such as block size, density, x8/x16, and electrical specifications. Once this  
information has been obtained, the software will know which command sets to use to  
enable flash writes, block erases, and otherwise control the flash component. The  
Query is part of an overall specification for multiple command set and control interface  
descriptions called Common Flash Interface, or CFI.  
16.1  
Query Structure Output  
The Query database allows software to obtain information for controlling the flash  
device. This section describes the device’s CFI-compliant interface that allows access to  
Query data.  
Query data are presented on the lowest-order data outputs (DQ0-7) only. The  
numerical offset value is the address relative to the maximum bus width supported by  
the device. On this family of devices, the Query table device starting address is a 10h,  
which is a word address for x16 devices.  
For a word-wide (x16) device, the first two Query-structure bytes, ASCII “Q” and “R,”  
appear on the low byte at word addresses 10h and 11h. This CFI-compliant device  
outputs 00h data on upper bytes. The device outputs ASCII “Q” in the low byte (DQ0-7  
and 00h in the high byte (DQ8-15).  
)
At Query addresses containing two or more bytes of information, the least significant  
data byte is presented at the lower address, and the most significant data byte is  
presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal  
notation, so the “h” suffix has been dropped. In addition, since the upper byte of word-  
wide devices is always “00h,” the leading “00” has been dropped from the table  
notation and only the lower byte value is shown. Any x16 device outputs can be  
assumed to have 00h on the upper byte in this mode.  
Table 30: Summary of Query Structure Output as a Function of Device and Mode  
Device  
Hex Offset  
Hex Code  
ASCII Value  
00010:  
00011:  
00012:  
51  
52  
59  
“Q”  
“R”  
“Y”  
Device Addresses  
Table 31: Example of Query Structure Output of x16 Devices (Sheet 1 of 2)  
Word Addressing:  
Hex Code  
Byte Addressing:  
Hex Code  
Offset  
A[X:0]  
Value  
Offset  
Value  
DQ[15:0]  
AX - A0  
DQ[7:0]  
00010h  
00011h  
00012h  
00013h  
00014h  
0051  
0052  
“Q”  
“R”  
00010h  
00011h  
00012h  
00013h  
00014h  
0051  
0052  
“Q”  
“R”  
0059  
“Y”  
0059  
“Y”  
P IDLO  
P IDHI  
PrVendor  
ID #  
P IDLO  
P IDLO  
PrVendor  
ID #  
Datasheet  
76  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 31: Example of Query Structure Output of x16 Devices (Sheet 2 of 2)  
Word Addressing:  
Hex Code  
Byte Addressing:  
Hex Code  
Offset  
Value  
Offset  
Value  
A[X:0]  
DQ[15:0]  
A
X - A0  
DQ[7:0]  
00015h  
00016h  
00017h  
00018h  
...  
PLO  
PHI  
PrVendor  
TblAdr  
AltVendor  
ID #  
00015h  
00016h  
00017h  
00018h  
...  
P IDHI  
...  
ID #  
...  
A IDLO  
A IDHI  
...  
...  
16.2  
Query Structure Overview  
The Query command causes the flash component to display the Common Flash  
Interface (CFI) Query structure or “database.The structure sub-sections and address  
locations are summarized below.  
Table 32: Query Structure  
Description(1)  
Manufacturer Code  
Offset  
00000h  
Sub-Section Name  
00001h  
(BA+2)h(2)  
Device Code  
Block-specific information  
Block Status register  
00004-Fh Reserved  
Reserved for vendor-specific information  
Command set ID and vendor data offset  
Device timing & voltage information  
Flash device layout  
00010h  
0001Bh  
00027h  
CFI query identification string  
System interface information  
Device geometry definition  
Vendor-defined additional information specific  
to the Primary Vendor Algorithm  
P(3)  
Primary Intel-specific Extended Query Table  
Notes:  
1.  
Refer to the Query Structure Output section and offset 28h for the detailed definition of offset address as a function of  
device bus width and mode.  
2.  
3.  
BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is 32K-word).  
Offset 15 defines “P” which points to the Primary Numonyx-specific Extended Query Table.  
16.3  
Block Status Register  
The Block Status Register indicates whether an erase operation completed successfully  
or whether a given block is locked or can be accessed for flash program/erase  
operations.  
Block Erase Status (BSR.1) allows software to determine the success of the last block  
erase operation. BSR.1 can be used just after power-up to verify that the VCC supply  
was not accidentally removed during an erase operation.  
November 2007  
Order Number: 313272-06  
Datasheet  
77  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 33: Block Status Register  
Offset  
Length  
Description  
Block Lock Status Register  
BSR.0 Block lock status  
0 = Unlocked  
Add.  
Value  
(BA+2)h(1)  
1
BA+2 --00 or --01  
BA+2 (bit 0): 0 or 1  
1 = Locked  
BSR.1 Block lock-down status  
0 = Not locked down  
1 = Locked down  
BA+2 (bit 1): 0 or 1  
BA+2 (bit 2–7): 0  
BSR 2–7: Reserved for future use  
Notes:  
1.  
BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is 32K-word).  
16.4  
CFI Query Identification String  
The Identification String provides verification that the component supports the  
Common Flash Interface specification. It also indicates the specification version and  
supported vendor-specified command set(s).  
Table 34: CFI Identification  
Hex  
Code  
--51  
--52  
--59  
--03  
--00  
--39  
--00  
--00  
--00  
--00  
--00  
Offset  
Length  
Description  
Query-unique ASCII string “QRY“  
Add.  
10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
1A:  
Value  
"Q"  
"R"  
3
10h  
"Y"  
2
2
2
2
Primary vendor command set and control interface ID code.  
16-bit ID code for vendor-specified algorithms  
Extended Query Table primary algorithm address  
13h  
15h  
17h  
19h  
Alternate vendor command set and control interface ID code.  
0000h means no second vendor-specified algorithm exists  
Secondary algorithm Extended Query Table address.  
0000h means none exists  
Datasheet  
78  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 35: CFI Identification  
Hex  
Code  
Offset  
Length  
Description  
Add.  
Value  
1Bh  
1
V
CC logic supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
1B:  
--17 1.7V  
--19 1.9V  
--B4 11.4V  
--C6 12.6V  
--04 16μs  
1Ch  
1Dh  
1Eh  
1
1
1
VCC logic supply maximum program/erase voltage  
1C:  
1D:  
1E:  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
VPP [programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
PP [programming] supply maximum program/erase voltage  
V
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
“n” such that typical single word program time-out = 2n μ-sec  
“n” such that typical max. buffer write time-out = 2n μ-sec  
“n” such that typical block erase time-out = 2n m-sec  
“n” such that typical full chip erase time-out = 2n m-sec  
“n” such that maximum word program time-out = 2n times typical  
“n” such that maximum buffer write time-out = 2n times typical  
“n” such that maximum block erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--00  
--0A  
--00  
NA  
1s  
NA  
--04 256μs  
--00  
--03  
--00  
NA  
8s  
NA  
November 2007  
Order Number: 313272-06  
Datasheet  
79  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
16.5  
Device Geometry Definition  
Table 36: Device Geometry Definition  
Offset  
27h  
Length  
Description  
Code  
27: See table below  
“n” such that device size = 2n in number of bytes  
Flash device interface code assignment:  
1
"n" such that n+1 specifies the bit field that represents the flash  
device width capabilities as described in the table:  
7
6
5
4
3
2
1
x16  
9
0
x8  
8
28h  
2
15  
14  
13  
12  
x64  
11  
x32  
10  
28:  
--01  
x16  
0
29:  
2A:  
2B:  
2C:  
--00  
--00  
--00  
“n” such that maximum number of bytes in write buffer = 2n  
2
1
2Ah  
2Ch  
Number of erase block regions (x) within device:  
1. x = 0 means no erase blocking; the device erases in bulk  
2. x specifies the number of device regions with one or  
more contiguous same-size erase blocks.  
See table below  
3. Symmetrically blocked partit  
4
4
4
Erase Block Region 1 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
2Dh  
31h  
35h  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
See table below  
See table below  
See table below  
Erase Block Region 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Reserved for future erase block region information  
32 Mbit  
64 Mbit  
128 Mbit  
–B  
Address  
–B  
–T  
–B  
–T  
–T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
--16  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--3E  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--16  
--01  
--00  
--00  
--00  
--02  
--3E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--7E  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--7E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--FE  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--00  
--00  
--02  
--FE  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
Datasheet  
80  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
16.6  
Numonyx-Specific Extended Query Table  
Table 37: Primary Vendor-Specific Extended Query  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Primary extended query table  
Add. Code Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
3
39:  
3A:  
3B:  
3C:  
3D:  
3E:  
3F:  
40:  
41:  
--50  
--52  
--49  
--31  
--33  
--66  
--0B  
--00  
--00  
"P"  
"R"  
"I"  
"1"  
"3"  
Unique ASCII string “PRI“  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 10–31 are reserved; undefined bits are “0.” If bit 31 is  
“1” then another 31 bit field of Optional features follows at  
the end of the bit–30 field.  
bit 0 Chip erase supported  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 7 Pagemode read supported  
bit 8 Synchronous read supported  
bit 9 Simultaneous operations supported  
bit 10 Feature Space supported  
bit 11 Stepping ID supported (IAS Purposes only)  
Reserved for internal Intel use (Eas)  
Supported functions after suspend: read Array, Status, Query  
Other supported operations are:  
bit 0 = 0  
No  
Yes  
Yes  
No  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 0  
bit 8 = 1  
bit 9 = 1  
bit 10 = 0  
bit 11 = 1  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
(P+9)h  
1
2
42:  
--01  
bits 1–7 reserved; undefined bits are “0”  
bit 0 Program supported after erase suspend  
Block status register mask  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Down Bit Status active  
VCC logic supply highest performance program/erase voltage  
bit 0 = 1  
Yes  
(P+A)h  
(P+B)h  
43:  
44:  
--03  
--00  
bit 0 = 1  
bit 1 = 1  
Yes  
Yes  
(P+C)h  
(P+D)h  
1
1
45:  
46:  
--18 1.8V  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
VPP optimum program/erase supply voltage  
--C0 12.0V  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
November 2007  
Order Number: 313272-06  
Datasheet  
81  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 38: Protection Register Information  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Add. Code Value  
(P+E)h  
1
4
Number of Protection register fields in JEDEC ID space.  
“00h,” indicates that 256 protection fields are available  
Protection Field 1: Protection Description  
This field describes user-available One Time Programmable  
(OTP) Protection register bytes. Some are pre-programmed  
with device-unique serial numbers. Others are user  
programmable. Bits 0–15 point to the Protection register Lock  
byte, the section’s first byte. The following bytes are factory  
pre-programmed and user-programmable.  
47:  
--01  
1
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
48:  
49:  
4A:  
4B:  
--80  
--00  
--03 8 byte  
--03 8 byte  
80h  
00h  
bits 0–7 = Lock/bytes Jedec-plane physical low address  
bits 8–15 = Lock/bytes Jedec-plane physical high address  
bits 16–23 = “n” such that 2n = factory pre-programmed bytes  
bits 24–31 = “n” such that 2n = user programmable bytes  
Table 39: Burst Read Information for A/D-muxed Device  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Add. Code Value  
(P+13)h  
1
Page Mode Read capability  
4C:  
--00 0 byte  
bits 0–7 = “n” such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device word width to  
determine page-mode data output width. 00h indicates no  
read page buffer.  
Number of synchronous mode read configuration fields that  
follow. 00h indicates no burst capability.  
Synchronous mode read capability configuration 1  
Bits 3–7 = Reserved  
(P+14)h  
(P+15)h  
1
1
4D:  
4E:  
--03  
--01  
3
4
bits 0–2 “n” such that 2n+1 HEX value represents the  
maximum number of continuous synchronous reads when  
the device is configured for its maximum word width. A value  
of 07h indicates that the device is capable of continuous  
linear bursts that will output data until the internal burst  
counter reaches the end of the device’s burstable address  
space. This field’s 3-bit value can be written directly to the  
Read Configuration Register bits 0–2 if the device is  
configured for its maximum word width. See offset 28h for  
word width to determine the burst data output width.  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 4  
(P+16)h  
(P+17)h  
1
1
4F:  
50:  
--02  
--07 Cont  
8
Datasheet  
82  
November 2007  
Order Number: 313272-06  
Table 40: Partition and Erase-block Region Information  
Offset(1)  
P = 39h  
See table below  
Address  
Description  
Bot  
Top  
Bottom  
Top  
(Optional flash features and commands)  
Len  
(P+18)h (P+18)h Number of device hardware-partition regions within the device.  
x = 0: a single hardware partition device (no fields follow).  
x specifies the number of device partition regions containing  
one or more contiguous erase block regions.  
1
51:  
51:  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Partition Region 1 Information  
Offset(1)  
P = 39h  
See table below  
Description  
Address  
Bot  
Top  
52:  
53:  
54:  
Bottom  
(P+19)h (P+19)h  
(P+1A)h (P+1A)h  
Top  
(Optional flash features and commands)  
Number of identical partitions within the partition region  
Len  
2
52:  
53:  
54:  
(P+1B)h (P+1B)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
1
1
bits 4–7 = number of simultaneous Erase operations  
(P+1C)h (P+1C)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+1D)h (P+1D)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+1E)h (P+1E)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
55:  
56:  
57:  
55:  
56:  
57:  
1
1
(P+1F)h (P+1F)h Partition Region 1 Erase Block Type 1 Information  
4
58:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
58:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
(P+20)h (P+20)h  
(P+21)h (P+21)h  
(P+22)h (P+22)h  
(P+23)h (P+23)h  
(P+24)h (P+24)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 1 (Erase Block Type 1)  
Minimum block erase cycles x 1000  
2
1
(P+25)h (P+25)h Partition 1 (erase block Type 1) bits per cell; internal ECC  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+26)h (P+26)h Partition 1 (erase block Type 1) page mode and synchronous  
mode capabilities defined in Table 10.  
1
4
5F:  
5F:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+27)h  
(P+28)h  
(P+29)h  
(P+2A)h  
(P+2B)h  
(P+2C)h  
(P+2D)h  
Partition Region 1 Erase Block Type 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(bottom parameter device only)  
Partition 1 (Erase block Type 2)  
Minimum block erase cycles x 1000  
60:  
61:  
62:  
63:  
64:  
65:  
66:  
2
1
Partition 1 (Erase block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+2E)h  
Partition 1 (Erase block Type 2) pagemode and synchronous  
mode capabilities defined in Table 10  
1
67:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
Datasheet  
84  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Partition Region 2 Information  
Offset(1)  
P = 39h  
See table below  
Address  
Description  
Bot  
68:  
69:  
6A:  
Top  
60:  
61:  
62:  
Bottom  
Top  
(Optional flash features and commands)  
Len  
2
(P+2F)h (P+27)h Number of identical partitions within the partition region  
(P+30)h (P+28)h  
(P+31)h (P+29)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
1
1
1
1
(P+32)h (P+2A)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+33)h (P+2B)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+34)h (P+2C)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
6B:  
6C:  
6D:  
63:  
64:  
65:  
(P+35)h (P+2D)h Partition Region 2 Erase Block Type 1 Information  
4
6E:  
6F:  
70:  
71:  
72:  
73:  
74:  
66:  
67:  
68:  
69:  
6A:  
6B:  
6C:  
(P+36)h (P+2E)h  
(P+37)h (P+2F)h  
(P+38)h (P+30)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(P+39)h (P+31)h Partition 2 (Erase block Type 1)  
(P+3A)h (P+32)h Minimum block erase cycles x 1000  
(P+3B)h (P+33)h Partition 2 (Erase block Type 1) bits per cell  
bits 0–3 = bits per cell in erase region  
2
1
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+3C)h (P+34)h Partition 2 (erase block Type 1) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
4
75:  
6D:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+35)h Partition Region 2 Erase Block Type 2 Information  
6E:  
6F:  
70:  
71:  
72:  
73:  
74:  
(P+36)h  
(P+37)h  
(P+38)h  
(P+39)h  
(P+3A)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 2 (Erase Block Type 2)  
Minimum block erase cycles x 1000  
2
1
(P+3B)h Partition 2 (Erase Block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+3C)h Partition 2 (Erase block Type 2) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
75:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permit  
November 2007  
Order Number: 313272-06  
Datasheet  
85  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Partition and Erase-block Region Information  
Address  
32 Mbit  
64Mbit  
128Mbit  
–B  
–T  
–B  
–T  
–B  
–T  
51:  
52:  
53:  
54:  
55:  
56:  
57:  
58:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
60:  
61:  
62:  
63:  
64:  
65:  
66:  
67:  
68:  
69:  
6A:  
6B:  
6C:  
6D:  
6E:  
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
76:  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--X  
--02  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--02  
--X  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--X  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--02  
--X  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--1F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--X  
--02  
--1F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--02  
--X  
X signifies Stepping ID number. See Table C12, above, for more details.  
Notes:  
1.  
2.  
3.  
4.  
The variable P is a pointer which is defined at CFI offset 15h.  
TPD - Top parameter device; BPD - Bottom parameter device.  
Partition: Each partition is 4Mb in size. It can contain main blocks OR a combination of both main and parameter blocks.  
Partition Region: Symmetrical partitions form a partition region. (there are two partition regions, A. contains all the  
partitions that are made up of main blocks only. B. contains the partition that is made up of the parameter and the main  
blocks.  
Datasheet  
86  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Appendix A Ordering Information  
To order samples, obtain datasheets or inquire about any stack combination, please  
contact your local Numonyx representative.  
Table 41: 38F Type Stacked Components  
PF  
38F  
5070  
M0  
Y
0
B
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash  
Product Family  
Ballout  
Identifier  
Device  
Details  
Char 1 = Flash  
die #1  
V =  
1.8 V Core  
and I/O;  
SeparateChip blocks; Non-  
Enable per  
die  
0 =  
First character  
applies to Flash  
die #1  
No parameter  
B =  
x16D  
Ballout  
Char 2 = Flash  
die #2  
Mux I/O  
interface  
PF =  
SCSP, RoHS  
Char 3 =  
RAM die #1  
0 =  
Second character  
applies to Flash  
die #2  
(See  
Original  
released  
version of  
this  
(See  
(See  
Table 46,  
Table 4  
Stacked  
NOR Flash +  
RAM  
Table 45,  
7,  
RD =  
SCSP,  
Leaded  
“Voltage / “Paramete  
NOR Flash r / Mux  
Char 4 =  
“Ballout  
Decoder  
” on  
(See Table 44,  
“NOR Flash  
Family  
RAM die #2  
product  
CE#  
Configurati  
Configurati on  
page 90  
(See  
on  
Decoder”  
Decoder” on  
page 89 for  
details)  
for  
Table 43,  
“38F / 48F  
Density  
Decoder”  
on  
on  
details)  
page 89 for  
page 89for details)  
details)  
Decoder”  
on page 88  
for details)  
November 2007  
Order Number: 313272-06  
Datasheet  
87  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 42: 48F Type Stacked Components  
PC  
48F  
4400  
P0  
V
B
0
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash  
Product Family  
Ballout  
Identifier  
Device  
Details  
PC =  
Easy BGA,  
RoHS  
Char 1 = Flash  
die #1  
V =  
B =  
1.8 V Core  
and 3 V I/O;  
Virtual Chip  
Enable  
First character  
applies to Flash  
dies #1 and #2  
RC =  
Easy BGA,  
Leaded  
Bottom  
Char 2 = Flash  
die #2  
0 =  
Discrete  
Ballout  
parameter;  
Non-Mux I/O  
interface  
0 =  
Char 3 = Flash  
die #3  
Second character  
applies to Flash  
dies #3 and #4  
Original  
released  
version of  
this  
JS =  
(See  
(See  
(See  
TSOP, RoHS  
Table 45,  
“Voltage /  
NOR Flash  
CE#  
Table 4  
Stacked  
NOR Flash  
only  
Table 46,  
“Paramete  
r / Mux  
Configurati  
on  
7,  
Char 4 = Flash  
die #4  
“Ballout  
Decoder  
” on  
TE =  
(See Table 44,  
“NOR Flash  
Family  
product  
TSOP,  
Leaded  
Configurati  
on  
(See  
page 90  
Decoder”  
on  
Table 43,  
“38F / 48F  
Density  
Decoder” on  
page 89 for  
details)  
Decoder”  
on  
for  
details)  
PF =  
page 89 for  
details)  
page 89 for  
details)  
SCSP, RoHS  
Decoder”  
on page 88  
for details)  
RD =  
SCSP,  
Leaded  
Table 43: 38F / 48F Density Decoder  
Code  
Flash Density  
RAM Density  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
No Die  
No Die  
4-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
8-Mbit  
16-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
128-Gbit  
256-Gbit  
512-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
Datasheet  
88  
November 2007  
Order Number: 313272-06  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 44: NOR Flash Family Decoder  
Code  
Family  
Marketing Name  
C
C3  
Numonyx Advanced+ Boot Block Flash Memory  
Numonyx Embedded Flash Memory  
Numonyx StrataFlash® Wireless Memory  
Numonyx StrataFlash® Cellular Memory  
Numonyx StrataFalsh® Embedded Memory  
Numonyx Wireless Flash Memory  
No Die  
J3v.D  
J
L
L18 / L30  
M18  
M
P
P30 / P33  
W18 / W30  
-
W
0(zero)  
Table 45: Voltage / NOR Flash CE# Configuration Decoder  
I/O Voltage  
Code  
Core Voltage (Volt)  
CE# Configuration  
Seperate Chip Enable per die  
(Volt)  
Z
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
3.0  
Seperate Chip Enable per die  
Seperate Chip Enable per die  
Virtual Chip Enable  
Virtual Chip Enable  
Virtual Chip Enable  
Virtual Address  
Y
X
V
U
T
R
Q
P
Virtual Address  
Virtual Address  
Table 46: Parameter / Mux Configuration Decoder  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
0 = Non Mux  
1 = AD Mux1  
2= AAD Mux  
Any  
NA  
Notation used for stacks that contain no parameter blocks  
3 =Full" AD  
Mux2  
1
2
3
4
2
4
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
-
-
-
Top  
-
-
B = Non Mux  
C = AD Mux  
F = "Full" Ad  
Mux  
X16  
X32  
Bottom  
Top  
Top  
Bottom  
-
-
Top  
-
Bottom  
Bottom  
Top  
Top  
November 2007  
Order Number: 313272-06  
Datasheet  
89  
Numonyx™ Wireless Flash Memory (W18) with AD Multiplexed IO  
Table 46: Parameter / Mux Configuration Decoder  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
1
2
3
4
2
4
Top  
-
-
-
-
-
-
Top  
Top  
Top  
Top  
Top  
Bottom  
Top  
T = Non Mux  
U = AD Mux  
X16  
Bottom  
Top  
W = "Full" Ad  
Mux  
Bottom  
Top  
Bottom  
-
-
X32  
Top  
Bottom  
Bottom  
1. Only Flash is Muxed and RAM is non-Muxed  
2. Both Flash and RAM are AD-Muxed  
Table 47: Ballout Decoder  
Code  
Ballout Definition  
0 (Zero)  
SDiscrete ballout (Easay BGA and TSOP)  
B
x16D ballout, 105 ball (x16 NOR + NAND + DRAM Share Bus)  
x16C ballout, 107 ball (x16 NOR + NAND + PSRAM Share Bus)  
QUAD/+ ballout, 88 ball (x16 NOR + PSRAM Share Bus)  
x32SH ballout, 106 ball (x32 NOR only Share Bus)  
C
Q
U
V
x16SB ballout, 165 ball (x16 NOR / NAND + x16 DRAM Split Bus  
x48D ballout, 165 ball (x16/x32 NOR + NAND + DRAM Split Bus  
W
Datasheet  
90  
November 2007  
Order Number: 313272-06  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY