RD38F3050L0ZTQ0 [NUMONYX]

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,;
RD38F3050L0ZTQ0
型号: RD38F3050L0ZTQ0
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,

静态存储器
文件: 总68页 (文件大小:988K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Numonyx™ StrataFlash Wireless Memory  
(L18 SCSP)  
768-Mbit L18 Family with Synchronous PSRAM  
Datasheet  
Product Features  
„
Device Architecture  
„
Flash Performance  
— Flash Die Density: 128 or 256-Mbit  
— PSRAM Die Density: 32 or 64-Mbit  
— x16 Non-Mux or ADMux I/O Interface Option  
— Bottom or Top Flash Parameter  
Configuration  
Device Voltage  
— Core: VCC = 1.8 V  
— I/O: VCCQ = 1.8 V  
Device Packaging  
— Ballout: QUAD+ (88 Balls)  
— Area: 8x10 mm to 11x13 mm  
— Height: 1.2 mm to 1.4 mm  
PSRAM Performance  
— 85 ns Initial Read Access;  
25 ns Asynchronous Page-Mode Read  
— Up to 54 MHz with 14 ns Clock-to-Data  
Output Synchronous Burst-Mode Read  
— Buffered Enhanced Factory Programming  
(BEFP): 5 µs/byte (typ.)  
— Write-buffer program: 7 µs/Byte (typ.)  
Flash Architecture  
— Read-While-Write/Erase  
— Asymmetrical blocking structure  
— 8-Mbit or 16-Mbit partition sizes  
— 16-Kword parameter blocks (Top or  
Bottom); 64-Kword main blocks  
— 2-Kbit One-Time Programmable Protection  
Register  
— Zero-latency block locking  
— Absolute write protection with block lock  
using F-VPP and F-WP#  
Flash Software  
— Numonyx™ FDI, Numonyx™ PSM, and  
Numonyx™ VFM  
— Common Flash Interface  
„
„
„
„
— 70 ns Initial Read Access;  
20 ns Asynchronous Page-Mode Read  
— Up to 54 MHz with 9 ns Clock-to-Data  
Synchronous Burst-Mode Reads and Writes  
— Configurable 4-, 8-, 16- and Continuous-  
Word Burst-Length Reads and Writes  
— Partial-Array Self and Temperature-  
Compensated Refresh  
— Programmable Output Impedance  
„
„
— Basic and Extended Flash Command Set  
Quality and Reliability  
— Extended Temperature –25 °C to +85 °C  
— Minimum 100K Flash Block Erase cycles  
— 130 nm ETOX™ VIII Flash Technology  
314476-05  
November 2007  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx B.V. may make changes to specifications and product descriptions at any time, without notice.  
Numonyx B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and StrataFlash are trademarks or registered trademarks of Numonyx B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007, Numonyx B.V., All Rights Reserved.  
Datasheet  
2
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Contents  
1.0 Introduction..............................................................................................................6  
1.1  
1.2  
1.3  
Nomenclature.....................................................................................................6  
Acronyms...........................................................................................................7  
Conventions .......................................................................................................7  
2.0 Functional Overview..................................................................................................8  
2.1  
2.2  
2.3  
2.4  
Product Description .............................................................................................8  
Available Device Combinations............................................................................ 10  
Device Operation Overview.................................................................................10  
Flash Memory Map and Partitioning...................................................................... 12  
3.0 Device Package Information.................................................................................... 17  
4.0 Ballout and Signal Descriptions ...............................................................................21  
4.1  
4.2  
Device Signal Ballout .........................................................................................21  
Signal Descriptions............................................................................................ 22  
5.0 Maximum Ratings and Operating Conditions............................................................ 25  
5.1  
5.2  
5.3  
Device Absolute Maximum Ratings....................................................................... 25  
Device Operating Conditions...............................................................................25  
Device Power-Up/Down...................................................................................... 26  
5.3.1 Flash Power and Reset Specifications ........................................................26  
5.3.2 PSRAM Power-Up Sequence and Initialization............................................. 26  
6.0 Device Electrical Specifications................................................................................27  
6.1  
6.2  
6.3  
Flash DC Operating Characteristics ...................................................................... 27  
Synchronous PSRAM DC Operating Characteristics.................................................27  
Device AC Test Conditions.................................................................................. 28  
6.3.1 Flash Die Capacitance ............................................................................. 28  
6.3.2 Synchronous PSRAM Die Capacitance........................................................29  
7.0 Flash AC Characteristics .......................................................................................... 30  
8.0 Synchronous PSRAM AC Characteristics................................................................... 31  
8.1  
8.2  
8.3  
PSRAM Asynchronous Read.................................................................................31  
PSRAM Asynchronous Write ................................................................................34  
PSRAM Synchronous Read and Write.................................................................... 37  
9.0 Flash Bus Interface .................................................................................................43  
10.0 Flash Operations ..................................................................................................... 43  
11.0 PSRAM Bus Interface...............................................................................................44  
11.1 PSRAM Reads ................................................................................................... 44  
11.1.1 PSRAM Asynchronous Read...................................................................... 44  
11.1.2 PSRAM Asynchronous Page-Mode Read ..................................................... 44  
11.1.3 PSRAM Synchronous Burst-Mode Reads..................................................... 44  
11.1.4 PSRAM Asynchronous Fetch Control Register Read...................................... 45  
11.2 PSRAM Writes................................................................................................... 45  
11.2.1 PSRAM Asynchronous Write ..................................................................... 45  
11.2.2 PSRAM Synchronous Write....................................................................... 46  
11.2.3 PSRAM Asynchronous Set Control Register Write ........................................ 46  
11.2.4 PSRAM Synchronous Set Control Register Write..........................................47  
11.3 PSRAM No Operation Command ..........................................................................47  
11.4 PSRAM Deselect................................................................................................47  
11.5 PSRAM Deep Power Down................................................................................... 47  
November 2007  
314476-05  
Datasheet  
3
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
11.6 PSRAM WAIT Signal ...........................................................................................48  
12.0 PSRAM Device Operation..........................................................................................50  
12.1 PSRAM Operating Modes.....................................................................................50  
12.2 PSRAM Control Registers ....................................................................................50  
12.2.1 PSRAM Bus Control Register.....................................................................50  
12.2.1.1 PSRAM BCR Operating Mode .......................................................51  
12.2.1.2 PSRAM Initial Latency BCR Bit.....................................................52  
12.2.1.3 PSRAM Latency Counter BCR Bit..................................................52  
12.2.1.4 PSRAM WAIT Polarity BCR Bit......................................................53  
12.2.1.5 PSRAM WAIT Configuration BCR Bit .............................................53  
12.2.1.6 PSRAM Drive Strength BCR Bit....................................................53  
12.2.1.7 PSRAM Burst Wrap BCR Bit.........................................................53  
12.2.1.8 PSRAM Burst Length BCR Bit.......................................................53  
12.2.2 PSRAM Refresh Control Register ...............................................................54  
12.2.2.1 PSRAM Page Mode RCR Bit .........................................................55  
12.2.2.2 PSRAM Deep-Power Down RCR Bit...............................................55  
12.2.2.3 Description of PSRAM Partial-Array Self-Refresh RCR Bit.................56  
12.3 PSRAM Access to Control Register........................................................................57  
12.3.1 PSRAM Hardware Control Register Access ..................................................57  
12.3.2 PSRAM Software Register Access ..............................................................57  
12.3.3 Cautionary Note About Software Register Access.........................................59  
12.4 PSRAM Self-Refresh Operation.............................................................................59  
12.4.1 PSRAM Self-Refresh Operations at Low Frequency.......................................59  
12.5 PSRAM Burst Suspend, Interrupt, or Termination ...................................................59  
12.5.1 PSRAM Burst Suspend.............................................................................59  
12.5.2 PSRAM Burst Interrupt ............................................................................60  
12.5.3 PSRAM Burst Termination ........................................................................61  
12.6 PSRAM Row Boundary Crossing ...........................................................................61  
A
B
C
D
E
F
Flash Write State Machine........................................................................................62  
Flash Common Flash Interface.................................................................................62  
Flash Flowcharts......................................................................................................62  
Additional Information.............................................................................................62  
Ordering Information...............................................................................................63  
................................................................................................................................66  
Datasheet  
4
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Revision History  
Date  
Revision  
Description  
August 2006  
-001  
Initial release.  
Revised information on registry access restrictions for product order numbers ending in Q0, Q1,  
Q2. (Products with ordering numbers ending with Q0, Q1, Q2, and Q3 are limited to the hardware  
method of setting the registry and do not support registery reads or software registry access.)  
September  
2006  
-002  
August 2007  
August 2007  
-003  
-004  
05  
Updated ordering information  
Updated PSRAM spec values per ISD specifications to align with CRAM1.5 standards.  
Applied Numonyx branding.  
November 2007  
November 2007  
314476-05  
Datasheet  
5
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
1.0  
Introduction  
This document contains information pertaining to the Numonyx™ StrataFlash®  
Wireless Memory (L18 SCSP) with Synchronous PSRAM stacked device family. The L18  
is available as a Non-Multiplex or Address-Data Muxltiplex (ADMux) I/O interface  
option, while the synchronous PSRAM is available only as a Non-Multiplex I/O interface.  
The intent of this document is to provide information where this product differs from  
the Title device.  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed product information not included in this  
document.  
The 768-Mbit Numonyx™ StrataFlash® Wireless memory with synchronous PSRAM  
stacked device family offers multiple high-performance solutions. The L18 (Non-Mux or  
ADMux I/O interface option) highlighted features like asymmetrical block array,  
configurable burst lengths, security using OTP and zero-latency block lock. The L18  
delivers up to 54 MHz synchronous burst and page-mode read rates with multi-  
partitioning Read-While-Write and Read-While-Erase operations. The synchronous  
PSRAM (Non-Mux I/O interface) is a high-performance volatile memory operating at  
speeds up to 54 MHz with configurable burst lengths. The PSRAM lower sixteen  
addresses can be routed to the data pins on the PCB board to enable a flexible flash  
and PSRAM A/D-Mux I/O interface device design. The L18 stacked device features 1.8  
volt low-voltage operation in an Numonyx QUAD+ standard footprint and signal  
ballouts.  
1.1  
Nomenclature  
1.8 Volt Core  
1.8 Volt I/O  
ADMux I/O  
VCC (memory subsystem die core) voltage range of 1.7 V – 1.95 V.  
VCCQ (memory subsystem I/O) voltage range of 1.7 V – 1.95 V.  
Address-Data Multiplex I/O interface, where the lower sixteen (16) addresses are  
multiplexed on the data pins (DQ[15:0]) during any address cycle.  
Asserted  
Block  
Signal with logical voltage level VIL, or enabled.  
Group of cells, bits, bytes, or words within the flash memory array that get erased  
with one erase instruction.  
Deasserted  
Device  
Signal with logical voltage level VIH or disabled.  
A specific memory type or stacked flash and xRAM memory density configuration  
combination within a memory subsystem product family.  
Die  
Individual flash or xRAM die used in a stacked package memory device.  
High Impedance.  
High-Z  
Low-Z  
Signal is Driven on the bus.  
Non-Array  
Reads  
Flash reads which return flash Device Identifier, CFI Query, Protection Register,  
and Status Register information.  
Non-Mux I/O  
Traditional parallel flash interface where address are not multiplex onto the data  
pins. All address and data pins are unique.  
Partition  
Program  
Write  
A group of flash blocks that shares common status register read state.  
An operation to Write data to the flash array or xRAM.  
Bus cycle operation at the inputs of the flash or xRAM die, in which a command or  
data are sent to the flash array or xRAM.  
Datasheet  
6
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
1.2  
Acronyms  
APS  
Automatic Power Savings  
EFA  
Extended Flash Array  
BCR  
(PSRAM) Bus Control Register  
Buffered Enhanced Factory Programming  
(Flash) Configuration Register  
Chip Scale Package  
Buffered EFP  
CR  
CSP  
MLC  
Multi-Level Cell  
OTP  
One-Time Programmable  
Protection Lock Register  
Protection Register  
PLR  
PR  
RCR  
(PSRAM) Refresh Control Register  
Reserved for Future Use  
Read-While-Write / Read-While-Erase  
Status Register  
RFU  
RWW / RWE  
SR  
WSM  
Write State Machine  
1.3  
Conventions  
A5  
Denotes one element of a signal group, in this case address bit 5.  
Logical zero (0).  
Clear  
DQ[15:0]  
F-CE#  
Denotes a group of similarly named signals, such as data bus.  
Denotes Chip Enable of the flash die, where “F” to denote the specific signal  
suffix and “CE#” is the root signal name of the NOR flash die.  
P-CE# or  
P-CS#  
Denotes Chip Enable of the PSRAM die, where “P” to denote the specific signal  
suffix and “CE# or CS#” are the root signal name of the PSRAM die. PSRAM  
CE# and CS# is used interchangably throughout the document.  
S-CS1#  
Denotes Chip Enable of the SRAM die, where “S” to denote the specific signal  
suffix and “CS1#” is the root signal name of the SRAM die.  
Set  
Logical one (1).  
SR4  
VCC  
VCC  
VSS  
A flash status register bit, in this case status register bit 4 of SR[15:0].  
Signal or voltage connection.  
Signal or voltage level.  
Denotes a global power signal of the stacked device. VSS is common to all  
memory dies within a stacked memory device.  
November 2007  
314476-05  
Datasheet  
7
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
2.0  
Functional Overview  
2.1  
Product Description  
The L18 family with synchronous PSRAM stacked product family encompasses multiple  
L18 flash memory plus synchronous PSRAM die combinations.  
Figure 1 shows the maximum configuration options for L18 non-multiplex I/O  
(standard) product and Figure 2 shows the maximum configuration options for L18 AD-  
Multiplex I/O product family with synchronous PSRAM internal package connections.  
Table 1 on page 10 lists the available L18 flash with synchronous PSRAM stacked  
combinations within the L18 stacked device product family.  
Figure 1: L18 Product Family with Sync PSRAM Block Diagram  
L18 with Sync PSRAM Device Family  
Flash Die Options  
F1-CE#  
F2-CE#  
F-RST#  
Flash Die #1  
(256-Mbit or  
128 Mbit)  
Flash Die #2  
((256-Mbit or  
128 Mbit)  
F[2:1]-OE#  
F-WE#  
F-WP#  
F-VPP  
F3-CE#  
WAIT  
CLK  
Flash Die #3  
(256-Mbit)  
F[2:1]-VCC  
ADV#  
VCCQ  
VSS  
DQ[15:0]  
Sync PSRAM Die Options  
A[MAX:MIN]  
P-VCC  
Sync PSRAM Die #1  
(64-Mbit or 32-Mbit)  
R-WE#  
R-OE#  
P-CRE  
R-UB#  
R-LB#  
P1-CS#  
P2-CS#  
Sync PSRAM Die #2  
(64-Mbit or 32-Mbit)  
Notes:  
1.  
2.  
3.  
F2-OE# must be treated as an RFU. However, for compatiblity to future products, F2-OE# can be tied to  
F1-OE# or left floated.  
F2-VCC must be treated as an RFU. However, for compatibility to future products, F2-VCC can be tied to F1-VCC or left  
floated.  
See Table 8, “Signal Descriptions” on page 22 for signal description details.  
Datasheet  
8
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 2: L18 ADMux I/O Interface Product Family with Sync PSRAM Block Diagram  
L18 ADMux Family with Sync PSRAM  
F1-CE#  
F1-OE#  
CLK  
F-VPP  
F1-VCC  
F-RST#  
Flash Die  
256-Mbit or 128-Mbit  
(Address/Data Multiplex I/O)  
WAIT  
ADV#  
A/DQ[15:0]  
A[MAX:16]  
F-WP#  
F-WE#  
VCCQ  
VSS  
A[MAX:0]  
DQ[15:0]  
P-VCC  
R-UB#  
R-LB#  
P-CS#  
R-OE#  
P-CRE  
R-WE#  
PSRAM Die  
64-Mbit, 32-Mbit or 16-Mbit  
(Non-Multiplex I/O)  
Notes:  
1.  
F2-OE# must be treated as an RFU. However, for compatiblity to future products, F2-OE# can be tied to  
F1-OE# or left floated.  
2.  
3.  
F2-VCC must be treated as an RFU. However, for compatibility to future products, F2-VCC can be tied to F1-VCC or left  
floated.  
See Table 8 on page 22 for signal description details.  
November 2007  
314476-05  
Datasheet  
9
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
2.2  
Available Device Combinations  
Table 1:  
Available L18 with Synchronous PSRAM Device Combinations  
I/O  
Package Size  
(mm)  
Package  
Ballout  
Flash Type (Mbit)  
xRAM Type (Mbit)  
32 Sync PSRAM  
Voltage  
128 L18  
128 L18  
256 L18  
256 L18  
8x10x1.2  
8x10x1.2  
8x11x1.2  
8x11x1.4  
8x11x1.4  
8x11x1.4  
11x13x1.4  
8x10x1.2  
8x10x1.2  
8x11x1.2  
QUAD+  
QUAD+  
QUAD+  
QUAD+  
QUAD+  
QUAD+  
QUAD+  
QUAD+  
QUAD+  
QUAD+  
64 Sync PSRAM  
64 Sync PSRAM  
64 + 64 Sync PSRAM  
64 Sync PSRAM  
64 Sync PSRAM  
64 + 64 Sync PSRAM  
32 Sync PSRAM  
64 Sync PSRAM  
32 Sync PSRAM  
256 +128 L18  
1.8 V  
256 + 256 L18  
256 + 256 L18  
128 L18 (ADMux I/O)  
128 L18 (ADMux I/O)  
256 L18 (ADMux I/O)  
Note: For combination not listed here, contact your local Numonyx sales representative for details.  
2.3  
Device Operation Overview  
The following sections describes the bus operations and device state between the flash  
and synchronous PSRAM. Bus operations for the L18 stacked device involve the control  
of flash and PRAM inputs. The bus operations are shown in Table 2.  
Note:  
See the Title Discrete Datasheet (order number: Non-Mux I/O, document number  
251902 and A/D Mux I/O, document number 313295) for complete descriptions of the  
flash modes and commands, command bus-cycle definitions, and flowcharts that  
illustrate operational routines not documented in this Datasheet.  
Table 2:  
Flash and PSRAM Device Bus Operations (Sheet 1 of 2)  
Mode  
DQ[15:0]  
WAIT7  
Notes  
Synchronous  
Array and Non-  
Array Read  
H
L
L
H
L
X
X
X
H
X
X
X
Flash DOUT  
Active  
1,2,4  
Asynchronous  
Read  
H
H
H
L
L
L
L
H
L
X
L
X
X
H
H
X
X
X
X
X
X
Flash DOUT Deasserted 1,2,4  
VPPL or  
VPPH  
Write  
H
H
Flash DIN  
Deasserted 1,2,3  
Flash  
High-Z  
Flash  
1,2  
Output Disable  
Standby  
H
X
X
X
X
High-Z  
Flash  
High-Z  
Flash  
1,2  
H
L
H
X
X
X
X
X
X
X
Any PSRAM mode allowed  
High-Z  
Flash  
High-Z  
Flash  
1,2  
Reset  
High-Z  
Datasheet  
10  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 2:  
Flash and PSRAM Device Bus Operations (Sheet 2 of 2)  
Mode  
DQ[15:0]  
WAIT7  
Notes  
PSRAM  
DOUT  
Read  
X
X
H
H
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
H
L
L
L
Active  
Active  
1,2,5,7  
1,2,5,7  
1,2  
Write  
H
H
PSRAM DIN  
PSRAM  
High-Z  
PSRAM  
High-Z  
Output Disable  
H
X
PSRAM  
High-Z  
PSRAM  
High-Z  
Standby  
Any Flash mode allowed  
L
H
X
X
X
X
X
X
X
1,2  
1,2  
PSRAM  
High-Z  
Low Power  
Mode  
PSRAM  
High-Z  
X
Notes:  
1.  
For flash, do not simultaneously assert F-OE# and F-WE#. For PSRAM, do not simultaneously assert  
R-OE# and R-WE#.  
2.  
3.  
X can be VIL or VIH for flash or xRAM inputs; VPPLK, VPPL,or VPPH for F-VPP.  
Refer to the latest revision of the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O 251902 and  
AD-Mux I/O, 313295) for valid DIN during Flash writes.  
4.  
5.  
Flash CFI query and Status Register accesses, use DQ[7:0] only. All other reads use DQ[15:0].  
P-CRE# is low if PSRAM is in standby. P-CRE# is X if PSRAM is in Low-Power mode. See Section 12.0, “PSRAM  
Device Operation” on page 50 for more details about Standby and Low Power mode.  
WAIT indicates data validity only when in Synchronous mode. Ignore this setting in Asynchronous and Page-mode.  
The Flash and Synchronous PSRAM dies share the WAIT signal.  
6.  
7.  
8.  
During AD-Mux I/O operation, ADV# must remain deasserted during the data phase.  
Table 3:  
PSRAM Bus Operation (Sheet 1 of 2)  
Operation  
Modes  
Power  
Mode  
P-  
R-  
R-  
R-UB#  
P-  
A19/  
State  
Read  
CLK  
ADV#  
Addr.  
DQ  
DOUT  
DIN  
Notes  
CS#  
WE#  
OE# R-LB# CRE A18  
Asynchronous  
Active  
Active  
L
L
L
L
L
L
H
L
L
L
L
L
L
V
V
V
V
Asynchronous  
NOR-Flash  
Write  
X
1,2  
Asynchronous  
NOR-Flash  
LL  
RCR  
BCR  
Set Control  
Register  
Active  
Active  
L
L
L
L
L
L
L
H
L
X
L
H
H
X
HL  
LL  
HL  
LH  
Fetch  
Control  
Register  
RCR  
BCR  
Asynchronous  
H
X
X
X
X
Asynchronous  
Synchronous  
NOR-Flash  
No  
Operation  
Standby  
/Active  
L
L
L
L
H
X
X
H
X
X
H
X
X
X
X
X
L
X
X
X
X
X
High-Z  
High-Z  
High-Z  
3
Asynchronous  
Synchronous  
NOR-Flash  
Deselect  
Standby  
H
H
Asynchronous  
Synchronous  
NOR-Flash  
Deep  
Power  
Down  
Deep  
Power  
Down  
Synchronous  
NOR-Flash  
Burst Init  
Read  
Active L->H  
Active L->H  
L
L
L
H
X
X
L
L
L
L
V
X
V
X
X
4
Synchronous  
NOR-Flash  
Burst Read  
H
X
DOUT  
4,5  
Burst Init  
Write  
Synchronous  
Synchronous  
Active L->H  
Active L->H  
L
L
L
L
H
X
X
L
L
V
X
V
X
X
4
4
Burst Write  
H
X
X
DIN  
November 2007  
314476-05  
Datasheet  
11  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 3:  
PSRAM Bus Operation (Sheet 2 of 2)  
Operation  
Modes  
Power  
Mode  
P-  
CS#  
R-  
WE#  
R-  
R-UB#  
P-  
A19/  
A18  
State  
CLK  
ADV#  
Addr.  
DQ  
Notes  
OE# R-LB# CRE  
LL  
HL  
RCR  
BCR  
Set Control  
Register  
Synchronous  
Synchronous  
Active  
Active  
L->H  
L
L
L
L
H
L
X
L
H
H
X
4
LL  
HL  
LH  
Fetch  
Control  
Register  
RCR  
BCR  
L->H  
L
H
X
4,6  
Notes:  
1.  
The table reflects behavior if R-UB# and R-LB# are asserted low. If only either of the signals, R-UB# or R-LB# is  
asserted low only the corresponding data byte will be written (UB# enables DQ15-DQ8, LB# enables DQ7-DQ0).  
During a write access invoked by R-WE# set to low the R-OE# signal is ignored.  
Power mode of Standby or Active will depend on the internal operation of device at the time.  
Clock configuration is rising edge.  
Output drivers are controlled by the asynchronous R-OE# control signal.  
During the initial command cycle R-OE# is don’t care (X) and subsequent cycles it must be low (L)  
2.  
3.  
4.  
5.  
6.  
2.4  
Flash Memory Map and Partitioning  
The Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
is available in several density and parameter configurations. The memory map is based  
on stacking individual 128-Mbit and 256-Mbit flash die density options, and shows  
individual flash die configurations and block/partition allocations. See the following  
figures and tables:  
Figure 3, “LQ Family Flash Die Configurations: Top Parameter” on page 13  
Figure 4, “LQ Family Flash Die Configurations: Bottom Parameter” on page 13  
Table 4, “Flash-CE# Assignment and Device Parameter Configuration” on page 14  
Table 5, “One or Two Flash Dies SCSP Memory Map” on page 14  
Table 6, “3-Flash Dies (Top Parameter) SCSP Memory Map” on page 15  
Table 7, “3-Flash Dies (Bottom Parameter) SCSP Memory Map” on page 16  
Datasheet  
12  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 3: LQ Family Flash Die Configurations: Top Parameter  
1-Die  
2-Die  
3-Die  
Parameter Blocks  
Die #1  
(Top)  
Die #1  
(Top)  
Die #1  
(Top)  
Main Block  
Die #2  
(Bottom)  
Die #2  
(Top)  
Die #3  
(Bottom)  
Figure 4: LQ Family Flash Die Configurations: Bottom Parameter  
Parameter Blocks  
Die #3  
(Top)  
Die #2  
(Bottom)  
Die #2  
(Top)  
Main Blocks  
Die #1  
Die #1  
Die #1  
(Bottom)  
(Bottom)  
(Bottom)  
Parameter Blocks  
3-Die  
2-Die  
1-Die  
November 2007  
314476-05  
Datasheet  
13  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 4 shows the flash chip enable assignment within a stacked device, while Table 5  
to Table 7 shows an example of the memory map and partitioning information for  
combinations with up to three flash dies in the L18 SCSP LQ family with Synchronous  
PSRAM.  
Table 4:  
Flash-CE# Assignment and Device Parameter Configuration  
Device  
Parameter  
Stacked  
Combinations  
Flash Die #1  
Flash Die #2  
Flash Die #3  
One Flash Die  
F1-CE# (Top)  
F2-CE# (Bottom)  
F2-CE# (Top)  
Top Parameter  
Two Flash Dies  
Three Flash Dies  
One Flash Die  
F1-CE# (Top)  
F1-CE# (Top)  
F3-CE# (Bottom)  
F1-CE# (Bottom)  
F1-CE# (Bottom)  
F1-CE# (Bottom)  
Bottom  
Parameter  
Two Flash Dies  
Three Flash Dies  
F2-CE# (Top)  
F2-CE# (Bottom)  
F3-CE# (Top)  
Table 5:  
One or Two Flash Dies SCSP Memory Map  
Flash  
Block  
Size  
(KW)  
Partition  
Size  
(Mbit)  
128-Mbit Flash  
Partition  
Size  
(Mbit)  
256-Mbit Flash  
Partitioning  
Die  
Blk#  
Address Range  
Blk#  
Address Range  
Type  
16  
130  
7FC000-7FFFFF  
258  
FFC000-FFFFFF  
Parameter  
Partition  
16  
64  
127  
126  
7F0000-7F3FFF  
7E0000-7EFFFF  
255  
254  
FF0000-FF3FFF  
FE0000-FEFFFF  
8
16  
(Partition 0)  
64  
64  
120  
119  
780000-78FFFF  
770000-77FFFF  
240  
239  
F00000-FFFFFF  
EF0000-EFFFFF  
Main Partitions  
(Partition 1-7)  
8
8
16  
16  
64  
64  
64  
63  
400000-4FFFFF  
3F0000-3FFFFF  
128  
127  
800000-80FFFF  
F70000-F7FFFF  
Main Partitions  
(Partition 8-15)  
64  
64  
0
000000-00FFFF  
7F0000-7FFFFF  
0
000000-00FFFF  
FF0000-FFFFFF  
130  
258  
Main Partitions  
(Partition 8-15)  
8
8
16  
16  
64  
64  
67  
66  
400000-40FFFF  
3F0000-3FFFFF  
131  
130  
100000-10FFFF  
7F0000-7FFFFF  
Main Partitions  
(Partition 1-7)  
64  
64  
11  
10  
080000-08FFFF  
070000-07FFFF  
19  
18  
100000-10FFFF  
0F0000-0FFFFF  
Parameter  
Partition  
(Partition 0)  
64  
16  
4
3
010000-01FFFF  
00C000-00FFFF  
4
3
010000-01FFFF  
00C000-00FFFF  
8
16  
16  
0
000000-003FFF  
0
000000-003FFF  
Datasheet  
14  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 6:  
3-Flash Dies (Top Parameter) SCSP Memory Map  
Flash  
Die  
Type  
Block  
Size  
(KW)  
Partition  
Size  
(Mbit)  
128-Mbit Flash  
Partition  
Size  
(Mbit)  
256-Mbit Flash  
Partitioning  
Blk  
Address Range  
Blk  
Address Range  
16  
13  
7FC000-7FFFFF  
258  
FFC000-FFFFFF  
Parameter Partition  
(Partition 0)  
16  
64  
12  
12  
7F0000-7F3FFF  
7E0000-7EFFFF  
255  
254  
FF0000-FF3FFF  
FE0000-FEFFFF  
8
16  
64  
64  
12  
11  
780000-78FFFF  
770000-77FFFF  
240  
239  
F00000-FFFFFF  
EF0000-EFFFFF  
Main Partitions  
(Partition 1-7)  
8
8
16  
16  
64  
64  
64  
63  
400000-4FFFFF  
3F0000-3FFFFF  
128  
127  
800000-80FFFF  
F70000-F7FFFF  
Main Partitions  
(Partition 8-15)  
64  
16  
0
000000-00FFFF  
7FC000-7FFFFF  
0
000000-00FFFF  
FFC000-FFFFFF  
13  
258  
Parameter Partition  
(Partition 0)  
16  
64  
12  
12  
7F0000-7F3FFF  
7E0000-7EFFFF  
255  
254  
FF0000-FF3FFF  
FE0000-FEFFFF  
8
16  
64  
64  
12  
11  
780000-78FFFF  
770000-77FFFF  
240  
239  
F00000-FFFFFF  
EF0000-EFFFFF  
Main Partitions  
8
8
16  
16  
(Partition 1 to 7)  
64  
64  
64  
63  
400000-4FFFFF  
3F0000-3FFFFF  
128  
127  
800000-80FFFF  
F70000-F7FFFF  
Main Partitions  
(Partition 8 to 15)  
64  
64  
0
000000-00FFFF  
7F0000-7FFFFF  
0
000000-00FFFF  
FF0000-FFFFFF  
13  
258  
Main Partitions  
(Partition 8 to 15)  
8
8
16  
16  
64  
64  
67  
66  
400000-40FFFF  
3F0000-3FFFFF  
131  
130  
100000-10FFFF  
7F0000-7FFFFF  
Main Partitions  
(Partition 1 to 7)  
64  
64  
11  
10  
080000-08FFFF  
070000-07FFFF  
19  
18  
100000-10FFFF  
0F0000-0FFFFF  
Parameter Partition  
(Partition 0)  
64  
16  
4
3
010000-01FFFF  
00C000-00FFFF  
4
3
010000-01FFFF  
00C000-00FFFF  
8
16  
16  
0
000000-003FFF  
0
000000-003FFF  
November 2007  
314476-05  
Datasheet  
15  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 7:  
3-Flash Dies (Bottom Parameter) SCSP Memory Map  
Flash  
Die  
Type  
Block  
Size  
(KW)  
Partition  
Size  
(Mbit)  
128-Mbit Flash  
256-Mbit Flash  
Partition  
Size (Mbit)  
Partitioning  
Blk  
Address Range  
Blk  
Address Range  
16  
130  
7FC000-7FFFFF  
25  
FFC000-FFFFFF  
Parameter Partition  
(Partition 0)  
16  
64  
127  
126  
7F0000-7F3FFF  
7E0000-7EFFFF  
25  
25  
FF0000-FF3FFF  
FE0000-FEFFFF  
8
16  
64  
64  
120  
119  
780000-78FFFF  
770000-77FFFF  
24  
23  
F00000-FFFFFF  
EF0000-EFFFFF  
Main Partitions  
8
8
16  
16  
(Partition 1 to 7)  
64  
64  
64  
63  
400000-4FFFFF  
3F0000-3FFFFF  
12  
12  
800000-80FFFF  
F70000-F7FFFF  
Main Partitions  
(Partition 8 to 15)  
64  
64  
0
000000-00FFFF  
7F0000-7FFFFF  
0
000000-00FFFF  
FF0000-FFFFFF  
130  
25  
Main Partitions  
(Partition 8 to 15)  
8
8
16  
16  
64  
64  
67  
66  
400000-40FFFF  
3F0000-3FFFFF  
13  
13  
100000-10FFFF  
7F0000-7FFFFF  
Main Partitions  
(Partition 1 to 7)  
64  
64  
11  
10  
080000-08FFFF  
070000-07FFFF  
11  
10  
080000-08FFFF  
070000-07FFFF  
Parameter Partition  
(Partition 0)  
64  
16  
4
3
010000-01FFFF  
00C000-00FFFF  
4
3
010000-01FFFF  
00C000-00FFFF  
8
16  
16  
64  
0
000000-003FFF  
7F0000-7FFFFF  
0
000000-003FFF  
FF0000-FFFFFF  
130  
25  
Main Partitions  
(Partition 8 to 15)  
8
8
16  
16  
64  
64  
67  
66  
400000-40FFFF  
3F0000-3FFFFF  
13  
13  
100000-10FFFF  
7F0000-7FFFFF  
Main Partitions  
(Partition 1 to 7)  
64  
64  
11  
10  
080000-08FFFF  
070000-07FFFF  
19  
18  
100000-10FFFF  
0F0000-0FFFFF  
Parameter Partition  
(Partition 0)  
64  
16  
4
3
010000-01FFFF  
00C000-00FFFF  
4
3
010000-01FFFF  
00C000-00FFFF  
8
16  
16  
0
000000-003FFF  
0
000000-003FFF  
Datasheet  
16  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
3.0  
Device Package Information  
Figure 5: Mechanical Specifications for QUAD+ Ballout Package (8x10x1.2 mm)  
A1 Index  
Mark  
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
A
B
C
D
B
C
D
E
F
E
F
D
e
G
H
G
H
J
J
K
K
L
L
M
M
b
E
Top View - Ball  
Down  
Bottom View - Ball Up  
A
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
Inches  
Nom  
Dimens ions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Max Notes  
1.200  
Min  
Max  
0.0472  
A
A1  
A2  
b
D
E
0.200  
0.0079  
0.860  
0.375  
10.000  
8.000  
0.800  
88  
0.0339  
0.0148  
0.3937  
0.3150  
0.0315  
88  
0.325  
9.900  
7.900  
0.425  
10.100  
8.100  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Y
S1  
S2  
0.100  
1.300  
0.700  
0.0039  
0.0512  
0.0276  
1.100  
0.500  
1.200  
0.600  
0.0433  
0.0197  
0.0472  
0.0236  
November 2007  
314476-05  
Datasheet  
17  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 6: Mechanical Specifications for QUAD+ Ballout Package (8x11x1.2 mm)  
A1 Index  
Mark  
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
A
B
C
D
B
C
D
E
F
E
F
D
e
G
H
G
H
J
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
Top View - Ball Down  
A2  
A1  
A
Y
Drawing not to scale.  
Millimeters  
Nom  
Inches  
Nom  
Dimensions  
Symbol  
Min  
Max Notes  
Min  
Max  
Package Height  
Ball Height  
A
A1  
A2  
b
D
E
1.200  
0.0472  
0.200  
0.325  
0.0079  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
0.860  
0.375  
0.0339  
0.0148  
0.4331  
0.3150  
0.0315  
88  
0.425  
0.0128  
0.4291  
0.3110  
0.0167  
0.4370  
0.3189  
10.900 11.000 11.100  
7.900  
8.000  
0.800  
88  
8.100  
e
N
Y
S1  
S2  
0.100  
1.300  
1.200  
0.0039  
0.0512  
0.0472  
1.100  
1.000  
1.200  
1.100  
0.0433  
0.0394  
0.0472  
0.0433  
Datasheet  
18  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 7: Mechanical Specifications for QUAD+ Ballout Package (8x11x1.4 mm)  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
H
J
J
K
K
L
L
M
M
b
E
Top View - Ball Down  
Bottom View - Ball Up  
A
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
Inches  
Nom  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Symbol  
Min  
Max Notes  
1.400  
Min  
Max  
0.0551  
A
A1  
A2  
b
D
E
e
N
Y
S1  
S2  
0.200  
0.0079  
1.070  
0.375  
11.000  
8.000  
0.800  
88  
0.0421  
0.0148  
0.4331  
0.3150  
0.0315  
88  
0.325  
10.900  
7.900  
0.425  
11.100  
8.100  
0.0128  
0.4291  
0.3110  
0.0167  
0.4370  
0.3189  
0.100  
1.300  
1.200  
0.0039  
0.0512  
0.0472  
1.100  
1.000  
1.200  
1.100  
0.0433  
0.0394  
0.0472  
0.0433  
November 2007  
314476-05  
Datasheet  
19  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 8: Mechanical Specifications for QUAD+ Ballout Package (11x13x1.4 mm)  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
J
H
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
A
Top View - Ball Down  
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
Inches  
Nom  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Symbol  
Min  
Max Notes  
1.400  
Min  
Max  
0.0551  
A
A1  
A2  
b
D
E
e
N
Y
S1  
S2  
0.200  
0.0079  
1.070  
0.375  
13.000  
11.000  
0.800  
88  
0.0421  
0.0148  
0.5118  
0.4331  
0.0315  
88  
0.325  
12.900  
10.900  
0.425  
13.100  
11.100  
0.0128  
0.5079  
0.4291  
0.0167  
0.5157  
0.4370  
0.100  
2.800  
2.200  
0.0039  
0.1102  
0.0866  
2.600  
2.000  
2.700  
2.100  
0.1024  
0.0787  
0.1063  
0.0827  
Note: For other mechanical drawings not shown in this document, contact your local Numonyx sales representative for additional  
details.  
Datasheet  
20  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
4.0  
Ballout and Signal Descriptions  
4.1  
Device Signal Ballout  
Figure 9: QUAD+ Ballout  
Pin 1  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
DU  
A4  
DU  
DU  
DU  
A
B
C
D
E
F
A18  
R-LB#  
A17  
A19  
A23  
VSS  
VSS  
F1-VCC  
S-CS2  
R-WE#  
ADV#  
F-WE#  
DQ5  
F2-VCC  
CLK  
A21  
A22  
A11  
A12  
A5  
A3  
A24  
F-VPP  
F-WP#  
F-RST#  
DQ10  
DQ3  
P1-CS#  
A20  
A9  
A13  
A2  
A7  
A25  
A10  
A15  
A1  
A6  
R-UB#  
DQ2  
A8  
A14  
A16  
G
H
J
A0  
DQ8  
DQ13  
DQ14  
DQ6  
WAIT  
DQ7  
DQ15  
VCCQ  
VSS  
F2-CE#  
F2-OE#  
VCCQ  
G
H
J
R-OE#  
S-CS1#  
F1-CE#  
VSS  
DQ0  
DQ1  
DQ12  
DQ4  
F1-OE#  
P2-CS#  
VSS  
DQ9  
DQ11  
S-VCC  
F1-VCC  
P-Mode# /  
P-CRE  
F3-CE#  
VCCQ  
P-VCC  
VSS  
F2-VCC  
VSS  
K
L
K
L
VSS  
DU  
DU  
DU  
DU  
M
M
1
2
3
4
5
6
7
8
Top View - Ball Side Down  
Legend:  
Active Signals  
De-Populated Balls  
Do Not Use  
Note: See Figure 1, “L18 Product Family with Sync PSRAM Block Diagram” on page 8 for electrical  
connections details.  
November 2007  
314476-05  
Datasheet  
21  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
4.2  
Signal Descriptions  
Table 8:  
Signal Descriptions (Sheet 1 of 3)  
Note  
s
Symbol  
Type  
Signal Descriptions  
Address and Data Signals, Non-Mux  
ADDRESS: Global device signals.  
Shared address inputs for all memory die during Read and Write operations.  
256-Mbit: AMAX = A23  
128-Mbit: AMAX = A22  
64-Mbit: AMAX = A21  
A[MAX:0]  
DQ[15:0]  
Input  
1
32-Mbit: AMAX = A20  
A0 is the lowest-order word address.  
Unused address inputs should be treated as RFU.  
Note: During AD-Mux I/O operation, L18 A[MAX:16] can be treated as a NC pins, but CL will  
exist on the pins.  
DATA INPUT/OUTPUTS: Global device signals.  
Input /  
Output  
Inputs data and commands during Write cycles, outputs data during Read cycles. Data signals are  
High-Z when the device is deselected or its output is disabled.  
Address and Data Signals, A/D-Mux  
ADDRESS-DATA MULTIPLEXED INPUTS/ OUTPUTS: AD-Mux I/O flash signals.  
During AD-Mux Read cycles, DQ[15:0] are used to input the lower address followed by read-data  
output. During AD-Mux Write cycles, DQ[15:0] are used to input the lower address followed by  
commands or data.  
Input /  
Output  
DQ[15:0]  
1
DQ[15:0] are High-Z when the device is deselected or its output is disabled.  
DQ[15:0] is only used with AD-Mux I/O flash device.  
Control Signals  
ADDRESS VALID: Flash- and Synchronous PSRAM-specific signal; low-true input.  
During a synchronous read operation, the address is latched on the rising edge of ADV# or on the  
next valid CLK edge with ADV# low, whichever occurs first.  
In an asynchronous flash read operation, the address is latched on the rising edge of ADV#,  
or continuously flows through while ADV# is low.  
During a synchronous flash Read operation, the address is latched on the rising edge of ADV#  
or the first active CLK edge whichever occurs first. .  
During synchronous PSRAM read and synchronous write modes, the address is either latched  
on the first rising clock edge after ADV# assertion or on the rising edge of ADV# whichever  
edge occurs first. In asynchronous read and asynchronous write modes, ADV# can be used to  
latch the address, but can be held low for the entire operation as well.  
ADV#  
Input  
Note: During AD-Mux I/O operation, ADV# must remain deasserted during the data phase.  
FLASH CHIP ENABLE: Flash-specific signal; low-true input.  
When low, F-CE# selects the associated flash memory die. When high, F-CE# deselects the  
associated flash die. Flash die power is reduced to standby levels, and its data and F-WAIT outputs  
are placed in a High-Z state.  
F[3:1]-  
CE#  
Input  
Input  
F1-CE# is dedicated to flash die #1.  
F[3:2]-CE# are dedicated to flash die #3 through #2, respectively, if present. Otherwise, any  
unused flash chip enable should be treated as RFU.  
CLOCK: Flash- and Synchronous PSRAM-specific input signal.  
CLK synchronizes the flash and/or synchronous PSRAM with the system clock during synchronous  
operations.  
CLK  
Datasheet  
22  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 8:  
Signal Descriptions (Sheet 2 of 3)  
Note  
s
Symbol  
Type  
Signal Descriptions  
FLASH OUTPUT ENABLE: Flash-specific signal; low-true input.  
When low, F-OE# enables the output drivers of the selected flash die. When high, F-OE# disables  
the output drivers of the selected flash die and places the output drivers in High-Z.  
F[2:1]-  
OE#  
Input  
F2-OE# common to all other flash dies, if present. Otherwise it is an RFU, however, it is highly  
recommended to always common F1-OE# and F2-OE# on the PCB.  
RAM OUTPUT ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-OE# enables the output drivers of the selected memory die. When high, R-OE#  
disables the output drivers of the selected memory die and places the output drivers in High-Z if  
present. Otherwise it is an RFU.  
R-OE#  
Input  
Input  
3
FLASH RESET: Flash-specific signal; low-true input.  
When low, F-RST# resets internal operations and inhibits writes. When high, F-RST# enables  
normal operation.  
F-RST#  
WAIT: Flash- and Synchronous PSRAM-specific signal; configurable true-level output.  
When asserted, WAIT indicates invalid output data. When deasserted, WAIT indicates valid output  
data.  
WAIT is driven whenever the flash or the synchronous PSRAM is selected and its output enable  
is low.  
WAIT  
Output  
WAIT is High-Z whenever flash or the synchronous PSRAM is deselected, or its output enable  
is high.  
Flash and PSRAM must configure the WAIT RCR bit to be the same true-level state.  
FLASH WRITE ENABLE: Flash-specific signal; low-true input.  
F-WE#  
R-WE#  
F-WP#  
Input  
Input  
Input  
When low, F-WE# enables Write operations for the enabled flash die. Address and data are latched  
on the rising edge of F-WE#.  
RAM WRITE ENABLE: PSRAM- and SRAM-specific signal; low-true input.  
When low, R-WE# enables Write operations for the selected memory die. Data is latched on the  
rising edge of R-WE# if present. Otherwise it is an RFU.  
3
FLASH WRITE PROTECT: Flash-specific signals; low-true inputs.  
When low, F-WP# enables the Lock-Down mechanism. When high, F-WP# overrides the Lock-  
Down function, enabling locked-down blocks to be unlocked with the Unlock command.  
PSRAM CONTROL REGISTER ENABLE: Synchronous PSRAM-specific signal; high-true input.  
When high, P-CRE enables access to the PSRAM Refresh Control Register (P-RCR) or Bus Control  
Register (P-BCR). When low, P-CRE enables normal Read or Write operations if present. Otherwise  
it is an RFU.  
P-CRE  
Input  
Input  
2
2
PSRAM MODE#: Asynchronous only PSRAM-specific signal; low-true input.  
When low, P-MODE# enables access to the PSRAM configuration register, and to enter or exit Low-  
Power mode. When high, P-MODE# enables normal Read or Write operations if present. Otherwise  
it is an RFU.  
P-MODE#  
PSRAM CHIP SELECT: PSRAM-specific signal; low-true input.  
When low, P-CS# selects the associated PSRAM memory die. When high, P-CS# deselects the  
associated PSRAM die. PSRAM die power is reduced to standby levels, and its data and WAIT  
outputs are placed in a High-Z state.  
P[2:1]-  
CS#  
Input  
3
P1-CS# is dedicated to PSRAM die #1 if present. Otherwise it is an RFU.  
P2-CS# is dedicated to PSRAM die #2 if present. Otherwise it is an RFU.  
SRAM CHIP SELECTS: SRAM-specific signals; S-CS1# low-true input, S-CS2 high-true input.  
S-CS1#  
S-CS2  
When both S-CS1# and S-CS2 are asserted, the SRAM die is selected. When either S-CS1# or  
S-CS2 is deasserted, the SRAM die is deselected.  
Input  
Input  
3
3
S-CS1# and S-CS2 are dedicated to SRAM if present. Otherwise it is an RFU.  
RAM UPPER/LOWER BYTE ENABLES: PSRAM- and SRAM-specific signals; low-true inputs.  
R-UB#  
R-LB#  
When low, R-UB# enables DQ[15:8] and R-LB# enables DQ[7:0] during PSRAM or SRAM Read and  
Write cycles. When high, R-UB# masks DQ[15:8] and R-LB# masks DQ[7:0] if present. Otherwise  
it is an RFU.  
Power Signals  
FLASH PROGRAM/ERASE VOLTAGE: Flash specific.  
F-VPP supplies program or erase power to the flash die.  
F-VPP  
Power  
November 2007  
314476-05  
Datasheet  
23  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 8:  
Signal Descriptions (Sheet 3 of 3)  
Note  
s
Symbol  
Type  
Signal Descriptions  
FLASH CORE POWER SUPPLY: Flash specific.  
F[2:1]-  
VCC  
Power  
F[2:1]-VCC supplies the core power to the flash dies.  
F2-VCC is recommended to be tied to F1-VCC, else it is an RFU.  
I/O POWER SUPPLY: Global device I/O power.  
VCCQ supplies the device input/output driver voltage.  
VCCQ  
P-VCC  
S-VCC  
VSS  
Power  
Power  
Power  
PSRAM CORE POWER SUPPLY: PSRAM specific.  
P-VCC supplies the core power to the PSRAM die if present. Otherwise it is an RFU.  
3
3
SRAM POWER SUPPLY: SRAM specific.  
S-VCC supplies the core power to the SRAM die if present. Otherwise it is an RFU.  
DEVICE GROUND: Global ground reference for all signals and power supplies.  
Connect all VSS balls to system ground. Do not float any VSS connections.  
Groun  
d
DO NOT USE:  
DU  
This ball should not be connected to any power supplies, signals, or other balls. This ball can be  
left floating.  
RESERVED for FUTURE USE:  
Reserved by Numonyx for future device functionality and enhancement. This ball must be left  
floating.  
RFU  
Notes:  
1.  
2.  
Only used when AD-Mux I/O flash is present  
P-CRE and P-Mode share the same package ball location. Only one signal function is available, depending on the stacked  
device combination.  
3.  
Only available on stacked device combinations with PSRAM, and/or SRAM die. Otherwise, it should be treated as RFU.  
Datasheet  
24  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Device Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the Absolute Maximum Ratings may cause permanent  
damage. These are stress ratings only.  
Table 9:  
Device Absolute Maximum Ratings  
Parameter  
Min  
Max  
Unit  
Notes  
Device Case Temperature Under Bias  
Storage Temperature  
–25  
–55  
+85  
°C  
°C  
+125  
Voltage On Any Signal  
(Except for F-VCC, F-VPP, P-VCC, VCCQ, and S-VCC  
–0.2  
2.25  
V
1,3  
)
F-VCC Voltage  
–0.2  
–0.2  
–0.2  
+2.45  
+2.45  
+10.0  
+50  
V
V
1,2  
1,3  
1,4  
5
V
CCQ, P-VCC, and Optional S-VCC Voltage  
F-VPP Voltage  
SH (Output Short Circuit Current)  
V
I
mA  
Notes:  
1.  
2.  
Voltage is referenced to VSS.  
During power transitions, minimum DC voltage may undershoot to –2.0 V for periods < 20 ns; maximum DC voltage  
may overshoot to VCC (operating max) + 2.0 V for periods < 20 ns.  
3.  
4.  
5.  
During power transitions, minimum DC voltage may undershoot to –1.0 V for periods < 20 ns; maximum DC voltage  
may overshoot to VCCQ (operating max) + 1.0 V for periods < 20 ns.  
During power transitions, minimum DC voltage may undershoot to –2.0 V for periods < 20 ns; maximum DC voltage  
may overshoot to VPPH (operating max) + 2.0 V for periods < 20 ns.  
Output shorted for no more than one second. No more than one output shorted at a time.  
5.2  
Device Operating Conditions  
Warning:  
Operation beyond the Operating Conditions is not recommended and extended  
exposure may affect device reliability.  
Table 10: Device Operating Conditions  
Flash + xRAM  
Test  
Symbol  
Parameter  
Unit  
Condition  
Min  
Max  
+85  
TC  
Device Case Operating Temperature  
Flash Supply Voltage  
–25  
°C  
V
F-VCC  
+1.7  
+2.0  
Flash and PSRAM I/O Voltage  
PSRAM and SRAM Supply Voltage  
VCCQ, P-VCC, S-VCC  
+1.7  
+1.95  
V
F-VPP (Flash Programming Voltage Supply,  
Logic Level)  
VPPL  
VPPH  
–0.9  
+8.5  
+2.0  
+9.5  
V
V
F-VPP (Flash Factory Word Programming  
Voltage Supply)  
VPP = VCC  
100,000  
Cycles  
Cycles  
Block Erase Cycles  
Flash Main Array and EFA Blocks  
VPP = VPPH  
1000  
Note: In typical operation, the F-VPP program voltage is VPPL. F-VPP can be connected to 8.5 V - 9.5 V for a maximum of 80  
cumulative hours or 1000 cycles on the main array blocks.  
November 2007  
314476-05  
Datasheet  
25  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
5.3  
Device Power-Up/Down  
5.3.1  
Flash Power and Reset Specifications  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed information.  
5.3.2  
PSRAM Power-Up Sequence and Initialization  
The power-on and initialization sequence ensures that the device is properly  
preconditioned to operate as expected. Like conventional DRAMs, the PSRAM must be  
powered up and initialized in a predefined manner. VCC and VCCQ must be applied at  
the same time to the specified voltage while the input signals are held in a deselected  
state (CS# = High).  
After power on, an initial pause of 150 µs is required prior to the control register access  
or normal operation. Failure to follow these steps may lead to unpredictable behavior.  
The default operation mode after power up is the asynchronous (SRAM) mode.  
Figure 10: PSRAM Timing Waveform for Power-Up Sequence  
P-Vcc MIN  
P-VCC/  
VCCQ  
μs  
tPU >= 150  
P-CS#  
Device Initialization  
Device ready for normal operation  
Datasheet  
26  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
6.0  
Device Electrical Specifications  
The DC current and voltage characteristics referenced in this document are for  
individual memory die type within the SCSP device. The total current for each  
parameter is determined by sum of the current for each memory die type specification  
within the SCSP device.  
NOTICE: Individual DC Characteristics of all dies in a SCSP device must be considered accordingly,  
depending on the SCSP device stacked combinations and operations.  
6.1  
6.2  
Flash DC Operating Characteristics  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed information.  
Synchronous PSRAM DC Operating Characteristics  
Synchronous PSRAM DC operating characteristics are shown in Table 11 and Table 12.  
Table 11: PSRAM DC Characteristics  
Test  
Conditions  
Parameter  
Description  
Density  
Min  
Typ  
Max  
Unit Notes  
VCC  
VCCQ  
VIH  
VIL  
Supply Voltage range  
I/O Supply Voltage range  
Input High Voltage  
1.7  
1.8  
1.8  
1.95  
V
1.7  
1.95  
V
V
1
VCCQ - 0.4  
VCCQ + 0.2  
Input Low Voltage  
-0.2  
0.4  
V
VOH  
VOL  
IIL  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
Output Leakage Current  
IOH = -0.2 mA  
0.8 x VCCQ  
V
IOL = 0.2 mA  
0.2 x VCCQ  
V
1
1
μA  
μA  
IOL  
32Mb  
64Mb  
32Mb  
64Mb  
32Mb  
64Mb  
32Mb  
64Mb  
32Mb  
64Mb  
32Mb  
64Mb  
32Mb  
64Mb  
20  
25  
15  
15  
25  
35  
35  
15  
35  
15  
110  
140  
70  
70  
VIN = VCC or  
VSS; IOUT = 0  
ICC1  
ICC1P  
ICC4R  
ICC4W  
ICC5  
Async Random Read/Write @ TRCMin  
Async Page Read  
mA  
mA  
mA  
mA  
mA  
μA  
VIN = VCC or  
VSS; IOUT = 0  
VIN = VCC or  
VSS; IOUT = 0  
Synchronous Burst Read (continuous)  
Synchronous Burst Write (continuous)  
Burst Initial Access  
VIN = VCC or  
VSS; IOUT = 0  
VIN = VCC or  
VSS; IOUT = 0  
V
IN = VCC or  
VSS; P-CS# =  
Deselected  
Standby Current  
(Full Array Refresh)  
ICC2  
V
IN = VCC or  
VSS; P-CS# =  
Deselected  
ICC3  
Deep Power-Down  
μA  
Note: VCCQ is not allowed to be outside of P-VCC ± 0.2 V except during power-up situation to avoid unnecessary current flow.  
November 2007  
314476-05  
Datasheet  
27  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 12: PSRAM Partial-Array Self-Refresh (Typical) Current  
Typical Standby Current (μA)  
Density  
Active Array  
85 oC  
70 o  
C
45 o  
C
15 oC  
Full  
1/2  
1/4  
1/8  
0
70  
60  
65  
55  
50  
45  
35  
50  
45  
40  
40  
30  
85  
45  
40  
35  
35  
25  
70  
70  
70  
70  
70  
32-Mbit  
55  
50  
40  
Full  
1/2  
1/4  
1/8  
0
120  
115  
110  
105  
70  
105  
TBD  
TBD  
TBD  
70  
TBD  
TBD  
TBD  
70  
64-Mbit  
Note: On-chip temperature sensor is used for temperature-compensated self-refresh, therefore the standby current values at  
70, 45 and 15 °C are for reference only.  
6.3  
Device AC Test Conditions  
Figure 11: Device Transient Equivalent Testing Load Circuit  
ZO = 50 Ohms  
I/O  
Output  
CL  
30pf  
=
50  
Ohms  
VCCQ/2  
Notes:  
1.  
2.  
Test configuration component value for worst case speed conditions.  
CL includes jig capacitance.  
6.3.1  
Flash Die Capacitance  
Table 13: L18 Individual Die Capacitance  
Symbol  
CIN  
COUT  
Parameter  
Min  
Max  
Unit  
Condition  
Input Capacitance  
(Address, CLK, F-CE#, F-OE#, ADV#, WE#, F-WP#)  
6
8
8
pF  
pF  
VIN = 0.0 V to 1.8 V  
VOUT = 0.0 V to 1.8 V  
Output Capacitance (Data and WAIT)  
10  
Note: Sampled, not 100% tested. TC = 25 °C, f = 1 MHz.  
Datasheet  
28  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
6.3.2  
Synchronous PSRAM Die Capacitance  
Table 14: Synchronous PSRAM Individual Die Capacitance  
Symbol  
Parameter  
Min  
Max  
Unit  
Condition  
Input Capacitance  
CIN  
6.5  
pF  
VIN = 0.0 V  
(Address, CLK, P-CS#, R-OE#, ADV#, WE#, R-UB#, R-LB#)  
COUT  
CI/O  
Output Capacitance (WAIT)  
6.5  
6.5  
pF  
pF  
VOUT = 0.0 V  
VOUT = 0.0 V  
Input/Output Capacitance (DQ)  
Note: Sampled, not 100% tested. TC = 25 °C, f = 1 MHz.  
November 2007  
314476-05  
Datasheet  
29  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
7.0  
Flash AC Characteristics  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed information about the following:  
• Flash AC Read Specifications  
• Flash AC Write Specifications  
• Flash Program and Erase Characteristics  
Datasheet  
30  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
8.0  
Synchronous PSRAM AC Characteristics  
The figures and tables below shows the PSRAM AC characteristics. All timing  
parameters are measured with the default output drive strength (half drive strength).  
8.1  
PSRAM Asynchronous Read  
Table 15: PSRAM AC Characteristics—Asynchronous Read  
85 ns PSRAM  
70 ns PSRAM  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
Min  
Max  
tRC  
tAA  
tAADV  
tPC  
Read Cycle Time  
85  
25  
6
85  
85  
25  
85  
85  
20  
10  
8
70  
20  
5
70  
70  
20  
70  
70  
20  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
Address Access Time  
ADV# Access Time  
1
Page Address Cycle Time  
Page Address Access Time  
Address Hold from ADV# High  
Address Setup to ADV# High  
CE# Low to ADV# High  
1,5  
1,5  
1,3  
1,3  
1,3  
1
tPAA  
tAVH  
tAVS  
tCVS  
tOH  
10  
10  
5
Output Hold from Address Change  
CE# Access Time  
tCO  
10  
0
6
1
tBA  
UB#, LB# Access Time  
1
tOE  
OE# to Valid Output Data  
CE# Pulse Width Low Time  
CE# Low to Output Low-Z  
CE# High to Output High-Z  
UB#, LB# Low to Output Low-Z  
UB#, LB# High to Output High-Z  
OE# Low to Output Low-Z  
OE# High to Output HIgh-Z  
ADV# Pulse Width Low  
1
tCSL  
tLZ  
1,2  
1
8
tHZ  
0
1
tBLZ  
tBHZ  
tOLZ  
tOHZ  
tVP  
10  
5
8
6
8
1
0
1
3
8
1
0
0
1
10  
15  
10  
10  
10  
0
10  
2
1,3  
1,3  
1
tVPH  
tCPH  
tCRES  
tASKEW  
tASKEWP  
ADV# Pulse Width High  
UB#, LB# and CE# Pulse Width High  
CRE Setup to CE# Low  
1
Address Skew (Non-Page Access)  
Page Mode Access Address Skew [A3:A0]  
1,4  
1,5  
Notes:  
1.  
2.  
3.  
4.  
5.  
Timing parameters are at the default output drive strength (half drive strength).  
tCSL max limit applies during asynchronous reads when page mode is enabled.  
Applies to ADV# controlled Asynchronous Read operations.  
Applies when control signals (ADV#, CS#, UB#/LB#) are active.  
When operating the PSRAM as an ADMux I/O interface, Page-Mode operation is not available.  
November 2007  
314476-05  
Datasheet  
31  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 12: Address Skew for Asynchronous Operations  
tASKEW  
Address  
ADV# (case 1)  
tASKEW  
tASKEW  
tASKEW  
tASKEW  
CE# (case 1)  
ADV# (case 2)  
CE# (case 2)  
Figure 13: PSRAM Asynchronous Single-Word Read  
tRC  
tAA  
A[MAX:0]  
tAADV  
ADV#  
tCO  
tCPH  
CE#  
OE#  
WE#  
tBA  
tCPH  
UB#/LB#  
tOLZ  
tOE  
tBLZ  
tLZ  
tBHZ  
tHZ  
tOHZ  
DQ[15:0]  
Note: WAIT is configured for active-low polarity.  
Datasheet  
32  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 14: Asynchronous Address-controlled Read  
tRC  
A[MAX:0]  
DQ[15:0]  
ADDRESS  
tAA  
tOH  
Previous Data  
Data Valid  
Note: CE# = OE# = UB# =LB# = CRE = Low; WE# = High  
Figure 15: PSRAM Asynchronous Page-Mode Read  
A[MAX:0]  
ADDRESS  
tRC  
tAA  
tPC  
A3-A0  
ADV#  
P-CS#  
ADDRESS  
ADDR  
ADDR  
ADDR  
ADDR  
tVPH  
tAADV  
tOH  
tCO  
tCSL  
tHZ  
tBHZ  
tBLZ  
R-UB#, R-LB#  
R-WE#  
R-OE#  
tOLZ  
tLZ  
tOH  
Data  
tPAA  
Data  
tOHZ  
Data  
Data  
Data  
Data  
tCEW  
WAIT  
deasserted  
Note: When operating the PSRAM as an ADMux I/O interface by connecting the lower sixteen (16) addresses, A[15:0], to the  
data pins, Page-Mode operation cannot be used.  
November 2007  
314476-05  
Datasheet  
33  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 16: PSRAM Asynchronous Control Register Read  
tRC  
tAA  
A[19:18]  
A[MAX:20,17:0]  
tCRES  
CRE  
tAADV  
tCO  
ADV#  
tCPH  
CE#  
OE#  
WE#  
tBA  
tCPH  
UB#/LB#  
tOLZ  
tOE  
tBLZ  
tLZ  
tBHZ  
tHZ  
tOHZ  
DQ[15:0]  
8.2  
PSRAM Asynchronous Write  
The figures and tables below shows the PSRAM AC characteristics. All timing  
parameters are measured with the default output drive strength (half drive strength).  
Table 16: PSRAM AC Characteristics—Asynchronous Write (Sheet 1 of 2)  
85 ns PSRAM  
70 ns PSRAM  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
Min  
Max  
tWC  
tAS  
Write Cycle Time  
85  
0
10  
70  
0
4
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Setup Time  
tAW  
tWR  
tCSL  
tCW  
tVPH  
tVP  
Address Valid to End of Write  
Write Recovery  
85  
0
70  
0
CE# Pulse Width Low Time  
CE# to End of Write  
85  
7
70  
10  
10  
5
ADV# Pulse Width High  
ADV# Pulse Width Low  
Address Hold from ADV# High  
Address Setup to ADV# High  
CE# Low to ADV# High  
ADV# Setup to End of Write  
UB#, LB# Setup to End of Write  
WE# Pulse Width Low  
2
2
2
2
2
6
tAVH  
tAVS  
tCVS  
tVS  
5
10  
85  
85  
45  
15  
10  
10  
70  
70  
46  
10  
tBW  
tWP  
1
tWPH  
WE# Pulse Width High  
Datasheet  
34  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 16: PSRAM AC Characteristics—Asynchronous Write (Sheet 2 of 2)  
85 ns PSRAM  
70 ns PSRAM  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
Min  
Max  
tCPH  
tWHZ  
tOW  
UB#, LB# and CE# Pulse Width High  
Write Enable Low to Output High-Z  
End of Write to Output Low-Z  
Write Data Setup Time  
15  
0
10  
10  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
10  
tDW  
20  
0
23  
0
tDH  
Write Data Hold Time  
tCRES  
tCREH  
tASKEW  
CRE SetupTime to CE# and WE# Low  
CRE Hold Time From WE# High  
Address Skew (Non-Page Access)  
5
0
4
4
3
0
0
Notes:  
1.  
2.  
3.  
4.  
WE# Low time must be limited to tCSL Max.  
For ADV# controlled Async Write operation.  
Applies when control signals (ADV#, CE#, UB#, LB#) are Active.  
For ADV# controlled write tAVS and tAVH apply to CRE signal instead of tCRES and tCREH  
.
Figure 17: PSRAM Asynchronous WE# controlled Write  
tWC  
tAW  
tWR  
A[MAX:0]  
tVS  
ADV#  
tCW  
CE#  
tWP  
tAS  
tWPH  
WE#  
tBW  
UB#/LB#  
tWHZ  
tBLZ  
tLZ  
tDH  
tOW  
tDW  
DQ[15:0]  
November 2007  
314476-05  
Datasheet  
35  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 18: PSRAM Asynchronous CE# controlled Write  
tWC  
tAW  
tWR  
A[MAX:0]  
ADV#  
tVS  
tCW  
tAS  
tCPH  
CE#  
WE#  
tWP  
tBW  
UB#/LB#  
tWHZ  
tBLZ  
tLZ  
tDW  
tDH  
DQ[15:0]  
Figure 19: PSRAM Asynchronous UB#/LB# controlled Write  
tWC  
tAW  
tWR  
A[MAX:0]  
tVS  
ADV#  
tCW  
tAS  
CE#  
tWP  
WE#  
tBW  
tCPH  
tDH  
UB#/LB#  
tWHZ  
tBLZ  
tLZ  
tDW  
DQ[15:0]  
Datasheet  
36  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 20: PSRAM Asynchronous ADV# controlled Write  
tAW  
A[MAX:0]  
tAVS  
tVP  
tAVH  
tVPH  
tVS  
ADV#  
CE#  
tCW  
tCPH  
tAS  
tWP  
WE#  
tBW  
UB#/LB#  
tWHZ  
tBLZ  
tLZ  
tDW  
tDH  
DQ[15:0]  
Figure 21: PSRAM Asynchronous Control Register Write  
tWC  
tAW  
tWR  
A[MAX:0]  
tCRES  
CRE  
tVS  
ADV#  
tCW  
tAS  
tCPH  
CE#  
tAS  
tWP  
tCREH  
WE#  
UB#/LB#  
DQ[15:0]  
8.3  
PSRAM Synchronous Read and Write  
The figures and tables below shows the PSRAM AC characteristics. All timing  
parameters are measured with the default output drive strength (half drive strength).  
November 2007  
314476-05  
Datasheet  
37  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 17: PSRAM AC Characteristics—Synchronous Read and Write  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
fCLK2  
fCLK6  
tCLK2  
tCLK6  
tCKH  
tCKL  
tT  
CLK Frequency (Variable Latency = 2)  
CLK Frequency (Fixed Latency = 6)  
CLK Period (Variable Latency = 2)  
CLK Period (Fixed Latency = 6)  
CLK High Time  
18.5  
18.5  
4
54  
54  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK Low Time  
4
CLK Rise/Fall Time  
5
1.8  
47.5  
70  
70  
70  
tABA  
tAA  
tAADV  
tCO  
tAVH  
tSP  
Burst Read First Access Delay (Variable Latency = 2)  
Address Access Time (Fixed Latency)  
ADV# Access Time (Fixed Latency)  
CE# Access Time (Fixed Latency)  
Address Hold from ADV# High (Fixed Latency)  
Input Setup to CLK High (except CE#)  
Input Hold from CLK High  
1
2
4
20  
tHD  
2
tCSS  
tCSL  
tCBPH  
tOL  
CE# Low Setup to CLK High  
CE# Pulse Width Low Time  
4.5  
6
20  
4
3
4
5
CE# Pulse Width High Time Between Operations  
OE# or UB#/LB# Low to Output Low-Z  
CE#, OE#, or UB#/LB# High to Output in High-Z  
OE# Low to Output Delay  
3
tOD  
0
8
tAOE  
tCWT  
tWZ  
1
20  
7.5  
8
CE# Low to WAIT Valid  
CE# High to WAIT High-Z  
2
tWK  
CLK to WAIT Valid  
9
tACLK  
tKOH  
tASKEW  
CLK to Output Delay  
9
Output Hold from CLK  
Address Skew  
10  
5
Notes:  
1.  
2.  
3.  
4.  
In case of refresh collisions with the first access, more WAIT cycles will be added.  
tSP Max values only applies to ADV#.  
The purpose of the Max limit is to prevent the PSRAM from starting Async access cycle.  
To allow for proper refresh operation, the CE# must be high during a clock low to high transition or keep CE# high for min  
15 ns.  
5.  
Address Skew maximum must not be exceeded during synchronous operations to avoid inadvertent asynchronous  
operation  
Datasheet  
38  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 22: Address Skew for Synchronous Operations  
CLK  
Address  
ADV# (Case 1)  
tASKEW  
CE# (Case 1)  
tASKEW  
ADV# (Case 2)  
CE# (Case 2)  
Figure 23: PSRAM Synchronous Read followed by Synchronous Write  
CLK  
tHD  
tHD  
tSP  
tSP  
tAVH  
tSP  
tSP  
tAVH  
A[MAX:0]  
ADV#  
tHD  
tHD  
tCBPH  
tCSS  
tCSS  
tHD  
tHD  
tHD  
CE#  
OE#  
tHD  
tHD  
tHD  
tSP  
tSP  
tSP  
WE#  
tHD  
tSP  
tHD  
UB#/LB#  
tCWT  
tCWT  
tWK  
tWZ  
tWK  
tWZ  
WAIT  
tACLK  
tAOE  
tOL  
tOD  
tHD  
tSP  
tABA  
tKOH  
DQ[15:0]  
November 2007  
314476-05  
Datasheet  
39  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 24: PSRAM Synchronous Write followed by Synchronous Read  
tHD  
tHD  
tSP  
tSP  
tAVH  
tSP  
tSP  
tAVH  
A[MAX:0]  
ADV#  
CE#  
tHD  
tHD  
tCBPH  
tCSS  
tHD  
tCSS  
tHD  
tHD  
tHD  
tSP  
tSP  
OE#  
tHD  
tHD  
tSP  
tSP  
WE#  
tSP  
tHD  
UB#/LB#  
tCWT  
tCWT  
tWK  
tWZ  
tWK  
tWZ  
WAIT  
tACLK  
tOL  
tHD  
tSP  
tAOE  
tOD  
tABA  
tKOH  
DQ[15:0]  
Datasheet  
40  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 25: PSRAM Synchronous Read followed by Asynchronous Write  
CLK  
tHD  
tS P  
tS P  
tA V H  
tA W  
A [MA X :0]  
tA V S  
tV P  
tHD  
tA V H  
tV S  
tV P H  
A D V#  
tCB PH  
tCS S  
tHD  
tHD  
CE #  
OE #  
tHD  
tS P  
tS P  
tA S  
W E #  
UB #/LB #  
W A IT  
tHD  
tCW T  
tW K  
tW Z  
tA C LK  
tA OE  
tOL  
tOD  
tA B A  
tK OH  
DQ[15:0]  
Figure 26: PSRAM Asynchronous Write followed by Synchronous Read  
C LK  
tH D  
tSP  
tAW  
A[M AX:0]  
tAVS  
tVP  
tAVH  
tVPH  
tH D  
tVS  
tSP  
AD V#  
C E#  
tC PH  
tC W  
tC SS  
tH D  
tWP  
tSP  
tAS  
tWPH  
WE#  
OE#  
tSP  
tBW  
tC PH  
U B#/LB#  
D Q [15:0]  
tWH Z  
tBLZ  
tLZ  
tD H  
tD W  
tOL  
November 2007  
314476-05  
Datasheet  
41  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 27: PSRAM Synchronous Control Register Read  
C LK  
t HD  
t S P  
t A V H  
A [ 19: 18]  
A [ M A X : 20: 17: 0]  
t S P  
t S P  
t HD  
t H D  
C R E  
t H D  
A D V #  
t C B P H  
t CS S  
t H D  
t H D  
C E #  
O E #  
t H D  
t S P  
t S P  
W
E #  
t H D  
U B # / LB #  
t C W  
T
t W K  
t W Z  
W
A I T  
t A O E  
t O L  
t A B A  
t A C LK  
t O D  
t K O H  
D Q [ 15: 0]  
Figure 28: PSRAM Synchronous Control Register Write  
C L K  
tH D  
tS P  
tS P  
tS P  
tA V H  
A [M A X :0 ]  
C R E  
tH D  
tH D  
tH D  
A D V #  
tC B P H  
tC S S  
tS P  
tH D  
C E #  
O E #  
tH D  
tH D  
tS P  
W E #  
U B # /L B #  
tC W T  
tW K  
tW Z  
W A IT  
D Q [1 5 :0 ]  
Datasheet  
42  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
9.0  
Flash Bus Interface  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed information regarding the following flash  
bus interface information:  
• Flash Configuration Register  
• Flash Enhanced Configuration Register  
• Flash Asynchronous Page-Mode Read  
• Flash Synchronous Burst-Mode Read  
• Flash Status Register  
• Flash Device Identifier  
• Common Flash Interface  
• Extended Flash Array  
10.0  
Flash Operations  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed information regarding the following flash  
operation information:  
• Flash Read Operation  
• Flash Program Operation  
• Flash Erase Operation  
• Flash Suspend and Resume Operations  
• Flash Block Locking and Unlocking Operations  
• Flash Protection Register Operation  
• Flash Configuration Operation  
November 2007  
314476-05  
Datasheet  
43  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
11.0  
PSRAM Bus Interface  
The PSRAM bus interface supports asynchronous and synchronous read and write  
transfers. By default the PSRAM device is reset to the asynchronous SRAM-type mode  
after power-up. To put the device in a different operation mode the Bus Configuration  
Register must be programmed first accordingly.  
11.1  
PSRAM Reads  
The PSRAM bus interface supports asynchronous single-word, asynchronous page-  
mode, and synchronous burst-mode reads. PSRAM Refresh Control Register bit 7  
(RCR7) defines whether page-mode reads are enabled. Page-mode reads are enabled  
when RCR7 is set to a one, and disabled when RCR7 is set to zero.  
11.1.1  
PSRAM Asynchronous Read  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
To initiate an asynchronous read operation:  
• CE#, OE#, and UB#/LB# must be asserted.  
• WE# and CRE must be deasserted.  
• ADV# can be toggled to latch the address or held low for the entire read operation.  
• CLK must be held in a static state.  
Valid data is available on the data bus after the specified access time has elapsed.  
WAIT output is driven, but should be ignored for asynchronous-mode read operations.  
11.1.2  
PSRAM Asynchronous Page-Mode Read  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, Page Mode opertion cannot be used; RCR 7 must  
be set to zero (0).  
Page mode allows toggling of the four lower address bits (A3 to A0) to perform  
subsequent random read accesses (max. 16-words by A3-A0) at much faster speed  
than the 1st read access. Only page mode Read operations are supported by the  
PSRAM. Once page mode is enabled by appropriately setting the BCR, tCSL restrictions  
will apply to asynchronous Read accesses. Therefore CE# will have to be pulled high at  
least every tCSL period during asynchronous Read operations. ADV# has to be held low  
for the entire page operation.  
11.1.3  
PSRAM Synchronous Burst-Mode Reads  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
In the Full Synchronous mode and NOR-Flash mode, PSRAM read operations are  
synchronous. A BURST INIT READ command is used to initiate a synchronous read  
operation and latch the burst start address. To initiate a synchronous read operation:  
• CE#, ADV#, and both UB# and LB# must be asserted;  
• WE# and CRE must be deasserted; and  
Datasheet  
44  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
• Burst start address is latched on the rising edge of the clock;  
To continue the synchronous read operation:  
• CE#, OE#, and both UB# and LB# must be asserted; and  
• ADV# must be deasserted;  
The first data word is output after the number of clock cycles defined by the  
programmed latency mode and latency count in the BCR. Subsequent data words are  
output at successive clock cycles after the first data word.  
• WAIT output will be driven and should be monitored in Variable Latency mode.  
• WAIT may be ignored in fixed latency mode.  
• Both UB# and LB# must be held static low for the entire read access. The size of  
the burst is also specified in the BCR.  
11.1.4  
PSRAM Asynchronous Fetch Control Register Read  
Note:  
This section does not apply to part numbers ending in Q0, Q1, Q2, or Q3. Products with  
order numbers ending with Q0, Q1, Q2, or Q3 are limited to setting the registry using  
hardware accesses only. Reading of the registry via hardware or software and setting of  
the registry via software are not supported for the foregoing products.  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
In the Asynchronous (SRAM-type) mode the contents of the BCR and RCR can be read  
asynchronously. To initiate an asynchronous Fetch Control Register (FCR):  
• CE#, OE#, CRE, and both UB# and LB# must be asserted;  
• WE# must be deasserted;  
• ADV# can be toggled to latch the address or held low for the entire read operation;  
• CLK must be held in a static low state.  
Except for A19 and A18, all other address and data bits are don’t care. A19 and A18  
specify the target register (RCR = 00b, BCR = 10b) The contents of the selected  
register are available on the data bus after the specified access time has elapsed. WAIT  
output will be driven but should be ignored for asynchronous operations.  
11.2  
PSRAM Writes  
The PSRAM bus interface supports asynchronous single-word and synchronous burst-  
mode writes. BCR15 defines whether asynchronous or synchronous mode is enabled.  
11.2.1  
PSRAM Asynchronous Write  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
In the Asynchronous (SRAM-type) mode and NOR-Flash mode, PSRAM write commands  
are asynchronous. To initiate an asynchronous write operation:  
• CE# and WE# must be asserted;  
• UB# and LB# must be asserted appropriately depending on the data byte(s) that  
are being written. UB# enables DQ[15:8] and LB# enables DQ[7:0].  
November 2007  
314476-05  
Datasheet  
45  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
• CRE must be deasserted;  
• ADV# can be toggled to latch the address or held low for the entire read operation;  
• CLK must be held in a static state.  
The data to be written will be latched on the rising edge of CE#, WE# or UB#/LB#  
whichever occurs first. WAIT output will be driven but should be ignored for  
asynchronous-mode operations.  
11.2.2  
PSRAM Synchronous Write  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
In the Full Synchronous mode, PSRAM write operations are synchronous. A BURST INIT  
WRITE command is used to initiate a synchronous write operation and latch the burst  
start address. To initiate a synchronous write operation:  
• CE#, ADV#, and WE# must be asserted;  
• OE# and CRE must be deasserted; and  
• Burst start address is latched on the rising edge of the clock;  
To continue the synchronous write operation:  
• CE#, and UB#/LB# must be asserted; and  
• ADV# must be deasserted;  
The first data word is input after the number of clock cycles defined by the  
programmed latency mode and latency count in the BCR. Subsequent data words are  
input at successive clock cycles after the first data word. The size of the burst is also  
specified in the BCR. WAIT output will be driven and may be monitored. But since  
synchronous write is always at fixed latency regardless of the Latency Mode setting,  
WAIT may be ignored. UB# or LB# may be deasserted to mask the associated data  
byte.  
11.2.3  
PSRAM Asynchronous Set Control Register Write  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
In the Asynchronous (SRAM-type) mode and NOR-Flash mode the contents of the BCR  
and RCR can be set asynchronously. To initiate an asynchronous Set Control Register:  
• CE#, WE#, and CRE must be asserted;  
• OE# must be deasserted;  
• ADV# can be toggled to latch the address or held low for the entire read operation;  
• CLK must be held in a static low state.  
The DQ signals are ignored by the PSRAM. Address bits A19 and A18 specify the target  
register (RCR = 00b, BCR = 10b.) The values of the remaining address bits are loaded  
into the selected register. The Set Control Register command should only be issued  
when the PSRAM is in the idle state (deselected).  
Datasheet  
46  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
11.2.4  
PSRAM Synchronous Set Control Register Write  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
In the full Synchronous mode the contents of the BCR and RCR can be set  
synchronously. To initiate a synchronous Set Control Register:  
• CE#, WE#, ADV#, and CRE must be asserted; and  
• OE# must be deasserted;  
• Address is latched on the rising edge of the clock  
The DQ signals are ignored by the PSRAM and therefore the WAIT signal should be  
ignored. Address bits A19 and A18 specify the target register (RCR = 00b, BCR = 10b.)  
The values of the remaining address bits are loaded into the selected register. The Set  
Control Register command should only be issued when the PSRAM is in the idle state  
(deselected).  
11.3  
PSRAM No Operation Command  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
The No Operation (NOP) command is used to perform a no operation to a selected  
PSRAM (CE# = Low) Operations in progress are not affected. A NOP may be issued in  
Asynchronous, Synchronous, or NOR-Flash mode. To initiate a NOP:  
• CE#, must be asserted;  
• WE#, ADV#, OE#, and CRE must be deasserted; and  
• CLK must be held in a static low state while in Asynchronous mode. CLK may toggle  
during a NOP in Synchronous mode.  
• In Synchronous mode, ADV# deasserted hold time (tHD) must be observed.  
11.4  
11.5  
PSRAM Deselect  
The Deselect function prevents new commands from being executed by the PSRAM. A  
deselected PSRAM places its I/O signals in a high impedance state. To place the device  
in a deselected state:  
• CE# must be deasserted.  
• CLK must be held in a static low state while in Asynchronous mode. CLK may toggle  
during a NOP in Synchronous mode.  
PSRAM Deep Power Down  
Deep Power Down (DPD) stops all refresh-related activities and the current  
consumption of the device drops to a very low level. The contents of the Memory are  
not preserved. After setting RCR4 = 1b, to place the device in the DPD state  
• CE# must be deasserted.  
• CLK must be held in a static low state to achieve minimum current consumption  
levels.  
November 2007  
314476-05  
Datasheet  
47  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
11.6  
PSRAM WAIT Signal  
The WAIT signal is used in synchronous mode to indicate to the host system periods of  
invalid data. Periods of invalid data are caused by:  
1. First access delays, or  
2. End of Row condition for continuous or wrap-off burst settings.  
For fixed length bursts with wrap on, WAIT remains deasserted when the End of Row is  
reached and the burst will wrap around and continue without any delay. Therefore for  
fixed length bursts with wrap on, WAIT is only asserted during First access delays.  
For continuous or wrap-off burst length configuration, End of Row condition, WAIT will  
transition from being de-asserted to being asserted within the time window defined by  
tKOH and tWK. Depending on the implementation for a burst write, WAIT may be  
asserted at the same time as the delay (condition A of Figure 29) or one clock cycle  
later (condition B of Figure 29.) This inconsistency does not occur during burst read.  
Figure 29: PSRAM WAIT Behavior during Burst Write End-of-Row with Wrap Off  
CLK  
tCSS  
tHD  
CE#  
tWK  
tWK  
A
tWZ  
WAIT  
B
DQ[15:0]  
End of Row  
Figure 30: PSRAM WAIT Behavior during Burst Read End-of-Row with Wrap Off  
CLK  
tCSS  
tHD  
CE#  
tWK  
tWZ  
tOD  
WAIT  
End of Row  
DQ[15:0]  
Datasheet  
48  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
During variable latency burst write operations and fixed latency burst write and read  
operations the initial latency is fixed so the system is not required to monitor the WAIT  
signal although the WAIT signal is fully functional and may be monitored by the  
system. The system should terminate or interrupt the burst access to avoid row  
boundary crossings in both fixed and variable latency mode.  
To match with the Flash interfaces of different microprocessor types the polarity and  
the timing of the WAIT signal can be configured. The polarity can be programmed to be  
either active low or active high. The timing of the WAIT signal can be adjusted as well.  
Depending on the BCR setting the WAIT signal will be either asserted at the same time  
the data becomes invalid or it will be set active one clock period in advance.  
In asynchronous mode including page mode, the WAIT signal is not used but stays  
asserted as BCR10 is specified. In this case, the system should ignore the WAIT signal.  
When the PSRAM is deselected or in deep power down, the WAIT output will be in a  
high impedance state.  
November 2007  
314476-05  
Datasheet  
49  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
12.0  
PSRAM Device Operation  
12.1  
PSRAM Operating Modes  
The PSRAM can be used in three different modes:  
• SRAM (full asynchronous) mode: In this mode the PSRAM applies the standard  
asynchronous SRAM protocol to perform read and write accesses. In additions,  
reads may be performed in page mode if the page mode is properly enabled by  
programming the RCR. In this mode the clock must always remain static low.  
• Fully Synchronous mode: In this mode, both read and write accesses are  
performed synchronously with respect to the clock. Synchronous operations are  
defined by the states of the control signals CE#, ADV#, OE#, WE# and UB#, LB#  
at the positive (default) edge of the clock.  
• NOR-Flash mode: In this mode, reads are performed synchronously with respect to  
the clock and writes are performed asynchronously. The asynchronous write  
operation requires that the clock remain static low during the entire write.  
Synchronous read operations are defined by the states of the control signals CE#,  
ADV#, OE#, WE# and UB#, LB# at the positive (default) edge of the clock.  
12.2  
PSRAM Control Registers  
The two control registers define the PSRAM device operation. The Bus Control Register  
(BCR) defines how the PSRAM interacts with the system memory bus, and the Refresh  
Control Register (RCR) defines low-power refresh modes. Both these registers are  
loaded with default values on power-up and can be updated at any time.  
12.2.1  
PSRAM Bus Control Register  
The Bus Control Register (BCR) specifies the interface configurations. The Bus Control  
Register is programmed via the Set Control Register command (with CRE = 1 and  
A[19:18] = 10b) and retains the stored information until it is reprogrammed or the  
device loses power.  
Reserved bit fields of the BCR should be ignored during a Fetch Control Register  
command as they may have undefined values even when set to 0b with a Set Control  
Register command. The BCR contents can only be set or changed when the PSRAM is in  
idle state.  
Table 18: PSRAM Bus Control Register Map  
DQ  
[15:0]  
DQ1 DQ1 DQ1 DQ1 DQ1 DQ1 DQ DQ DQ DQ DQ DQ DQ DQ DQ DQ  
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
A
A22  
-
A20  
A17  
-
A16  
A1 A1  
[MAX:0  
]
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7 A6  
A5  
A4  
A3 A2  
A1 A0  
9
8
22-  
20  
17-  
16  
BCR Bit  
19 18  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Datasheet  
50  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 19: Bus Control Register Description  
BCR Bit  
NAME  
Description  
22:20  
19:18  
17:16  
Reserved  
Reserved bits should be set to ‘0’ during set control register commands  
10 = Select BCR  
Register Select  
Reserved  
Reserved bits should be set to ‘0’ during set control register commands  
0 = Synchronous Burst Mode  
15  
14  
Operating Mode  
Initial Latency  
1 = Asynchronous Mode (Default)  
0 = Variable (Default)  
1 = Fixed  
000 = Code 0 - Reserved  
001 = Code 1 - Reserved  
010 = Code 2  
011 = Code 3 (Default)  
100 = Code 4  
13:11  
Latency Counter  
101 = Code 5  
110 = Code 6  
111 = Code 7 - Reserved  
0 = Active Low  
10  
9
WAIT Polarity  
Reserved  
1 = Active High (Default)  
Reserved bits should be set to ‘0’ during set control register commands  
0 = WAIT asserted during delay  
1 = WAIT asserted one data cycle before delay (Default)  
8
WAIT Configuration  
Reserved  
7:6  
Reserved bits should be set to ‘0’ during set control register commands  
00 = Full  
01 = 1/2 (Default)  
10 = 1/4  
11 = Reserved  
5:4  
3
Drive Strength  
Burst Wrap  
0 = Burst wraps within the burst length  
1 = Burst does not wrap (Default)  
000 = Reserved  
001 = 4 words  
010 = 8 words  
011 = 16 words  
2:0  
Burst Length  
100 = 32 words  
101 = Reserved  
110 = Reserved  
111 = Continuous Burst (Default)  
12.2.1.1  
PSRAM BCR Operating Mode  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, ADV# must be deasserted during any data phase  
cycle.  
The PSRAM supports three different interface access protocols:  
• SRAM-type protocol with asynchronous read and write accesses  
• NOR-Flash-type protocol with synchronous read and asynchronous write accesses  
• FULL SYNCHRONOUS mode with synchronous read and synchronous write accesses  
November 2007  
314476-05  
Datasheet  
51  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Operating the PSRAM in synchronous mode maximizes bandwidth. The NOR-Flash type  
mode is the recommended mode for legacy systems which are not able to run the  
synchronous write protocol. The Operating Mode bit BCR15 defines whether the device  
is operating in synchronous (fully or partially) mode or asynchronous mode.  
When BCR15 is set low, the mode of write operation, NOR-flash or Full synchronous, is  
adaptively detected by detecting a rising clock edge during ADV# valid. If a rising clock  
edge occurs within ADV# valid, Full synchronous write is detected. If there is no rising  
clock edge then NOR-Flash write is detected and CE# must go high when transitioning  
from asynchronous to synchronous operation or when transitioning from synchronous  
to asynchronous operation..  
When BCR15 is set high, the SRAM-type mode of operation is selected.  
12.2.1.2  
PSRAM Initial Latency BCR Bit  
The PSRAM latency is related to the number of clock cycles from the burst-init  
command to be either 1st valid data output (read burst) or 1st valid data input (burst  
write.) In Fixed Latency mode, the number of clock cycles from bust-init command to  
valid data is always fixed as defined by the Latency Counter setting in the BCR. In  
Variable Latency mode, the number of clock cycles from bust-init command to valid  
data output (read burst) is variable depending on internal device operation. The  
minimum latency in Variable Latency mode is defined by the Latency Counter setting in  
the BCR. Additional WAIT cycles may be added in Variable Latency mode if the burst-  
init Read command collides with an on-going internal refresh. Additional WAIT cycles  
are not added for burst-init Write commands in Variable Latency mode.  
12.2.1.3  
PSRAM Latency Counter BCR Bit  
The latency counter defines the number of clock cycles that pass before the first output  
data is valid (read burst) or before the first input data is valid (read burst.) Each  
Latency Code setting has an associate maximum PSRAM clock frequency. In the case of  
Variable Latency the first access delay might be extended by additional wait cycles in  
case the burst read access collides with an ongoing self-refresh operation. The allowed  
values of the Latency Counter also depend on the Initial Latency setting in BCR.  
Table 20: Optional PSRAM BCR Latency Counter Settings in Variable Latency  
Latency Counter  
PSRAM  
010  
011  
Code 2; Max 54 MHz  
Code 3; Max 80 MHz  
Reserved  
Others  
Table 21: Optional PSRAM BCR Latency Counter Settings in Fixed Latency  
Latency Counter  
PSRAM  
010  
011  
Code 2; Max 33 MHz  
Code 3; Max 52 MHz  
Code 4; Max 66 MHz  
Code 5; Max 75 Mhz  
Code 6; Max 104 MHz  
Reserved  
100  
101  
110  
Others  
Datasheet  
52  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 31: Example of the Latency of First Valid Data in Synchronous Mode  
12.2.1.4  
PSRAM WAIT Polarity BCR Bit  
The WAIT polarity control bit allows the user to define the polarity of the WAIT output  
signal. The WAIT output line is used during a variable latency synchronous read burst  
to signal when the output data is invalid. Active low WAIT polarity means that when  
WAIT is asserted low, output data is invalid. Similarly active high WAIT polarity means  
that when WAIT is asserted high, output data is invalid.  
12.2.1.5  
12.2.1.6  
PSRAM WAIT Configuration BCR Bit  
The WAIT signal configuration control bit specifies whether the WAIT signal is asserted  
at the time of the delay or whether it is asserted one clock cycle in advance of the  
delay.  
PSRAM Drive Strength BCR Bit  
For adaptation to different system characteristics the output impedance can be  
configured. Full drive strength is targeted for 25-30 Ohm systems, half drive strength is  
targeted for 50 Ohm systems, and quarter drive strength is targeted for 100 Ohm  
systems.  
12.2.1.7  
PSRAM Burst Wrap BCR Bit  
The burst wrap control bit defines whether there is a wrap around within a burst access  
or not. In case of fixed 8-word burst length, this means that after word #7, word #0 is  
going to be output in wrap mode.  
In case of continuous burst mode the internal address counter will increment  
continuously until terminated by the system. For continuous burst mode or non-wrap  
mode, the burst access must be terminated prior to a row boundary crossing.  
The burst wrap setting is used for both Write and Read operations.  
12.2.1.8  
PSRAM Burst Length BCR Bit  
The burst length setting defines the Wrap boundary whenever Burst Wrap is enabled by  
setting BCR3 = 0b. When Burst Wrap is disabled by setting BCR3 = 1b, all burst behave  
as Continuous Bursts regardless of the Burst Length setting. Furthermore all fixed  
length bursts (4-, 8-, 16-, and 32-word bursts) will continue until terminated by  
bringing CE# high or interrupted by initiating a new burst access. Continuous Burst and  
November 2007  
314476-05  
Datasheet  
53  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Fixed Length Burst with Wrap Off will increment the address until a row boundary  
crossing is reached. Fixed Length Bursts will continue to wrap around and cycle through  
their limited address space until terminated or interrupted. The burst length setting is  
used for both Write and Read operations.  
Table 22: PSRAM Burst Length Sequences  
Burst Address Sequence (decimal)  
Wrap Off Wrap On  
Starting Address  
[A4:A0]  
Burst Length  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-3-0-1-2-3-...  
1-2-3-0-1-2-3-1-...  
...  
4
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-28-29-30-31-28-29-...  
31-28-29-30-31-28-29-30-...  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-3-4-5-6-7-0-1-2-3-...  
1-2-3-4-5-6-7-0-1-2-3-4-...  
...  
8
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-24-25-26-27-28-29-30-...  
31-24-25-26-27-28-29-30-31...  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-...-13-14-15-0-1-2-...  
1-2-3-...-14-15-0-1-2-3-...  
...  
16  
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-16-17-...-29-30-31-16-17-...  
31-16-17-...-29-30-31-16-17-...  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-...-29-30-31-0-1-2-...  
1-2-3-...-29-30-31-0-1-2-...  
...  
32  
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-0-...-29-30-31-0-1-...  
31-0-1-...-29-30-31-0-1-...  
00000b  
00001b  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
0-1-2-3-4-5-6-7-...-EOR  
1-2-3-4-5-6-7-8-...-EOR  
...  
Continuous  
11110b  
11111b  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
30-31-32-33-34-...-EOR  
31-32-33-34-35-...-EOR  
Note: EOR = End of Row  
12.2.2  
PSRAM Refresh Control Register  
The Refresh Control Register (RCR) allows for additional stand-by power savings by  
making use of the Partial-Array Self Refresh (PASR) and Deep Power Down (DPD)  
features. The RCR is programmed via the Control Register Set command (with CRE = 1  
and A[18:19] = 00b) and retains the stored information until it is reprogrammed or the  
device loses power.  
Reserved bit fields of the RCR should be ignored during a Fetch Control Register  
command as they may have undefined values even when set to 0b with a Set Control  
Register command. The RCR contents can only be set or changed when the PSRAM is in  
idle state.  
Datasheet  
54  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 23: PSRAM Refresh Control Register Map  
Register  
Select  
Page  
Mode  
Deep Power  
Down (DPD)  
Reserved  
Reserved  
Reserved  
Reserved  
PASR  
DQ[15:0]  
DQ16-DQ8  
A17 - A8  
17 - 8  
DQ7  
A7  
7
DQ6  
A6  
6
DQ5  
A5  
5
DQ4  
A4  
4
DQ3  
A3  
3
DQ2  
A2  
2
DQ1  
A1  
1
DQ0  
A0  
0
A[MAX:0  
]
A22 - A20  
22 - 20  
A19  
19  
A18  
18  
RCR Bit  
Table 24: PSRAM Refresh Control Register Description  
RCR Bit  
NAME  
Description  
Reserved bits should be set to ‘0’ during set control register  
commands  
22:20  
19:18  
17:8  
Reserved  
Register Select  
Reserved  
00 = Select RCR  
Reserved bits should be set to ‘0’ during set control register  
commands  
0 = Page Mode disabled (Default)  
1 = Page Mode enabled  
7
6:5  
4
Page Mode  
Reserved  
Reserved bits should be set to ‘0’ during set control register  
commands  
0 = DPD enabled  
1 = DPD disabled (Default)  
Deep Power Down (DPD)  
Reserved  
Reserved bits should be set to ‘0’ during set control register  
commands  
3
000 = Full array refreshed (Default)  
001 = Bottom 1/2 of array refreshed  
010 = Bottom 1/4 of array refreshed  
011 = Bottom 1/8 of array refreshed  
100 = None of array refreshed  
2:0  
Partial Array Self Refresh  
101 = Top1/2 of array refreshed  
110 = Top1/4 of array refreshed  
111 = Top1/8 of array refreshed  
12.2.2.1  
PSRAM Page Mode RCR Bit  
In asynchronous (SRAM) mode, the user has the option to enable page mode. Page  
mode applies only to asynchronous read operations and has no impact on  
asynchronous write operations. In synchronous and NOR-Flash modes, the page mode  
setting has no impact on PSRAM operation. The maximum page length is 16 words, so  
A[3:0] is regarded as the page address.  
Warning:  
When the lower sixteen address bits A[15:0] are connected to the data pins to operate  
PSRAM as an A/D Mux I/O interface, Page Mode operation cannot be used.  
12.2.2.2  
PSRAM Deep-Power Down RCR Bit  
To put the device in deep power down mode the DPD control bit must be set low  
(RCR4 =0.) All internal voltage generators inside the PSRAM are switched off and the  
internal self-refresh is stopped. This means that all stored memory information will be  
lost by entering DPD. Only the register values of BCR, and RCR remain valid during  
DPD.  
November 2007  
314476-05  
Datasheet  
55  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
12.2.2.2.1  
12.2.2.2.2  
PSRAM Deep-Power Down Entry  
To enter deep power down, RCR4 is set low, CE# is then pulled high and is maintained  
high for the entire time duration that Deep Power Down mode is desired. To insure  
proper operation, once CE# is pulled high, it should be maintained high for minimum of  
150 µs before beginning the Deep Power Down Exit sequence.  
PSRAM Deep-Power Down Exit  
To exit the deep power down mode the CE# must go low for minimum 10 µs, followed  
by a guard time of at least 150 µs where CE# must be maintained high. Once deep  
power down is exited, the DPD control bit RCR4 is automatically reset to 1. All other  
Control Register contents are unchanged.  
Figure 32: Deep Power Down Exit Timing  
12.2.2.3  
Description of PSRAM Partial-Array Self-Refresh RCR Bit  
By applying PASR the user can dynamically customize the memory capacity to the  
system’s actual need in normal operation mode and standby mode. RCR[2:0] specifies  
the active memory array and its location (starting from bottom or top). The memory  
parts not used are powered down immediately after the mode register has been  
programmed. Advice for the proper register setting including the address ranges is  
given in the figure below. PASR is effective in normal operation and standby mode as  
soon as it has been configured by register programming.  
Table 25: PSRAM PASR Address Pattern (Sheet 1 of 2)  
Device  
A2  
A1  
A0  
Density (Mb)  
Active Section  
Address  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
64  
32  
16  
8
Full Array  
000000h - 3FFFFFh  
000000h - 1FFFFFh  
000000h - 0FFFFFh  
000000h - 07FFFFh  
None  
Lower 1/2 of the array  
Lower 1/4 of the array  
Lower 1/8 of the array  
None  
64 Mbit  
0
32  
16  
8
Upper 1/2 of the array  
Upper 1/4 of the array  
Upper 1/8 of the array  
200000h - 3FFFFFh  
300000h - 3FFFFFh  
380000h - 3FFFFFh  
Datasheet  
56  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 25: PSRAM PASR Address Pattern (Sheet 2 of 2)  
Device  
A2  
A1  
A0  
Density (Mb)  
Active Section  
Full Array  
Address  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
32  
000000h – 1FFFFFh  
000000h – 0FFFFFh  
000000h – 07FFFFh  
000000h – 03FFFFh  
0
Lower 1/2 of the array  
Lower 1/4 of the array  
Lower 1/8 of the array  
None  
16  
8
4
32 Mbit  
0
Upper 1/2 of the array  
Upper 1/4 of the array  
Upper 1/8 of the array  
16  
8
100000h – 1FFFFFh  
180000h – 1FFFFFh  
1C0000h – 1FFFFFh  
4
12.3  
PSRAM Access to Control Register  
The PSRAM control registers (BCR and RCR) can be updated at any time to select  
desired operating modes.  
The control registers can be accessed by the hardware access method using the CRE  
pin or software access method consisting of a series of reads and writes.  
The two methods are described in the sections below.  
Note:  
Products with order numbers ending with Q0, Q1, Q2, or Q3 are limited to setting the  
registry using hardware accesses only. Reading of the registry via hardware or software  
and setting of the registry via software are not supported for the foregoing products.  
12.3.1  
PSRAM Hardware Control Register Access  
Hardware write or read access to the PSRAM registers occurs by applying the SCR and  
FCR commands with the CRE signal asserted high. During the SCR and FCR commands,  
A[19:18] designates target register. A[19:18] = 00b accesses the Refresh Control  
Register (RCR), A[19:18] = 10b accesses the Bus Control Register (BCR). The SCR and  
FCR commands can be applied in either synchronous or asynchronous mode.  
After applying the SCR command in asynchronous mode, CE# must be pulled high for  
minimum of tCPH prior to initiating any subsequent command. After applying the SCR  
command in synchronous mode, CE# must be pulled high for minimum of tCPBH prior  
to initiating a subsequent synchronous command. Additionally, when applying the  
synchronous SCR command CE# must remain low to complete a burst of one write  
even though the DQ values are ignored by the PSRAM. To insure predictable device  
behavior, an SCR command should not be terminated or interrupted prematurely and  
ADV# should not go low more than one time prior to CE# being pulled high.  
12.3.2  
PSRAM Software Register Access  
Software access of the registers uses a sequence of asynchronous read and  
asynchronous write operations. First, two asynchronous reads to the maximum address  
are performed followed by an asynchronous write to the maximum address. The data  
values during this asynchronous write select the appropriate register.  
During the fourth operation, DQ[15:0] transfer data in to or out of the bits [15:0] of  
the registers.  
During the software access sequence, it is necessary to:  
November 2007  
314476-05  
Datasheet  
57  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Toggle CE# between every read or write command (so the Device can distinguish 4  
separate cycles).  
• Maintain the address input until it is latched by ADV# or until CE# goes high. After  
setting the control registers using the software access method, CE# must be pulled  
high for minimum of tCPH prior to initiating any subsequent command.  
To insure predictable device behavior, the fourth access cycle of the software access  
should not be terminated or interrupted prematurely and ADV# should not go low  
more than one time during each access where CE# is low  
Furthermore, during the 3rd cycle of the software access, the asynchronous write  
operation should be CE# controlled, that is on the 3rd cycle CE# must go high prior to  
WE# and UB#/LB#.  
Figure 33: PSRAM Loading Configurations Registers Using Software Access  
A[MAX:0]  
MAX  
MAX  
MAX  
MAX  
CE#  
OE#  
WE#  
UB#/LB#  
DQ[15:0]  
XXXXh  
XXXXh  
Input  
RCR: 0000h  
BCR: 0001h  
Figure 34: PSRAM Reading Registers Using Software Access  
A[MAX:0]  
MAX  
MAX  
MAX  
MAX  
CE#  
OE#  
WE#  
UB#/LB#  
DQ[15:0]  
XXXXh  
XXXXh  
Output  
RCR: 0000h  
BCR: 0001h  
DIDR: 0002h  
Datasheet  
58  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
12.3.3  
Cautionary Note About Software Register Access  
To insure inadvertent access to the PSRAM registers during asynchronous operation,  
the system must avoid the below two command sequences when accessing the main  
memory array. On the 3rd cycle of the below command sequences the write to the main  
memory may be blocked and the software register access mode may be entered. To  
avoid such possibility, the system should avoid the below command sequences unless it  
is intending to access the registers through the software method.  
Table 26: Cautionary Command Sequences  
Cautionary Command Sequence #1  
Address  
Max  
Max  
Max  
Command  
Async Read  
Async Read  
Async Write  
Cautionary Command Sequence #2  
Address  
Max  
Max  
Max  
Async Write  
(WE# controlled)  
Async Read  
Async Write  
Command  
12.4  
PSRAM Self-Refresh Operation  
Unlike DRAMs, The PSRAM relieves the host system from issuing refresh commands.  
Self-refresh operations are autonomously scheduled and performed by the PSRAM  
device. In synchronous mode of operations (variable latency Read), the additional  
WAIT cycles are used to indicate when the data output is delayed in case a burst  
initiated access collides with an ongoing refresh cycle.  
12.4.1  
PSRAM Self-Refresh Operations at Low Frequency  
At low frequencies (< 100 KHz ), the PSRAM can support only asynchronous read (non-  
page and non-burst modes) operations. All other operations (asynchronous writes,  
page-mode reads, and synchronous burst-mode accesses) are subject to refresh  
restrictions.  
12.5  
PSRAM Burst Suspend, Interrupt, or Termination  
PSRAM Burst Suspend  
12.5.1  
While in synchronous burst operation, the bus interface may need to be assigned to  
other memory transaction sharing the same bus. Burst suspend is used to fulfill this  
purpose. Keeping CE# low (WAIT stays active although the DQ are tri-stated), burst  
suspend is initiated by halting CLK. CLK can stay at either high or low state. Burst  
suspend may also by initiated while WAIT is asserted during the initial latency period or  
at the end of a row.  
November 2007  
314476-05  
Datasheet  
59  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
As specified, duration of keeping CE# low can not exceed tCSL maximum so that  
internal refresh operation is able to run properly. In the event that tCSL maximum may  
be exceeded, termination of burst by bringing CE# high is strongly recommended  
instead of using burst suspend mode.  
Figure 35: Example of PSRAM Burst Suspend with Read Burst with Latency Code 2  
CLK  
A[MAX:0]  
ADV#  
tCSL  
tCSS  
CE#  
OE#  
WE#  
UB#/LB#  
tCWT  
tWK  
tWZ  
WAIT  
tACLK  
tAOE  
tOL  
tOD  
tKOH  
tAOE  
tOL  
tABA  
tKOH  
D2  
tOD  
D0  
D1  
D3  
DQ[15:0]  
Note: WAIT is configured as Active Low and asserted during delay.  
12.5.2  
PSRAM Burst Interrupt  
In burst interrupt an on-going burst is ended and new burst command issued while  
keeping CE# low (subject to tCSL restrictions.) To insure proper device operation, a  
burst interrupt is prohibited until the previous burst-init command completes its first  
valid data transaction. If a burst read is interrupted by a new burst command, the DQ  
are put into a high-Z state (within tWHZ time period.) If a burst write is interrupted by  
a new burst command, the write data is automatically masked regardless of UB#/LB#  
setting. Also note, that prior to initiating a burst interrupt by taking ADV# low, the  
ADV# high hold time of tHD must be met with respect to the previous clock cycle  
Datasheet  
60  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 36: Example of PSRAM Burst Interrupt  
Earliest allowed  
burst interrupt  
CLK  
Burst Init  
Burst Init  
Control  
No-OP No-OP No-OP No-OP  
tHD  
ADV#  
DQ  
tWHZ  
Code 3  
Read becomes high-Z  
Write data is masked  
12.5.3  
12.6  
PSRAM Burst Termination  
A burst access is terminated by bringing CE# high and maintaining high for minimum of  
tCBPH.  
In burst mode a refresh opportunity must be provided every tCSL period by  
maintaining CE# high for minimum of 15ns or maintaining CE# high during a clock low  
to high transition.  
PSRAM Row Boundary Crossing  
Row boundary crossings are not allowed in burst mode (regardless of using variable or  
fixed latency mode.) An on-going burst must be terminated by the system prior to a  
row boundary crossing. A row boundary crossing would never occur if the PSRAM is  
operating in fixed burst length and wrap mode. Therefore the only time the system  
should be concerned with row boundary crossing is if the PSRAM is operating with “no  
wrap” (BCR3 = 0b) or “continuous burst length” (BCR[2:0] = 111b) settings.  
In terminating bursts prior to row boundary crossing, the system may read the row size  
(128 or 256 words) to determine at which addresses the row boundary crossing occurs.  
If the system cannot do this, then it should be assumed that the row size is 128 words.  
In the case of 128-word row size the boundary between adjacent rows occurs at every  
address ending in 7Fh (111 1111 b.) In the case of 256-word row size the boundary  
between adjacent rows occurs at every address ending in FFh (1111 1111 b.)  
At a Row boundary crossing, a burst interrupt or termination must occur no later than  
2-clock cycle past the transaction representing the last word of a row.  
November 2007  
314476-05  
Datasheet  
61  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Figure 37: Terminating or Interrupting Burst Prior to Row Boundary Crossing  
Latest allowed  
burst terminate  
Latest allowed  
burst interrupt  
CLK  
CE#  
Low  
High  
ADV#  
DQ  
Last-1  
Last-1  
Last  
Last  
Last Word of Row  
Last Word of Row  
Appendix A Flash Write State Machine  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed information.  
Appendix B Flash Common Flash Interface  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed information.  
Appendix C Flash Flowcharts  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) datasheets (Non-Mux I/O  
251902 and AD-Mux I/O, 313295) for detailed information.  
Appendix D Additional Information  
:
Order Number  
Document  
251902  
313295  
Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet  
Numonyx™ StrataFlash® Wireless Memory (L18) with AD-Multiplexed I/O Datasheet  
Note: Contact your local Numonyx sales representative or visit the Numonyx website at http://www.numonyx.com for current  
information on Numonyx™ Flash memory products, documentation, software and tools.  
Datasheet  
62  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Appendix E Ordering Information  
To order samples, obtain datasheets or inquire about any stack combination, please  
contact your local Numonyx representative.  
Table 27: 38F Type Stacked Components  
PF  
38F  
5070  
M0  
Y
0
B
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash Product  
Family  
Ballout  
Identifier  
Device  
Details  
Char 1 = Flash  
die #1  
V =  
0 =  
First character  
applies to Flash  
die #1  
1.8 V Core  
and I/O;  
Separate Chip  
Enable per die  
Char 2 = Flash  
die #2  
No parameter  
blocks; Non-  
Mux I/O  
B =  
x16D  
Ballout  
interface  
Char 3 =  
RAM die #1  
0 =  
PF =  
Second character  
applies to Flash  
die #2  
Original  
released  
version of  
this  
SCSP, RoHS  
(See  
(See  
(See  
Table 31,  
“Voltage /  
NOR Flash  
CE#  
Table 33  
Stacked NOR  
Table 32,  
“Parameter  
/ Mux  
,
Flash + RAM Char 4 =  
RD =  
“Ballout  
Decoder  
” on  
(See Table 30,  
“NOR Flash  
Family  
RAM die #2  
SCSP, Leaded  
product  
Configurati  
on  
Configurati  
on  
(See  
page 65  
for details)  
Decoder” on  
page 64 for  
details)  
Decoder”  
on page 65  
for details)  
Table 29,  
“38F / 48F  
Density  
Decoder”  
onpage 64  
for details)  
Decoder”  
on page 64  
for details)  
Table 28: 48F Type Stacked Components  
PC  
48F  
4400  
P0  
V
B
0
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash Product  
Family  
Ballout  
Identifier  
Device  
Details  
PC =  
Easy BGA,  
RoHS  
Char 1 = Flash  
die #1  
V =  
B =  
First character  
applies to Flash  
dies #1 and #2  
1.8 V Core  
and 3 V I/O;  
Virtual Chip  
Enable  
Char 2 = Flash  
die #2  
Bottom  
0 =  
RC =  
parameter;  
Non-Mux I/O  
interface  
Discrete  
Ballout  
Easy BGA,  
Leaded  
0 =  
Char 3 = Flash  
die #3  
Second character  
applies to Flash  
dies #3 and #4  
Original  
released  
version of  
this  
(See  
(See  
JS =  
TSOP, RoHS  
(See  
Stacked  
NOR Flash  
only  
Table 31,  
“Voltage /  
NOR Flash  
CE#  
Table 33  
Table 32,  
“Parameter  
/ Mux  
Char 4 = Flash  
die #4  
,
“Ballout  
Decoder  
” on  
(See Table 30,  
“NOR Flash  
Family  
product  
TE =  
TSOP, Leaded  
Configurati  
on  
Configurati  
on  
(See  
page 65  
for details)  
Table 29,  
“38F / 48F  
Density  
Decoder” on  
page 64 for  
details)  
Decoder”  
on page 65  
for details)  
Decoder”  
on page 64  
for details)  
PF =  
SCSP, RoHS  
Decoderon  
page 64 for  
details)  
RD =  
SCSP, Leaded  
November 2007  
314476-05  
Datasheet  
63  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 29: 38F / 48F Density Decoder  
Code  
Flash Density  
RAM Density  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
No Die  
No Die  
4-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
8-Mbit  
16-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
128-Gbit  
256-Gbit  
512-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
Table 30: NOR Flash Family Decoder  
Code  
Family  
Marketing Name  
C
C3  
Numonyx Advanced+ Boot Block Flash Memory  
Numonyx Embedded Flash Memory  
Numonyx™ StrataFlash® Wireless Memory  
Numonyx™ StrataFlash® Cellular Memory  
Numonyx™ StrataFalsh® Embedded Memory  
Numonyx™ Wireless Flash Memory  
No Die  
J3v.D  
J
L
L18 / L30  
M18  
M
P
P30 / P33  
W18 / W30  
-
W
0(zero)  
Table 31: Voltage / NOR Flash CE# Configuration Decoder (Sheet 1 of 2)  
I/O Voltage  
Code  
Core Voltage (Volt)  
CE# Configuration  
Seperate Chip Enable per die  
(Volt)  
Z
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
3.0  
Seperate Chip Enable per die  
Seperate Chip Enable per die  
Virtual Chip Enable  
Y
X
V
U
T
Virtual Chip Enable  
Virtual Chip Enable  
Datasheet  
64  
November 2007  
314476-05  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Table 31: Voltage / NOR Flash CE# Configuration Decoder (Sheet 2 of 2)  
I/O Voltage  
Code  
Core Voltage (Volt)  
CE# Configuration  
(Volt)  
R
Q
P
3.0  
1.8  
3.0  
1.8  
1.8  
3.0  
Virtual Address  
Virtual Address  
Virtual Address  
Table 32: Parameter / Mux Configuration Decoder  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
0 = Non Mux  
1 = AD Mux1  
2= AAD Mux  
Any  
NA  
Notation used for stacks that contain no parameter blocks  
3 =Full" AD  
Mux2  
1
2
3
4
2
4
1
2
3
4
2
4
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Top  
-
-
-
Top  
-
-
B = Non Mux  
C = AD Mux  
F = "Full" Ad  
Mux  
X16  
X32  
X16  
X32  
Bottom  
Top  
Top  
-
Bottom  
Top  
Bottom  
Bottom  
-
-
-
Top  
Top  
-
-
Top  
Bottom  
Top  
-
-
T = Non Mux  
U = AD Mux  
W = "Full" Ad  
Mux  
Top  
Bottom  
Top  
-
Top  
Bottom  
Top  
Bottom  
-
Top  
-
Top  
Top  
Bottom  
Bottom  
1. Only Flash is Muxed and RAM is non-Muxed  
2. Both Flash and RAM are AD-Muxed  
Table 33: Ballout Decoder  
Code  
Ballout Definition  
0 (Zero)  
SDiscrete ballout (Easay BGA and TSOP)  
B
x16D ballout, 105 ball (x16 NOR + NAND + DRAM Share Bus)  
x16C ballout, 107 ball (x16 NOR + NAND + PSRAM Share Bus)  
QUAD/+ ballout, 88 ball (x16 NOR + PSRAM Share Bus)  
x32SH ballout, 106 ball (x32 NOR only Share Bus)  
C
Q
U
V
x16SB ballout, 165 ball (x16 NOR / NAND + x16 DRAM Split Bus  
x48D ballout, 165 ball (x16/x32 NOR + NAND + DRAM Split Bus  
W
November 2007  
314476-05  
Datasheet  
65  
Numonyx™ StrataFlash® Wireless Memory (L18 SCSP) with Synchronous PSRAM  
Appendix F  
Table 34: Ordering Information Additional Device Details  
Add’l  
Detail  
Notes  
Additional Description Details  
Reference  
1
2
For devices not listed in this table, contact your local Numonyx representative for additional details.  
Device request for -30 °C to + 85 °C operation support, contact your local Numonyx representative for details.  
Device is limited to a maximum operating frequency of 54 MHz with PSRAM tAC = 85 ns. Support only Fix Latency  
synchronous operations.  
3
Device is limited to a maximum operating frequency of 54 MHz with PSRAM tAC = 70 ns. Support Fix or Variable  
Latency synchronous operations.  
4
5
Custom device. Contact your local Numonyx representative for details.  
L18 die is configured as an ADMux I/O interface device, while the PSRAM is configured as a Non-Multiplex I/O  
interface device. For A/D Mux I/O interface device operation, the PSRAM A[15:0] must be connected to the  
DQ[15:0] on the targeted PCB design. In addition, Page-Mode operation is not available.  
6
Contact your local Numonyx representative for details or design validation support.  
Datasheet  
66  
November 2007  
314476-05  
768-Mbit LQ Family with Synchronous PSRAM  
1.0 Introduction..............................................................................................................6  
1.1  
1.2  
1.3  
Nomenclature.....................................................................................................6  
Acronyms...........................................................................................................7  
Conventions .......................................................................................................7  
2.0 Functional Overview..................................................................................................8  
2.1  
2.2  
2.3  
2.4  
Product Description .............................................................................................8  
Available Device Combinations............................................................................ 10  
Device Operation Overview.................................................................................10  
Flash Memory Map and Partitioning...................................................................... 12  
3.0 Device Package Information.................................................................................... 17  
4.0 Ballout and Signal Descriptions ...............................................................................21  
4.1  
4.2  
Device Signal Ballout .........................................................................................21  
Signal Descriptions............................................................................................ 22  
5.0 Maximum Ratings and Operating Conditions............................................................ 25  
5.1  
5.2  
5.3  
Device Absolute Maximum Ratings....................................................................... 25  
Device Operating Conditions...............................................................................25  
Device Power-Up/Down...................................................................................... 26  
5.3.1 Flash Power and Reset Specifications ........................................................26  
5.3.2 PSRAM Power-Up Sequence and Initialization............................................. 26  
6.0 Device Electrical Specifications................................................................................27  
6.1  
6.2  
6.3  
Flash DC Operating Characteristics ...................................................................... 27  
Synchronous PSRAM DC Operating Characteristics.................................................27  
Device AC Test Conditions.................................................................................. 28  
6.3.1 Flash Die Capacitance ............................................................................. 28  
6.3.2 Synchronous PSRAM Die Capacitance........................................................29  
7.0 Flash AC Characteristics .......................................................................................... 30  
8.0 Synchronous PSRAM AC Characteristics................................................................... 31  
8.1  
8.2  
8.3  
PSRAM Asynchronous Read.................................................................................31  
PSRAM Asynchronous Write ................................................................................34  
PSRAM Synchronous Read and Write.................................................................... 37  
9.0 Flash Bus Interface .................................................................................................43  
10.0 Flash Operations ..................................................................................................... 43  
11.0 PSRAM Bus Interface...............................................................................................44  
11.1 PSRAM Reads ................................................................................................... 44  
11.1.1 PSRAM Asynchronous Read...................................................................... 44  
11.1.2 PSRAM Asynchronous Page-Mode Read ..................................................... 44  
11.1.3 PSRAM Synchronous Burst-Mode Reads..................................................... 44  
11.1.4 PSRAM Asynchronous Fetch Control Register Read...................................... 45  
11.2 PSRAM Writes................................................................................................... 45  
11.2.1 PSRAM Asynchronous Write ..................................................................... 45  
11.2.2 PSRAM Synchronous Write....................................................................... 46  
11.2.3 PSRAM Asynchronous Set Control Register Write ........................................ 46  
11.2.4 PSRAM Synchronous Set Control Register Write..........................................47  
11.3 PSRAM No Operation Command ..........................................................................47  
11.4 PSRAM Deselect................................................................................................47  
11.5 PSRAM Deep Power Down................................................................................... 47  
11.6 PSRAM WAIT Signal........................................................................................... 48  
12.0 PSRAM Device Operation .........................................................................................50  
12.1 PSRAM Operating Modes .................................................................................... 50  
Intel StrataFlash® Wireless Memory (L18 SCSP)  
August 2007  
Order Number: 314476-004  
Datasheet  
1
768-Mbit LQ Family with Synchronous PSRAM  
12.2 PSRAM Control Registers ....................................................................................50  
12.2.1 PSRAM Bus Control Register.....................................................................50  
12.2.1.1 PSRAM BCR Operating Mode .......................................................51  
12.2.1.2 PSRAM Initial Latency BCR Bit.....................................................52  
12.2.1.3 PSRAM Latency Counter BCR Bit..................................................52  
12.2.1.4 PSRAM WAIT Polarity BCR Bit......................................................53  
12.2.1.5 PSRAM WAIT Configuration BCR Bit .............................................53  
12.2.1.6 PSRAM Drive Strength BCR Bit....................................................53  
12.2.1.7 PSRAM Burst Wrap BCR Bit.........................................................53  
12.2.1.8 PSRAM Burst Length BCR Bit.......................................................53  
12.2.2 PSRAM Refresh Control Register ...............................................................54  
12.2.2.1 PSRAM Page Mode RCR Bit .........................................................55  
12.2.2.2 PSRAM Deep-Power Down RCR Bit...............................................55  
12.2.2.3 Description of PSRAM Partial-Array Self-Refresh RCR Bit.................56  
12.3 PSRAM Access to Control Register........................................................................57  
12.3.1 PSRAM Hardware Control Register Access ..................................................57  
12.3.2 PSRAM Software Register Access ..............................................................57  
12.3.3 Cautionary Note About Software Register Access.........................................59  
12.4 PSRAM Self-Refresh Operation.............................................................................59  
12.4.1 PSRAM Self-Refresh Operations at Low Frequency.......................................59  
12.5 PSRAM Burst Suspend, Interrupt, or Termination ...................................................59  
12.5.1 PSRAM Burst Suspend.............................................................................59  
12.5.2 PSRAM Burst Interrupt ............................................................................60  
12.5.3 PSRAM Burst Termination ........................................................................61  
12.6 PSRAM Row Boundary Crossing ...........................................................................61  
A
B
C
D
E
F
Flash Write State Machine........................................................................................62  
Flash Common Flash Interface.................................................................................62  
Flash Flowcharts......................................................................................................62  
Additional Information.............................................................................................62  
Ordering Information...............................................................................................63  
................................................................................................................................66  
Intel StrataFlash® Wireless Memory (L18 SCSP)  
Datasheet  
2
August 2007  
Order Number: 314476-004  

相关型号:

RD38F3070L0YBB0

Memory Circuit, Flash+SDRAM, PBGA103,
NUMONYX

RD38F3340LLYDQ1

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,
NUMONYX

RD38F3350LLZDQ0

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,
NUMONYX

RD38F3352LLZDQ0

Memory Circuit, Flash+PSRAM, 8MX16, CMOS, PBGA88, 11 X 13 MM, SCSP-88
INTEL

RD38F3352LLZDQ0

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,
NUMONYX

RD38F3360LLYBB0

Memory Circuit, Flash+SDRAM, PBGA103,
NUMONYX

RD38F3362LLYBB0

Memory Circuit, Flash+SDRAM, PBGA103,
NUMONYX

RD38F4040L0YBQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4040L0YUQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4040L0YWQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4040M0Y1C0

Memory Circuit, Flash+SRAM, PBGA107
INTEL

RD38F4044L0YWQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX