RD38F3362LLYBB0 [NUMONYX]

Memory Circuit, Flash+SDRAM, PBGA103,;
RD38F3362LLYBB0
型号: RD38F3362LLYBB0
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Memory Circuit, Flash+SDRAM, PBGA103,

动态存储器 内存集成电路
文件: 总48页 (文件大小:865K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Numonyx™ StrataFlash Wireless Memory  
(L18)  
512-Mbit LX Family with LPSDRAM (x16)  
Datasheet  
Product Features  
„ Device Architecture  
„ Flash Performance  
— Flash die density: 128- or 256-Mbit  
— LPSDRAM die density: 128- or 256-Mbit  
— Async SRAM die density: 8-Mbit  
— 85 ns Asynchronous single-word read  
— 25 ns Asynchronous four-word page read  
— 14 ns Synchronous read (tCHQV  
)
Top, Bottom or Dual flash parameter  
configuration  
„ Device Voltage  
— 54 MHz CLK  
— Buffered Enhanced Factory Programming: 5  
µs/byte (typ.) per die  
— Core: VCC = 1.8 V (Typ)  
— I/O: VCCQ = 1.8 V (Typ)  
„ Device Packaging  
— Ball count: 103 Active balls  
— Area: 9x11 mm  
— Height: 1.2 mm to 1.4 mm  
„ SDRAM Architecture and Performance  
— Clock rate: 104 MHz  
— Four internal banks  
— Burst length: 1, 2, 4, 8 or full page  
„ SRAM Performance  
— 70 ns initial access at 1.8 V I/O  
„ Quality and Reliability  
— Buffered programming at 7 µs/byte (typ.)  
per die  
„ Flash Architecture  
— Hardware Read-While-Write/Erase  
— Asymmetrical blocking structure  
— 8-Mbit or 16-Mbit partition size  
— 16-KWord parameter blocks (Top or  
Bottom); 64-KWord main blocks  
— 2-Kbit One-Time Programmable (OTP)  
Protection Register  
— Zero-latency block locking  
— Absolute write protection with block lock-  
down using F-VPP and F-WP#  
„ Flash Software  
— Extended Temperature –25 °C to +85 °C  
— Minimum 100K Flash Block Erase cycles  
— 0.13 µm ETOX™ VIII Process  
— Numonyx™ FDI, Numonyx™ PSM and  
Numonyx™ VFM  
— Common Flash Interface (CFI)  
— Basic/Extended Command Set  
317623-15  
November 2007  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx B.V. may make changes to specifications and product descriptions at any time, without notice.  
Numonyx B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and StrataFlash are trademarks or registered trademarks of Numonyx B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007, Numonyx B.V., All Rights Reserved.  
Datasheet  
2
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Contents  
1.0 Introduction..............................................................................................................6  
1.1  
1.2  
Nomenclature.....................................................................................................6  
Conventions .......................................................................................................7  
2.0 Functional Overview..................................................................................................8  
3.0 Package Information.................................................................................................9  
4.0 Ballout and Signal Descriptions ...............................................................................11  
4.1  
4.2  
Device Electrical Ballout ..................................................................................... 11  
Signal Descriptions............................................................................................ 12  
5.0 Maximum Ratings and Operating Conditions............................................................ 15  
5.1  
5.2  
Absolute Maximum Ratings.................................................................................15  
Operating Conditions .........................................................................................15  
6.0 Electrical Specifications........................................................................................... 16  
6.1  
6.2  
Flash DC Characteristics..................................................................................... 16  
SRAM and LPSDRAM DC Characteristics................................................................16  
7.0 AC Characteristics ................................................................................................... 19  
7.1  
7.2  
AC Test Conditions ............................................................................................ 19  
Flash AC Characteristics..................................................................................... 19  
7.2.1 Capacitance........................................................................................... 19  
7.2.2 AC Read Specifications............................................................................ 19  
7.2.3 Flash AC Write Specifications ................................................................... 19  
7.2.4 Flash Program and Erase Characteristics.................................................... 19  
SRAM and LPSDRAM AC Characteristics................................................................19  
7.3.1 SRAM and LPSDRAM Capacitance ............................................................. 19  
7.3.2 LPSDRAM AC Characteristics.................................................................... 20  
7.3.3 SRAM AC Read Specifications................................................................... 21  
7.3.4 SRAM AC Write Specifications ..................................................................22  
7.3  
8.0 Power and Reset Specifications...............................................................................25  
8.1  
8.2  
Flash Power and Reset Specifications ................................................................... 25  
LPSDRAM Power-up Sequence and Initialization..................................................... 25  
9.0 Bus Operations Overview ........................................................................................26  
9.1 Flash, LPSDRAM and SRAM Bus Operations...........................................................26  
10.0 Flash OperationS ..................................................................................................... 32  
11.0 LPSDRAM Register Definition................................................................................... 33  
11.1 Mode Register................................................................................................... 33  
11.2 LPSDRAM Extended Mode Register....................................................................... 34  
12.0 LPSDRAM Commands and Operations...................................................................... 35  
12.1 LPSDRAM No Operation / LPSDRAM Deselect.........................................................35  
12.2 LPSDRAM Active................................................................................................35  
12.3 LPSDRAM Read Command .................................................................................. 35  
12.4 LPSDRAM Write Command.................................................................................. 36  
12.5 LPSDRAM Power-Down.......................................................................................36  
12.6 LPSDRAM Deep Power-Down...............................................................................36  
12.7 LPSDRAM Clock Suspend.................................................................................... 37  
12.8 LPSDRAM Precharge .......................................................................................... 37  
12.9 LPSDRAM Auto Precharge................................................................................... 37  
12.10 LPSDRAM Concurrent Auto Precharge................................................................... 37  
November 2007  
317623-15  
Datasheet  
3
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
12.11 LPSDRAM Burst Terminate ..................................................................................44  
12.12 LPSDRAM Auto-Refresh ......................................................................................44  
12.13 LPSDRAM Self-Refresh........................................................................................45  
A
Ordering Information...............................................................................................45  
Datasheet  
4
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Revision History  
Date  
Revision  
Description  
July 19, 2003  
-001  
-002  
-003  
-004  
Initial Release.  
July 24, 2003  
Editing changes.  
September 5, 2003  
November 17, 2003  
Ordering information changes; edits.  
Fixed Internet pdf presentation problem, and added tracking number.  
Added the following:  
Line items, new package information (High Performance DRAM Ballout), Flash + SRAM Bus  
Operations, SRAM DC and AC specifications.  
November 20, 2003  
-005  
Made the following edits: Various text edits, the subtitle.  
January 7, 2004  
April 16, 2004  
-006  
-007  
Added line items and made minor edits.  
Added product 256L18+128SD with device name LZ38F4060L0YBB0 to Table 25.  
Modified UT-SCSP mechanical specs - (not applicable in rev -009).  
Updated the line items in order table.  
July 9, 2004  
-008  
-009  
Various text edits and updates to the document to reflect current products available within  
the LX family. Remove any irrelevant information from the datasheet.  
October, 2004  
January, 2005  
May, 2005  
-010  
-011  
-012  
Updated Mechanical Specifications for x16D (103 balls) Package 9x11x1.2 mm.  
Added line items to ordering table  
May, 2006  
Added product 256L18+256L18+256SD and device name PF38F4470LLYBB0.  
Updated the RAM “Row to column delay” & “Row precharge time” from 28.5ns to 30.0ns.  
Updated hold times from 1.0 ns to 1.5 ns.  
Updated VCCQ, S-VCC, and D-VCC voltage MAX from +2.45 V to +2.3 V.  
Updated the ordering information table with the ordering matrix we now use and it will have  
the Samsung line item in it.  
June 2007  
013  
Updated format and changed document number (from FD1006 to FD317623) to be consistent  
with current document tracking implementation.  
July 2007  
014  
15  
Updated ordering information  
Applied Numonyx branding.  
November 2007  
November 2007  
317623-15  
Datasheet  
5
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
1.0  
Introduction  
This document contains information pertaining to the products in the Numonyx™  
StrataFlash® Wireless Memory (L18 SCSP), 512-Mbit LX family with LPSDRAM (x16).  
The LX family offers a variety of stacked combinations that includes, flash only, flash +  
SDRAM, and flash + SDRAM + SRAM. The intent of this document is to provide  
information where this product differs from the Numonyx™ StrataFlash® Wireless  
Memory (L18) discrete datasheet.  
Refer to the latest revision of the Numonyx™ StrataFlash® Wireless Memory (L18)  
Datasheet (order number 251902) for specific flash product details not included in this  
document.  
The Numonyx™ StrataFlash® Wireless Memory (L18 SCSP), 512-Mbit LX with  
LPSDRAM family offers a variety of flash plus xRAM combinations. This L18 flash die  
uses the latest generation of Numonyx™ StrataFlash® Wireless Memory featuring  
flexible, multiple partitions, hardware read-while-erase / read-while-write operations,  
with high performance asynchronous and synchronous burst reads. The LPSDRAM is a  
low-power, high-performance volatile memory operating up to 104 MHz with  
configurable burst lengths. The LX family integrates up to four flash dies and two xRAM  
dies in a common x16D (103 balls) package footprint and signal ballout.With a common  
package footprint signal ballout, higher memory density and flash/xRAM combination  
migrations can be easily supported without any PCB changes.  
1.1  
Nomenclature  
0x  
Hexadecimal prefix  
Binary prefix  
0b  
Byte  
8 bits  
CFI  
Common Flash Interface  
Command User Interface  
Do Not Use  
CUI  
DU  
ETOX  
EPROM Tunnel Oxide  
Numonyx™ Flash Data Integrator (software solution)  
1 thousand  
Numonyx™ FDI  
K (noun)  
Kb  
1024 bits  
KB  
1024 bytes  
Kword  
M (noun)  
Mb  
1024 words  
1 million  
1,048,576 bits  
MB  
1,048,576 bytes  
One-Time Programmable  
(Protection) Lock Register  
Protection Register  
OTP  
LR  
PR  
Datasheet  
6
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
PRD  
Protection Register Data  
Numonyx™ PSM  
Numonyx™ Persistent Storage Manager (software solution)  
Read Configuration Register  
Reserved for Future Use  
Stacked Chip Scale Package  
Status Register  
RCR  
RFU  
SCSP  
SR  
SRD  
Word  
WSM  
Status Register Data  
16 bits  
Write State Machine  
1.2  
Conventions  
Group Membership Brackets: Square brackets are used to designate group membership  
or to define a group of signals with a similar function, such as A[21:1] and SR[4,1].  
VCC vs. VCC: When referring to a signal or package-connection name, the notation  
used is VCC. When referring to a timing or electrical level, the notation used is  
subscripted such as VCC  
.
Device: This term is used interchangeably throughout this document to denote either a  
particular die, or both die in the SCSP.  
F[4:1]-CE#: This is a group reference to multiple chip-enable pins in a flash device.  
Note that this group reference is different from an individual reference to a single chip-  
enable pin. For example, a reference to a single chip enable pin in a flash device is F1-  
CE# for die #1,  
F2-CE# for die #2, and so on until F4-CE# for die #4. Any F-CE# not used in the LX  
device should be treated as a Reserved for Future Use (RFU) signal ball.  
F-VCC, D-CAS#, S-VCC: When referencing flash memory signals or timings, the  
notation is prefixed with “F-” (e.g. F-VCC, F-VCC). When the reference is to SDRAM  
signals or timings, the notation is prefixed with “D-” (e.g., D-CAS#, D-RAS#). When  
the reference is to SRAM signals or timings, the notation is prefixed with “S-” (e.g., S-  
VCC, S-CS1#).  
November 2007  
317623-15  
Datasheet  
7
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
2.0  
Functional Overview  
The LX family encompasses multiple flash and xRAM die combinations in top/bottom or  
dual parameter configurations.  
Figure 1 shows the device capability and internal package connections for the LX  
product family.  
Figure 1: LX Family Block Diagram  
LX Family  
Flash Segment  
F1-CE#  
F2-CE#  
F-WP1#  
Flash Die #1  
Flash Die #2  
(128 or 256 Mbits)  
(128 or 256 Mbits)  
F-RST#  
F-VCC  
F-VPP  
F4-CE#  
F-CLK  
ADV#  
F-WP2#  
WAIT  
OE#  
Flash Die #3  
(128 or 256 Mbits)  
Flash Die #4  
(128 or 256 Mbits)  
F3-CE#  
WE#  
DQ[15:0]  
VCCQ  
VSS  
xRAM Segment  
A[MAX:MIN]  
D1-CS#  
D2-CS#  
LPSDRAM Die#1  
(64/128/256 Mbits)  
D-DM1 / R-UB#  
D-DM0 / R-LB#  
D-BA[1:0]  
SRAM Die #1  
(8 Mbits)  
D-CAS#  
D-RAS#  
S-CS1#  
S-CS2  
S-VCC  
LPSDRAM Die #2  
(128/256 Mbits)  
D-CLK  
D-CKE  
D-VCC  
Datasheet  
8
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
3.0  
Package Information  
The following package dimensions are available for the 512-Mbit LX Family x16:  
Figure 2, “Mechanical Specifications for x16D (103 balls) Package (9x11x1.4 mm)”  
on page 9  
Figure 3, “Mechanical Specifications for x16D (103 balls) Package (9x11x1.2 mm)”  
on page 10  
Figure 2: Mechanical Specifications for x16D (103 balls) Package (9x11x1.4 mm)  
S1  
Pin 1  
Corner  
1
2
3
4
5
6
7
8
9
S2  
A
B
C
D
E
F
D
G
H
J
K
e
L
M
b
E
SC SP  
Top View - BallSide Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Dimensions  
Package Height  
Symbol  
A
Min  
Nom  
Max Notes  
1.4  
Min  
Nom  
Max  
0.0551  
Ball Height  
A1  
A2  
b
D
E
0.200  
0.0079  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
1.070  
0.375  
11.00  
9.00  
0.800  
103  
0.0421  
0.0148  
0.4331  
0.3543  
0.0315  
103  
0.325  
10.90  
8.90  
0.425  
11.10  
9.10  
0.0128  
0.4291  
0.3504  
0.0167  
0.4370  
0.3583  
e
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
N
Y
S1  
S2  
0.100  
1.400  
1.200  
0.0039  
0.0551  
0.0472  
1.200  
1.000  
1.300  
1.100  
0.0472  
0.0394  
0.0512  
0.0433  
November 2007  
317623-15  
Datasheet  
9
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 3: Mechanical Specifications for x16D (103 balls) Package (9x11x1.2 mm)  
9x11x1.2 HPx16D 103ball  
S1  
Pin  
1
Corner  
1
2
3
4
5
6
7
8
9
S2  
A
B
C
D
E
F
D
G
H
J
K
L
e
M
b
E
SCS  
Top Vi ew -PBal l S i de  
Down  
A2  
A1  
A
Y
Note: Drawing not to scale.  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
Max Notes  
1.2  
Min  
Nom  
Max  
0.0472  
A
A1  
A2  
b
D
E
0.200  
0.0079  
0.860  
0.375  
11.00  
9.00  
0.800  
103  
0.0339  
0.0148  
0.4331  
0.3543  
0.0315  
103  
0.325  
10.90  
8.90  
0.425  
11.10  
9.10  
0.0128  
0.4291  
0.3504  
0.0167  
0.4370  
0.3583  
e
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball Distance Along E  
Corner to Ball Distance Along D  
Y
S1  
S2  
0.100  
1.400  
1.200  
0.0039  
0.0551  
0.0472  
1.200  
1.000  
1.300  
1.100  
0.0472  
0.0394  
0.0512  
0.0433  
Datasheet  
10  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
4.0  
Ballout and Signal Descriptions  
4.1  
Device Electrical Ballout  
The LX family is available in the x16D (103 balls) package ballout (Figure 4). See  
Section 3.0, “Package Information” on page 9 for the mechanical package dimensions  
for each ballout. See Table 1, “Signal Descriptions” for electrical connections details on  
the SCSP combination intended in this datasheet.  
Figure 4: x16D (103 balls) Performance Electrical Ballout for LX Device Family  
P
i n  
1
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
A
B
C
D
E
F
D
U
3
A
5
4
A
7
6
A
8
A
A
2
0
9
A
R
V
2
4
U
S
A
A
2
5
3
S
A
A
V
2
6
7
S
U
1
0
D U  
A
A
A
A
A
A
1
8
1
F
S
2
2
S
F
1
A
1
1
1
1
1
1
7
6
5
4
3
2
2
V
S
S
V
S
S
V
S
S
D
- V  
C
C
V
S
A
A
A
A
1
S
- V  
C
C
D
- V  
C
C
F
- V  
C
C
F
- A  
D
V
#
F
- V  
- C  
C
C
#
D
- V  
C
C
R
A
A
D
e
p
o
e
p
x
D
e
p
U
o
p
s
F
4
E
/
F
F
- W  
P
P
1
2
#
#
W
E
#
D
2
- C  
S
#
#
#
#
A
A
2
2
1
( I n  
d
)
( R  
F
)
)
)
)
A
2 8  
D
e
p
U
o
p
s
- W  
R
D
1
2
- C  
- C  
S
E
#
#
D
F
F
- C  
A
S
D
- R  
A
S
#
S
- C  
S
1
#
2
1
( R  
F
D
e
p
U
o
p
s
G
H
J
G
H
J
F
U
U
F
1
3
- C  
E
D
D
F
- B  
- B  
- V  
A
A
0
1
D
- C  
K
U
E
F
- R  
O
S
T
#
A
9
A
( R  
F
D
e
p
o
p
D
- D  
- U  
M
1
/
D
F
- D  
M 0 /  
R
F
S
- C  
S
2
- C  
E
R
F
E #  
( R  
F
U
s
S
B
#
S
- L  
B
#
F
- V  
P
P
V
C
C
Q
V
C
C
Q
C
C
D
F
- C  
- C  
L
K
K
F
- V  
C
C
V
C
C
Q
V
C
C
Q
- W  
A
I T  
K
L
K
L
D
D
Q
Q
2
V
S
S
V
S
S
V
S
S
6
4
L
V
S
S
9
V
S
S
V
S
S
D
D
Q
Q
1
1
3
1
D
D
Q
3
0
D
R
Q
5
D
D
Q
Q
D
Q
7
D
Q
D
Q
1
1
D
Q
1
2
5
4
M
D
U
Q
F
U
D
Q
8
D
Q
1
0
R
F
U
D
Q
1
D
U
M
1
2
3
4
5
6
7
8
9
T
o
p
V
i e  
w
-
B
a
l l  
S
i d  
e
D
o
w
n
A
c
t iv  
e
B
a
lls  
B
D
e
e
- P  
r v  
o
p
u
l a t e  
d
u
a l ls  
L
e
g e n d :  
R
e
s
e
d
f o  
r
F
t u r e  
U
s
e
D
o N o t U s e  
November 2007  
317623-15  
Datasheet  
11  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
4.2  
Signal Descriptions  
Table 1:  
Signal Descriptions (Sheet 1 of 3)  
Symbol  
Type  
Name and Function  
Notes  
ADDRESS: Global device signals. Share inputs for all memory die addresses during read  
and write operations. LPSDRAM Address inputs also provide the op-code during a Mode  
Register Set or Special Mode Register Set command.  
256-Mbit die: AMAX = A24  
128-Mbit die: AMAX = A23  
64-Mbit die: AMAX = A22  
32-Mbit die: AMAX = A21  
8-Mbit die: AMAX = A19  
A[MAX:1]  
Input  
A[13:1] are the row and A[9:1] are the column addresses for 256-Mbit LPSDRAM  
A[12:1] are the row and A[9:1] are the column addresses for 128-Mbit LPSDRAM  
A11 defines the Auto Precharge. During a LPSDRAM Precharge command, A11 is  
sampled to determine if all banks are to be precharged (A11 = High).  
Note:  
A1 is the lowest-order x16 address.  
DATA INPUT/OUTPUTS: Global device signals. Inputs data and commands during write  
cycles, outputs data during read cycles. Data signals float when the device or its output are  
deselected. Data are internally latched during writes on the device.  
Input/  
DQ[15:0]  
ADV#  
Output  
ADDRESS VALID: Low-true input.  
During synchronous flash read operations, addresses are latched on the rising edge of  
ADV#, or on the next valid F-CLK edge, whichever occurs first.  
Input  
In asynchronous flash read operation, addresses are latched on the rising edge ADV#, or  
are continuously flow-through when ADV# is kept asserted.  
FLASH CHIP ENABLE: Low-true input.  
F[4:1]-CE# low selects the associated flash memory die. F[4:1]-CE# high deselects the  
associated flash die. When deasserted, the associated flash die is deselected, power is  
reduced to standby levels, data and WAIT outputs are placed in high-Z state.  
F[4:1]-CE# Input  
1
F1-CE# is dedicated as flash die #1.  
F[4:2]-CE# controls any subsequent individual flash die.  
DEVICE CLOCK: Synchronizes the selected memory die to the system’s bus clock in  
synchronous operations.  
F-CLK,  
Input  
F-CLK is a flash signal. Synchronizes the flash die to the system’s flash bus frequency in  
synchronous operations.  
D-CLK is a LPSDRAM input signal. Synchronizes the LPSDRAM die to the system’s  
memory bus clock. LPSDRAM is sampled on the positive edge of D-CLK.  
D-CLK  
OUTPUT ENABLE: Global device signal. Low-true input.  
OE#  
Input  
Input  
OE# low enables the output drivers of the selected die. OE# high places the output drivers  
of the selected die in high-Z.  
FLASH RESET: Flash specific signal. Low-true input.  
F-RST#  
F-RST# low resets internal operations and inhibits write operations. F-RST# high enables  
normal operation. Exit from reset places the flash device in asynchronous read array mode.  
DEVICE WAIT: Flash device signal.  
Indicates data is valid in synchronous array or non-array sync flash reads. Configuration  
Register bit 10 (CR.10, WT) determines its polarity when asserted. With F-CE# and OE# at  
VIL, WAIT’s active output is VOL or VOH. WAIT is high-Z if F-CE# or OE# is VIH  
.
WAIT  
WE#  
Output  
Input  
In synchronous array or non-array flash read modes, WAIT indicates invalid data when  
asserted and valid data when deasserted.  
In asynchronous flash page read, and all flash write modes, WAIT is deasserted.  
WRITE ENABLE: Global device signal. Low-true input.  
WE# low selects the associated memory die for write operation. WE# high deselect the  
associated memory die, data are placed in high-Z state.  
With LPSDRAM operation, WE# is latched on the positive clock edge in conjunction with the  
D-RAS# and D-CAS# signals. The WE# input is used to select the Bank Activate or  
Precharge command and Read or Write command.  
Datasheet  
12  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 1:  
Signal Descriptions (Sheet 2 of 3)  
Symbol  
Type  
Name and Function  
Notes  
FLASH WRITE PROTECT: Flash specific signals. Low-true input.  
F-WP# low enables the Lock-Down mechanism. Blocks in a lock-down state cannot be  
unlocked with the Unlock command. F-WP# high overrides the Lock-Down function,  
enabling locked-down blocks to be unlocked with the Unlock command.  
F-WP[2:1]# Input  
F-WP1# controls flash die #1; F-WP2# are common to all other remaining flash dies.  
LPSDRAM CLOCK ENABLE: High-true input  
If D-CKE goes low synchronously with clock, the internal clock is suspended from the  
next clock cycle.  
The state of the outputs and the burst address is halted.  
When all banks are in the idle state, D-CKE is high, the LPDRAM enters into Power  
Down and Self-Refresh modes.  
D-CKE  
Input  
D-CKE is synchronous except after the device enters Power Down and Self-Refresh  
modes, where D-CKE becomes asynchronous until exiting the same mode. The input  
buffers, including D-CLK, are disabled during Power Down and Self-Refresh modes,  
providing low standby power.  
LPSDRAM BANK SELECT: D-BA0 and D-BA1 defines to which bank the Bank Activate,  
Read, Write, or Bank Precharge command is being applied. The bank address D-BA0 and  
D-BA1 is used latched in Mode Register set.  
D-BA[1:0]  
D-RAS#  
Input  
Input  
LPSDRAM ROW ADDRESS STROBE: Low-true input.  
The D-RAS# signal defines the operation commands, with the D-CAS# and WE#  
signals.  
The D-RAS# is latched at the rising edges of D-CLK. When D-RAS# and D-CS# are  
asserted and D-CAS# is deasserted, either the Bank Activate command or the  
Precharge command is selected by the WE# signal.  
WE# is deasserted, the Bank Activate command is selected and the bank designated by  
D-BA[1:0] is turned on to the active state.  
LPSDRAM COLUMN ADDRESS STROBE: Low-true input.  
D-CAS# signal defines the operation commands in conjunction with the D-RAS# and  
WE# signals and is latched at the rising edges of D-CLK.  
D-CAS#  
Input  
D-RAS# is deasserted and D-CS# is asserted, the column access is started by asserting  
D-CAS#. Read or Write command then is selected by asserting WE# low or high.  
LPSDRAM CHIP SELECT: Low-true input.  
D[2:1]-CS# low selects the associated LPSDRAM memory die. All commands are masked  
when D[2:1]-CS# high. D[2:1]-CS# provides for external bank selection on systems with  
multiple banks. It is considered part of the command code.  
D[2:1]-CS#  
D-DM[1:0]  
Input  
Input  
D1-CS# controls LPSDRAM die #1.  
D2-CS# controls LPSDRAM die #2.  
LPSDRAM INPUT Mask: Data Input Mask.  
D-DM[1:0] are byte selects. Input data is masked when D-DM[1:0] are sampled HIGH  
during a write cycle. D-DM1 masks DQ[15-8], and D-DM0 masks D[7-0].  
2
3
The D-DM[1:0] latency for Read is 2 Clocks and for Write is 0 Clocks.  
SRAM CHIP SELECTS: SRAM specific signal. Low-true input.  
When both SRAM chip selects are asserted, SRAM internal control logic, input buffers,  
decoders, and sense amplifiers are active. When either or both SRAM chip selects are  
deasserted (S-CS1# = VIH and/or S-CS2 = VIH), the SRAM is deselected and its power is  
reduced to standby levels.  
S-CS1#  
S-CS2  
Input  
S-CS1# and S-CS2 are available on stacked combinations with SRAM die, and are RFU on  
stacked combinations without SRAM die.  
SRAM UPPER/ LOWER BYTE ENABLES: Low - true inputs.  
During SRAM read and write cycles, R-UB# low enables the SRAM high-order byte on  
DQ[15:8], and R-LB# low enables the SRAM low-order byte on DQ[7:0].  
R-UB#  
R-LB#  
Input  
2, 3  
R-UB# and R-LB# are available on stacked combinations with SRAM die, and are RFUs on  
stacked combinations without SRAM die.  
FLASH ERASE/ PROGRAM VOLTAGE LEVEL: Flash specific signal.  
Valid F-VPP voltage on this ball allows block erase or program functions. Flash memory  
array contents cannot be altered when F-VPP VPPLK. Block erase and program at invalid F-  
VPP voltage should not be attempted.  
F-VPP  
Power  
November 2007  
317623-15  
Datasheet  
13  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 1:  
Signal Descriptions (Sheet 3 of 3)  
Symbol  
Type  
Name and Function  
Notes  
FLASH CORE VOLTAGE LEVEL: Flash specific signals. Flash core source voltage.  
F-VCC  
VCCQ  
D-VCC  
Power  
Flash operations are inhibited when F-VCC VLKO. Operations at invalid F-VCC voltage  
should not be attempted.  
OUTPUT VOLTAGE LEVEL: Global device signals. Device output-driver source voltage.  
This balls can be tied directly to the respective memory type VCC if operating within its VCC  
range.  
Power  
Power  
RAM POWER SUPPLY: Supplies power to the RAM dies.  
Performance ballout:  
D-VCC supplies power for LPSDRAM operation.  
SRAM POWER SUPPLY: Supplies power to the SRAM die.  
S-VCC  
Power  
Power  
3
S-VCC is available on stacked combinations with SRAM die, and is RFU on stacked  
combinations without SRAM die.  
GROUND: Global ground reference for device memory core type voltages.  
VSS  
DU  
Connect all VSS to system ground. Do not float any VSS connections.  
DO NOT USE: This ball must be left floating. This ball should not be connected to any  
power supplies, signals, or other balls.  
-
-
RESERVED for FUTURE USE: Reserved by Numonyx for future device functionality and  
enhancement.  
RFU  
Notes:  
1.  
2.  
3.  
F4-CE# is a shared signal with A28 for the 103-Active Ball High-Performance DRAM package.  
D-DM[1:0] are shared signals with R-UB# and R-LB# respectively.  
Only available in the 103-Active Ball High-Performance DRAM package.  
Datasheet  
14  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent  
damage. These are stress ratings only.  
NOTICE: This document contains information available at the time of its release. The specifications are subject to change without  
notice. Verify with your local Numonyx sales office that you have the latest datasheet before finalizing a design.  
Table 2:  
Flash Absolute Maximum Ratings  
Parameter  
Min  
Max  
Unit  
Notes  
Case Temperature under Bias (TC)  
–25  
–55  
+85  
°C  
°C  
Storage Temperature  
+125  
Voltage On Any Signal (except F-VCC, F-VPP, D-VCC, S-VCC and  
–0.2  
+2.0  
V
1
VCCQ  
)
F-VCC Voltage  
–0.2  
–0.2  
–0.2  
+2.50  
+2.3  
+10.0  
50  
V
V
1
VCCQ, S-VCC and D-VCC Voltage  
F-VPP Voltage  
1
V
1,2,3  
4
I
SH Output Short Circuit Current  
mA  
Notes:  
1.  
All Specified voltages are relative to VSS. Minimum DC voltage is –0.2 V on input/output signals, F-VCC, D-VCC, VCCQ  
and F-VPP signals. During transitions, this level may overshoot to –1.0 V for periods < 5 ns. Maximum DC voltage on F-  
VCC is F-VCC + 0.5 V, which during transitions may overshoot to F-Vcc +2.0 V for periods < 20 ns. Maximum DC voltage  
on input/output signals and VCCQ is VCCQ +0.5 V, which during transitions may overshoot to VCCQ + 2.0V for periods <  
20 ns.  
2.  
3.  
Maximum DC voltage on F-VPP may overshoot to +10.0 V for periods < 20 ns.  
Program/erase voltage is typically 1.7 V - 2.0 V. 9.0 V can be applied for 80 hours maximum total, to any blocks for  
1000 cycles maximum. 9.0 V program/erase voltage may reduce block cycling capability.  
Output shorted for no more than one second. No more than one output shorted at a time.  
4.  
5.2  
Operating Conditions  
Warning:  
Operation beyond the “Operating Conditions” is not recommended and extended  
exposure beyond the “Operating Conditions” may affect device reliability.  
Table 3:  
Device Operating Conditions  
Flash + xRAM  
Symbol  
Parameter  
Min  
–25  
1.7  
Max  
+85  
2.0  
TC  
Operating Temperature  
Flash Supply Voltage  
°C  
V
F-VCC  
Flash and LPSDRAM I/O Voltage  
LPSDRAM Supply Voltage  
VCCQ  
D-VCC, S-VCC  
1.7  
1.9  
V
VPPL  
VPPH  
F-VPP Voltage Supply (Logic Level)  
Factory word programming F-VPP  
0.9  
8.5  
2
V
V
9.5  
Note: In typical operation, the F-VPP program voltage is VPPL. F-VPP can be connected to 8.50 V - 9.50 V for 1000 cycles on  
main blocks and 2500 cycles on parameter blocks.  
November 2007  
317623-15  
Datasheet  
15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
6.0  
Electrical Specifications  
6.1  
Flash DC Characteristics  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet (order number  
251902) for flash DC characteristics.  
6.2  
SRAM and LPSDRAM DC Characteristics  
NOTICE: DC Characteristics of all die in a SCSP device need to be considered accordingly, depending  
on the SCSP device operation.  
Table 4:  
Parameter  
D-VCC  
LPSDRAM DC Characteristics (Sheet 1 of 2)  
Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
Notes  
Voltage Range  
Density  
1.7  
1.9  
60  
V
128-Mbit  
256-Mbit  
128-Mbit  
Operating Current at  
min cycle time  
Burst Length = 1  
ICC1  
(One Bank  
Active)  
IIO = 0mA  
tCK = min  
mA  
75  
Precharge Standby  
Current: Power  
Down Mode (All  
banks idle)  
600  
D-CKE = L,  
D-CS# = H  
tCK = min  
ICC2P  
ICC2N  
ICC3P  
ICC3N  
μA  
256-Mbit  
128-Mbit  
256-Mbit  
128-Mbit  
256-Mbit  
128-Mbit  
256-Mbit  
700  
15  
15  
5
Precharge Standby  
Current: Non-Power  
Down Mode (All  
banks idle)  
D-CKE = H,  
D-CS# = H  
tCK = min  
mA  
mA  
Active Standby  
Current in Power  
Down Mode (All  
banks active)  
D-CKE = L,  
tCK = min  
5
Active Standby  
Current: Non-Power  
Down Mode (All  
banks active)  
20  
25  
D-CKE = H,  
tCK = min  
mA  
mA  
3
128-Mbit  
256-Mbit  
70  
80  
ICC4  
(4 Banks  
active)  
Operating Current  
Burst Mode  
IIO = 0mA  
tCK = min  
128-Mbit  
256-Mbit  
128-Mbit  
256-Mbit  
128-Mbit  
256-Mbit  
130  
150  
500  
600  
ICC5  
ICC6  
ICC7  
Auto-Refresh Current  
Self-Refresh Current  
tRC > tRCmin  
mA  
μA  
2
4
Address & Data  
toggling at min cycle  
time  
Address & Data  
toggling at min cycle  
time  
15  
15  
Deep Power Down  
Current  
μA  
VCCQ  
VOH  
VOL  
VIH  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
IOH = -100 μΑ  
V
V
V
0.15  
IOL = 100 μΑ,  
–0.1  
0.2  
VCCQmin  
VCCQ  
0.4  
VCCQ  
0.2  
+
Datasheet  
16  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 4:  
LPSDRAM DC Characteristics (Sheet 2 of 2)  
VIL  
Input Low Voltage  
-0.2  
–2  
0.3  
+2  
V
Input Leakage  
Current  
–0.2V < VIN <  
VCCQ+0.2 V  
IIL  
μA  
1
Notes:  
1.  
2.  
3.  
4.  
Input leakage currents include Hi-Z output leakage for bi-directional buffers with tri-state outputs.  
Input signals are toggled at max frequency to simulate SCSP condition, where another device may be active.  
No accesses in progress.  
See Table 5, “LPSDRAM Self-Refresh Current”.  
Table 5:  
LPSDRAM Self-Refresh Current  
# of Banks  
Set  
Temperatur  
e
Parameter  
Description  
Test Condition  
Unit  
Bank 0 &  
1
Refreshed  
All Banks  
Refreshed  
Bank 0  
Refreshed  
85 °C max  
70 °C max  
45 °C max  
15 °C max  
85 °C max  
70 °C max  
45 °C max  
15 °C max  
500  
440  
390  
350  
600  
525  
450  
375  
400  
350  
290  
240  
450  
375  
300  
250  
300  
280  
260  
240  
315  
295  
270  
250  
Self-Refresh Current  
(All Banks Refreshed)  
D-CKE < 0.2 V  
tCK = Infinity  
ICC6  
(128-Mbit)  
μA  
Self-Refresh Current  
(All Banks Refreshed)  
D-CKE < 0.2 V  
tCK = Infinity  
ICC6  
(256-Mbit)  
μA  
Note: Other than ICC6 for all Banks at 85°C, the Self-Refresh currents are verified during device characterization and not  
100% tested.  
Table 6:  
SRAM DC Characteristics (Sheet 1 of 2)  
1.8 V SRAM  
Parameter  
Description  
Test Conditions  
Unit  
MIN  
MAX  
1.9  
S-VCC  
VDR  
Voltage Range  
1.7  
1.0  
V
V
S-VCC for Data Retention  
Operating Current at minimum cycle  
time  
ICC  
IIO = 0 mA  
IIO = 0 mA  
35  
6
mA  
mA  
Operating Current at maximum  
cycle time (1 μs)  
ICC2  
S-CS1# S-VCC-0.2 V  
or S-CS2 VSS+0.2 V  
Address/Data toggling at minimum  
cycle time  
ISB  
Standby Current  
20  
μA  
IDR  
Current in Data Retention mode  
Output High Voltage  
S-VCC = 1.0 V  
10  
μA  
S-VCC  
0.15  
-
VOH  
IOH = -100 μA  
V
I
OL = 100 μA,  
VCCMIN  
VOL  
Output Low Voltage  
-0.1  
0.2  
V
November 2007  
317623-15  
Datasheet  
17  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 6:  
SRAM DC Characteristics (Sheet 2 of 2)  
Input High Voltage  
S-VCC  
0.4  
-
S-VCC  
+
VIH  
V
0.2  
VIL  
Input Low Voltage  
-0.2  
-1  
0.4  
+1  
V
*IIL  
Input Leakage Current  
-0.2 < VIN < S-VCC+0.2 V  
μA  
-0.2 < VIN < S-VCC+0.2 V  
S-VCC = VDR  
Input Leakage Current in Data  
Retention Mode  
*ILDR  
-1  
+1  
μA  
Note: * Input leakage currents include High-Z output leakage for bi-directional buffers with tri-state outputs.  
Datasheet  
18  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
7.0  
AC Characteristics  
7.1  
AC Test Conditions  
Figure 5: Transient Equivalent Testing Load Circuit  
ZO = 50 Ohms  
I/O  
Output  
CL =  
30pf  
50  
Ohms  
VCCQ/2  
Notes:  
1.  
2.  
Test configuration component value for worst case speed conditions.  
CL includes jig capacitance  
7.2  
Flash AC Characteristics  
Capacitance  
7.2.1  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet (order number  
251902) for detailed information.  
7.2.2  
7.2.3  
7.2.4  
AC Read Specifications  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet (order number  
251902) for detailed information.  
Flash AC Write Specifications  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet (order number  
251902) for detailed information.  
Flash Program and Erase Characteristics  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet (order number  
251902) for detailed information.  
7.3  
SRAM and LPSDRAM AC Characteristics  
SRAM and LPSDRAM Capacitance  
7.3.1  
November 2007  
317623-15  
Datasheet  
19  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 7:  
SRAM and LPSDRAM Capacitance  
MAX  
(SRAM)  
MAX  
(LPSDRAM)  
Symbol  
Parameter  
Unit  
Condition  
CIN  
Input Capacitance  
Output Capacitance  
6
7
5
7
pF  
pF  
VIN = 0 V  
COUT  
VOUT = 0 V  
Note: Sampled, not 100% tested. TC = 25 °C, f = 1 MHz.  
7.3.2  
LPSDRAM AC Characteristics  
Table 8:  
LPSDRAM AC Characteristics—Read-Only Operations  
Symbol  
Parameter  
Clock Cycle Time  
Test Condition  
Min  
Max  
Unit  
Notes  
CL = 3  
D-CLK = 104 MHz  
tRC  
9.5  
ns  
1,2  
tCKH  
tCKL  
tT  
Clock High Level Pulse Width  
Clock Low Level Pulse Width  
Transition Time  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
0.5  
1.5  
2
1.0  
tCKEH  
tCKES  
tAH  
D-CKE Hold Time  
D-CKE Setup Time  
Address Hold Time  
1.5  
2
tAS  
Address Setup Time  
Data Input Hold Time  
Data Input Setup Time  
tIH  
1.5  
2
tIS  
D-CS#, D-RAS#, D-CAS#, WE#, D-DM  
Hold Time  
tCMH  
tCMS  
tAC  
1.5  
2
7
ns  
ns  
ns  
1,2  
1,2  
1,2  
D-CS#, D-RAS#, D-CAS#, WE#, D-DM  
Setup Time  
Clock to valid output delay (positive  
edge of clock)  
CL = 3  
CL = 3  
tOH  
tLZ  
Data Out Hold Time  
2.0  
1
7
ns  
ns  
ns  
1,2  
1,2  
1,2  
Clock to Output in Low-Z  
Clock to Output in High-Z  
tHZ  
Row Active time (Active to Precharge  
command)  
tRAS  
tRC  
60  
90  
30  
100K  
ns  
ns  
ns  
1,2  
1,2  
1,2  
Row Cycle time (Active to Active  
command on same bank)  
Row to column delay (Active to Read/  
Write)  
tRCD  
tRP  
tREF  
tRFC  
tSREX  
Row Precharge Time  
30  
64  
ns  
ms  
ns  
1,2  
1,2  
1,2  
1,2  
Refresh Period (4096 rows)  
Auto-Refresh Period  
110  
120  
Self-Refresh Exit Time (Self refresh to active)  
ns  
Notes:  
1.  
2.  
The minimum number of clock cycles is determined by dividing the minimum time required by clock cycle time.  
LPSDRAM AC specs are guaranteed only when normal output driver strength is used. See Table 23, “LPSDRAM  
Configurable Output Driver Strength” on page 34.  
Datasheet  
20  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 9:  
LPSDRAM AC Characteristics—Write Operations  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
tWR  
Write Recovery Time  
20  
20  
ns  
ns  
tRRD  
tDAL  
tCDL  
tBDL  
tCCD  
tDQW  
tDQZ  
Active bank a to Active Bank b command  
Last data input to Active Delay  
tWR + tRP  
ms  
tCK  
tCK  
tCK  
tCK  
tCK  
Last data input to New Read/Write Command  
Last data input to Burst Terminate Command  
Read/Write command to Read/Write command  
D-DM write mask latency  
1
1
1
0
2
D-DM data out mask latency  
Load Mode Register Command to Active/Refresh  
Command  
tMRD  
2
tCK  
tWR / tCK < 1  
1 < tWR / tCK < 2  
CL = 3  
1
2
tWR  
Write Recovery Time  
tCK  
3
tPHZ  
Data out to High Z from Precharge command  
Initialization Delay  
CL = 2  
2
tCK  
CL = 1  
tINI  
200  
μs  
Notes:  
1.  
2.  
The minimum number of clock cycles is determined by dividing the minimum time required by clock cycle time.  
LPSDRAM AC specs are guaranteed only when Normal Output Driver Strength is used. See Table 23.  
7.3.3  
SRAM AC Read Specifications  
Table 10: SRAM Asynchronous Read Specifications (Sheet 1 of 2)  
#
Symbol  
Parameter  
MIN  
MAX  
Unit  
Notes  
R1  
R2  
R3  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
tRC  
Read Cycle Time  
70  
5
70  
70  
70  
35  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Output Delay  
S-CS1# to Output Delay  
S-CS2 to Output Delay  
tCO1  
tCO2  
tOE  
OE# to Output Delay  
tBA  
R-UB#, R-LB# to Output Delay  
S-CS1# or S-CS2 to Output in Low-Z  
OE# to Output in Low-Z  
S-CS1# or S-CS2 to Output in High-Z  
OE# to Output in High-Z  
tLZ  
1,2  
1
tOLZ  
tHZ  
0
0
25  
25  
1,2,3  
1,3  
tOHZ  
0
Output Hold (from Address, S-CS1#, S-CS2, or OE#  
change, whichever occurs first)  
R10  
tOH  
0
ns  
November 2007  
317623-15  
Datasheet  
21  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 10: SRAM Asynchronous Read Specifications (Sheet 2 of 2)  
R11  
R12  
tBLZ  
tBHZ  
R-UB#, R-LB# to Output in Low-Z  
R-UB#, R-LB# to Output in High-Z  
0
0
ns  
ns  
1
1
25  
Notes:  
1.  
2.  
Sampled, not 100% tested.  
At any given temperature and voltage condition, tHZ (MAX) is less than tLZ (MAX) for a given device and from device-to-  
device interconnection.  
3.  
Timings of tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not  
referenced to output voltage levels.  
7.3.4  
SRAM AC Write Specifications  
Table 11: SRAM Asynchronous Write Specifications  
70 ns  
85 ns  
#
Symbol  
Parameter1  
Notes  
MIN  
MAX  
MIN  
MAX  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
tWC  
tAS  
Write Cycle Time  
70  
0
85  
0
Address Setup to WE# and R-UB#, R-LB# going low  
WE# Pulse Width  
4,6  
tWP  
tDW  
tAW  
tCW  
tDH  
tWR  
tBW  
55  
30  
60  
60  
0
60  
35  
70  
70  
0
2,3,6  
Data to Write Time Overlap  
Address Setup to WE# going high  
S-CS1# Setup to WE# going high  
Data Hold from WE# High  
6
6
6
Write Recovery  
0
0
5,6  
6
R-UB#, R-LB# setup to WE# going high  
60  
70  
Notes:  
1.  
2.  
See also Figure 6, “AC Waveform SRAM Write Operation” on page 23.  
A write occurs during the overlap (tWP) of low CS1# and low WE#. A write begins when S-CS1# goes low and WE# goes  
low with asserting R-UB# or R-LB# for single byte operation or simultaneously asserting R-UB# and R-LB# for double  
byte operation. A write ends at the earliest transition when  
S-CS1# goes high and WE# goes high. The tWP is measured from the beginning of write to the end of write.  
tWP is measured from S-CS1# going low to end of write.  
tAS is measured from the address valid to the beginning of write.  
tWR is measured from the end of write to the address change. tWR applied in case a write ends as  
S-CS1# or WE# going high.  
The same-e timing parameters apply if the Write operation is performed by toggling S-CS2 instead of  
S-CS1#. S-CS2 is asserted high while S-CS1# is asserted low  
3.  
4.  
5.  
6.  
Datasheet  
22  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 6: AC Waveform SRAM Write Operation  
Device  
Standby  
Address Selection  
VIH  
Address Stable  
A[MAX:MIN]  
VIL  
W1  
VIH  
S-CS1#  
W8  
VIL  
VIH  
S-CS2  
VIL  
W6  
VIH  
OE#  
W5  
VIL  
W3  
VIH  
WE#  
VIL  
W7  
W4  
VOH  
H igh Z  
High Z  
Data In  
W9  
DQ[15:0]  
VOL  
W2  
VIH  
R-UB# / R-LB#  
VIH  
Table 12: SRAM Data Retention Timing  
Parameter  
Description  
MIN  
MAX  
Unit  
tSDR  
tRDR  
Data Retention Set-up Time  
Data Retention Recovery Time  
0
ns  
ns  
70 or 85  
November 2007  
317623-15  
Datasheet  
23  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 7: SRAM Data Retention Waveform (S-CS1# Controlled)  
tRDR  
tSDR  
Data Retention Mode  
S-VCC  
S-VCCmin  
S-VIHmin  
VDR  
S-CS1#  
VSS  
Note: S-CS1# S-VCC - 0.2 V, S-CS2 S-Vcc – 0.2V  
Figure 8: SRAM Data Retention Waveform (S-CS2 Controlled)  
tSDR tRDR  
Data Retention Mode  
S-VCC  
S-CS2  
S-VCCMIN  
VDR  
VILMAX  
VSS  
Note: S-CS2 0.2 V  
Datasheet  
24  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
8.0  
Power and Reset Specifications  
8.1  
Flash Power and Reset Specifications  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet (order number  
251902) for detailed information.  
8.2  
LPSDRAM Power-up Sequence and Initialization  
The LPSDRAM must be powered up and initialized in a predefined manner. Once power  
is applied to D-VCC and VCCQ simultaneously, and the clock is stable, the LPSDRAM  
requires a tINI delay prior to issuing any command other than the NOP command. The  
NOP command should be applied at least once during the tINI delay. After the tINI delay,  
a Precharge command should be applied to precharge all banks. This must be followed  
by two back to back Auto-Refresh cycles. After the Auto-Refresh cycles are complete,  
the Mode Registers must be programmed. The Mode Register will power-up in an  
unknown state. The Mode Register and the Extended Mode Register should be loaded  
prior to issuing any operational commands.  
November 2007  
317623-15  
Datasheet  
25  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
9.0  
Bus Operations Overview  
9.1  
Flash, LPSDRAM and SRAM Bus Operations  
Bus operations for this L18 SCSP LX family (x16) device involve the control of flash,  
SRAM, and LPSDRAM inputs. The bus operations are shown in:  
Table 13, “Flash + LPSDRAM Bus Operations”  
Table 14, “LPSDRAM Functional Mode Description: Current State bank n, Command  
to Bank n”  
Table 15, “LPSDRAM Functional Mode Description: Current State bank n, Command  
to Bank m”  
Table 16, “Flash + SRAM Bus Operations”  
Fully synchronous operations are performed by the LPSDRAM to latch the commands at  
the positive edges of D-CLK.  
See the Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet (order number  
251902) for complete descriptions of flash modes and commands, command bus-cycle  
definitions and flowcharts that illustrate operational routines.  
Table 13: Flash + LPSDRAM Bus Operations (Sheet 1 of 3)  
Mode  
Sync Array  
Read  
Flash  
DOUT  
1,4  
, 6  
H
H
L
L
L
L
L
X
X
Active  
H
H
1,4  
,5,  
6
Async  
Read  
De-  
asserted  
Flash  
DOUT  
X
LPSDRAM outputs must be in High-Z  
2,3  
,5,  
6
VPPL/  
VPPH  
Flash  
DIN  
Write  
H
L
H
L
High-Z  
L
Output  
Disable  
Flash  
H
H
L
L
H
X
H
X
X
X
X
X
X
X
X
High-Z  
High-Z  
High-Z  
H
X
X
6
6
6
High-Z  
Flash  
High-Z  
Standby  
Reset  
Any LPSDRAM mode allowed  
Flash  
High-Z  
Datasheet  
26  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 13: Flash + LPSDRAM Bus Operations (Sheet 2 of 3)  
Mode  
RAM  
DOUT  
Active  
Read  
H
H
H
H
X
X
L
L
L
H
L
X
V
V
Row Address  
6,7  
L
6,7  
,8,  
10  
L/  
H
Col  
RAM  
DOUT  
H
With Auto  
Precharge  
Addr  
H
Write  
L
L/  
H
RAM  
DIN  
6,9  
,10  
Flash outputs must be in High-Z  
L
L
L
H
H
H
X
H
X
L
L
L
H
H
L
L
V
X
X
With Auto  
Precharge  
H
RAM  
High-Z  
Burst Stop  
H
H
X
X
X
X
X
6
Precharge  
One Bank  
V
X
X
L
H
X
RAM  
High-Z  
6
All Banks  
Auto-  
Refresh  
RAM  
High-Z 13  
6,  
H
H
H
H
H
L
L
L
L
L
L
L
X
X
X
X
Flash must be in High-Z  
Self-  
Refresh  
Entry  
RAM  
High-Z 13  
6,  
X
X
X
X
Self-  
Refresh  
Exit  
Flash must be in High-Z  
Any flash mode allowed  
H
X
L
H
X
H
X
RAM  
6
L
H
X
X
High-Z  
H
November 2007  
317623-15  
Datasheet  
27  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 13: Flash + LPSDRAM Bus Operations (Sheet 3 of 3)  
Mode  
6,  
11,  
12  
Load Mode  
Register  
RAM  
High-Z  
L
H
H
X
L
L
L
X
L
Operand Code  
X
Flash outputs must be in High-Z  
Any flash mode allowed  
Input/  
Output  
Enable  
RAM  
6,  
X
X
X
High-Z 10  
Input  
Inhibit/  
Output  
High-Z  
RAM  
6,  
X
H
H
X
High-Z 10  
Clock  
Suspend  
Entry  
Any flash mode allowed  
X
V
H
L
X
V
X
V
RAM  
High-Z 14  
6,  
H
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Flash outputs must be in High-Z  
Clock  
Suspend  
Exit  
RAM  
6
Flash outputs must be in High-Z  
X
X
X
X
High-Z  
Power  
Down  
Entry  
Any flash mode allowed  
Flash outputs must be in High-Z  
Any flash mode allowed  
X
H
X
H
H
L
X
H
X
H
X
H
X
H
RAM  
High-Z 15  
6,  
H
L
H
L
Power  
Down Exit  
RAM  
6
H
High-Z  
Flash outputs must be in High-Z  
Deep  
Power  
Down  
Entry  
RAM  
6
L
H
L
L
H
H
X
X
X
X
High-Z  
Flash outputs must be in High-Z  
Deep  
RAM  
6
Power  
X
X
H
L
H
X
X
X
H
L
X
X
H
X
X
H
X
X
X
X
X
X
X
X
X
X
X
X
High-Z  
Down Exit  
Device  
Deselect  
(NOP)  
RAM  
6
Any flash mode allowed  
H
H
High-Z  
No  
Operation  
(NOP)  
RAM  
6
Flash outputs must be in High-Z  
High-Z  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
WAIT is only valid during synchronous flash reads. Refer to the discrete datasheet for detailed WAIT functionality.  
OE# and WE# should never be asserted simultaneously.  
X can be VIL or VIH for inputs, VPPL, VPPH or VPPLK for F-VPP.  
Flash CFI query and Status Register accesses use DQ[7:0] only, all other reads use DQ[15:0].  
Refer to the L18 datasheet for valid DIN during flash writes.  
All states and sequences not shown are illegal or reserved.  
A[13:1] provide row address for 256-Mbit LPSDRAM. A[12:1] provide row address for 128-Mbit LPSDRAM. A[9:1]  
provide column address for 128-Mbit or 256-Mbit LPSDRAM.  
8.  
Select bank and column address, and start Read. A11 High enables auto precharge.  
Select bank and column address, and start Write. A11 High enables auto precharge.  
Activate or deactivate the data during Writes with zero-clock delay and during Reads with two-clock delay. D-DM0  
corresponds to DQ[7:0], D-DM1 corresponds to DQ[15:8].  
9.  
10.  
11.  
12.  
A[11:1] define the operand code to the register.  
Extended Mode Register is programmed by setting D-BA1 = H and D-BA0 = L. For Mode Register programming, set  
D-BA1 = D-BA0 = L.  
13.  
14.  
15.  
All banks must be precharged before issuing an Auto-refresh command.  
Clock suspend mode occurs when column access or burst is in progress.  
Power-Down occurs when no accesses are in progress.  
Datasheet  
28  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 14: LPSDRAM Functional Mode Description: Current State bank n, Command to Bank  
n
D-  
RAS#  
Current State D-CS#  
D-CAS# WE#  
Command  
Action  
Notes  
H
X
X
H
H
L
X
H
H
H
L
NOP  
Continue previous operation  
Continue previous operation  
Select and activate row  
Auto refresh  
Any  
L
H
L
NOP  
L
Active  
L
L
Auto refresh  
Load Mode Register  
Precharge  
Read  
Idle  
L
L
L
Mode Register set  
L
L
L
H
L
L
NOP  
H
H
L
H
L
Select Column & start read burst  
Select Column & start write burst  
Deactivate Row in bank (or banks)  
Row Active  
L
L
L
Write  
H
L
Precharge  
3
Truncate read & start new read  
burst  
L
L
H
H
L
L
H
L
Read  
Write  
5
5
Read (without  
Auto  
Truncate read & start new write  
burst  
precharge)  
L
L
L
H
H
L
L
Precharge  
Truncate read, start precharge  
Burst terminate  
H
Burst Terminate  
Truncate write & start new read  
burst  
L
L
H
H
L
L
H
L
Read  
Write  
5
5
Write (without  
Auto  
Truncate write & start new write  
burst  
precharge)  
L
L
L
H
H
L
L
Precharge  
Truncate write, start precharge  
Burst terminate  
H
Burst Terminate  
Notes:  
1.  
2.  
3.  
The table applies when both D-CKEn-1 and D-CKEn are high.  
All states and sequences not shown are illegal or reserved.  
This command may or may not be bank specific. If all banks are being precharged, they must be in a valid state for  
precharging.  
4.  
5.  
A command other than No Operation (NOP), should not be issued to the same bank while a Read or Write Burst with  
auto precharge is enabled.  
The new Read or Write command could be auto precharge enabled or auto precharge disabled.  
Table 15: LPSDRAM Functional Mode Description: Current State bank n, Command to Bank  
m
Current  
State  
D-  
RAS#  
D-  
CAS#  
D-CS#  
WE#  
Command  
Action  
Notes  
H
X
X
X
NOP  
NOP  
Any  
Continue previous Operation  
Continue previous Operation  
1,2  
1,2  
Any  
L
X
L
L
L
L
H
X
L
H
X
H
L
H
X
H
H
L
Idle  
Any command allowed to bank m 1,2  
Active  
Read  
Activate Row  
Start Read burst  
Start Read burst  
Precharge  
1,2  
1,2  
1,2  
1,2  
Row  
H
H
L
Activating,  
Active, or  
Precharging  
L
Write  
H
L
Precharge  
November 2007  
317623-15  
Datasheet  
29  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 15: LPSDRAM Functional Mode Description: Current State bank n, Command to Bank  
m
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
H
L
Active  
Read  
Activate Row  
Start Read burst  
Start Write burst  
Precharge  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
Read with  
Auto  
Precharge  
disabled  
H
H
L
L
Write  
H
H
L
L
Precharge  
Active  
Read  
L
H
H
L
Activate Row  
Start Read burst  
Start Write burst  
Precharge  
Write with  
Auto  
precharge  
disabled  
H
H
L
L
Write  
H
H
L
L
Precharge  
Active  
Read  
L
H
H
L
Activate Row  
Start Read burst  
Start Write burst  
Precharge  
Read with  
Auto  
Precharge  
H
H
L
L
Write  
H
H
L
L
Precharge  
Active  
Read  
L
H
H
L
Activate Row  
Start Read burst  
Start Write burst  
Precharge  
Write with  
Auto  
precharge  
H
H
L
L
Write  
H
L
Precharge  
Notes:  
1.  
2.  
The table applies when both D-CKEn-1 and D-CKEn are high.  
All states and sequences not shown are illegal or reserved.  
Table 16: Flash + SRAM Bus Operations (Sheet 1 of 2)  
Synchronous Array  
H
H
H
L
L
L
L
L
H
H
L
Active  
L
X
L
X
H
H
H
X
X
X
X
X
X
Flash DOUT  
Flash DOUT  
Flash DIN  
1,2,3,5  
1,2,3,5  
1,2,3,4  
and Non-Array Read  
Deasserte  
d
Asynchronous Read  
X
V
PPL or  
VPPH  
Write  
H
High-Z  
Output Disable  
Standby  
H
H
L
L
H
X
H
X
X
H
X
X
High-Z  
High-Z  
High-Z  
X
X
X
X
Flash High-Z  
Flash High-Z  
Flash High-Z  
1,2,3  
1,2,3  
1,2,3  
Any SRAM  
mode allowed  
X
Reset  
X
Datasheet  
30  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 16: Flash + SRAM Bus Operations (Sheet 2 of 2)  
Read  
Write  
X
X
H
H
L
H
L
High-Z  
High-Z  
X
X
X
X
L
L
H
H
L
L
SRAM DOUT  
SRAM DIN  
1,2,3  
1,2,3  
H
1,2,3,5  
,6  
Output Disable  
Standby  
L
H
H
X
X
SRAM High-Z  
SRAM High-Z  
SRAM High-Z  
1,2,3,5  
,6  
Any Flash mode allowed  
H
Same as SRAM  
Standby  
Data Retention  
1,6  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
Flash + SRAM Bus Operations only applicable with 103-Active Ball High-Performance DRAM ballout.  
OE# and WE# should never be asserted simultaneously.  
X can be VIL or VIH for flash or RAM inputs. VPPL or VPPH for F-VPP.  
Refer to the latest revision of theL18 datasheet for valid DIN during Flash writes.  
Flash CFI query and Status Register accesses use DQ[7:0] only, all other reads use DQ[15:0].  
The SRAM can be placed into data retention mode by lowering S-VCC to the VDR limit when in standby mode.  
November 2007  
317623-15  
Datasheet  
31  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
10.0  
Flash OperationS  
Refer to the Numonyx™ StrataFlash® Wireless Memory (L18) Datasheet (order number  
251902) for detailed information on the following:  
• Read Operations  
• Program Operations  
• Erase Operations  
• Suspend and Resume Operations  
• Block Locking and Unlocking Operations  
• Protection Register Operations  
• Configuration Operations  
• Dual Operations Considerations  
• Memory Map and Partitioning  
• Flash Write State Machine  
• Flash Common Flash Interface  
• Flash Flowcharts  
Datasheet  
32  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
11.0  
LPSDRAM Register Definition  
11.1  
Mode Register  
The Mode Register is used to define specific modes of operation of the LPSDRAM. This  
definition includes the selection of a burst length, burst type, a D-CAS# latency, and a  
write burst mode. The Mode Register settings are illustrated in the Table below. The  
Mode Register is programmed by the Load Mode Register command and will retain the  
information until it is reprogrammed, the LPSDRAM loses power, or the LPSDRAM goes  
in Deep Power-Down mode. The register should be loaded when all banks are idle, and  
subsequent operation should only be initiated after tMRD  
.
Addresses A[12, 11, 9, 8] must be set to “0“ for all Mode Register programming. D-  
BA[1:0] should be set to (0,0) to differentiate from Extended Mode Register  
programming.  
Table 17: LPSDRAM Setting for Burst Length  
Burst Length  
A3  
A2  
A1  
A4 = 0  
A4 = 1  
1
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
2
2
4
8
4
8
Full Page  
Reserved  
Notes:  
1.  
2.  
States not mentioned are undefined.  
The sequential burst will wrap on reaching the last column of the burst length.  
Table 18: LPSDRAM Setting for Burst Type  
A4  
Burst Type  
0
1
Sequential  
Interleaved  
Table 19: LPSDRAM Setting for D-CAS# Latency  
A7  
A6  
A5  
CAS# Latency  
0
0
0
0
1
1
1
0
1
1
2
3
Note: CAS# Latency not mentioned are undefined.  
November 2007  
317623-15  
Datasheet  
33  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 20: LPSDRAM Setting for Write Burst Mode  
A10  
Write Burst Mode  
0
1
Programmed Burst  
Single Word Burst  
11.2  
LPSDRAM Extended Mode Register  
The Extended Mode Register controls two power saving functions: Temperature-  
Compensated Self-Refresh (TCSR), and Partial-Array Self-Refresh (PASR). Both these  
features can only be used when the LPSDRAM is under Self-Refresh. In addition, the  
Configurable Output Driver Strength can be programmed through the Extended Mode  
Register.  
The Extended Mode Register is programmed by the Load Mode Register command and  
will retain the information until it is reprogrammed, the LPSDRAM loses power, or the  
LPSDRAM goes in Deep Power-Down mode. The register should be loaded when all  
banks are idle, and subsequent operation should only be initiated after tMRD  
.
To program the Extended Mode Register, bank addresses D-BA1 = 1, and D-BA0 = 0  
should be used. Addresses A[12:6] should be set to '0'.  
Table 21: LPSDRAM Setting for Partial-Array Self-Refresh (PASR)  
A3  
A2  
A1  
Self-Refresh Coverage  
0
0
0
0
0
1
0
1
0
Four Banks  
Two Banks (Bank 0 & Bank 1)  
One Bank (Bank 0)  
Table 22: LPSDRAM Setting for Temperature-Compensated Self-Refresh  
A5  
A4  
Maximum Ambient Temperature  
1
0
0
1
1
0
1
0
85 °C  
70 °C  
45 °C  
15 °C  
Table 23: LPSDRAM Configurable Output Driver Strength  
A7  
A6  
Strength  
Output Load (pF)  
0
0
1
1
0
1
0
1
Normal  
Half  
30  
TBD  
NA  
Reserved  
Reserved  
NA  
Note: LPSDRAM AC specs are guaranteed only when normal output driver strength is used.  
Datasheet  
34  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
12.0  
LPSDRAM Commands and Operations  
12.1  
LPSDRAM No Operation / LPSDRAM Deselect  
The NOP (No Operation) / LPSDRAM Deselect command is used on a LPSDRAM that is  
selected  
(D-CS# low). It is also used to deselect the LPSDRAM by preventing new commands  
from being executed. Operations already in progress are not affected.  
12.2  
LPSDRAM Active  
The Active command is used to activate a row in particular bank for a subsequent read  
or write access. The value of the bank D-BA[1:0] and the row address needs to be  
provided. The row remains active until a precharge command is issued to the bank. A  
Precharge command must be issued before opening a different row in the same bank.  
More than one bank can be active at any time. A read or write command could be  
issued to that row, subject to the tRCD specification. tRCD (min) should be divided by the  
clock period and rounded up to the next whole number to determine the earliest clock  
edge after the active command on which the read/write can be entered. A subsequent  
Active command to another row in the same bank can only be issued after the previous  
row has been closed. The minimum time interval between two successive active  
commands on the same bank is defined by tRC. The minimum time interval between  
two successive active commands on the different banks is defined by tRRD. This is  
illustrated in Figure 11 on page 38.  
12.3  
LPSDRAM Read Command  
Read command is used to initiate a burst read to an active row. The value of D-BA[1:0]  
select the bank and address inputs select the starting column location. The value of  
A11 determines whether or not auto precharge is used. Output data appears on the  
data bus, subject to the logic level on the D-DM[1:0] inputs two clocks earlier. D-  
DM[1:0] latency for read command is 2 clock cycles.  
The burst length is set in the mode register. The starting column and bank address is  
provided along with the auto precharge option. During read bursts, the starting valid  
data-out corresponding to the starting column address will be available after CAS  
latency cycles after the read command. Each subsequent data-out will be valid by the  
next positive edge of the clock. This is shown in Figure 12, “LPSDRAM Example of D-  
CAS# Latency, CL = 2” on page 38 with a CAS latency of 2. Data from a read burst may  
be truncated by a subsequent read command. The first data from the new burst follows  
either the last element of a completed burst or the last desired element of a longer  
burst that is being truncated. The new read command can be issued as early as CL-1  
cycles before the last desired element. This is shown in Figure 13, “Consecutive  
LPSDRAM Read Bursts with CL = 2” on page 39.  
Figure 14 on page 39 shows random LPSDRAM access reads. These can be issued to  
the same or different banks.  
A read burst can be terminated by a subsequent write command, and data from a fixed  
length read burst can be followed by a write command. The write command may be  
initiated on the clock edge immediately following the last data element from the read  
burst, provided the I/O contention could be avoided. D-DM[1:0] can be used to control  
I/O contention as shown in Figure 15, “LPSDRAM Read to LPSDRAM Write Command”  
on page 39. D-DM[1:0] latency is 2 clocks for output buffers masking, so the D-  
DM[1:0] signal must be set high at least 2 clocks prior to the write command. D-  
DM[1:0] latency for write is zero clocks, so D-DM[1:0] must be set low before write  
command to ensure data written is not masked.  
November 2007  
317623-15  
Datasheet  
35  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
A read burst may be followed by or truncated with a Precharge command, which could  
be issued CL-1 cycles before the last desired element. This is shown in Figure 16,  
“LPSDRAM Read Command Followed by Precharge” on page 40. Following Precharge  
command, another command to the same bank cannot be issued until tRP is met.  
Similarly Burst Terminate command can be used to stop a burst as shown in Figure 17,  
“LPSDRAM Read Followed by Burst Terminate” on page 40.  
12.4  
LPSDRAM Write Command  
The write command is used to initiate a burst write access to an active row. The value  
of D-BA[1:0] select the bank and address inputs select the starting column location.  
The value of A11 determines whether or not auto precharge is used. Input data  
appearing on the data bus, is written to the memory array subject to the D-DM[1:0]  
input logic level appearing coincident with the data.  
D-DM[1:0] latency for write command is 0-clock cycle.  
The burst length is set in the mode register. The starting column and bank address is  
provided along with the auto precharge option. The first valid data-in is registered  
coincident with the Write command. Subsequent data elements will be registered on  
each successive positive clock edge. Figure 16, “LPSDRAM Read Command Followed by  
Precharge” on page 40 shows 2 consecutive 4 word write bursts. A write burst may be  
followed by or truncated with a Precharge command to the same bank. The Precharge  
should be issued tWR after the clock edge after the last desired input data is entered. In  
addition, when truncating a Write burst, the D-DM[1:0] signal must be used to mask  
input data for the clock edge coincident with the precharge command. This is shown in  
Figure 19 and Figure 20 on page 41, where tWR corresponds to either 1 or 2 clock  
cycles, respectively. Following the Precharge command, a subsequent command cannot  
be issued to the same bank until tRP is met.  
Write Burst can be truncated with a Burst Terminate command. While truncating, the  
input data being applied coincident to the burst terminate will be ignored.  
Data for any writes may be truncated by a subsequent Read command as shown in  
Figure 21 on page 41. Once the Read command is registered, the data inputs will be  
ignored.  
12.5  
12.6  
LPSDRAM Power-Down  
Power-down occurs if D-CKE is set low coincident with LPSDRAM Deselect or NOP  
command and when no accesses are in progress. If power-down occurs when all banks  
are idle, it is Precharge Power-Down. If power-down occurs when one or more banks  
are active, it is referred to as Active power-down. The LPSDRAM cannot stay in this  
mode for longer than the refresh period (64 ms) without losing data. The Power-Down  
state is exited by setting D-CKE high while issuing a LPSDRAM Deselect or NOP  
command. This is shown in Figure 22 on page 42.  
LPSDRAM Deep Power-Down  
The Deep Power-Down (DPD) mode enables very low standby currents. All internal  
voltage generators inside the LPSDRAM are stopped and all memory data are lost in  
this mode. To enter the DPD mode, all banks must be precharged, prior to the DPD  
command. To exit this mode, the  
D-CKE is taken high after the clock is stable.  
Datasheet  
36  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
12.7  
LPSDRAM Clock Suspend  
This mode occurs when a column access or burst is in progress, and D-CKE is set low.  
The internal clock gets suspended freezing the LPSDRAM logic. Any command or data  
present on the input pins at the time of suspended internal clock is ignored. The output  
data on the pins stays frozen. This mode is exited by setting D-CKE high, which results  
in resumption of the operation. Figure 23 on page 42 shown clock suspend during a  
write burst and Figure 24 on page 43 shows a clock suspend during a read burst.  
12.8  
12.9  
LPSDRAM Precharge  
The Precharge is used to deactivate an active row in a particular bank or active row in  
all banks. The banks will be available for row access after a specified time (tRP) after  
the Precharge command is issued. If one bank is to precharged, the particular bank  
address needs to be addressed. If all banks are to be precharged, A11 should be set  
high along with the Precharge command.  
LPSDRAM Auto Precharge  
Auto Precharge is accomplished when A11 is high, to enable auto precharge in  
conjunction with a specific read or write command. This precharges the row after the  
read or write burst is complete. Auto precharge ensures that a precharge is initiated at  
the earliest valid stage within a burst. Another command to the same bank must not be  
issued until the precharge time (tRP) is completed. Auto precharge does not apply in  
full-page burst mode. Auto precharge is non- persistent.  
12.10  
LPSDRAM Concurrent Auto Precharge  
If an access command with Auto Precharge enabled is being executed, it can be  
interrupted by another access command.  
Figure 25 on page 43 shows a Read with Auto Precharge to Bank n, interrupted by  
a Read (with or without Auto precharge) to bank m. The Read to bank m will  
interrupt the Read to Bank n, CAS latency later. The precharge to bank n will begin  
when the Read to bank m is registered.  
Figure 26 on page 43 shows a Read with Auto Precharge to Bank n, interrupted by  
a Write (with or without Auto precharge) to bank m. The precharge to bank n will  
begin when the Write to bank m is registered. D-DM[1:0] should be set high 2 clock  
before the Write command to prevent bus contention.  
Figure 27 on page 44 shows a Write with Auto Precharge to Bank n, interrupted by  
a Read (with or without Auto precharge) to bank m. The new command initiates  
bank n Write recovery (tWR) followed by precharge. The last valid data-in to bank n  
is 1 clock prior to the Read to bank m.  
Figure 28 on page 44 shows a Write with Auto Precharge to Bank n, interrupted by  
a Write (with or without Auto precharge) to bank m. The new command initiates  
bank n Write recovery (tWR) followed by precharge. The last valid data-in to bank n  
is 1 clock prior to the Write to bank m.  
November 2007  
317623-15  
Datasheet  
37  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 9: LPSDRAM Auto-Refresh Cycles with D-CKE High  
T0  
T1  
T2  
Tn  
Tm  
D- CLK  
tRP  
tRFC  
tRFC  
Command  
Precharge  
NOP  
Auto Refresh  
Auto Refresh  
Active  
Figure 10: LPSDRAM Self-Refresh Entry and Exit Mode  
T0  
T1  
T2  
Tn  
Tm  
D-CLK  
tRP  
Command  
Precharge  
NOP  
Auto Refresh  
NOP  
Auto Refresh  
tSREX  
D-CKE  
t
RAS  
>
Figure 11: LPSDRAM Active Command and LPSDRAM Read Access Command Issued to  
2 Different Banks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
D- CLK  
Command  
Active  
NOP  
Read-AP  
NOP  
Active  
NOP  
Read-AP  
NOP  
tRCD,  
Bank 0  
Address  
Data I/O  
Bk0/ Row  
Bk 0 / Col a  
Bk1/Row  
Bk 1 / Col b  
tRRD  
Dout - a  
Dout – a + 1  
Dout – a +2  
t
RA S, Bank 0  
Figure 12: LPSDRAM Example of D-CAS# Latency, CL = 2  
T0  
T1  
T2  
T3  
CL=2  
D-CLK  
Command  
Read  
NOP  
NOP  
NOP  
tAC  
tLZ  
tHZ  
tCH  
Data I/O  
Dout  
Datasheet  
38  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 13: Consecutive LPSDRAM Read Bursts with CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D- CLK  
Command  
Read  
NOP  
NOP  
NOP  
Read  
NOP  
NOP  
Address  
Data I/O  
Bk n / Col a  
Bk any / Col b  
CL - 1  
Dout-a+2  
-
Dout - a  
Dout-a+1  
Dout – a + 3  
Dout - b  
Note: New command should be issued CL-1 clock cycles before the last desired data. New command can be used to truncate  
previous Read Burst.  
Figure 14: Random LPSDRAM Read Access with CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D-CLK  
Command  
Read  
Read  
Read  
Bk any/Col c  
Dout - a  
Read  
Bk any/Col d  
Dout - b  
NOP  
NOP  
NOP  
Bk any/ Col a  
Bk any/ Col b  
Address  
Data I/O  
Dout - c  
Dout - d  
Figure 15: LPSDRAM Read to LPSDRAM Write Command  
T0  
T1  
T2  
T3  
T4  
D -  
CLK  
D -  
DM  
Command  
Address  
Read  
NOP  
NOP  
Dout  
NOP  
Write  
Bk any / Col b  
Din- b  
Bk n / Col a  
-
a
Dout - a + 1  
Data I/O  
Note: Data masking used to prevent I/O contention.  
November 2007  
317623-15  
Datasheet  
39  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 16: LPSDRAM Read Command Followed by Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
D-CLK  
Command  
Read  
NOP  
NOP  
NOP  
Precharge  
Bk n/all  
NOP  
NOP  
Active  
Address  
Data I/O  
Bk n / Col a  
Bk/Row  
CL - 1  
Dout- a+3  
Dout - a  
Dout – a + 1  
Dout – a + 3  
CL = 2  
Note: Command issued CL-1 clocks before last desired data-out element.  
Figure 17: LPSDRAM Read Followed by Burst Terminate  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D- CLK  
Command  
Address  
Read  
NOP  
NOP  
NOP  
NOP  
NOP  
Brst Term  
Bk n / Col a  
CL - 1  
Dout – a + 2  
Dout - a+3  
Data I/O  
Dout - a  
Dout – a + 1  
CL =2  
Figure 18: Random LPSDRAM Write to 4-Word Bursts  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D-CLK  
Command  
Address  
Write  
Bk n / Col a  
Din - a  
NOP  
NOP  
NOP  
Write  
NOP  
NOP  
Bk any/Col b  
-
Data I /O  
Din – a + 1  
Din – a + 2  
Din - a+3  
Din - b  
Din- b+ 1  
Din- b+2  
Note: The commands can be to any active bank.  
Datasheet  
40  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 19: LPSDRAM Write to Precharge Command Where Write Recovery Takes 1 Clock  
Cycle  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D- CLK  
D-DM  
Command  
Write  
Bk n / Col a  
Din - a  
NOP  
Precharge  
Bk a / all  
NOP  
NOP  
Active  
NOP  
tRP  
Address  
Data I/O  
Bk any / Col b  
tWR  
Din-a+1  
Figure 20: LPSDRAM Write to Precharge Command Where Write Recovery Takes 2 Clock  
Cycles  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D-CLK  
D-DM  
Command  
Write  
Bk n / Col a  
Din - a  
NOP  
NOP  
Precharge  
NOP  
NOP  
Active  
tRP  
Address  
Data I/O  
Bk a / all  
Bk any / Col b  
tWR  
Din-a+1  
Figure 21: LPSDRAM Write Command Followed by LPSDRAM Read Command  
T0  
T1  
T2  
T3  
T4  
T5  
D-CLK  
Command  
Address  
Write  
NOP  
Read  
NOP  
NOP  
NOP  
Bk n / Col a  
Bk any / Col b  
Data I /O  
Din - a  
Din - a +1  
Dout - b  
Dout - b+1  
CL = 2  
Note: The Read and Write command can be done to any bank. (CL = 2)  
November 2007  
317623-15  
Datasheet  
41  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 22: LPSDRAM Precharge Power-Down Mode  
T0  
T1  
T2  
Tn  
Tn + 1  
D-CLK  
D- CKE  
Two CLK Cycles  
NOP  
Command  
Precharge  
All Banks  
NOP  
NOP  
Active  
Row  
A11  
,
D-BA[1:0]  
Single Bank  
High-Z  
Row  
Data I/O  
Note: All banks are idle with D-CKE low.  
Figure 23: LPSDRAM Clock Suspend During LPSDRAM Write Burst  
T0  
T1  
T2  
T3  
T4  
T5  
D-CLK  
D
CKE  
Internal CLK  
Command  
Address  
NOP  
Write  
Bk n / Col a  
Din - a  
NOP  
NOP  
Bk any / Col b  
Din – a + 1  
Data I /O  
Din -a + 2  
Note: Input data is ignored when internal clock is suspended.  
Datasheet  
42  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 24: LPSDRAM Clock Suspend During LPSDRAM Read Burst (CL = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D-CLK  
D-CKE  
Internal CLK  
Command  
Read  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
Data I/O  
Bk n / Col a  
Dout - a  
Dout-a+1  
Dout – a + 2  
Dout – a + 3  
Note: Output data gets frozen while internal clock is suspended.  
Figure 25: LPSDRAM Read with Auto Precharge to Bank n Interrupted by Read to Bank m  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D-CLK  
Command  
Bank n  
Bank n  
Bank m  
Read -AP  
Read -AP  
NOP  
NOP  
NOP  
NOP  
NOP  
tRP , Bank n  
Interrupt Burst , Precharge  
Read Burst  
Idle  
Page Active  
Page Active  
Bank m  
Address  
Data I/O  
Read Burst  
Bk m / Col b  
Bk n / Col a  
CL=2  
Dout - a  
Dout - a+1  
Dout - b  
Dout - b+1  
Figure 26: LPSDRAM Read with Auto Precharge to Bank n Interrupted by Write to Bank m  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D- CLK  
Bank n  
Read-AP  
Bank m  
Write-AP  
NO  
P
Command  
NOP  
NOP  
NOP  
NOP  
t
RP , Bank n  
Bank n  
Bank m  
Address  
D-DM  
Page Active  
Read Burst  
Interrupt Burst, Precharge  
Page Active  
Write Burst  
Bk n /Cola  
Bk m / Col b  
CL=2  
Data I/O  
Dout - a  
Din - b  
Din- b+1  
Din - b+2  
November 2007  
317623-15  
Datasheet  
43  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Figure 27: LPSDRAM Write with Auto Precharge to Bank n Interrupted by Read to Bank m  
T0  
T1  
T 2  
T 3  
T4  
T5  
T6  
D- CLK  
Bank n  
Bank m  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
Write-AP  
Read -AP  
tWR,  
tRP, Bank n  
Bank n  
Bank n  
Bank m  
Active  
Write Burst  
Interrupt Burst , Write Recovery  
Precharge  
Page Active  
Read Burst ( 4 Word)  
Precharge  
Bk n / Col a  
Bk m / Col b  
Address  
Data I /O  
Din -a  
Din – a + 1  
Dout - b  
Dout – b + 1  
Dout – b + 2  
Figure 28: LPSDRAM Write with Auto Precharge to Bank n Interrupted by Write to Bank m  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
D-CLK  
Bank n  
Bank m  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
Write-AP  
Write-AP  
tWR,  
t
RP,Bank n  
Bank n  
Bank n  
Active  
Write Burst (4 Word)  
Page Active  
Interrupt Burst , Write Recovery  
Precharge  
t
WR,  
Bank m  
Bank m  
Address  
Data I/O  
Write Burst (4 Word)  
Write Recovery  
Bk m / Col b  
Din - b  
Bk n / Col a  
Din - a  
Din- b+1  
Din- b+2  
Din- b+3  
Din – a + 1  
12.11  
LPSDRAM Burst Terminate  
This command is used to truncate bursts. The most recent command prior to the burst  
terminate command will be truncated.  
12.12  
LPSDRAM Auto-Refresh  
This command is used during normal operation of the LPSDRAM. This command is non-  
persistent. All banks must be idle before issuing Auto-Refresh command. This  
command can be issued after a minimum of tRP after the precharge command. The  
address bits are "Don't care" during the Auto-Refresh command. As an example, the  
256-Mbit LPSDRAM requires 4096 auto refresh cycles (4096 rows/bank) every 64 ms  
(tREF). Providing a distributed Auto-Refresh command every 15.625 μs will meet the  
refresh requirement and ensure that each row is refreshed. Alternatively, 4096 refresh  
command cycles can be issued in a burst at a minimum cycle rate (tRFC), once every 64  
ms. Figure 9 on page 38 shows auto refresh cycles.  
Datasheet  
44  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
12.13  
LPSDRAM Self-Refresh  
This state retains data in the LPSDRAM, even as the rest of the system is powered  
down. The Self-Refresh command is initiated like the auto refresh command, except  
the D-CKE is disabled (low). All banks must be idle before this command is issued.  
Once the Self-Refresh command is registered, all inputs become "Don't Care" except D-  
CKE, which must remain low. The procedure for exiting Self-Refresh mode requires a  
series of commands. First clock must be stable before  
D-CKE going high. NOP commands should be issued (minimum of 2 clocks) to meet the  
refresh exit time (tSREX) limitation. Figure 10 on page 38 shows self refresh entry and  
exit mode.  
Appendix A Ordering Information  
To order samples, obtain datasheets or inquire about any stack combination, please  
contact your local Numonyx representative.  
Table 24: 38F Type Stacked Components  
PF  
38F  
5070  
M0  
Y
0
B
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash Product  
Family  
Ballout  
Identifier  
Device  
Details  
Char 1 = Flash  
die #1  
V =  
0 =  
First character  
applies to Flash  
die #1  
1.8 V Core  
and I/O;  
Separate Chip  
Enable per die  
Char 2 = Flash  
die #2  
No parameter  
blocks; Non-  
Mux I/O  
B =  
x16D  
Ballout  
interface  
Char 3 =  
0 =  
PF =  
Second character  
applies to Flash  
die #2  
RAM die #1  
Original  
released  
version of  
this  
SCSP, RoHS  
(See  
(See  
(See  
Table 28,  
“Voltage /  
NOR Flash  
CE#  
Table 30  
Stacked NOR  
Table 29,  
“Parameter  
/ Mux  
,
Flash + RAM Char 4 =  
RD =  
“Ballout  
Decoder  
” on  
(See Table 27,  
“NOR Flash  
Family  
RAM die #2  
SCSP, Leaded  
product  
Configurati  
on  
Configurati  
on  
(See  
page 48  
for details)  
Decoder” on  
page 47 for  
details)  
Decoder”  
on page 47  
for details)  
Table 26,  
“38F / 48F  
Density  
Decoder”  
onpage 47  
for details)  
Decoder”  
on page 46  
for details)  
November 2007  
317623-15  
Datasheet  
45  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 25: 48F Type Stacked Components  
PC  
48F  
4400  
P0  
V
B
0
0
Product Die/  
Density  
Configuration  
Voltage/NOR  
Flash CE#  
Configuration  
Parameter /  
Mux  
Configuration  
Package  
Designator  
Product Line  
Designator  
NOR Flash Product  
Family  
Ballout  
Identifier  
Device  
Details  
PC =  
Char 1 = Flash  
die #1  
Easy BGA,  
RoHS  
V =  
B =  
Bottom  
parameter;  
Non-Mux I/O  
interface  
First character  
applies to Flash  
dies #1 and #2  
1.8 V Core  
and 3 V I/O;  
Virtual Chip  
Enable  
Char 2 = Flash  
die #2  
0 =  
Discrete  
Ballout  
RC =  
Easy BGA,  
Leaded  
0 =  
Char 3 = Flash  
die #3  
Second character  
applies to Flash  
dies #3 and #4  
Original  
released  
version of  
this  
(See  
(See  
JS =  
TSOP, RoHS  
(See  
Stacked  
NOR Flash  
only  
Table 28,  
“Voltage /  
NOR Flash  
CE#  
Table 30  
Table 29,  
“Parameter  
/ Mux  
Char 4 = Flash  
die #4  
,
“Ballout  
Decoder  
” on  
(See Table 27,  
“NOR Flash  
Family  
product  
TE =  
TSOP, Leaded  
Configurati  
on  
Configurati  
on  
(See  
page 48  
for details)  
Table 26,  
“38F / 48F  
Density  
Decoder” on  
page 47 for  
details)  
Decoder”  
on page 47  
for details)  
Decoder”  
on page 47  
for details)  
PF =  
SCSP, RoHS  
Decoderon  
page 46 for  
details)  
RD =  
SCSP, Leaded  
Table 26: 38F / 48F Density Decoder  
Code  
Flash Density  
RAM Density  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
No Die  
No Die  
4-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
8-Mbit  
16-Mbit  
32-Mbit  
64-Mbit  
128-Mbit  
256-Mbit  
512-Mbit  
1-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
128-Gbit  
256-Gbit  
512-Gbit  
2-Gbit  
4-Gbit  
8-Gbit  
16-Gbit  
32-Gbit  
64-Gbit  
Datasheet  
46  
November 2007  
317623-15  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 27: NOR Flash Family Decoder  
Code  
Family  
Marketing Name  
C
C3  
Numonyx Advanced+ Boot Block Flash Memory  
Numonyx Embedded Flash Memory  
Numonyx™ StrataFlash® Wireless Memory  
Numonyx™ StrataFlash® Cellular Memory  
Numonyx™ StrataFalsh® Embedded Memory  
Numonyx™ Wireless Flash Memory  
No Die  
J3v.D  
J
L
L18 / L30  
M18  
M
P
P30 / P33  
W18 / W30  
-
W
0(zero)  
Table 28: Voltage / NOR Flash CE# Configuration Decoder  
I/O Voltage  
Code  
Core Voltage (Volt)  
CE# Configuration  
Seperate Chip Enable per die  
(Volt)  
Z
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
3.0  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
3.0  
1.8  
1.8  
3.0  
Seperate Chip Enable per die  
Seperate Chip Enable per die  
Virtual Chip Enable  
Virtual Chip Enable  
Virtual Chip Enable  
Virtual Address  
Y
X
V
U
T
R
Q
P
Virtual Address  
Virtual Address  
Table 29: Parameter / Mux Configuration Decoder  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
0 = Non Mux  
1 = AD Mux1  
2= AAD Mux  
Any  
NA  
Notation used for stacks that contain no parameter blocks  
3 =Full" AD  
Mux2  
1
2
3
4
2
4
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
-
-
-
Top  
-
-
B = Non Mux  
C = AD Mux  
F = "Full" Ad  
Mux  
X16  
X32  
Bottom  
Top  
Top  
Bottom  
-
-
Top  
-
Bottom  
Bottom  
Top  
Top  
November 2007  
317623-15  
Datasheet  
47  
Numonyx™ StrataFlash® Wireless Memory (L18) with LPSDRAM  
Table 29: Parameter / Mux Configuration Decoder  
Code, Mux  
Identification  
Number of Flash Die  
Bus Width  
Flash Die 1  
Flash Die 2  
Flash Die 3  
Flash Die 4  
1
2
3
4
2
4
Top  
-
-
-
-
-
-
Top  
Top  
Top  
Top  
Top  
Bottom  
Top  
T = Non Mux  
U = AD Mux  
X16  
Bottom  
Top  
W = "Full" Ad  
Mux  
Bottom  
Top  
Bottom  
-
-
X32  
Top  
Bottom  
Bottom  
1. Only Flash is Muxed and RAM is non-Muxed  
2. Both Flash and RAM are AD-Muxed  
Table 30: Ballout Decoder  
Code  
Ballout Definition  
0 (Zero)  
SDiscrete ballout (Easay BGA and TSOP)  
B
x16D ballout, 105 ball (x16 NOR + NAND + DRAM Share Bus)  
x16C ballout, 107 ball (x16 NOR + NAND + PSRAM Share Bus)  
QUAD/+ ballout, 88 ball (x16 NOR + PSRAM Share Bus)  
x32SH ballout, 106 ball (x32 NOR only Share Bus)  
C
Q
U
V
x16SB ballout, 165 ball (x16 NOR / NAND + x16 DRAM Split Bus  
x48D ballout, 165 ball (x16/x32 NOR + NAND + DRAM Split Bus  
W
Datasheet  
48  
November 2007  
317623-15  

相关型号:

RD38F4040L0YBQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4040L0YUQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4040L0YWQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4040M0Y1C0

Memory Circuit, Flash+SRAM, PBGA107
INTEL

RD38F4044L0YWQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4050L0YBQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4050L0YFQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4050L0YUQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4050L0YWQ0

Memory Circuit, Flash+PSRAM, PBGA88,
NUMONYX

RD38F4050L0ZBQ0

Memory Circuit, Flash+PSRAM, 16MX16, CMOS, PBGA88, 8 X 10 MM, SCSP-88
INTEL

RD38F4050L0ZTQ0

Memory Circuit, Flash+PSRAM, 16MX16, CMOS, PBGA88, 8 X 10 MM, SCSP-88
INTEL

RD38F4050L0ZTQ1

Memory Circuit, Flash+PSRAM, Hybrid, PBGA88,
NUMONYX