RD38F2040W0YUQ0 [NUMONYX]

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,;
RD38F2040W0YUQ0
型号: RD38F2040W0YUQ0
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,

静态存储器
文件: 总54页 (文件大小:684K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Numonyx™ Wireless Flash Memory  
(W18 SCSP)  
128-Mbit W18 Family with Synchronous PSRAM  
Datasheet  
Product Features  
„ Device Architecture  
„ Flash Performance  
— Flash Die Density: 32, 64 or 128-Mbit  
— PSRAM Die Density: 16 or 32-Mbit  
— x16 Non-Mux or ADMux I/O Interface Option  
— Bottom or Top Flash Parameter  
Configuration  
— 60 ns Initial Read Access;  
20 ns Asynchronous Page-Mode Read  
— Up to 66 MHz with 11 ns Clock-to-Data  
Output Synchronous Burst-Mode Read  
— Enhanced Factory Programming Modes:  
3.1 µs/Word (Typ)  
„ Device Voltage  
„ Flash Architecture  
— Core: VCC = 1.8 V  
— I/O: VCCQ = 1.8 V  
„ Device Packaging  
— Ballout: QUAD+ (88 Balls)  
— Area: 8x10 mm  
— Read-While-Write/Erase  
— Asymmetrical blocking structure  
— 4-KWord parameter blocks (Top or Bottom)  
— 32-KWord main blocks  
— 4-Mbit partition size  
— 128-bit One-Time Programmable (OTP)  
Protection Register  
— Zero-latency block locking  
— Absolute write protection with block lock  
using F-VPP and F-WP#  
— Height: 1.2 mm  
„ PSRAM Performance  
— 70 ns Initial Read Access;  
20 ns Asynchronous Page-Mode Read  
— Up to 66 MHz with 9 ns Clock-to-Data  
Synchronous Burst-Mode Reads and Writes  
— Configurable 4-, 8-, 16- and Continuous-  
Word Burst-Length Reads and Writes  
— Partial-Array Self and Temperature-  
Compensated Refresh  
„ Flash Software  
— Numonyx™ FDI, Numonyx™ PSM, and  
Numonyx™ VFM  
— Common Flash Interface  
— Basic and Extended Flash Command Set  
„ Quality and Reliability  
— Programmable Output Impedance  
— Extended Temperature –25 °C to +85 °C  
— Minimum 100K Flash Block Erase cycles  
— 90 nm ETOX ™ IX Flash Technology  
— 130 nm ETOX™ VIII Flash Technology  
Order Number: 311760-10  
November 2007  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx B.V. may make changes to specifications and product descriptions at any time, without notice.  
Numonyx B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and StrataFlash are trademarks or registered trademarks of Numonyx B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007, Numonyx B.V., All Rights Reserved.  
Datasheet  
2
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Contents  
1.0 Introduction..............................................................................................................6  
1.1  
1.2  
1.3  
Nomenclature.....................................................................................................6  
Acronyms...........................................................................................................7  
Conventions .......................................................................................................7  
2.0 Functional Overview..................................................................................................8  
2.1  
2.2  
2.3  
Product Description .............................................................................................8  
Device Combinations ...........................................................................................9  
Device Operation Overview.................................................................................10  
2.3.1 Flash and Synchronous PSRAM Bus Operations...........................................10  
2.3.2 Flash Configuration Operation ..................................................................11  
2.3.3 Flash Memory Map and Partitioning...........................................................11  
3.0 Device Package Information.................................................................................... 12  
4.0 Ballout and Signal Descriptions ...............................................................................13  
4.1  
4.2  
Device Signal Ballout .........................................................................................13  
Signal Descriptions............................................................................................ 14  
5.0 Maximum Ratings and Operating Conditions............................................................ 16  
5.1  
5.2  
Device Absolute Maximum Ratings....................................................................... 16  
Device Operating Conditions...............................................................................17  
6.0 Device Electrical Specifications................................................................................17  
6.1  
6.2  
6.3  
Flash DC Characteristics..................................................................................... 17  
Synchronous PSRAM DC Characteristics................................................................17  
Device AC Test Conditions.................................................................................. 19  
6.3.1 Flash Die Capacitance ............................................................................. 19  
6.3.2 Synchronous PSRAM Die Capacitance........................................................19  
7.0 Device AC Characteristics ........................................................................................19  
7.1  
7.2  
7.3  
7.4  
Flash AC Characteristics..................................................................................... 19  
PSRAM Asynchronous Read.................................................................................19  
PSRAM Asynchronous Write ................................................................................23  
PSRAM Synchronous Read and Write.................................................................... 26  
8.0 Device Bus Interface ...............................................................................................31  
8.1  
PSRAM Reads ................................................................................................... 31  
8.1.1 PSRAM Asynchronous Read...................................................................... 31  
8.1.2 PSRAM Asynchronous Page-Mode Read ..................................................... 32  
8.1.3 PSRAM Synchronous Burst-Mode Reads..................................................... 32  
8.1.4 PSRAM Asynchronous Fetch Control Register Read...................................... 32  
PSRAM Writes................................................................................................... 33  
8.2.1 PSRAM Asynchronous Write ..................................................................... 33  
8.2.2 PSRAM Synchronous Write....................................................................... 33  
8.2.3 PSRAM Asynchronous Set Control Register Write ........................................ 34  
8.2.4 PSRAM Synchronous Set Control Register Write..........................................34  
PSRAM No Operation Command ..........................................................................34  
PSRAM Deselect................................................................................................35  
PSRAM Deep Power Down................................................................................... 35  
PSRAM WAIT Signal........................................................................................... 35  
8.2  
8.3  
8.4  
8.5  
8.6  
9.0 Device Operations ................................................................................................... 37  
9.1  
Device Power-Up/Down...................................................................................... 37  
9.1.1 Flash Power and Reset Specifications ........................................................37  
November 2007  
Order Number: 311760-10  
Datasheet  
3
128-Mbit W18 Family with Synchronous PSRAM  
9.1.2 PSRAM Power-Up Sequence and Initialization .............................................37  
PSRAM Operating Modes.....................................................................................37  
PSRAM Control Registers ....................................................................................38  
9.3.1 PSRAM Bus Control Register.....................................................................38  
9.3.2 PSRAM Refresh Control Register ...............................................................42  
PSRAM Access to Control Register........................................................................45  
9.4.1 PSRAM Hardware Control Register Access ..................................................45  
9.4.2 PSRAM Software Register Access ..............................................................45  
9.4.3 Cautionary Note About Software Register Access.........................................46  
PSRAM Self-Refresh Operation.............................................................................47  
9.5.1 PSRAM Self-Refresh Operations at Low Frequency.......................................47  
PSRAM Burst Suspend, Interrupt, or Termination ...................................................47  
9.6.1 PSRAM Burst Suspend.............................................................................47  
9.6.2 PSRAM Burst Interrupt ............................................................................48  
9.6.3 PSRAM Burst Termination ........................................................................49  
PSRAM Row Boundary Crossing ...........................................................................49  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
10.0 Additional Information.............................................................................................50  
11.0 Ordering Information...............................................................................................51  
Datasheet  
4
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Revision History  
Date  
Revision  
Description  
February 2006  
001  
Initial release  
Corrected flash and PSRAM specification of CLK from 66 MHz to 54 MHz, and flash burst-mode  
read timing from 11 ns to 14 ns.  
Remove Page-Mode Read details for flash and PSRAM, feature not supported.  
Changed tCLK3 Min value in Section 11, “PSRAM AC Characteristics—Asynchronous Read” on  
page 21 from 15 ns to 18 ns to correlate CLK value change.  
March 2006  
May 2006  
002  
003  
Updated Ordering Information Table.  
Added ADMux I/O interface flash references, making document inclusive of Non-Mux and  
ADMux I/O flash interface WQ product family, superseding 64-Mbit WQ Family with  
Synchronous PSRAM datasheet #311641.  
Updated PSRAM burst-mode improved read timing from 14 ns to 9 ns. Added 16 Mbit PSRAM  
AC/DC specifications that was TBD in revision -002.  
Update various descriptions of the W18 and PSRAM features, specifications and operations for  
clarity.  
July 2006  
004  
005  
Made miscellaneous edits and formatting changes.  
Added 90 nm device option.  
August 2006  
Revised datasheet to show improved CLK from 54 MHz to 66 MHz for Non Mux and AD Mux  
products.  
November 2006  
006  
Revised datasheet to show improved flash burst mode read timing from 14 ns to 11 ns.  
January 2007  
July 2007  
007  
008  
Revised ordering information to add non-muxed line items  
Added section for configuring device in asynchronous mode. Revised typos in Ordering  
infomation: Changed AD-Mux to Non-Mux. Added LIs PF38F2030W0YTQE and  
PF38F2040W0YCQE.  
August 2007  
009  
10  
Updated ordering information  
Applied Numonyx branding.  
November 2007  
November 2007  
Order Number: 311760-10  
Datasheet  
5
128-Mbit W18 Family with Synchronous PSRAM  
1.0  
Introduction  
The 128-Mbit Numonyx™ Wireless Flash memory with synchronous PSRAM stacked  
device family offers multiple high-performance solutions. The W18 (Non-Mux or AD  
Mux I/O interface option) highlighted features like asymmetrical block array,  
configurable burst lengths, security using OTP and zero-latency block lock. The W18  
delivers up to 66 MHz synchronous burst and page-mode read rates with multi-  
partitioning Read-While-Write and Read-While-Erase operations. The synchronous  
PSRAM (Non-Mux and AD-Mux I/O interface) is a high-performance volatile memory  
operating at speeds up to 66 MHz with configurable burst lengths. The PSRAM lower  
sixteen addresses can be routed to the data pins on the PCB board to enable a flexible  
flash and PSRAM A/D-Mux I/O interface device design. The W18 stacked device  
features 1.8 volt low-voltage operation in an Numonyx™ QUAD+ standard footprint and  
signal ballouts.  
This document contains information pertaining to the 128-Mbit Title stacked device  
family. The W18 is available as a Non-Multiplex or Address-Data Muxltiplex (ADMux) I/  
O interface option, while the synchronous PSRAM is available only as a Non-Multiplex I/  
O interface. The intent of this document is to provide information where this product  
differs from the Intel® Wireless Flash Memory (W18) device.  
Refer to the latest revision of the Intel® Wireless Flash Memory (W18) Discrete  
Datasheet (order number: Non-Mux I/O doc #290701 and ADMux I/O doc #313272)  
for specific flash product details not included in this document.  
1.1  
Nomenclature  
1.8 Volt Core VCC (memory subsystem die core) voltage range of 1.7 V – 1.95 V.  
1.8 Volt I/O  
ADMux I/O  
VCCQ (memory subsystem I/O) voltage range of 1.7 V – 1.95 V.  
Address-Data Multiplex I/O interface, where the lower sixteen (16) addresses are  
multiplexed on the data pins (DQ[15:0]) during any address cycle.  
Asserted  
Block  
Signal with logical voltage level VIL, or enabled.  
Group of cells, bits, bytes, or words within the flash memory array that get erased  
with one erase instruction.  
Deasserted  
Device  
Signal with logical voltage level VIH or disabled.  
A specific memory type or stacked flash and xRAM memory density configuration  
combination within a memory subsystem product family.  
Die  
Individual flash or xRAM die used in a stacked package memory device.  
High Impedance.  
High-Z  
Low-Z  
Signal is Driven on the bus.  
Non-Array  
Reads  
Flash reads which return flash Device Identifier, CFI Query, Protection Register, and  
Status Register information.  
Non-Mux I/O Traditional parallel flash interface where address are not multiplex onto the data  
pins. All address and data pins are unique.  
Partition  
Program  
Write  
A group of flash blocks that shares common status register read state.  
An operation to Write data to the flash array or xRAM.  
Bus cycle operation at the inputs of the flash or xRAM die, in which a command or  
data are sent to the flash array or xRAM.  
Datasheet  
6
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
1.2  
Acronyms  
APS  
Automatic Power Savings  
EFA  
Extended Flash Array  
BCR  
(PSRAM) Bus Control Register  
Buffered Enhanced Factory Programming  
(Flash) Configuration Register  
Chip Scale Package  
Buffered EFP  
CR  
CSP  
MLC  
Multi-Level Cell  
OTP  
One-Time Programmable  
Protection Lock Register  
Protection Register  
PLR  
PR  
RCR  
(PSRAM) Refresh Control Register  
Reserved for Future Use  
Read-While-Write / Read-While-Erase  
Status Register  
RFU  
RWW / RWE  
SR  
WSM  
Write State Machine  
1.3  
Conventions  
A5  
Denotes one element of a signal group, in this case address bit 5.  
Logical zero (0).  
Clear  
DQ[15:0]  
F-CE#  
Denotes a group of similarly named signals, such as data bus.  
Denotes Chip Enable of the flash die, where “F” to denote the specific signal  
suffix and “CE#” is the root signal name of the NOR flash die.  
P-CE# or P-CS#  
S-CS1#  
Denotes Chip Enable of the PSRAM die, where “P” to denote the specific signal  
suffix and “CE# or CS#” are the root signal name of the PSRAM die. PSRAM  
CE# and CS# is used interchangably throughout the document.  
Denotes Chip Enable of the SRAM die, where “S” to denote the specific signal  
suffix and “CS1#” is the root signal name of the SRAM die.  
Set  
Logical one (1).  
SR4  
VCC  
VCC  
VSS  
A flash status register bit, in this case status register bit 4 of SR[15:0].  
Signal or voltage connection.  
Signal or voltage level.  
Denotes a global power signal of the stacked device. VSS is common to all  
memory dies within a stacked memory device.  
November 2007  
Order Number: 311760-10  
Datasheet  
7
128-Mbit W18 Family with Synchronous PSRAM  
2.0  
Functional Overview  
2.1  
Product Description  
The W18 family with synchronous PSRAM stacked product family encompasses multiple  
W18 flash memory plus synchronous PSRAM die combinations. Figure 1 shows the  
maximum configuration options for W18 non-multiplex I/O (standard) product and  
Figure 2 shows the maximum configuration options for W18 AD-Multiplex I/O product  
family with synchronous PSRAM internal package connections.  
Note:  
See detailed signal information in Section 4.2, “Signal Descriptions” on page 14.  
Figure 1: W18 Product Family with Sync PSRAM Block Diagram  
W18 Family with Sync PSRAM  
F1-CE#  
F1-OE#  
F-VPP  
F1-VCC  
F-RST#  
CLK  
Flash Die  
128-Mbit, 64-Mbit, or 32-Mbit  
WAIT  
ADV#  
F-WP#  
F-WE#  
VCCQ  
VSS  
A[MAX:0]  
DQ[15:0]  
P-VCC  
R-UB#  
R-LB#  
P-CS#  
PSRAM Die  
32-Mbit or 16-Mbit  
R-OE#  
P-CRE  
R-WE#  
Notes:  
1.  
2.  
F2-OE# must be treated as RFU. However, for future product compatiblity, F2-OE# can be tied to F1-OE# or left floated.  
F2-VCC must be treated as RFU. However, for future product compatibility, F2-VCC can be tied to F1-VCC or left floated.  
Note:  
See detailed signal information in Section 4.2, “Signal Descriptions” on page 14.  
Datasheet  
8
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 2: W18 ADMux I/O Interface Product Family with Sync PSRAM Block Diagram  
W18 ADMux Family with Sync PSRAM  
F1-CE#  
F1-OE#  
CLK  
F-VPP  
F1-VCC  
F-RST#  
Flash Die  
128-Mbit, 64-Mbit, or 32-Mbit  
(Address/Data Multiplex I/O)  
WAIT  
ADV#  
A/DQ[15:0]  
A[MAX:16]  
F-WP#  
F-WE#  
VCCQ  
VSS  
A[MAX:0]  
DQ[15:0]  
P-VCC  
R-UB#  
R-LB#  
P-CS#  
R-OE#  
P-CRE  
R-WE#  
PSRAM Die  
32-Mbit or 16-Mbit  
(Non-Multiplex I/O)  
Notes:  
1.  
2.  
F2-OE# must be treated as RFU. However, for future product compatiblity, F2-OE# can be tied to F1-OE# or left floated.  
F2-VCC must be treated as RFU. However, for future product compatibility, F2-VCC can be tied to F1-VCC or left floated.  
2.2  
Device Combinations  
Note:  
For combination not listed, contact your local Numonyx Sales Representative for  
details.  
Table 1:  
Device Combinations  
I/O  
Voltage  
Package Size  
(mm)  
Flash Type (Mbit)  
xRAM Type (Mbit)  
32 Sync PSRAM  
Package Ballout  
64 W18  
8x10x1.2  
8x10x1.2  
8x10x1.2  
8x10x1.2  
QUAD+  
QUAD+  
QUAD+  
QUAD+  
32 W18 (ADMux I/O)  
64 W18 (ADMux I/O)  
64 W18 (ADMux I/O)  
16 Sync PSRAM  
16 Sync PSRAM  
32 Sync PSRAM  
1.8 V  
November 2007  
Order Number: 311760-10  
Datasheet  
9
128-Mbit W18 Family with Synchronous PSRAM  
2.3  
Device Operation Overview  
The following sections describes the bus operations and device state between the flash  
and synchronous PSRAM.  
2.3.1  
Note:  
Flash and Synchronous PSRAM Bus Operations  
Bus operations for the W18 stacked device involve the control of flash and PRAM inputs.  
The bus operations are shown in Table 2.  
See the Intel® Wireless Flash Memory (W18) Discrete Datasheet (order number: Non-  
Mux I/O doc #290701 and ADMux I/O doc #313272) for complete descriptions of the  
flash modes and commands, command bus-cycle definitions, and flowcharts that  
illustrate operational routines not documented in this Datasheet.  
Table 2:  
Flash and PSRAM Device Bus Operations  
Mode  
DQ[15:0]  
WAIT7  
Notes  
Synchronous  
Array and Non-  
Array Read  
H
L
L
H
L
X
X
X
H
X
X
X
Flash DOUT  
Active  
1,2,4  
Asynchronous  
Read  
H
H
L
L
L
H
L
X
L
X
X
H
H
X
X
X
X
X
X
Flash DOUT Deasserted 1,2,4  
VPPL or  
VPPH  
Write  
H
Flash DIN  
Deasserted 1,2,3  
Flash  
High-Z  
Flash  
1,2  
Output Disable  
Standby  
Reset  
H
H
L
L
H
X
H
X
X
H
X
X
X
X
X
X
X
X
High-Z  
Flash  
Flash  
1,2  
Any PSRAM mode allowed  
High-Z  
High-Z  
Flash  
High-Z  
Flash  
1,2  
High-Z  
PSRAM  
DOUT  
Read  
X
X
H
H
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
H
H
H
L
L
L
Active  
Active  
1,2,5,7  
Write  
PSRAM DIN  
1,2,5,7  
1,2  
PSRAM  
High-Z  
PSRAM  
High-Z  
Output Disable  
H
X
PSRAM  
High-Z  
PSRAM  
High-Z  
Standby  
Any Flash mode allowed  
L
H
X
X
X
X
X
X
X
1,2  
1,2  
PSRAM  
High-Z  
Low Power  
Mode  
PSRAM  
High-Z  
X
Notes:  
1.  
For flash, do not simultaneously assert F-OE# and F-WE#. For PSRAM, do not simultaneously assert  
R-OE# and R-WE#.  
2.  
3.  
X can be VIL or VIH for flash or xRAM inputs; VPPLK, VPPL,or VPPH for F-VPP.  
Refer to the latest revision of the Intel® Wireless Flash Memory (W18) Datasheet (order number:  
Non-Mux I/O doc #290701 and ADMux I/O doc #313272) for valid DIN during Flash writes.  
Flash CFI query and Status Register accesses, use DQ[7:0] only. All other reads use DQ[15:0].  
4.  
5.  
P-CRE# is low if PSRAM is in standby. P-CRE# is X if PSRAM is in Low-Power mode. See Section 9.0, “Device  
Operations” on page 37 for more details about Standby and Low Power mode.  
WAIT indicates data validity only when in Synchronous mode. Ignore this setting in Asynchronous and Page-mode.  
The Flash and Synchronous PSRAM dies share the WAIT signal.  
6.  
7.  
8.  
During AD-Mux I/O operation, ADV# must remain deasserted during the data phase.  
Datasheet  
10  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Table 3:  
PSRAM Bus Operation  
Operation  
Modes  
Power  
Mode  
P-  
R-  
R-  
R-UB#  
P-  
A19/  
A18  
State  
Read  
CLK  
ADV#  
Addr.  
DQ  
DOUT  
DIN  
Notes  
CS#  
WE#  
OE#  
R-LB# CRE  
Asynchronous  
Active  
Active  
L
L
L
L
L
L
H
L
L
L
L
L
L
V
V
V
V
Asynchronous  
NOR-Flash  
Write  
X
1,2  
Asynchronous  
NOR-Flash  
LL  
HL  
RCR  
BCR  
Set Control  
Register  
Active  
Active  
L
L
L
L
L
L
L
H
L
X
L
H
H
X
LL  
HL  
LH  
RCR  
BCR  
Fetch  
Control  
Register  
Asynchronous  
H
X
X
X
X
DIDR  
Asynchronous  
Synchronous  
NOR-Flash  
No  
Operation  
Standby  
/Active  
L
L
L
L
H
X
X
H
X
X
H
X
X
X
X
X
L
X
X
X
X
X
High-Z  
High-Z  
High-Z  
3
Asynchronous  
Synchronous  
NOR-Flash  
Deselect  
Standby  
H
H
Asynchronous  
Synchronous  
NOR-Flash  
Deep  
Power  
Down  
Deep  
Power  
Down  
Synchronous  
NOR-Flash  
Burst Init  
Read  
Active L->H  
Active L->H  
L
L
L
H
X
X
L
L
L
L
V
X
V
X
X
4
Synchronous  
NOR-Flash  
Burst Read  
H
X
DOUT  
4,5  
Burst Init  
Write  
Synchronous  
Synchronous  
Synchronous  
Active L->H  
Active L->H  
Active L->H  
L
L
L
L
H
L
L
X
L
H
X
H
X
L
L
X
H
V
X
V
X
X
DIN  
X
4
4
4
Burst Write  
LL  
HL  
RCR  
BCR  
Set Control  
Register  
X
LL  
HL  
LH  
RCR  
BCR  
Fetch  
Control  
Register  
Synchronous  
Active L->H  
L
L
H
L
L
H
X
4,6  
DIDR  
Notes:  
1.  
The table reflects behavior if R-UB# and R-LB# are asserted low. If only either of the signals, R-UB# or R-LB# is  
asserted low only the corresponding data byte will be written (UB# enables DQ15-DQ8, LB# enables DQ7-DQ0).  
During a write access invoked by R-WE# set to low the R-OE# signal is ignored.  
Power mode of Standby or Active will depend on the internal operation of device at the time.  
Clock configuration is rising edge.  
2.  
3.  
4.  
5.  
6.  
Output drivers are controlled by the asynchronous R-OE# control signal.  
During the initial command cycle R-OE# is don’t care (X) and subsequent cycles it must be low (L)  
2.3.2  
Flash Configuration Operation  
Refer to the Intel® Wireless Flash Memory (W18) Datasheet (order number: Non-Mux  
I/O doc #290701 and ADMux I/O doc #313272) for configuration operation detailed  
information.  
2.3.3  
Flash Memory Map and Partitioning  
Refer to the Intel® Wireless Flash Memory (W18) Datasheet (order number: Non-Mux  
I/O doc #290701 and ADMux I/O doc #313272) for the memory map and partitioning  
information.  
§
November 2007  
Order Number: 311760-10  
Datasheet  
11  
128-Mbit W18 Family with Synchronous PSRAM  
3.0  
Device Package Information  
Figure 3: Mechanical Specifications for QUAD+ Ballout Package (8x10x1.2 mm)  
A1 Index  
Mark  
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
A
B
C
D
B
C
D
E
F
E
F
D
e
G
H
G
H
J
J
K
K
L
L
M
M
b
E
Top View - Ball  
Down  
Bottom View - Ball Up  
A
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
Inches  
Nom  
Dimens ions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Max Notes  
1.200  
Min  
Max  
0.0472  
A
A1  
A2  
b
D
E
0.200  
0.0079  
0.860  
0.375  
10.000  
8.000  
0.800  
88  
0.0339  
0.0148  
0.3937  
0.3150  
0.0315  
88  
0.325  
9.900  
7.900  
0.425  
10.100  
8.100  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Y
S1  
S2  
0.100  
1.300  
0.700  
0.0039  
0.0512  
0.0276  
1.100  
0.500  
1.200  
0.600  
0.0433  
0.0197  
0.0472  
0.0236  
Note: For mechanical drawings not shown in this document, contact your local Numonyx Sales representative for additional  
details.  
Datasheet  
12  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
4.0  
Ballout and Signal Descriptions  
4.1  
Device Signal Ballout  
Figure 4: QUAD+ Ballout  
Pin 1  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
DU  
A4  
DU  
DU  
DU  
A
B
C
D
E
F
A18  
R-LB#  
A17  
A19  
A23  
VSS  
VSS  
F1-VCC  
S-CS2  
R-WE#  
ADV#  
F-WE#  
DQ5  
F2-VCC  
CLK  
A21  
A22  
A11  
A12  
A5  
A3  
A24  
F-VPP  
F-WP#  
F-RST#  
DQ10  
DQ3  
P1-CS#  
A20  
A9  
A13  
A2  
A7  
A25  
A10  
A15  
A1  
A6  
R-UB#  
DQ2  
A8  
A14  
A16  
A0  
DQ8  
DQ13  
DQ14  
DQ6  
WAIT  
DQ7  
DQ15  
VCCQ  
VSS  
F2-CE#  
F2-OE#  
VCCQ  
G
H
J
G
H
J
R-OE#  
S-CS1#  
F1-CE#  
VSS  
DQ0  
DQ1  
DQ12  
DQ4  
F1-OE#  
P2-CS#  
VSS  
DQ9  
DQ11  
S-VCC  
F1-VCC  
P-Mode# /  
P-CRE  
K
L
F3-CE#  
VCCQ  
P-VCC  
VSS  
F2-VCC  
VSS  
K
L
VSS  
M
DU  
DU  
DU  
DU  
M
1
2
3
4
5
6
7
8
Top View - Ball Side Down  
Legend:  
Active Signals  
De-Populated Balls  
Do Not Use  
Note: See Figure 1, “W18 Product Family with Sync PSRAM Block Diagram” on page 8 for electrical  
connections details.  
November 2007  
Order Number: 311760-10  
Datasheet  
13  
128-Mbit W18 Family with Synchronous PSRAM  
4.2  
Signal Descriptions  
Table 4:  
Signal Descriptions (Sheet 1 of 3)  
Note  
s
Symbol  
Type  
Signal Descriptions  
Address and Data Signals, Non-Mux  
ADDRESS: Global device signals.  
Shared address inputs for all memory die during Read and Write operations.  
128-Mbit: AMAX = A22  
64-Mbit: AMAX = A21  
32-Mbit: AMAX = A20  
16-Mbit: AMAX = A19  
A0 is the lowest-order word address.  
Unused address inputs should be treated as RFU.  
A[MAX:0]  
DQ[15:0]  
Input  
1
Note: During AD-Mux I/O operation, W18 A[MAX:16] can be treated as a NC pins, but CL will  
exist on the pins.  
DATA INPUT/OUTPUTS: Global device signals.  
Inputs data and commands during Write cycles, outputs data during Read cycles. Data signals are  
High-Z when the device is deselected or its output is disabled.  
Input /  
Output  
Address and Data Signals, AD-Mux  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: AD-Mux I/O flash signals.  
During AD-Mux Read cycles, DQ[15:0] are used to input the lower address followed by read-data  
output. During AD-Mux Write cycles, DQ[15:0] are used to input the lower address followed by  
commands or data.  
Input /  
Output  
DQ[15:0]  
1
DQ[15:0] are High-Z when the device is deselected or its output is disabled.  
DQ[15:0] is only used with AD-Mux I/O flash device.  
Control Signals  
ADDRESS VALID: Flash- and Synchronous PSRAM-specific signal; low-true input.  
During a synchronous read operation, the address is latched on the rising edge of  
ADV# or on the next valid CLK edge with ADV# low, whichever occurs first.  
In an asynchronous flash read operation, the address is latched on the rising edge of ADV#, or  
continuously flows through while ADV# is low.  
During a synchronous flash Read operation, the address is latched on the rising edge of ADV#  
or the first active CLK edge whichever occurs first. .  
ADV#  
Input  
During synchronous PSRAM read and synchronous write modes, the address is either latched  
on the first rising clock edge after ADV# assertion or on the rising edge of ADV# whichever  
edge occurs first. In asynchronous read and asynchronous write modes, ADV# can be used to  
latch the address, but can be held low for the entire operation as well.  
Note: During AD-Mux I/O operation, ADV# must remain deasserted during the data phase.  
FLASH CHIP ENABLE: Flash-specific signal; low-true input.  
When low, F-CE# selects the associated flash memory die. When high, F-CE# deselects the  
associated flash die. Flash die power is reduced to standby levels, and its data and F-WAIT outputs  
are placed in a High-Z state.  
F[3:1]-  
CE#  
Input  
F1-CE# is dedicated to flash die #1.  
F[3:2]-CE# are dedicated to flash die #3 through #2, respectively, if present. Otherwise, any  
unused flash chip enable should be treated as RFU.  
CLOCK: Flash- and Synchronous PSRAM-specific input signal.  
CLK  
Input  
Input  
CLK synchronizes the flash and/or synchronous PSRAM with the system clock during synchronous  
operations.  
FLASH OUTPUT ENABLE: Flash-specific signal; low-true input.  
When low, F-OE# enables the output drivers of the selected flash die. When high, F-OE# disables  
the output drivers of the selected flash die and places the output drivers in High-Z.  
F[2:1]-  
OE#  
F2-OE# common to all other flash dies, if present. Otherwise it is an RFU, however, it is highly  
recommended to always common F1-OE# and F2-OE# on the PCB.  
Datasheet  
14  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Table 4:  
Signal Descriptions (Sheet 2 of 3)  
Note  
s
Symbol  
Type  
Signal Descriptions  
RAM OUTPUT ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-OE# enables the output drivers of the selected memory die. When high, R-OE#  
disables the output drivers of the selected memory die and places the output drivers in High-Z if  
present. Otherwise it is an RFU.  
R-OE#  
Input  
3
FLASH RESET: Flash-specific signal; low-true input.  
F-RST#  
Input  
When low, F-RST# resets internal operations and inhibits writes. When high, F-RST# enables  
normal operation.  
WAIT: Flash- and Synchronous PSRAM-specific signal; configurable true-level output.  
When asserted, WAIT indicates invalid output data. When deasserted, WAIT indicates valid output  
data.  
WAIT is driven whenever the flash or the synchronous PSRAM is selected and its output enable  
is low.  
WAIT is High-Z whenever flash or the synchronous PSRAM is deselected, or its output enable  
is high.  
WAIT  
Output  
Flash and PSRAM must configure the WAIT RCR bit to be the same true-level state.  
FLASH WRITE ENABLE: Flash-specific signal; low-true input.  
F-WE#  
R-WE#  
F-WP#  
Input  
Input  
Input  
When low, F-WE# enables Write operations for the enabled flash die. Address and data are latched  
on the rising edge of F-WE#.  
RAM WRITE ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-WE# enables Write operations for the selected memory die. Data is latched on the  
rising edge of R-WE# if present. Otherwise it is an RFU.  
3
FLASH WRITE PROTECT: Flash-specific signals; low-true inputs.  
When low, F-WP# enables the Lock-Down mechanism. When high, F-WP# overrides the Lock-  
Down function, enabling locked-down blocks to be unlocked with the Unlock command.  
PSRAM CONTROL REGISTER ENABLE: Synchronous PSRAM-specific signal; high-true input.  
When high, P-CRE enables access to the PSRAM Refresh Control Register (P-RCR) or Bus Control  
Register (P-BCR). When low, P-CRE enables normal Read or Write operations if present. Otherwise  
it is an RFU.  
P-CRE  
Input  
Input  
2
2
PSRAM MODE#: Asynchronous only PSRAM-specific signal; low-true input.  
When low, P-MODE# enables access to the PSRAM configuration register, and to enter or exit Low-  
Power mode. When high, P-MODE# enables normal Read or Write operations if present. Otherwise  
it is an RFU.  
P-MODE#  
PSRAM CHIP SELECT: PSRAM-specific signal; low-true input.  
When low, P-CS# selects the associated PSRAM memory die. When high, P-CS# deselects the  
associated PSRAM die. PSRAM die power is reduced to standby levels, and its data and WAIT  
outputs are placed in a High-Z state.  
P[2:1]-  
CS#  
Input  
3
P1-CS# is dedicated to PSRAM die #1 if present. Otherwise it is an RFU.  
P2-CS# is dedicated to PSRAM die #2 if present. Otherwise it is an RFU.  
SRAM CHIP SELECTS: SRAM-specific signals; S-CS1# low-true input, S-CS2 high-true input.  
S-CS1#  
S-CS2  
When both S-CS1# and S-CS2 are asserted, the SRAM die is selected. When either S-CS1# or  
S-CS2 is deasserted, the SRAM die is deselected.  
Input  
Input  
3
3
S-CS1# and S-CS2 are dedicated to SRAM if present. Otherwise it is an RFU.  
RAM UPPER/LOWER BYTE ENABLES: PSRAM- and SRAM-specific signals; low-true inputs.  
R-UB#  
R-LB#  
When low, R-UB# enables DQ[15:8] and R-LB# enables DQ[7:0] during PSRAM or SRAM Read and  
Write cycles. When high, R-UB# masks DQ[15:8] and R-LB# masks DQ[7:0] if present. Otherwise  
it is an RFU.  
Power Signals  
FLASH PROGRAM/ERASE VOLTAGE: Flash specific.  
F-VPP supplies program or erase power to the flash die.  
F-VPP  
Power  
FLASH CORE POWER SUPPLY: Flash specific.  
F[2:1]-  
VCC  
Power  
F[2:1]-VCC supplies the core power to the flash dies.  
F2-VCC is recommended to be tied to F1-VCC, else it is an RFU.  
November 2007  
Order Number: 311760-10  
Datasheet  
15  
128-Mbit W18 Family with Synchronous PSRAM  
Table 4:  
Signal Descriptions (Sheet 3 of 3)  
Note  
s
Symbol  
Type  
Power  
Power  
Power  
Signal Descriptions  
I/O POWER SUPPLY: Global device I/O power.  
VCCQ supplies the device input/output driver voltage.  
VCCQ  
P-VCC  
S-VCC  
VSS  
PSRAM CORE POWER SUPPLY: PSRAM specific.  
3
P-VCC supplies the core power to the PSRAM die if present. Otherwise it is an RFU.  
SRAM POWER SUPPLY: SRAM specific.  
S-VCC supplies the core power to the SRAM die if present. Otherwise it is an RFU.  
3
DEVICE GROUND: Global ground reference for all signals and power supplies.  
Connect all VSS balls to system ground. Do not float any VSS connections.  
Groun  
d
DO NOT USE:  
DU  
This ball should not be connected to any power supplies, signals, or other balls. This ball can be  
left floating.  
RESERVED for FUTURE USE:  
RFU  
Reserved by Numonyx for future device functionality and enhancement. This ball must be left  
floating.  
Notes:  
1.  
2.  
Only used when AD-Mux I/O flash is present  
P-CRE and P-Mode share the same package ball location. Only one signal function is available, depending on the stacked  
device combination.  
Only available on stacked device combinations with PSRAM, and/or SRAM die. Otherwise, it should be treated as RFU.  
3.  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Device Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the Absolute Maximum Ratings may cause permanent  
damage. These are stress ratings only.  
Table 5:  
Device Absolute Maximum Ratings  
Parameter  
Min  
Max  
Unit  
Notes  
Device Case Temperature Under Bias  
Storage Temperature  
–25  
–55  
+85  
°C  
°C  
+125  
Voltage On Any Signal  
(Except for F-VCC, F-VPP, P-VCC, VCCQ, and S-VCC  
–0.2  
+2.1  
V
1,3  
)
F-VCC Voltage  
–0.2  
–0.2  
–0.2  
+2.45  
+2.45  
+13.1  
+50  
V
V
1,2  
1,3  
1,4  
5
VCCQ, P-VCC, and Optional S-VCC Voltage  
F-VPP Voltage  
V
ISH (Output Short Circuit Current)  
mA  
Notes:  
1.  
2.  
Voltage is referenced to VSS.  
During power transitions, minimum DC voltage may undershoot to –2.0 V for periods < 20 ns; maximum DC voltage  
may overshoot to VCC (operating max) + 2.0 V for periods < 20 ns.  
3.  
4.  
5.  
During power transitions, minimum DC voltage may undershoot to –1.0 V for periods < 20 ns; maximum DC voltage  
may overshoot to VCCQ (operating max) + 1.0 V for periods < 20 ns.  
During power transitions, minimum DC voltage may undershoot to –2.0 V for periods < 20 ns; maximum DC voltage  
may overshoot to VPPH (operating max) + 2.0 V for periods < 20 ns.  
Output shorted for no more than one second. No more than one output shorted at a time.  
Datasheet  
16  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
5.2  
Device Operating Conditions  
Warning:  
Operation beyond the Operating Conditions is not recommended and extended  
exposure may affect device reliability.  
Table 6:  
Device Operating Conditions  
Flash + xRAM  
Test  
Symbol  
Parameter  
Unit  
Condition  
Min  
Max  
TC  
Device Case Operating Temperature  
Flash Supply Voltage  
–25  
+85  
°C  
V
F-VCC  
+1.7  
+1.95  
Flash and PSRAM I/O Voltage  
PSRAM and SRAM Supply Voltage  
VCCQ, P-VCC, S-VCC  
+1.7  
–0.9  
+1.95  
+1.95  
+12.6  
V
V
V
F-VPP (Flash Programming Voltage Supply,  
Logic Level)  
VPPL  
VPPH  
F-VPP (Flash Factory Word Programming  
Voltage Supply)  
+11.4  
VPP = VCC  
100,000  
Cycles  
Cycles  
Block Erase Cycles  
Flash Main Array and EFA Blocks  
VPP = VPPH  
1000  
Note: In typical operation, the F-VPP program voltage is VPPL. F-VPP can be connected to 11.4 V - 12.6 V for a maximum of 80  
cumulative hours or 1000 cycles on the main array blocks.  
6.0  
Device Electrical Specifications  
The DC current and voltage characteristics referenced in this document are for  
individual memory die types within the SCSP device. The total current for each  
parameter is determined by sum of the current for each memory die type specification  
within the SCSP device.  
NOTICE: Individual DC Characteristics of all dies in a SCSP device must be  
considered accordingly, depending on the SCSP device stacked combinations  
and operations.  
6.1  
6.2  
Flash DC Characteristics  
Refer to the Intel® Wireless Flash Memory (W18) Datasheet (order number: Non-Mux  
I/O doc #290701 and ADMux I/O doc #313272) for flash DC characteristics.  
Synchronous PSRAM DC Characteristics  
Synchronous PSRAM DC characteristics are shown in Table 7 and Table 8.  
Table 7:  
PSRAM DC Characteristics (Sheet 1 of 2)  
Test  
Conditions  
Parameter  
Description  
Density  
Min  
Typ  
Max  
Unit Notes  
VCC  
VCCQ  
VIH  
Supply Voltage range  
I/O Supply Voltage range  
Input High Voltage  
1.7  
1.7  
1.8  
1.8  
1.95  
1.95  
V
V
V
1
VCCQ - 0.4  
VCCQ + 0.2  
November 2007  
Order Number: 311760-10  
Datasheet  
17  
128-Mbit W18 Family with Synchronous PSRAM  
Table 7:  
PSRAM DC Characteristics (Sheet 2 of 2)  
VIL  
VOH  
VOL  
IIL  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
Output Leakage Current  
-0.2  
0.4  
V
V
IOH = -0.2 mA  
0.8 x VCCQ  
IOL = 0.2 mA  
0.2 x VCCQ  
V
1
1
μA  
μA  
IOL  
16Mb  
32Mb  
16Mb  
32Mb  
16Mb  
32Mb  
16Mb  
32Mb  
16Mb  
32Mb  
16Mb  
32Mb  
16Mb  
32Mb  
20  
20  
15  
15  
25  
25  
25  
35  
30  
35  
80  
110  
70  
70  
VIN = VCC or  
VSS; IOUT = 0  
ICC1  
ICC1P  
ICC4R  
ICC4W  
ICC5  
Async Random Read/Write @ TRCMin  
Async Page Read  
mA  
mA  
mA  
mA  
mA  
μA  
VIN = VCC or  
VSS; IOUT = 0  
VIN = VCC or  
VSS; IOUT = 0  
Synchronous Burst Read (continuous)  
Synchronous Burst Write (continuous)  
Burst Initial Access  
VIN = VCC or  
VSS; IOUT = 0  
VIN = VCC or  
VSS; IOUT = 0  
V
IN = VCC or  
VSS; P-CS# =  
Deselected  
Standby Current  
ICC2  
(Full Array Refresh)  
V
IN = VCC or  
VSS; P-CS# =  
Deselected  
ICC3  
Deep Power-Down  
μA  
Note: To avoid unnecessary current flow, VCCQ is not allowed to be outside of P-VCC ± 0.2 V except during power-up situation.  
Table 8:  
PSRAM Partial-Array Self-Refresh (Typical) Current  
Typical Standby Current (μA)  
Density  
Active Array  
85 oC  
70 oC  
45 o  
C
15 o  
C
Full  
1/2  
1/4  
1/8  
0
50  
40  
35  
35  
30  
70  
60  
55  
50  
40  
45  
35  
35  
35  
25  
65  
55  
50  
45  
35  
40  
30  
30  
30  
25  
50  
45  
40  
40  
30  
35  
25  
25  
25  
20  
45  
40  
35  
35  
25  
16-Mbit  
32-Mbit  
Full  
1/2  
1/4  
1/8  
0
Note: On-chip temperature sensor is used for temperature-compensated self-refresh, therefore the standby current values at  
70, 45 and 15 °C are for reference only.  
Datasheet  
18  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
6.3  
Device AC Test Conditions  
Figure 5: Device Transient Equivalent Testing Load Circuit  
Z O = 5 0 O hm s  
I/O  
O u tp u t  
C L  
30pf  
=
50  
O hm s  
V C C Q /2  
Notes:  
1.  
2.  
Test configuration component value for worst case speed conditions.  
CL includes jig capacitance.  
6.3.1  
Flash Die Capacitance  
Table 9:  
W18 Individual Die Capacitance  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
Input Capacitance  
(Address, CLK, F-CE#, F-OE#, ADV#, WE#, F-WP#)  
CIN  
6
6
8
8
pF  
pF  
VIN = 0.0 V to 1.8 V  
VOUT = 0.0 V to 1.8 V  
COUT  
Output Capacitance (Data and WAIT)  
Note: Sampled, not 100% tested. TC = 25 °C, f = 1 MHz.  
6.3.2  
Synchronous PSRAM Die Capacitance  
Table 10: Synchronous PSRAM Individual Die Capacitance  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
Input Capacitance  
(Address, CLK, P-CS#, R-OE#, ADV#, WE#, R-UB#, R-LB#)  
CIN  
6.5  
pF  
VIN = 0.0 V  
COUT  
CI/O  
Output Capacitance (WAIT)  
6.5  
6.5  
pF  
pF  
VOUT = 0.0 V  
VOUT = 0.0 V  
Input/Output Capacitance (DQ)  
Note: Sampled, not 100% tested. TC = 25 °C, f = 1 MHz.  
7.0  
Device AC Characteristics  
7.1  
Flash AC Characteristics  
Note:  
Refer to the Numonyx™ Wireless Flash Memory Datasheet for detailed flash die  
information.  
7.2  
PSRAM Asynchronous Read  
Note:  
All PSRAM AC characteristic timing parameters are measured with the default output  
drive strength (half drive strength).  
November 2007  
Order Number: 311760-10  
Datasheet  
19  
128-Mbit W18 Family with Synchronous PSRAM  
Table 11: PSRAM AC Characteristics—Asynchronous Read  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
tRC  
tAA  
tAADV  
tPC  
Read Cycle Time  
70  
20  
5
70  
70  
20  
70  
70  
20  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
Address Access Time  
ADV# Access Time  
1
Page Address Cycle Time  
1
tPAA  
tAVH  
tAVS  
tCVS  
tOH  
Page Address Access Time  
Address Hold from ADV# High  
Address Setup to ADV# High  
CE# Low to ADV# High  
1
1,3  
1,3  
1,3  
1
10  
10  
5
Output Hold from Address Change  
CE# Access Time  
tCO  
6
1
tBA  
UB#, LB# Access Time  
1
tOE  
OE# to Valid Output Data  
CE# Pulse Width Low Time  
CE# Low to Output Low-Z  
CE# High to Output High-Z  
UB#, LB# Low to Output Low-Z  
UB#, LB# High to Output High-Z  
OE# Low to Output Low-Z  
OE# High to Output HIgh-Z  
ADV# Pulse Width Low  
1
tCSL  
tLZ  
1,2  
1
8
tHZ  
0
1
tBLZ  
tBHZ  
tOLZ  
tOHZ  
tVP  
6
8
1
0
1
3
8
1
0
1
10  
10  
10  
0
10  
2
1,3  
1,3  
1
tVPH  
tCPH  
tCRES  
tASKEW  
tASKEWP  
ADV# Pulse Width High  
UB#, LB# and CE# Pulse Width High  
CRE Setup to CE# Low  
1
Address Skew (Non-Page Access)  
Page Mode Access Address Skew [A3:A0]  
1,4  
1,5  
Notes:  
1.  
2.  
3.  
4.  
5.  
Timing parameters are at the default output drive strength (half drive strength).  
tCSL max limit applies during asynchronous reads when page mode is enabled.  
Applies to ADV# controlled Asynchronous Read operations.  
Applies when control signals (ADV#, CS#, UB#/LB#) are active.  
When operating the PSRAM as an ADMux I/O interface, Page-Mode operation is not available.  
Datasheet  
20  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 6: Address Skew for Asynchronous Operations  
tASKEW  
Address  
ADV# (case 1)  
tASKEW  
tASKEW  
tASKEW  
CE# (case 1)  
tASKEW  
ADV# (case 2)  
CE# (case 2)  
Figure 7: PSRAM Asynchronous Single-Word Read  
tRC  
tAA  
A[MAX:0]  
tAADV  
ADV#  
tCO  
tCPH  
tCPH  
CE#  
OE#  
WE#  
tBA  
UB#/LB#  
tOLZ  
tOE  
tBLZ  
tLZ  
tBHZ  
tHZ  
tOHZ  
DQ[15:0]  
Note: WAIT is configured for active-low polarity.  
November 2007  
Order Number: 311760-10  
Datasheet  
21  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 8: Asynchronous Address-controlled Read  
tRC  
A[MAX:0]  
DQ[15:0]  
ADDRESS  
tAA  
tOH  
Previous Data  
Data Valid  
Note: CE# = OE# = UB# =LB# = CRE = Low; WE# = High  
Figure 9: PSRAM Asynchronous Page-Mode Read  
A[MAX:0]  
ADDRESS  
tRC  
tAA  
tPC  
A3-A0  
ADV#  
P-CS#  
ADDRESS  
ADDR  
ADDR  
ADDR  
ADDR  
tVPH  
tAADV  
tOH  
tCO  
tCSL  
tHZ  
tBHZ  
tBLZ  
R-UB#, R-LB#  
R-WE#  
R-OE#  
tOLZ  
tLZ  
tOH  
Data  
tPAA  
Data  
tOHZ  
Data  
Data  
Data  
Data  
tCEW  
WAIT  
deasserted  
Note: When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen (16) addresses, A[15:0], to the  
data pins, Page-Mode operation cannot be used. RCR7 must be set to Zero.  
Datasheet  
22  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 10: PSRAM Asynchronous Control Register Read  
tRC  
tAA  
A[19:18]  
A[MAX:20,17:0]  
tCRES  
CRE  
tAADV  
ADV#  
tCO  
tCPH  
CE#  
OE#  
WE#  
tBA  
tCPH  
UB#/LB#  
tOLZ  
tOE  
tBLZ  
tLZ  
tBHZ  
tHZ  
tOHZ  
DQ[15:0]  
7.3  
PSRAM Asynchronous Write  
The figures and tables below shows the PSRAM AC characteristics. All timing  
parameters are measured with the default output drive strength (half drive strength).  
Table 12: PSRAM AC Characteristics—Asynchronous Write (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
tWC  
tAS  
Write Cycle Time  
70  
0
4
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Setup Time  
tAW  
tWR  
tCSL  
tCW  
tVPH  
tVP  
Address Valid to End of Write  
Write Recovery  
70  
0
CE# Pulse Width Low Time  
CE# to End of Write  
70  
10  
10  
5
ADV# Pulse Width High  
2
2
2
2
2
ADV# Pulse Width Low  
tAVH  
tAVS  
tCVS  
tVS  
Address Hold from ADV# High  
Address Setup to ADV# High  
CE# Low to ADV# High  
10  
10  
70  
70  
70  
46  
10  
ADV# Setup to End of Write  
UB#, LB# Setup to End of Write  
Asynchronous Address to Burst Transition Time  
WE# Pulse Width Low  
tBW  
tCKA  
tWP  
tWPH  
1
WE# Pulse Width High  
November 2007  
Order Number: 311760-10  
Datasheet  
23  
128-Mbit W18 Family with Synchronous PSRAM  
Table 12: PSRAM AC Characteristics—Asynchronous Write (Sheet 2 of 2)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
tCPH  
tWHZ  
tOW  
UB#, LB# and CE# Pulse Width High  
Write Enable Low to Output High-Z  
End of Write to Output Low-Z  
Write Data Setup Time  
10  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
tDW  
23  
0
tDH  
Write Data Hold Time  
tCRES  
tCREH  
tASKEW  
CRE SetupTime to CE# and WE# Low  
CRE Hold Time From WE# High  
Address Skew (Non-Page Access)  
0
4
4
3
0
Notes:  
1.  
2.  
3.  
4.  
WE# Low time must be limited to tCSL Max.  
For ADV# controlled Async Write operation.  
Applies when control signals (ADV#, CE#, UB#, LB#) are Active.  
For ADV# controlled write tAVS and tAVH apply to CRE signal instead of tCRES and tCREH  
.
Figure 11: PSRAM Asynchronous WE# controlled Write  
tWC  
tAW  
tWR  
A[MAX:0]  
tVS  
ADV#  
tCW  
CE#  
tWP  
tAS  
tWPH  
WE#  
tBW  
UB#/LB#  
tWHZ  
tBLZ  
tLZ  
tDH  
tOW  
tDW  
DQ[15:0]  
Datasheet  
24  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 12: PSRAM Asynchronous CE# controlled Write  
tWC  
tAW  
tWR  
A[MAX:0]  
tVS  
ADV#  
tCW  
tAS  
tCPH  
CE#  
tWP  
WE#  
tBW  
UB#/LB#  
tWHZ  
tBLZ  
tLZ  
tDW  
tDH  
DQ[15:0]  
Figure 13: PSRAM Asynchronous UB#/LB# controlled Write  
tWC  
tAW  
tWR  
A[MAX:0]  
tVS  
ADV#  
tCW  
tAS  
CE#  
tWP  
WE#  
tBW  
tCPH  
tDH  
UB#/LB#  
tWHZ  
tBLZ  
tLZ  
tDW  
DQ[15:0]  
November 2007  
Order Number: 311760-10  
Datasheet  
25  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 14: PSRAM Asynchronous ADV# controlled Write  
tAW  
A[MAX:0]  
tAVS  
tVP  
tAVH  
tVPH  
tVS  
ADV#  
CE#  
tCW  
tCPH  
tAS  
tWP  
WE#  
tBW  
UB#/LB#  
tWHZ  
tBLZ  
tLZ  
tDW  
tDH  
DQ[15:0]  
Figure 15: PSRAM Asynchronous Control Register Write  
tWC  
tAW  
tWR  
A[MAX:0]  
tCRES  
CRE  
tVS  
ADV#  
tCW  
tAS  
tCPH  
CE#  
tAS  
tWP  
tCREH  
WE#  
UB#/LB#  
DQ[15:0]  
7.4  
PSRAM Synchronous Read and Write  
The figures and tables below shows the PSRAM AC characteristics. All timing  
parameters are measured with the default output drive strength (half drive strength).  
Datasheet  
26  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Table 13: PSRAM AC Characteristics—Synchronous Read and Write  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
fCLK2  
fCLK6  
tCLK2  
tCLK6  
tCKH  
tCKL  
tT  
CLK Frequency (Variable Latency = 2) Non-Mux and AD Mux  
CLK Frequency (Fixed Latency = 6) Non Mux and AD Mux  
CLK Period (Variable Latency = 2) Non Mux  
CLK Period (Fixed Latency = 6)  
CLK High Time  
18.5  
18.5  
4
66  
66  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK Low Time  
4
CLK Rise/Fall Time  
5
1.8  
47.5  
70  
70  
70  
tABA  
tAA  
tAADV  
tCO  
tAVH  
tSP  
Burst Read First Access Delay (Variable Latency = 2)  
Address Access Time (Fixed Latency)  
ADV# Access Time (Fixed Latency)  
CE# Access Time (Fixed Latency)  
Address Hold from ADV# High (Fixed Latency)  
Input Setup to CLK High (except CE#)  
Input Hold from CLK High  
1
2
3
20  
tHD  
2
tCSS  
tCSL  
tCBPH  
tOL  
CE# Low Setup to CLK High  
4.5  
6
20  
4
3
4
5
CE# Pulse Width Low Time  
CE# Pulse Width High Time Between Operations  
OE# or UB#/LB# Low to Output Low-Z  
CE#, OE#, or UB#/LB# High to Output in High-Z  
OE# Low to Output Delay  
3
tOD  
0
8
tAOE  
tCWT  
tWZ  
1
20  
7.5  
8
CE# Low to WAIT Valid  
CE# High to WAIT High-Z  
2
tWK  
CLK to WAIT Valid  
9
tACLK  
tKOH  
tASKEW  
CLK to Output Delay  
9
Output Hold from CLK  
Address Skew  
10  
5
Notes:  
1.  
2.  
3.  
4.  
In case of refresh collisions with the first access, more WAIT cycles will be added.  
tSP Max values only applies to ADV#.  
The purpose of the Max limit is to prevent the PSRAM from starting Async access cycle.  
To allow for proper refresh operation, the CE# must be high during a clock low to high transition or keep CE# high for min  
15 ns.  
5.  
Address Skew maximum must not be exceeded during synchronous operations to avoid inadvertent asynchronous  
operation  
November 2007  
Order Number: 311760-10  
Datasheet  
27  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 16: Address Skew for Synchronous Operations  
CLK  
Address  
ADV# (Case 1)  
tASKEW  
CE# (Case 1)  
tASKEW  
ADV# (Case 2)  
CE# (Case 2)  
Figure 17: PSRAM Synchronous Read followed by Synchronous Write  
CLK  
tHD  
tHD  
tSP  
tSP  
tAVH  
tSP  
tSP  
tAVH  
A[MAX:0]  
ADV#  
tHD  
tHD  
tCBPH  
tCSS  
tCSS  
tHD  
tHD  
tHD  
CE#  
OE#  
tHD  
tHD  
tHD  
tSP  
tSP  
tSP  
WE#  
tHD  
tSP  
tHD  
UB#/LB#  
tCWT  
tCWT  
tWK  
tWZ  
tWK  
tWZ  
WAIT  
tACLK  
tAOE  
tOL  
tOD  
tHD  
tSP  
tABA  
tKOH  
DQ[15:0]  
Datasheet  
28  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 18: PSRAM Synchronous Write followed by Synchronous Read  
tHD  
tHD  
tSP  
tSP  
tAVH  
tSP  
tSP  
tAVH  
A[MAX:0]  
ADV#  
CE#  
tHD  
tHD  
tCBPH  
tCSS  
tHD  
tCSS  
tHD  
tHD  
tHD  
tSP  
tSP  
OE#  
tHD  
tHD  
tSP  
tSP  
WE#  
tSP  
tHD  
UB#/LB#  
tCWT  
tCWT  
tWK  
tWZ  
tWK  
tWZ  
WAIT  
tACLK  
tOL  
tHD  
tSP  
tAOE  
tOD  
tABA  
tKOH  
DQ[15:0]  
Figure 19: PSRAM Synchronous Read followed by Asynchronous Write  
CLK  
tHD  
tS P  
tS P  
tA V H  
tA W  
A [MA X :0]  
tA V S  
tV P  
tHD  
tA V H  
tV S  
tV P H  
A D V#  
tCB PH  
tCS S  
tHD  
tHD  
CE #  
OE #  
tHD  
tS P  
tS P  
tA S  
W E #  
UB #/LB #  
W A IT  
tHD  
tCW T  
tW K  
tW Z  
tA C LK  
tA OE  
tOL  
tOD  
tA B A  
tK OH  
DQ[15:0]  
November 2007  
Order Number: 311760-10  
Datasheet  
29  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 20: PSRAM Asynchronous Write followed by Synchronous Read  
C LK  
tH D  
tSP  
tAW  
A[M AX:0]  
tAVS  
tVP  
tAVH  
tVPH  
tH D  
tSP  
tVS  
AD V#  
C E#  
tC PH  
tC W  
tC SS  
tH D  
tWP  
tSP  
tAS  
tWPH  
WE#  
OE#  
tSP  
tBW  
tC PH  
U B#/LB#  
D Q [15:0]  
tWH Z  
tBLZ  
tLZ  
tD H  
tD W  
tOL  
Figure 21: PSRAM Synchronous Control Register Read  
C LK  
t HD  
t S P  
t A V H  
A [ 19: 18]  
A [ M A X : 20: 17: 0]  
t S P  
t S P  
t HD  
t H D  
C R E  
t H D  
A D V #  
t C B P H  
t CS S  
t H D  
t H D  
C E #  
O E #  
t H D  
t S P  
t S P  
W
E #  
t H D  
U B # / LB #  
t C W  
T
t W K  
t W Z  
W
A I T  
t A O E  
t O L  
t A B A  
t A C LK  
t O D  
t K O H  
D Q [ 15: 0]  
Datasheet  
30  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 22: PSRAM Synchronous Control Register Write  
C L K  
tH D  
tS P  
tS P  
tS P  
tA V H  
A [M A X :0 ]  
C R E  
tH D  
tH D  
tH D  
tH D  
A D V #  
tC B P H  
tC S S  
tS P  
C E #  
O E #  
tH D  
tH D  
tS P  
W E #  
U B # /L B #  
tC W T  
tW K  
tW Z  
W A IT  
D Q [1 5 :0 ]  
8.0  
Device Bus Interface  
Note:  
Refer to the Numonyx™ Wireless Flash Memory Datasheet for detailed flash die  
information.  
The PSRAM Bus Interface is described in the sections that follow. The PSRAM bus  
interface supports asynchronous and synchronous read and write transfers. By default  
the PSRAM device is reset to the asynchronous SRAM-type mode after power-up. To  
put the device in a different operation mode the Bus Configuration Register must be  
programmed first accordingly.  
8.1  
PSRAM Reads  
The PSRAM bus interface supports asynchronous single-word, asynchronous page-  
mode, and synchronous burst-mode reads. PSRAM Refresh Control Register bit 7  
(RCR7) defines whether page-mode reads are enabled. Page-mode reads are enabled  
when RCR7 is set to a one, and disabled when RCR7 is set to zero.  
8.1.1  
PSRAM Asynchronous Read  
To initiate an asynchronous read operation:  
• CE#, OE#, and UB#/LB# must be asserted.  
• WE# and CRE must be deasserted.  
• ADV# can be toggled to latch the address or held low for the entire read operation.  
• CLK must be held in a static state.  
November 2007  
Order Number: 311760-10  
Datasheet  
31  
128-Mbit W18 Family with Synchronous PSRAM  
Valid data is available on the data bus after the specified access time has elapsed.  
WAIT output is driven, but should be ignored for asynchronous-mode read operations.  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
8.1.2  
PSRAM Asynchronous Page-Mode Read  
Page mode allows toggling of the four lower address bits (A3 to A0) to perform  
subsequent random read accesses (max. 16-words by A3-A0) at much faster speed  
than the 1st read access. Only page mode Read operations are supported by the  
PSRAM. Once page mode is enabled by appropriately setting the BCR, tCSL restrictions  
will apply to asynchronous Read accesses. Therefore CE# will have to be pulled high at  
least every tCSL period during asynchronous Read operations. ADV# has to be held low  
for the entire page operation.  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, Page-Mode operation cannot be used. RCR7  
must be set to Zero.  
8.1.3  
PSRAM Synchronous Burst-Mode Reads  
In the Full Synchronous mode and NOR-Flash mode, PSRAM read operations are  
synchronous. A BURST INIT READ command is used to initiate a synchronous read  
operation and latch the burst start address. To initiate a synchronous read operation:  
• CE#, ADV#, and both UB# and LB# must be asserted;  
• WE# and CRE must be deasserted; and  
• Burst start address is latched on the rising edge of the clock;  
To continue the synchronous read operation:  
• CE#, OE#, and both UB# and LB# must be asserted; and  
• ADV# must be deasserted;  
The first data word is output after the number of clock cycles defined by the  
programmed latency mode and latency count in the BCR. Subsequent data words are  
output at successive clock cycles after the first data word.  
• WAIT output will be driven and should be monitored in Variable Latency mode.  
• WAIT may be ignored in fixed latency mode.  
• Both UB# and LB# must be held static low for the entire read access. The size of  
the burst is also specified in the BCR.  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
8.1.4  
PSRAM Asynchronous Fetch Control Register Read  
In the Asynchronous (SRAM-type) mode the contents of the BCR and RCR can be read  
asynchronously. To initiate an asynchronous Fetch Control Register (FCR):  
• CE#, OE#, CRE, and both UB# and LB# must be asserted;  
• WE# must be deasserted;  
• ADV# can be toggled to latch the address or held low for the entire read operation;  
Datasheet  
32  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
• CLK must be held in a static low state.  
Except for A19 and A18, all other address and data bits are don’t care. A19 and A18  
specify the target register (RCR = 00b, BCR = 10b) The contents of the selected  
register are available on the data bus after the specified access time has elapsed. WAIT  
output will be driven but should be ignored for asynchronous operations.  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
8.2  
PSRAM Writes  
The PSRAM bus interface supports asynchronous single-word and synchronous burst-  
mode writes. BCR15 defines whether asynchronous or synchronous mode is enabled.  
8.2.1  
PSRAM Asynchronous Write  
In the Asynchronous (SRAM-type) mode and NOR-Flash mode, PSRAM write commands  
are asynchronous. To initiate an asynchronous write operation:  
• CE# and WE# must be asserted;  
• UB# and LB# must be asserted appropriately depending on the data byte(s) that  
are being written. UB# enables DQ[15:8] and LB# enables DQ[7:0].  
• CRE must be deasserted;  
• ADV# can be toggled to latch the address or held low for the entire read operation;  
• CLK must be held in a static state.  
The data to be written will be latched on the rising edge of CE#, WE# or UB#/LB#  
whichever occurs first. WAIT output will be driven but should be ignored for  
asynchronous-mode operations.  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
8.2.2  
PSRAM Synchronous Write  
In the Full Synchronous mode, PSRAM write operations are synchronous. A BURST INIT  
WRITE command is used to initiate a synchronous write operation and latch the burst  
start address. To initiate a synchronous write operation:  
• CE#, ADV#, and WE# must be asserted;  
• OE# and CRE must be deasserted; and  
• Burst start address is latched on the rising edge of the clock;  
To continue the synchronous write operation:  
• CE#, and UB#/LB# must be asserted; and  
• ADV# must be deasserted;  
The first data word is input after the number of clock cycles defined by the  
programmed latency mode and latency count in the BCR. Subsequent data words are  
input at successive clock cycles after the first data word. The size of the burst is also  
specified in the BCR. WAIT output will be driven and may be monitored. But since  
November 2007  
Order Number: 311760-10  
Datasheet  
33  
128-Mbit W18 Family with Synchronous PSRAM  
synchronous write is always at fixed latency regardless of the Latency Mode setting,  
WAIT may be ignored. UB# or LB# may be deasserted to mask the associated data  
byte.  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
8.2.3  
PSRAM Asynchronous Set Control Register Write  
In the Asynchronous (SRAM-type) mode and NOR-Flash mode the contents of the BCR  
and RCR can be set asynchronously. To initiate an asynchronous Set Control Register:  
• CE#, WE#, and CRE must be asserted;  
• OE# must be deasserted;  
• ADV# can be toggled to latch the address or held low for the entire read operation;  
• CLK must be held in a static low state.  
The DQ signals are ignored by the PSRAM. Address bits A19 and A18 specify the target  
register (RCR = 00b, BCR = 10b.) The values of the remaining address bits are loaded  
into the selected register. The Set Control Register command should only be issued  
when the PSRAM is in the idle state (deselected).  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
8.2.4  
PSRAM Synchronous Set Control Register Write  
In the full Synchronous mode the contents of the BCR and RCR can be set  
synchronously. To initiate a synchronous Set Control Register:  
• CE#, WE#, ADV#, and CRE must be asserted; and  
• OE# must be deasserted;  
• Address is latched on the rising edge of the clock  
The DQ signals are ignored by the PSRAM and therefore the WAIT signal should be  
ignored. Address bits A19 and A18 specify the target register (RCR = 00b, BCR = 10b.)  
The values of the remaining address bits are loaded into the selected register. The Set  
Control Register command should only be issued when the PSRAM is in the idle state  
(deselected).  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
8.3  
PSRAM No Operation Command  
The No Operation (NOP) command is used to perform a no operation to a selected  
PSRAM (CE# = Low) Operations in progress are not affected. A NOP may be issued in  
Asynchronous, Synchronous, or NOR-Flash mode. To initiate a NOP:  
• CE#, must be asserted;  
• WE#, ADV#, OE#, and CRE must be deasserted; and  
• CLK must be held in a static low state while in Asynchronous mode. CLK may toggle  
during a NOP in Synchronous mode.  
Datasheet  
34  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
• In Synchronous mode, ADV# deasserted hold time (tHD) must be observed.  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
8.4  
PSRAM Deselect  
The Deselect function prevents new commands from being executed by the PSRAM. A  
deselected PSRAM places its I/O signals in a high impedance state. To place the device  
in a deselected state:  
• CE# must be deasserted.  
• CLK must be held in a static low state while in Asynchronous mode. CLK may toggle  
during a NOP in Synchronous mode.  
8.5  
8.6  
PSRAM Deep Power Down  
Deep Power Down (DPD) stops all refresh-related activities and the current  
consumption of the device drops to a very low level. The contents of the Memory are  
not preserved. After setting RCR4 = 1b, to place the device in the DPD state  
• CE# must be deasserted.  
• CLK must be held in a static low state to achieve minimum current consumption  
levels.  
PSRAM WAIT Signal  
The WAIT signal is used in synchronous mode to indicate to the host system periods of  
invalid data. Periods of invalid data are caused by:  
1. First access delays, or  
2. End of Row condition for continuous or wrap-off burst settings.  
For fixed length bursts with wrap on, WAIT remains deasserted when the End of Row is  
reached and the burst will wrap around and continue without any delay. Therefore for  
fixed length bursts with wrap on, WAIT is only asserted during First access delays.  
For continuous or wrap-off burst length configuration, End of Row condition, WAIT will  
transition from being de-asserted to being asserted within the time window defined by  
tKOH and tWK. Depending on the implementation for a burst write, WAIT may be  
asserted at the same time as the delay (condition A of Figure 23) or one clock cycle  
later (condition B of Figure 23.) This inconsistency does not occur during burst read.  
November 2007  
Order Number: 311760-10  
Datasheet  
35  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 23: PSRAM WAIT Behavior during Burst Write End-of-Row with Wrap Off  
CLK  
CE#  
tCSS  
tHD  
tWK  
tWZ  
tWK  
A
WAIT  
B
DQ[15:0]  
End of Row  
Figure 24: PSRAM WAIT Behavior during Burst Read End-of-Row with Wrap Off  
CLK  
tCSS  
tHD  
CE#  
tWK  
tWZ  
tOD  
WAIT  
End of Row  
DQ[15:0]  
During variable latency burst write operations and fixed latency burst write and read  
operations the initial latency is fixed so the system is not required to monitor the WAIT  
signal although the WAIT signal is fully functional and may be monitored by the  
system. The system should terminate or interrupt the burst access to avoid row  
boundary crossings in both fixed and variable latency mode.  
To match with the Flash interfaces of different microprocessor types the polarity and  
the timing of the WAIT signal can be configured. The polarity can be programmed to be  
either active low or active high. The timing of the WAIT signal can be adjusted as well.  
Depending on the BCR setting the WAIT signal will be either asserted at the same time  
the data becomes invalid or it will be set active one clock period in advance.  
In asynchronous mode including page mode, the WAIT signal is not used but stays  
asserted as BCR bit 10 is specified. In this case, the system should ignore the WAIT  
signal. When the PSRAM is deselected or in deep power down, the WAIT output will be  
in a high impedance state.  
Datasheet  
36  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
9.0  
Device Operations  
Note:  
Refer to the Numonyx™ Wireless Flash Memory Datasheet for detailed flash die  
information.  
PSRAM device operations are described in the sections that follow.  
Device Power-Up/Down  
9.1  
9.1.1  
Flash Power and Reset Specifications  
Refer to the Intel® Wireless Flash Memory (W18) Datasheet (order number: Non-Mux  
I/O doc #290701 and ADMux I/O doc #313272) for detailed information.  
9.1.2  
PSRAM Power-Up Sequence and Initialization  
The power-on and initialization sequence ensures that the device is properly  
preconditioned to operate as expected. Like conventional DRAMs, the PSRAM must be  
powered up and initialized in a predefined manner. VCC and VCCQ must be applied at  
the same time to the specified voltage while the input signals are held in a deselected  
state (CS# = High).  
After power on, an initial pause of 150 µs is required prior to the control register access  
or normal operation. Failure to follow these steps may lead to unpredictable behavior.  
The default operation mode after power up is the asynchronous (SRAM) mode.  
Figure 25: PSRAM Timing Waveform for Power-Up Sequence  
P-Vcc MIN  
P-VCC/  
VCCQ  
μs  
tPU >= 150  
P-CS#  
Device Initialization  
Device ready for normal operation  
§
9.2  
PSRAM Operating Modes  
The PSRAM can be used in three different operating modes:  
• SRAM (full asynchronous) mode: In this mode the PSRAM applies the standard  
asynchronous SRAM protocol to perform read and write accesses. In additions,  
reads may be performed in page mode if the page mode is properly enabled by  
programming the RCR. In this mode the clock must always remain static low.  
• Fully Synchronous mode: In this mode, both read and write accesses are  
performed synchronously with respect to the clock. Synchronous operations are  
defined by the states of the control signals CE#, ADV#, OE#, WE# and UB#, LB#  
at the positive (default) edge of the clock.  
• NOR-Flash mode: In this mode, reads are performed synchronously with respect to  
the clock and writes are performed asynchronously. The asynchronous write  
operation requires that the clock remain static low during the entire write.  
Synchronous read operations are defined by the states of the control signals CE#,  
ADV#, OE#, WE# and UB#, LB# at the positive (default) edge of the clock.  
November 2007  
Order Number: 311760-10  
Datasheet  
37  
128-Mbit W18 Family with Synchronous PSRAM  
9.3  
PSRAM Control Registers  
The PSRAM includes two control registers that define the PSRAM device operation. The  
Bus Control Register (BCR) defines how the PSRAM interacts with the system memory  
busy, and the Refresh Control Register (RCR) defines low-power refresh modes. Both  
these registers are loaded with default values on power-up and can be updated at any  
time using hardware or software access method.  
9.3.1  
PSRAM Bus Control Register  
The Bus Control Register (BCR) specifies the interface configurations. The Bus Control  
Register is programmed via the Set Control Register command (with CRE = 1 and  
A[19:18] = 10b) and retains the stored information until it is reprogrammed or the  
device loses power.  
Reserved bit fields of the BCR should be ignored during a Fetch Control Register  
command as they may have undefined values even when set to 0b with a Set Control  
Register command. The BCR contents can only be set or changed when the PSRAM is in  
idle state.  
Table 14: PSRAM Bus Control Register Map  
DQ  
[15:0]  
DQ1 DQ1 DQ1 DQ1 DQ1 DQ1 DQ DQ DQ DQ DQ DQ DQ DQ DQ DQ  
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
A
A22  
-
A20  
A17  
-
A16  
A1 A1  
[MAX:0  
]
A15  
A14 A13  
A12  
A11  
A10 A9  
A8  
A7  
A6  
A5  
A4  
A3 A2  
A1  
A0  
9
8
22-  
20  
17-  
16  
BCR Bit  
19 18  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Table 15: Bus Control Register Description  
BCR Bit  
NAME  
Description  
22:20  
19:18  
17:16  
Reserved  
Reserved bits should be set to ‘0’ during set control register commands  
10 = Select BCR  
Register Select  
Reserved  
Reserved bits should be set to ‘0’ during set control register commands  
0 = Synchronous Burst Mode  
1 = Asynchronous Mode (Default)  
15  
14  
Operating Mode  
Initial Latency  
0 = Variable (Default)  
1 = Fixed  
Datasheet  
38  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Table 15: Bus Control Register Description  
BCR Bit  
NAME  
Description  
000 = Code 0 - Reserved  
001 = Code 1 - Reserved  
010 = Code 2  
011 = Code 3 (Default)  
100 = Code 4  
13:11  
Latency Counter  
101 = Code 5  
110 = Code 6  
111 = Code 7 - Reserved  
0 = Active Low  
1 = Active High (Default)  
10  
9
WAIT Polarity  
Reserved  
Reserved bits should be set to ‘0’ during set control register commands  
0 = WAIT asserted during delay  
8
WAIT Configuration  
Reserved  
1 = WAIT asserted one data cycle before delay (Default)  
7:6  
Reserved bits should be set to ‘0’ during set control register commands  
00 = Full  
01 = 1/2 (Default)  
10 = 1/4  
5:4  
3
Drive Strength  
Burst Wrap  
11 = Reserved  
0 = Burst wraps within the burst length  
1 = Burst does not wrap (Default)  
000 = Reserved  
001 = 4 words  
010 = 8 words  
011 = 16 words  
100 = 32 words  
2:0  
Burst Length  
101 = Reserved  
110 = Reserved  
111 = Continuous Burst (Default)  
9.3.1.1  
PSRAM BCR Operating Mode  
The PSRAM supports three different interface access protocols:  
• SRAM-type protocol with asynchronous read and write accesses  
• NOR-Flash-type protocol with synchronous read and asynchronous write accesses  
• FULL SYNCHRONOUS mode with synchronous read and synchronous write accesses  
Operating the PSRAM in synchronous mode maximizes bandwidth. The NOR-Flash type  
mode is the recommended mode for legacy systems which are not able to run the  
synchronous write protocol. The Operating Mode bit BCR15 defines whether the device  
is operating in synchronous (fully or partially) mode or asynchronous mode.  
When BCR15 is set low, the mode of write operation, NOR-flash or Full synchronous, is  
adaptively detected by detecting a rising clock edge during ADV# valid. If a rising clock  
edge occurs within ADV# valid, Full synchronous write is detected. If there is no rising  
clock edge then NOR-Flash write is detected and CE# must go high when transitioning  
from asynchronous to synchronous operation or when transitioning from synchronous  
to asynchronous operation..  
When BCR15 is set high, the SRAM-type mode of operation is selected.  
November 2007  
Order Number: 311760-10  
Datasheet  
39  
128-Mbit W18 Family with Synchronous PSRAM  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, ADV# must be de-asserted during any data  
phase cycle.  
9.3.1.2  
PSRAM Initial Latency BCR Bit  
The PSRAM latency is related to the number of clock cycles from the burst-init  
command to be either 1st valid data output (read burst) or 1st valid data input (burst  
write.)  
• In Fixed Latency mode, the number of clock cycles from bust-init command to valid  
data is always fixed as defined by the Latency Counter setting in the BCR.  
• In Variable Latency mode, the number of clock cycles from bust-init command to  
valid data output (read burst) is variable depending on internal device operation.  
The minimum latency in Variable Latency mode is defined by the Latency Counter  
setting in the BCR. Additional WAIT cycles may be added in Variable Latency mode if  
the burst-init Read command collides with an on-going internal refresh. Additional  
WAIT cycles are not added for burst-init Write commands in Variable Latency mode.  
9.3.1.3  
PSRAM Latency Counter BCR Bit  
The latency counter defines the number of clock cycles that pass before the first output  
data is valid (read burst) or before the first input data is valid (read burst.) Each  
Latency Code setting has an associate maximum PSRAM clock frequency. In the case of  
Variable Latency the first access delay might be extended by additional wait cycles in  
case the burst read access collides with an ongoing self-refresh operation. The allowed  
values of the Latency Counter also depend on the Initial Latency setting in BCR.  
Table 16: Optional PSRAM BCR Latency Counter Settings in Variable Latency  
Latency  
PSRAM  
Counter  
010  
011  
Code 2; Max 66 MHz  
Code 3; Max 80 MHz  
Reserved  
Others  
Table 17: Optional PSRAM BCR Latency Counter Settings in Fixed Latency  
Latency  
PSRAM  
Counter  
010  
011  
Code 2; Max 33 MHz  
Code 3; Max 52 MHz  
Code 4; Max 66 MHz  
Code 5; Max 75 Mhz  
Code 6; Max 104 MHz  
Reserved  
100  
101  
110  
Others  
Datasheet  
40  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 26: Example of the Latency of First Valid Data in Synchronous Mode  
9.3.1.4  
PSRAM WAIT Polarity BCR Bit  
The WAIT polarity control bit allows the user to define the polarity of the WAIT output  
signal. The WAIT output line is used during a variable latency synchronous read burst  
to signal when the output data is invalid. Active low WAIT polarity means that when  
WAIT is asserted low, output data is invalid. Similarly active high WAIT polarity means  
that when WAIT is asserted high, output data is invalid.  
9.3.1.5  
9.3.1.6  
PSRAM WAIT Configuration BCR Bit  
The WAIT signal configuration control bit specifies whether the WAIT signal is asserted  
at the time of the delay or whether it is asserted one clock cycle in advance of the  
delay.  
PSRAM Drive Strength BCR Bit  
For adaptation to different system characteristics the output impedance can be  
configured. Full drive strength is targeted for 25-30 Ohm systems, half drive strength is  
targeted for 50 Ohm systems, and quarter drive strength is targeted for 100 Ohm  
systems.  
9.3.1.7  
PSRAM Burst Wrap BCR Bit  
The burst wrap control bit defines whether there is a wrap around within a burst access  
or not. In case of fixed 8-word burst length, this means that after word #7, word #0 is  
going to be output in wrap mode.  
In case of continuous burst mode the internal address counter will increment  
continuously until terminated by the system. For continuous burst mode or non-wrap  
mode, the burst access must be terminated prior to a row boundary crossing.  
The burst wrap setting is used for both Write and Read operations.  
9.3.1.8  
PSRAM Burst Length BCR Bit  
The burst length setting defines the Wrap boundary whenever Burst Wrap is enabled by  
setting BCR3 = 0b. When Burst Wrap is disabled by setting BCR3 = 1b, all burst behave  
as Continuous Bursts regardless of the Burst Length setting. Furthermore all fixed  
length bursts (4-, 8-, 16-, and 32-word bursts) will continue until terminated by  
bringing CE# high or interrupted by initiating a new burst access. Continuous Burst and  
November 2007  
Order Number: 311760-10  
Datasheet  
41  
128-Mbit W18 Family with Synchronous PSRAM  
Fixed Length Burst with Wrap Off will increment the address until a row boundary  
crossing is reached. Fixed Length Bursts will continue to wrap around and cycle through  
their limited address space until terminated or interrupted. The burst length setting is  
used for both Write and Read operations.  
Table 18: PSRAM Burst Length Sequences  
Burst Address Sequence (decimal)  
Wrap Off Wrap On  
Starting Address  
[A4:A0]  
Burst Length  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-3-0-1-2-3-...  
1-2-3-0-1-2-3-1-...  
...  
4
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-28-29-30-31-28-29-...  
31-28-29-30-31-28-29-30-...  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-3-4-5-6-7-0-1-2-3-...  
1-2-3-4-5-6-7-0-1-2-3-4-...  
...  
8
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-24-25-26-27-28-29-30-...  
31-24-25-26-27-28-29-30-31...  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-...-13-14-15-0-1-2-...  
1-2-3-...-14-15-0-1-2-3-...  
...  
16  
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-16-17-...-29-30-31-16-17-...  
31-16-17-...-29-30-31-16-17-...  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-...-29-30-31-0-1-2-...  
1-2-3-...-29-30-31-0-1-2-...  
...  
32  
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-0-...-29-30-31-0-1-...  
31-0-1-...-29-30-31-0-1-...  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
Continuous  
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
Note: EOR = End of Row  
9.3.2  
PSRAM Refresh Control Register  
The Refresh Control Register (RCR) allows for additional stand-by power savings by  
making use of the Partial-Array Self Refresh (PASR) and Deep Power Down (DPD)  
features. The RCR is programmed via the Control Register Set command (with CRE = 1  
and A[18:19] = 00b) and retains the stored information until it is reprogrammed or the  
device loses power.  
Reserved bit fields of the RCR should be ignored during a Fetch Control Register  
command as they may have undefined values even when set to 0b with a Set Control  
Register command. The RCR contents can only be set or changed when the PSRAM is in  
idle state.  
Datasheet  
42  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Table 19: PSRAM Refresh Control Register Map  
Register  
Select  
Page  
Mode  
Deep Power  
Down (DPD)  
Reserved  
Reserved  
Reserved  
Reserved  
PASR  
DQ[15:0]  
DQ16-DQ8  
A17 - A8  
17 - 8  
DQ7  
A7  
7
DQ6  
A6  
6
DQ5  
A5  
5
DQ4  
A4  
4
DQ3  
A3  
3
DQ2  
A2  
2
DQ1  
A1  
1
DQ0  
A0  
0
A[MAX:0  
]
A22 - A20  
22 - 20  
A19  
19  
A18  
18  
RCR Bit  
Table 20: PSRAM Refresh Control Register Description  
RCR Bit  
NAME  
Description  
Reserved bits should be set to ‘0’ during set control register  
commands  
22:20  
19:18  
17:8  
Reserved  
Register Select  
Reserved  
00 = Select RCR  
Reserved bits should be set to ‘0’ during set control register  
commands  
0 = Page Mode disabled (Default)  
1 = Page Mode enabled  
7
6:5  
4
Page Mode  
Reserved  
Reserved bits should be set to ‘0’ during set control register  
commands  
0 = DPD enabled  
1 = DPD disabled (Default)  
Deep Power Down (DPD)  
Reserved  
Reserved bits should be set to ‘0’ during set control register  
commands  
3
000 = Full array refreshed (Default)  
001 = Bottom 1/2 of array refreshed  
010 = Bottom 1/4 of array refreshed  
011 = Bottom 1/8 of array refreshed  
100 = None of array refreshed  
2:0  
Partial Array Self Refresh  
101 = Top1/2 of array refreshed  
110 = Top1/4 of array refreshed  
111 = Top1/8 of array refreshed  
9.3.2.1  
PSRAM Page Mode RCR Bit  
In asynchronous (SRAM) mode, the user has the option to enable page mode. Page  
mode applies only to asynchronous read operations and has no impact on  
asynchronous write operations. In synchronous and NOR-Flash modes, the page mode  
setting has no impact on PSRAM operation. The maximum page length is 16 words, so  
A[3:0] is regarded as the page address.  
Warning:  
When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen  
(16) addresses, A[15:0], to the data pins, Page-Mode operation cannot be used. RCR7  
must be set to Zero.  
9.3.2.2  
PSRAM Deep-Power Down RCR Bit  
To put the device in deep power down mode the DPD control bit must be set low  
(RCR4 =0.) All internal voltage generators inside the PSRAM are switched off and the  
internal self-refresh is stopped. This means that all stored memory information will be  
lost by entering DPD. Only the register values of BCR, and RCR remain valid during  
DPD.  
November 2007  
Order Number: 311760-10  
Datasheet  
43  
128-Mbit W18 Family with Synchronous PSRAM  
Deep Power Down Entry: To enter deep power down, RCR4 is set low, CE# is then  
pulled high and is maintained high for the entire time duration that Deep Power Down  
mode is desired. To insure proper operation, once CE# is pulled high, it should be  
maintained high for minimum of 150 µs before beginning the Deep Power Down Exit  
sequence.  
Deep Power Down Exit: To exit the deep power down mode the CE# must go low for  
minimum 10 µs, followed by a guard time of at least 150 µs where CE# must be  
maintained high. Once deep power down is exited, the DPD control bit RCR4 is  
automatically reset to 1. All other Control Register contents are unchanged.  
Figure 27: Deep Power Down Exit Timing  
9.3.2.3  
PSRAM Partial-Array Self-Refresh RCR Bit  
By applying PASR the user can dynamically customize the memory capacity to the  
system’s actual need in normal operation mode and standby mode. RCR[2:0] specifies  
the active memory array and its location (starting from bottom or top). The memory  
parts not used are powered down immediately after the mode register has been  
programmed. Advice for the proper register setting including the address ranges is  
given in the figure below. PASR is effective in normal operation and standby mode as  
soon as it has been configured by register programming.  
Table 21: PASR Address Pattern for PSRAM  
Device  
A2  
A1  
A0  
Density (Mb)  
Active Section  
Address  
32 Mbit  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
32  
16  
8
Full Die  
000000h – 1FFFFFh  
000000h – 0FFFFFh  
000000h – 07FFFFh  
000000h – 03FFFFh  
0
1/2 of die  
1/4 of die  
1/8 of die  
None  
4
0
16  
8
1/2 of die  
1/4 of die  
1/8 of die  
100000h – 1FFFFFh  
180000h – 1FFFFFh  
1C0000h – 1FFFFFh  
4
Datasheet  
44  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Table 21: PASR Address Pattern for PSRAM  
Device  
A2  
A1  
A0  
Density (Mb)  
Active Section  
Address  
00000h – FFFFFh  
00000h – 7FFFFh  
00000h – 3FFFFh  
00000h – 1FFFFh  
0
16 Mbit  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16  
8
Full Die  
1/2 of die  
1/4 of die  
1/8 of die  
None  
4
2
0
8
1/2 of die  
1/4 of die  
1/8 of die  
80000h – FFFFFh  
C0000h – FFFFFh  
E0000h – FFFFFh  
4
2
9.4  
PSRAM Access to Control Register  
The PSRAM control registers (BCR and RCR) can be updated at any time to select  
desired operating modes.  
The control registers can be accessed by the hardware access method using the CRE  
pin or software access method consisting of a series of reads and writes.  
The two methods are described in the sections below.  
9.4.1  
PSRAM Hardware Control Register Access  
Hardware write or read access to the PSRAM registers occurs by applying the SCR and  
FCR commands with the CRE signal asserted high. During the SCR and FCR commands,  
A[19:18] designates target register. A[19:18] = 00b accesses the Refresh Control  
Register (RCR), A[19:18] = 10b accesses the Bus Control Register (BCR). The SCR and  
FCR commands can be applied in either synchronous or asynchronous mode.  
After applying the SCR command in asynchronous mode, CE# must be pulled high for  
minimum of tCPH prior to initiating any subsequent command. After applying the SCR  
command in synchronous mode, CE# must be pulled high for minimum of tCPBH prior  
to initiating a subsequent synchronous command. Additionally, when applying the  
synchronous SCR command CE# must remain low to complete a burst of one write  
even though the DQ values are ignored by the PSRAM. To insure predictable device  
behavior, an SCR command should not be terminated or interrupted prematurely and  
ADV# should not go low more than one time prior to CE# being pulled high.  
9.4.2  
PSRAM Software Register Access  
Software access of the registers uses a sequence of asynchronous read and  
asynchronous write operations. First 2 asynchronous reads to the maximum address  
are performed followed by an asynchronous write to the maximum address. The data  
values during this asynchronous write select the appropriate register. During the fourth  
operation DQ[15:0] transfer data in to or out of the bits [15:0] of the registers.  
During the software access sequence, it is necessary to:  
Toggle CE# between every read or write command (so the Device can distinguish 4  
separate cycles).  
• Maintain the address input until it is latched by ADV# or until CE# goes high. After  
setting the control registers using the software access method, CE# must be pulled  
high for minimum of tCPH prior to initiating any subsequent command.  
November 2007  
Order Number: 311760-10  
Datasheet  
45  
128-Mbit W18 Family with Synchronous PSRAM  
To insure predictable device behavior, the fourth access cycle of the software access  
should not be terminated or interrupted prematurely and ADV# should not go low  
more than one time during each access where CE# is low  
Figure 28: PSRAM Loading Configurations Registers Using Software Access  
A[MAX:0]  
MAX  
MAX  
MAX  
MAX  
CE#  
OE#  
WE#  
UB#/LB#  
DQ[15:0]  
XXXXh  
XXXXh  
Input  
RCR: 0000h  
BCR: 0001h  
Figure 29: PSRAM Reading Registers Using Software Access  
A[MAX:0]  
MAX  
MAX  
MAX  
MAX  
CE#  
OE#  
WE#  
UB#/LB#  
DQ[15:0]  
XXXXh  
XXXXh  
Output  
RCR: 0000h  
BCR: 0001h  
DIDR: 0002h  
9.4.3  
Cautionary Note About Software Register Access  
To insure inadvertent access to the PSRAM registers during asynchronous operation,  
the following two command sequences must be avoided when accessing the main  
memory array. On the 3rd cycle of these command sequences, a write operation to the  
main memory may be blocked and the software register access mode is accessible. To  
prevent this, the two command sequences must be avoided except to access the  
registers through the software method.  
Datasheet  
46  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Table 22: Cautionary Command Sequences  
Cautionary Command Sequence #1  
Address  
Max  
Async Read  
Max  
Max  
Command  
Async Read  
Async Write  
Cautionary Command Sequence #2  
Address  
Max  
Max  
Max  
Async Write  
(WE# controlled)  
Async Read  
Async Write  
Command  
9.5  
PSRAM Self-Refresh Operation  
Unlike DRAMs, The PSRAM relieves the host system from issuing refresh commands.  
Self-refresh operations are autonomously scheduled and performed by the PSRAM  
device. In synchronous mode of operations (variable latency Read), the additional  
WAIT cycles are used to indicate when the data output is delayed in case a burst  
initiated access collides with an ongoing refresh cycle.  
9.5.1  
PSRAM Self-Refresh Operations at Low Frequency  
At low frequencies (< 100 KHz), the PSRAM can support only asynchronous read (non-  
page and non-burst modes) operations. All other operations (asynchronous writes,  
page-mode reads, and synchronous burst-mode accesses) are subject to refresh  
restrictions.  
9.6  
PSRAM Burst Suspend, Interrupt, or Termination  
PSRAM Burst Suspend  
9.6.1  
While in synchronous burst operation, the bus interface may need to be assigned to  
other memory transaction sharing the same bus. Burst suspend is used to fulfill this  
purpose. Keeping CE# low (WAIT stays active although the DQ are tri-stated), burst  
suspend is initiated by halting CLK. CLK can stay at either high or low state. Burst  
suspend may also by initiated while WAIT is asserted during the initial latency period or  
at the end of a row.  
As specified, duration of keeping CE# low can not exceed tCSL maximum so that  
internal refresh operation is able to run properly. In the event that tCSL maximum may  
be exceeded, termination of burst by bringing CE# high is strongly recommended  
instead of using burst suspend mode.  
November 2007  
Order Number: 311760-10  
Datasheet  
47  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 30: Example of PSRAM Burst Suspend with Read Burst with Latency Code 2  
CLK  
A[MAX:0]  
ADV#  
tCSL  
tCSS  
CE#  
OE#  
WE#  
UB#/LB#  
tCWT  
tWK  
tWZ  
WAIT  
tACLK  
tAOE  
tOL  
tOD  
tKOH  
tAOE  
tOL  
tABA  
tKOH  
D2  
tOD  
D0  
D1  
D3  
DQ[15:0]  
Note: WAIT is configured as Active Low and asserted during delay.  
9.6.2  
PSRAM Burst Interrupt  
In burst interrupt an on-going burst is ended and new burst command issued while  
keeping CE# low (subject to tCSL restrictions.) To insure proper device operation, a  
burst interrupt is prohibited until the previous burst-init command completes its first  
valid data transaction. If a burst read is interrupted by a new burst command, the DQ  
are put into a high-Z state (within tWHZ time period.) If a burst write is interrupted by  
a new burst command, the write data is automatically masked regardless of UB#/LB#  
setting. Also note, that prior to initiating a burst interrupt by taking ADV# low, the  
ADV# high hold time of tHD must be met with respect to the previous clock cycle  
Datasheet  
48  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 31: Example of PSRAM Burst Interrupt  
Earliest allowed  
burst interrupt  
CLK  
Burst Init  
Burst Init  
Control  
No-OP No-OP No-OP No-OP  
tHD  
ADV#  
DQ  
tWHZ  
Code 3  
Read becomes high-Z  
Write data is masked  
9.6.3  
9.7  
PSRAM Burst Termination  
A burst access is terminated by bringing CE# high and maintaining high for minimum of  
tCBPH.  
In burst mode a refresh opportunity must be provided every tCSL period by  
maintaining CE# high for minimum of 15ns or maintaining CE# high during a clock low  
to high transition.  
PSRAM Row Boundary Crossing  
Row boundary crossings are not allowed in burst mode (regardless of using variable or  
fixed latency mode.) An on-going burst must be terminated by the system prior to a  
row boundary crossing. A row boundary crossing would never occur if the PSRAM is  
operating in fixed burst length and wrap mode. Therefore the only time the system  
should be concerned with row boundary crossing is if the PSRAM is operating with “no  
wrap” (BCR3 = 0b) or “continuous burst length” (BCR[2:0] = 111b) settings.  
In terminating bursts prior to row boundary crossing, the system may read the row size  
(128 or 256 words) to determine at which addresses the row boundary crossing occurs.  
If the system cannot do this, then it should be assumed that the row size is 128 words.  
In the case of 128-word row size the boundary between adjacent rows occurs at every  
address ending in 7Fh (111 1111 b.) In the case of 256-word row size the boundary  
between adjacent rows occurs at every address ending in FFh (1111 1111 b.)  
At a Row boundary crossing, a burst interrupt or termination must occur no later than  
2-clock cycle past the transaction representing the last word of a row.  
November 2007  
Order Number: 311760-10  
Datasheet  
49  
128-Mbit W18 Family with Synchronous PSRAM  
Figure 32: Terminating or Interrupting Burst Prior to Row Boundary Crossing  
Latest allowed  
burst terminate  
Latest allowed  
burst interrupt  
CLK  
CE#  
Low  
High  
ADV#  
DQ  
Last-1  
Last-1  
Last  
Last  
Last Word of Row  
Last Word of Row  
10.0  
Additional Information  
:
Order Number  
Document  
290701  
313272  
Intel® Wireless Flash Memory (W18) Datasheet  
Intel® Wireless Flash Memory (W18) ADMux I/O Datasheet  
Note: Contact your local Numonyx Sales Representative or visit the Numonyx website at http://www.Numonyx.com for current  
information on Numonyx™ Flash memory products, software, and tools.  
Datasheet  
50  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
11.0  
Ordering Information  
To order samples, obtain datasheets or inquire about any stack combination, please  
contact your local Numonyx representative.  
Table 23: 38F Type Stacked Components  
PF  
38F  
5070  
M0  
Y
0
B
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash  
Product Family  
Ballout  
Identifier  
Device  
Details  
Char 1 = Flash  
die #1  
V =  
1.8 V Core  
and I/O;  
SeparateChip blocks; Non-  
Enable per  
die  
0 =  
First character  
applies to Flash  
die #1  
No parameter  
B =  
x16D  
Ballout  
Char 2 = Flash  
die #2  
Mux I/O  
interface  
PF =  
SCSP, RoHS  
Char 3 =  
RAM die #1  
0 =  
Second character  
applies to Flash  
die #2  
(See  
Original  
released  
version of  
this  
(See  
(See  
Table 28,  
Table 2  
Stacked  
NOR Flash +  
RAM  
Table 27,  
9,  
RD =  
SCSP,  
Leaded  
“Voltage / “Paramete  
NOR Flash r / Mux  
Char 4 =  
“Ballout  
Decoder  
” on  
(See Table 26,  
“NOR Flash  
Family  
RAM die #2  
product  
CE#  
Configurati  
Configurati on  
page 54  
(See  
on  
Decoder”  
Decoder” on  
page 53 for  
details)  
for  
Table 25,  
“38F / 48F  
Density  
Decoder”  
on  
on  
details)  
page 53 for  
page 53for details)  
details)  
Decoder”  
on page 52  
for details)  
November 2007  
Order Number: 311760-10  
Datasheet  
51  
128-Mbit W18 Family with Synchronous PSRAM  
Table 24: 48F Type Stacked Components  
PC  
48F  
4400  
P0  
V
B
0
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash  
Product Family  
Ballout  
Identifier  
Device  
Details  
PC =  
Easy BGA,  
RoHS  
Char 1 = Flash  
die #1  
V =  
B =  
1.8 V Core  
and 3 V I/O;  
Virtual Chip  
Enable  
First character  
applies to Flash  
dies #1 and #2  
RC =  
Easy BGA,  
Leaded  
Bottom  
Char 2 = Flash  
die #2  
0 =  
Discrete  
Ballout  
parameter;  
Non-Mux I/O  
interface  
0 =  
Char 3 = Flash  
die #3  
Second character  
applies to Flash  
dies #3 and #4  
Original  
released  
version of  
this  
JS =  
(See  
(See  
(See  
TSOP, RoHS  
Table 27,  
“Voltage /  
NOR Flash  
CE#  
Table 2  
Stacked  
NOR Flash  
only  
Table 28,  
“Paramete  
r / Mux  
Configurati  
on  
9,  
Char 4 = Flash  
die #4  
“Ballout  
Decoder  
” on  
TE =  
(See Table 26,  
“NOR Flash  
Family  
product  
TSOP,  
Leaded  
Configurati  
on  
(See  
page 54  
Decoder”  
on  
Table 25,  
“38F / 48F  
Density  
Decoder” on  
page 53 for  
details)  
Decoder”  
on  
for  
details)  
PF =  
page 53 for  
details)  
page 53 for  
details)  
SCSP, RoHS  
Decoder”  
on page 52  
for details)  
RD =  
SCSP,  
Leaded  
Table 25: 38F / 48F Density Decoder  
Code  
Flash Density  
RAM Density  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
No Die  
No Die  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
4-Mbit  
8-Mbit  
16-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
128-Gbit  
256-Gbit  
512-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
Datasheet  
52  
November 2007  
Order Number: 311760-10  
128-Mbit W18 Family with Synchronous PSRAM  
Table 26: NOR Flash Family Decoder  
Code  
Family  
Marketing Name  
C
C3  
Numonyx Advanced+ Boot Block Flash Memory  
Numonyx Embedded Flash Memory  
Numonyx StrataFlash® Wireless Memory  
Numonyx StrataFlash® Cellular Memory  
Numonyx StrataFalsh® Embedded Memory  
Numonyx Wireless Flash Memory  
No Die  
J3v.D  
J
L
L18 / L30  
M18  
M
P
P30 / P33  
W18 / W30  
-
W
0(zero)  
Table 27: Voltage / NOR Flash CE# Configuration Decoder  
I/O Voltage  
Code  
Core Voltage (Volt)  
CE# Configuration  
Seperate Chip Enable per die  
(Volt)  
Z
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
3.0  
Seperate Chip Enable per die  
Seperate Chip Enable per die  
Virtual Chip Enable  
Virtual Chip Enable  
Virtual Chip Enable  
Virtual Address  
Y
X
V
U
T
R
Q
P
Virtual Address  
Virtual Address  
Table 28: Parameter / Mux Configuration Decoder  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
0 = Non Mux  
1 = AD Mux1  
2= AAD Mux  
Any  
NA  
Notation used for stacks that contain no parameter blocks  
3 =Full" AD  
Mux2  
1
2
3
4
2
4
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
-
-
-
Top  
-
-
B = Non Mux  
C = AD Mux  
F = "Full" Ad  
Mux  
X16  
X32  
Bottom  
Top  
Top  
Bottom  
-
-
Top  
-
Bottom  
Bottom  
Top  
Top  
November 2007  
Order Number: 311760-10  
Datasheet  
53  
128-Mbit W18 Family with Synchronous PSRAM  
Table 28: Parameter / Mux Configuration Decoder  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
1
2
3
4
2
4
Top  
-
-
-
-
-
-
Top  
Top  
Top  
Top  
Top  
Bottom  
Top  
T = Non Mux  
U = AD Mux  
X16  
Bottom  
Top  
W = "Full" Ad  
Mux  
Bottom  
Top  
Bottom  
-
-
X32  
Top  
Bottom  
Bottom  
1. Only Flash is Muxed and RAM is non-Muxed  
2. Both Flash and RAM are AD-Muxed  
Table 29: Ballout Decoder  
Code  
Ballout Definition  
0 (Zero)  
SDiscrete ballout (Easay BGA and TSOP)  
B
x16D ballout, 105 ball (x16 NOR + NAND + DRAM Share Bus)  
x16C ballout, 107 ball (x16 NOR + NAND + PSRAM Share Bus)  
QUAD/+ ballout, 88 ball (x16 NOR + PSRAM Share Bus)  
x32SH ballout, 106 ball (x32 NOR only Share Bus)  
C
Q
U
V
x16SB ballout, 165 ball (x16 NOR / NAND + x16 DRAM Split Bus  
x48D ballout, 165 ball (x16/x32 NOR + NAND + DRAM Split Bus  
W
Datasheet  
54  
November 2007  
Order Number: 311760-10  

相关型号:

RD38F2040W0ZBQ0

Wireless Flash Memory (W18/W30 SCSP)
NUMONYX

RD38F2040W0ZBQ0

Memory Circuit, Flash+PSRAM, 4MX16, CMOS, PBGA88, 8 X 10 MM, 1.20 MM HEIGHT, STACK, CSP-88
INTEL

RD38F2040W0ZBQ1

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,
NUMONYX

RD38F2040W0ZDQ0

Wireless Flash Memory (W18/W30 SCSP)
NUMONYX

RD38F2040W0ZTQ0

Wireless Flash Memory (W18/W30 SCSP)
NUMONYX

RD38F2040W0ZTQ0

Memory Circuit, Flash+PSRAM, 4MX16, CMOS, PBGA88, 8 X 10 MM, 1.20 MM HEIGHT, LEAD FREE, STACK, CSP-88
INTEL

RD38F2230WWYDQ0

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,
NUMONYX

RD38F2230WWZDQ0

Memory Circuit, Flash+SRAM, 4MX16, CMOS, PBGA88, 8 X 10 MM, 1.40 MM HEIGHT, STACK, CSP-88
INTEL

RD38F2240WWYDQ0

Memory Circuit, Flash+PSRAM, 4MX16, CMOS, PBGA88, 8 X 10 MM, 1.20 MM HEIGHT, STACK, CSP-88
INTEL

RD38F2240WWYDQ1

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,
NUMONYX

RD38F2240WWZDQ0

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,
NUMONYX

RD38F3040L0YBQ0

Memory Circuit, Flash+PSRAM, 8MX16, CMOS, PBGA88, 8 X 10 MM, SCSP-88
INTEL