M030GTC1AE [NUVOTON]

NuMicro® Family Arm® 32-bit Cortex®-M0 Microcontroller;
M030GTC1AE
型号: M030GTC1AE
厂家: NUVOTON    NUVOTON
描述:

NuMicro® Family Arm® 32-bit Cortex®-M0 Microcontroller

微控制器
文件: 总118页 (文件大小:2744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M030G/M031G Series  
NuMicro® Family  
Arm® 32-bit Cortex® -M0 Microcontroller  
M030G/M031G Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller and  
microprocessor based system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
May 31, 2021  
Page 1 of 118  
Rev 1.00  
M030G/M031G Series  
TABLE OF CONTENTS  
1 GENERAL DESCRIPTION.............................................................................. 9  
2 FEATURES.....................................................................................................10  
2.1 M030G/M031G Features............................................................................................10  
3 PARTS INFORMATION .................................................................................15  
3.1 Package Type...............................................................................................................15  
3.2 M030G/M031G Series Naming Rule ........................................................................16  
3.3 M030G/M031G Series Selection Guide...................................................................17  
4 PIN CONFIGURATION...................................................................................18  
4.1 Pin Configuration..........................................................................................................18  
4.1.1 M030G/M031G Series Pin Diagram............................................................................ 18  
4.1.2 M030G Series Multi-function Pin Diagram................................................................. 20  
4.1.3 M031G Series Multi-function Pin Diagram................................................................. 24  
4.2 Pin Mapping..................................................................................................................28  
4.3 Pin Functional Description..........................................................................................30  
5 BLOCK DIAGRAM.........................................................................................34  
6 FUNCTIONAL DESCRIPTION .......................................................................35  
6.1 Arm® Cortex®-M0 Core................................................................................................35  
6.2 System Manager..........................................................................................................37  
6.2.1 Overview ......................................................................................................................... 37  
6.2.2 System Reset ................................................................................................................. 37  
6.2.3 System Power Distribution ........................................................................................... 43  
6.2.4 Power Modes and Wake-up Sources.......................................................................... 45  
6.2.5 System Memory Map..................................................................................................... 47  
6.2.6 SRAM Memory Organization........................................................................................ 49  
6.2.7 Chip Bus Matrix.............................................................................................................. 49  
6.2.8 Temperature Sensor...................................................................................................... 50  
6.2.9 Internal Voltage Reference (INT_VREF) .................................................................... 51  
6.2.10MANCH_TXD Modulation with BPWM1..................................................................... 51  
6.2.11Register Lock Control.................................................................................................... 52  
6.2.12System Timer (SysTick) ................................................................................................ 53  
6.2.13Nested Vectored Interrupt Controller (NVIC) ............................................................. 54  
6.3 Clock Controller............................................................................................................58  
6.3.1 Overview ......................................................................................................................... 58  
6.3.2 Clock Generator............................................................................................................. 59  
6.3.3 System Clock and SysTick Clock ................................................................................ 60  
6.3.4 Peripherals Clock........................................................................................................... 61  
6.3.5 Power-down Mode Clock.............................................................................................. 61  
May 31, 2021  
Page 2 of 118  
Rev 1.00  
M030G/M031G Series  
6.3.6 Clock Output................................................................................................................... 61  
6.4 Flash Memory Controller (FMC)................................................................................63  
6.4.1 Overview ......................................................................................................................... 63  
6.4.2 Features .......................................................................................................................... 63  
6.5 General Purpose I/O (GPIO)......................................................................................64  
6.5.1 Overview ......................................................................................................................... 64  
6.5.2 Features .......................................................................................................................... 64  
6.6 PDMA Controller (PDMA)...........................................................................................65  
6.6.1 Overview ......................................................................................................................... 65  
6.6.2 Features .......................................................................................................................... 65  
6.7 Timer Controller (TMR) ...............................................................................................66  
6.7.1 Overview ......................................................................................................................... 66  
6.7.2 Features .......................................................................................................................... 66  
6.8 Watchdog Timer (WDT) ..............................................................................................67  
6.8.1 Overview ......................................................................................................................... 67  
6.8.2 Features .......................................................................................................................... 67  
6.9 Window Watchdog Timer (WWDT) ...........................................................................68  
6.9.1 Overview ......................................................................................................................... 68  
6.9.2 Features .......................................................................................................................... 68  
6.10 Basic PWM Generator and Capture Timer (BPWM) ........................................69  
6.10.1Overview ......................................................................................................................... 69  
6.10.2Features .......................................................................................................................... 69  
6.11 UART Interface Controller (UART)......................................................................70  
6.11.1Overview ......................................................................................................................... 70  
6.11.2Features .......................................................................................................................... 70  
6.12 Serial Peripheral Interface (SPI)..........................................................................72  
6.12.1Overview ......................................................................................................................... 72  
6.12.2Features .......................................................................................................................... 72  
6.13 I2C Serial Interface Controller (I2C) .....................................................................73  
6.13.1Overview ......................................................................................................................... 73  
6.13.2Features .......................................................................................................................... 73  
6.14 CRC Controller (CRC)...........................................................................................74  
6.14.1Overview ......................................................................................................................... 74  
6.14.2Features .......................................................................................................................... 74  
6.15 CRC Controller (CRC) - Configurable.................................................................75  
6.15.1Overview ......................................................................................................................... 75  
6.15.2Features .......................................................................................................................... 75  
6.16 Manchester Controller (MANCH).........................................................................76  
6.16.1Overview ......................................................................................................................... 76  
May 31, 2021  
Page 3 of 118  
Rev 1.00  
M030G/M031G Series  
6.16.2Features .......................................................................................................................... 76  
6.17 Analog-to-Digital Converter (ADC)......................................................................77  
6.17.1Overview ......................................................................................................................... 77  
6.17.2Features .......................................................................................................................... 77  
6.18 Digital to Analog Converter (DAC).......................................................................79  
6.18.1Overview ......................................................................................................................... 79  
6.18.2Features .......................................................................................................................... 79  
6.19 Peripherals Interconnection..................................................................................80  
6.19.1Overview ......................................................................................................................... 80  
6.19.2Peripherals Interconnect Matrix table ......................................................................... 80  
7 APPLICATION CIRCUIT ................................................................................81  
7.1 Power Supply Scheme................................................................................................81  
7.2 Peripheral Application Scheme..................................................................................82  
8 ELECTRICAL CHARACTERISTICS..............................................................83  
8.1 Absolute Maximum Ratings........................................................................................83  
8.1.1 Voltage Characteristics ................................................................................................. 83  
8.1.2 Current Characteristics ................................................................................................. 83  
8.1.3 Thermal Characteristics................................................................................................ 84  
8.1.4 EMC Characteristics...................................................................................................... 85  
8.1.5 Package Moisture Sensitivity(MSL) ............................................................................ 85  
8.1.6 Soldering Profile............................................................................................................. 87  
8.2 General Operating Conditions ...................................................................................88  
8.3 DC Electrical Characteristics......................................................................................89  
8.3.1 Supply Current Characteristics .................................................................................... 89  
8.3.2 On-Chip Peripheral Current Consumption ................................................................. 92  
8.3.3 Wakeup Time from Low-Power Modes....................................................................... 93  
8.3.4 I/O Current Injection Characteristics ........................................................................... 94  
8.3.5 I/O DC Characteristics................................................................................................... 94  
8.4 AC Electrical Characteristics......................................................................................96  
8.4.1 48 MHz Internal High Speed RC Oscillator (HIRC) .................................................. 96  
8.4.2 38.4 kHz Internal Low Speed RC Oscillator (LIRC).................................................. 98  
8.4.3 PLL Characteristics........................................................................................................ 98  
8.4.4 I/O AC Characteristics................................................................................................... 98  
8.5 Analog Characteristics ..............................................................................................100  
8.5.1 Reset and Power Control Block Characteristics...................................................... 100  
8.5.2 12-bit SAR ADC............................................................................................................ 102  
8.5.3 Digital to Analog Converter (DAC)............................................................................. 104  
8.5.4 Internal Voltage Reference for M030G ..................................................................... 105  
8.5.5 Internal Voltage Reference for M031G ..................................................................... 106  
May 31, 2021  
Page 4 of 118  
Rev 1.00  
M030G/M031G Series  
8.5.6 Temperature Sensor.................................................................................................... 106  
8.6 Communications Characteristics.............................................................................108  
8.6.1 SPI Dynamic Characteristics...................................................................................... 108  
8.6.2 I2C Dynamic Characteristics....................................................................................... 111  
8.7 Flash DC Electrical Characteristics.........................................................................112  
9 PACKAGE DIMENSIONS ............................................................................113  
9.1 QFN 24L (3x3x0.9 mm Pitch:0.40 mm)..................................................................113  
9.2 QFN 33L (4x4x0.8 mm Pitch:0.40 mm)..................................................................114  
10ABBREVIATIONS ........................................................................................115  
10.1 Abbreviations........................................................................................................115  
11REVISION HISTORY....................................................................................117  
May 31, 2021  
Page 5 of 118  
Rev 1.00  
M030G/M031G Series  
LIST OF FIGURES  
Figure 4.1-1 M030G/M031G Series QFN 24-pin Diagram.............................................................18  
Figure 4.1-2 M030G/M031G Series QFN 33-pin Diagram.............................................................19  
Figure 4.1-3 M030G Series QFN 24-pin Multi-function Pin Diagram .............................................20  
Figure 4.1-4 M030GTC1AE and M030GTD1AE Multi-function Pin Diagram.................................22  
Figure 4.1-5 M031G Series QFN 24-pin Multi-function Pin Diagram .............................................24  
Figure 4.1-6 M031GTD2AE and M031GTC2AE Multi-function Pin Diagram.................................26  
Figure 5-1 NuMicro M030G/M031G Block Diagram.......................................................................34  
Figure 6.1-1 Functional Block Diagram ..........................................................................................35  
Figure 6.2-1 System Reset Sources...............................................................................................38  
Figure 6.2-2 nRESET Reset Waveform .........................................................................................40  
Figure 6.2-3 Power-on Reset (POR) Waveform.............................................................................41  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform .........................................................................41  
Figure 6.2-5 Brown-out Detector (BOD) Waveform .......................................................................42  
Figure 6.2-6 NuMicro® M030G/M031G Power Distribution Diagram .............................................44  
Figure 6.2-7 Power Mode State Machine.......................................................................................46  
Figure 6.2-8 SRAM Memory Organization .....................................................................................49  
Figure 6.2-9 NuMicro® M030G/M031G Bus Matrix Diagram..........................................................49  
Figure 6.2-10 Temperature Sensor Conversion Waveform ...........................................................50  
Figure 6.2-11 MANCH_TXD Modulated with BPWM1_CHn..........................................................52  
Figure 6.3-1 Clock Generator Global View Diagram ......................................................................59  
Figure 6.3-2 Clock Generator Block Diagram.................................................................................60  
Figure 6.3-3 System Clock Block Diagram.....................................................................................60  
Figure 6.3-4 SysTick Clock Control Block Diagram .......................................................................61  
Figure 6.3-5 Clock Output Block Diagram......................................................................................62  
Figure 8.1-1 Soldering Profile from J-STD-020C ...........................................................................87  
Figure 8.4-1 HIRC vs. Temperature ...............................................................................................97  
Figure 8.5-1 Power Ramp Up/Down Condition ............................................................................101  
Figure 8.5-2 Typical connection with internal voltage reference ..................................................105  
Figure 8.5-3 Typical connection with internal voltage reference ..................................................106  
Figure 8.6-1 SPI Master Mode Timing Diagram...........................................................................108  
Figure 8.6-2 SPI Slave Mode Timing Diagram.............................................................................110  
Figure 8.6-3 I2C Timing Diagram..................................................................................................111  
May 31, 2021  
Page 6 of 118  
Rev 1.00  
M030G/M031G Series  
List of Tables  
Table 2.1-1 NuMicro M030G/M031G Series Key Features Support Table......................................9  
Table 4.1-1 M030GGC1AE and M030GGD1AE Multi-function Pin Table .....................................21  
Table 4.1-2 M030GTC1AE and M030GTD1AE Pin Multi-function Pin Table ................................23  
Table 4.1-3 M031GGD2AE and M031GGC2AE Multi-function Pin Table .....................................25  
Table 4.1-4 M031GTD2AE and M031GTC2AE Pin Multi-function Pin Table ................................27  
Table 6.2-1 Reset Value of Registers.............................................................................................39  
Table 6.2-2 DAC Reset Retention Value of Registers ...................................................................40  
Table 6.2-3 GPIO Reset Retention Value of Registers ..................................................................40  
Table 6.2-4 Power Mode Table ......................................................................................................45  
Table 6.2-5 Power Mode Entry Setting Table.................................................................................45  
Table 6.2-6 Power Mode Difference Table.....................................................................................45  
Table 6.2-7 Clocks in Power Modes...............................................................................................46  
Table 6.2-8 Condition of Entering Power-down Mode Again .........................................................47  
Table 6.2-9 Address Space Assignments for On-Chip Controllers ................................................48  
Table 6.2-10 Temperature Data Truth Table..................................................................................51  
Table 6.2-11 Exception Model........................................................................................................55  
Table 6.2-12 Interrupt Number Table .............................................................................................56  
Table 6.2-13 Vector Figure Format ................................................................................................56  
Table 6.11-1 NuMicro® M030G/M031G Series UART Features ....................................................71  
Table 6.19-1 Peripherals Interconnect Matrix table........................................................................80  
Table 8.1-1 Voltage Characteristics ...............................................................................................83  
Table 8.1-2 Current Characteristics................................................................................................83  
Table 8.1-3 Thermal Characteristics ..............................................................................................84  
Table 8.1-4 EMC Characteristics....................................................................................................85  
Table 8.1-5 Package Moisture Sensitivity (MSL) ...........................................................................86  
Table 8.1-6 Soldering Profile ..........................................................................................................87  
Table 8.2-1 General Operating Conditions.....................................................................................88  
Table 8.3-1 Current Consumption in Normal Run Mode................................................................89  
Table 8.3-2 Current Consumption in Idle Mode .............................................................................90  
Table 8.3-3 Chip Current Consumption in Power-down Mode.......................................................91  
Table 8.3-4 Peripheral Current Consumption.................................................................................92  
Table 8.3-5 Low-power Mode Wakeup Timings.............................................................................93  
Table 8.3-6 I/O Current Injection Characteristics ...........................................................................94  
Table 8.3-7 I/O Input Characteristics..............................................................................................94  
Table 8.3-8 I/O Output Characteristics...........................................................................................95  
Table 8.3-9 nRESET Input Characteristics.....................................................................................95  
May 31, 2021  
Page 7 of 118  
Rev 1.00  
M030G/M031G Series  
Table 8.4-1 48 MHz Internal High Speed RC Oscillator(HIRC) Characteristics.............................96  
Table 8.4-2 38.4 kHz Internal Low Speed RC Oscillator(LIRC) characteristics.............................98  
Table 8.4-3 PLL characteristics......................................................................................................98  
Table 8.4-4 I/O AC Characteristics.................................................................................................99  
Table 8.5-1 Reset and Power Control Unit...................................................................................100  
Table 8.6-1 SPI Master Mode Characteristics..............................................................................108  
Table 8.6-2 SPI Slave Mode Characteristics................................................................................109  
Table 8.6-3 I2C Characteristics.....................................................................................................111  
Table 8.7-1 Flash DC Electrical Characteristics...........................................................................112  
Table 10.1-1 List of Abbreviations................................................................................................116  
May 31, 2021  
Page 8 of 118  
Rev 1.00  
M030G/M031G Series  
1 GENERAL DESCRIPTION  
The NuMicro® M030G/M031G 32-bit microcontroller series is designed for Optical Transceiver Module  
applications, both of the M030G and the M031G series have a built-in temperature sensor with ±1.6°C  
deviation from 0°C to 70°C and ±2°C deviation from -40°C to 105°C. Especially, the M031G series  
supports the “Pilot Tone Modulation” to realize the required OAM functions for the optical path network.  
Therefore, the M031G series is equipped with a high flexibility programmable Hardware Manchester  
Codec with CRC to encode and decode low-frequency dither signal and 1 set of DAC with “Auto Data  
Generation” function to generate the smooth sine waveform for the pilot tone modulation of optical path  
network up to 500kHz.  
The M030G/M031G series is based on Arm® Cortex® -M0 core with 32-bit hardware multiplier/divider. It  
runs up to 48/72 MHz and features 32 Kbytes and 64 Kbytes Flash, 4 Kbytes and 8 Kbytes SRAM, 2.7V  
~ 3.6V operating voltage, 5V I/O tolerant, and -40°C to +105°C operating temperature.  
The M030G/M031G series provides plenty of peripherals including up to 6 sets of 32-bit timers, 1 set of  
UART with the RS485 and One-Wire mode, 1 set of SPI, 2 sets of I2C supporting 1 MHz Slave Mode,  
and up to 7 channels of PDMA to offload CPU loading. Furthermore, both of these 2 series support I2C  
bootloader for Optical Transceiver Module applications to program the application code into the  
M030/M031G series MCU through the I2C interface.  
The M030G/M031G series also provides rich analog peripherals including internal voltage reference that  
can output 2.5V, up to 16 channels of 1.4 MSPS 12-bit SAR ADC and 4 sets of 12-bit DAC. In addition,  
1 set of DAC in the M031G series supports Auto Data Generation function.  
In order to fit the small form factor requirement of the optical module, the M030G/M031G series provides  
the QFN 24-pin (3x3 mm) and QFN 33-pin (4x4 mm) small form factor package by pin-compatible across  
these 2 series to make the system design and change parts easily.  
For the development system, Nuvoton provides the NuMaker evaluation board and Nuvoton Nu-Link  
debugger. The 3rd Party IDE such as Keil MDK, IAR EWARM, Eclippse IDE with GNU GCC compilers  
are also supported.  
* 1 set of DAC with Auto Data Generation function  
Temp. Internal MANCH  
Product Line  
UART  
I2C  
SPI/ I2S Timer BPWM PDMA  
ADC  
DAC  
CRC  
Sensor VREF  
Codec  
M030G  
M031G  
1
1
2
2
1
1
2
6
6
6
5
7
16  
16  
4
4*  
Table 2.1-1 NuMicro M030G/M031G Series Key Features Support Table  
May 31, 2021  
Page 9 of 118  
Rev 1.00  
M030G/M031G Series  
2 FEATURES  
2.1 M030G/M031G Features  
Core and System  
Arm® Cortex® -M0 core, running up to 72 MHz  
Built-in Nested Vectored Interrupt Controller (NVIC)  
24-bit system tick timer  
Arm® Cortex® -M0  
Programmble and maskable interrupt  
Low Power Sleep mode by WFI and WFE instructions  
Brown-out Detector  
(BOD)  
Two-level BOD with brown-out interrupt and reset option  
(2.7V/2.5V)  
Low Voltage Reset (LVR)  
Security  
LVR with 2.3V threshold voltage level  
96-bit Unique ID (UID)  
128-bit Unique Customer ID (UCID)  
Memories  
Up to 64/32 KB on-chip Application ROM (APROM)  
Up to 2 KB on-chip Flash for user-defined loader (LDROM)  
Up to 512 bytes non-readable Security Protection ROM (SPROM)  
All on-chip Flash support 512 bytes page erase  
Flash  
Fast Flash programming verification with CRC-32 checksum  
calculation  
On-chip Flash programming with In-Chip Programming (ICP), In-  
System Programming (ISP) and In-Application Programming (IAP)  
capabilities  
2-wired ICP Flash updating through SWD/ICE interface  
Up to 8 KB on-chip SRAM  
Byte-, half-word- and word-access  
PDMA operation  
SRAM  
Supports 8-bits, 16-bits and 32-bits configurable polynomials  
Programmable initial value and seed value  
Programmable order reverse setting and one’s complement setting  
Cyclic Redundancy  
Calculation (CRC) -  
Configurable  
for input data and CRC checksum  
8-bit, 16-bit, and 32-bit data width  
8-bit write mode with 1-AHB clock cycle operation  
16-bit write mode with 2-AHB clock cycle operation  
32-bit write mode with 4-AHB clock cycle operation  
May 31, 2021  
Page 10 of 118  
Rev 1.00  
M030G/M031G Series  
Uses DMA to write data with performing CRC operation  
Supports CRC-CCITT, CRC-8, CRC-16 and CRC-32 polynomials  
Programmable initial value and seed value  
Programmable order reverse setting and one’s complement setting  
for input data and CRC checksum  
Cyclic Redundancy  
Calculation (CRC)  
8-bit, 16-bit, and 32-bit data width  
8-bit write mode with 1-AHB clock cycle operation  
16-bit write mode with 2-AHB clock cycle operation  
32-bit write mode with 4-AHB clock cycle operation  
Uses DMA to write data with performing CRC operation  
Up to 7 independent and configurable channels for automatic data  
transfer between memories and peripherals  
Basic and Scatter-Gather transfer modes  
Each channel supports circular buffer management using Scatter-  
Gather Transfer mode  
Peripheral DMA (PDMA)  
Fixed-priority and Round-robin priorities modes  
Single and burst transfer types  
Byte-, half-word- and word tranfer unit with count up to 65536  
Incremental or fixed source and destination address  
Clocks  
48 MHz High-speed Internal RC oscillator (HIRC)  
38.4 kHz Low-speed Internal RC oscillator (LIRC) for watchdog  
timer and wake-up operation  
Internal Clock Source  
Up to 144 MHz on-chip PLL, allows CPU operation up to the  
maximim CPU frequency without the need for a high-frequency  
crystal  
Timers  
Up to 6 sets of 32-bit timers with 24-bit up counter and one 8-bit  
pre-scale counter from independent clock source  
One-shot, Periodic, Toggle and Continuous Counting operation  
modes  
Supports event counting function to count the event from external  
pins  
32-bit Timer  
Supports external capture pin for interval measurement and  
resetting 24-bit up counter  
Supports chip wake-up function, if a timer interrupt signal is  
generated  
16-bit counters with 12-bit clock pre-scale for 144 MHz PWM output  
channels  
Basic PWM (BPWM)  
Up to 6 independent input capture channels with 16-bit resolution  
May 31, 2021  
Page 11 of 118  
Rev 1.00  
M030G/M031G Series  
counter  
Up, down or up-down PWM counter type  
Mask function and tri-state output for each PWM channel  
Able to trigger ADC to start conversion  
Able to trigger DAC to start conversion  
20-bit free running up counter for WDT time-out interval  
Supports multiple clock sources from LIRC (default selection),  
HCLK/2048 with 9 selectable time-out period  
Able to wake up system from Power-down or Idle mode  
Time-out event to trigger interrupt or reset system  
Watchdog  
Supports four WDT reset delay periods, including 1026, 130, 18 or  
3 WDT_CLK reset delay period  
Configured to force WDT enabled on chip power-on or reset  
Clock sourced from HCLK/2048 or LIRC; the window set by 6-bit  
counter with 11-bit prescale  
Window Watchdog  
Suspended in Idle/Power-down mode  
Analog Interfaces  
Internal built-in reference has 2.048V and 2.5V two voltage level  
selection for ADC, DAC or external devices  
Voltage Reference  
Supports ADC and DAC references voltage from internal built-in  
reference voltage, or external VREF pin  
Analog input voltage range: 0 ~ AVDD  
One 12-bit, up to 1.4 MSPS SAR ADC with up to 16 single-ended  
input channels or 8 differential input pairs; 10-bit accuracy is  
guaranteed  
Internal channels for band-gap VBG input  
Supports external VREF pin or internal built-in reference voltage  
Supports calibration capability  
Four operation modes: Single mode, Burst mode, Single-cycle  
Scan mode and Continuous Scan mode  
ADC  
Analog-to-Digital conversion can be triggered by software (ADST),  
external pin (STADC), Timer 0~1 overflow pulse trigger, and  
BPWM1 trigger  
Each conversion result is held in data register of each channel with  
valid and overrun indicators  
Supports conversion result monitor by compare mode function  
Configurable ADC external sampling time  
PDMA operation  
Supports floating detect function  
DAC  
Analog input voltage range: 0 ~ AVDD  
May 31, 2021  
Page 12 of 118  
Rev 1.00  
M030G/M031G Series  
Supports four 12-bit, 1 MSPS voltage type DAC  
Supports 12- or 8-bit output mode  
Supports external VREF pin or internal built-in reference voltage  
Digital-to-Analog conversion can be triggered by software  
(SWTRG), Timer 0~5 overflow pulse trigger, and BPWM1 trigger  
Supports PDMA mode  
Supports group mode of synchronized update capability for two  
DACs  
Supports DAC output retention when system reset  
1 set of DAC Supports Auto Data Generation function in M031G  
series  
Built-in calibrated temperature sensor  
Supported temperature range: 40°C to 105°C  
Precision: ±2 °C  
Temperature Sensor  
Communication Interfaces  
Low-power UARTs with up to 7.2 MHz baud rate  
Auto-Baud Rate measurement function  
Supports low power UART (LPUART): baud rate clock from LIRC  
(38.4 kHz) with 9600bps in Power-down mode even system clock  
is stopped  
1-byte FIFOs with programmable level trigger  
Auto flow control (nCTS and nRTS)  
Supports IrDA (SIR) function  
Supports RS-485 9-bit mode and direction control  
Supports nCTS and incoming data wake-up function in idle mode  
Low-power UART  
Supports hardware or software enables to program nRTS pin to  
control RS-485 transmission direction  
Supports wake-up function  
8-bit receiver FIFO time-out detection function  
Supports break error, frame error, parity error and receive/transmit  
FIFO overflow detection functions  
PDMA operation  
Supports Single-wire function mode  
Supports two sets of I2C devices with Master/Slave mode  
Supports Standard mode (100 kbps), Fast mode (400 kbps), Fast  
mode plus (1 Mbps)  
I2C  
Supports 7 bits mode  
Programmable clocks allowing for versatile rate control  
May 31, 2021  
Page 13 of 118  
Rev 1.00  
M030G/M031G Series  
Supports multiple address recognition (four slave address with  
mask option)  
Supports multi-address power-down wake-up function  
PDMA operation  
Supports receiving continuous data bytes in none stretch mode  
Up to 36 MHz in Master mode and up to 16 MHz in Slave mode at  
2.7V~3.6V system voltage  
Configurable bit length of a transfer word from 8 to 32-bit  
Provides separate 4-level of 32-bit (or 8-level of 16-bit) transmit and  
receive FIFO buffers  
MSB first or LSB first transfer sequence  
Byte reorder function  
SPI  
Supports Byte or Word Suspend mode  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
PDMA operation  
Supports four I/O modes: Quasi bi-direction, Push-Pull output,  
Open-Drain output and Input only with high impendence mode  
Configured as interrupt source with edge/level trigger setting  
Supports 5V-tolerance function except analog I/O (PA.0 ~ PA.3,  
PB.0~PB.15, PF0)  
GPIO  
Enabling the pin interrupt function will also enable the wake-up  
function  
Input schmitt trigger function  
Supports independent pull-up control  
Supports encode/decode Manchester code  
Supports different modulation signal format  
Programmable Idle pattern  
Programmable preamble style and its transmitted number  
Programmable data size in a frame  
Manchester Codec  
Supports configurable Manchester bit rate  
Supports selectable deglitch time function  
Supports PDMA for receiving/transmitting  
Supports Manchester encoded edge function to trigger Timer  
Controller  
May 31, 2021  
Page 14 of 118  
Rev 1.00  
M030G/M031G Series  
3 PARTS INFORMATION  
3.1 Package Type  
QFN24  
QFN33  
M030GTC1AE  
M030GTD1AE  
M031GTC2AE  
M031GTD2AE  
M030GGC1AE  
M030GGD1AE  
M031GGC2AE  
M031GGD2AE  
May 31, 2021  
Page 15 of 118  
Rev 1.00  
M030G/M031G Series  
3.2  
M030G/M031G Series Naming Rule  
M0  
30G  
Line  
T
D
1
A
E
Core  
Package  
Flash  
SRAM  
Reserve  
Temperature  
E:-40°C ~ 105°C  
Cortex-M0  
30: Base  
G: QFN24  
C: 32 KB  
D: 64 KB  
1: 4 KB  
2: 8 KB  
31: with  
Manchester  
encode/decode  
(3x3x0.9 mm)  
T: QFN33  
(4x4x0.8 mm)  
May 31, 2021  
Page 16 of 118  
Rev 1.00  
M030G/M031G Series  
3.3 M030G/M031G Series Selection Guide  
M030G (Base)  
Part Number  
M031G (Manchester)  
GC1AE  
GD1AE  
TC1AE  
TD1AE  
GC2AE  
GD2AE  
TC2AE  
TD2AE  
Flash (KB)  
SRAM (KB)  
32  
64  
32  
64  
32  
64  
32  
64  
4
2
8
2
LDROM (KB)  
SPROM (Bytes)  
System Frequency (MHz)  
PLL (MHz)  
512  
48  
-
512  
72  
144  
I/O  
19  
28  
19  
28  
32-bit Timer  
2
1
1
2
6
1
UART  
SPI/I2S  
1
2
I²C/SMBus  
Manchester  
BPWM  
-
6
5
-
6
7
-
PDMA  
CRC  
CRC- Configurable  
12-bit SAR ADC  
12-bit DAC  
11  
16  
11  
16  
4
4*  
Temperature Sensor  
Internal Voltage Reference  
Package  
QFN24  
QFN33  
QFN24  
QFN33  
DAC*: 1 set supports Auto Data Generation function  
May 31, 2021  
Page 17 of 118  
Rev 1.00  
M030G/M031G Series  
4 PIN CONFIGURATION  
Users can find pin configuration information in the M030G/M031G Multi-function Pin diagram sections  
or by using NuTool - PinConfigure. The NuTool - PinConfigure contains all NuMicro® Family chip series  
with all part number, and helps users configure GPIO multi-function correctly and handily.  
4.1 Pin Configuration  
4.1.1  
M030G/M031G Series Pin Diagram  
M030G/M031G Series QFN 24-Pin Diagram  
Corresponding Part Number: M030GGC1AE, M030GGD1AE, M031GGD2AE, M031GGC2AE  
20  
21  
22  
23  
24  
12  
11  
10  
9
PB.4  
PB.3  
PB.2  
PC.1  
PB.1  
PB.11  
PB.12  
PA.0  
Top transparent view  
QFN24  
PA.1  
8
PA.2  
Figure 4.1-1 M030G/M031G Series QFN 24-pin Diagram  
May 31, 2021  
Page 18 of 118  
Rev 1.00  
M030G/M031G Series  
M030G/M031G Series QFN 33-Pin Diagram  
Corresponding Part Number: M030GTC1AE, M030GTD1AE, M031GTD2AE, M031GTC2AE  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
PB.3  
PB.2  
PF.3  
Top transparent view  
PB.11  
PB.12  
PB.13  
PB.14  
PB.15  
PA.0  
PC.1  
PB.1  
QFN33  
PA.14  
PA.12  
PA.13  
PB.0  
33 EPAD  
PA.1  
Figure 4.1-2 M030G/M031G Series QFN 33-pin Diagram  
May 31, 2021  
Page 19 of 118  
Rev 1.00  
M030G/M031G Series  
4.1.2  
M030G Series Multi-function Pin Diagram  
M030G Series QFN 24-Pin Multi-function Pin Diagram  
Corresponding Part Number: M030GGC1AE, M030GGD1AE  
20  
21  
22  
23  
24  
12  
11  
10  
9
INT1 / TM1 / I2C0_SDA / ADC0_CH4 / PB.4  
INT2 / TM0 / BPWM1_CH2 / I2C1_SCL / ADC0_CH3 / PB.3  
INT3 / TM1 / BPWM1_CH3 / I2C1_SDA / ADC0_CH2 / PB.2  
ADC0_ST / I2C0_SCL / PC.1  
PB.11 / ADC0_CH11 / UART0_nCTS / UART0_TXD / I2C1_SCL / BPWM1_CH0  
PB.12 / ADC0_CH12 / SPI0_MOSI / UART0_RXD / TM1_EXT  
PA.0 / DAC0_OUT / SPI0_MOSI / UART0_RXD  
Top transparent view  
QFN24  
PA.1 / DAC1_OUT / SPI0_MISO / UART0_TXD  
8
BPWM1_CH4 / I2C1_SCL / UART0_RXD / ADC0_CH1 / PB.1  
PA.2 / DAC2_OUT / SPI0_CLK / I2C0_SMBSUS / I2C1_SDA  
Figure 4.1-3 M030G Series QFN 24-pin Multi-function Pin Diagram  
Pin Pin Function  
PB.0 / ADC0_CH0 / I2C1_SDA  
1
2
3
4
5
6
7
VREF  
VSS  
VDD  
nRESET/ICE_CLK  
PF.0 / ICE_DAT  
PA.3 / DAC3_OUT / SPI0_SS / I2C0_SMBAL / I2C1_SCL / CLKO  
May 31, 2021  
Page 20 of 118  
Rev 1.00  
M030G/M031G Series  
Pin Pin Function  
PA.2 / DAC2_OUT / SPI0_CLK / I2C0_SMBSUS / I2C1_SDA  
8
9
PA.1 / DAC1_OUT / SPI0_MISO / UART0_TXD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
PA.0 / DAC0_OUT / SPI0_MOSI / UART0_RXD  
PB.12 / ADC0_CH12 / SPI0_MOSI / UART0_RXD / TM1_EXT  
PB.11 / ADC0_CH11 / UART0_nCTS / UART0_TXD / I2C1_SCL / BPWM1_CH0  
PF.3 / UART0_TXD / I2C0_SCL / BPWM1_CH0  
PF.2 / UART0_RXD / I2C0_SDA / BPWM1_CH1  
VSS  
PB.8 / ADC0_CH8 / UART0_RXD / BPWM1_CH3  
PB.7 / ADC0_CH7 / BPWM1_CH4 / INT5  
PB.6 / ADC0_CH6 / BPWM1_CH5 / INT4  
PB.5 / ADC0_CH5 / I2C0_SCL / TM0 / INT0  
PB.4 / ADC0_CH4 / I2C0_SDA / TM1 / INT1  
PB.3 / ADC0_CH3 / I2C1_SCL / BPWM1_CH2 / TM0 / INT2  
PB.2 / ADC0_CH2 / I2C1_SDA / BPWM1_CH3 / TM1 / INT3  
PC.1 / I2C0_SCL / ADC0_ST  
PB.1 / ADC0_CH1 / UART0_RXD / I2C1_SCL / BPWM1_CH4  
Table 4.1-1 M030GGC1AE and M030GGD1AE Multi-function Pin Table  
May 31, 2021  
Page 21 of 118  
Rev 1.00  
M030G/M031G Series  
M030G Series QFN 33-Pin Multi-function Pin Diagram  
Corresponding Part Number: M030GTC1AE, M030GTD1AE  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
INT2 / TM0 / BPWM1_CH2 / I2C1_SCL / ADC0_CH3 / PB.3  
INT3 / TM1 / BPWM1_CH3 / I2C1_SDA / ADC0_CH2 / PB.2  
ADC0_ST / I2C0_SCL / PC.1  
PF.3 / UART0_TXD / I2C0_SCL / BPWM1_CH0  
Top transparent view  
PB.11 / ADC0_CH11 / UART0_nCTS / UART0_TXD / I2C1_SCL / BPWM1_CH0  
PB.12 / ADC0_CH12 / SPI0_MOSI / UART0_RXD / TM1_EXT  
PB.13 / ADC0_CH13 / SPI0_MISO / UART0_TXD / TM0_EXT  
PB.14 / ADC0_CH14 / SPI0_CLK / UART0_nRTS / TM1_EXT / CLKO  
PB.15 / ADC0_CH15 / SPI0_SS / UART0_nCTS / TM0_EXT  
PA.0 / DAC0_OUT / SPI0_MOSI / UART0_RXD  
BPWM1_CH4 / I2C1_SCL / UART0_RXD / ADC0_CH1 / PB.1  
BPWM1_CH4 / UART0_TXD / PA.14  
QFN33  
BPWM1_CH2 / I2C1_SCL / PA.12  
BPWM1_CH3 / I2C1_SDA / PA.13  
33 EPAD  
I2C1_SDA / ADC0_CH0 / PB.0  
PA.1 / DAC1_OUT / SPI0_MISO / UART0_TXD  
Figure 4.1-4 M030GTC1AE and M030GTD1AE Multi-function Pin Diagram  
Pin Pin Function  
1
2
3
4
5
6
VREF  
VDD  
AVDD  
nRESET/ICE_CLK  
PF.0 / ICE_DAT  
PA.15 / UART0_RXD / BPWM1_CH5  
May 31, 2021  
Page 22 of 118  
Rev 1.00  
M030G/M031G Series  
Pin Pin Function  
7
8
9
PA.3 / DAC3_OUT / SPI0_SS / I2C0_SMBAL / I2C1_SCL / CLKO  
PA.2 / DAC2_OUT / SPI0_CLK / I2C0_SMBSUS / I2C1_SDA  
PA.1 / DAC1_OUT / SPI0_MISO / UART0_TXD  
10 PA.0 / DAC0_OUT / SPI0_MOSI / UART0_RXD  
11 PB.15 / ADC0_CH15 / SPI0_SS / UART0_nCTS / TM0_EXT  
12 PB.14 / ADC0_CH14 / SPI0_CLK / UART0_nRTS / TM1_EXT / CLKO  
13 PB.13 / ADC0_CH13 / SPI0_MISO / UART0_TXD / TM0_EXT  
14 PB.12 / ADC0_CH12 / SPI0_MOSI / UART0_RXD / TM1_EXT  
15 PB.11 / ADC0_CH11 / UART0_nCTS / UART0_TXD / I2C1_SCL / BPWM1_CH0  
16 PF.3 / UART0_TXD / I2C0_SCL / BPWM1_CH0  
17 PF.2 / UART0_RXD / I2C0_SDA / BPWM1_CH1  
18 PB.10 / ADC0_CH10 / UART0_nRTS / I2C1_SDA / BPWM1_CH1  
19 PB.9 / ADC0_CH9 / UART0_TXD / BPWM1_CH2  
20 PB.8 / ADC0_CH8 / UART0_RXD / BPWM1_CH3  
21 PB.7 / ADC0_CH7 / BPWM1_CH4 / INT5  
22 PB.6 / ADC0_CH6 / BPWM1_CH5 / INT4  
23 PB.5 / ADC0_CH5 / I2C0_SCL / TM0 / INT0  
24 PB.4 / ADC0_CH4 / I2C0_SDA / TM1 / INT1  
25 PB.3 / ADC0_CH3 / I2C1_SCL / BPWM1_CH2 / TM0 / INT2  
26 PB.2 / ADC0_CH2 / I2C1_SDA / BPWM1_CH3 / TM1 / INT3  
27 PC.1 / I2C0_SCL / ADC0_ST  
28 PB.1 / ADC0_CH1 / UART0_RXD / I2C1_SCL / BPWM1_CH4  
29 PA.14 / UART0_TXD / BPWM1_CH4  
30 PA.12 / I2C1_SCL / BPWM1_CH2  
31 PA.13 / I2C1_SDA / BPWM1_CH3  
32 PB.0 / ADC0_CH0 / I2C1_SDA  
33 EPAD  
Table 4.1-2 M030GTC1AE and M030GTD1AE Pin Multi-function Pin Table  
May 31, 2021  
Page 23 of 118  
Rev 1.00  
M030G/M031G Series  
4.1.3  
M031G Series Multi-function Pin Diagram  
M031G Series QFN 24-Pin Multi-function Pin Diagram  
Corresponding Part Number: M031GGD2AE, M031GGC2AE  
20  
21  
22  
23  
24  
12  
11  
10  
9
INT1 / TM1 / I2C0_SDA / ADC0_CH4 / PB.4  
INT2 / TM2 / MANCH_TXD / TM0 / BPWM1_CH2 / I2C1_SCL / ADC0_CH3 / PB.3  
INT3 / TM3 / MANCH_RXD / TM1 / BPWM1_CH3 / I2C1_SCL / TM5 / I2C1_SDA / ADC0_CH2 / PB.2  
ADC0_ST / I2C0_SCL / I2C1_SCL / PC.1  
PB.11 / ADC0_CH11 / UART0_nCTS / UART0_TXD / I2C1_SCL / BPWM1_CH0 / MANCH_RXD  
PB.12 / ADC0_CH12 / SPI0_MOSI / UART0_RXD / TM5_EXT / TM3_EXT / TM1_EXT / MANCH_TXD  
PA.0 / DAC0_OUT / SPI0_MOSI / UART0_RXD / BPWM1_CH0 / BPWM1_CH4  
Top transparent view  
QFN24  
PA.1 / DAC1_OUT / SPI0_MISO / UART0_TXD / BPWM1_CH1 / MANCH_RXD  
8
BPWM1_CH4 / I2C1_SCL / I2C1_SDA / UART0_RXD / ADC0_CH1 / PB.1  
PA.2 / DAC2_OUT / SPI0_CLK / I2C0_SMBSUS / I2C1_SDA / BPWM1_CH2 / MANCH_TXD  
Figure 4.1-5 M031G Series QFN 24-pin Multi-function Pin Diagram  
Pin Pin Function  
PB.0 / ADC0_CH0 / I2C1_SDA  
1
2
3
4
VREF  
VSS  
VDD  
May 31, 2021  
Page 24 of 118  
Rev 1.00  
M030G/M031G Series  
Pin Pin Function  
nRESET/ICE_CLK  
PF.0 / ICE_DAT  
5
6
7
PA.3 / DAC3_OUT / SPI0_SS / I2C0_SMBAL / I2C1_SCL / BPWM1_CH3 / CLKO / BPWM1_CH5  
PA.2 / DAC2_OUT / SPI0_CLK / I2C0_SMBSUS / I2C1_SDA / BPWM1_CH2 / MANCH_TXD  
PA.1 / DAC1_OUT / SPI0_MISO / UART0_TXD / BPWM1_CH1 / MANCH_RXD  
PA.0 / DAC0_OUT / SPI0_MOSI / UART0_RXD / BPWM1_CH0 / BPWM1_CH4  
PB.12 / ADC0_CH12 / SPI0_MOSI / UART0_RXD / TM5_EXT / TM3_EXT / TM1_EXT / MANCH_TXD  
PB.11 / ADC0_CH11 / UART0_nCTS / UART0_TXD / I2C1_SCL / BPWM1_CH0 / MANCH_RXD  
PF.3 / UART0_TXD / I2C0_SCL / BPWM1_CH0  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
PF.2 / UART0_RXD / I2C0_SDA / BPWM1_CH1  
VSS  
PB.8 / ADC0_CH8 / UART0_RXD / BPWM1_CH3  
PB.7 / ADC0_CH7 / MANCH_TXD / BPWM1_CH4 / INT5  
PB.6 / ADC0_CH6 / MANCH_RXD / BPWM1_CH5 / INT4  
PB.5 / ADC0_CH5 / I2C0_SCL / TM0 / INT0  
PB.4 / ADC0_CH4 / I2C0_SDA / TM1 / INT1  
PB.3 / ADC0_CH3 / I2C1_SCL / BPWM1_CH2 / TM0 / MANCH_TXD / TM2 / INT2  
PB.2 / ADC0_CH2 / I2C1_SDA / TM5 / I2C1_SCL / BPWM1_CH3 / TM1 / MANCH_RXD / TM3 / INT3  
PC.1 / I2C1_SCL / I2C0_SCL / ADC0_ST  
PB.1 / ADC0_CH1 / UART0_RXD / I2C1_SDA / I2C1_SCL / BPWM1_CH4  
Table 4.1-3 M031GGD2AE and M031GGC2AE Multi-function Pin Table  
May 31, 2021  
Page 25 of 118  
Rev 1.00  
M030G/M031G Series  
M031G Series QFN 33-Pin Multi-function Pin Diagram  
Corresponding Part Number: M031GTD2AE, M031GTC2AE  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
INT2 / TM2 / MANCH_TXD / TM0 / BPWM1_CH2 / I2C1_SCL / ADC0_CH3 / PB.3  
INT3 / TM3 / MANCH_RXD / TM1 / BPWM1_CH3 / I2C1_SCL / TM5 / I2C1_SDA / ADC0_CH2 / PB.2  
ADC0_ST / I2C0_SCL / I2C1_SCL / PC.1  
PF.3 / UART0_TXD / I2C0_SCL / BPWM1_CH0  
Top transparent view  
PB.11 / ADC0_CH11 / UART0_nCTS / UART0_TXD / I2C1_SCL / BPWM1_CH0 / MANCH_RXD  
PB.12 / ADC0_CH12 / SPI0_MOSI / UART0_RXD / TM5_EXT / TM3_EXT / TM1_EXT / MANCH_TXD  
PB.13 / ADC0_CH13 / SPI0_MISO / UART0_TXD / TM4_EXT / TM2_EXT / TM0_EXT  
PB.14 / ADC0_CH14 / SPI0_CLK / UART0_nRTS / TM1_EXT / CLKO  
BPWM1_CH4 / I2C1_SCL / I2C1_SDA / UART0_RXD / ADC0_CH1 / PB.1  
TM4_EXT / BPWM1_CH4 / I2C1_SCL / UART0_TXD / PA.14  
TM4 / BPWM1_CH2 / I2C1_SCL / PA.12  
QFN33  
PB.15 / ADC0_CH15 / SPI0_SS / UART0_nCTS / TM0_EXT  
TM5 / BPWM1_CH3 / I2C1_SDA / PA.13  
PA.0 / DAC0_OUT / SPI0_MOSI / UART0_RXD / BPWM1_CH0 / BPWM1_CH4  
PA.1 / DAC1_OUT / SPI0_MISO / UART0_TXD / BPWM1_CH1 / MANCH_RXD  
33 EPAD  
I2C1_SDA / ADC0_CH0 / PB.0  
Figure 4.1-6 M031GTD2AE and M031GTC2AE Multi-function Pin Diagram  
Pin Pin Function  
1
2
3
4
5
VREF  
VDD  
AVDD  
nRESET/ICE_CLK  
PF.0 / ICE_DAT  
May 31, 2021  
Page 26 of 118  
Rev 1.00  
M030G/M031G Series  
Pin Pin Function  
6
7
8
9
PA.15 / UART0_RXD / BPWM1_CH5 / TM5_EXT  
PA.3 / DAC3_OUT / SPI0_SS / I2C0_SMBAL / I2C1_SCL / BPWM1_CH3 / CLKO / BPWM1_CH5  
PA.2 / DAC2_OUT / SPI0_CLK / I2C0_SMBSUS / I2C1_SDA / BPWM1_CH2 / MANCH_TXD  
PA.1 / DAC1_OUT / SPI0_MISO / UART0_TXD / BPWM1_CH1 / MANCH_RXD  
10 PA.0 / DAC0_OUT / SPI0_MOSI / UART0_RXD / BPWM1_CH0 / BPWM1_CH4  
11 PB.15 / ADC0_CH15 / SPI0_SS / UART0_nCTS / TM0_EXT  
12 PB.14 / ADC0_CH14 / SPI0_CLK / UART0_nRTS / TM1_EXT / CLKO  
13 PB.13 / ADC0_CH13 / SPI0_MISO / UART0_TXD / TM4_EXT / TM2_EXT / TM0_EXT  
14 PB.12 / ADC0_CH12 / SPI0_MOSI / UART0_RXD / TM5_EXT / TM3_EXT / TM1_EXT / MANCH_TXD  
15 PB.11 / ADC0_CH11 / UART0_nCTS / UART0_TXD / I2C1_SCL / BPWM1_CH0 / MANCH_RXD  
16 PF.3 / UART0_TXD / I2C0_SCL / BPWM1_CH0  
17 PF.2 / UART0_RXD / I2C0_SDA / BPWM1_CH1  
18 PB.10 / ADC0_CH10 / UART0_nRTS / I2C1_SDA / BPWM1_CH1  
19 PB.9 / ADC0_CH9 / UART0_TXD / BPWM1_CH2  
20 PB.8 / ADC0_CH8 / UART0_RXD / BPWM1_CH3  
21 PB.7 / ADC0_CH7 / MANCH_TXD / BPWM1_CH4 / INT5  
22 PB.6 / ADC0_CH6 / MANCH_RXD / BPWM1_CH5 / INT4  
23 PB.5 / ADC0_CH5 / I2C0_SCL / TM0 / INT0  
24 PB.4 / ADC0_CH4 / I2C0_SDA / TM1 / INT1  
25 PB.3 / ADC0_CH3 / I2C1_SCL / BPWM1_CH2 / TM0 / MANCH_TXD / TM2 / INT2  
26 PB.2 / ADC0_CH2 / I2C1_SDA / TM5 / I2C1_SCL / BPWM1_CH3 / TM1 / MANCH_RXD / TM3 / INT3  
27 PC.1 / I2C1_SCL / I2C0_SCL / ADC0_ST  
28 PB.1 / ADC0_CH1 / UART0_RXD / I2C1_SDA / I2C1_SCL / BPWM1_CH4  
29 PA.14 / UART0_TXD / I2C1_SCL / BPWM1_CH4 / TM4_EXT  
30 PA.12 / I2C1_SCL / BPWM1_CH2 / TM4  
31 PA.13 / I2C1_SDA / BPWM1_CH3 / TM5  
32 PB.0 / ADC0_CH0 / I2C1_SDA  
33 EPAD  
Table 4.1-4 M031GTD2AE and M031GTC2AE Pin Multi-function Pin Table  
May 31, 2021  
Page 27 of 118  
Rev 1.00  
M030G/M031G Series  
4.2 Pin Mapping  
Different part number with same package might has different function. Please refer to the  
M030G/M031G Series Selection Guide, Pin Configuration section or NuTool - PinConfig.  
Corresponding Part Number: M030GxC, M030GxD, M031GxC, M031GxD series.  
M030G/M031G Series  
Pin Name  
VREF  
24 Pin  
33 Pin  
1
2
3
4
VSS  
VDD  
2
3
AVDD  
nRESET/ICE_CLK  
PF.0  
5
6
4
5
PA.15  
PA.3  
6
7
8
7
PA.2  
8
PA.1  
9
9
PA.0  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PB.15  
PB.14  
PB.13  
PB.12  
PB.11  
PF.3  
11  
12  
13  
14  
PF.2  
PB.10  
PB.9  
VSS  
15  
16  
17  
18  
19  
20  
21  
22  
23  
PB.8  
20  
21  
22  
23  
24  
25  
26  
27  
PB.7  
PB.6  
PB.5  
PB.4  
PB.3  
PB.2  
PC.1  
May 31, 2021  
Page 28 of 118  
Rev 1.00  
M030G/M031G Series  
PB.1  
PA.14  
PA.12  
PA.13  
PB.0  
24  
28  
29  
30  
31  
32  
33  
1
EPAD  
May 31, 2021  
Page 29 of 118  
Rev 1.00  
M030G/M031G Series  
4.3 Pin Functional Description  
Corresponding Part Number: M030GxC, M030GxD, M031GxC, M031GxD series.  
Group  
Pin Name  
ADC0_CH0  
Type  
Description  
A
ADC0 channel 0 analog input.  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
ADC0_CH8  
ADC0_CH9  
ADC0_CH10  
ADC0_CH11  
ADC0_CH12  
ADC0_CH13  
ADC0_CH14  
ADC0_CH15  
ADC0_ST  
A
A
ADC0 channel 1 analog input.  
ADC0 channel 2 analog input.  
ADC0 channel 3 analog input.  
ADC0 channel 4 analog input.  
ADC0 channel 5 analog input.  
ADC0 channel 6 analog input.  
ADC0 channel 7 analog input.  
ADC0 channel 8 analog input.  
ADC0 channel 9 analog input.  
ADC0 channel 10 analog input.  
ADC0 channel 11 analog input.  
ADC0 channel 12 analog input.  
ADC0 channel 13 analog input.  
ADC0 channel 14 analog input.  
ADC0 channel 15 analog input.  
ADC0 external trigger input pin.  
BPWM1 channel 0 output/capture input.  
BPWM1 channel 1 output/capture input.  
A
A
A
A
A
ADC0  
A
A
A
A
A
A
A
A
I
BPWM1_CH0  
BPWM1_CH1  
I/O  
I/O  
BPWM1  
May 31, 2021  
Page 30 of 118  
Rev 1.00  
M030G/M031G Series  
Group  
Pin Name  
BPWM1_CH2  
Type  
Description  
I/O  
BPWM1 channel 2 output/capture input.  
BPWM1 channel 3 output/capture input.  
BPWM1 channel 4 output/capture input.  
BPWM1 channel 5 output/capture input.  
Clock Out  
BPWM1_CH3  
BPWM1_CH4  
BPWM1_CH5  
CLKO  
I/O  
I/O  
I/O  
O
CLKO  
DAC0  
DAC1  
DAC2  
DAC3  
DAC0_OUT  
DAC1_OUT  
DAC2_OUT  
DAC3_OUT  
I2C0_SCL  
A
DAC0 channel analog output.  
DAC1 channel analog output.  
DAC2 channel analog output.  
DAC3 channel analog output.  
I2C0 clock pin.  
A
A
A
I/O  
I/O  
O
I2C0_SDA  
I2C0 data input/output pin.  
I2C0  
I2C0_SMBAL  
I2C0_SMBSUS  
I2C1_SCL  
I2C0 SMBus SMBALTER pin  
I2C0 SMBus SMBSUS pin (PMBus CONTROL pin)  
I2C1 clock pin.  
O
I/O  
I/O  
I2C1  
I2C1_SDA  
I2C1 data input/output pin.  
Serial wired debugger clock pin  
ICE_CLK  
I
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK  
pin  
nRESET : External reset input, active LOW with an internal pull-up. Set  
this pin low reset to initial state.  
ICE  
nRESET /ICE_DAT  
I/O  
ICE_DAT : Serial wired debugger data pin.  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT  
pin.  
INT0  
INT1  
INT0  
INT1  
INT2  
I
I
I
External interrupt 0 input pin.  
External interrupt 1 input pin.  
External interrupt 2 input pin.  
INT2  
May 31, 2021  
Page 31 of 118  
Rev 1.00  
M030G/M031G Series  
Group  
INT3  
Pin Name  
Type  
Description  
INT3  
INT4  
INT5  
I
External interrupt 3 input pin.  
INT4  
INT5  
I
External interrupt 4 input pin.  
External interrupt 5 input pin.  
I
MANCH_RXD  
MANCH_TXD  
VDD  
I
Manchester data receiver input pin.  
MANCH  
O
Manchester data transmitter output pin.  
Power supply for I/O ports and LDO source for internal PLL and digital  
circuit.  
P
VSS  
P
Ground pin for digital circuit.  
AVDD  
P
Power supply for internal analog circuit.  
Ground pin for analog circuit.  
Power  
AVSS  
P
ADC and DAC reference voltage input.  
VREF  
A
Note: This pin needs to be connected with a 1uF capacitor.  
EPAD  
P
Exposed pad served as ground pin (VSS).  
SPI0 serial clock pin.  
SPI0_CLK  
SPI0_MISO  
SPI0_MOSI  
SPI0_SS  
TM0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI0 MISO (Master In, Slave Out) pin.  
SPI0 MOSI (Master Out, Slave In) pin.  
SPI0 slave select pin.  
SPI0  
Timer0 event counter input/toggle output pin.  
Timer0 external capture input/toggle output pin.  
Timer1 event counter input/toggle output pin.  
Timer1 external capture input/toggle output pin.  
Timer2 event counter input/toggle output pin.  
Timer2 external capture input/toggle output pin.  
TM0  
TM1  
TM0_EXT  
TM1  
TM1_EXT  
TM2  
I/O  
I/O  
TM2  
I/O  
TM2_EXT  
May 31, 2021  
Page 32 of 118  
Rev 1.00  
M030G/M031G Series  
Group  
Pin Name  
Type  
Description  
I/O  
TM3  
Timer3 event counter input/toggle output pin.  
Timer3 external capture input/toggle output pin.  
Timer4 event counter input/toggle output pin.  
Timer4 external capture input/toggle output pin.  
Timer5 event counter input/toggle output pin.  
Timer5 external capture input/toggle output pin.  
UART0 data receiver input pin.  
TM3  
I/O  
I/O  
I/O  
I/O  
I/O  
TM3_EXT  
TM4  
TM4  
TM5  
TM4_EXT  
TM5  
TM5_EXT  
UART0_RXD  
UART0_TXD  
UART0_nCTS  
UART0_nRTS  
I
O
I
UART0 data transmitter output pin.  
UART0  
UART0 clear to Send input pin.  
O
UART0 request to Send output pin.  
May 31, 2021  
Page 33 of 118  
Rev 1.00  
M030G/M031G Series  
5 BLOCK DIAGRAM  
* Only in M031G Series  
** M031G Series is equipped with 1 set of DAC with Auto Data Generation function  
Figure 5-1 NuMicro M030G/M031G Block Diagram  
May 31, 2021  
Page 34 of 118  
Rev 1.00  
M030G/M031G Series  
6 FUNCTIONAL DESCRIPTION  
6.1 Arm® Cortex® -M0 Core  
The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA  
AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality.  
The processor can execute Thumb code and is compatible with other Cortex® -M profile processor. The  
profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an  
exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset,  
and can be entered as a result of an exception return. Figure 6.1-1 shows the functional controller of  
processor.  
Cortex-M0 Components  
Cortex-M0 Processor  
Debug  
Interrupts  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex-M0  
Processor  
Core  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debug  
Access Port  
(DAP)  
Debugger  
interface  
Bus matrix  
Serial Wire or  
JTAG debug port  
AHB-Lite interface  
Figure 6.1-1 Functional Block Diagram  
The implemented device provides:  
A low gate count processor:  
Arm® 6-M Thumb® instruction set  
Thumb-2 technology  
Arm® 6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to  
facilitate rapid interrupt handling  
C Application Binary Interface compliant exception model. This is the Armv6-M, C  
Application Binary Interface (C-ABI) compliant exception model that enables the use of  
pure C functions as interrupt handlers  
Low Power Sleep mode entry using the Wait For Interrupt (WFI), Wait For Event  
(WFE) instructions, or return from interrupt sleep-on-exit feature  
NVIC:  
32 external interrupt inputs, each with four levels of priority  
May 31, 2021  
Page 35 of 118  
Rev 1.00  
 
M030G/M031G Series  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep  
mode  
Debug support:  
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all  
system peripherals and memory  
Single 32-bit slave port that supports the DAP (Debug Access Port)  
May 31, 2021  
Page 36 of 118  
Rev 1.00  
M030G/M031G Series  
6.2 System Manager  
6.2.1  
Overview  
System management includes the following sections:  
System Reset  
System Power Distribution  
SRAM Memory Orginization  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control register  
6.2.2  
System Reset  
The system reset can be issued by one of the events listed below. These reset event flags can be read  
from SYS_RSTSTS register to determine the reset source. Hardware reset sources are from peripheral  
signals. Software reset can trigger reset through setting control registers.  
Hardware Reset Sources  
Power-on Reset  
Low level on the nRESET pin  
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD Reset)  
CPU Lockup Reset  
Software Reset Sources  
CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])  
MCU Reset to reboot but keeping the booting setting from APROM or LDROM by  
writing 1 to SYSRESETREQ (AIRCR[2])  
CPU Reset for Cortex® -M0 core only by writing 1 to CPURST (SYS_IPRST0[1])  
May 31, 2021  
Page 37 of 118  
Rev 1.00  
M030G/M031G Series  
Hardware Reset Sources  
nRESET  
Glitch Filter  
NRESET Reset  
POR Reset  
33 us  
~50k ohm  
@3.3v  
Power-on  
Reset  
POROFF(SYS_PORCTL[15:0])  
Reset Pulse Width  
~3.2ms  
VDD  
LVREN(SYS_BODCTL[7])  
LVR Reset  
Low Voltage  
Reset  
Reset Pulse Width  
~3.2ms  
AVDD  
BODRSTEN(SYS_BODCTL[3])  
BOD Reset  
WDT Reset  
Brown-out  
Reset  
Reset Pulse Width  
~3.2ms  
WDT/WWDT  
Reset  
Reset Pulse Width  
64 WDT clocks  
Lockup Reset  
CPU Lockup  
Reset  
Reset Pulse Width  
2 system clocks  
Software Reset Sources  
CHIP Reset  
MCU Reset  
CPU Reset  
CHIP Reset  
CHIPRST(SYS_IPRST0[0])  
Reset Pulse Width  
2 system clocks  
Reset Pulse Width  
2 system clocks  
MCU Reset  
SYSRSTREQ(AIRCR[2])  
CPU Reset  
CPURST(SYS_IPRST0[1])  
Reset Pulse Width  
2 system clocks  
Figure 6.2-1 System Reset Sources  
There are a total of 9 reset sources in the NuMicro® family. In general, CPU reset is used to reset  
Cortex® -M0 only; the other reset sources will reset Cortex® -M0 and all peripherals. However, there are  
some registers with particularly different reset sources. Table 6.2-1 lists these differences.  
Reset Sources  
POR  
NRESET  
WDT  
LVR  
BOD  
Lockup  
CHIP  
MCU  
CPU  
Register  
SYS_RSTSTS  
Bit 0 = 1 Bit 1 = 1 Bit 2 = 1 Bit 3 = 1 Bit 4 = 1 Bit 8 = 1 Bit 0 = 1 Bit 5 = 1 Bit 7 = 1  
CHIPRST  
0x0  
0x0  
0x0  
0x1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(SYS_IPRST0[0])  
BODEN  
0x1  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
0x0  
0x1  
0x1  
0x0  
0x1  
(SYS_BODCTL[0])  
BODVL  
(SYS_BODCTL[16])  
BODRSTEN  
(SYS_BODCTL[3])  
WDTCKEN  
0x1  
0x7  
-
0x1  
0x7  
-
-
-
0x1  
0x7  
-
(CLK_APBCLK0[0])  
HCLKSEL  
0x7  
0x7  
0x7  
0x7  
0x7  
-
May 31, 2021  
Page 38 of 118  
Rev 1.00  
M030G/M031G Series  
(CLK_CLKSEL0[2:0])  
WDTSEL  
0x3  
0x0  
0x3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_CLKSEL1[1:0])  
HIRCSTB  
(CLK_STATUS[4])  
RSTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG  
0
(WDT_CTL[1])  
-
-
-
-
-
-
CONFIG CONFIG CONFIG CONFIG CONFIG  
0
WDTEN  
0
0
0
0
(WDT_CTL[7])  
WDT_CTL  
0x0800 0x0800  
0x0800 0x0800  
0x0800  
0x0800  
except bit 1 and bit 7.  
WDT_ALTCTL  
0x0000 0x0000  
0x0000 0x0000  
0x0000 0x0000  
0x0000 0x0000  
0x0000  
0x0000  
-
-
0x0000  
0x0000  
-
-
-
-
WWDT_RLDCNT  
0x3F080 0x3F080 0x3F080 0x3F080 0x3F080  
0x3F080  
0
WWDT_CTL  
-
-
-
0
0
0
0
0
WWDT_STATUS  
WWDT_CNT  
0x0000 0x0000  
0x0000 0x0000  
0x0000  
0x3F  
-
-
0x0000  
0x3F  
-
-
-
-
0x3F  
0x3F  
0x3F  
0x3F  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG  
0
BS  
-
-
-
-
-
-
-
-
-
-
-
-
CONFIG CONFIG CONFIG CONFIG CONFIG  
0
(FMC_ISPCTL[1])  
0
0
0
0
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG  
1
FMC_DFBA  
CONFIG CONFIG CONFIG CONFIG CONFIG  
1
1
1
1
1
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG  
0
CBS  
CONFIG CONFIG CONFIG CONFIG CONFIG  
0
(FMC_ISPSTS[2:1))  
0
0
0
0
Reload  
Reload  
Reload  
Reload  
Reload  
Reload  
base on  
CONFIG  
0
VECMAP  
base on base on base on base on base on  
CONFIG CONFIG CONFIG CONFIG CONFIG  
0
(FMC_ISPSTS[23:9])  
0
0
0
0
DAC IP Registers  
Refer to Table 6.2-2 for DAC Reset Retention source and reset value.  
(RETEN, DAC0_CTL[24]=1)  
DAC IP Registers  
Reset Value  
-
(RETEN, DAC0_CTL[24]=0)  
GPIO IP Registers  
Refer to Table 6.2-3 for GPIO Reset Retention source and reset value.  
Reset Value  
(RETEN (GPIO_RET[0]) = 1)  
GPIO IP Registers  
-
-
(RETEN (GPIO_RET[0]) = 0)  
Other Peripheral Registers  
FMC Registers  
Reset Value  
Reset Value  
Note: -‘ means that the value of register keeps original setting.  
Table 6.2-1 Reset Value of Registers  
May 31, 2021  
Page 39 of 118  
Rev 1.00  
M030G/M031G Series  
Reset Sources  
Register  
POR  
Reset  
NRESET  
WDT  
LVR  
Reset  
BOD  
Reset  
Lockup  
CHIP  
MCU  
CPU  
Reset  
Value  
DAC Registers  
-
-
-
-
-
-
-
-
-
Value  
Value  
Value  
SCPDIS  
0x0  
-
-
-
-
-
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
(SYS_VREFCTL[8])  
PRELOADEN  
0x0  
0x0  
0x0  
0x0  
-
-
-
-
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
-
-
-
-
-
-
-
-
-
-
-
-
(SYS_VREFCTL[6])  
VREFSEL  
(SYS_VREFCTL[1])  
VREFEN  
(SYS_VREFCTL[0])  
TSBGEN  
(SYS_TSCTL[1])  
Table 6.2-2 DAC Reset Retention Value of Registers  
Reset Sources  
Register  
POR  
NRESET  
WDT  
LVR  
BOD  
Lockup  
CHIP  
MCU  
CPU  
Reset  
Value  
Reset  
Value  
Reset  
Value  
Reset  
Value  
GPIO Registers  
-
-
-
-
-
Table 6.2-3 GPIO Reset Retention Value of Registers  
nRESET Reset  
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an  
asynchronous reset input pin and can be used to reset system at any time. When the nRESET voltage  
is lower than 0.2 VDD and the state keeps longer than 33 us (glitch filter), chip will be reset. The nRESET  
reset will control the chip in reset state until the nRESET voltage rises above 0.7 VDD and the state keeps  
longer than 33 us (glitch filter). The PINRF (SYS_RSTSTS[1]) will be set to 1 if the previous reset source  
is nRESET reset. Figure 6.2-2 shows the nRESET reset waveform.  
nRESET  
0.7 VDD  
33 us  
0.2 VDD  
33 us  
nRESET Reset  
Figure 6.2-2 nRESET Reset Waveform  
May 31, 2021  
Page 40 of 118  
Rev 1.00  
 
M030G/M031G Series  
Power-on Reset (POR)  
The Power-on reset (POR) is used to generate a stable system reset signal and forces the system to be  
reset when power-on to avoid unexpected behavior of MCU. When applying the power to MCU, the POR  
module will detect the rising voltage and generate reset signal to system until the voltage is ready for  
MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be set to 1 to indicate there is a POR  
reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by writing 1 to it. Figure 6.2-3 shows the  
power-on reset waveform.  
VPOR  
0.1V  
VDD  
Power-on  
Reset  
Figure 6.2-3 Power-on Reset (POR) Waveform  
Low Voltage Reset (LVR)  
If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit LVREN  
(SYS_BODCTL[7]) to 1, after 200us delay, LVR detection circuit will be stable and the LVR function will  
be active. Then LVR function will detect AVDD during system operation. When the AVDD voltage is lower  
than VLVR and the state keeps longer than De-glitch time set by LVRDGSEL (SYS_BODCTL[14:12]),  
chip will be reset. The LVR reset will control the chip in reset state until the AVDD voltage rises above  
VLVR and the state keeps longer than De-glitch time set by LVRDGSEL (SYS_BODCTL[14:12]). The  
default setting of Low Voltage Reset is enabled without De-glitch function. Figure 6.2-4 shows the Low  
Voltage Reset waveform.  
AVDD  
VLVR  
T1  
T2  
( < LVRDGSEL)  
( =LVRDGSEL)  
T3  
( =LVRDGSEL)  
Low Voltage Reset  
LVREN  
200 us  
Delay for LVR stable  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform  
May 31, 2021  
Page 41 of 118  
Rev 1.00  
 
 
M030G/M031G Series  
Brown-out Detector Reset (BOD Reset)  
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit  
BODEN (SYS_BODCTL[0]), Brown-out Detector function will detect AVDD during system operation.  
When the AVDD voltage is lower than VBOD which is decided by BODEN and BODVL (SYS_BODCTL[16])  
and the state keeps longer than De-glitch time set by BODDGSEL (SYS_BODCTL[10:8]), chip will be  
reset. The BOD reset will control the chip in reset state until the AVDD voltage rises above VBOD and the  
state keeps longer than De-glitch time set by BODDGSEL. Figure 6.2-5 shows the Brown-out Detector  
waveform.  
AVDD  
VBODH  
Hysteresis  
VBODL  
T1  
T2  
(< BODDGSEL)  
(= BODDGSEL)  
BODOUT  
T3  
(= BODDGSEL)  
BODRSTEN  
Brown-out  
Reset  
Figure 6.2-5 Brown-out Detector (BOD) Waveform  
Watchdog Timer Reset (WDT)  
In most industrial applications, system reliability is very important. To automatically recover the MCU  
from failure status is one way to improve system reliability. The watchdog timer(WDT) is widely used to  
check if the system works fine. If the MCU is crashed or out of control, it may cause the watchdog time-  
out. User may decide to enable system reset during watchdog time-out to recover the system and take  
action for the system crash/out-of-control after reset.  
Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a  
watchdog reset and handle the failure of MCU after watchdog time-out reset by checking  
WDTRF(SYS_RSTSTS[2]).  
CPU Lockup Reset  
CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives immediate  
indication of seriously errant kernel software. This is the result of the CPU being locked because of an  
unrecoverable exception following the activation of the processor’s built in system state protection  
hardware. When chip enters debug mode, the CPU lockup reset will be ignored.  
May 31, 2021  
Page 42 of 118  
Rev 1.00  
 
M030G/M031G Series  
CPU Reset, CHIP Reset and MCU Reset  
The CPU Reset means only Cortex® -M0 core is reset and all other peripherals remain the same status  
after CPU reset. User can set the CPURST(SYS_IPRST0[1]) to 1 to assert the CPU Reset signal.  
The CHIP Reset is same with Power-on Reset. The CPU and all peripherals are reset and  
BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG0 setting. User can set the  
CHIPRST(SYS_IPRST0[0]) to 1 to assert the CHIP Reset signal.  
The MCU Reset is similar with CHIP Reset. The difference is that BS(FMC_ISPCTL[1]) will not be  
reloaded from CONFIG0 setting and keep its original software setting for booting from APROM or  
LDROM. User can set the SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.  
6.2.3  
System Power Distribution  
In this chip, power distribution is divided into three segments:  
Analog power from AVDD and AVSS provides the power for analog components operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which provides  
a fixed 1.8V power for digital operation and I/O pins.  
M030G/M031G package connect AVSS and VSS together.  
May 31, 2021  
Page 43 of 118  
Rev 1.00  
M030G/M031G Series  
Internal  
Reference  
Voltage  
12-bit ADC  
12-bit DAC0~3  
AVDD  
AVSS  
Low Voltage  
Reset  
Brown-out  
Detector  
Temperature  
Sensor  
SRAM  
Flash  
Digital Logic  
1.8V  
48 MHz  
HIRC  
38.4 kHz  
LIRC  
PLL  
POR18  
Oscillator  
Oscillator  
VDD to 1.8V  
LDO  
Power On  
Control  
POR33  
IO Cell  
Figure 6.2-6 NuMicro® M030G/M031G Power Distribution Diagram  
May 31, 2021  
Page 44 of 118  
Rev 1.00  
M030G/M031G Series  
6.2.4  
Power Modes and Wake-up Sources  
This chip has a power manager unit to support several operating modes for saving power. Table 6.2-4  
lists all power modes in the M030G/M031G series.  
Mode  
CPU Operating Maximum Speed ( MHz) LDO (V)  
Clock Disable  
Normal mode  
Idle mode  
72/48  
1.8  
1.8  
1.8  
All clocks are disabled by control register.  
Only CPU clock is disabled.  
CPU enters Sleep mode  
Power-down mode CPU enters Power-down mode  
All clocks are disabled, except LIRC. And only  
WDT/Timer/UART peripheral clocks still enable  
if their clock sources are selected as LIRC.  
Table 6.2-4 Power Mode Table  
There are different power mode entry settings and leaving condition for each power mode. Table 6.2-5  
shows the entry setting for each power mode. When chip power-on, chip is running in normal mode.  
User can enter each mode by setting SLEEPDEEP (SCR[2]), PDEN (CLK_PWRCTL[7]) and execute  
WFI instruction.  
Register/Instruction  
Mode  
SLEEPDEEP  
(SCR[2])  
PDEN  
CPU Run WFI Instruction  
(CLK_PWRCTL[7])  
Normal mode  
0
0
0
0
NO  
Idle mode  
YES  
(CPU enters Sleep mode)  
Power-down mode  
1
1
YES  
(CPU enters Deep Sleep mode)  
Table 6.2-5 Power Mode Entry Setting Table  
There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-6 lists the available  
clocks for each power mode.  
Normal Mode  
Idle Mode  
Power-Down Mode  
Definition  
CPU is in active state  
CPU is in sleep state  
CPU is in sleep state and all clocks stop  
except LIRC. SRAM content retended.  
Entry Condition  
Chip is in normal mode  
after system reset released instruction.  
CPU executes WFI  
CPU sets sleep mode enable and power  
down enable and executes WFI  
instruction.  
Wake-up Sources  
N/A  
All interrupts  
WDT, I²C, Timer, UART, BOD, GPIO  
and EINT  
Available Clocks  
After Wake-up  
All  
All except CPU clock  
LIRC  
N/A  
CPU back to normal mode CPU back to normal mode  
Table 6.2-6 Power Mode Difference Table  
May 31, 2021  
Page 45 of 118  
Rev 1.00  
 
 
 
M030G/M031G Series  
System reset released  
Normal Mode  
CPU Clock ON  
PLL, HIRC, LIRC, HCLK, PCLK ON  
Flash ON  
1. SLEEPDEEP (SCS_SCR[2]) = 1  
2. PDEN (CLK_PWRCTL[7]) = 1 and  
Wake-up events  
occur  
CPU executes WFI  
Interrupts occur  
PDWKIF (CLK_PWRCTL[6]) = 1  
3. CPU executes WFI  
Power-down Mode  
CPU Clock OFF  
PLL, HIRC, HCLK, PCLK OFF  
LIRC ON  
Idle Mode  
CPU Clock OFF  
PLL, HIRC, LIRC, HCLK, PCLK ON  
Flash Halt  
Flash Halt  
Figure 6.2-7 Power Mode State Machine  
Normal Mode  
Idle Mode  
ON  
Power-Down Mode  
HIRC48 (48 MHz OSC)  
LIRC (38.4 kHz OSC)  
PLL  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
ON  
ON  
ON  
Halt  
HCLK/PCLK  
CPU  
ON  
Halt  
Halt  
ON  
Halt  
SRAM retention  
FLASH  
ON  
ON  
Halt  
TIMER  
ON  
ON/OFF1  
ON/OFF2  
ON/OFF3  
Halt  
WDT  
ON  
UART  
ON  
Others  
ON  
Table 6.2-7 Clocks in Power Modes  
Note:  
1. If TIMER clock source is selected as LIRC.  
2. If WDT clock source is selected as LIRC.  
3. If UART clock source is selected as LIRC.  
Wake-up sources in Power-down mode:  
WDT, I²C, Timer, UART, BOD and GPIO  
After chip enters power down, the following wake-up sources can wake up chip to normal mode. Table  
6.2-8 lists the condition about how to enter Power-down mode again for each peripheral.  
May 31, 2021  
Page 46 of 118  
Rev 1.00  
M030G/M031G Series  
User needs to wait this condition before setting PDEN(CLK_PWRCTL[7]) and execute WFI to enter  
Power-down mode.  
Wake-Up  
Wake-Up Condition  
System Can Enter Power-Down Mode Again Condition  
Source  
BOD  
Brown-Out Detector Interrupt After software writes 1 to clear BODIF (SYS_BODCTL[4]).  
INT  
External Interrupt  
GPIO Interrupt  
After software write 1 to clear the Px_INTSRC[n] bit.  
After software write 1 to clear the Px_INTSRC[n] bit.  
GPIO  
After software writes  
(TIMERx_INTSTS[0]).  
1 to clear TWKF (TIMERx_INTSTS[1]) and TIF  
TIMER  
WDT  
Timer Interrupt  
WDT Interrupt  
nCTS wake-up  
RX Data wake-up  
Address match  
After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect).  
After software writes 1 to clear CTSWKF (UARTx_WKSTS[0]).  
After software writes 1 to clear DATWKF (UARTx_WKSTS[1]).  
After software writes 1 to clear WKIF (I2C_WKSTS[0]).  
UART  
I2C  
Table 6.2-8 Condition of Entering Power-down Mode Again  
System Memory Map  
6.2.5  
This chip provides 4G-byte addressing space. The memory locations assigned to each on-chip  
controllers are shown in Table 6.2-9. The detailed register definition, memory space, and programming  
will be described in the following sections for each on-chip peripheral. The M030G/M031G series only  
supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0000_FFFF  
0x2000_0000 0x2000_1FFF  
FLASH_BA  
SRAM_BA  
FLASH Memory Space (64 Kbytes)  
SRAM Memory Space (8 Kbytes)  
Peripheral Controllers Space (0x4000_0000 0x400F_FFFF)  
0x4000_0000 0x4000_01FF  
0x4000_0200 0x4000_02FF  
0x4000_0300 0x4000_03FF  
0x4000_4000 0x4000_4FFF  
0x4000_8000 0x4000_8FFF  
0x4000_C000 0x4000_CFFF  
0x4003_1000 0x4003_1FFF  
SYS_BA  
CLK_BA  
NMI_BA  
System Control Registers  
Clock Control Registers  
NMI Control Registers  
GPIO_BA  
PDMA_BA  
FMC_BA  
CRC_BA  
GPIO Control Registers  
Peripheral DMA Control Registers  
Flash Memory Control Registers  
CRC Generator Registers  
APB Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4004_0000 0x4004_0FFF  
0x4004_3000 0x4004_3FFF  
0x4004_7000 0x4004_7FFF  
0x4004_B000 0x400B_7FFF  
0x4005_0000 0x4005_0FFF  
WDT_BA  
Watchdog Timer Control Registers  
Analog-Digital-Converter (ADC) Control Registers  
DAC01 Control Registers  
ADC_BA  
DAC01_BA  
DAC23_BA  
TMR01_BA  
DAC23 Control Registers  
Timer0/Timer1 Control Registers  
May 31, 2021  
Page 47 of 118  
Rev 1.00  
M030G/M031G Series  
0x4005_1000 0x4005_1FFF  
0x4005_2000 0x4005_2FFF  
0x4005_B000 0x4005_BFFF  
0x4006_1000 0x4006_1FFF  
0x4007_0000 0x4007_0FFF  
0x4008_0000 0x4008_0FFF  
0x4008_1000 0x4008_1FFF  
0x400B_C000 0x400B_CFFF  
TMR23_BA  
TMR45_BA  
BPWM1_BA  
SPI0_BA  
Timer2/Timer3 Control Registers  
Timer4/Timer5 Control Registers  
BPWM Control Registers  
SPI0 Control Registers  
UART_BA  
I2C0_BA  
UART0 Control Registers  
I2C0 Control Registers  
I2C1_BA  
I2C1 Control Registers  
MANCH_BA  
Manchester Codec Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 6.2-9 Address Space Assignments for On-Chip Controllers  
May 31, 2021  
Page 48 of 118  
Rev 1.00  
M030G/M031G Series  
6.2.6  
SRAM Memory Organization  
This chip supports embedded 4/8 Kbytes size SRAM:  
Supports 4/8 Kbytes SRAM  
Supports byte / half word / word write  
Supports oversize response error  
Figure 6.2-8 shows the M030G/M031G series SRAM organization. The address between 0x2000_2000  
to 0x3FFF_FFFF is illegal memory space and chip will enter hardfault if CPU accesses these illegal  
memory addresses.  
0x3FFF_FFFF  
Reserved  
Reserved  
0x2000_2000  
8K byte  
0x2000_1000  
SRAM bank0  
4K byte  
SRAM bank0  
0x2000_0000  
4K byte device  
8K byte device  
Figure 6.2-8 SRAM Memory Organization  
6.2.7  
Chip Bus Matrix  
This chip supports Bus Matrix to manage the access arbitration between masters. The access arbitration  
uses round-robin algorithm as the bus priority.  
M1  
PDMA  
M0  
Cortex® -M0  
S0  
S1  
S2  
APB0  
S3  
APB1  
S4  
AHB  
(ctrl)  
FLASH  
SRAM  
Figure 6.2-9 NuMicro® M030G/M031G Bus Matrix Diagram  
May 31, 2021  
Page 49 of 118  
Rev 1.00  
 
M030G/M031G Series  
6.2.8  
Temperature Sensor  
This chip is equipped with an on-chip temperature sensor. Temperature sensor control registers are  
located in SYS_TSCTL and SYS_TSDATA.  
User should set both TSEN(SYS_TSCTL[0]) and TSBGEN(SYS_TSCTL[1]) bits to 1 to enable the  
temperature sensor. User needs to wait 200us for temperatre sensor to be stable, and then set  
TSST(SYS_TSCTL[2]) bit to 1 to start temperature sensor conversion.  
After temperature sensor conversion is finished, TSEOC(SYS_TSDATA[0]) bit will be set to 1  
automatically, and TSDATA(SYS_TSDATA[27:16]) will present the temperature sensor data. Figure  
6.2-10 shows the timing waveform of temperature sensor conversion.  
Tstartup  
Tconversion  
Tconversion  
( > 200 us)  
( < 100 ms)  
( < 100 ms)  
TSEN  
(SYS_TSCTL[0])  
TSBGEN  
(SYS_TSCTL[1])  
1st conversion  
2nd conversion  
Clear by  
Clear by  
hardware  
hardware  
TSST  
(SYS_TSCTL[2])  
Clear by software  
Clear by software  
TSEOC  
(SYS_TSDATA[0])  
TSDATA  
(SYS_TSDATA[27:16])  
1st Temperature Data[11:0]  
2nd Temperature Data[11:0]  
Figure 6.2-10 Temperature Sensor Conversion Waveform  
Table 6.2-10 is a reference table for the relationship between temperature and TSDATA. Negative  
temperature is represented in TSDATA(SYS_TSDATA[27:16]) by twos complement format, and per LSB  
difference is equivalent to 0.0625 ° C.  
May 31, 2021  
Page 50 of 118  
Rev 1.00  
 
M030G/M031G Series  
Temperature (°C)  
Temperature Data (TSDATA)  
128  
127.9375  
100  
80  
0x7FF  
0x7FF  
0x640  
0x500  
0x4B0  
0x320  
0x190  
0x004  
0x000  
0xFFC  
0xE70  
0xC90  
75  
50  
25  
0.25  
0
-0.25  
-25  
-55  
Table 6.2-10 Temperature Data Truth Table  
6.2.9  
Internal Voltage Reference (INT_VREF)  
This chip supports internal voltage reference (INT_VREF) to provide the voltage reference for ADC and  
DACs. The INT_VREF routes to VREF pin. User can set VREFEN(SYS_VREFCTL[0]) to select ADC and  
DACs reference voltage sourcing from external VREF pin supply or internal INT_VREF. If using external  
VREF source, VREFEN needs to be set to 0, and INT_VREF will output floating.  
When VREFEN is set to 1, INT_VREF will be enabled. In addition, user can select INT_VREF output  
voltage level 2.048V or 2.5V by VREFSEL(SYS_VREFCTL[1]). However, VREFSEL must be decided  
before VREFEN is set to 1.  
When VREFEN is set to 1, PRELOADEN(SYS_VREFCTL[6]) will be set automatically to shorten VREF  
discharge and stable time. User needs to disable PRELOADEN function after stable time, otherwise it  
will affect the maximum load current that INT_VREF can provide.  
6.2.10 MANCH_TXD Modulation with BPWM1  
This chip supports MANCH_TXD to modulate with BPWM1_CH0 ~ BPWM1_CH5. User can set  
MANCHMODEN (SYS_MODCTL[21:16]) to enable modulation function with each BPWM1 channel and  
set MANCHMODL (SYS_MODCTL[29:24]) to select MANCH_TXD data high or low to modulate with  
May 31, 2021  
Page 51 of 118  
Rev 1.00  
M030G/M031G Series  
BPWM1 channels. The Manchester modulation example waveform is shown in Figure 6.2-11.  
BPWM1_CHn  
MANCH_TXD  
Modulated MANCH_TXD :  
MANCHMODE[n] = 0  
MANCHMODL[n] = x  
&
MANCHMODE[n] = 1  
&
MANCHMODH[n] = 0  
MANCHMODE[n] = 1  
&
MANCHMODH[n] = 1  
Note: n=0, 1 .. 5  
Figure 6.2-11 MANCH_TXD Modulated with BPWM1_CHn  
6.2.11 Register Lock Control  
Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip  
operation. These system control registers are protected after the power-on reset till user to disable  
register protection. For user to program these protected registers, a register protection disable sequence  
needs to be followed by a special programming. The register protection disable sequence is writing the  
data “59h”, “16h” “88h” to the register SYS_REGLCTL address at 0x4000_0100 continuously. Any  
different data value, different sequence or any other write to other address during these three data writing  
will abort the whole sequence. All proteced control registers are noted “(Write Protect)” and add an note  
Note: This bit is write protected. Refer to the SYS_REGLCTL register “ in register description field.  
May 31, 2021  
Page 52 of 118  
Rev 1.00  
 
M030G/M031G Series  
6.2.12 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-  
write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used  
as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value Register  
(SYST_VAL) to zero, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_LOAD) on the next clock cycle, and then decrement on subsequent clocks. When the counter  
transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_VAL value is UNKNOWN on reset. Software should write to the register to clear it to zero  
before enabling the feature. This ensures the timer will count from the SYST_LOAD value rather than  
an arbitrary value when it is enabled.  
If the SYST_LOAD is zero, the timer will be maintained with a current value of zero after it is reloaded  
with this value. This mechanism can be used to disable the feature independently from the timer enable  
bit.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference Manual” and  
“Arm® v6-M Architecture Reference Manual”.  
May 31, 2021  
Page 53 of 118  
Rev 1.00  
M030G/M031G Series  
6.2.13 Nested Vectored Interrupt Controller (NVIC)  
The Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named as  
“Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor core and  
provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of  
the interrupts and most of the system exceptions can be configured to different priority levels. When an  
interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one’s  
priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will  
override the current handler.  
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched from  
a vector table in memory. There is no need to determine which interrupt is accepted and branch to the  
starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also  
automatically save processor state including the registers “PC, PSR, LR, R0~R3, R12” to the stack. At  
the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal  
execution. Thus it will take less and deterministic time to process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR  
at the end of current ISR. The NVIC also supports “Late Arrival” which improves the efficiency of  
concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute  
(at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one  
without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference Manual” and  
Arm® v6-M Architecture Reference Manual”.  
Exception Model and System Interrupt Map  
Table 6.2-11 lists the exception model supported by the M030G/M031G series. Software can set four  
levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable  
priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority of all the user-  
configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on the system, after  
three system exceptions “Reset”, “NMI” and “Hard Fault”.  
May 31, 2021  
Page 54 of 118  
Rev 1.00  
M030G/M031G Series  
Exception Name  
Vector Number  
Priority  
Reset  
1
-3  
NMI  
Hard Fault  
Reserved  
2
3
-2  
-1  
4 ~ 10  
11  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
Reserved  
12 ~ 13  
14  
PendSV  
SysTick  
15  
Interrupt (IRQ0 ~ IRQ31)  
16 ~ 47  
Table 6.2-11 Exception Model  
Interrupt Number  
Vector  
Number  
Interrupt Name  
Interrupt  
Interrupt Description  
(Bit  
In  
Registers)  
0 ~ 15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
-
-
System exceptions  
0
BODOUT  
WDT_INT  
EINT024  
Brown-Out low voltage detected interrupt  
Watchdog Timer interrupt  
External interrupt fromEINT0,2,4.  
External interrupt fromEINT1.3.5  
External interrupt from PA, PB pin  
External interrupt from PC, PF pin  
Timer 4 interrupt  
1
2
3
EINT135  
4
GPAB_INT  
GPCF_INT  
TMR4_INT  
TMR5_INT  
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART0_INT  
Reserved  
SPI0_INT  
Reserved  
Reserved  
5
6
7
Timer 5 interrupt  
8
Timer 0 interrupt  
9
Timer 1 interrupt  
10  
11  
12  
13  
14  
15  
16  
Timer 2 interrupt  
Timer 3 interrupt  
UART0 interrupt  
Reserved  
SPI0 interrupt  
Reserved  
Reserved  
May 31, 2021  
Page 55 of 118  
Rev 1.00  
M030G/M031G Series  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
MANCH_INT  
I2C0_INT  
Manchester Codec interrupt  
I2C0 interrupt  
I2C1_INT  
I2C1 interrupt  
Reserved  
Reserved  
BPWM_INT  
Reserved  
BPWM interrupt  
Reserved  
DAC01_INT  
DAC23_INT  
TEMP_INT  
PDMA_INT  
Reserved  
DAC0/1 device interrupt  
DAC2/3 device interrupt  
TEMP interrupt  
PDMA interrupt  
Reserved  
PWRWU_INT  
ADC_INT  
Clock controller interrupt for chip wake-up from power-down state  
ADC interrupt  
Reserved  
Reserved  
Reserved  
Reserved  
Table 6.2-12 Interrupt Number Table  
Vector Table  
When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt  
service routine (ISR) from a vector table in memory. For Armv6-M, the vector table base address is fixed  
at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the  
entry point addresses for all exception handlers. The vector number on previous page defines the order  
of entries in the vector table associated with exception handler entry as illustrated in previous section.  
Vector Table Word Offset  
Description  
0
SP_main The Main stack pointer  
Exception Entry Pointer using that Vector Number  
Vector Number  
Table 6.2-13 Vector Figure Format  
Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or  
Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy,  
both registers reading back the current enabled state of the corresponding interrupts. When an interrupt  
is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not  
be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by  
reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to  
enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively.  
The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current  
pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution  
May 31, 2021  
Page 56 of 118  
Rev 1.00  
M030G/M031G Series  
status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting  
four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the System  
Control Space and will be described in next section.  
May 31, 2021  
Page 57 of 118  
Rev 1.00  
M030G/M031G Series  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates clocks for the whole chip, including system clocks and all peripheral  
clocks. The clock controller also implements the power control function with the individually clock  
ON/OFF control, clock source selection and a clock divider. The chip will not enter Power-down mode  
until CPU sets the Power-down enable bit PDEN(CLK_PWRCTL[7]) and Cortex® -M0 core executes the  
WFI instruction. After that, chip enters Power-down mode and waits for wake-up interrupt source  
triggered to leave Power-down mode. In Power-down mode, the clock controller turns off the 48 MHz  
internal high speed RC oscillator (HIRC) and Programmable PLL output clock frequency (PLLFOUT) to  
reduce the overall system power consumption. Figure 6.3-1 shows the clock generator and the overview  
of the clock source control.  
May 31, 2021  
Page 58 of 118  
Rev 1.00  
M030G/M031G Series  
HIRC  
LIRC  
48MHz  
38.4 kHz  
PCLK1  
PCLK0  
/1,/2,/4,/8,/16  
I2C0  
ADC  
I2C1  
HIRC  
PLLFOUT  
1/4  
PLL FOUT  
TMR0  
CPU  
CRC  
TMR1  
TMR2  
TMR3  
BPWM1  
DAC0/1  
DAC2/3  
SPI0  
TMR4  
TMR5  
FMC  
HIRC  
111  
010  
HCLK  
1/(HCLKDIV+1)  
PDMA  
SRAM  
UART0  
WDT  
PLLFOUT  
Manchester  
CLK_CLKSEL0[2:0]  
/1,/2,/4,/8,/16  
HCLK  
LIRC  
LIRC  
11  
10  
11  
10  
WDT  
WWDT  
HCLK  
1/2048  
1/2048  
CLK_CLKSEL1[3:2]  
CLK_CLKSEL1[1:0]  
CPUCLK  
PLLFOUT  
LIRC  
1
HIRC  
HCLK  
001  
SysTick  
1/2  
1/2  
111  
011  
0
101  
100  
011  
PCLK0  
HIRC  
1/(UART0DIV+1)  
UART0  
SYST_CTRL[2]  
CLK_CLKSEL0[5:3]  
CLK_CLKSEL1[26:24]  
DIV1EN  
(CLK_CLKOCTL[5])  
PLLFOUT  
HIRC  
110  
PLLFOUT  
PCLK1  
HIRC  
01  
101  
100  
011  
010  
LIRC  
1/(ADCDIV + 1)  
ADC  
/2(CLK_CLKOCTL[3:0]+1)  
0
10  
11  
CLKO  
HIRC  
HCLK  
1
ADCSEL  
(CLKSEL2[21:20])  
CLK_CLKSEL1[6:4]  
HIRC  
LIRC  
111  
HIRC  
111  
101  
011  
010  
101  
011  
010  
LIRC  
TMR2  
TMR3  
TMR0  
TMR1  
TM2/TM3  
TM0/TM1  
PCLK1  
PCLK0  
CLK_CLKSEL1[18:16]  
CLK_CLKSEL1[22:20]  
CLK_CLKSEL1[10:8]  
CLK_CLKSEL1[14:12]  
HIRC  
LIRC  
HIRC  
11  
111  
101  
011  
010  
PCLK1  
10  
1/(SPI0_CLKDIV[8:0]+1)  
SPI0  
TMR4  
TMR5  
PLLFOUT  
01  
TM4/TM5  
PCLK0  
CLK_CLKSEL2[5:4]  
CLK_CLKSEL2[14:12]  
CLK_CLKSEL2[18:16]  
PCLK1  
1
0
BPWM 1  
PLLFOUT  
CLK_CLKSEL2[9]  
Figure 6.3-1 Clock Generator Global View Diagram  
6.3.2  
Clock Generator  
The clock generator consists of 2 clock sources, which are listed below:  
May 31, 2021  
Page 59 of 118  
Rev 1.00  
M030G/M031G Series  
48 MHz internal high speed RC oscillator (HIRC)  
Programmable PLL output clock frequency (PLLFOUT) PLL source is selected from 48  
MHz internal high speed oscillator (HIRC/4)  
HIRCEN (CLK_PWRCTL[2])  
PLLFOUT  
PLL  
/4  
Internal 48 MHz  
HIRC  
Oscillator  
(HIRC)  
Internal 38.4  
LIRC  
kHz Oscillator  
(LIRC)  
Figure 6.3-2 Clock Generator Block Diagram  
6.3.3  
System Clock and SysTick Clock  
The system clock has 2 clock sources generated from clock generator block The clock source switch  
depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram is shown in Figure 6.3-3.  
HCLKSEL  
(CLK_CLKSEL0[2:0])  
CPUCLK  
HCLK  
HIRC  
CPU  
AHB  
111  
010  
PLLFOUT  
1/(HCLKDIV+1)  
HCLKDIV  
(CLK_CLKDIV0[3:0])  
PCLK0  
PCLK1  
APB0  
APB1  
/1,/2,/4,/8,/16  
APB0DIV  
CPU in Power Down Mode  
(CLK_PCLKDIV[3:0])  
APB1DIV  
(CLK_PCLKDIV[[6:4])  
Figure 6.3-3 System Clock Block Diagram  
May 31, 2021  
Page 60 of 118  
Rev 1.00  
 
M030G/M031G Series  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock (SYST_CTRL[2]).  
If using external clock, the SysTick clock (STCLK) has 2 clock sources. The clock source switch depends  
on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]). The block diagram is shown in Figure  
6.3-4.  
CPUCLK  
1
HIRC  
SysTick  
1/2  
1/2  
111  
011  
0
HCLK  
SYST_CTRL[2]  
STCLKSEL  
CLK_CLKSEL0[5:3]  
Figure 6.3-4 SysTick Clock Control Block Diagram  
Peripherals Clock  
6.3.4  
The peripherals clock has different clock source switch setting, which depends on the different  
peripheral. Please refer to the CLK_CLKSELx register description.  
6.3.5  
Power-down Mode Clock  
When entering Power-down mode, system clocks, some clock sources and some peripheral clocks are  
disabled. Some clock sources and peripherals clock are still active in Power-down mode.  
The clock that is still kept active is listed below:  
Peripherals Clock (when the modules adopt LIRC as clock source)  
6.3.6  
Clock Output  
This device is equipped with a power-of-2 frequency divider composed by 16 chained divide-by-2 shift  
registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to  
CLKO function pin. Therefore, there are 16 options of power-of-2 divided clocks with the frequency from  
Fin/21 to Fin/216 where Fin is input clock frequency to the clock divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock divider  
output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).  
When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When writing 0 to  
CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock reaches low state  
and stays in low state.  
May 31, 2021  
Page 61 of 118  
Rev 1.00  
 
M030G/M031G Series  
CLKOEN  
(CLK_CLKOCTL[4])  
Enable  
divide-by-2 counter  
FREQSEL  
(CLK_CLKOCTL[3:0])  
16 chained  
divide-by-2 counter  
PLLFOUT  
DIV1EN  
(CLK_CLKOCTL[5])  
1/22  
1/23  
...  
1/215 1/216  
110  
100  
011  
010  
1/2  
LIRC  
HIRC  
HCLK  
0000  
0001  
:
16 to 1  
MUX  
CLKO  
0
1
:
1110  
1111  
CLKOSEL (CLK_CLKSEL1[6:4])  
Figure 6.3-5 Clock Output Block Diagram  
May 31, 2021  
Page 62 of 118  
Rev 1.00  
M030G/M031G Series  
6.4 Flash Memory Controller (FMC)  
6.4.1 Overview  
This chip is equipped with 32/64 Kbytes on-chip embedded Flash. A User Configuration block is provided  
for system initialization. A loader ROM (LDROM) is used for In-System-Programming (ISP) function. A  
security protection ROM (SPROM) can conceal user program. This chip also supports In-Application-  
Programming (IAP) function. User switches the code executing without the chip reset after the  
embedded Flash is updated.  
6.4.2  
Features  
Supports 32/64 Kbytes application ROM (APROM).  
Supports 512 bytes page size for 32/64 Kbytes Flash.  
Supports 2 Kbytes loader ROM (LDROM).  
Supports configurable Data Flash size to share with APROM.  
Supports 512 bytes security protection ROM (SPROM) to conceal user program.  
Supports 12 bytes User Configuration block to control system initialization.  
Supports 512 bytes page erase for all embedded Flash.  
Supports CRC-32 checksum calculation function.  
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded Flash memory.  
May 31, 2021  
Page 63 of 118  
Rev 1.00  
M030G/M031G Series  
6.5 General Purpose I/O (GPIO)  
6.5.1 Overview  
This chip has up to 28 General Purpose I/O pins to be shared with other function pins depending on the  
chip configuration. These 28 pins are arranged in 4 ports named as PA, PB, PC, PF. PA has 8 pins on  
port. PB has 16 pins on port. PC has 1 pin on port. PF has 3 pins on port. Each of the 28 pins is  
independent and has the corresponding register bits to control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull output,  
Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are  
dependent on CIOINI (CONFIG0[10]).  
6.5.2  
Features  
Four I/O modes:  
Quasi-bidirectional mode  
Push-Pull Output mode  
Open-Drain Output mode  
Input only with high impendence mode  
I/O pin can be configured as interrupt source with edge/level setting  
Input schmitt trigger function  
Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting  
CIOINI = 0, all GPIO pins in Quasi-bidirectional mode after chip reset  
CIOINI = 1, all GPIO pins in input mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Supports independent pull-up control  
Enabling the pin interrupt function will also enable the wake-up function  
Supports 5V-tolerance function except analog I/O (PA0~PA3, PB0~15, PF0)  
GPIO output can be configured to retention when system reset  
May 31, 2021  
Page 64 of 118  
Rev 1.00  
M030G/M031G Series  
6.6 PDMA Controller (PDMA)  
6.6.1 Overview  
The peripheral direct memory access (PDMA) controller is used to provide high-speed data transfer.  
The PDMA controller can transfer data from one address to another without CPU intervention. This has  
the benefit of reducing the workload of CPU and keeps CPU resources free for other applications. The  
PDMA controller has a total of 7 channels and each channel can perform transfer between memory and  
peripherals or between memory and memory.  
6.6.2  
Features  
Supports 7 independently configurable channels  
Selectable 2 level of priorities (fixed priority or round-robin priority)  
Supports transfer data width of 8, 16, and 32 bits  
Supports source and destination address increment size to be byte, half-word, word or no  
increment  
Supports software and I2C, SPI, UART, ADC, DAC, MANCH and TIMER request  
Supports Scatter-Gather mode to implement complex transmission by using descriptor  
link list table  
Supports single and burst transfer type  
Supports time-out function on channel 0 and channel1  
May 31, 2021  
Page 65 of 118  
Rev 1.00  
M030G/M031G Series  
6.7 Timer Controller (TMR)  
6.7.1 Overview  
The timer controller includes up to six 32-bit timers, Timer0 ~ Timer5, allowing user to easily implement  
a timer control for applications. The timer can perform functions, such as frequency measurement, delay  
timing, clock generation, and event counting by external input pins, and interval measurement by  
external capture pins.  
6.7.2  
Features  
Timer Function Features  
Up to six sets of 32-bit timers, each timer having one 24-bit up counter and one 8-bit  
prescale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through CNT (TIMERx_CNT[23:0])  
Supports event counting function  
24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])  
Supports external capture pin event for interval measurement  
Supports external capture pin event to reset 24-bit up counter  
Supports internal capture triggered while LIRC transition  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated  
Support Timer0 ~ Timer5 time-out interrupt signal or capture interrupt signal to trigger  
ADC, DAC, PDMA, BPWM function  
Supports Inter-Timer trigger mode  
May 31, 2021  
Page 66 of 118  
Rev 1.00  
M030G/M031G Series  
6.8 Watchdog Timer (WDT)  
6.8.1 Overview  
The Watchdog Timer (WDT) is used to perform a system reset when system runs into an unknown state.  
This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer also  
supports the function to wake up system from Idle/Power-down mode.  
6.8.2  
Features  
20-bit free running up counter for WDT time-out interval  
Selectable time-out interval (24 ~ 220) and the time-out interval is 416us ~ 27.3 s if  
WDT_CLK = 38.4 kHz (LIRC)  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports selectable WDT reset delay period, including 102613018 or 3 WDT_CLK  
reset delay period  
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0]  
in Config0 register  
Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC  
May 31, 2021  
Page 67 of 118  
Rev 1.00  
M030G/M031G Series  
6.9 Window Watchdog Timer (WWDT)  
6.9.1 Overview  
The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified window  
period to prevent software run to uncontrollable status by any unpredictable condition.  
6.9.2  
Features  
6-bit down counter value (CNTDAT, WWDT_CNT[5:0]) and 6-bit compare value  
(CMPDAT, WWDT_CTL[21:16]) to make the WWDT time-out window period flexible  
Supports 4-bit value (PSCSEL, WWDT_CTL[11:8]) to programmable maximum 11-bit  
prescale counter period of WWDT counter  
WWDT counter suspends in Idle/Power-down mode  
May 31, 2021  
Page 68 of 118  
Rev 1.00  
M030G/M031G Series  
6.10 Basic PWM Generator and Capture Timer (BPWM)  
6.10.1 Overview  
This chip provides one BPWM generator (BPWM1). BPWM supports 6 channels of BPWM output or  
input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit BPWM counter with 16-  
bit comparator. The BPWM counter supports up, down and up-down counter types, all 6 channels share  
one counter. BPWM uses the comparator compared with counter to generate events. These events are  
used to generate BPWM pulse, interrupt and trigger signal for ADC, DAC to start conversion. For BPWM  
output control unit, it supports polarity output, independent pin mask and tri-state output enable.  
The BPWM generator also supports input capture function to latch BPWM counter value to  
corresponding register when input channel has a rising transition, falling transition or both transition is  
happened.  
6.10.2 Features  
6.10.2.1 BPWM Function Features  
Supports maximum clock frequency up to 144 MHz  
Supports one BPWM modules and provides 6 output channels  
Supports independent mode for BPWM output/Capture input channel  
Supports 12-bit prescalar from 1 to 4096  
Supports 16-bit resolution BPWM counter, the module provides 1 BPWM counter  
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each BPWM pin  
Supports interrupt in the following events:  
BPWM counter matches 0, period value or compared value  
Supports trigger DAC  
Supports trigger ADC in the following events:  
BPWM counter matches 0, period value or compared value  
6.10.2.2 Capture Function Features  
Supports up to 6 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
May 31, 2021  
Page 69 of 118  
Rev 1.00  
M030G/M031G Series  
6.11 UART Interface Controller (UART)  
6.11.1 Overview  
The chip provides one channels of Universal Asynchronous Receiver/Transmitters (UART). The UART  
controller performs serial-to-parallel conversion on data received from the peripheral and parallel-to-  
serial conversion on data transmitted from the CPU. Each UART controller channel supports ten types  
of interrupts. The UART controller supports flow control function. The UART controller also supports  
IrDA SIR, RS-485, and Single-wire function modes and auto-baud rate measuring function.  
6.11.2 Features  
Full-duplex asynchronous communications  
Separates receive and transmit 1/1 byte entry FIFO for data payloads  
Supports hardware auto-flow control  
Programmable receiver buffer trigger level  
Supports programmable baud rate generator for each channel individually  
Supports nCTS and incoming data wake-up function  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting DLY (UART_TOUT[15:8])  
Supports Auto-Baud Rate measurement function  
Supports break error, frame error, parity error and receive/transmit buffer overflow  
detection function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5-, 6-, 7-, 8- bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode  
Supports for 3/16 bit duration for normal mode  
Supports RS-485 function mode  
Supports RS-485 9-bit mode  
Supports hardware or software enables to program nRTS pin to control RS-485  
transmission direction  
Supports PDMA transfer function  
Support Single-wire function mode  
May 31, 2021  
Page 70 of 118  
Rev 1.00  
M030G/M031G Series  
UART Feature  
FIFO  
UART0  
1 Bytes  
Auto Flow Control (CTS/RTS)  
IrDA  
-
LIN  
RS-485 Function Mode  
nCTS Wake-up  
Incoming Data Wake-up  
Received Data FIFO reached threshold  
Wake-up  
-
-
RS-485 Address Match (AAD mode)  
Wake-up  
Auto-Baud Rate Measurement  
STOP Bit Length  
Word Length  
1, 1.5, 2 bit  
5, 6, 7, 8 bits  
Even / Odd Parity  
Stick Bit  
Table 6.11-1 NuMicro® M030G/M031G Series UART Features  
May 31, 2021  
Page 71 of 118  
Rev 1.00  
M030G/M031G Series  
6.12 Serial Peripheral Interface (SPI)  
6.12.1 Overview  
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and allows full  
duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction interface. The  
chip contains one set of SPI controller performing a serial-to-parallel conversion on data received from  
a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. Each  
SPI controller can be configured as a master or a slave device and supports the PDMA function to  
access the data buffer.  
6.12.2 Features  
SPI Mode  
Supports one set of SPI controller  
Supports Master or Slave mode operation  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 4-level of 32-bit (or 8-level of 16-bit) transmit and receive FIFO  
buffers which depends on SPI setting of data width  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports Byte or Word Suspend mode  
Master mode up to 24 MHz and Slave mode up to 16 MHz (when chip works at VDD  
=
1.8~3.6V)  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
Supports PDMA transfer  
May 31, 2021  
Page 72 of 118  
Rev 1.00  
M030G/M031G Series  
6.13 I2C Serial Interface Controller (I2C)  
6.13.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange  
between devices. The I2C standard is a true multi-master bus including collision detection and arbitration  
that prevents data corruption if two or more masters attempt to control the bus simultaneously.  
There are two sets of I2C controllers that support Power-down wake-up function.  
6.13.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to the  
bus. The main features of the I2C bus include:  
Supports up to two I2C ports  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Supports Standard mode (100 kbps), Fast mode (400 kbps) and Fast mode plus (1 Mbps)  
Arbitration between simultaneously transmitting masters without corruption of serial data  
on the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and  
timer-out counter overflows  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing  
Supports multiple address recognition (four slave address with mask option)  
Supports Power-down wake-up function  
Supports PDMA with one buffer capability  
Supports two-level buffer function (only supported in slave mode)  
Supports setup/hold time programmable  
May 31, 2021  
Page 73 of 118  
Rev 1.00  
M030G/M031G Series  
6.14 CRC Controller (CRC)  
6.14.1 Overview  
The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with four common  
polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32 settings.  
6.14.2 Features  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
CRC-CCITT: X16 + X12 + X5 + 1  
CRC-8: X8 + X2 + X + 1  
CRC-16: X16 + X15 + X2 + 1  
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1  
Programmable seed value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum  
Supports 8/16/32-bit of data width  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports using PDMA to write data to perform CRC operation  
May 31, 2021  
Page 74 of 118  
Rev 1.00  
M030G/M031G Series  
6.15 CRC Controller (CRC) - Configurable  
6.15.1 Overview  
The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with 8-bits, 16-bits and  
32-bits configurable polynomials.  
6.15.2 Features  
Supports 8-bits, 16-bits and 32-bits configurable polynomials  
Programmable seed value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum  
Supports 8/16/32-bit of data width  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports using PDMA to write data to perform CRC operation  
May 31, 2021  
Page 75 of 118  
Rev 1.00  
M030G/M031G Series  
6.16 Manchester Controller (MANCH)  
6.16.1 Overview  
The Manchester code is used to transmit a plenty of continuous data in a single bus without synchronous  
clock. In each encoded data bit, there is an edge transition in the middle to synchronize the internal  
clock. Hence, the clock deviation between receiver and transmitter will not affect the communication.  
The Manchester Controller supports encode and decode function with at least 2 modulation signal  
formats (Mode 1 and Mode 2). The Manchester Controller also supports programmable format. The  
format of the preamble of the data packet and the idle pattern of bus can be defined. The Manchester  
Controller supports three 4-level FIFO for transmit, encoded and decoded data. To read/write the data  
from/into FIFO, PDMA can be used and combined with other peripherals. The Manchester encoded  
edge function can also trigger Timer Controller and interconnect with PDMA and DAC.  
6.16.2 Features  
Supports encode/decode Manchester code  
Supports different modulation signal format  
Mode 1  
Mode 2  
Programmable format  
Programmable Idle pattern  
Programmable preamble style and its transmitted number  
Programmable data size in a frame  
Supports configurable Manchester bit rate  
Supports selectable deglitch time function  
Supports three 4-level FIFO for transmit, encoded and decoded data  
Supports PDMA for data receiving/transmitting individually  
Supports Manchester encoded edge function to trigger Timer Controller  
Supports bit detect error, receive FIFO overflow, receive frame done and transmit frame  
done interrupt  
May 31, 2021  
Page 76 of 118  
Rev 1.00  
M030G/M031G Series  
6.17 Analog-to-Digital Converter (ADC)  
6.17.1 Overview  
The ADC contains one 12-bit successive approximation analog-to-digital converter (SAR A/D converter)  
with 16 input channels. The A/D converter supports four operation modes: Single, Burst, Single-cycle  
Scan and Continuous Scan mode. The A/D converter can be started by software, external pin (STADC),  
timer0~timer5 overflow pulse trigger or BPWM trigger.  
6.17.2 Features  
Operating voltage: 1.8V~3.6V.  
Analog input voltage: 0 ~ AVDD  
.
Supports external reference voltage from VREF pin.  
12-bit resolution and 10-bit accuracy is guaranteed.  
Up to 16 single-end analog input channels or 8 differential analog input channels.  
Maximum ADC peripheral clock frequency is 34 MHz.  
Up to 1.4 MSPS sampling rate.  
Scan on enabled channels  
Threshold voltage detection  
Four operation modes:  
Single mode: A/D conversion is performed one time on a specified channel.  
Burst mode: A/D converter samples and converts the specified single channel and  
sequentially stores the result in FIFO.  
Single-cycle Scan mode: A/D conversion is performed only one cycle on all specified  
channels with the sequence from the smallest numbered channel to the largest  
numbered channel.  
Continuous Scan mode: A/D converter continuously performs Single-cycle Scan mode  
until software stops A/D conversion.  
An A/D conversion can be started by:  
Software Write 1 to ADST bit  
External pin (STADC)  
Timer 0~timer5 overflow pulse trigger  
BPWM trigger  
Each conversion result is held in data register of each channel with valid and overrun  
indicators.  
Conversion result can be compared with specified value and user can select whether to  
generate an interrupt when conversion result matches the compare register setting.  
Supports extend sample time function (0~255 ADC clock).  
One internal channel from band-gap voltage (VBG).  
One internal channel from internal pull-up/down circuit.  
Supports PDMA transfer mode.  
Supports Calibration mode.  
Supports Floating Detect Function  
May 31, 2021  
Page 77 of 118  
Rev 1.00  
M030G/M031G Series  
Note1: ADC sampling rate = (ADC peripheral clock frequency) / (total ADC conversion cycle)  
Note2: If the internal channel for band-gap voltage is active, the maximum sampling rate will be 300  
KSPS.  
Note3: The ADC Clock frequency must be slower than or equal to PCLK.  
May 31, 2021  
Page 78 of 118  
Rev 1.00  
M030G/M031G Series  
6.18 Digital to Analog Converter (DAC)  
6.18.1 Overview  
The DAC module is a 12-bit, voltage output digital-to-analog converter. It can be configured to 12-or 8-  
bit output mode and can be used in conjunction with the PDMA controller. The DAC integrates a voltage  
output buffer that can be used to reduce output impendence and drive external loads directly without  
having to add an external operational amplifier.  
6.18.2 Features  
Analog output voltage range: 0~AVDD  
Supports 12-or 8-bit output mode.  
Rail to rail settle time 5us.  
.
Supports up to four 12-bit 1 MSPS voltage type DAC.  
Reference voltage from internal reference voltage (INT_VREF), VREF pin.  
DAC maximum conversion updating rate 1 MSPS.  
Supports voltage output buffer mode and bypass voltage output buffer mode.  
Supports software and hardware trigger, including Timer0~5,BPWM1 trigger to start DAC  
conversion.  
Supports PDMA mode.  
Supports group mode of synchronized update capability for two DACs.  
DAC output can be configured to retention when system reset.  
May 31, 2021  
Page 79 of 118  
Rev 1.00  
M030G/M031G Series  
6.19 Peripherals Interconnection  
6.19.1 Overview  
Some peripherals have interconnections which allow autonomous communication or synchronous action  
between peripherals without needing to involve the CPU. Peripherals interact without CPU saves CPU  
resources, reduces power consumption, operates with no software latency and fast responds.  
6.19.2 Peripherals Interconnect Matrix table  
Destination  
Source  
ADC  
DAC  
PWM  
Timer  
LIRC  
BPWM  
-
-
-
-
4
-
1
1
2
2
6
Timer  
3
5
7
Manchester Codec  
Table 6.19-1 Peripherals Interconnect Matrix table  
May 31, 2021  
Page 80 of 118  
Rev 1.00  
M030G/M031G Series  
7 APPLICATION CIRCUIT  
7.1 Power Supply Scheme  
as close to AVDD as possible  
L=30Z  
EXT_PWR  
AVDD  
AVSS  
1uF+0.1uF+0.01uF  
L=30Z  
as close to the  
EXT_PWR as possible  
10uF+0.1uF  
VREF  
2.2uF+1uF+470pF  
L=30Z  
as close to VREF as possible  
VDD  
VSS / EPAD  
EXT_VSS  
0.1uF*N  
as close to VDD as possible  
May 31, 2021  
Page 81 of 118  
Rev 1.00  
M030G/M031G Series  
7.2 Peripheral Application Scheme  
DVCC  
DVCC  
100K  
100K  
VDD  
ICE_DAT  
nRESET/ICE_CLK  
VSS/EPAD  
CS  
CLK  
MISO  
MOSI  
SPI_SS  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
VDD  
SPI Device  
SWD  
Interface  
VSS  
DVCC  
DVCC  
M030G/M031G Series  
4.7  
K
4.7  
K
CLK  
DIO  
VDD  
VSS  
I2C_SCL  
I2C Device  
I2C_SDA  
RS 232 Transceiver  
PC COM Port  
RIN  
ROUT  
TIN  
UART_RXD  
UART_TXD  
UART  
TOUT  
May 31, 2021  
Page 82 of 118  
Rev 1.00  
M030G/M031G Series  
8 ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
Stresses above the absolute maximum ratings may cause permanent damage to the device. The limiting  
values are stress ratings only and cannot be used to functional operation of the device. Exposure to the  
absolute maximum ratings may affect device reliability and proper operation is not guaranteed.  
8.1.1  
Voltage Characteristics  
Symbol  
Description  
Min  
Max  
4.0  
50  
Unit  
V
[*1]  
VDD-VSS  
DC power supply  
-0.3  
ΔVDD  
|VDD AVDD  
ΔVSS  
Variations between different power pins  
Allowed voltage difference for VDD and AVDD  
Variations between different ground pins  
Allowed voltage difference for VSS and AVSS  
Input voltage on 5V-tolerance I/O  
-
mV  
mV  
mV  
mV  
V
|
-
50  
-
50  
|VSS - AVSS  
|
-
50  
VSS-0.3  
VSS-0.3  
5.5  
4.0  
VIN  
Input voltage on any other pin[*2]  
V
Note:  
1. All main power (VDD, AVDD) and ground (VSS, AVSS) pins must be connected to the external power supply.  
2. Non 5V-tolerance I/O includes PA.0 ~ 3; PB.0 ~ 15; PF.0; nRESET pin. VIN maximum value must be respected to avoid  
permanent damage. Refer to Table 8.1-2 for the values of the maximum allowed injected current  
Table 8.1-1 Voltage Characteristics  
8.1.2  
Current Characteristics  
Symbol  
Description  
Min  
Max  
150  
100  
20  
Unit  
[*1]  
ΣIDD  
Maximum current into VDD  
Maximum current out of VSS  
-
-
-
-
-
-
-
-
ΣISS  
Maximum current sunk by a I/O Pin  
Maximum current sourced by a I/O Pin  
Maximum current sunk by total I/O Pins[*2]  
Maximum current sourced by total I/O Pins[*2]  
Maximum injected current by a I/O Pin  
Maximum injected current by total I/O Pins  
20  
IIO  
mA  
100  
100  
±5  
[*3]  
IINJ(PIN)  
[*3]  
ΣIINJ(PIN)  
±25  
Note:  
1. Maximum allowable current is a function of device maximum power dissipation.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not  
be sunk/sourced between two consecutive power supply pins.  
3. A positive injection is caused by VIN>AVDD and a negative injection is caused by VIN<VSS. IINJ(PIN) must never be exceeded.  
It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
Table 8.1-2 Current Characteristics  
May 31, 2021  
Page 83 of 118  
Rev 1.00  
 
M030G/M031G Series  
8.1.3  
Thermal Characteristics  
The average junction temperature can be calculated by using the following equation:  
T
T
+ (P  
x
)
J
=
A
D
θJA  
TA = ambient temperature (°C)  
θJA = thermal resistance junction-ambient (°C/Watt)  
P
D
= sum of internal and I/O power dissipation  
Symbol  
Description  
Min  
Typ  
Max  
105  
125  
150  
Unit  
T
A
-40  
Operating ambient temperature  
Operating junction temperature  
Storage temperature  
-
-
-
T
J
-40  
-65  
°C  
T
ST  
Thermal resistance junction-ambient  
24-pin QFN(3x3 mm)  
°C/Watt  
°C/Watt  
-
-
30  
28  
-
-
[*1]  
θJA  
Thermal resistance junction-ambient  
33-pin QFN(4x4 mm)  
Note:  
1. Determined according to JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions  
Table 8.1-3 Thermal Characteristics  
May 31, 2021  
Page 84 of 118  
Rev 1.00  
M030G/M031G Series  
8.1.4  
EMC Characteristics  
Electrostatic discharge (ESD)  
For the Nuvoton MCU products, there are ESD protection circuits which built into chips to avoid any  
damage that can be caused by typical levels of ESD.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
Electrical fast transients (EFT)  
In some application circuit compoment will produce fast and narrow high-frequency trasnients bursts of  
narrow high-frequency transients on the power distribution system..  
Inductive loads:  
Relays, switch contactors  
Heavy-duty motors when de-energized etc.  
The fast transient immunity requirements for electronic products are defined in IEC 61000-4-4 by  
International ElectrotechnicalCommission (IEC).  
Symbol  
Description  
Electrostatic discharge,human body mode  
Electrostatic discharge,charge device model  
Pin current for latch-up[*3]  
Min  
-7000  
-1000  
-400  
Typ  
Max  
+7000  
+1000  
+400  
Unit  
[*1]  
VHBM  
-
-
-
-
V
[*2]  
VCDM  
LU[*3]  
mA  
kV  
[*4]  
VEFT  
-4.4  
Fast transient voltage burst  
+4.4  
Note:  
1. Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human  
Body Model (HBM) Component Level  
2. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing –  
Charged Device Model (CDM) Component Level.  
3. Determined according to JEDEC EIA/JESD78 standard.  
4. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test, the performace cretia class is 4A.  
Table 8.1-4 EMC Characteristics  
8.1.5  
Package Moisture Sensitivity(MSL)  
The MSL rating of an IC determines its floor life before the board mounting once its dry bag has been  
opened. All Nuvoton surface mount chips have a moisture level classification. The information is also  
displayed on the bag packing.  
May 31, 2021  
Page 85 of 118  
Rev 1.00  
M030G/M031G Series  
Pacakge  
24-pin QFN(3x3 mm) [*1]  
MSL  
MSL 3  
MSL 3  
33-pin QFN(4x4 mm) [*1]  
Note:  
1. Determined according to IPC/JEDEC J-STD-020  
Table 8.1-5 Package Moisture Sensitivity (MSL)  
May 31, 2021  
Page 86 of 118  
Rev 1.00  
M030G/M031G Series  
8.1.6  
Soldering Profile  
Figure 8.1-1 Soldering Profile from J-STD-020C  
Porfile Feature  
Pb Free Package  
Average ramp-up rate (217°C to peak)  
Preheat temperature 150°C ~200°C  
Temperature maintained above 217°C  
Time with 5°C of actual peak temperature  
Peak temperature range  
3°C/sec. max  
60 sec. to 120 sec.  
60 sec. to 150 sec.  
> 30 sec.  
260°C  
Ramp-down rate  
6°C/sec ax.  
8 min. max  
Time 25°C to peak temperature  
Note:  
1.Determined according to J-STD-020C  
Table 8.1-6 Soldering Profile  
May 31, 2021  
Page 87 of 118  
Rev 1.00  
M030G/M031G Series  
8.2  
General Operating Conditions  
(VDD-VSS = 2.7 ~ 3.6V, TA = 25C, HCLK = 48/72 MHz unless otherwise specified.)  
Symbol  
TA  
Parameter  
Temperature  
Min  
-40  
-
Typ  
Max  
105  
72  
Unit  
°C  
Test Conditions  
-
-
fHCLK  
Internal AHB clock frequency  
MHz  
VDD = 2.7V~3.6V  
VDD > BOD detect voltage  
while chip power on [*4]  
VDD  
Operation voltage  
2.7  
-
3.6  
[*1]  
AVDD  
Analog operation voltage  
VDD  
VREF <= AVDD - 0.2V,  
when VREFEN  
(SYS_VREFCTL[0]) =1’b1.  
V
VREF  
Analog reference voltage  
Band-gap voltage  
2.048  
-
AVDD  
VREF <= AVDD  
,
when VREFEN  
(SYS_VREFCTL[0]) =1’b0.  
[*3]  
VBG  
1.16  
20  
1.23  
-
1.31  
-
ADC sampling time when reading  
the band-gap voltage  
[*3]  
TVBG_ADC  
S  
InRush current on voltage  
regulator power-on (POR or  
wakeup from Standby)  
[*2]  
IRUSH  
-
-
150  
200  
mA  
InRush energy on voltage  
regulator power-on (POR or  
wakeup from Standby)  
VDD = 2.7 V, TA = 105 °C,  
IRUSH = 150 mA for 15 us  
[*2]  
ERUSH  
2.25  
3.00  
µC  
Note:  
1.It is recommended to power VDD and AVDD from the same source. A maximum difference of 0.3 V between VDD and  
AVDD can be tolerated during power-on and power-off operation.  
2.Guaranteed by design, not tested in production  
3.Based on characterization, not tested in production unless otherwise specified.  
4.BOD brown-out detect function is default enabled and BODVL is set to 0. While chip power up, VDD and AVDD should  
higher than BOD detect voltage, otherwise, chip will remain at reset stage.  
Table 8.2-1 General Operating Conditions  
May 31, 2021  
Page 88 of 118  
Rev 1.00  
M030G/M031G Series  
8.3  
DC Electrical Characteristics  
Supply Current Characteristics  
8.3.1  
The current consumption is a combination of internal and external parameters and factors such as  
operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program  
location in memory and so on. The current consumption is measured as described in below condition  
and table to inform test characterization result.  
All GPIO pins are in push pull mode and output high.  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature  
(TA), and the typical values for TA= 25 °C and VDD = 2.7V ~ 3.6 V unless otherwise  
specified.  
VDD = AVDD  
When the peripherals are enabled HCLK is the system clock, fPCLK0, 1 = fHCLK  
Program run while(1) code in Flash.  
.
Typ [*1]  
Max[*1][*2]  
Symbol  
Conditions  
FHCLK  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
72 MHz  
14.30  
14.65  
14.80  
15.05  
Normal run mode, executed  
from Flash, all peripherals  
disable  
9.80  
6.40  
4.70  
3.50  
9.95  
6.50  
4.75  
3.55  
10.25  
6.80  
5.00  
3.75  
10.50  
7.00  
5.20  
3.95  
48 MHz  
24 MHz  
12 MHz  
4 MHz  
HIRC, PLL clock  
IDD_RUN  
mA  
72 MHz  
22.65  
23.05  
23.50  
23.85  
Normal run mode, executed  
from Flash, all peripherals  
enable  
15.45  
9.35  
6.25  
4.15  
15.75  
9.55  
6.35  
4.20  
16.20  
9.85  
6.65  
4.45  
16.45  
10.10  
6.85  
48 MHz  
24 MHz  
12 MHz  
4 MHz  
HIRC, PLL clock  
4.65  
Note:  
1. When analog peripheral blocks such as ADC, DAC, Temperature Sensor, INT_VREF, PLL, HIRC are ON, an  
additional power consumption should be considered.  
2. Based on characterization, not tested in production unless otherwise specified.  
Table 8.3-1 Current Consumption in Normal Run Mode  
May 31, 2021  
Page 89 of 118  
Rev 1.00  
M030G/M031G Series  
Typ  
Max[*1] [*2]  
Symbol  
Conditions  
FHCLK  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
72 MHz  
6.90  
7.00  
7.25  
7.50  
Idle mode, all peripherals  
disable  
4.05  
3.55  
3.25  
3.00  
4.10  
3.60  
3.25  
3.05  
4.35  
3.80  
3.50  
3.25  
4.55  
4.00  
3.60  
3.45  
48 MHz  
24 MHz  
12 MHz  
4 MHz  
HIRC, PLL clock  
IDD_IDLE  
mA  
72 MHz  
15.15  
15.45  
15.90  
16.25  
Idle mode, all peripherals  
enable  
9.60  
6.30  
4.60  
3.50  
9.75  
6.40  
4.70  
3.55  
10.15  
6.70  
4.95  
3.75  
10.40  
6.95  
5.15  
3.95  
48 MHz  
24 MHz  
12 MHz  
4 MHz  
HIRC, PLL clock  
Note:  
1. When analog peripheral blocks such as ADC, DAC, Temperature Sensor, INT_VREF, PLL, HIRC are ON, an additional  
power consumption should be considered.  
2. Based on characterization, not tested in production unless otherwise specified.  
Table 8.3-2 Current Consumption in Idle Mode  
May 31, 2021  
Page 90 of 118  
Rev 1.00  
M030G/M031G Series  
Typ[*1]  
Max[*2][*3]  
Unit  
Symbol  
Test Conditions  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
1730  
1820[*4]  
2080  
2350[*4]  
Power-down mode, all peripherals disable  
IDD_PD  
µA  
1730  
1825  
2085  
2355  
Power-down mode, UART/Timer/WDT use LIRC  
Note:  
1. VDD = AVDD = 3.3V, LVR23 enabled, POR disabled and BOD disabled.  
2. Based on characterization, not tested in production unless otherwise specified.  
3. When analog peripheral blocks such as ADC, DAC, Temperature Sensor, INT_VREF, PLL, HIRC are ON, an additional  
power consumption should be considered.  
4. Based on characterization, tested in production.  
Table 8.3-3 Chip Current Consumption in Power-down Mode  
May 31, 2021  
Page 91 of 118  
Rev 1.00  
M030G/M031G Series  
8.3.2  
On-Chip Peripheral Current Consumption  
The typical values for TA= 25 °C and VDD = AVDD = 3.3 V unless otherwise specified.  
All GPIO pins are set as output high of push pull mode without multi-function.  
HCLK is the system clock, fHCLK = 48 MHz, fPCLK0, 1 = fHCLK  
.
The result value is calculated by measuring the difference of current consumption  
between all peripherals clocked off and only one peripheral clocked on  
[*1]  
Peripheral  
PDMA  
ISP  
IDD  
Unit  
305  
0.1  
44  
CRC  
120  
270  
260  
315  
320  
290  
270  
75  
WDT/WWDT  
TMR0  
TMR1  
TMR2  
TMR3  
TMR4  
TMR5  
CLKO  
I2C0  
uA  
60  
55  
I2C1  
665  
505  
530  
SPI0  
UART0  
ADC[*2]  
BPWM1  
615  
85  
[*3]  
DAC0  
[*3]  
DAC1  
70  
Manch. Codec  
675  
0.1  
[*4]  
Temperature Sensor  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. When the ADC is turned on, add an additional power consumption per ADC for the analog part.  
3. When the DAC is turned on, add an additional power consumption per DAC for the analog part.  
4. Temperature Sensor doesn’t have clock enable bit for this test item. When the Temperature Sensor is turned on, add  
an additional power consumption per Temperature Sensor for the analog part.  
Table 8.3-4 Peripheral Current Consumption  
May 31, 2021  
Page 92 of 118  
Rev 1.00  
M030G/M031G Series  
8.3.3  
Wakeup Time from Low-Power Modes  
The wakeup times given in Table 8.3-5 is measured on a wakeup phase with a 48 MHz HIRC  
oscillator.  
Symbol  
Parameter  
Typ  
5
Max  
Unit  
cycles  
µs  
tWU_IDLE  
Wakeup from IDLE mode  
Wakeup from normal power down mode  
6
-
[*1][*2]  
tWU_NPD  
13  
Note:  
1. Based on test during characterization, not tested in production.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
instruction.  
3. Guaranteed by design.  
Table 8.3-5 Low-power Mode Wakeup Timings  
May 31, 2021  
Page 93 of 118  
Rev 1.00  
 
M030G/M031G Series  
8.3.4  
I/O Current Injection Characteristics  
In general, I/O current injection due to external voltages below VSS or above VDD except 5V-tolenece I/O  
should be avoided during normal product operation. However, the analog compoenent of the MCU is  
most likely to be affected by the injection current , but it is not easily clarified when abnormal injection  
accidentally happens. It is recommended to add a Schottky diode (pin to ground or pin to VDD) to pins  
that include analog function which may potentially injection currents.  
Negative  
injection  
Positive  
injection  
Symbol  
Parameter  
Unit  
Test Condition  
-0  
-0  
0
0
Injected current on nReset pins  
Injected current on PA0~PA3 and  
PB0~PB15 for analog input function  
Injected current by a I/O Pin  
mA  
IINJ(PIN)  
Injected current on any other 5V-  
tolerance I/O  
-5  
+5  
Table 8.3-6 I/O Current Injection Characteristics  
I/O DC Characteristics  
8.3.5  
PIN Input Characteristics  
Symbol  
VIL  
Parameter  
Input low voltage  
Min  
Typ  
Max  
0.3*VDD  
VDD  
Unit  
V
Test Conditions  
0
-
VIH  
Input high voltage  
0.7*VDD  
-
-
V
[*1]  
VHY  
Hysteresis voltage of schmitt input  
0.2*VDD  
-
V
VSS < VIN < VDD  
,
-1  
-1  
-
-
1
1
Open-drain or input only mode  
[*2]  
ILK  
Input leakage current  
Pull up resistor  
A  
VDD < VIN < 5 V, Open-drain or  
input only mode on any other 5v  
tolerance pins  
32  
45  
38  
60  
54  
79  
VDD = 3.6 V, Input mode  
VDD = 2.7 V, input mode  
[*1]  
RPU  
kΩ  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. Leakage could be higher than the maximum value, if abnormal injection happens.  
Table 8.3-7 I/O Input Characteristics  
May 31, 2021  
Page 94 of 118  
Rev 1.00  
M030G/M031G Series  
I/O Output Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD = 3.3 V  
-25.5  
-28  
-32  
µA  
VIN=(VDD-0.4) V  
Source current for quasi-  
bidirectional mode and  
high level  
VDD = 2.7 V  
-18  
-22  
-24  
µA  
VIN=(VDD-0.4) V  
[*1] [*2]  
ISR  
VDD = 3.3 V  
-8  
-6  
-10  
-8  
9
-15  
-13  
mA  
mA  
mA  
VIN=(VDD-0.4) V  
Source current for push-  
pull mode and high level  
VDD = 2.7 V  
VIN=(VDD-0.4) V  
VDD = 3.3 V  
VIN= 0.4 V  
7.5  
14.5  
Sink current for push-pull  
mode and low level  
[*1] [*2]  
ISK  
VDD = 2.7 V  
VIN= 0.4 V  
6
-
7.5  
5
13  
-
mA  
pF  
[*1]  
CIO  
I/O pin capacitance  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. The ISR and ISK must always respect the abslute maximum current and the sum of I/O, CPU and peripheral must not  
exceed ΣIDD and ΣISS  
.
Table 8.3-8 I/O Output Characteristics  
nRESET Input Characteristics  
Symbol  
VILR  
Parameter  
Negative going threshold, nRESET  
Positive going threshold, nRESET  
Min  
-
Typ  
-
Max Unit  
Test Conditions  
0.3*VDD  
V
V
VIHR  
0.7*VDD  
32  
-
-
38  
60  
54  
79  
VDD = 3.6 V  
VDD = 2.7 V  
[*1]  
RRST  
Internal nRESET pull up resistor  
nRESET input filtered pulse time  
KΩ  
45  
Normal run and Idle mode  
32us=3*512*HIRC  
-
32  
-
-
[*1]  
tFR  
µS  
31.36  
32.64  
Power down mode  
Note:  
1. Guaranteed by characterization result, not tested in production.  
Table 8.3-9 nRESET Input Characteristics  
May 31, 2021  
Page 95 of 118  
Rev 1.00  
M030G/M031G Series  
8.4  
AC Electrical Characteristics  
8.4.1  
48 MHz Internal High Speed RC Oscillator (HIRC)  
The 48 MHz RC oscillator is calibrated in production.  
Symbol.  
Parameter  
Operating voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD  
2.7  
3.3  
3.6  
V
TA = 25 °C,  
VDD = 3.3V  
Oscillator frequnecy  
-
48  
-
-
MHz  
%
TA = 25 °C,  
VDD = 3.3V  
-0.5  
-0.7  
-1  
+0.5  
+0.7  
+1  
[*1]  
fHRC  
TA = 0C ~ +70 °C,  
-
%
VDD = 3.3V  
Frequency drift over temperarure and  
volatge  
TA = -20C ~ +105 °C,  
-
%
VDD = 3.3V  
TA = -40C ~ +105 °C,  
-2  
-
-
500  
-
+2  
700  
20  
%
µA  
µs  
VDD = 2.7 ~ 3.6V  
[*1]  
IHRC  
Operating current  
Stable time  
TA = -40C ~ +105 °C,  
[*2]  
TS  
-
VDD = 2.7 ~ 3.6V  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. Guaranteed by design.  
Table 8.4-1 48 MHz Internal High Speed RC Oscillator(HIRC) Characteristics  
Frequency Drift Over Temperarure when VDD = 3.6 V  
2.00%  
1.50%  
1.00%  
0.50%  
0.00%  
-0.50%  
Max  
Min  
-1.00%  
-1.50%  
-2.00%  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
(a) Test Condition: VDD = 3.6 V, Temp. = -40 ~ 125 °C  
May 31, 2021  
Page 96 of 118  
Rev 1.00  
 
M030G/M031G Series  
Frequency Drift Over Temperarure when VDD = 3.3 V  
2.00%  
1.50%  
1.00%  
0.50%  
0.00%  
-0.50%  
-1.00%  
-1.50%  
-2.00%  
Max  
Min  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
(b) Test Condition: VDD = 3.3 V, Temp. = -40 ~ 125 °C  
Frequency Drift Over Temperarure when VDD = 2.5 V  
2.00%  
1.50%  
1.00%  
0.50%  
0.00%  
-0.50%  
-1.00%  
-1.50%  
-2.00%  
Max  
Min  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
(c) Test Condition: VDD = 2.5 V, Temp. = -40 ~ 125 °C  
Note:  
1. The graph is a statistical result using a limited number of samples. For the actual characetristic range, please refer  
to Table 8.4-1.  
Figure 8.4-1 HIRC vs. Temperature  
May 31, 2021  
Page 97 of 118  
Rev 1.00  
M030G/M031G Series  
8.4.2  
38.4 kHz Internal Low Speed RC Oscillator (LIRC)  
Min[*1]  
Typ  
Max[*1]  
Unit  
Symbol  
VDD  
Parameter  
Operating voltage  
Test Conditions  
2.7  
-
3.3  
3.6  
-
V
Oscillator frequnecy  
38.4  
kHz  
TA = 25 °C,  
VDD = 3.3V  
-
1
-
-
%
%
[*2]  
FLRC  
Frequency drift over temperarure  
and volatge  
TA=-40~105 °C  
-50  
+50  
VDD=2.7V~3.6V  
Without software calibration  
ILRC  
TS  
Operating current  
Stable time  
-
-
1
1.1  
-
µA  
VDD = 3.3V  
TA=-40~105 °C  
VDD=2.7V~3.6V  
100  
μs  
Note:  
1.Guaranteed by characterization, not tested in production.  
2.The 38.4 kHz low speed RC oscillator can be calibrated by user.  
Table 8.4-2 38.4 kHz Internal Low Speed RC Oscillator(LIRC) characteristics  
8.4.3  
PLL Characteristics  
Symbol  
Parameter  
PLL input clock  
Min[*1]  
3.2  
50  
Typ  
Max[*1]  
32  
Unit  
MHz  
MHz  
MHz  
MHz  
µS  
Test Conditions  
fPLL_in  
fPLL_OUT  
fPLL_REF  
fPLL_VCO  
TL  
-
-
-
-
-
PLL multiplier output clock  
PLL reference clock  
144  
8
0.8  
200  
-
PLL voltage controlled oscillator  
PLL locking time  
500  
500  
Jitter[*2]  
Cycle-to-cycle Jitter  
Power consumption  
-
-
200  
5
350  
9
pS  
f
VDD =3.3V @ PLL_OUT = 144  
IDD  
mA  
MHz  
Notes:  
1.Guaranteed by characterization, not tested in production  
2.Guaranteed by design, not tested in production  
The fPLL_OUT must meet the restrictions of CPU and peripheral.  
Table 8.4-3 PLL characteristics  
8.4.4  
I/O AC Characteristics  
Symbol  
Parameter  
Typ.  
Max[*1]  
.
Unit  
ns  
Test Conditions[*2]  
-
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
>= 2.7 V  
>= 2.7 V  
>= 2.7 V  
6
3.5  
6
DD  
DD  
DD  
tf(IO)out  
Output high (90%) to low level (10%) fall time  
Output low (10%) to high level (90%) rise time  
-
-
tr(IO)out  
ns  
May 31, 2021  
Page 98 of 118  
Rev 1.00  
M030G/M031G Series  
-
-
CL = 10 pF, V  
CL = 30 pF, V  
>= 2.7 V  
= 3.3 V,  
3.5  
DD  
DD  
2.77  
f(IO)out = 24 MHz  
[*4]  
IDIO  
I/O dynamic current consumption  
mA  
CL = 10 pF, V  
= 3.3 V,  
DD  
-
1.19  
f(IO)out = 24 MHz  
Note:  
1.Guaranteed by characterization result, not tested in production.  
2.CL is a external capacitive load to simulate PCB and device loading.  
3.The I/O dynamic current consumption is defined by 퐷ꢀ푂 = 퐷퐷 × 푓 × (퐶ꢀ푂 + 퐶)  
ꢀ푂  
Table 8.4-4 I/O AC Characteristics  
May 31, 2021  
Page 99 of 118  
Rev 1.00  
M030G/M031G Series  
8.5  
Analog Characteristics  
8.5.1  
Reset and Power Control Block Characteristics  
The parameters in below table are derived from tests performed under ambient temperature.  
Symbol  
Parameter  
POR operating current  
LVR operating current  
BOD operating current  
POR reset voltage  
Min  
Typ  
20  
2
Max  
30  
Unit  
Test Conditions  
AVDD = 3.6V  
[*1]  
IPOR  
-
-
-
µA  
[*1]  
ILVR  
3.6  
5.5  
AVDD = 3.6V  
[*1]  
IBOD  
3
AVDD = 3.6V  
VPOR  
VLVR  
2
2.2  
2.3  
2.4  
V
-
2.16  
2.44  
LVR reset voltage  
-
2.35  
2.54  
2.65  
2.86  
VBOD  
BOD brown-out detect voltage  
2.5  
2.7  
140  
9
BODVL = 0  
BODVL = 1  
[*1]  
TLVR_SU  
LVR startup time  
LVR respond time  
BOD startup time  
BOD respond time  
VDD rise time rate  
-
-
240  
12  
µs  
-
-
-
-
[*1]  
TLVR_RE  
[*1]  
TBOD_SU  
-
1000  
100  
-
1740  
165  
-
[*1]  
TBOD_RE  
-
[*1]  
RVDDR  
10  
µs/V  
POR/LVR/BOD  
Enabled  
(BODVL=0)  
[*1]  
RVDDF  
VDD fall time rate  
10  
80  
-
-
-
-
-
-
-
-
POR Enabled  
LVR Enabled  
470  
305  
BOD 2.5V Enabled  
BOD 2.7V Enabled  
Note:  
1.Guaranteed by characterization, not tested in production.  
2.Design for specified applcaiton.  
Table 8.5-1 Reset and Power Control Unit  
May 31, 2021  
Page 100 of 118  
Rev 1.00  
M030G/M031G Series  
VDD  
RVDDR  
RVDDF  
VBOD  
VLVR  
VPOR  
Time  
Figure 8.5-1 Power Ramp Up/Down Condition  
May 31, 2021  
Page 101 of 118  
Rev 1.00  
M030G/M031G Series  
8.5.2  
12-bit SAR ADC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
TA  
Temperature  
-40  
-
125  
°C  
AV  
=
AVDD  
VREF  
VIN  
Analog operating voltage  
Reference voltage  
2.7  
2.048  
0
3.6  
V
V
V
V
-
VDD  
DD  
-
-
AVDD  
VREF  
ADC channel input voltage  
Common-Mode Input Range  
VCM  
VREF/2  
Full differential input  
AVDD = VDD =VREF = 3.3 V  
FADC = 24 MHz  
[*1]  
IADC  
Operating current (AVDD + VREF current)  
46.8  
165  
176  
24  
µA  
TCONV = 17 * TADC  
NR  
Resolution  
12  
-
Bit  
[*1]  
FADC  
ADC Clock frequency  
4
MHz  
1/TADC  
TSMP  
=
TSMP  
Sampling Time  
Conversion time  
1
-
-
256  
272  
1/FADC (EXTSMPT(ADC_ESMPCTL[7:0])  
+ 1 ) * TADC  
TCONV  
17  
1/FADC TCONV = TSMP + 16 * TADC  
FSPS = FADC / TCONV  
[*1]  
FSPS  
Sampling Rate  
-
-
1.4  
MSPS  
EXTSMPT(ADC_ESMPCTL[7:0])  
= 0  
INL[*1]  
Integral Non-Linearity Error  
Differential Non-Linearity Error  
Gain error  
-2  
-1  
-4  
-4  
-4  
-
-
2
2
4
4
4
-
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
bits FADC = 24 MHz  
DNL[*1]  
-
[*1]  
EG  
0.5  
0.5  
0.5  
10.4  
64.3  
[*1]  
EO  
Offset error  
T
[*1]  
EA  
Absolute Error  
ENOB[*1]  
SNR[*1]  
THD[*1]  
Effective number of bits  
Signal-to-noise ratio  
Total harmonic distortion  
AVDD = VDD =VREF = 3.3 V  
-
-
Input Frequency = 10 kHz  
TA = 25 °C  
-
-70.7  
-
[*1]  
CIN  
Internal Capacitance  
-
-
-
2.9  
0.95  
-
-
pF  
kΩ  
kΩ  
[*1]  
RIN  
Internal Switch Resistance  
External input impedance  
2
[*1]  
REX  
50  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. REX max formula is used to determine the maximum external impedance allowed for 1/4 LSB error. N = 12 (based on  
12-bit resoluton) and k is the number of sampling clocks (TSMP). CEX represents the capacitance of PCB and pad and  
is combined with REX into a low-pass filter. Once the REX and CEX values are too large, it is possible to filter the real  
signal and reduce the ADC accuracy.  
퐸푋  
=
− 푅ꢀ푁  
퐴퐷ꢁ  
× 퐶ꢀ푁 × ln(2푁ꢂꢃ  
)
May 31, 2021  
Page 102 of 118  
Rev 1.00  
M030G/M031G Series  
VDD  
EADC_CHx  
CEX  
RIN  
REX  
12-bit  
Converter  
VEX  
CIN  
Note: Injection current is a important topic of ADC accuracy. Injecting current on any analog input pins  
should be avoided to protect the conversion being performed on another analog input. It is recommended  
to add Schottky diodes (pin to ground and pin to power) to analog pins which may potentially inject  
currents.  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer  
curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and gain  
error from the actual transfer curve.  
May 31, 2021  
Page 103 of 118  
Rev 1.00  
M030G/M031G Series  
8.5.3  
Digital to Analog Converter (DAC)  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature (TA), and the typical values  
for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Analog supply voltage  
Min  
Typ  
Max  
Unit  
V
Test Condition  
AVDD  
2.7  
3.3  
3.6  
NR  
Resolution  
12  
-
bit  
AVDD  
VREF  
VREF AVDD  
Reference supply voltage  
2.048  
V
DNL[*2] Differential non-linearity error  
INL[*2] Integral non-linearity error  
±1  
±2  
-
±3  
±5  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
-
12-bit mode  
12-bit mode  
-
-
-
-
-
-
-
12-bit mode  
DACOUT buffer ON  
±10  
±5  
OE[*2] Offset Error  
GE[*2] Gain Error  
AE[*2] Absolute Error  
12-bit mode  
DACOUT buffer OFF  
12-bit mode  
DACOUT buffer ON  
-
-
±10  
±5  
12-bit mode  
DACOUT buffer OFF  
12-bit mode  
DACOUT buffer ON  
-
-
±10  
±4  
12-bit mode  
DACOUT buffer OFF  
-
-
Monotonic  
10-bit guaranteed  
-
AVDD  
-
DACOUT buffer ON  
0.2  
-
-
V
V
0.2  
[*1]  
VO  
Output Voltage  
VREF  
-
DACOUT buffer OFF  
1*LSB  
1*LSB  
[*2] [*3]  
[*2]  
RLOAD  
Resistive load  
DACOUT buffer ON  
DACOUT buffer OFF  
DACOUT buffer OFF  
DACOUT buffer ON  
5
-
-
kΩ  
kΩ  
pF  
pF  
RO  
Output impedance  
8
-
20  
20  
50  
-
[*2] [*4]  
CLOAD  
Capacitive load  
-
-
AV  
DD = 3.6V, no load, DACOUT  
buffer ON, lowest code (0x000)  
[*2]  
IDAC_AVDD  
DAC operating current on AVDD supply  
-
250  
360  
200  
6
A  
A  
μS  
AV  
DD = 3.6V, no load, DACOUT  
buffer ON, middle code (0x800)  
VREF =2.5V, no load, worst case code  
(0x800)  
[*2]  
IDAC_VREF  
DAC operating current on VREF supply  
-
-
Full scale: for a 12-bit input code  
transition between the lowest and the  
highest input codes when DAC_OUT  
reaches final value +/-1 LSB,  
CLOAD 50pF, RLOAD ≥ 5kΩ, Buffer  
ON, VREF = 2.5V  
[*2]  
TB  
Settling Time  
-
5
May 31, 2021  
Page 104 of 118  
Rev 1.00  
M030G/M031G Series  
Max. frequency for a correct  
MSPS DAC_OUT change from core i to  
i+1LSB, CLOAD 50pF, RLOAD ≥ 5kΩ  
FS  
PSRR[*1] Power Supply Rejection Ratio  
Update Rate  
-
-
1
-
No RLOAD, CLOAD = 50pF  
dB  
-60  
-40  
Note:  
1. Guaranteed by design, not tested in production  
2. Guaranteed by characteristic, not tested in production.  
3. Resistive load between DACOUT and AVSS  
.
4. Capacitive load at DACOUT pin.  
8.5.4  
Internal Voltage Reference for M030G  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature (TA), and the  
typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
AVDD >= 2.7 V  
2.017 2.048  
2.079  
VREF_INT Internal reference voltage  
V
2.463  
-
2.5  
-
2.538  
2
AVDD >= 2.7 V  
CL =4.7 uF, VREF initial=0, Preload is  
enabled.  
mS  
mS  
µS  
-
-
-
-
-
-
15  
CL =4.7 uF, VREF initial=3.6, Preload is  
enabled.  
Ts[*1]  
Stable time  
480  
CL =1 uF, VREF initial=0, Preload is  
enabled.  
3000  
CL =1 uF, VREF initial=3.6, Preload is  
enabled.  
µS  
µA  
[*1]  
IREF_INT  
VREF_INT operating current  
-
-
160  
-
220  
1.5  
IREF_LOAD VREF_INT output loading current  
Note:  
mA  
1. Guaranteed by characterization, not tested in production  
VREF  
1uF  
Note: VREF_INT is only supported while package includes VREF pin with external capacitor.  
Figure 8.5-2 Typical connection with internal voltage reference  
May 31, 2021  
Page 105 of 118  
Rev 1.00  
M030G/M031G Series  
8.5.5  
Internal Voltage Reference for M031G  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature (TA), and the  
typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
AVDD >= 2.7 V  
2.017 2.048  
2.079  
VREF_INT Internal reference voltage  
V
2.463  
-
2.5  
-
2.538  
2
AVDD >= 2.7 V  
CL =4.7 uF, VREF initial=0, Preload is  
enabled.  
mS  
mS  
µS  
-
-
-
-
-
-
15  
CL =4.7 uF, VREF initial=3.6, Preload is  
enabled.  
Ts[*1]  
Stable time  
900  
CL =2.2 uF, VREF initial=0, Preload is  
enabled.  
6000  
CL =2.2 uF, VREF initial=3.6, Preload is  
enabled.  
µS  
µA  
[*1]  
IREF_INT  
VREF_INT operating current  
-
-
300  
-
360  
3
IREF_LOAD VREF_INT output loading current  
Note:  
mA  
1. Guaranteed by characterization, not tested in production  
VREF  
2.2uF  
Note: VREF_INT is only supported while package includes VREF pin with external capacitor.  
Figure 8.5-3 Typical connection with internal voltage reference  
8.5.6  
Temperature Sensor  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature (TA), and the  
typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
AVDD  
Analog supply voltage  
2.7  
3.3  
3.6  
V
-40  
-
-
105  
-
TA  
Temperature  
°C  
ITEMP  
Temperature Sensor operating current  
200  
µA  
T = 0 °C to 70 °C  
VDD = 3.3 V  
[*1]  
TTEMP_ERR  
Internal Temperature Deviation  
-1.6  
-
+1.6  
°C  
May 31, 2021  
Page 106 of 118  
Rev 1.00  
M030G/M031G Series  
T = -40 °C to 105 °C  
VDD = 2.7 V to 3.6 V  
-2  
-
+2  
°C  
TR  
Temperature Resolution  
Conversion Time  
-
-
0.0625  
84  
-
°C  
TCONV  
100  
ms  
Note:  
1. Guaranteed by characterization, not tested in production  
May 31, 2021  
Page 107 of 118  
Rev 1.00  
M030G/M031G Series  
8.6  
Communications Characteristics  
SPI Dynamic Characteristics  
8.6.1  
Specificaitons[*1]  
Test Conditions  
Symbol  
Parameter  
Min  
-
Typ  
-
Max  
24  
Unit  
FSPICLK  
SPI clock frequency  
MHz  
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
1/ TSPICLK  
ns  
ns  
tCLKH  
tCLKL  
tDS  
Clock output High time  
Clock output Low time  
Data input setup time  
Data input hold time  
Data output valid time  
TSPICLK / 2  
TSPICLK / 2  
2
4
-
-
-
-
-
-
ns  
ns  
ns  
tDH  
tV  
5
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
Note:  
1.  
Guaranteed by design.  
Table 8.6-1 SPI Master Mode Characteristics  
tCLKH  
tCLKL  
CLKP=0  
CLKP=1  
SPICLK  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8.6-1 SPI Master Mode Timing Diagram  
May 31, 2021  
Page 108 of 118  
Rev 1.00  
M030G/M031G Series  
Specificaitons[*1]  
Test Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
FSPICLK  
1/ TSPICLK  
SPI clock frequency  
-
-
16  
MHz  
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
tCLKH  
Clock output High time  
Clock output Low time  
TSPICLK / 2  
TSPICLK / 2  
tCLKL  
1
tSS  
Slave select setup time  
Slave select hold time  
TSPICLK  
+ 2ns  
-
-
-
-
ns  
ns  
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
1
tSH  
TSPICLK  
tDS  
tDH  
tV  
Data input setup time  
Data input hold time  
Data output valid time  
1.5  
3.5  
-
-
-
-
-
-
ns  
ns  
ns  
17.5  
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
Note:  
1.  
Guaranteed by design.  
Table 8.6-2 SPI Slave Mode Characteristics  
May 31, 2021  
Page 109 of 118  
Rev 1.00  
M030G/M031G Series  
SSACTPOL=1  
SSACTPOL=0  
tSS  
tSH  
SPI SS  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=1  
RXNEG=0  
SPI Clock  
CLKPOL=1  
TXNEG=0  
RXNEG=1  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
Data Valid  
Data Valid  
tDH  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
SSACTPOL=1  
tSS  
tSH  
SPI SS  
SSACTPOL=0  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=0  
RXNEG=1  
SPI Clock  
CLKPOL=1  
TXNEG=1  
RXNEG=0  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
tDH  
Data Valid  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
Data Valid  
Figure 8.6-2 SPI Slave Mode Timing Diagram  
May 31, 2021  
Page 110 of 118  
Rev 1.00  
M030G/M031G Series  
8.6.2  
I2C Dynamic Characteristics  
Symbol  
Parameter  
Standard Mode[1][2]  
Fast Mode[1][2]  
Unit  
Min  
4.7  
4
Max  
Min  
1.3  
Max  
tLOW  
SCL low period  
-
-
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
pF  
tHIGH  
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
SCL high period  
-
0.6  
-
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
4.7  
4
-
0.6  
-
-
-
-
0.6  
4
0.6  
-
4.7[3]  
250  
0[4]  
-
-
1.2[3]  
100  
0[4]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
-
Data hold time  
3.45[5]  
1000  
300  
400  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
-
tf  
SCL/SDA fall time  
-
Cb  
Capacitive load for each bus line  
-
-
Note:  
1. Guaranteed by characteristic, not tested in production  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8  
MHz to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of  
SCL signal.  
Table 8.6-3 I2C Characteristics  
Repeated  
START  
STOP  
START  
STOP  
SDA  
tBUF  
tLOW  
tr  
tf  
SCL  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.6-3 I2C Timing Diagram  
May 31, 2021  
Page 111 of 118  
Rev 1.00  
M030G/M031G Series  
8.7  
Flash DC Electrical Characteristics  
The devices are shipped to customers with the Flash memory erased.  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
1.8  
20  
60  
7
Max  
Unit  
V
Test Condition  
[1]  
VFLA  
1.62  
1.98  
TERASE  
TPROG  
IDD1  
Page erase time  
Program time  
Read current  
-
-
-
-
-
-
-
-
-
-
ms  
µs  
TA = 25°C  
mA  
mA  
mA  
IDD2  
Program current  
Erase current  
8
IDD3  
12  
NENDUR  
Endurance  
20,000  
-
-
-
cycles[2]  
year  
TJ = -40°C~125°C  
20 kcycle[3] TJ = 85°C  
20 kcycle[3] TJ = 105°C  
10  
2
-
-
TRET  
Data retention  
year  
Note:  
1. VFLA is source from chip internal LDO output voltage.  
2. Number of program/erase cycles.  
3. Guaranteed by design.  
Table 8.7-1 Flash DC Electrical Characteristics  
May 31, 2021  
Page 112 of 118  
Rev 1.00  
M030G/M031G Series  
9 PACKAGE DIMENSIONS  
9.1 QFN 24L (3x3x0.9 mm Pitch:0.40 mm)  
May 31, 2021  
Page 113 of 118  
Rev 1.00  
M030G/M031G Series  
9.2 QFN 33L (4x4x0.8 mm Pitch:0.40 mm)  
May 31, 2021  
Page 114 of 118  
Rev 1.00  
M030G/M031G Series  
10 ABBREVIATIONS  
10.1 Abbreviations  
Acronym  
ACMP  
ADC  
AES  
Description  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
APB  
AHB  
Advanced High-Performance Bus  
Brown-out Detection  
BOD  
CAN  
DAP  
Controller Area Network  
Debug Access Port  
DES  
Data Encryption Standard  
EADC  
EBI  
Enhanced Analog-to-Digital Converter  
External Bus Interface  
EMAC  
EPWM  
FIFO  
FMC  
FPU  
Ethernet MAC Controller  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
GPIO  
HCLK  
HIRC  
HXT  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
12 MHz Internal High Speed RC Oscillator  
4~32 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
IAP  
ICP  
ISP  
In System Programming  
LDO  
Low Dropout Regulator  
LIN  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
Pulse Width Modulation  
May 31, 2021  
Page 115 of 118  
Rev 1.00  
M030G/M031G Series  
QEI  
Quadrature Encoder Interface  
Secure Digital  
SD  
SPI  
Serial Peripheral Interface  
Samples per Second  
SPS  
TDES  
TK  
Triple Data Encryption Standard  
Touch Key  
TMR  
UART  
UCID  
USB  
WDT  
WWDT  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
Watchdog Timer  
Window Watchdog Timer  
Table 10.1-1 List of Abbreviations  
May 31, 2021  
Page 116 of 118  
Rev 1.00  
M030G/M031G Series  
11 REVISION HISTORY  
Date  
Revision  
Description  
2021.5.31  
1.00  
Initial version.  
May 31, 2021  
Page 117 of 118  
Rev 1.00  
M030G/M031G Series  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types  
of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims  
to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and  
liabilities thus incurred by Nuvoton.  
May 31, 2021  
Page 118 of 118  
Rev 1.00  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY