M031BTXD [NUVOTON]

Arm® Cortex®-M 32-bit Microcontroller;
M031BTXD
型号: M031BTXD
厂家: NUVOTON    NUVOTON
描述:

Arm® Cortex®-M 32-bit Microcontroller

微控制器
文件: 总140页 (文件大小:2933K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M031BT  
Arm® Cortex® -M  
32-bit Microcontroller  
NuMicro® Family  
M031BT Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Aug. 18, 2020  
Page 1 of 140  
Rev. 1.01  
M031BT  
TABLE OF CONTENTS  
1 GENERAL DESCRIPTION ..............................................................................9  
2 FEATURES....................................................................................................10  
2.1 M031BT Features........................................................................................................ 10  
3 PARTS INFORMATION.................................................................................16  
3.1 Package Type .............................................................................................................. 16  
3.2 M031BT Series Selection Guide............................................................................... 17  
3.2.1 M031BT Series (M031BTYx)........................................................................................17  
3.2.2 Naming Rule ...................................................................................................................18  
4 PIN CONFIGURATION ..................................................................................19  
4.1 Pin Configuration......................................................................................................... 19  
4.1.1 M031BT Series Pin Diagram ........................................................................................19  
4.1.2 M031BT Series Multi-function Pin Diagram................................................................20  
4.2 Pin Mapping ................................................................................................................. 23  
4.3 Pin Function Description ............................................................................................ 25  
5 BLOCK DIAGRAM.........................................................................................29  
6 FUNCTIONAL DESCRIPTION.......................................................................30  
6.1 Arm® Cortex®-M0 Core............................................................................................... 30  
6.2 System Manager ......................................................................................................... 32  
6.2.1 Overview..........................................................................................................................32  
6.2.2 System Reset..................................................................................................................32  
6.2.3 System Power Distribution............................................................................................38  
6.2.4 Power Modes and Wake-up Sources..........................................................................38  
6.2.5 System Memory Map.....................................................................................................41  
6.2.6 SRAM Memory Orginization .........................................................................................43  
6.2.7 Chip Bus Matrix ..............................................................................................................44  
6.2.8 IRC Auto Trim..................................................................................................................44  
6.2.9 Register Lock Control ....................................................................................................45  
6.2.10UART0_TXD/USCI0_DAT1 modulation with PWM...................................................50  
6.2.11System Timer (SysTick).................................................................................................51  
6.2.12Nested Vectored Interrupt Controller (NVIC)..............................................................52  
6.3 Clock Controller ........................................................................................................... 55  
6.3.1 Overview..........................................................................................................................55  
6.3.2 Clock Generator..............................................................................................................57  
6.3.3 System Clock and SysTick Clock.................................................................................58  
6.3.4 Peripherals Clock ...........................................................................................................59  
6.3.5 Power-down Mode Clock ..............................................................................................59  
6.3.6 Clock Output ...................................................................................................................60  
Aug. 18, 2020  
Page 2 of 140  
Rev. 1.01  
M031BT  
6.4 Flash Memory Controller (FMC)................................................................................ 61  
6.4.1 Overview..........................................................................................................................61  
6.4.2 Features...........................................................................................................................61  
6.5 General Purpose I/O (GPIO) ..................................................................................... 62  
6.5.1 Overview..........................................................................................................................62  
6.5.2 Features...........................................................................................................................62  
6.6 PDMA Controller (PDMA)........................................................................................... 63  
6.6.1 Overview..........................................................................................................................63  
6.6.2 Features...........................................................................................................................63  
6.7 Timer Controller (TMR)............................................................................................... 64  
6.7.1 Overview..........................................................................................................................64  
6.7.2 Features...........................................................................................................................64  
6.8 Watchdog Timer (WDT).............................................................................................. 65  
6.8.1 Overview..........................................................................................................................65  
6.8.2 Features...........................................................................................................................65  
6.9 Window Watchdog Timer (WWDT)........................................................................... 66  
6.9.1 Overview..........................................................................................................................66  
6.9.2 Features...........................................................................................................................66  
6.10 PWM Generator and Capture Timer (PWM) ..................................................... 67  
6.10.1Overview..........................................................................................................................67  
6.10.2Features...........................................................................................................................67  
6.11 UART Interface Controller (UART) ..................................................................... 69  
6.11.1Overview..........................................................................................................................69  
6.11.2Features...........................................................................................................................69  
6.12 Serial Peripheral Interface (SPI) ......................................................................... 71  
6.12.1Overview..........................................................................................................................71  
6.12.2Features...........................................................................................................................71  
6.13 I2C Serial Interface Controller (I2C)..................................................................... 72  
6.13.1Overview..........................................................................................................................72  
6.13.2Features...........................................................................................................................72  
6.14 USCI - Universal Serial Control Interface Controller (USCI)........................... 73  
6.14.1Overview..........................................................................................................................73  
6.14.2Features...........................................................................................................................73  
6.15 USCI – UART Mode.............................................................................................. 74  
6.15.1Overview..........................................................................................................................74  
6.15.2Features...........................................................................................................................74  
6.16 USCI - SPI Mode................................................................................................... 75  
6.16.1Overview..........................................................................................................................75  
6.16.2Features...........................................................................................................................75  
Aug. 18, 2020  
Page 3 of 140  
Rev. 1.01  
M031BT  
6.17 USCI - I2C Mode .................................................................................................... 77  
6.17.1Overview..........................................................................................................................77  
6.17.2Features...........................................................................................................................77  
6.18 CRC Controller (CRC) .......................................................................................... 78  
6.18.1Overview..........................................................................................................................78  
6.18.2Features...........................................................................................................................78  
6.19 Hardware Divider (HDIV)...................................................................................... 79  
6.19.1Overview..........................................................................................................................79  
6.19.2Features...........................................................................................................................79  
6.20 Analog-to-Digital Converter (ADC) ..................................................................... 80  
6.20.1Overview..........................................................................................................................80  
6.20.2Features...........................................................................................................................80  
6.21 Analog Comparator Controller (ACMP).............................................................. 82  
6.21.1Overview..........................................................................................................................82  
6.21.2Features...........................................................................................................................82  
6.22 Radio ....................................................................................................................... 83  
6.22.1Overview..........................................................................................................................83  
6.22.2Features...........................................................................................................................83  
6.23 Peripherals Interconnection ................................................................................. 84  
6.23.1Overview..........................................................................................................................84  
6.23.2Peripherals Interconnect Matrix Table.........................................................................84  
7 APPLICATION CIRCUIT................................................................................85  
7.1 Power Supply Scheme (DC-to-DC Mode)............................................................... 85  
7.2 Power Supply Scheme (LDO Mode) ........................................................................ 86  
7.3 Peripheral Application Scheme (M031BTxE).......................................................... 87  
7.4 Peripheral Application Scheme (M031BTxD).......................................................... 88  
7.5 PCB Layout Guide....................................................................................................... 89  
8 ELECTRICAL CHARACTERISTICS..............................................................91  
8.1 Absolute Maximum Ratings....................................................................................... 91  
8.1.1 Voltage Characteristics..................................................................................................91  
8.1.2 Current Characteristics..................................................................................................91  
8.1.3 Thermal Characteristics.................................................................................................93  
8.1.4 EMC Characteristics ......................................................................................................94  
8.1.5 Package Moisture Sensitivity(MSL).............................................................................95  
8.1.6 Soldering Profile .............................................................................................................96  
8.2 General Operating Conditions................................................................................... 97  
8.3 DC Electrical Characteristics..................................................................................... 98  
8.3.1 Supply Current Characteristics.....................................................................................98  
Aug. 18, 2020  
Page 4 of 140  
Rev. 1.01  
M031BT  
8.3.2 On-Chip Peripheral Current Consumption................................................................101  
8.3.3 RF Supply Current Characteristics ............................................................................102  
8.3.4 RF Operating Mode Switching Times........................................................................102  
8.3.5 Wakeup Time from Low-Power Modes .....................................................................103  
8.3.6 I/O Current Injection Characteristics..........................................................................103  
8.3.7 I/O DC Characteristics.................................................................................................103  
8.4 AC Electrical Characteristics ................................................................................... 106  
8.4.1 48 MHz Internal High Speed RC Oscillator (HIRC).................................................106  
8.4.2 38.4 kHz Internal Low Speed RC Oscillator (LIRC) ................................................109  
8.4.3 32 kHz Internal RF Low Speed RC Oscillator..........................................................112  
8.4.4 External 16/32 MHz RF High Speed Crystal characteristics .................................112  
8.4.6 External 4~32 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics  
114  
8.4.7 External 4~32 MHz High Speed Clock Input Signal Characteristics ....................116  
8.4.8 External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) characteristics  
117  
8.4.9 External 32.768 kHz Low Speed Clock Input Signal Characteristics ...................118  
8.4.10PLL Characteristics ......................................................................................................119  
8.4.11I/O AC Characteristics .................................................................................................120  
8.5 Analog Characteristics.............................................................................................. 121  
8.5.1 LDO ................................................................................................................................121  
8.5.2 Reset and Power Control Block Characteristics......................................................121  
8.5.3 12-bit SAR ADC............................................................................................................123  
8.5.4 Analog Comparator Controller (ACMP).....................................................................126  
8.5.5 RF Characteristics........................................................................................................127  
8.6 Communications Characteristics ............................................................................ 130  
8.6.1 I2C Dynamic Characteristics .......................................................................................130  
8.6.2 USCI - SPI Dynamic Characteristics .........................................................................131  
8.6.3 USCI-I2C Dynamic Characteristics ............................................................................134  
8.7 Flash DC Electrical Characteristics ........................................................................ 135  
9 PACKAGE DIMENSIONS............................................................................136  
9.1 QFN 48-pin (5X5x0.9 mm Pitch:0.35 mm) ............................................................ 136  
10ABBREVIATIONS........................................................................................137  
10.1 Abbreviations........................................................................................................ 137  
11REVISION HISTORY ...................................................................................139  
Aug. 18, 2020  
Page 5 of 140  
Rev. 1.01  
M031BT  
LIST OF FIGURES  
Figure 4.1-1 M031BT Series QFN 48-pin Diagram........................................................................ 19  
Figure 4.1-2 M031BTYE3AN / M031BTYD2AN Multi-function Pin Diagram................................. 20  
Figure 5-1 NuMicro® M031BT Block Diagram ............................................................................... 29  
Figure 6.1-1 Functional Block Diagram.......................................................................................... 30  
Figure 6.2-1 System Reset Sources .............................................................................................. 33  
Figure 6.2-2 nRESET Reset Waveform......................................................................................... 35  
Figure 6.2-3 Power-on Reset (POR) Waveform ............................................................................ 35  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform......................................................................... 36  
Figure 6.2-5 Brown-out Detector (BOD) Waveform....................................................................... 37  
Figure 6.2-6 NuMicro® M031 Power Distribution Diagram............................................................. 38  
Figure 6.2-7 Power Mode State Machine ...................................................................................... 39  
Figure 6.2-8 SRAM Memory Organization..................................................................................... 43  
Figure 6.2-9 NuMicro® M031 Bus Matrix Diagram......................................................................... 44  
Figure 6.3-1 Clock Generator Global View Diagram...................................................................... 56  
Figure 6.3-2 Clock Generator Block Diagram................................................................................ 57  
Figure 6.3-3 System Clock Block Diagram .................................................................................... 58  
Figure 6.3-4 HXT Stop Protect Procedure..................................................................................... 59  
Figure 6.3-5 SysTick Clock Control Block Diagram....................................................................... 59  
Figure 6.3-6 Clock Output Block Diagram ..................................................................................... 60  
Figure 6.16-1 SPI Master Mode Application Block Diagram.......................................................... 75  
Figure 6.16-2 SPI Slave Mode Application Block Diagram............................................................ 75  
Figure 6.17-1 I2C Bus Timing......................................................................................................... 77  
Figure 8.1-1 Soldering Profile from J-STD-020C........................................................................... 96  
Figure 8.4-1 HIRC vs. Temperature............................................................................................. 108  
Figure 8.4-2 LIRC vs. Temperature ............................................................................................. 111  
Figure 8.4-3 Typical Crystal Application Circuit ........................................................................... 113  
Figure 8.4-4 Typical Crystal Application Circuit ........................................................................... 115  
Figure 8.4-5 Typical 32.768 kHz Crystal Application Circuit........................................................ 117  
Figure 8.5-1 Power Ramp Up/Down Condition............................................................................ 122  
Figure 8.6-1 I2C Timing Diagram ................................................................................................. 130  
Figure 8.6-2 USCI-SPI Master Mode Timing Diagram................................................................. 131  
Figure 8.6-3 USCI-SPI Slave Mode Timing Diagram................................................................... 133  
Figure 8.6-4 USCI-I2C Timing Diagram........................................................................................ 134  
Table 10.1-1 List of Abbreviations................................................................................................ 138  
Aug. 18, 2020  
Page 6 of 140  
Rev. 1.01  
M031BT  
List of Tables  
Table 1-1 NuMicro® M031BT Series Key Features Support Table.................................................. 9  
Table 4.1-1 M031BTYE3AN / M031BTYD2AN Multi-function Pin Table....................................... 22  
Table 6.2-1 Reset Value of Registers............................................................................................ 34  
Table 6.2-2 Power Mode Table...................................................................................................... 38  
Table 6.2-3 Power Mode Difference Table .................................................................................... 38  
Table 6.2-4 Power Mode Difference Table .................................................................................... 39  
Table 6.2-5 Clocks in Power Modes .............................................................................................. 40  
Table 6.2-6 Condition of Entering Power-down Mode Again......................................................... 41  
Table 6.2-7 Address Space Assignments for On-Chip Controllers................................................ 42  
Table 6.2-8 Protected Register List ............................................................................................... 49  
Table 6.2-9 Exception Model ......................................................................................................... 53  
Table 6.2-10 Interrupt Number Table............................................................................................. 54  
Table 6.2-11 Vector Figure Format................................................................................................ 54  
Table 6.11-1 NuMicro® M031 Series UART Features ................................................................... 70  
Table 6.23-1 Peripherals Interconnect Matrix Table...................................................................... 84  
Table 8.1-1 Voltage Characteristics............................................................................................... 91  
Table 8.1-2 Current Characteristics ............................................................................................... 92  
Table 8.1-3 Thermal Characteristics.............................................................................................. 93  
Table 8.1-4 EMC Characteristics ................................................................................................... 94  
Table 8.1-5 Package Moisture Sensitivity (MSL)........................................................................... 95  
Table 8.1-6 Soldering Profile.......................................................................................................... 96  
Table 8.2-1 General Operating Conditions .................................................................................... 97  
Table 8.3-1 Current Consumption in Normal Run Mode ............................................................... 99  
Table 8.3-2 Current Consumption in Idle Mode............................................................................. 99  
Table 8.3-3 Chip Current Consumption in Power-down Mode .................................................... 100  
Table 8.3-4 Peripheral Current Consumption .............................................................................. 101  
Table 8.3-5 RF DC Characteristics .............................................................................................. 102  
Table 8.3-6 RF Operating Mode Switching Times....................................................................... 102  
Table 8.3-7 Low-power Mode Wakeup Timings .......................................................................... 103  
Table 8.3-8 I/O Current Injection Characteristics......................................................................... 103  
Table 8.3-9 I/O Input Characteristics ........................................................................................... 104  
Table 8.3-10 I/O Output Characteristics ...................................................................................... 105  
Table 8.3-11 nRESET Input Characteristics................................................................................ 105  
Table 8.4-1 48 MHz Internal High Speed RC Oscillator(HIRC) Characteristics.......................... 106  
Table 8.4-2 38.4 kHz Internal Low Speed RC Oscillator(LIRC) characteristics .......................... 109  
Table 8.4-3 32 kHz Internal RF Low Speed RC Oscillator Characteristics.................................. 112  
Aug. 18, 2020  
Page 7 of 140  
Rev. 1.01  
M031BT  
Table 8.4-4 External 16 MHz RF High Speed Crystal Characteristics ........................................ 112  
Table 8.4-5 External 32 MHz RF High Speed Crystal Characteristics ........................................ 113  
Table 8.4-6 External 4~32 MHz High Speed Crystal (HXT) Oscillator ........................................ 114  
Table 8.4-7 External 4~32 MHz High Speed Crystal Characteristics .......................................... 115  
Table 8.4-8 External 4~32 MHz High Speed Clock Input Signal ................................................. 116  
Table 8.4-9 External 32.768 kHz Low Speed Crystal (LXT) Oscillator........................................ 117  
Table 8.4-10 External 32.768 kHz Low Speed Crystal Characteristics ....................................... 117  
Table 8.4-11 External 32.768 kHz Low Speed Clock Input Signal .............................................. 118  
Table 8.4-12 PLL Characteristics................................................................................................. 119  
Table 8.4-13 I/O AC Characteristics ............................................................................................ 120  
Table 8.5-1 Reset and Power Control Unit .................................................................................. 121  
Table 8.5-2 ACMP Characteristics............................................................................................... 126  
Table 8.5-3 RF Transmitter Characteristics................................................................................. 127  
Table 8.5-4 RF Receiver Characteristics..................................................................................... 129  
Table 8.6-1 I2C Characteristics .................................................................................................... 130  
Table 8.6-2 USCI-SPI Master Mode Characteristics ................................................................... 131  
Table 8.6-3 USCI-SPI Slave Mode Characteristics ..................................................................... 132  
Table 8.6-4 USCI-I2C Characteristics .......................................................................................... 134  
Aug. 18, 2020  
Page 8 of 140  
Rev. 1.01  
M031BT  
1
GENERAL DESCRIPTION  
The M031BT series microcontroller (MCU) is based on Arm® Cortex® -M0 core with built-in Bluetooth  
Low Energy 5.0 (BLE 5.0) with rich peripherals and analog functions for applications that need  
wireless connectivity with multiple control functions. The M031BT series is compliant with the BLE 5.0  
standard supporting data rates up to 2 Mbps, offering 2.4 GHz proprietary stacks to achieve more  
possibility for wireless connectivity and Over-the-Air (OTA) for firmware upgrade. The M031BT series  
solution allows those microcontroller applications to be the Internet of Things (IoT) devices with  
wireless connectivity.  
The M031BT series runs up to 48 MHz for efficient computation within -40°C ~ 85°C, operating from  
1.8 ~ 3.6 V supply voltages, and supports 5V I/O tolerant. There are 2 memory configurations of  
Flash/SRAM by 64 KB/8 KB and 128 KB/16 KB respectively, and a 512 bytes security protection ROM  
(SPROM) provides a secure code execution area to protect the intellectual property of developers.  
The M031BT series provides a solution for applications that need the connection with enhanced 2  
MSPS fast conversion rate 12-bit ADC, 2 comparators and up-to 12-ch 96 MHz PWM control. The  
M031BT supports a fast and precise data conversion for the voltage, current, and sensor data, then  
fast response control to the external device. Additionally, the M031BT series also provides plenty of  
peripherals including a Universal Serial Control Interface (USCI) that can be set as UART/SPI/I2C  
flexibly, 2 sets of I2C, 3 sets of UART, and 1-wire UART interface for data communication between  
master and slave devices.  
For the development, Nuvoton provides the NuMaker evaluation board and Nuvoton Nu-Link  
debugger. The 3rd Party IDE such as Keil MDK, IAR EWARM, Eclipse IDE with GNU GCC compilers  
are also supported.  
The M031BT series supports small form factor package QFN 48-pin (5 mm x 5 mm) that makes the  
PCB design to be compact size.  
Product Line  
UART  
I2C  
USCI  
Timer  
PWM  
PDMA  
CRC  
HDIV  
ACMP  
ADC  
M031BT  
3
2
1
4
12  
5
2
16  
Table 1-1 NuMicro® M031BT Series Key Features Support Table  
The NuMicro® M031BT series is suitable for a wide range of applications such as:  
IoT edge device  
Personal healthcare device with wireless connectivity  
Smart home appliances with remote control  
Dual mode gaming keyboard/ mouse  
Assess tracking devices  
Aug. 18, 2020  
Page 9 of 140  
Rev. 1.01  
M031BT  
2 FEATURES  
2.1 M031BT Features  
Core and System  
Arm® Cortex® -M0 processor, running up to 48 MHz  
48 MHz at 1.8V-3.6V  
Built-in Nested Vectored Interrupt Controller (NVIC)  
24-bit system tick timer  
Arm® Cortex® -M0  
Programmble and maskable interrupt  
Low Power Sleep mode by WFI and WFE instructions  
Two-level BOD with brown-out interrupt and reset option.  
Brown-out Detector (BOD)  
Low Voltage Reset (LVR)  
(2.5V/2.0V)  
LVR with 1.7V threshold voltage level.  
96-bit Unique ID (UID).  
Security  
128-bit Unique Customer ID (UCID).  
Signed (two’s complement) integer calculation  
32-bit dividend with 16-bit divisor calculation capacity  
32-bit H/W Divider(HDIV)  
32-bit quotient and 32-bit remainder outputs (16-bit remainder with  
sign extends to 32-bit)  
Memories  
Up to 128 KB on-chip Application ROM (APROM).  
Up to 4 KB on-chip Flash for user-defined loader (LDROM)  
512 bytes execution-only Security Protection ROM (SPROM)  
All on-chip Flash support 512 bytes page erase  
Flash  
Fast Flash programming verification with CRC-32 checksum  
calculation  
On-chip Flash programming with In-Chip Programming (ICP), In-  
System Programming (ISP) and In-Application Programming (IAP)  
capabilities  
2-wired ICP Flash updating through SWD/ICE interface  
Up to 16 KB on-chip SRAM  
Byte-, half-word- and word-access  
PDMA operation  
SRAM  
Supports CRC-CCITT, CRC-8, CRC-16 and CRC-32 polynomials  
Programmable initial value and seed value  
Cyclic Redundancy  
Calculation (CRC)  
Aug. 18, 2020  
Page 10 of 140  
Rev. 1.01  
M031BT  
Programmable order reverse setting and one’s complement setting  
for input data and CRC checksum  
8-bit, 16-bit, and 32-bit data width  
8-bit write mode with 1-AHB clock cycle operation  
16-bit write mode with 2-AHB clock cycle operation  
32-bit write mode with 4-AHB clock cycle operation  
Uses DMA to write data with performing CRC operation  
Up to 5 independent and configurable channels for automatic data  
transfer between memories and peripherals  
Basic and Scatter-Gather transfer modes  
Each channel supports circular buffer management using Scatter-  
Gather Transfer mode  
Peripheral DMA (PDMA)  
Fixed-priority and Round-robin priorities modes  
Single and burst transfer types  
Byte-, half-word- and word tranfer unit with count up to 65536  
Incremental or fixed source and destination address  
Clocks  
4~32 MHz High-speed eXternal crystal oscillator (HXT) for precise  
timing operation  
32.768 kHz Low-speed eXternal crystal oscillator (LXT) for RTC  
function and low-power system operation  
External Clock Source  
16/32 MHz eXternal crystal oscillator(RF_XTAL) for RF transceiver  
Supports clock failure detection for external crystal oscillators and  
exception generatation (NMI)  
48 MHz High-speed Internal RC oscillator (HIRC).  
38.4 kHz Low-speed Internal RC oscillator (LIRC) for watchdog  
timer and wakeup operation  
32 kHz low-power on-chip RC oscillator for RF transceiver with  
Internal Clock Source  
deviation less than ± 500 ppm  
Up to 96 MHz on-chip PLL, sourced from HIRC or HXT, allows CPU  
operation up to the maximim CPU frequency without the need for a  
high-frequency crystal  
Timers  
Up to 4 sets of 32-bit timers with 24-bit up counter and one 8-bit  
pre-scale counter from independent clock source  
One-shot, Periodic, Toggle and Continuous Counting operation  
modes  
32-bit Timer  
Supports event counting function to count the event from external  
pins  
Supports external capture pin for interval measurement and  
resetting 24-bit up counter  
Aug. 18, 2020  
Page 11 of 140  
Rev. 1.01  
M031BT  
Supports chip wake-up function, if a timer interrupt signal is  
generated  
Up to two PWM modules, each module provides three 16-bit  
counter and 6 output channels.  
Up to 12 independent input capture channels with 16-bit resolution  
counter  
Supports dead time with maximum divided 12-bit prescale  
Up, down or up-down PWM counter type  
PWM (PWM)  
Supports complementary mode for 3 complementary paired PWM  
output channels  
Counter synchronous start function  
Brake function with auto recovery mechanism  
Mask function and tri-state output for each PWM channel  
Able to trigger ADC to start conversion  
20-bit free running up counter for WDT time-out interval  
Supports multiple clock sources from LIRC (default selection),  
HCLK/2048 and LXT with 9 selectable time-out period  
Able to wake up system from Power-down or Idle mode  
Time-out event to trigger interrupt or reset system  
Watchdog  
Supports four WDT reset delay periods, including 1026, 130, 18 or  
3 WDT_CLK reset delay period  
Configured to force WDT enabled on chip power-on or reset.  
Clock sourced from HCLK/2048 or LIRC; the window set by 6-bit  
counter with 11-bit prescale  
Window Watchdog  
Suspended in Idle/Power-down mode  
Analog Interfaces  
Analog input voltage range: 0 ~ AVDD  
One 12-bit, 2 MSPS SAR ADC with up to 16 single-ended input  
channels or 8 differential input pairs; 10-bit accuracy is guaranteed.  
Internal channels for band-gap VBG input.  
Supports calibration capability.  
Four operation modes: Single mode, Burst mode, Single-cycle Scan  
mode and Continuous Scan mode.  
ADC  
Analog-to-Digital conversion can be triggered by software enable  
(ADST), external pin (STADC), Timer 0~3 overflow pulse trigger,  
PWM trigger.  
Each conversion result is held in data register of each channel with  
valid and overrun indicators.  
Supports conversion result monitor by compare mode function.  
Configurable ADC external sampling time.  
PDMA operation.  
Aug. 18, 2020  
Page 12 of 140  
Rev. 1.01  
M031BT  
Two Analog Comparators  
Supports three multiplexed I/O pins at positive input  
Supports I/O pins, band-gap, and 16-level Voltage divider from  
AVDD at negative input  
Analog Comparator  
(ACMP)  
Supports wake up from Power-down by interrupt  
Supports triggers for brake events and cycle-by-cycle control for  
PWM  
Supports window compare mode and window latch mode  
Supports hysteresis function  
Modem with Integrated RF Radio for 2.4 GHz Bluetooth  
communication link  
Compliant with Bluetooth 5 Low Energy Specification  
Supports proprietary 2.4 GHz protocols  
High TX power with low current (+8 dBm, 8 mA)  
Rx Sensitivity: -94 dBm at 1 Mbps  
Radio  
Immune to interference (image rejection, -25dBm)  
Data rate: 1Mbps and 2Mbps  
Integrated security: CRC, AES-128, AES-CCM for real-time  
processing of the data stream  
RSSI read-out  
Two power supply modes (DC-DC converter and LDO regulator) for  
RF transceiver  
Communication Interfaces  
Low-power UARTs with up to 4.8 MHz baud rate.  
Auto-Baud Rate measurement and baud rate compensation  
function.  
Supports low power UART (LPUART): baud rate clock from LXT  
(32.768 kHz) with 9600bps in Power-down mode even system clock  
is stopped.  
16-byte FIFOs with programmable level trigger  
Auto flow control (nCTS and nRTS)  
Low-power UART  
Supports IrDA (SIR) function  
Supports RS-485 9-bit mode and direction control  
Supports nCTS, incoming data, Received Data FIFO reached  
threshold and RS-485 Address Match (AAD mode) wake-up  
function in idle mode.  
Supports hardware or software enables to program nRTS pin to  
control RS-485 transmission direction  
Supports wake-up function  
8-bit receiver FIFO time-out detection function  
Aug. 18, 2020  
Page 13 of 140  
Rev. 1.01  
M031BT  
Supports break error, frame error, parity error and receive/transmit  
FIFO overflow detection function  
PDMA operation.  
Supports Single-wire function mode.  
Two sets of I2C devices with Master/Slave mode.  
Supports Standard mode (100 kbps), Fast mode (400 kbps), Fast  
mode plus (1 Mbps)  
Supports 7 bits mode  
I2C  
Programmable clocks allowing for versatile rate control  
Supports multiple address recognition (four slave address with  
mask option)  
Supports multi-address power-down wake-up function  
PDMA operation  
Dedicated SPI controller for RF transceiver.  
Up to 16 MHz at 1.8V~3.6V system voltage.  
Configurable bit length of a transfer word from 8 to 32-bit.  
Provides separate 4-level of 32-bit (or 8-level of 16-bit) transmit and  
receive FIFO buffers.  
MSB first or LSB first transfer sequence.  
Byte reorder function.  
SPI  
Supports Byte or Word Suspend mode.  
Supports one data channel half-duplex transfer.  
Supports receive-only mode.  
PDMA operation.  
One set of USCI, configured as UART, SPI or I2C function.  
Supports single byte TX and RX buffer mode  
UART  
Supports one transmit buffer and two receive buffers for data  
payload.  
9-bit Data Transfer.  
Baud rate detection by built-in capture event of baud rate generator.  
Universal Serial Control  
Interface (USCI)  
Supports wake-up function.  
PDMA operation.  
SPI  
Supports Master or Slave mode operation.  
Supports one transmit buffer and two receive buffer for data  
payload.  
Configurable bit length of a transfer word from 4 to 16-bit.  
Supports MSB first or LSB first transfer sequence.  
Aug. 18, 2020  
Page 14 of 140  
Rev. 1.01  
M031BT  
Supports Word Suspend function.  
Supports 3-wire, no slave select signal, bi-direction interface.  
PDMA operation.  
Supports one data channel half-duplex transfer.  
I2C  
Supports master and slave device capability.  
Supports one transmit buffer and two receive buffer for data  
payload.  
Communication in standard mode (100 kbps), fast mode (up to 400  
kbps), and Fast mode plus (1 Mbps).  
Supports 7-bit mode (10-bit mode not supported).  
Supports 10-bit bus time out capability.  
Supports bus monitor mode.  
Supports power-down wake-up by data toggle or address match.  
Supports multiple address recognition.  
Supports device address flag.  
Programmable setup/hold time.  
Supports four I/O modes: Quasi bi-direction, Push-Pull output,  
Open-Drain output and Input only with high impendence mode.  
Configured as interrupt source with edge/level trigger setting.  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional  
I/O mode.  
GPIO  
Supports 5V-tolerance function except analog IO (PB.0~PB.15,  
PF.2~PF.5).  
Enabling the pin interrupt function will also enable the wake-up  
function.  
Input schmitt trigger function.  
Aug. 18, 2020  
Page 15 of 140  
Rev. 1.01  
M031BT  
3
PARTS INFORMATION  
3.1 Package Type  
Part No.  
QFN48  
M031BTxD  
M031BTxE  
M031BTYD2AN  
M031BTYE3AN  
Aug. 18, 2020  
Page 16 of 140  
Rev. 1.01  
M031BT  
3.2 M031BT Series Selection Guide  
3.2.1 M031BT Series (M031BTYx)  
M031BT  
Part Number  
YD2AN  
YE3AN  
128  
16  
Flash (KB)  
SRAM (KB)  
64  
8
LDROM (KB)  
SPROM(Bytes)  
2
4
512  
System Frequency (MHz)  
48  
PLL ( MHz)  
96  
I/O  
32-bit Timer  
USCI  
29  
4
1
UART  
3
I²C  
2
PWM  
12  
PDMA  
5
CRC  
HDIV  
2
Analog Comparator  
12-bit SAR ADC  
Package  
16  
QFN48  
Aug. 18, 2020  
Page 17 of 140  
Rev. 1.01  
M031BT  
3.2.2  
Naming Rule  
31BT  
M0  
Core  
Y
E
3
A
N
Line  
Package  
Flash  
SRAM  
Reserve  
Temperature  
N:-40°C ~ 85°C  
Cortex®-M0 31BT: RF  
Y: QFN48  
(5x5 mm)  
D: 64 KB  
2: 8 KB  
3: 16 KB  
E: 128 KB  
Aug. 18, 2020  
Page 18 of 140  
Rev. 1.01  
M031BT  
4 PIN CONFIGURATION  
Users can find pin configuaration informations in chapter 4 or by using NuTool - PinConfig. The  
NuTool - PinConfigure contains all Nuvoton NuMicro® Family chip series with all part number, and  
helps users configure GPIO multi-function correctly and handily.  
4.1 Pin Configuration  
4.1.1  
M031BT Series Pin Diagram  
4.1.1.1 M031BT Series QFN 48-Pin Diagram  
Corresponding Part Number: M031BTYE3AN, M031BTYD2AN  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
35  
PF.15  
PB.15  
36  
PA.0  
PB.14  
Top transparent view  
37  
PA.1  
PB.13  
38  
PA.2  
PB.12  
39
VSS  
AVDD  
40
PA.3  
AVSS  
QFN48  
41
RF_BUCK_OUT  
RF_BUCK_FB  
RF_AVDD1V2  
RF_XT_OUT  
RF_XT_IN  
PF.2  
PB.11  
42
PB.10  
43
PB.9  
4340  
PB.8  
45
PB.7  
49 VSS  
46
PB.6  
47  
PF.3  
PB.5  
48  
PF.4  
PB.4  
Figure 4.1-1 M031BT Series QFN 48-pin Diagram  
Aug. 18, 2020  
Page 19 of 140  
Rev. 1.01  
 
M031BT  
4.1.2  
M031BT Series Multi-function Pin Diagram  
4.1.2.1 M031BT Series QFN 48-Pin Multi-function Pin Diagram  
Corresponding Part Number: M031BTYE3AN, M031BTYD2AN  
35  
36  
37  
38  
39
4206  
41
42
4239  
44
4351  
4362  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PWM0_BRAKE1 / TM0_EXT / PWM1_CH0 / UART0_nCTS / USCI0_CTL1 / ADC0_CH15 / PB.15  
CLKO / TM1_EXT / PWM1_CH1 / UART0_nRTS / USCI0_DAT1 / ADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / UART0_TXD / USCI0_DAT0 / ACMP1_P3 / ACMP0_P3 / ADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / UART0_RXD / USCI0_CLK / ACMP1_P2 / ACMP0_P2 / ADC0_CH12 / PB.12  
AVDD  
PF.15 / PWM0_BRAKE0 / PWM0_CH1 / TM2 / CLKO / INT4  
PA.0 / UART0_RXD / UART1_nRTS / PWM0_CH5  
PA.1 / UART0_TXD / UART1_nCTS / PWM0_CH4  
PA.2 / UART1_RXD / I2C1_SDA / PWM0_CH3  
VSS  
Top transparent view  
AVSS  
PA.3 / UART1_TXD / I2C1_SCL / PWM0_CH2 / CLKO / PWM1_BRAKE1  
RF_BUCK_OUT  
QFN48  
I2C1_SCL / UART0_nCTS / ADC0_CH11 / PB.11  
I2C1_SDA / UART0_nRTS / ADC0_CH10 / PB.10  
RF_BUCK_FB  
UART1_nCTS / UART0_TXD / ADC0_CH9 / PB.9  
RF_AVDD1V2  
UART1_nRTS / UART0_RXD / ADC0_CH8 / PB.8  
RF_XTAL_OUT  
ACMP0_O / INT5 / PWM1_CH4 / PWM1_BRAKE0 / UART1_TXD / ADC0_CH7 / PB.7  
ACMP1_O / INT4 / PWM1_CH5 / PWM1_BRAKE1 / UART1_RXD / ADC0_CH6 / PB.6  
INT0 / TM0 / UART2_TXD / PWM0_CH0 / I2C0_SCL / ACMP1_N / ADC0_CH5 / PB.5  
INT1 / TM1 / UART2_RXD / PWM0_CH1 / I2C0_SDA / ACMP1_P1 / ADC0_CH4 / PB.4  
RF_XTAL_IN  
49 VSS  
PF.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN  
PF.4 / UART2_TXD / UART2_nRTS / PWM0_CH1 / X32_OUT  
Figure 4.1-2 M031BTYE3AN / M031BTYD2AN Multi-function Pin Diagram  
Pin M031BTYE3AN / M031BTYD2AN Pin Function  
1
2
3
4
5
6
7
8
9
PB.3 / ADC0_CH3 / ACMP0_N / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE0 / TM2 / INT2  
PB.2 / ADC0_CH2 / ACMP0_P1 / I2C1_SDA / UART1_RXD / PWM0_CH3 / TM3 / INT3  
PB.1 / ADC0_CH1 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM1_CH4 / PWM0_BRAKE0  
PB.0 / ADC0_CH0 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM1_CH5 / PWM0_BRAKE1  
RF_AVDD1V2  
VSS  
RF_IO  
VSS  
RF_VDDPA  
Aug. 18, 2020  
Page 20 of 140  
Rev. 1.01  
 
M031BT  
Pin M031BTYE3AN / M031BTYD2AN Pin Function  
10 PF.5 / UART2_RXD / UART2_nCTS / PWM0_CH0 / X32_IN / ADC0_ST  
11 PF.4 / UART2_TXD / UART2_nRTS / PWM0_CH1 / X32_OUT  
12 PF.3 / UART0_TXD / I2C0_SCL / XT1_IN  
13 PF.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
14 RF_XTAL_IN  
15 RF_XTAL_OUT  
16 RF_AVDD1V2  
17 RF_BUCK_FB  
18 RF_BUCK_OUT  
19 PA.3 / UART1_TXD / I2C1_SCL / PWM0_CH2 / CLKO / PWM1_BRAKE1  
20 VSS  
21 PA.2 / UART1_RXD / I2C1_SDA / PWM0_CH3  
22 PA.1 / UART0_TXD / UART1_nCTS / PWM0_CH4  
23 PA.0 / UART0_RXD / UART1_nRTS / PWM0_CH5  
24 PF.15 / PWM0_BRAKE0 / PWM0_CH1 / TM2 / CLKO / INT4  
25 nRESET  
26 PF.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
27 PF.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
28 PC.1 / UART2_TXD / I2C0_SCL / PWM1_CH4 / ACMP0_O  
29 PC.0 / UART2_RXD / I2C0_SDA / PWM1_CH5 / ACMP1_O  
30 RF_VDD  
31 RF_CLKO  
32 VSS  
33 LDO_CAP  
34 VDD  
35 PB.15 / ADC0_CH15 / USCI0_CTL1 / UART0_nCTS / PWM1_CH0 / TM0_EXT / PWM0_BRAKE1  
36 PB.14 / ADC0_CH14 / USCI0_DAT1 / UART0_nRTS / PWM1_CH1 / TM1_EXT / CLKO  
37 PB.13 / ADC0_CH13 / ACMP0_P3 / ACMP1_P3 / USCI0_DAT0 / UART0_TXD / PWM1_CH2 / TM2_EXT  
38 PB.12 / ADC0_CH12 / ACMP0_P2 / ACMP1_P2 / USCI0_CLK / UART0_RXD / PWM1_CH3 / TM3_EXT  
39 AVDD  
40 AVSS  
41 PB.11 / ADC0_CH11 / UART0_nCTS / I2C1_SCL  
42 PB.10 / ADC0_CH10 / UART0_nRTS / I2C1_SDA  
43 PB.9 / ADC0_CH9 / UART0_TXD / UART1_nCTS  
Aug. 18, 2020  
Page 21 of 140  
Rev. 1.01  
M031BT  
Pin M031BTYE3AN / M031BTYD2AN Pin Function  
44 PB.8 / ADC0_CH8 / UART0_RXD / UART1_nRTS  
45 PB.7 / ADC0_CH7 / UART1_TXD / PWM1_BRAKE0 / PWM1_CH4 / INT5 / ACMP0_O  
46 PB.6 / ADC0_CH6 / UART1_RXD / PWM1_BRAKE1 / PWM1_CH5 / INT4 / ACMP1_O  
47 PB.5 / ADC0_CH5 / ACMP1_N / I2C0_SCL / PWM0_CH0 / UART2_TXD / TM0 / INT0  
48 PB.4 / ADC0_CH4 / ACMP1_P1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / TM1 / INT1  
Table 4.1-1 M031BTYE3AN / M031BTYD2AN Multi-function Pin Table  
Aug. 18, 2020  
Page 22 of 140  
Rev. 1.01  
M031BT  
4.2 Pin Mapping  
Different part number with the same package might have different function. Please refer to the  
selection guide in section 3.2, Pin Configuration in section 4.1 or NuTool - PinConfig.  
Corresponding Part Number: M031BTxD, M031BTxE series.  
M031BT series  
Pin Name  
PB.3  
48 Pin  
1
PB.2  
2
PB.1  
3
PB.0  
4
RF_AVDD1V2  
VSS  
5
6
RF_IO  
VSS  
7
8
RF_VDDPA  
PF.5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
PF.4  
PF.3  
PF.2  
RF_XTAL_IN  
RF_XTAL_OUT  
RF_AVDD1V2  
RF_BUCK_FB  
RF_BUCK_OUT  
PA.3  
VSS  
PA.2  
PA.1  
PA.0  
PF.15  
nRESET  
PF.0  
PF.1  
PC.1  
PC.0  
Aug. 18, 2020  
Page 23 of 140  
Rev. 1.01  
M031BT  
M031BT series  
Pin Name  
RF_VDD  
RF_CLKO  
VSS  
48 Pin  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
LDO_CAP  
VDD  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
AVSS  
PB.11  
PB.10  
PB.9  
PB.8  
PB.7  
PB.6  
PB.5  
PB.4  
VSS  
Aug. 18, 2020  
Page 24 of 140  
Rev. 1.01  
M031BT  
4.3 Pin Function Description  
Group  
Pin Name  
Type Description  
ACMP0_N  
A
O
A
A
A
A
I
Analog comparator 0 negative input pin.  
ACMP0_O  
ACMP0_P0  
ACMP0_P1  
ACMP0_P2  
ACMP0_P3  
ACMP0_WLAT  
ACMP1_N  
Analog comparator 0 output pin.  
Analog comparator 0 positive input 0 pin.  
Analog comparator 0 positive input 1 pin.  
Analog comparator 0 positive input 2 pin.  
Analog comparator 0 positive input 3 pin.  
Analog comparator 0 window latch input pin  
Analog comparator 1 negative input pin.  
Analog comparator 1 output pin.  
Analog comparator 1 positive input 0 pin.  
Analog comparator 1 positive input 1 pin.  
Analog comparator 1 positive input 2 pin.  
Analog comparator 1 positive input 3 pin.  
Analog comparator 1 window latch input pin  
ADC0 channel 0 analog input.  
ACMP0  
A
O
A
A
A
A
I
ACMP1_O  
ACMP1_P0  
ACMP1_P1  
ACMP1_P2  
ACMP1_P3  
ACMP1_WLAT  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
ADC0_CH8  
ADC0_CH9  
ADC0_CH10  
ADC0_CH11  
ADC0_CH12  
ADC0_CH13  
ADC0_CH14  
ADC0_CH15  
ADC0_ST  
ACMP1  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
I
ADC0 channel 1 analog input.  
ADC0 channel 2 analog input.  
ADC0 channel 3 analog input.  
ADC0 channel 4 analog input.  
ADC0 channel 5 analog input.  
ADC0 channel 6 analog input.  
ADC0 channel 7 analog input.  
ADC0  
ADC0 channel 8 analog input.  
ADC0 channel 9 analog input.  
ADC0 channel 10 analog input.  
ADC0 channel 11 analog input.  
ADC0 channel 12 analog input.  
ADC0 channel 13 analog input.  
ADC0 channel 14 analog input.  
ADC0 channel 15 analog input.  
ADC0 external trigger input.  
CLKO  
GPIO  
CLKO  
O
Clock Out  
PA.x~PH.x  
I/O General purpose digital I/O pin.  
Aug. 18, 2020  
Page 25 of 140  
Rev. 1.01  
M031BT  
Group  
Pin Name  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
I2C1_SDA  
Type Description  
I/O I2C0 clock pin.  
I2C0  
I/O I2C0 data input/output pin.  
I/O I2C1 clock pin.  
I2C1  
I/O I2C1 data input/output pin.  
Serial wired debugger clock pin.  
ICE_CLK  
ICE_DAT  
I
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
Serial wired debugger data pin.  
O
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
ICE  
External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial  
state.  
nRESET  
I
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET  
pin.  
INT0  
INT1  
INT2  
INT3  
INT4  
INT5  
INT0  
I
I
I
I
I
I
I
I
External interrupt 0 input pin.  
External interrupt 1 input pin.  
External interrupt 2 input pin.  
External interrupt 3 input pin.  
External interrupt 4 input pin.  
External interrupt 5 input pin.  
PWM0 Brake 0 input pin.  
INT1  
INT2  
INT3  
INT4  
INT5  
PWM0_BRAKE0  
PWM0_BRAKE1  
PWM0_CH0  
PWM0_CH1  
PWM0_CH2  
PWM0_CH3  
PWM0_CH4  
PWM0_CH5  
PWM1_BRAKE0  
PWM1_BRAKE1  
PWM1_CH0  
PWM1_CH1  
PWM1_CH2  
PWM1_CH3  
PWM1_CH4  
PWM1_CH5  
VDD  
PWM0 Brake 1 input pin.  
I/O PWM0 channel 0 output/capture input.  
I/O PWM0 channel 1 output/capture input.  
I/O PWM0 channel 2 output/capture input.  
I/O PWM0 channel 3 output/capture input.  
I/O PWM0 channel 4 output/capture input.  
I/O PWM0 channel 5 output/capture input.  
PWM0  
I
I
PWM1 Brake 0 input pin.  
PWM1 Brake 1 input pin.  
I/O PWM1 channel 0 output/capture input.  
I/O PWM1 channel 1 output/capture input.  
I/O PWM1 channel 2 output/capture input.  
I/O PWM1 channel 3 output/capture input.  
I/O PWM1 channel 4 output/capture input.  
I/O PWM1 channel 5 output/capture input.  
PWM1  
P
P
Power supply for I/O ports and LDO source for internal PLL and digital circuit.  
Ground pin for digital circuit.  
Power  
VSS  
Aug. 18, 2020  
Page 26 of 140  
Rev. 1.01  
M031BT  
Group  
Pin Name  
AVDD  
Type Description  
P
P
Power supply for internal analog circuit.  
AVSS  
Ground pin for analog circuit.  
LDO output pin.  
Note: This pin needs to be connected with a 1uF capacitor.  
LDO_CAP  
A
RF power supply  
Note: This pin needs to be connected with a 1uF capacitor.  
Power supply for RF signal power amplifier  
Note: This pin needs to be connected with a 0.1uF capacitor.  
RF Transceiver 1.2 V power supply pin  
Note: This pin needs to be connected with a 1uF capacitor.  
RF input/output signal  
Note: The impedance of this RF transmission line needs to be 50 Ω.  
RF_VDD  
P
P
P
A
RF_VDDPA  
RF_AVDD1V2  
RF_IO  
RF  
RF_BUCK_OUT  
RF_BUCK_FB  
RF_CLKO  
P
P
O
RF DC-DC converter 1.2 V output  
RF DC-DC converter feedback  
RF 16 MHz clock out.  
RF_XTAL_IN  
RF_XTAL_OUT  
SPI0_CLK  
SPI0_MISO  
SPI0_MOSI  
SPI0_SS  
I
RF high speed crystal input pin.  
RF high speed crystal output pin.  
O
I/O SPI0 serial clock pin.  
I/O SPI0 MISO (Master In, Slave Out) pin.  
I/O SPI0 MOSI (Master Out, Slave In) pin.  
I/O SPI0 slave select pin.  
SPI0  
TM0  
I/O Timer0 event counter input/toggle output pin.  
I/O Timer0 external capture input/toggle output pin.  
I/O Timer1 event counter input/toggle output pin.  
I/O Timer1 external capture input/toggle output pin.  
I/O Timer2 event counter input/toggle output pin.  
I/O Timer2 external capture input/toggle output pin.  
I/O Timer3 event counter input/toggle output pin.  
I/O Timer3 external capture input/toggle output pin.  
TM0  
TM1  
TM2  
TM3  
TM0_EXT  
TM1  
TM1_EXT  
TM2  
TM2_EXT  
TM3  
TM3_EXT  
UART0_RXD  
UART0_TXD  
UART0_nCTS  
UART0_nRTS  
UART1_RXD  
UART1_TXD  
UART1_nCTS  
UART1_nRTS  
UART2_RXD  
UART2_TXD  
I
O
I
UART0 data receiver input pin.  
UART0 data transmitter output pin.  
UART0 clear to Send input pin.  
UART0 request to Send output pin.  
UART1 data receiver input pin.  
UART1 data transmitter output pin.  
UART1 clear to Send input pin.  
UART1 request to Send output pin.  
UART2 data receiver input pin.  
UART2 data transmitter output pin.  
UART0  
O
I
O
I
UART1  
UART2  
O
I
O
Aug. 18, 2020  
Page 27 of 140  
Rev. 1.01  
M031BT  
Group  
Pin Name  
Type Description  
UART2_nCTS  
UART2_nRTS  
USCI0_CLK  
USCI0_CTL1  
USCI0_DAT0  
USCI0_DAT1  
X32_IN  
I
UART2 clear to Send input pin.  
UART2 request to Send output pin.  
O
I/O USCI0 clock pin.  
I/O USCI0 control 1 pin.  
I/O USCI0 data 0 pin.  
I/O USCI0 data 1 pin.  
USCI0  
I
External 32.768 kHz crystal input pin.  
External 32.768 kHz crystal output pin.  
External high speed crystal input pin.  
External high speed crystal output pin.  
X32  
XT1  
X32_OUT  
O
I
XT1_IN  
XT1_OUT  
O
Aug. 18, 2020  
Page 28 of 140  
Rev. 1.01  
M031BT  
5
BLOCK DIAGRAM  
Figure 5-1 NuMicro® M031BT Block Diagram  
Aug. 18, 2020  
Page 29 of 140  
Rev. 1.01  
M031BT  
6 FUNCTIONAL DESCRIPTION  
6.1 Arm® Cortex® -M0 Core  
The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an A  
MbytesA AHB-Lite interface and includes an NVIC component. It also has optional hardware  
debug functionality. The processor can execute Thumb code and is compatible with other  
Cortex® -M profile processor. The profile supports two modes -Thread mode and Handler mode.  
Handler mode is entered as a result of an exception. An exception return can only be issued in  
Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception  
return. Figure 6.1-1 shows the functional controller of processor.  
Cortex-M0 Components  
Cortex-M0 Processor  
Debug  
Interrupts  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex-M0  
Processor  
Core  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debug  
Access Port  
(DAP)  
Debugger  
interface  
Bus matrix  
Serial Wire or  
JTAG debug port  
AHB-Lite interface  
Figure 6.1-1 Functional Block Diagram  
The implemented device provides:  
A low gate count processor:  
Arm® 6-M Thumb® instruction set  
Thumb-2 technology  
Arm® 6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and  
restarted to facilitate rapid interrupt handling  
C Application Binary Interface compliant exception model. This is the Armv6-M,  
C Application Binary Interface (C-ABI) compliant exception model that enables  
the use of pure C functions as interrupt handlers  
Low Power Sleep mode entry using the Wait For Interrupt (WFI), Wait For Event  
(WFE) instructions, or return from interrupt sleep-on-exit feature  
Aug. 18, 2020  
Page 30 of 140  
Rev. 1.01  
 
M031BT  
NVIC:  
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power  
Sleep mode  
Debug support:  
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
Single 32-bit A MbytesA-3 AHB-Lite system interface that provides simple  
integration to all system peripherals and memory  
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Aug. 18, 2020  
Page 31 of 140  
Rev. 1.01  
M031BT  
6.2 System Manager  
6.2.1  
Overview  
System management includes the following sections:  
System Reset  
System Power Distribution  
SRAM Memory Orginization  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control register  
6.2.2  
System Reset  
The system reset can be issued by one of the events listed below. These reset event flags can be  
read from SYS_RSTSTS register to determine the reset source. Hardware reset sourcces are from  
peripheral signals. Software reset can trigger reset through setting control registers.  
Hardware Reset Sources  
Power-on Reset  
Low level on the nRESET pin  
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD Reset)  
CPU Lockup Reset  
Software Reset Sources  
CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])  
MCU Reset to reboot but keeping the booting setting from APROM or LDROM  
by writing 1 to SYSRESETREQ (AIRCR[2])  
CPU Reset for Cortex® -M0 core Only by writing 1 to CPURST (SYS_IPRST0[1])  
nRESET glitch filter time 32us  
Aug. 18, 2020  
Page 32 of 140  
Rev. 1.01  
M031BT  
Glitch Filter  
32 us  
nRESET  
~50k ohm  
@3.3v  
POROFF(SYS_PORCTL[15:0])  
Power-on  
Reset  
VDD  
LVREN(SYS_BODCTL[7])  
Reset Pulse Width  
~3.2ms  
Low Voltage  
Reset  
AVDD  
BODRSTEN(SYS_BODCTL[3])  
Brown-out  
Reset  
System Reset  
WDT/WWDT  
Reset  
Reset Pulse Width  
64 WDT clocks  
CPU Lockup  
Reset  
Reset Pulse Width  
2 system clocks  
CHIP Reset  
CHIPRST(SYS_IPRST0[0])  
MCU Reset  
SYSRSTREQ(AIRCR[2])  
Reset Pulse Width  
2 system clocks  
Software Reset  
CPU Reset  
CPURST(SYS_IPRST0[1])  
Figure 6.2-1 System Reset Sources  
There are a total of 9 reset sources in the NuMicro® family. In general, CPU reset is used to reset  
Cortex® -M0 only; the other reset sources will reset Cortex® -M0 and all peripherals. However, there are  
small differences between each reset source and they are listed in Table 6.2-1.  
Reset Sources  
POR  
0x001  
NRESET  
WDT  
LVR  
BOD  
Lockup  
CHIP  
MCU  
CPU  
Register  
SYS_RSTSTS  
Bit 1 = 1  
Bit 2 = 1 Bit 3 = 1 Bit 4 = 1 Bit 8 = 1 Bit 0 = 1  
Bit 5 = 1 Bit 7 =  
1
CHIPRST  
0x0  
-
-
-
-
-
-
-
-
-
(SYS_IPRST0[0])  
BODEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
(SYS_BODCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
CONFIG0 CONFIG0 CONFIG0  
BODVL  
(SYS_BODCTL[16])  
BODRSTEN  
(SYS_BODCTL[3])  
HXTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
(CLK_PWRCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
LXTEN  
0x0  
0x1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_PWRCTL[1])  
WDTCKEN  
0x1  
0x1  
(CLK_APBCLK0[0])  
Aug. 18, 2020  
Page 33 of 140  
Rev. 1.01  
M031BT  
HCLKSEL  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
(CLK_CLKSEL0[2:0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTSEL  
0x3  
0x0  
0x0  
0x0  
0x0  
0x0  
0x3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_CLKSEL1[1:0])  
HXTSTB  
-
(CLK_STATUS[0])  
LXTSTB  
-
(CLK_STATUS[1])  
PLLSTB  
-
(CLK_STATUS[2])  
HIRCSTB  
-
(CLK_STATUS[4])  
CLKSFAIL  
0x0  
(CLK_STATUS[7])  
RSTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(WDT_CTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTEN  
(WDT_CTL[7])  
WDT_CTL  
0x0700  
0x0700  
0x0700  
0x0700  
0x0700  
-
0x0700  
-
-
except bit 1 and bit 7.  
WDT_ALTCTL  
WWDT_RLDCNT  
WWDT_CTL  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
-
-
0x0000  
0x0000  
0x3F0800  
0x0000  
0x3F  
-
-
-
-
-
-
-
-
-
-
-
-
0x3F0800 0x3F0800 0x3F0800 0x3F0800 0x3F0800 -  
WWDT_STATUS  
WWDT_CNT  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
-
-
-
BS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPCTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
FMC_DFBA  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
-
Reload  
from  
CONFIG1  
-
-
-
-
CONFIG1 CONFIG1 CONFIG1 CONFIG1 CONFIG1  
CBS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPSTS[2:1))  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
VECMAP  
Reload  
base  
Reload  
on base  
Reload  
Reload  
Reload  
-
Reload  
base  
CONFIG0  
-
-
-
on base on base on base on  
on  
(FMC_ISPSTS[23:9])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
Other Peripheral  
Registers  
Reset Value  
FMC Registers  
Reset Value  
Note: -‘ means that the value of register keeps original setting.  
Table 6.2-1 Reset Value of Registers  
Aug. 18, 2020  
Page 34 of 140  
Rev. 1.01  
M031BT  
6.2.2.1 nRESET Reset  
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an  
asynchronous reset input pin and can be used to reset system at any time. When the nRESET voltage  
is lower than 0.2 VDD and the state keeps longer than 32 us (glitch filter), chip will be reset. The  
nRESET reset will control the chip in reset state until the nRESET voltage rises above 0.7 VDD and the  
state keeps longer than 32 us (glitch filter). The PINRF(SYS_RSTSTS[1]) will be set to 1 if the  
previous reset source is nRESET reset. Table 6.2-2 shows the nRESET reset waveform.  
nRESET  
0.7 VDD  
32 us  
0.2 VDD  
32 us  
nRESET Reset  
Figure 6.2-2 nRESET Reset Waveform  
6.2.2.2 Power-on Reset (POR)  
The Power-on reset (POR) is used to generate a stable system reset signal and forces the system to  
be reset when power-on to avoid unexpected behavior of MCU. When applying the power to MCU, the  
POR module will detect the rising voltage and generate reset signal to system until the voltage is  
ready for MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be set to 1 to indicate there  
is a POR reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by writing 1 to it. Figure 6.2-3  
shows the power-on reset waveform.  
VPOR  
0.1V  
VDD  
Power-on  
Reset  
Figure 6.2-3 Power-on Reset (POR) Waveform  
6.2.2.3 Low Voltage Reset (LVR)  
If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit LVREN  
(SYS_BODCTL[7]) to 1, after 200us delay, LVR detection circuit will be stable and the LVR function  
will be active. Then LVR function will detect AVDD during system operation. When the AVDD voltage is  
lower than VLVR and the state keeps longer than De-glitch time set by LVRDGSEL  
(SYS_BODCTL[14:12]), chip will be reset. The LVR reset will control the chip in reset state until the  
Aug. 18, 2020  
Page 35 of 140  
Rev. 1.01  
 
M031BT  
AVDD voltage rises above VLVR and the state keeps longer than De-glitch time set by LVRDGSEL  
(SYS_BODCTL[14:12]). The default setting of Low Voltage Reset is enabled without De-glitch  
function. Figure 6.2-4 shows the Low Voltage Reset waveform.  
AVDD  
VLVR  
T1  
T2  
( < LVRDGSEL)  
( =LVRDGSEL)  
T3  
( =LVRDGSEL)  
Low Voltage Reset  
LVREN  
200 us  
Delay for LVR stable  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform  
6.2.2.4 Brown-out Detector Reset (BOD Reset)  
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit  
BODEN (SYS_BODCTL[0]), Brown-out Detector function will detect AVDD during system operation.  
When the AVDD voltage is lower than VBOD which is decided by BODEN and BODVL  
(SYS_BODCTL[16]) and the state keeps longer than De-glitch time set by BODDGSEL  
(SYS_BODCTL[10:8]), chip will be reset. The BOD reset will control the chip in reset state until the  
AVDD voltage rises above VBOD and the state keeps longer than De-glitch time set by BODDGSEL. The  
default value of BODEN, BODVL and BODRSTEN (SYS_BODCTL[3]) is set by Flash controller user  
configuration  
register  
CBODEN  
(CONFIG0  
[19]),  
CBOV  
(CONFIG0  
[23:21])  
and  
CBORST(CONFIG0[20]) respectively. User can determine the initial BOD setting by setting the  
CONFIG0 register. Figure 6.2-5 shows the Brown-out Detector waveform.  
Aug. 18, 2020  
Page 36 of 140  
Rev. 1.01  
 
M031BT  
AVDD  
VBODH  
VBODL  
Hysteresis  
T1  
T2  
(< BODDGSEL)  
(= BODDGSEL)  
BODOUT  
T3  
(= BODDGSEL)  
BODRSTEN  
Brown-out  
Reset  
Figure 6.2-5 Brown-out Detector (BOD) Waveform  
6.2.2.5 Watchdog Timer Reset (WDT)  
In most industrial applications, system reliability is very important. To automatically recover the MCU  
from failure status is one way to improve system reliability. The watchdog timer(WDT) is widely used  
to check if the system works fine. If the MCU is crashed or out of control, it may cause the watchdog  
time-out. User may decide to enable system reset during watchdog time-out to recover the system and  
take action for the system crash/out-of-control after reset.  
Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a  
watchdog reset and handle the failure of MCU after watchdog time-out reset by checking  
WDTRF(SYS_RSTSTS[2]).  
6.2.2.6 CPU Lockup Reset  
CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives immediate  
indication of seriously errant kernel software. This is the result of the CPU being locked because of an  
unrecoverable exception following the activation of the processor’s built in system state protection  
hardware. When chip enters debug mode, the CPU lockup reset will be ignored.  
6.2.2.7 CPU Reset, CHIP Reset and MCU Reset  
The CPU Reset means only Cortex® -M0 core is reset and all other peripherals remain the same status  
after CPU reset. User can set the CPURST(SYS_IPRST0[1]) to 1 to assert the CPU Reset signal.  
The CHIP Reset is same with Power-on Reset. The CPU and all peripherals are reset and  
BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG0 setting. User can set the  
CHIPRST(SYS_IPRST0[0]) to 1 to assert the CHIP Reset signal.  
The MCU Reset is similar with CHIP Reset. The difference is that BS(FMC_ISPCTL[1]) will not be  
reloaded from CONFIG0 setting and keep its original software setting for booting from APROM or  
LDROM. User can set the SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.  
Aug. 18, 2020  
Page 37 of 140  
Rev. 1.01  
M031BT  
6.2.3  
System Power Distribution  
In this chip, power distribution is divided into three segments:  
Analog power from AVDD and AVSS provides the power for analog components operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which  
provides a fixed 1.8V power for digital operation and I/O pins.  
The outputs of internal voltage regulators, LDO and VDD, require an external capacitor which should be  
located close to the corresponding pin. Figure 6.2-6 shows the NuMicro® M031 power distribution.  
Figure 6.2-6 NuMicro® M031 Power Distribution Diagram  
6.2.4  
Power Modes and Wake-up Sources  
The M031 series has power manager unit to support several operating modes for saving power. Table  
6.2-2 lists all power mode in the M031 series.  
Mode  
CPU Operating Maximum  
Speed( MHz)  
LDO_CAP(V)  
Clock Disable  
Normal mode  
Idle mode  
48  
1.8  
1.8  
1.8  
All clocks are disabled by control register.  
Only CPU clock is disabled.  
CPU enter Sleep mode  
Power-down mode  
CPU enters Power-down  
mode  
Most clocks are disabled except LIRC/LXT,  
and only WDT/Timer/UART peripheral clocks  
still enable if their clock sources are selected  
as LIRC/LXT.  
Table 6.2-2 Power Mode Table  
There are different power mode entry settings and leaving condition for each power mode. Table 6.2-3  
shows the entry setting for each power mode. When chip power-on, chip is running in normal mode.  
User can enter each mode by setting SLEEPDEEP (SCR[2]), PDEN (CLK_PWRCT:[7]) and execute  
WFI instruction.  
Register/Instruction  
Mode  
SLEEPDEEP  
(SCR[2])  
PDEN  
CPU Run WFI Instruction  
(CLK_PWRCTL[7])  
Normal mode  
0
0
0
0
NO  
Idle mode  
YES  
(CPU enter Sleep mode)  
Power-down mode  
1
1
YES  
(CPU enters Deep Sleep  
mode)  
Table 6.2-3 Power Mode Difference Table  
There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-4 lists the  
available clocks for each power mode.  
Power Mode  
Normal Mode  
Idle Mode  
Power-Down Mode  
Definition  
CPU is in active state  
CPU is in sleep state  
CPU is in sleep state and all  
clocks stop except LXT and  
LIRC. SRAM content retended.  
Entry Condition  
Chip is in normal mode after  
system reset released  
CPU executes WFI instruction. CPU sets sleep mode enable  
and power down enable and  
executes WFI instruction.  
Aug. 18, 2020  
Page 38 of 140  
Rev. 1.01  
 
 
 
M031BT  
Wake-up Sources  
N/A  
All interrupts  
WDT, I²C, Timer, UART, BOD,  
GPIO, EINT, USCI, , and  
ACMP  
Available Clocks  
After Wake-up  
All  
All except CPU clock  
LXT and LIRC  
N/A  
CPU back to normal mode  
CPU back to normal mode  
Table 6.2-4 Power Mode Difference Table  
System reset released  
Normal Mode  
CPU Clock ON  
HXT, HIRC, LXT, LIRC , HCLK, PCLK ON  
Flash ON  
CPU executes WFI  
Interrupts occur  
1. SLEEPDEEP (SCS_SCR[2]) = 1  
2. PDEN (CLK_PWRCTL[7]) = 1 and  
PDWKIF (CLK_PWRCTL[6]) = 1  
3. CPU executes WFI  
Wake-up events  
occur  
Idle Mode  
CPU Clock OFF  
HXT, HIRC, LXT , LIRC , HCLK, PCLK ON  
Flash Halt  
Power-down Mode  
CPU Clock OFF  
HXT, HIRC, HCLK, PCLK OFF  
LXT, LIRC ON  
Flash Halt  
Figure 6.2-7 Power Mode State Machine  
1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in normal mode.  
2. LIRC (38.4 kHz OSC) ON or OFF depends on S/W setting in normal mode.  
3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.  
4. If WDT clock source is selected as LIRC and LIRC is on.  
5. If UART clock source is selected as LXT and LXT is on.  
Normal Mode  
Idle Mode  
ON  
Power-Down Mode  
HXT (4~32 MHz XTL)  
HIRC48 (48 MHz OSC)  
LXT (32768 Hz XTL)  
LIRC (38.4 kHz OSC)  
PLL  
ON  
ON  
Halt  
Halt  
ON  
ON  
ON  
ON/OFF1  
ON/OFF2  
Halt  
ON  
ON  
ON/OFF  
ON  
ON/OFF  
ON  
LDO  
ON  
CPU  
ON  
Halt  
Halt  
HCLK/PCLK  
SRAM retention  
FLASH  
ON  
ON  
Halt  
ON  
ON  
ON  
ON  
ON  
Halt  
GPIO  
ON  
ON  
Halt  
Aug. 18, 2020  
Page 39 of 140  
Rev. 1.01  
M031BT  
PDMA  
TIMER  
PWM  
WDT  
WWDT  
UART  
USCI  
I2C  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
ON/OFF3  
Halt  
ON/OFF4  
Halt  
ON/OFF6  
Halt  
Halt  
SPI  
Halt  
ADC  
Halt  
ACMP  
Halt  
Table 6.2-5 Clocks in Power Modes  
Wake-up sources in Power-down mode:  
WDT, I²C, Timer, UART, USCI, BOD, GPIO, and ACMP.  
After chip enters power down, the following wake-up sources can wake chip up to normal mode. Table  
6.2-5 lists the condition about how to enter Power-down mode again for each peripheral.  
*User needs to wait this condition before setting PDEN(CLK_PWRCTL[7]) and execute WFI to enter  
Power-down mode.  
Wake-Up  
Wake-Up Condition  
System Can Enter Power-Down Mode Again Condition*  
Source  
BOD  
Brown-Out Detector Interrupt After software writes 1 to clear (SYS_BODCTL[4]).  
INT  
External Interrupt  
GPIO Interrupt  
After software write 1 to clear the Px_INTSRC[n] bit.  
After software write 1 to clear the Px_INTSRC[n] bit.  
GPIO  
TIMER  
After software writes  
(TIMERx_INTSTS[0]).  
1 to clear TWKF (TIMERx_INTSTS[1]) and TIF  
Timer Interrupt  
WDT  
WDT Interrupt  
nCTS wake-up  
RX Data wake-up  
After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect).  
After software writes 1 to clear CTSWKF (UARTx_WKSTS[0]).  
After software writes 1 to clear DATWKF (UARTx_WKSTS[1]).  
Received FIFO Threshold  
Wake-up  
After software writes 1 to clear RFRTWKF (UARTx_WKSTS[2]).  
UART0/1  
RS-485 AAD Mode Wake-up After software writes 1 to clear RS485WKF (UARTx_WKSTS[3]).  
Received FIFO Threshold  
After software writes 1 to clear TOUTWKF (UARTx_WKSTS[4]).  
Time-out Wake-up  
nCTS wake-up  
After software writes 1 to clear CTSWKF (UARTx_WKSTS[0]).  
After software writes 1 to clear DATWKF (UARTx_WKSTS[1]).  
UART2  
I2C  
RX Data wake-up  
Address match or GC mode  
match wake-up.  
After software writes 1 to clear WKIF( I2C_WKSTS[0]).  
Aug. 18, 2020  
Page 40 of 140  
Rev. 1.01  
 
M031BT  
ACMP  
Comparator Power-Down After software writes 1 to clear WKIF0 (ACMP_STATUS[8]) and WKIF1  
Wake-Up Interrupt  
(ACMP_STATUS[9]).  
Table 6.2-6 Condition of Entering Power-down Mode Again  
6.2.5  
System Memory Map  
The NuMicro® M031 series provides 4G-byte addressing space. The memory locations assigned to  
each on-chip controllers are shown inTable 6.2-7. The detailed register definition, memory space, and  
programming will be described in the following sections for each on-chip peripheral. The M031 series  
only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0001_FFFF  
0x2000_0000 0x2000_3FFF  
0x6000_0000 0x6FFF_FFFF  
FLASH_BA  
SRAM0_BA  
EXTMEM_BA  
FLASH Memory Space (192 Kbytes)  
SRAM Memory Space (16 Kbytes)  
External Memory Space (256 Mbytes)  
Peripheral Controllers Space (0x4000_0000 0x400F_FFFF)  
0x4000_0000 0x4000_01FF  
0x4000_0200 0x4000_02FF  
0x4000_0300 0x4000_03FF  
0x4000_4000 0x4000_4FFF  
0x4000_8000 0x4000_8FFF  
0x4000_C000 0x4000_CFFF  
0x4001_4000 0x4001_7FFF  
0x4003_1000 0x4003_1FFF  
SYS_BA  
CLK_BA  
NMI_BA  
System Control Registers  
Clock Control Registers  
NMI Control Registers  
GPIO_BA  
PDMA_BA  
FMC_BA  
HDIV_BA  
CRC_BA  
GPIO Control Registers  
Peripheral DMA Control Registers  
Flash Memory Control Registers  
Hardware Divider Register  
CRC Generator Registers  
APB Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4004_0000 0x4004_0FFF  
0x4004_3000 0x4004_3FFF  
0x4004_5000 0x4004_5FFF  
0x4005_0000 0x4005_0FFF  
0x4005_1000 0x4005_1FFF  
0x4005_8000 0x4005_8FFF  
0x4005_9000 0x4005_9FFF  
0x4006_1000 0x4006_0FFF  
0x4007_0000 0x4007_0FFF  
0x4007_1000 0x4007_1FFF  
0x4007_2000 0x4007_2FFF  
0x4008_0000 0x4008_0FFF  
WDT_BA  
Watchdog Timer Control Registers  
Analog-Digital-Converter (ADC) Control Registers  
Analog Comparator 0/ 1 Control Registers  
Timer0/Timer1 Control Registers  
Timer2/Timer3 Control Registers  
PWM0 Control Registers  
ADC_BA  
ACMP01_BA  
TMR01_BA  
TMR23_BA  
PWM0_BA  
PWM1_BA  
SPI0_BA  
PWM1 Control Registers  
SPI0 Control Registers  
UART0_BA  
UART1_BA  
UART2_BA  
I2C0_BA  
UART0 Control Registers  
UART1 Control Registers  
UART2 Control Registers  
I2C0 Control Registers  
Aug. 18, 2020  
Page 41 of 140  
Rev. 1.01  
M031BT  
0x4008_1000 0x4008_1FFF  
0x400D_0000 0x400D_0FFF  
I2C1_BA  
I2C1 Control Registers  
USCI0_BA  
USCI0 Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 6.2-7 Address Space Assignments for On-Chip Controllers  
Aug. 18, 2020  
Page 42 of 140  
Rev. 1.01  
M031BT  
6.2.6  
SRAM Memory Orginization  
The M031 supports embedded SRAM with total 16 Kbytes size  
Supports total 16 Kbytes SRAM  
Supports byte / half word / word write  
Supports oversize response error  
Table 6.2-10 shows the SRAM organization of M031. The address between 0x2000_4000 to  
0x3FFF_FFFF is illegal memory space and chip will enter hardfault if CPU accesses these illegal  
memory addresses.  
0x3FFF_FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x2000_4000  
0x2000_2000  
0x2000_1000  
16K byte  
SRAM bank0  
8K byte  
SRAM bank0  
4K byte  
SRAM bank0  
0x2000_0800  
2K byte  
SRAM bank0  
0x2000_0000  
4K byte device  
16K byte device  
8K byte device  
2K byte device  
Figure 6.2-8 SRAM Memory Organization  
Aug. 18, 2020  
Page 43 of 140  
Rev. 1.01  
M031BT  
6.2.7  
Chip Bus Matrix  
The M031 series supports Bus Matrix to manage the access arbitration between masters. The access  
arbitration use round-robin algorithm as the bus priority.  
M1  
PDMA  
M0  
Cortex® -M0  
S0  
S1  
S2  
APB0  
S3  
APB1  
S4  
S5  
EBI  
AHB  
(ctrl)  
FLASH  
SRAM  
Figure 6.2-9 NuMicro® M031 Bus Matrix Diagram  
6.2.8  
IRC Auto Trim  
This chip supports auto-trim function: the HIRC trim (48 MHz RC oscillator), according to the accurate  
external 32.768 kHz crystal oscillator, automatically gets accurate output frequency, 0.25 % deviation  
within all temperature ranges.  
In HIRC case, the system needs an accurate 48 MHz clock. In such case, if neither using use PLL as  
the system clock source nor soldering 32.768 kHz crystal in system, user has to set REFCKSEL  
(SYS_HIRCTRIMCTL [10] reference clock selection) to “1”, set FREQSEL (SYS_HIRCTRIMCTL [1:0]  
trim frequency selection) to “01”, and the auto-trim function will be enabled. Interrupt status bit  
FREQLOCK (SYS_HIRCTRIMSTS[0] HIRC frequency lock status) “1” indicates the HIRC output  
frequency is accurate within 0.25% deviation.  
Aug. 18, 2020  
Page 44 of 140  
Rev. 1.01  
M031BT  
6.2.9  
Register Lock Control  
Some of the system control registers need to be protected to avoid inadvertent write and disturb the  
chip operation. These system control registers are protected after the power-on reset till user to  
disable register protection. For user to program these protected registers, a register protection disable  
sequence needs to be followed by a special programming. The register protection disable sequence is  
writing the data “59h”, “16h” “88h” to the register SYS_REGLCTL address at 0x4000_0100  
continuously. Any different data value, different sequence or any other write to other address during  
these three data writing will abort the whole sequence. All proteced control registers are noted (Write  
Protect)” and add an note Note: This bit is write protected. Refer to the SYS_REGLCTL register “ in  
register description field.  
Register  
Bit  
Description  
SYS_IPRST0  
SYS_IPRST0  
SYS_IPRST0  
SYS_IPRST0  
SYS_IPRST0  
SYS_BODCTL  
SYS_BODCTL  
SYS_BODCTL  
SYS_BODCTL  
SYS_BODCTL  
SYS_BODCTL  
SYS_BODCTL  
SYS_BODCTL  
SYS_PORCTL  
SYS_SRAM_BISTCTL  
SYS_PORDISAN  
NMIEN  
[7] CRCRST  
[4] HDIV_RST  
[2] PDMARST  
[1] CPURST  
CRC Calculation Controller Reset (Write Protect)  
HDIV Controller Reset (Write Protect)  
PDMA Controller Reset (Write Protect)  
Processor Core One-shot Reset (Write Protect)  
Chip One-shot Reset (Write Protect)  
[0] CHIPRST  
[20] LVRVL  
LVR Detector Threshold Voltage Selection (Write Protect)  
Brown-out Detector Threshold Voltage Selection (Write Protect)  
LVR Output De-glitch Time Select (Write Protect)  
Brown-out Detector Output De-glitch Time Select (Write Protect)  
Low Voltage Reset Enable Bit (Write Protect)  
Brown-out Detector Low Power Mode (Write Protect)  
Brown-out Reset Enable Bit (Write Protect)  
Brown-out Detector Enable Bit (Write Protect)  
Power-on Reset Enable Bit (Write Protect)  
PDMA BIST Enable Bit (Write Protect)  
[16] BODVL  
[14:12] LVRDGSEL  
[10:8] BODDGSEL  
[7] LVREN  
[5] BODLPM  
[3] BODRSTEN  
[0] BODEN  
[15:0] POROFF  
[7] PDMABIST  
[15:0] POROFFAN  
[15] UART1_INT  
[14] UART0_INT  
[13] EINT5  
Power-on Reset Enable Bit (Write Protect)  
UART1 NMI Source Enable (Write Protect)  
UART0 NMI Source Enable (Write Protect)  
NMIEN  
NMIEN  
External Interrupt From PB.7 or PF.14 Pin NMI Source Enable (Write  
Protect)  
NMIEN  
NMIEN  
NMIEN  
NMIEN  
NMIEN  
[12] EINT4  
[11] EINT3  
[10] EINT2  
[9] EINT1  
[8] EINT0  
External Interrupt From PA.8, PB.6 or PF.15 Pin NMI Source Enable  
(Write Protect)  
External Interrupt From PB.2 or PC.7 Pin NMI Source Enable (Write  
Protect)  
External Interrupt From PB.3 or PC.6 Pin NMI Source Enable (Write  
Protect)  
External Interrupt From PA.7, PB.4 or PD.15 Pin NMI Source Enable  
(Write Protect)  
External Interrupt From PA.6 or PB.5 Pin NMI Source Enable (Write  
Protect)  
Aug. 18, 2020  
Page 45 of 140  
Rev. 1.01  
M031BT  
NMIEN  
[4] CLKFAIL  
Clock Fail Detected and IRC Auto Trim Interrupt NMI Source Enable  
(Write Protect)  
NMIEN  
[2] PWRWU_INT  
[1] IRC_INT  
[0] BODOUT  
[26:25] LXTGAIN  
[22:20] HXTGAIN  
[7] PDEN  
Power-down Mode Wake-up NMI Source Enable (Write Protect)  
IRC TRIM NMI Source Enable (Write Protect)  
BOD NMI Source Enable (Write Protect)  
LXT Gain Control Bit (Write Protect)  
NMIEN  
NMIEN  
CLK_PWRCTL  
CLK_PWRCTL  
CLK_PWRCTL  
CLK_PWRCTL  
CLK_PWRCTL  
CLK_PWRCTL  
CLK_PWRCTL  
CLK_PWRCTL  
CLK_PWRCTL  
CLK_APBCLK0  
CLK_CLKSEL0  
CLK_CLKSEL0  
CLK_CLKSEL1  
CLK_CLKSEL1  
CLK_PLLCTL  
CLK_PLLCTL  
CLK_PLLCTL  
CLK_PLLCTL  
CLK_PLLCTL  
CLK_PLLCTL  
CLK_PLLCTL  
CLK_PLLCTL  
CLK_CLKDSTS  
CLK_CLKDSTS  
CLK_CLKDSTS  
FMC_ISPCTL  
FMC_ISPCTL  
FMC_ISPCTL  
FMC_ISPCTL  
FMC_ISPCTL  
FMC_ISPCTL  
HXT Gain Control Bit (Write Protect)  
System Power-down Enable (Write Protect)  
Power-down Mode Wake-up Interrupt Enable Bit (Write Protect)  
Enable the Wake-up Delay Counter (Write Protect)  
LIRC Enable Bit (Write Protect)  
[5] PDWKIEN  
[4] PDWKDLY  
[3] LIRCEN  
[2] HIRCEN  
[1] LXTEN  
HIRC Enable Bit (Write Protect)  
LXT Enable Bit (Write Protect)  
[0] HXTEN  
HXT Enable Bit (Write Protect)  
[0] WDTCKEN  
[5:3] STCLKSEL  
[2:0] HCLKSEL  
[3:2] WWDTSEL  
[1:0] WDTSEL  
[23] STBSEL  
[19] PLLSRC  
[18] OE  
Watchdog Timer Clock Enable Bit (Write Protect)  
Cortex® -M0 SysTick Clock Source Selection (Write Protect)  
HCLK Clock Source Selection (Write Protect)  
Window Watchdog Timer Clock Source Selection (Write Protect)  
Watchdog Timer Clock Source Selection (Write Protect)  
PLL Stable Counter Selection (Write Protect)  
PLL Source Clock Selection (Write Protect)  
PLL OE (FOUT Enable) Pin Control (Write Protect)  
PLL Bypass Control (Write Protect)  
[17] BP  
[16] PD  
Power-down Mode (Write Protect)  
[15:14] OUTDIV  
[13:9] INDIV  
[8:0] FBDIV  
[8] HXTFQIF  
[1] LXTFIF  
PLL Output Divider Control (Write Protect)  
PLL Input Divider Control (Write Protect)  
PLL Feedback Divider Control (Write Protect)  
HXT Clock Frequency Range Detector Interrupt Flag (Write Protect)  
LXT Clock Fail Interrupt Flag (Write Protect)  
HXT Clock Fail Interrupt Flag (Write Protect)  
ISP Fail Flag (Write Protect)  
[0] HXTFIF  
[6] ISPFF  
[5] LDUEN  
LDROM Update Enable Bit (Write Protect)  
CONFIG Update Enable Bit (Write Protect)  
APROM Update Enable Bit (Write Protect)  
SPROM Update Enable Bit (Write Protect)  
Boot Select (Write Protect)  
[4] CFGUEN  
[3] APUEN  
[2] SPUEN  
[1] BS  
Aug. 18, 2020  
Page 46 of 140  
Rev. 1.01  
M031BT  
FMC_ISPCTL  
FMC_ISPTRG  
FMC_FTCTL  
FMC_ISPSTS  
TIMER0_CTL  
TIMER1_CTL  
TIMER2_CTL  
TIMER3_CTL  
WDT_CTL  
[0] ISPEN  
ISP Enable Bit (Write Protect)  
[0] ISPGO  
ISP Start Trigger (Write Protect)  
Frequency Optimization Mode (Write Protect)  
ISP Fail Flag (Write Protect)  
[6:4] FOM  
[6] ISPFF  
[31] ICEDEBUG  
[31] ICEDEBUG  
[31] ICEDEBUG  
[31] ICEDEBUG  
[31] ICEDEBUG  
[11:8] TOUTSEL  
[7] WDTEN  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
WDT Time-out Interval Selection (Write Protect)  
WDT Enable Bit (Write Protect)  
WDT_CTL  
WDT_CTL  
WDT_CTL  
[6] INTEN  
WDT Time-out Interrupt Enable Bit (Write Protect)  
WDT Time-out Wake-up Flag (Write Protect)  
WDT_CTL  
[5] WKF  
WDT_CTL  
[4] WKEN  
WDT Time-out Wake-up Function Control (Write Protect)  
WDT Time-out Reset Enable Bit (Write Protect)  
WDT Reset Delay Selection (Write Protect)  
WDT_CTL  
[1] RSTEN  
WDT_ALTCTL  
PWM_CTL0  
PWM_CTL0  
PWM_DTCTL0_1  
PWM_DTCTL0_1  
[1:0] RSTDSEL  
[31] DBGTRIOFF  
[30] DBGHALT  
[24] DTCKSEL  
[16] DTEN  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Counter Halt (Write Protect)  
Dead-time Clock Select (Write Protect)  
Enable Dead-time Insertion for PWM Pair (PWM_CH0, PWM_CH1)  
(PWM_CH2, PWM_CH3) (PWM_CH4, PWM_CH5) (Write Protect)  
PWM_DTCTL0_1  
PWM_DTCTL2_3  
PWM_DTCTL2_3  
[11:0] DTCNT  
[24] DTCKSEL  
[16] DTEN  
Dead-time Counter (Write Protect)  
Dead-time Clock Select (Write Protect)  
Enable Dead-time Insertion for PWM Pair (PWM_CH0, PWM_CH1)  
(PWM_CH2, PWM_CH3) (PWM_CH4, PWM_CH5) (Write Protect)  
PWM_DTCTL2_3  
PWM_DTCTL4_5  
PWM_DTCTL4_5  
[11:0] DTCNT  
[24] DTCKSEL  
[16] DTEN  
Dead-time Counter (Write Protect)  
Dead-time Clock Select (Write Protect)  
Enable Dead-time Insertion for PWM Pair (PWM_CH0, PWM_CH1)  
(PWM_CH2, PWM_CH3) (PWM_CH4, PWM_CH5) (Write Protect)  
PWM_DTCTL4_5  
PWM_BRKCTL0_1  
PWM_BRKCTL0_1  
PWM_BRKCTL0_1  
PWM_BRKCTL0_1  
PWM_BRKCTL0_1  
PWM_BRKCTL0_1  
[11:0] DTCNT  
Dead-time Counter (Write Protect)  
[19:18] BRKAODD  
[17:16] BRKAEVEN  
[15] SYSLBEN  
PWM Brake Action Select for Odd Channel (Write Protect)  
PWM Brake Action Select for Even Channel (Write Protect)  
Enable System Fail As Level-detect Brake Source (Write Protect)  
Enable BKP1 Pin As Level-detect Brake Source (Write Protect)  
Enable BKP0 Pin As Level-detect Brake Source (Write Protect)  
[13] BRKP1LEN  
[12] BRKP0LEN  
[9] CPO1LBEN  
Enable ACMP1_O Digital Output As Level-detect Brake Source (Write  
Protect)  
Aug. 18, 2020  
Page 47 of 140  
Rev. 1.01  
M031BT  
PWM_BRKCTL0_1  
[8] CPO0LBEN  
Enable ACMP0_O Digital Output As Level-detect Brake Source (Write  
Protect)  
PWM_BRKCTL0_1  
PWM_BRKCTL0_1  
[7] SYSEBEN  
Enable System Fail As Edge-detect Brake Source (Write Protect)  
[5] BRKP1EEN  
Enable PWMx_BRAKE1 Pin As Edge-detect Brake Source (Write  
Protect)  
PWM_BRKCTL0_1  
PWM_BRKCTL0_1  
PWM_BRKCTL0_1  
[4] BRKP0EEN  
[1] CPO1EBEN  
[0] CPO0EBEN  
Enable PWMx_BRAKE0 Pin As Edge-detect Brake Source (Write  
Protect)  
Enable ACMP1_O Digital Output As Edge-detect Brake Source (Write  
Protect)  
Enable ACMP0_O Digital Output As Edge-detect Brake Source (Write  
Protect)  
PWM_BRKCTL2_3  
PWM_BRKCTL2_3  
PWM_BRKCTL2_3  
PWM_BRKCTL2_3  
PWM_BRKCTL2_3  
PWM_BRKCTL2_3  
[19:18] BRKAODD  
[17:16] BRKAEVEN  
[15] SYSLBEN  
PWM Brake Action Select for Odd Channel (Write Protect)  
PWM Brake Action Select for Even Channel (Write Protect)  
Enable System Fail As Level-detect Brake Source (Write Protect)  
Enable BKP1 Pin As Level-detect Brake Source (Write Protect)  
Enable BKP0 Pin As Level-detect Brake Source (Write Protect)  
[13] BRKP1LEN  
[12] BRKP0LEN  
[9] CPO1LBEN  
Enable ACMP1_O Digital Output As Level-detect Brake Source (Write  
Protect)  
PWM_BRKCTL2_3  
[8] CPO0LBEN  
Enable ACMP0_O Digital Output As Level-detect Brake Source (Write  
Protect)  
PWM_BRKCTL2_3  
PWM_BRKCTL2_3  
[7] SYSEBEN  
[5] BRKP1EEN  
Enable System Fail As Edge-detect Brake Source (Write Protect)  
Enable PWMx_BRAKE1 Pin As Edge-detect Brake Source (Write  
Protect)  
PWM_BRKCTL2_3  
PWM_BRKCTL2_3  
PWM_BRKCTL2_3  
[4] BRKP0EEN  
[1] CPO1EBEN  
[0] CPO0EBEN  
Enable PWMx_BRAKE0 Pin As Edge-detect Brake Source (Write  
Protect)  
Enable ACMP1_O Digital Output As Edge-detect Brake Source (Write  
Protect)  
Enable ACMP0_O Digital Output As Edge-detect Brake Source (Write  
Protect)  
PWM_BRKCTL4_5  
PWM_BRKCTL4_5  
PWM_BRKCTL4_5  
PWM_BRKCTL4_5  
PWM_BRKCTL4_5  
PWM_BRKCTL4_5  
[19:18] BRKAODD  
[17:16] BRKAEVEN  
[15] SYSLBEN  
PWM Brake Action Select for Odd Channel (Write Protect)  
PWM Brake Action Select for Even Channel (Write Protect)  
Enable System Fail As Level-detect Brake Source (Write Protect)  
Enable BKP1 Pin As Level-detect Brake Source (Write Protect)  
Enable BKP0 Pin As Level-detect Brake Source (Write Protect)  
[13] BRKP1LEN  
[12] BRKP0LEN  
[9] CPO1LBEN  
Enable ACMP1_O Digital Output As Level-detect Brake Source (Write  
Protect)  
PWM_BRKCTL4_5  
[8] CPO0LBEN  
Enable ACMP0_O Digital Output As Level-detect Brake Source (Write  
Protect)  
PWM_BRKCTL4_5  
PWM_BRKCTL4_5  
[7] SYSEBEN  
Enable System Fail As Edge-detect Brake Source (Write Protect)  
[5] BRKP1EEN  
Enable PWMx_BRAKE1 Pin As Edge-detect Brake Source (Write  
Protect)  
PWM_BRKCTL4_5  
[4] BRKP0EEN  
Enable PWMx_BRAKE0 Pin As Edge-detect Brake Source (Write  
Protect)  
Aug. 18, 2020  
Page 48 of 140  
Rev. 1.01  
M031BT  
PWM_BRKCTL4_5  
PWM_BRKCTL4_5  
PWM_SWBRK  
[1] CPO1EBEN  
[0] CPO0EBEN  
Enable ACMP1_O Digital Output As Edge-detect Brake Source (Write  
Protect)  
Enable ACMP0_O Digital Output As Edge-detect Brake Source (Write  
Protect)  
[8+n/2]  
PWM Level Brake Software Trigger (Write Only) (Write Protect)  
n=0,2,4 BRKLTRGn  
PWM_SWBRK  
[n/2]  
PWM Edge Brake Software Trigger (Write Only) (Write Protect)  
n=0,2,4 BRKETRGn  
PWM_INTEN1  
PWM_INTEN1  
PWM_INTEN1  
PWM_INTEN1  
PWM_INTEN1  
PWM_INTEN1  
PWM_INTSTS1  
[10] BRKLIEN4_5  
[9] BRKLIEN2_3  
[8] BRKLIEN0_1  
[2] BRKEIEN4_5  
[1] BRKEIEN2_3  
[0] BRKEIEN0_1  
PWM Level-detect Brake Interrupt Enable for Channel4/5 (Write  
Protect)  
PWM Level-detect Brake Interrupt Enable for Channel2/3 (Write  
Protect)  
PWM Level-detect Brake Interrupt Enable for Channel0/1 (Write  
Protect)  
PWM Edge-detect Brake Interrupt Enable for Channel4/5 (Write  
Protect)  
PWM Edge-detect Brake Interrupt Enable for Channel2/3 (Write  
Protect)  
PWM Edge-detect Brake Interrupt Enable for Channel0/1 (Write  
Protect)  
[8+n]  
PWM Channel n Level-detect Brake Interrupt Flag (Write Protect)  
PWM Channel n Edge-detect Brake Interrupt Flag (Write Protect)  
ADC RESET (Write Protect)  
n=0,1..5 BRKLIFn  
PWM_INTSTS1  
ADC_ADCR  
[n]  
n=0,1..5 BRKEIFn  
[12] RESET  
Table 6.2-8 Protected Register List  
Aug. 18, 2020  
Page 49 of 140  
Rev. 1.01  
M031BT  
6.2.10 UART0_TXD/USCI0_DAT1 modulation with PWM  
This chip supports UART0_TXD/USCI_DAT1 to modulate with PWM channel. User can set  
MODPWMSEL(SYS_MODCTL[7:4]) to choose which PWM0 channel to modulate with  
UART0_TXD/USCI0_DAT1 and set MODEN(SYS_MODCTL[0]) to enable modulation function. User  
can set TXDINV(UART_LINE[8]) to inverse UART0_TXD or DATOINV(UUART_LINECTL[5]) to  
inverse USCI0_DAT1 before modulating with PWM.  
PWM0_CHx  
UART0_TXD/USCI0_DAT0  
TXDINV = 0 & MODH = 0  
TXDINV = 0 & MODH = 1  
TXDINV = 1 & MODH = 0  
TXDINV = 1 & MODH = 1  
Figure 6.2-11 UART0_TXD/USCI0_DAT1 Modulated with PWM Channel  
Aug. 18, 2020  
Page 50 of 140  
Rev. 1.01  
M031BT  
6.2.11 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-  
on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be  
used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value Register  
(SYST_VAL) to zero, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_LOAD) on the next clock cycle, and then decrement on subsequent clocks. When the counter  
transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_VAL value is UNKNOWN on reset. Software should write to the register to clear it to zero  
before enabling the feature. This ensures the timer will count from the SYST_LOAD value rather than  
an arbitrary value when it is enabled.  
If the SYST_LOAD is zero, the timer will be maintained with a current value of zero after it is reloaded  
with this value. This mechanism can be used to disable the feature independently from the timer  
enable bit.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference Manual” and  
Arm® v6-M Architecture Reference Manual”.  
Aug. 18, 2020  
Page 51 of 140  
Rev. 1.01  
M031BT  
6.2.12 Nested Vectored Interrupt Controller (NVIC)  
The Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named as  
“Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor core and  
provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of  
the interrupts and most of the system exceptions can be configured to different priority levels. When  
an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one’s  
priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will  
override the current handler.  
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched  
from a vector table in memory. There is no need to determine which interrupt is accepted and branch  
to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC  
will also automatically save processor state including the registers “PC, PSR, LR, R0~R3, R12” to the  
stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the  
normal execution. Thus it will take less and deterministic time to process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to pending  
ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the efficiency of  
concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to  
execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the  
higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference Manual” and  
Arm® v6-M Architecture Reference Manual”.  
6.2.12.1 Exception Model and System Interrupt Map  
Table 6.2-9 lists the exception model supported by the M031 series. Software can set four levels of  
priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority  
is denoted as “0” and the lowest priority is denoted as “3”. The default priority of all the user-  
configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on the system, after  
three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Name  
Vector Number  
Priority  
Reset  
1
-3  
NMI  
2
3
-2  
Hard Fault  
Reserved  
SVCall  
-1  
4 ~ 10  
11  
Reserved  
Configurable  
Reserved  
Configurable  
Reserved  
PendSV  
12 ~ 13  
14  
Aug. 18, 2020  
Page 52 of 140  
Rev. 1.01  
M031BT  
SysTick  
15  
Configurable  
Configurable  
Interrupt (IRQ0 ~ IRQ31)  
16 ~ 47  
Table 6.2-9 Exception Model  
Interrupt Number  
Vector  
Number  
Interrupt Name  
Interrupt  
Interrupt Description  
(Bit  
In  
Registers)  
0 ~ 15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
-
-
System exceptions  
0
BODOUT  
WDT_INT  
EINT024  
Brown-Out low voltage detected interrupt  
Watchdog Timer interrupt  
External interrupt fromEINT0,2,4.  
External interrupt fromEINT1.3.5  
External interrupt from PA, PB pin  
External interrupt from PC, PB pin  
PWM0 interrupt  
1
2
3
EINT135  
4
GPAB_INT  
GPCDEF_INT  
PWM0_INT  
PWM1_INT  
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART02_INT  
UART1_INT  
SPI0_INT  
Reserved  
Reserved  
Reserved  
I2C0_INT  
I2C1_INT  
Reserved  
Reserved  
USCI0  
5
6
7
PWM1 interrupt  
8
Timer 0 interrupt  
9
Timer 1 interrupt  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Timer 2 interrupt  
Timer 3 interrupt  
UART0,2 interrupt  
UART1 interrupt  
SPI0 interrupt  
Reserved  
Reserved  
Reserved  
I2C0 interrupt  
I2C1 interrupt  
Reserved  
Reserved  
USCI0 interrupt  
Reserved  
Reserved  
ACMP01_INT  
PDMA_INT  
ACMP0 and ACMP1 interrupt  
PDMA interrupt  
Aug. 18, 2020  
Page 53 of 140  
Rev. 1.01  
M031BT  
43  
44  
45  
46  
47  
27  
28  
29  
30  
31  
Reserved  
PWRWU_INT  
ADC_INT  
CLKFAIL  
Reserved  
Clock controller interrupt for chip wake-up from power-down state  
ADC interrupt  
Clock fail detected or IRC Auto Trim interrupt  
Reserved  
Reserved  
Table 6.2-10 Interrupt Number Table  
6.2.12.2 Vector Table  
When an interrupt is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For Armv6-M, the vector table base  
address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer  
on reset, and the entry point addresses for all exception handlers. The vector number on previous  
page defines the order of entries in the vector table associated with exception handler entry as  
illustrated in previous section.  
Vector Table Word Offset  
Description  
0
SP_main The Main stack pointer  
Exception Entry Pointer using that Vector Number  
Vector Number  
Table 6.2-11 Vector Figure Format  
6.2.12.3 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or  
Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear  
policy, both registers reading back the current enabled state of the corresponding interrupts. When an  
interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the  
interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state  
until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the  
associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to  
enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading  
back the current pended state of the corresponding interrupts. The Clear-Pending Register has no  
effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
Aug. 18, 2020  
Page 54 of 140  
Rev. 1.01  
M031BT  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates clocks for the whole chip, including system clocks and all peripheral  
clocks. The clock controller also implements the power control function with the individually clock  
ON/OFF control, clock source selection and a clock divider. The chip will not enter Power-down mode  
until CPU sets the Power-down enable bit PDEN(CLK_PWRCTL[7]) and Cortex® -M0 core executes  
the WFI instruction. After that, chip enters Power-down mode and wait for wake-up interrupt source  
triggered to leave Power-down mode. In Power-down mode, the clock controller turns off the 4~32  
MHz external high speed crystal (HXT) and 48 MHz internal high speed RC oscillator (HIRC) to  
reduce the overall system power consumption  
Aug. 18, 2020  
Page 55 of 140  
Rev. 1.01  
M031BT  
HIRC  
HXT  
LXT  
LIRC  
48MHz  
4~32MHz  
32.768 kHz  
38.4 kHz  
HIRC  
1/4  
PCLK0  
PCLK1  
1
0
PLLFOUT  
/1,/2,/4,/8,/16  
I2C0  
PWM0  
TMR0  
TMR1  
UART0  
UART2  
USCI0  
WDT  
ACMP  
ADC  
PLL FOUT  
HXT  
CLK_PLLCTL[19]  
I2C1  
CPU  
CRC  
PWM1  
SPI0  
FMC  
HIRC  
111  
011  
010  
001  
000  
PDMA  
SRAM  
HDIV  
TMR2  
TMR3  
UART1  
LIRC  
PLLFOUT  
HCLK  
1/(HCLKDIV+1)  
LXT  
HXT  
/1,/2,/4,/8,/16  
LIRC  
CLK_CLKSEL0[2:0]  
101  
100  
011  
010  
001  
000  
LIRC  
PCLK0/PCLK1  
HIRC  
11  
10  
01  
UART0  
UART1  
UART2  
1/(UART0DIV+1)  
1/(UART1DIV+1)  
1/(UART2DIV+1)  
HCLK  
1/2048  
LXT  
WDT  
LXT  
PLLOUT  
HXT  
CLK_CLKSEL1[1:0]  
LIRC  
CLK_CLKSEL1[26:24]  
CLK_CLKSEL1[30:28]  
CLK_CLKSEL3[26:24]  
11  
10  
WWDT  
HCLK  
1/2048  
CLK_CLKSEL1[3:2]  
HIRC  
1/2  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
1/2  
1
0
SysTick  
HXT  
1/2  
LXT  
HIRC  
PCLK1  
PLLFOUT  
HXT  
11  
10  
01  
00  
SYST_CTRL[2]  
HXT  
1/(ADCDIV + 1)  
ADC  
CLK_CLKSEL0[5:3]  
DIV1EN  
(CLK_CLKOCTL[5])  
ADCSEL  
(CLKSEL2[21:20])  
PLLFOUT  
HIRC  
110  
101  
100  
LIRC  
/2(CLK_CLKOCTL[3:0]+1)  
HIRC  
CLKO  
0
1
HIRC  
HCLK  
LXT  
11  
011  
010  
001  
PCLK1  
10  
01  
00  
1/(SPI0_CLKDIV[8:0]+1)  
SPI0  
PLLFOUT  
HXT  
HXT  
000  
CLK_CLKSEL1[6:4]  
CLK_CLKSEL2[5:4]  
PCLK0  
1
0
PWM 0  
PCLK1  
PLLFOUT  
1
0
PWM 1  
PLLFOUT  
CLK_CLKSEL2[0]  
CLK_CLKSEL2[1]  
HIRC  
HIRC  
LIRC  
111  
101  
011  
010  
001  
000  
111  
101  
011  
010  
001  
000  
LIRC  
TM0/TM1  
TM2/TM3  
TMR0  
TMR1  
TMR2  
TMR3  
PCLK0  
LXT  
PCLK1  
LXT  
HXT  
HXT  
CLK_CLKSEL1 [18:16]  
CLK_CLKSEL1[22:20]  
CLK_CLKSEL1 [10:8]  
CLK_CLKSEL1[14:12]  
Figure 6.3-1 Clock Generator Global View Diagram  
Aug. 18, 2020  
Page 56 of 140  
Rev. 1.01  
M031BT  
6.3.2  
Clock Generator  
The clock generator consists of 6 clock sources, which are listed below:  
32.768 kHz external low speed crystal oscillator (LXT)  
4~32 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency (PLLFOUT), PLL source can be selected from  
external 4~32 MHz external high speed crystal (HXT) or 48 MHz internal high speed  
oscillator (HIRC/4)  
48 MHz internal high speed RC oscillator (HIRC)  
38.4 kHz internal low speed RC oscillator (LIRC)  
LXTEN (CLK_PWRCTL[1])  
X32_IN  
External 32.768  
kHz Crystal  
LXT  
(LXT)  
X32_OUT  
HXTEN (CLK_PWRCTL[0])  
HXT  
XT1_IN  
External 4~32  
PLLSRC (CLK_PLLCTL[19])  
MHz Crystal  
(HXT)  
XT1_OUT  
0
1
HIRCEN (CLK_PWRCTL[2])  
PLL FOUT  
PLL  
/4  
Internal 48 MHz  
Oscillator  
(HIRC)  
HIRC  
LIRCEN (CLK_PWRCTL[3])  
Internal 38.4  
kHz Oscillator  
(LIRC)  
LIRC  
Figure 6.3-2 Clock Generator Block Diagram  
Aug. 18, 2020  
Page 57 of 140  
Rev. 1.01  
M031BT  
6.3.3  
System Clock and SysTick Clock  
The system clock has 5 clock sources, which were generated from clock generator block. The clock  
source switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram is shown  
in Figure 6.3-3  
HCLKSEL  
(CLK_CLKSEL0[2:0])  
HIRC  
111  
CPUCLK  
LIRC  
PLLFOUT  
LXT  
CPU  
AHB  
011  
010  
001  
000  
HCLK  
PCLK0  
PCLK1  
1/(HCLKDIV+1)  
HCLKDIV  
(CLK_CLKDIV0[3:0])  
APB0  
APB1  
HXT  
CPU in Power Down Mode  
Figure 6.3-3 System Clock Block Diagram  
There are two clock fail detectors to observe HXT and LXT clock source and they have individual  
enable and interrupt control. When HXT detector is enabled, the HIRC clock is enabled automatically.  
When LXT detector is enabled, the LIRC clock is enabled automatically.  
When HXT clock detector is enabled, the system clock will auto switch to HIRC if HXT clock stop  
being detected on the following condition: system clock source comes from HXT or system clock  
source comes from PLL with HXT as the input of PLL. If HXT clock stop condition is detected, the  
HXTFIF (CLK_CLKDSTS[0]) is set to 1 and chip will enter interrupt if HXTFIEN (CLK_CLKDCTL[5]) is  
set to 1. User can trying to recover HXT by disable HXT and enable HXT again to check if the clock  
stable bit is set to 1 or not. If HXT clock stable bit is set to 1, it means HXT is recover to oscillate after  
re-enable action and user can switch system clock to HXT again.  
The HXT clock stop detect and system clock switch to HIRC procedure is shown in Figure 6.3-4.  
Aug. 18, 2020  
Page 58 of 140  
Rev. 1.01  
 
M031BT  
Set HXTFDEN To enable  
HXT clock detector  
NO  
HXTFIF = 1?  
YES  
System clock source =  
HXTor PLL with  
HXT?  
System clock keep  
original clock  
NO  
YES  
Switch system clock to  
HIRC  
Figure 6.3-4 HXT Stop Protect Procedure  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock  
(SYST_CTRL[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The clock  
source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]). The block  
diagram is shown in Figure 6.3-5.  
STCLKSEL  
(CLK_CLKSEL0[5:3])  
HIRC  
111  
011  
010  
001  
000  
1/2  
1/2  
1/2  
HCLK  
HXT  
LXT  
STCLK  
HXT  
Figure 6.3-5 SysTick Clock Control Block Diagram  
Peripherals Clock  
6.3.4  
The peripherals clock has different clock source switch setting, which depends on the different  
peripheral.  
6.3.5  
Power-down Mode Clock  
Aug. 18, 2020  
Page 59 of 140  
Rev. 1.01  
 
M031BT  
When entering Power-down mode, system clocks, some clock sources and some peripheral clocks  
are disabled. Some clock sources and peripherals clock are still active in Power-down mode.  
For theses clocks, which still keep active, are listed below:  
Clock Generator  
38.4 kHz internal low speed RC oscillator (LIRC) clock  
32.768 kHz external low speed crystal oscillator (LXT) clock  
Peripherals Clock (When the modules adopt LXT or LIRC as clock source)  
6.3.6  
Clock Output  
This device is equipped with a power-of-2 frequency divider which is composed by16 chained divide-  
by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is  
reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with the  
frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock divider  
output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).  
When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When writing 0  
to CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock reaches low  
state and stays in low state.  
CLKOEN  
Enable  
(CLK_CLKOCTL[4])  
FREQSEL  
(CLK_CLKOCTL[3:0])  
divide-by-2 counter  
16 chained  
divide-by-2 counter  
DIV1EN  
(CLK_CLKOCTL[5])  
1/2  
1/22  
1/23  
...  
1/215 1/216  
PLL  
110  
0000  
0001  
:
LIRC  
HIRC  
100  
011  
010  
001  
000  
16 to 1  
MUX  
CLKO  
0
1
:
1110  
HCLK  
LXT  
1111  
HXT  
CLKOSEL (CLK_CLKSEL1[6:4])  
Figure 6.3-6 Clock Output Block Diagram  
Aug. 18, 2020  
Page 60 of 140  
Rev. 1.01  
M031BT  
6.4 Flash Memory Controller (FMC)  
6.4.1 Overview  
This chip is equipped with 64/128 Kbytes on-chip embedded Flash for application and Data Flash to  
store some application dependent data. A User Configuration block provides for system initialization. A  
2/4 Kbytes loader ROM (LDROM) is used for In-System-Programming (ISP) function with 128 Kbytes  
Flash and 2 Kbytes LDROM for other size Flash. A 512 bytes security protection ROM (SPROM) can  
conceal user program. This chip also supports In-Application-Programming (IAP) function, user  
switches the code executing without the chip reset after the embedded Flash updated.  
6.4.2  
Features  
Supports 64/128 Kbytes application ROM (APROM).  
Supports 2/4 Kbytes loader ROM (LDROM).  
Supports configurable Data Flash size to share with APROM.  
Supports 512 bytes security protection ROM (SPROM) to conceal user program.  
Supports 12 bytes User Configuration block to control system initialization.  
Supports 512 bytes page erase for all embedded Flash.  
Supports CRC-32 checksum calculation function.  
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded Flash memory.  
Aug. 18, 2020  
Page 61 of 140  
Rev. 1.01  
M031BT  
6.5 General Purpose I/O (GPIO)  
6.5.1 Overview  
This chip has up to 29 General Purpose I/O pins to be shared with other function pins depending on  
the chip configuration. These 29 pins are arranged in 5 ports named as PA, PB, PC, PD and PF. PA  
and PB. Each of the 29 pins is independent and has the corresponding register bits to control the pin  
mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull output,  
Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are  
depending on CIOINI (CONFIG0[10]).  
6.5.2  
Features  
Four I/O modes:  
Quasi-bidirectional mode  
Push-Pull Output mode  
Open-Drain Output mode  
Input only with high impendence mode  
Schmitt trigger input  
I/O pin can be configured as interrupt source with edge/level setting  
Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting  
CIOINI = 0, all GPIO pins in Quasi-bidirectional mode after chip reset  
CIOINI = 1, all GPIO pins in input mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the wake-up function  
Supports input 5V tolerance, except analog pin (PA.10 ~ 11; PB.0 ~ 15; PF.2 ~ 5;  
nRESET pin).  
Aug. 18, 2020  
Page 62 of 140  
Rev. 1.01  
M031BT  
6.6 PDMA Controller (PDMA)  
6.6.1 Overview  
The peripheral direct memory access (PDMA) controller is used to provide high-speed data transfer.  
The PDMA controller can transfer data from one address to another without CPU intervention. This  
has the benefit of reducing the workload of CPU and keeps CPU resources free for other applications.  
The PDMA controller has a total of 5 channels and each channel can perform transfer between  
memory and peripherals or between memory and memory.  
6.6.2  
Features  
Supports 5 independently configurable channels  
Selectable 2 level of priority (fixed priority or round-robin priority)  
Supports transfer data width of 8, 16, and 32 bits  
Supports source and destination address increment size can be byte, half-word, word or  
no increment  
Supports software and I2C, SPI, UART, USCI, ADC, PWM and TIMER request  
Supports Scatter-Gather mode to perform sophisticated transfer through the use of the  
descriptor link list table  
Supports single and burst transfer type  
Supports time-out function on channel 0 and channel1  
Aug. 18, 2020  
Page 63 of 140  
Rev. 1.01  
M031BT  
6.7 Timer Controller (TMR)  
6.7.1 Overview  
The timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily implement a  
timer control for applications. The timer can perform functions, such as frequency measurement, delay  
timing, clock generation, and event counting by external input pins, and interval measurement by  
external capture pins.  
6.7.2  
Features  
6.7.2.1 Timer Function Features  
Four sets of 32-bit timers, each timer having one 24-bit up counter and one 8-bit prescale  
counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through CNT (TIMERx_CNT[23:0])  
Supports event counting function  
24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])  
Supports external capture pin event for interval measurement  
Supports external capture pin event to reset 24-bit up counter  
Supports internal capture triggered while internal ACMP output signal and LIRC transition  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is  
generated  
Support Timer0 ~ Timer3 time-out interrupt signal or capture interrupt signal to trigger  
PWM, ADC, PDMA function  
Supports Inter-Timer trigger mode  
Aug. 18, 2020  
Page 64 of 140  
Rev. 1.01  
M031BT  
6.8 Watchdog Timer (WDT)  
6.8.1 Overview  
The Watchdog Timer (WDT) is used to perform a system reset when system runs into an unknown  
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer  
supports the function to wake up system from Idle/Power-down mode.  
6.8.2  
Features  
20-bit free running up counter for WDT time-out interval  
Selectable time-out interval (24 ~ 220) and the time-out interval is 416us ~ 27.3 s if  
WDT_CLK = 38.4 kHz (LIRC).  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports selectable WDT reset delay period, including 102613018 or 3 WDT_CLK  
reset delay period  
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0]  
in Config0 register  
Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC or  
LXT.  
Aug. 18, 2020  
Page 65 of 140  
Rev. 1.01  
M031BT  
6.9 Window Watchdog Timer (WWDT)  
6.9.1 Overview  
The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified window  
period to prevent software run to uncontrollable status by any unpredictable condition.  
6.9.2  
Features  
6-bit down counter value (CNTDAT, WWDT_CNT[5:0]) and 6-bit compare value  
(CMPDAT, WWDT_CTL[21:16]) to make the WWDT time-out window period flexible  
Supports 4-bit value (PSCSEL, WWDT_CTL[11:8]) to programmable maximum 11-bit  
prescale counter period of WWDT counter  
WWDT counter suspends in Idle/Power-down mode  
Aug. 18, 2020  
Page 66 of 140  
Rev. 1.01  
M031BT  
6.10 PWM Generator and Capture Timer (PWM)  
6.10.1 Overview  
The chip provides two PWM generators PWM0 and PWM1. Each PWM supports 6 channels of  
PWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit PWM  
counter with 16-bit comparator. The PWM counter supports up, down and up-down counter types.  
PWM uses comparator compared with counter to generate events. These events use to generate  
PWM pulse, interrupt and trigger signal for ADC to start conversion.  
The PWM generator supports two standard PWM output modes: Independent mode and  
Complementary mode, they have difference architecture. In Complementary mode, there are two  
comparators to generate various PWM pulse with 12-bit dead-time generator. For PWM output control  
unit, it supports polarity output, independent pin mask and brake functions.  
The PWM generator also supports input capture function to latch PWM counter value to the  
corresponding register when input channel has a rising transition, falling transition or both transition is  
happened. Capture function also support PDMA to transfer captured data to memory.  
6.10.2 Features  
6.10.2.1 PWM Function Features  
Supports maximum clock frequency up to 96 MHz  
Supports up to two PWM modules, each module provides 6 output channels  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 3 complementary paired PWM output channel  
Dead-time insertion with 12-bit resolution  
Two compared values during one period  
Supports 12-bit prescaler from 1 to 4096  
Supports 16-bit resolution PWM counter  
Up, down and up-down counter operation type  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Brake source from pin and system safety events (clock failed, Brown-out  
detection and CPU lockup)  
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake interrupt cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM counter matches 0, period value or compared value  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM counter matches 0, period value or compared value  
6.10.2.2 Capture Function Features  
Supports up to 12 capture input channels with 16-bit resolution  
Aug. 18, 2020  
Page 67 of 140  
Rev. 1.01  
M031BT  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Supports PDMA transfer function for PWM all channels  
Aug. 18, 2020  
Page 68 of 140  
Rev. 1.01  
M031BT  
6.11 UART Interface Controller (UART)  
6.11.1 Overview  
The chip provides three channels of Universal Asynchronous Receiver/Transmitters (UART). The  
UART controller performs Normal Speed UART and supports flow control function. The UART  
controller performs a serial-to-parallel conversion on data received from the peripheral and a parallel-  
to-serial conversion on data transmitted from the CPU. Each UART controller channel supports ten  
types of interrupts. The UART controller also supports IrDA SIR, RS-485 and Single-wire function  
modes and auto-baud rate measuring function.  
6.11.2 Features  
Full-duplex asynchronous communications  
Separates receive and transmit 16/16 bytes entry FIFO for data payloads  
Support Single-wire function mode.  
Supports hardware auto-flow control  
Programmable receiver buffer trigger level  
Supports programmable baud rate generator for each channel individually  
Supports nCTS, incoming data, Received Data FIFO reached threshold and RS-485  
Address Match (AAD mode) wake-up function (Only UART0 /UART1 with Received Data  
FIFO reached threshold and RS-485 Address Match (AAD mode) wake-up function)  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting DLY (UART_TOUT [15:8])  
Supports Auto-Baud Rate measurement and baud rate compensation function  
Support 9600 bps for UART_CLK is selected LXT. (Only UART0 /UART1 with  
this feature)  
Supports break error, frame error, parity error and receive/transmit buffer overflow  
detection function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5-, 6-, 7-, 8- bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode  
Supports for 3/16 bit duration for normal mode  
Supports RS-485 function mode  
Supports RS-485 9-bit mode  
Supports hardware or software enables to program nRTS pin to control RS-485  
transmission direction  
Supports PDMA transfer function  
Aug. 18, 2020  
Page 69 of 140  
Rev. 1.01  
M031BT  
UART Feature  
UART0/ UART1  
UART2  
USCI-UART  
TX: 1byte  
RX: 2byte  
FIFO  
16 Bytes  
1 Bytes  
Auto Flow Control (CTS/RTS)  
IrDA  
-
-
-
LIN  
-
RS-485 Function Mode  
nCTS Wake-up  
Imcoming Data Wake-up  
-
Received Data FIFO reached threshold Wake-  
up  
-
RS-485 Address Match (AAD mode) Wake-up  
Auto-Baud Rate Measurement  
STOP Bit Length  
-
-
1, 1.5, 2 bit  
1, 1.5, 2 bit  
1, 2 bit  
Word Length  
5, 6, 7, 8 bits  
5, 6, 7, 8 bits  
6~13 bits  
Even / Odd Parity  
Stick Bit  
-
Note: = Supported  
Table 6.11-1 NuMicro® M031 Series UART Features  
Aug. 18, 2020  
Page 70 of 140  
Rev. 1.01  
M031BT  
6.12 Serial Peripheral Interface (SPI)  
6.12.1 Overview  
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and allows full  
duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction interface. The  
chip contains one set of SPI controller performing a serial-to-parallel conversion on data received from  
a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device.  
Each SPI controller can be configured as a master or a slave device and supports the PDMA function  
to access the data buffer.  
6.12.2 Features  
SPI Mode  
Supports one set of SPI controller  
Dedicated SPI controller for RF transceiver.  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 4-level of 32-bit (or 8-level of 16-bit) transmit and receive  
FIFO buffers which depended on SPI setting of data width  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports Byte or Word Suspend mode  
Master mode up to 16 MHz (when chip works at VDD = 1.8~3.6V)  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
Supports PDMA transfer  
Aug. 18, 2020  
Page 71 of 140  
Rev. 1.01  
M031BT  
6.13 I2C Serial Interface Controller (I2C)  
6.13.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange  
between devices. The I2C standard is a true multi-master bus including collision detection and  
arbitration that prevents data corruption if two or more masters attempt to control the bus  
simultaneously.  
There are two sets of I2C controllers which support Power-down wake-up function.  
6.13.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to the  
bus. The main features of the I2C bus include:  
Supports up to two I2C ports  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Supports Standard mode (100 kbps) and Fast mode (400 kbps)  
Arbitration between simultaneously transmitting masters without corruption of serial data  
on the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and  
timer-out counter overflow  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing  
Supports multiple address recognition (four slave address with mask option)  
Supports Power-down wake-up function  
Supports PDMA with one buffer capability  
Supports setup/hold time programmable  
Aug. 18, 2020  
Page 72 of 140  
Rev. 1.01  
M031BT  
6.14 USCI - Universal Serial Control Interface Controller (USCI)  
6.14.1 Overview  
The Universal Serial Control Interface (USCI) is a flexible interface module covering several serial  
communication protocols. The user can configure this controller as UART, SPI, or I2C functional  
protocol.  
6.14.2 Features  
The controller can be individually configured to match the application needs. The following protocols  
are supported:  
UART  
SPI  
I2C  
Aug. 18, 2020  
Page 73 of 140  
Rev. 1.01  
M031BT  
6.15 USCI UART Mode  
6.15.1 Overview  
The asynchronous serial channel UART covers the reception and the transmission of asynchronous  
data frames. It performs a serial-to-parallel conversion on data received from the peripheral, and a  
parallel-to-serial conversion on data transmitted from the controller. The receiver and transmitter being  
independent, frames can start at different points in time for transmission and reception.  
The UART controller also provides auto flow control. There are two conditions to wake-up the system.  
6.15.2 Features  
Supports one transmit buffer and two receive buffer for data payload  
Supports hardware auto flow control function  
Supports programmable baud-rate generator  
Support 9-bit Data Transfer (Support 9-bit RS-485)  
Baud rate detection possible by built-in capture event of baud rate generator  
Supports PDMA capability  
Supports Wake-up function (Data and nCTS Wakeup Only)  
Aug. 18, 2020  
Page 74 of 140  
Rev. 1.01  
M031BT  
6.16 USCI - SPI Mode  
6.16.1 Overview  
The SPI protocol of USCI controller applies to synchronous serial data communication and allows full  
duplex transfer. It supports both master and Slave operation mode with the 4-wire bi-direction  
interface. SPI mode of USCI controller performs a serial-to-parallel conversion on data received from a  
peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. The  
SPI mode is selected by FUNMODE (USPI_CTL[2:0]) = 0x1  
This SPI protocol can operate as Master or Slave mode by setting the SLAVE (USPI_PROTCTL[0]) to  
communicate with the off-chip SPI Slave or master device. The application block diagrams in Master  
and Slave mode are shown below.  
USCI SPI Master  
USCI SPI Master  
SPI Slave Device  
SPI_MOSI  
Master Transmit Data  
Master Receive Data  
Serial Bus Clock  
SPI_MOSI  
(USCIx_DAT0)  
SPI_MISO  
(USCIx_DAT1)  
SPI_MISO  
SPI_CLK  
SPI_SS  
SPI_CLK  
(USCIx_CLK)  
Slave Select  
SPI_SS  
(USCIx_CTL)  
Note: x = 0  
Note: M031BT series doesn’t support USCIx_CTL0 pin. User needs to use GPIO as SPI_SS pin.  
Figure 6.16-1 SPI Master Mode Application Block Diagram  
USCI SPI Slave  
USCI SPI Slave  
SPI Master Device  
SPI_MOSI  
Slave Receive Data  
Slave Transmit Data  
Serial Bus Clock  
SPI_MOSI  
(USCIx_DAT0)  
SPI_MISO  
(USCIx_DAT1)  
SPI_MISO  
SPI_CLK  
SPI_CLK  
(USCIx_CLK)  
Slave Select  
SPI_SS  
(USCIx_CTL)  
SPI_SS  
Note: x = 0  
Figure 6.16-2 SPI Slave Mode Application Block Diagram  
6.16.2 Features  
Supports Master or Slave mode operation (the maximum frequency -- Master = fPCLK / 2,  
Aug. 18, 2020  
Page 75 of 140  
Rev. 1.01  
M031BT  
Slave < fPCLK / 5)  
Configurable bit length of a transfer word from 4 to 16-bit  
Supports one transmit buffer and two receive buffers for data payload  
Supports MSB first or LSB first transfer sequence  
Supports Word Suspend function  
Supports PDMA transfer  
Supports 3-wire, no slave select signal, bi-direction interface  
Supports wake-up function by slave select signal in Slave mode  
Supports one data channel half-duplex transfer  
Aug. 18, 2020  
Page 76 of 140  
Rev. 1.01  
M031BT  
6.17 USCI - I2C Mode  
6.17.1 Overview  
On I2C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA  
lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit. There is one SCL clock pulse  
for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred  
byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only  
during the low period of SCL and must be held stable during the high period of SCL. A transition on  
the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to Figure  
6.17-1 for more detailed I2C BUS Timing.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD_STA  
tSU_STA  
tSU_STO  
tSU_DAT  
tHD_DAT  
Figure 6.17-1 I2C Bus Timing  
The device’s on-chip I2C provides the serial interface that meets the I2C bus standard mode  
specification. The I2C port handles byte transfers autonomously. The I2C mode is selected by  
FUNMODE (UI2C_CTL [2:0]) = 100B. When enable this port, the USCI interfaces to the I2C bus via  
two pins: SDA and SCL. When I/O pins are used as I2C ports, user must set the pins function to I2C in  
advance.  
Note: Pull-up resistor is needed for I2C operation because the SDA and SCL are set to open-drain  
pins when USCI is selected to I2C operation mode .  
6.17.2 Features  
Full master and slave device capability  
Supports of 7-bit addressing, as well as 10-bit addressing  
Communication in standard mode (100 kBit/s) or in fast mode (up to 400 kBit/s)  
Supports multi-master bus  
Supports one transmit buffer and two receive buffer for data payload  
Supports 10-bit bus time-out capability  
Supports bus monitor mode.  
Supports Power down wake-up by data toggle or address match  
Supports setup/hold time programmable  
Supports multiple address recognition (two slave address with mask option)  
Aug. 18, 2020  
Page 77 of 140  
Rev. 1.01  
 
M031BT  
6.18 CRC Controller (CRC)  
6.18.1 Overview  
The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with four common  
polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32 settings.  
6.18.2 Features  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
CRC-CCITT: X16 + X12 + X5 + 1  
CRC-8: X8 + X2 + X + 1  
CRC-16: X16 + X15 + X2 + 1  
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X  
+ 1  
Programmable seed value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum  
Supports 8/16/32-bit of data width  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports using PDMA to write data to perform CRC operation  
Aug. 18, 2020  
Page 78 of 140  
Rev. 1.01  
M031BT  
6.19 Hardware Divider (HDIV)  
6.19.1 Overview  
The hardware divider (HDIV) is useful to the high performance application. The hardware divider is a  
signed, integer divider with both quotient and remainder outputs.  
6.19.2 Features  
Signed (two’s complement) integer calculation  
32-bit dividend with 16-bit divisor calculation capacity  
32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-bit)  
Divided by zero warning flag  
6 HCLK clocks taken for one cycle calculation  
Write divisor to trigger calculation  
Waiting for calculation ready automatically when reading quotient and remainder  
Aug. 18, 2020  
Page 79 of 140  
Rev. 1.01  
M031BT  
6.20 Analog-to-Digital Converter (ADC)  
6.20.1 Overview  
The ADC contains one 12-bit successive approximation analog-to-digital converter (SAR A/D  
converter) with 16 input channels. The A/D converter supports four operation modes: Single, Burst,  
Single-cycle Scan and Continuous Scan mode. The A/D converter can be started by software,  
external pin (STADC/PF.5), timer0~3 overflow pulse trigger and PWM trigger.  
6.20.2 Features  
Operating voltage: 1.8V~3.6V.  
Analog input voltage: 0 ~ AVDD.  
Supports external reference voltage from VREF pin.  
12-bit resolution and 10-bit accuracy is guaranteed.  
Up to 16 single-end analog input channels or 8 differential analog input channels.  
Maximum ADC peripheral clock frequency is 34 MHz.  
Up to 2 MSPS sampling rate.  
Scan on enabled channels  
Threshold voltage detection  
Four operation modes:  
Single mode: A/D conversion is performed one time on a specified channel.  
Burst mode: A/D converter samples and converts the specified single channel  
and sequentially stores the result in FIFO.  
Single-cycle Scan mode: A/D conversion is performed only one cycle on all  
specified channels with the sequence from the smallest numbered channel to  
the largest numbered channel.  
Continuous Scan mode: A/D converter continuously performs Single-cycle Scan  
mode until software stops A/D conversion.  
An A/D conversion can be started by:  
Software Write 1 to ADST bit.  
External pin (STADC).  
Timer 0~3 overflow pulse trigger.  
PWM trigger.  
Each conversion result is held in data register of each channel with valid and overrun  
indicators.  
Conversion result can be compared with specified value and user can select whether to  
generate an interrupt when conversion result matches the compare register setting.  
Supports extend sample time function (0~255 ADC clock).  
One internal channel from band-gap voltage (VBG).  
Supports PDMA transfer mode.  
Supports Calibration mode.  
Note1: ADC sampling rate = (ADC peripheral clock frequency) / (total ADC conversion cycle)  
Aug. 18, 2020  
Page 80 of 140  
Rev. 1.01  
M031BT  
Note2: If the internal channel for band-gap voltage is active, the maximum sampling rate will be 300 k  
SPS.  
Note3: The ADC Clock frequency must be slower than or equal to PCLK.  
Aug. 18, 2020  
Page 81 of 140  
Rev. 1.01  
M031BT  
6.21 Analog Comparator Controller (ACMP)  
6.21.1 Overview  
The chip provides two comparators. The comparator output is logic 1 when positive input is greater  
than negative input; otherwise, the output is 0. Each comparator can be configured to generate an  
interrupt when the comparator output value changes.  
6.21.2 Features  
Analog input voltage range: 0 ~ AVDD (voltage of AVDD pin)  
Up to two analog comparators  
Supports hysteresis function  
Supports wake-up function  
Selectable input sources of positive input and negative input  
ACMP0 supports:  
4 multiplexed I/O pins at positive sources:  
ACMP0_P0, ACMP0_P1, ACMP0_P2, or ACMP0_P3  
3 negative sources:  
ACMP0_N  
Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
ACMP1 supports  
4 multiplexed I/O pins at positive sources:  
ACMP1_P0, ACMP1_P1, ACMP1_P2, or ACMP1_P3  
3 negative sources:  
ACMP1_N  
Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
Shares one ACMP interrupt vector for all comparators  
Interrupts generated when compare results change (Interrupt event condition is  
programmable)  
Supports triggers for break events and cycle-by-cycle control for PWM  
Supports window compare mode and window latch mode  
Aug. 18, 2020  
Page 82 of 140  
Rev. 1.01  
M031BT  
6.22 Radio  
6.22.1 Overview  
This chip is equipped with an RF transceiver for wireless application use. The RF transceiver includes  
an RF radio and modulator/demodulator. It is fully compliant with the Bluetooth 5.0 standard and also  
supports proprietary 2.4 GHz protocols.  
6.22.2 Features  
Modem with Integrated RF radio for 2.4 GHz Bluetooth communication link  
Compliant with Bluetooth 5 Low Energy Specification  
Supports proprietary 2.4 GHz protocols  
High TX power with low current (+8 dBm, 8 mA)  
Programmable output power from -20 dBm to +8 dBm  
Rx Sensitivity : -94 dBm at 1 Mbps  
Data rate: 1Mbps and 2Mbps  
Immune to interference (image rejection, -25 dBm)  
32 kHz low speed on-chip RC oscillator with deviation less than ± 500 ppm  
Dedicated 16/32 MHz high speed crystal  
RSSI read-out  
Integrated security engine for real-time processing of the data stream  
AES-CCM  
AES-128  
CRC  
Two power modes for RF transceiver  
DC-to-DC mode  
LDO mode  
Five operating modes:  
Deep Sleep  
Sleep  
Standby  
Receive  
Transmit  
Aug. 18, 2020  
Page 83 of 140  
Rev. 1.01  
M031BT  
6.23 Peripherals Interconnection  
6.23.1 Overview  
Some peripherals have interconnections which allow autonomous communication or synchronous  
action between peripherals without needing to involve the CPU. Peripherals interaction without CPU  
saves CPU resources, reduces power consumption, and allows for operation with no software latency  
and fast responds.  
6.23.2 Peripherals Interconnect Matrix Table  
Destination  
Source  
ADC  
HIRC TRIM  
PWM  
Timer  
UART/USCI  
ACMP  
BOD  
-
-
-
-
3
3
3
3
-
6
-
-
-
-
-
-
Clock Fail  
CPU Lockup  
LIRC  
-
-
-
-
-
-
-
-
6
-
HXT  
-
-
-
LXT  
-
2
-
-
-
PWM  
1
1
4
5
-
8
-
Timer  
-
7
Table 6.23-1 Peripherals Interconnect Matrix Table  
Aug. 18, 2020  
Page 84 of 140  
Rev. 1.01  
M031BT  
7 APPLICATION CIRCUIT  
7.1 Power Supply Scheme (DC-to-DC Mode)  
Sunlord/ SDCL1005C15N  
Murata/ LQM18FN100M00D  
as close to AVDD as possible  
L=30Z  
as close as possible  
EXT_PWR  
RF_BUCK_FB  
RF_AVDDV1V2  
AVDD  
L=10 uH L=15 nH  
AVSS  
1uF+0.1uF+0.01uF  
L=30Z  
RF_BUCK_OUT  
VSS  
1uF  
as close to the  
VREF  
EXT_PWR as possible  
2.2uF+1uF+470pF  
L=30Z  
as close to VREF as possible  
10uF+0.1uF  
LDO_CAP  
as close to RF_VDD / RF_VDDas  
possible  
0.1uF  
VSS  
RF_VDDPA  
1uF  
as close to LDO as possible  
L=30Z  
VDD  
RF_VDD  
EXT_PWR  
EXT_VSS  
VSS  
VSS  
1uF  
EXT_VSS  
0.1uF*N  
as close to VDD as possible  
Aug. 18, 2020  
Page 85 of 140  
Rev. 1.01  
M031BT  
7.2 Power Supply Scheme (LDO Mode)  
as close to AVDD as possible  
L=30Z  
as close as possible  
EXT_PWR  
RF_BUCK_FB  
RF_AVDDV1V2  
AVDD  
AVSS  
1uF+0.1uF+0.01uF  
L=30Z  
RF_BUCK_OUT  
VSS  
1uF  
as close to the  
VREF  
EXT_PWR as possible  
2.2uF+1uF+470pF  
L=30Z  
as close to VREF as possible  
10uF+0.1uF  
LDO_CAP  
as close to RF_VDD / RF_VDDPA as  
possible  
0.1uF  
VSS  
RF_VDDPA  
1uF  
as close to LDO as possible  
L=30Z  
VDD  
RF_VDD  
EXT_PWR  
EXT_VSS  
VSS  
VSS  
1uF  
EXT_VSS  
0.1uF*N  
as close to VDD as possible  
Aug. 18, 2020  
Page 86 of 140  
Rev. 1.01  
M031BT  
7.3 Peripheral Application Scheme (M031BTxE)  
DVCC  
100K  
100K  
DVCC  
VDD  
ICE_DAT  
SWD  
Interface  
CS  
GPIO*  
ICE_CLK  
nRESET  
VDD  
VSS  
USPI_CLK  
USPI_MISO  
USPI_MOSI  
CLK  
MISO  
MOSI  
VSS  
20pF  
20pF  
20pF  
20pF  
XT1_IN  
SPI Device  
4~32 MHz  
crystal  
DVCC  
DVCC  
XT1_OUT  
X32_IN  
4.7K  
4.7K  
CLK  
DIO  
VDD  
VSS  
I2C_SCL  
I2C_SDA  
Crystal  
32.768 kHz  
crystal  
I2C Device  
X32_OUT  
PC COM Port  
RS 232 Transceiver  
M031BTxE Series  
15pF  
15pF  
UART_RXD  
ROUT RIN  
RF_XTAL_IN  
UART_TXD  
TIN  
TOUT  
16 MHz  
crystal  
± 10 ppm  
UART  
RF_XTAL_OUT  
DVCC  
Reset  
Circuit  
Antenna  
Murata  
10K  
LQG15HS1N8B02  
10 pF  
1.8 nH  
nRESET  
RF_IO  
10 uF  
0.5 pF  
0.5 pF  
0.5 pF  
0.5 pF  
LDO_CAP  
1.0 nH  
Sunlord  
SDCL1005C1NOSTDF  
1.0 nH  
Sunlord  
SDCL1005C1NOSTDF  
1 uF  
LDO  
Notch Filter  
Notch Filter  
Note 1: M031BT series doesn’t support USCIx_CTL0 pin. User needs to use GPIO as SPI_SS pin.  
Note 2: It is recommended to use 100 kΩ pull-up resistor on both ICE_DAT and ICE_CLK pin.  
Note 3: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
Aug. 18, 2020  
Page 87 of 140  
Rev. 1.01  
M031BT  
7.4 Peripheral Application Scheme (M031BTxD)  
DVCC  
100K  
100K  
DVCC  
VDD  
ICE_DAT  
SWD  
Interface  
CS  
GPIO*  
ICE_CLK  
nRESET  
VDD  
VSS  
USPI_CLK  
USPI_MISO  
USPI_MOSI  
CLK  
MISO  
MOSI  
VSS  
20pF  
20pF  
20pF  
20pF  
XT1_IN  
SPI Device  
4~32 MHz  
crystal  
DVCC  
DVCC  
XT1_OUT  
X32_IN  
4.7K  
4.7K  
CLK  
DIO  
VDD  
VSS  
I2C_SCL  
I2C_SDA  
Crystal  
32.768 kHz  
crystal  
I2C Device  
X32_OUT  
PC COM Port  
RS 232 Transceiver  
M031BTxD Series  
15pF  
15pF  
UART_RXD  
ROUT RIN  
RF_XTAL_IN  
UART_TXD  
TIN  
TOUT  
16 MHz  
crystal  
± 10 ppm  
UART  
RF_XTAL_OUT  
DVCC  
Reset  
Circuit  
Antenna  
Murata  
10K  
LQG15HS3N3S02D  
10 pF  
3.3 nH  
nRESET  
RF_IO  
10 uF  
0.5 pF  
0.5 pF  
LDO_CAP  
1.0 nH  
1.0 nH  
Sunlord  
SDCL1005C1NOSTDF  
Sunlord  
SDCL1005C1NOSTDF  
1 uF  
LDO  
Notch Filter  
Notch Filter  
Note 1: M031BT series doesn’t support USCIx_CTL0 pin. User needs to use GPIO as SPI_SS pin.  
Note 2: It is recommended to use 100 kΩ pull-up resistor on both ICE_DAT and ICE_CLK pin.  
Note 3: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
Aug. 18, 2020  
Page 88 of 140  
Rev. 1.01  
M031BT  
7.5 PCB Layout Guide  
1. Pin-7( RF_IO) path is 50 ohm. The path should be as short as possible, And Pin-6 (VSS) and Pin-8  
(VSS) should be connected to GND, but not directly connected to Pin-49 (VSS). Do not have any  
lines underneath, and it is best to have GND for isolation.  
2. The power capacitor closed to chip is better.  
3. The crystal ground is better to stay away from RF_IO path. After the crystal ground and capacitor  
ground are connected to confluence, pull a path out of PCB ground. Do not have a ground via in  
this path.  
Aug. 18, 2020  
Page 89 of 140  
Rev. 1.01  
M031BT  
4. Pin-17 (RF_BUCK_FB) & Pin-18 (RF_BUCK_OUT) DC-to-DC path closed to chip is better. After  
C37 ground and Pin-20 are connected to confluence, pull a path out of PCB ground. Do not have  
a ground via in this path and Pin-20 (VSS) cannot be directly connected to Pin-49 (VSS) .  
Aug. 18, 2020  
Page 90 of 140  
Rev. 1.01  
M031BT  
8 ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
Stresses above the absolute maximum ratings may cause permanent damage to the device. The  
limiting values are stress ratings only and cannot be used to functional operation of the device.  
Exposure to the absolute maximum ratings may affect device reliability and proper operation is not  
guaranteed.  
8.1.1  
Voltage Characteristics  
Symbol  
Description  
Min  
Max  
4.0  
4.0  
50  
Unit  
V
[*1]  
VDD-VSS  
DC power supply  
-0.3  
[*1]  
RF_VDD-VSS  
Power supply for RF transceiver  
-0.3  
V
Variations between different power pins  
Allowed voltage difference for VDD and AVDD  
Variations between different ground pins  
Allowed voltage difference for VSS and AVSS  
Input voltage on 5V-tolerance I/O  
-
mV  
mV  
mV  
mV  
V
ΔVDD  
|VDD AVDD  
|
-
50  
-
50  
ΔVSS  
|VSS - AVSS  
|
-
50  
VSS-0.3  
VSS-0.3  
5.5  
4.0  
VIN  
Input voltage on any other pin[*2]  
V
Note:  
1. All main power (VDD, RF_VDD, AVDD) and ground (VSS, AVSS) pins must be connected to the external power supply.  
2. Non 5V-tolerance I/O includes; PB.0 ~ 15; PF.2, 3, 4, 5. VIN maximum value must be respected to avoid permanent  
damage. Refer to Table 8.1-2 for the values of the maximum allowed injected current  
Table 8.1-1 Voltage Characteristics  
8.1.2  
Current Characteristics  
Symbol  
Description  
Min  
Max  
150  
100  
20  
Unit  
[*1]  
ΣIDD  
ΣISS  
Maximum current into VDD  
Maximum current out of VSS  
-
-
-
-
-
-
-
-
Maximum current sunk by a I/O Pin  
Maximum current sourced by a I/O Pin  
Maximum current sunk by total I/O Pins[*2]  
Maximum current sourced by total I/O Pins[*2]  
Maximum injected current by a I/O Pin  
Maximum injected current by total I/O Pins  
20  
IIO  
mA  
100  
100  
±5  
[*3]  
IINJ(PIN)  
[*3]  
ΣIINJ(PIN)  
±25  
Note:  
1. Maximum allowable current is a function of device maximum power dissipation.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not  
be sunk/sourced between two consecutive power supply pins.  
3. A positive injection is caused by VIN>AVDD and a negative injection is caused by VIN<VSS. IINJ(PIN) must never be  
exceeded. It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage  
supply pin.  
Aug. 18, 2020  
Page 91 of 140  
Rev. 1.01  
M031BT  
Table 8.1-2 Current Characteristics  
Aug. 18, 2020  
Page 92 of 140  
Rev. 1.01  
M031BT  
8.1.3  
Thermal Characteristics  
The average junction temperature can be calculated by using the following equation:  
T
T
+ (P  
x
)
J
=
A
D
θJA  
TA = ambient temperature (°C)  
θJA = thermal resistance junction-ambient (°C/Watt)  
P
D
= sum of internal and I/O power dissipation  
Symbol  
Description  
Min  
Typ  
Max  
85  
Unit  
°C  
T
A
-40  
Operating ambient temperature  
Operating junction temperature  
Storage temperature  
-
-
-
T
J
-40  
-65  
-
125  
150  
T
ST  
Thermal resistance junction-ambient  
20-pin TSSOP(4.4x6.5 mm)  
°C/Watt  
38  
30  
-
-
-
-
-
-
-
-
Thermal resistance junction-ambient  
28-pin TSSOP(4.4x9.7 mm)  
-
-
-
-
-
-
-
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
Thermal resistance junction-ambient  
33-pin QFN(4x4 mm)  
28  
Thermal resistance junction-ambient  
40-pin QFN(5x5 mm)  
37.8  
37.8  
60  
[*1]  
θJA  
Thermal resistance junction-ambient  
48-pin QFN(5x5 mm)  
Thermal resistance junction-ambient  
48-pin LQFP(7x7 mm)  
Thermal resistance junction-ambient  
64-pin LQFP(7x7 mm)  
58  
Thermal resistance junction-ambient  
128-pin LQFP(14x14 mm)  
38.5  
Note:  
1.  
Determined according to JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions  
Table 8.1-3 Thermal Characteristics  
Aug. 18, 2020  
Page 93 of 140  
Rev. 1.01  
M031BT  
8.1.4  
EMC Characteristics  
8.1.4.1 Electrostatic discharge (ESD)  
For the Nuvoton MCU products, there are ESD protection circuits which built into chips to avoid any  
damage that can be caused by typical levels of ESD.  
8.1.4.2 Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
Symbol  
Description  
Min  
-2000  
-400  
Typ  
Max  
+2000  
+400  
Unit  
V
[*1]  
VHBM  
Electrostatic discharge,human body mode  
Electrostatic discharge,charge device model  
Pin current for latch-up[*3]  
-
-
-
[*2]  
VCDM  
LU[*3]  
-100  
mA  
+100  
Note:  
1. Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human  
Body Model (HBM) Component Level  
2. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing –  
Charged Device Model (CDM) Component Level.  
3. Determined according to JEDEC EIA/JESD78 standard.  
4. The performace cretia class is 4A.  
Table 8.1-4 EMC Characteristics  
Aug. 18, 2020  
Page 94 of 140  
Rev. 1.01  
M031BT  
8.1.5  
Package Moisture Sensitivity(MSL)  
The MSL rating of an IC determines its floor life before the board mounting once its dry bag has been  
opened. All Nuvoton surface mount chips have a moisture level classification. The information is also  
displayed on the bag packing.  
Pacakge  
20-pin TSSOP(4.4x6.5 mm)[*1]  
28-pin TSSOP(4.4x9.7 mm) [*1]  
33-pin QFN(4x4 mm) [*1]  
MSL  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
40-pin QFN(5x5 mm) [*1]  
48-pin QFN(5x5 mm) [*1]  
48-pin LQFP(7x7 mm) [*1]  
64-pin LQFP(7x7 mm) [*1]  
128-pin LQFP(14x14 mm) [*1]  
Note:  
1. Determined according to IPC/JEDEC J-STD-020  
Table 8.1-5 Package Moisture Sensitivity (MSL)  
Aug. 18, 2020  
Page 95 of 140  
Rev. 1.01  
M031BT  
8.1.6  
Soldering Profile  
Figure 8.1-1 Soldering Profile from J-STD-020C  
Porfile Feature  
Pb Free Package  
3°C/sec. max  
Average ramp-up rate (217°C to peak)  
Preheat temperature 150°C ~200°C  
Temperature maintained above 217°C  
Time with 5°C of actual peak temperature  
Peak temperature range  
60 sec. to 120 sec.  
60 sec. to 150 sec.  
> 30 sec.  
260°C  
Ramp-down rate  
6°C/sec ax.  
8 min. max  
Time 25°C to peak temperature  
Note:  
1. Determined according to J-STD-020C  
Table 8.1-6 Soldering Profile  
Aug. 18, 2020  
Page 96 of 140  
Rev. 1.01  
M031BT  
8.2 General Operating Conditions  
(VDD-VSS = 1.8 ~ 3.6V, TA = 25C, HCLK = 48 MHz unless otherwise specified.)  
Test Conditions  
Min  
-40  
-
Typ  
Max  
85  
Unit  
°C  
Symbol  
TA  
Parameter  
Temperature  
-
-
-
fHCLK  
Internal AHB clock frequency  
Operation voltage  
48  
MHz  
VDD = 1.8 V~3.6 V  
f
VDD  
1.8  
2.3  
1.8  
3.6  
3.6  
3.6  
HCLK up to 48 MHz  
-
DC-to-DC mode  
LDO mode  
RF_VDD  
RF_VDDPA  
RF transceiver operation voltage  
-
RF_VDD  
1.2  
VDD  
-
RF power amplifier operation voltage  
V
RF_AVDD1V2 RF Transceiver 1.2 V voltage  
-
-
[*1]  
AVDD  
VREF  
VLDO  
Analog operation voltage  
Analog reference voltage  
LDO output voltage  
1.8  
-
AVDD  
-
AVDD VREF < 1.2 V  
1.8  
1.23  
1
[*4]  
VBG  
CLDO  
RESR  
Band-gap voltage  
1.16  
1.31  
[*2]  
[*3]  
LDO output capacitor on each pin  
ESR of CLDO output capacitor  
μF  
0.1  
-
-
10  
-
Ω
InRush current on voltage regulator  
power-on (POR or wakeup from  
Standby)  
[*3]  
IRUSH  
150  
mA  
InRush energy on voltage regulator  
power-on (POR or wakeup from  
Standby)  
VDD = 1.8 V, TA = 85 °C,  
IRUSH = 150 mA for 15 us  
[*3]  
ERUSH  
-
2.25  
-
µC  
Note:  
1.It is recommended to power VDD and AVDD from the same source. A maximum difference of 0.3 V between VDD and  
AVDD can be tolerated during power-on and power-off operation .  
2.To ensure stability, an external 1 μF output capacitor, CLDO must be connected between the LDO_CAP pin and the  
closest GND pin of the device. Solid tantalum and multilayer ceramic capacitors are suitable as output capacitor.  
Additional 100 nF bypass capacitor between LDO_CAP pin and the closest GND pin of the device helps decrease  
output noise and improves the load transient response.  
3.Guaranteed by design, not tested in production  
4.Based on characterization, not tested in production unless otherwise specified.  
Table 8.2-1 General Operating Conditions  
Aug. 18, 2020  
Page 97 of 140  
Rev. 1.01  
M031BT  
8.3 DC Electrical Characteristics  
8.3.1 Supply Current Characteristics  
The current consumption is a combination of internal and external parameters and factors such as  
operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program  
location in memory and so on. The current consumption is measured as described in below condition  
and table to inform test characterization result.  
All GPIO pins are in push pull mode and output high.  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature  
(TA), and the typical values for TA= 25 °C and VDD = 1. 8V ~ 3.6 V unless otherwise  
specified.  
VDD = AVDD  
When the peripherals are enabled HCLK is the system clock, fPCLK0, 1 = fHCLK  
Program run CoreMark® code in Flash.  
.
Typ [*1]  
Max[*1][*2]  
Symbol  
Conditions  
FHCLK  
Unit  
T
= 25 °C  
T
= 25 °C  
T = 85 °C  
A
A
A
48 MHz  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
8.8  
6.2  
5
10.1  
7.1  
5.8  
4.1  
2.8  
10.5  
7.6  
6.0  
4.4  
3.0  
Normal run mode, executed from  
Flash, all peripherals disable  
3.6  
2.4  
38.4 kHz  
32.768 kHz  
48 MHz  
0.105  
0.104  
20  
0.121  
0.120  
23.0  
0.275  
0.273  
23.7  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
12.9  
11.2  
6.7  
14.8  
12.9  
7.7  
15.5  
13.3  
8.0  
IDD_RUN  
mA  
Normal run mode, executed from  
Flash, all peripherals enable  
3.9  
4.5  
4.7  
38.4 kHz  
32.768 kHz  
48 MHz  
32 MHz  
24 MHz  
12 MHz  
0.111  
0.110  
11.4  
7.8  
0.128  
0.127  
13.11  
8.97  
7.36  
4.83  
0.283  
0.281  
13.5  
9.5  
Normal run mode, executed from  
Flash, Timer1/SPI0/PDMA enable  
6.4  
7.7  
4.2  
5.1  
Note:  
1. When analog peripheral blocks such as ADC, ACMP, PLL, HIRC, LIRC, HXT, LXT and RF transceiver are ON, an  
additional power consumption should be considered.  
2. Based on characterization, not tested in production unless otherwise specified.  
3. The RF transceiver operates in deep sleep mode.  
Aug. 18, 2020  
Page 98 of 140  
Rev. 1.01  
M031BT  
Table 8.3-1 Current Consumption in Normal Run Mode  
Typ  
Max[*1] [*2]  
Symbol  
Conditions  
FHCLK  
Unit  
T
= 25 °C  
T
= 25 °C  
T = 85 °C  
A
A
A
48 MHz  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
3.85  
3.15  
2.74  
1.83  
1.74  
4.43  
3.62  
3.15  
2.10  
2.00  
4.68  
4.01  
3.36  
2.30  
2.19  
Idle mode, all peripherals disable  
38.4 kHz  
32.768 kHz  
48 MHz  
0.098  
0.099  
15.45  
0.113  
0.114  
17.77  
0.266  
0.267  
18.36  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
10.02  
8.81  
5.46  
3.23  
0.108  
0.107  
6.45  
5.83  
5.15  
4.5  
11.52  
10.13  
6.28  
12.15  
10.53  
6.57  
IDD_IDLE  
mA  
Idle mode, all peripherals enable  
3.71  
3.94  
38.4 kHz  
32.768 kHz  
48 MHz  
32 MHz  
24 MHz  
12 MHz  
0.124  
0.123  
7.42  
0.279  
0.277  
7.73  
6.70  
7.14  
Idle mode, Timer1/SPI0/PDMA  
enable  
5.92  
6.17  
5.18  
5.39  
Note:  
1. When analog peripheral blocks such as ADC, ACMP, PLL, HIRC, LIRC, HXT, LXT and RF transceiver are ON, an  
additional power consumption should be considered.  
2. Based on characterization, not tested in production unless otherwise specified.  
3. The RF transceiver operates in deep sleep mode.  
Table 8.3-2 Current Consumption in Idle Mode  
Aug. 18, 2020  
Page 99 of 140  
Rev. 1.01  
M031BT  
Typ[*2]  
= 25  
Max[*3][*4]  
LXT[*1] LIRC  
Symbol  
Test Conditions  
Unit  
32.768  
kHz  
38.4  
kHz  
T
T
=
T =  
A
A
A
°C  
25 °C 85 °C  
Power-down mode, all peripherals disable  
Power-down mode, WDT/Timer/UART enable  
Power-down mode, WDT/Timer/UART enable  
Power-down mode, WDT use LIRC, UART/Timer use LXT  
-
V
-
-
-
13  
25  
28  
27  
29  
355  
365  
370  
380  
15.5  
14.5  
16.5  
IDD_PD  
µA  
V
V
V
Note:  
1. Crystal used: AURUM XF66RU000032C0 with a CL of 20 pF for typical values  
2. VDD = AVDD = 3.3V, LVR17 enabled, POR disabled and BOD disabled.  
3. Based on characterization, not tested in production unless otherwise specified.  
4. When analog peripheral blocks such as ADC, ACMP and RF transceiver are ON, an additional power consumption  
should be considered.  
5. Based on characterization, tested in production.  
6. The RF transceiver operates in deep sleep mode.  
Table 8.3-3 Chip Current Consumption in Power-down Mode  
Aug. 18, 2020  
Page 100 of 140  
Rev. 1.01  
M031BT  
8.3.2  
On-Chip Peripheral Current Consumption  
The typical values for TA= 25 °C and VDD = AVDD = 3.3 V unless otherwise specified.  
All GPIO pins are set as output high of push pull mode without multi-function.  
HCLK is the system clock, fHCLK = 48 MHz, fPCLK0, 1 = fHCLK  
.
The result value is calculated by measuring the difference of current consumption  
between all peripherals clocked off and only one peripheral clocked on  
[*1]  
Peripheral  
PDMA  
ISP  
IDD  
Unit  
0.721  
0.0002  
0.135  
0.119  
0.122  
0.125  
0.332  
0.303  
0.299  
0.292  
0.095  
0.243  
0.159  
0.122  
1.878  
0.629  
0.575  
0.631  
0.962  
0.638  
0.445  
1.257  
1.26  
HDIV  
CRC  
SRAM0IDLE  
WDT/WWDT  
TMR0  
TMR1  
TMR2  
TMR3  
CLKO  
ACMP01[*3]  
I2C0  
mA  
I2C1  
SPI  
UART0  
UART1  
UART2  
ADC[*2]  
USCI0  
USCI1  
PWM0  
PWM1  
Radio[*4]  
0.0004  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. When the ADC is turned on, add an additional power consumption per ADC for the analog part.  
3. When the ACMP is turned on, add an additional power consumption per ACMP for the analog part.  
4. The RF transceiver operates in deep sleep mode.  
Table 8.3-4 Peripheral Current Consumption  
Aug. 18, 2020  
Page 101 of 140  
Rev. 1.01  
M031BT  
8.3.3  
RF Supply Current Characteristics  
Tast condition: DC-to-DC Mode, TA= 25 °C, RF_VDD = 3.3V, RF_VDDPA = 3.3V, VDD = 3.3 V and AVDD = 3.3 V.  
Symbol  
IRF_DeepSleep  
IRF_Sleep  
IRF_Standby  
IRF_RX  
Parameter  
Min  
Typ  
0.4  
0.7  
1.3  
6.6  
5.5  
6.5  
8.2  
Max  
Unit  
Test Conditions  
Deep Sleep  
Sleep  
µA  
µA  
Standby  
Radio RX  
Radio TX  
Radio TX  
Radio TX  
mA  
mA 2 Mbps  
IRF_TX+0  
mA 0-dBm, 2 Mbps  
mA 4-dBm, 2 Mbps  
mA 8-dBm, 2 Mbps  
IRF_TX+4  
IRF_TX+8  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.3-5 RF DC Characteristics  
RF Operating Mode Switching Times  
8.3.4  
The switching times given in Table 8.3-6 is measured on a switching phase with a with a 48 MHz  
HIRC.  
To  
Deep Sleep  
Sleep  
Standby  
Receive  
Transmit  
From  
Deep Sleep  
Sleep  
-
X
X
-
3 ms  
3 ms  
-
X
X
X
X
Standby  
Receive  
Transmit  
Note:  
1 ms  
X
1 ms  
X
100 µs  
100 µs  
0 µs  
0 µs  
-
X
-
X
X
X
1. X: not allowed  
Table 8.3-6 RF Operating Mode Switching Times  
Aug. 18, 2020  
Page 102 of 140  
Rev. 1.01  
 
M031BT  
8.3.5  
Wakeup Time from Low-Power Modes  
The wakeup times given in Table 8.3-7 is measured on a wakeup phase with a 48 MHz HIRC  
oscillator.  
Symbol  
Parameter  
Typ  
5
Max  
6
Unit  
cycles  
µs  
tWU_IDLE  
Wakeup from IDLE mode  
Wakeup from normal power down mode  
[*1][*2]  
tWU_NPD  
12  
25  
Note:  
1. Based on test during characterization, not tested in production.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
Table 8.3-7 Low-power Mode Wakeup Timings  
8.3.6  
I/O Current Injection Characteristics  
In general, I/O current injection due to external voltages below VSS or above VDD except 5V-tolenece  
I/O should be avoided during normal product operation. However, the analog compoenent of the MCU  
is most likely to be affected by the injection current , but it is not easily clarified when abnormal  
injection accidentally happens. It is recommended to add a Schottky diode (pin to ground or pin to  
VDD) to pins that include analog function which may potentially injection currents.  
Negative  
injection  
Positive  
injection  
Symbol  
Parameter  
Unit  
Test Condition  
-0  
-0  
0
0
Injected current on nReset pins  
Injected current on PF2~PF5, and  
PB0~PB15 for analog input function  
Injected current by a I/O Pin  
mA  
IINJ(PIN)  
Injected current on any other 5V-  
tolerance I/O  
-5  
NA  
Table 8.3-8 I/O Current Injection Characteristics  
8.3.7  
I/O DC Characteristics  
8.3.7.1 PIN Input Characteristics  
Symbol  
VIL  
Parameter  
Min  
Typ  
Max  
0.3*VDD  
VDD  
Unit  
V
Test Conditions  
Input low voltage  
Input high voltage  
0
-
VIH  
0.7*VDD  
-
-
V
[*1]  
VHY  
Hysteresis voltage of schmitt input  
0.2*VDD  
-
V
VSS < VIN < VDD  
,
-1  
-1  
1
1
Open-drain or input only mode  
[*2]  
ILK  
Input leakage current  
A  
VDD < VIN < 5 V, Open-drain or  
input only mode on any other 5v  
tolerance pins  
Aug. 18, 2020  
Page 103 of 140  
Rev. 1.01  
 
M031BT  
-
-
45  
-
-
VDD = 3.3 V, Quasi mode  
[*1] [*3]  
RPU  
Pull up resistor  
kΩ  
120  
VDD = 1.8 V, Quasi mode  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. Leakage could be higher than the maximum value, if abnormal injection happens.  
3. To sustain a voltage higher than VDD +0.3 V, the internal pull-up resistors must be disabled. Leakage could be higher  
than the maximum value, if positive current is injected on adjacent pins  
Table 8.3-9 I/O Input Characteristics  
Aug. 18, 2020  
Page 104 of 140  
Rev. 1.01  
M031BT  
8.3.7.2 I/O Output Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD = 3.3 V  
-25.5  
-28  
-31  
µA  
VIN=(VDD-0.4) V  
Source current for quasi-  
bidirectional mode and  
high level  
VDD = 2.5 V  
-19  
-10.5  
-8  
-22  
-13  
-10  
-8  
-24  
-16  
µA  
µA  
VIN=(VDD-0.4) V  
VDD = 1.8 V  
VIN=(VDD-0.4) V  
[*1] [*2]  
ISR  
VDD = 3.3 V  
-15  
mA  
mA  
mA  
mA  
mA  
VIN=(VDD-0.4) V  
VDD = 2.5 V  
Source current for push-  
pull mode and high level  
-6  
-13  
VIN=(VDD-0.4) V  
VDD = 1.8 V  
-3.5  
7.5  
6
-5.5  
9
-10.5  
14.5  
13  
VIN=(VDD-0.4) V  
VDD = 3.3 V  
VIN= 0.4 V  
VDD = 2.5 V  
VIN= 0.4 V  
Sink current for push-  
pull mode and low level  
[*1] [*2]  
ISK  
7.5  
VDD = 1.8 V  
VIN= 0.4 V  
3.5  
-
5
5
10.5  
-
mA  
pF  
[*1]  
CIO  
I/O pin capacitance  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. The ISR and ISK must always respect the abslute maximum current and the sum of I/O, CPU and peripheral must not  
exceed ΣIDD and ΣISS  
.
Table 8.3-10 I/O Output Characteristics  
8.3.7.3 nRESET Input Characteristics  
Symbol  
VILR  
Parameter  
Negative going threshold, nRESET  
Positive going threshold, nRESET  
Min  
Typ  
-
Max Unit  
Test Conditions  
-
0.3*VDD  
V
V
VIHR  
0.7*VDD  
-
-
-
-
45  
120  
32  
-
-
VDD = 3.3 V  
[*1]  
RRST  
Internal nRESET pull up resistor  
nRESET input filtered pulse time  
KΩ  
-
-
VDD = 1.8 V  
-
Normal run and Idle mode  
Power down mode  
[*1]  
tFR  
µs  
75  
155  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. It is recommended to add a 10 kΩ and 10uF capacitor at nRESET pin to keep reset signal stable.  
Table 8.3-11 nRESET Input Characteristics  
Aug. 18, 2020  
Page 105 of 140  
Rev. 1.01  
M031BT  
8.4 AC Electrical Characteristics  
8.4.1  
48 MHz Internal High Speed RC Oscillator (HIRC)  
The 48 MHz RC oscillator is calibrated in production.  
Symbol.  
Parameter  
Operating voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD  
1.8  
-
3.6  
V
TA = 25 °C,  
VDD = 3.3V  
Oscillator frequnecy  
47.52  
-1  
48  
-
48.48  
1
MHz  
%
fHRC  
TA = 25 °C,  
VDD = 3.3V  
Frequency drift over temperarure and  
volatge  
TA = -40C ~ +85 °C,  
-2[*1]  
-
2[*1]  
-
%
µA  
µs  
VDD = 1.8 ~ 3.6V  
[*1]  
IHRC  
Operating current  
Stable time  
-
-
1655  
11  
TA = -40C ~ +85 °C,  
[*2]  
TS  
15  
VDD = 1.8 ~ 3.6V  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. Guaranteed by design.  
Table 8.4-1 48 MHz Internal High Speed RC Oscillator(HIRC) Characteristics  
Aug. 18, 2020  
Page 106 of 140  
Rev. 1.01  
 
M031BT  
(a) Test condition: VDD=3.6 V, Temp = -40~125°C  
(b) Test condition: VDD=2.7 V, Temp = -40~125°C  
Aug. 18, 2020  
Page 107 of 140  
Rev. 1.01  
M031BT  
(c) Test condition: VDD=1.8 V, Temp = -40~125°C  
Note:  
1. The graph is a statistical result using a limited number of samples. For the actual characteristic range, please refer to  
Table 8.4-1.  
Figure 8.4-1 HIRC vs. Temperature  
Aug. 18, 2020  
Page 108 of 140  
Rev. 1.01  
M031BT  
8.4.2  
38.4 kHz Internal Low Speed RC Oscillator (LIRC)  
Min[*1]  
Typ  
Max[*1]  
Unit  
Symbol  
Parameter  
Operating voltage  
Test Conditions  
VDD  
1.8  
-
3.6  
V
Oscillator frequnecy  
38.016  
38.4  
38.784  
kHz  
TA = 25 °C,  
VDD = 3.3V  
-1  
-
-
1
%
%
[*2]  
FLRC  
Frequency drift over temperarure  
and volatge  
TA=-40~85 °C  
-15  
15  
VDD=1.8V~3.6V  
Without software calibration  
ILRC  
TS  
Operating current  
Stable time  
-
-
1
-
-
µA  
VDD = 3.3V  
TA=-40~85 °C  
500  
μs  
VDD=1.8V~3.6V  
Note:  
1. Guaranteed by characterization, not tested in production.  
2. The 38.4 kHz low speed RC oscillator can be calibrated by user.  
3. Guaranteed by design.  
Table 8.4-2 38.4 kHz Internal Low Speed RC Oscillator(LIRC) characteristics  
Aug. 18, 2020  
Page 109 of 140  
Rev. 1.01  
 
M031BT  
(a) Test condition: VDD=3.6 V, Temp = -40~125°C  
(b) Test condition: VDD=2.7 V, Temp = -40~125°C  
Aug. 18, 2020  
Page 110 of 140  
Rev. 1.01  
M031BT  
(c) Test condition: VDD=1.8 V, Temp = -40~125°C  
Note:  
1. The graph is a statistical result using a limited number of samples. For the actual characteristic range, please refer to  
Table 8.4-2.  
Figure 8.4-2 LIRC vs. Temperature  
Aug. 18, 2020  
Page 111 of 140  
Rev. 1.01  
M031BT  
8.4.3  
32 kHz Internal RF Low Speed RC Oscillator  
Min  
Typ  
Max  
Unit  
Symbol  
Parameter  
Test Conditions  
FRF_LRC Oscillator frequnecy  
32  
kHz  
FCAL  
FTC  
TS  
Frequency Accuracy  
Temperature Coefficient  
Stable time  
-
-
-
500  
200  
300  
-
-
-
ppm TA= 25°C  
ppm/°C  
μs  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-3 32 kHz Internal RF Low Speed RC Oscillator Characteristics  
8.4.4  
External 16/32 MHz RF High Speed Crystal characteristics  
The RF high-speed external clock can be supplied with a 16 or 32 MHz crystal oscillator. All the  
information given in this secion are based on characterization results obtained with typical external  
components. In the application, the external components have to be placed as close as possible to the  
RF_XTAL_IN and RF_ XTAL_OUT pins and must not be connected to any other devices in order to  
minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer  
for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
Parameter  
Oscillator frequency  
Min[*1]  
Typ  
16  
-
Max[*1]  
Unit  
MHz  
Test Conditions  
fRF_XT  
Frequency Tolerance  
Equivalent Series Resistance (ESR)  
Drive Level  
-50  
50  
ppm  
TA= 25°C  
Rs  
100  
ohm  
0.1  
mW  
Load Capacitance  
9
pF  
Frequency vs. Temperature  
Aging  
-20  
-3  
20  
3
ppm  
TA= -20 ~ +85°C  
ppm/year  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-4 External 16 MHz RF High Speed Crystal Characteristics  
Symbol  
fRF_XT  
Parameter  
Oscillator frequency  
Min[*1]  
Typ  
32  
-
Max[*1]  
Unit  
MHz  
Test Conditions  
Frequency Tolerance  
Equivalent Series Resistance (ESR)  
Drive Level  
-50  
50  
ppm  
TA= 25°C  
60  
ohm  
0.1  
mW  
Load Capacitance  
10  
pF  
Frequency vs. Temperature  
Aging  
-20  
-3  
20  
3
ppm  
TA= -20 ~ +85°C  
ppm/year  
Aug. 18, 2020  
Page 112 of 140  
Rev. 1.01  
M031BT  
Symbol  
Note:  
Parameter  
Min[*1]  
Typ  
Max[*1]  
Unit  
Test Conditions  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-5 External 32 MHz RF High Speed Crystal Characteristics  
8.4.4.1 Typical Crystal Application Circuits  
For C1 and C2, it is recommended to use high-quality external ceramic capacitors in 10 pF ~ 25 pF  
range, designed for high-frequency applications, and selected to match the requirements of the crystal  
or resonator. The crystal manufacturer typically specifies a load capacitance which is the series  
combination of C1 and C2. PCB and MCU pin capacitance must be included (3 pF can be used as a  
rough estimate of the combined pin and board capacitance) when sizing C1 and C2.  
CRYSTAL  
16 MHz  
C1  
C2  
R1  
10 ~ 25 pF  
10 ~ 25 pF  
10 ~ 25 pF  
10 ~ 25 pF  
without  
without  
32 MHz  
RF_XTAL_OUT  
RF_XTl_IN  
R1  
C1  
C2  
Figure 8.4-3 Typical Crystal Application Circuit  
Aug. 18, 2020  
Page 113 of 140  
Rev. 1.01  
M031BT  
8.4.6  
External 4~32 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics  
The high-speed external (HXT) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the XT1_IN and XT1_Out pins and must not be connected to any other devices in order  
to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer  
for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
VDD  
Parameter  
Operating voltage  
Min[*1]  
Typ  
-
Max[*1]  
Unit  
V
Test Conditions  
1.8  
-
3.6  
-
Rf  
Internal feedback resister  
Oscillator frequency  
200  
kΩ  
fHXT  
4
-
-
32  
MHz  
120  
200  
4 MHz, Gain = L0  
170  
250  
350  
500  
650  
1700  
900  
600  
450  
400  
350  
300  
450  
8 MHz, Gain = L1  
12 MHz, Gain = L2  
16 Mhz, Gain = L3  
24 MHz, Gain = L4  
32 MHz, Gain = L7  
4 MHz, Gain = L0  
8 MHz, Gain = L1  
12 MHz, Gain = L2  
16 Mhz, Gain = L3  
24 MHz, Gain = L4  
32 MHz, Gain = L7  
-
-
IHXT  
Current consumption  
A  
600  
850  
-
-
1100  
2200  
1100  
740  
-
-
-
-
TS  
Stable time  
s  
650  
600  
550  
DuHXT  
Vpp  
Duty cycle  
40  
-
-
60  
-
%
V
Peak-to-peak amplitude  
1
Note:  
1.  
Guaranteed by characterization, not tested in production.  
Table 8.4-6 External 4~32 MHz High Speed Crystal (HXT) Oscillator  
Aug. 18, 2020  
Page 114 of 140  
Rev. 1.01  
M031BT  
Symbol  
Parameter  
Min[*1]  
Typ  
Max[*1]  
150  
50  
Unit  
Test Conditions  
Crystal @4 MHz  
-
-
-
-
-
-
-
-
-
-
Crystal @12 MHz  
Crystal @16 MHz  
Crystal @24 MHz  
Crystal @32 MHz  
Rs  
Equivalent series resisotr(ESR)  
40  
Ω
40  
40  
Note:  
1. Guaranteed by characterization, not tested in production.  
2. Safety factor (Sf) must be higher than 5 for HXT to determine the oscillator safe operation during the application life.  
If Safety factor isn’t enough, the HXT gain should be increased.  
ꢃꢄ  
ꢐꢂꢄ  
ꢁꢂ  
ꢎꢏꢏꢂ  
    
ꢅꢆꢇꢈꢉꢊꢋꢂꢌꢍꢄ  
RADD: The value of smallest series resistance preventing the oscillator from starting up successfully. This resistance is  
only used to measure Safety factor (Sf) and is not suitable for mass production.  
XT1_OUT  
XT1_IN  
RADD  
C2  
C1  
Table 8.4-7 External 4~32 MHz High Speed Crystal Characteristics  
8.4.6.2 Typical Crystal Application Circuits  
For C1 and C2, it is recommended to use high-quality external ceramic capacitors in 10 pF ~ 25 pF  
range, designed for high-frequency applications, and selected to match the requirements of the crystal  
or resonator. The crystal manufacturer typically specifies a load capacitance which is the series  
combination of C1 and C2. PCB and MCU pin capacitance must be included (8 pF can be used as a  
rough estimate of the combined pin and board capacitance) when sizing C1 and C2.  
CRYSTAL  
C1  
C2  
R1  
4 MHz ~ 32 MHz  
10 ~ 25 pF  
10 ~ 25 pF  
without  
XT1_OUT  
XT1_IN  
R1  
C1  
C2  
Figure 8.4-4 Typical Crystal Application Circuit  
Aug. 18, 2020  
Page 115 of 140  
Rev. 1.01  
M031BT  
8.4.7  
External 4~32 MHz High Speed Clock Input Signal Characteristics  
For clock input mode the HXT oscillator is switched off and XT1_IN is a standard input pin to receive  
external clock. The external clock signal has to respect the below Table. The characteristics result  
from tests performed using a wavefrom generator.  
Symbol  
Parameter  
Min[*1]  
Typ  
Max[*1]  
Unit  
Test Conditions  
External user clock source  
frequency  
fHXT_ext  
1
-
32  
MHz  
tCHCX  
tCLCX  
tCLCH  
Clock high time  
Clock low time  
8
8
-
-
-
-
ns  
ns  
Low (10%) to high level (90%)  
rise time  
Clock rise time  
Clock fall time  
-
-
-
-
10  
10  
ns  
ns  
High (90%) to low level (10%)  
fall time  
tCHCL  
DuE_HXT  
VIH  
Duty cycle  
40  
0.7*VDD  
VSS  
-
-
-
60  
VDD  
%
V
Input high voltage  
Input low voltage  
VIL  
0.3*VDD  
V
External  
clock source  
XT1_IN  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
VIH  
VIL  
tCHCL  
tCHCX  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-8 External 4~32 MHz High Speed Clock Input Signal  
Aug. 18, 2020  
Page 116 of 140  
Rev. 1.01  
M031BT  
8.4.8  
External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) characteristics  
The low-speed external (LXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the X32_OUT and X32_IN pins and must not be connected to any other devices in  
order to minimize output distortion and startup stabilization time. Refer to the crystal resonator  
manufacturer for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
VDD  
Parameter  
Min[*1]  
1.8  
-40  
-
Typ Max[*1] Unit  
Test Conditions  
Operation voltage  
-
-
3.6  
85  
-
V
Temperature range  
TLXT  
C  
Rf  
Internal feedback resistor  
Oscillator frequency  
6.5  
32.768  
1.5  
2
MΩ  
kHz  
FLXT  
-
-
6
6
ESR=35 kΩ, Gain = L1  
ESR=70 kΩ, Gain = L2  
ILXT  
Current consumption  
A  
TsLXT  
DuLXT  
Vpp  
Stable time  
-
500  
-
900  
70  
-
ms  
%
Duty cycle  
30  
TBD  
Peak-to-peak amplitude  
500  
mV  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-9 External 32.768 kHz Low Speed Crystal (LXT) Oscillator  
Symbol  
Rs  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Equivalnet Series Resisotr(ESR)  
-
35  
70  
kΩ  
Crystal @32.768 kHz  
Table 8.4-10 External 32.768 kHz Low Speed Crystal Characteristics  
8.4.8.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R1  
32.768 kHz, ESR < 70 KΩ  
20 pF  
20 pF  
without  
X32_OUT  
X32_IN  
R1  
C1  
C2  
Figure 8.4-5 Typical 32.768 kHz Crystal Application Circuit  
Aug. 18, 2020  
Page 117 of 140  
Rev. 1.01  
M031BT  
8.4.9  
External 32.768 kHz Low Speed Clock Input Signal Characteristics  
For clock input mode the LXT oscillator is switched off and X32_IN is a standard input pin to receive  
external clock. The external clock signal has to respect the below Table. The characteristics result  
from tests performed using a wavefrom generator.  
Symbol  
fLXT  
Parameter  
External clock source frequency  
Clock high time  
Min[*1]  
-
Typ  
Max[*1]  
Unit  
kHz  
ns  
Test Conditions  
32.768  
-
-
-
tCHCX  
tCLCX  
450  
450  
-
-
Clock low time  
ns  
tCLCH  
Clock rise time  
Low (10%) to high level (90%)  
rise time  
-
-
-
-
50  
50  
ns  
ns  
tCHCL  
Clock fall time  
High (90%) to low level (10%) fall  
time  
DuE_LXT  
Xin_VIH  
Xin_VIL  
Duty cycle  
40  
0.7*VDD  
VSS  
-
-
-
60  
VDD  
%
V
LXT input pin input high voltage  
LXT input pin input low voltage  
0.3*VDD  
V
External  
clock source  
X32_IN  
tCLCL  
tCLCH  
90%  
10%  
VIH  
tCLCX  
VIL  
tCHCL  
tCHCX  
Note:  
1. Guaranteed by design, not tested in production  
Table 8.4-11 External 32.768 kHz Low Speed Clock Input Signal  
Aug. 18, 2020  
Page 118 of 140  
Rev. 1.01  
M031BT  
8.4.10 PLL Characteristics  
Symbol  
fPLL_in  
Parameter  
PLL input clock  
Min[*1]  
3.2  
50  
Typ  
Max[*1]  
32  
Unit  
MHz  
MHz  
MHz  
MHz  
µs  
Test Conditions  
-
-
-
-
-
fPLL_OUT  
fPLL_REF  
fPLL_VCO  
TL  
PLL multiplier output clock  
PLL reference clock  
96  
0.8  
200  
-
8
PLL voltage controlled oscillator  
PLL locking time  
500  
500  
Jitter[*2]  
Cycle-to-cycle Jitter  
Power consumption  
-
-
200  
3.1  
350  
5
ps  
IDD  
f
mA  
VDD =3.3V @ PLL_OUT = 96 MHz  
Note:  
1. Guaranteed by characterization, not tested in production  
2. Guaranteed by design, not tested in production  
Table 8.4-12 PLL Characteristics  
Aug. 18, 2020  
Page 119 of 140  
Rev. 1.01  
M031BT  
8.4.11 I/O AC Characteristics  
Symbol  
Parameter  
Typ.  
Max[*1]  
.
Unit  
Test Conditions[*2]  
-
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
>= 1.8 V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
>= 1.8 V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
>= 1.8 V  
= 3.3 V,  
5.5  
3
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
-
-
-
-
-
-
-
-
-
-
-
tf(IO)out  
Output high (90%) to low level (10%) fall time  
Output low (10%) to high level (90%) rise time  
I/O maximum frequency  
ns  
8.5  
4.5  
5.5  
3
tr(IO)out  
ns  
8.5  
4.5  
60  
110  
40  
75  
[*3]  
fmax(IO)out  
MHz  
2.77  
-
f(IO)out = 24 MHz  
CL = 10 pF, V  
= 3.3 V,  
= 3.3 V,  
DD  
f(IO)out = 24 MHz  
CL = 30 pF, V  
1.19  
0.69  
-
-
[*4]  
IDIO  
I/O dynamic current consumption  
mA  
DD  
f(IO)out = 6 MHz  
CL = 10 pF, V  
= 3.3 V,  
DD  
f(IO)out = 6 MHz  
0.3  
-
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. CL is a external capacitive load to simulate PCB and device loading.  
3. The maximum frequency is defined by ꢓꢊꢔ ꢖꢂꢗꢂꢘꢉ ꢐꢉ .  
4. The I/O dynamic current consumption is defined by ꢝꢞꢟ  ꢝꢝ ꢗꢂꢞꢟ  ꢞꢟ   
Table 8.4-13 I/O AC Characteristics  
Aug. 18, 2020  
Page 120 of 140  
Rev. 1.01  
M031BT  
8.5 Analog Characteristics  
8.5.1 LDO  
Symbol  
VDD  
Parameter  
Power supply  
Min  
1.8  
-
Typ  
Max  
3.6  
-
Unit  
V
Test Condition  
-
1.8  
-
VLDO  
TA  
Output voltage  
Temperature  
V
-40  
85  
°C  
Note  
1. It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of the device.  
2. For ensuring power stability, a 1μF capacitor must be connected between LDO_CAP pin and the closest VSS pin of  
the device.  
8.5.2  
Reset and Power Control Block Characteristics  
The parameters in below table are derived from tests performed under ambient temperature.  
Symbol  
Parameter  
POR operating current  
LVR operating current  
BOD operating current  
POR reset voltage  
Min  
-
Typ  
20  
2
Max  
Unit  
Test Conditions  
AVDD = 3.6V  
[*1]  
IPOR  
30  
µA  
[*1]  
ILVR  
-
3.6  
AVDD = 3.6V  
AVDD = 3.6V  
-
[*1]  
IBOD  
-
3
5.5  
VPOR  
VLVR  
VBOD  
1.35  
1.6  
1.8  
2.3  
-
1.5  
1.7  
2.0  
2.5  
200  
16  
1000  
120  
-
1.65  
V
LVR reset voltage  
1.8  
BOD brown-out detect voltage  
2.2  
BODVL = 0  
2.7  
BODVL = 1  
[*1]  
TLVR_SU  
LVR startup time  
LVR respond time  
BOD startup time  
BOD respond time  
VDD rise time rate  
VDD fall time rate  
-
-
-
-
-
-
-
-
-
µs  
-
[*1]  
TLVR_RE  
-
-
[*1]  
TBOD_SU  
-
-
[*1]  
TBOD_RE  
-
-
[*1]  
RVDDR  
10  
10  
80  
250  
150  
µs/V  
POR Enabled  
POR Enabled  
LVR Enabled  
BOD 2.0V Enabled  
BOD 2.5V Enabled  
[*1]  
RVDDF  
-
-
-
-
Note:  
1. Guaranteed by characterization, not tested in production.  
2. Design for specified applcaiton.  
Table 8.5-1 Reset and Power Control Unit  
Aug. 18, 2020  
Page 121 of 140  
Rev. 1.01  
M031BT  
VDD  
RVDDR  
RVDDF  
VBOD  
VLVR  
VPOR  
Time  
Figure 8.5-1 Power Ramp Up/Down Condition  
Aug. 18, 2020  
Page 122 of 140  
Rev. 1.01  
M031BT  
8.5.3  
12-bit SAR ADC  
Min  
Typ  
Max  
Unit  
Symbol  
TA  
Parameter  
Test Conditions  
Temperature  
-40  
85  
-
-
°C  
AV  
=
AVDD  
VREF  
VIN  
Analog operating voltage  
Reference voltage  
1.8  
1.8  
0
3.6  
V
V
V
V
VDD  
DD  
AVDD  
VREF  
-
-
ADC channel input voltage  
Common-Mode Input Range  
VCM  
VREF/2  
Full differential input  
AVDD = VDD =VREF = 3.3 V  
FADC = 34 MHz  
[*1]  
IADC  
Operating current (AVDD + VREF current)  
-
-
355  
34  
µA  
TCONV = 17 * TADC  
NR  
Resolution  
12  
-
Bit  
[*1]  
FADC  
ADC Clock frequency  
4
MHz  
1/TADC  
TSMP  
=
TSMP  
Sampling Time  
Conversion time  
1
-
-
256  
272  
1/FADC ( EXTSMPT(ADC_ESMPCTL[7:0])  
+ 1 ) * TADC  
TCONV  
17  
1/FADC TCONV = TSMP + 16 * TADC  
FSPS = FADC / TCONV  
[*1]  
FSPS  
Sampling Rate  
0.236  
-
2
MSPS  
EXTSMPT(ADC_ESMPCTL[7:0])  
= 0  
TEN  
Enable to ready time  
20  
-2  
-
-
-
μs  
VREF = AVDD  
,
+2  
LSB  
except TSSOP20 and TSSOP28  
INL[*1]  
Integral Non-Linearity Error  
Differential Non-Linearity Error  
Gain error  
VREF = AVDD  
-4  
-1  
+4  
+2  
+4  
+4  
+4  
+4  
+10  
+4  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
TSSOP20 and TSSOP28  
VREF = AVDD  
,
-
-
-
-
except TSSOP20 and TSSOP28  
DNL[*1]  
VREF = AVDD  
-1  
TSSOP20 and TSSOP28  
VREF = AVDD  
,
-4  
except TSSOP20 and TSSOP28  
[*1]  
EG  
VREF = AVDD  
-10  
-4  
TSSOP20 and TSSOP28  
VREF = AVDD  
,
except TSSOP20 and TSSOP28  
[*1]  
EO  
Offset error  
T
VREF = AVDD  
-4  
TSSOP20 and TSSOP28  
[*1]  
EA  
Absolute Error  
VREF = AVDD,  
-4  
except TSSOP20 and TSSOP28  
Aug. 18, 2020  
Page 123 of 140  
Rev. 1.01  
ꢧꢝꢅ ꢗꢂꢞꢨ     
ꢘꢫꢨꢐꢕ  
                                                                            
M031BT  
Min  
Typ  
Max  
Unit  
Symbol  
Parameter  
Test Conditions  
VREF = AVDD  
TSSOP20 and TSSOP28  
-8  
+8  
LSB  
ENOB[*1]  
SINAD[*1]  
SNR[*1]  
Effective number of bits  
-
-
-
-
-
-
-
-
TBD  
TBD  
TBD  
TBD  
-
bits FADC = 34 MHz  
AVDD = VDD =VREF = 3.3 V  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
-
Input Frequency = 20 kHz  
TA = 25 °C  
-
dB  
THD[*1]  
Total harmonic distortion  
Internal Capacitance  
-
2.9  
-
[*1]  
CIN  
pF  
kΩ  
kΩ  
[*1]  
RIN  
Internal Switch Resistance  
External input impedance  
2
[*1]  
REX  
-
50  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. REX max formula is used to determine the maximum external impedance allowed for 1/4 LSB error. N = 12 (based on  
12-bit resoluton) and k is the number of sampling clocks (TSMP). CEX represents the capacitance of PCB and pad and  
is combined with REX into a low-pass filter. Once the REX and CEX values are too large, it is possible to filter the real  
signal and reduce the ADC accuracy.  
ꢌꢥ   
ꢬꢂꢞꢨ  
VDD  
EADC_CHx  
RIN  
REX  
12-bit  
Converter  
VEX  
CIN  
CEX  
Note: Injection current is a important topic of ADC accuracy. Injecting current on any analog input pins  
should be avoided to protect the conversion being performed on another analog input. It is  
recommended to add Schottky diodes (pin to ground and pin to power) to analog pins which may  
potentially inject currents.  
Aug. 18, 2020  
Page 124 of 140  
Rev. 1.01  
M031BT  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer  
curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and  
gain error from the actual transfer curve.  
Aug. 18, 2020  
Page 125 of 140  
Rev. 1.01  
M031BT  
8.5.4  
Analog Comparator Controller (ACMP)  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature (TA), and the typical  
values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Min  
1.8  
-40  
-
Typ  
-
Max Unit  
Test Conditions  
VDD = AVDD  
Parameter  
Analog supply voltage  
Temperature  
AVDD  
3.6  
85  
45  
V
°C  
A  
TA  
-
IDD  
Operating current  
30  
1/2 AVDD  
AVDD -0.3  
[*2]  
VCM  
Input common mode voltage range  
0.35  
[*2]  
VDI  
Differential input voltage sensitivity  
Input offset voltage  
Hysteresis window  
DC voltage Gain  
10  
-
20  
10  
90  
65  
-
-
mV Hysteresis disable  
mV Hysteresis disable,  
[*2]  
Voffset  
20  
[*2]  
Vhys  
40  
45  
-
140 mV  
Av[*1]  
75  
400  
4
dB  
nS  
uS  
%
[*2]  
Td  
Propagation delay  
Setup time  
[*2]  
TSetup  
-
-
[*2]  
ACRV  
CRV output voltage  
Unit resistor value  
Setup time  
-5  
-
-
5
AVDD x (1/6+CRVCTL/24)  
[*2]  
RCRV  
4.2  
-
-
kΩ  
[*2]  
TSETUP_CRV  
-
350  
45  
µS CRV output voltage settle to ±5%  
[*2]  
IDD_CRV  
Operating current  
-
30  
A  
Note:  
1. Guaranteed by design, not tested in production  
2. Guaranteed by characteristic, not tested in production  
Table 8.5-2 ACMP Characteristics  
Aug. 18, 2020  
Page 126 of 140  
Rev. 1.01  
M031BT  
8.5.5  
RF Characteristics  
8.5.5.1 Transmitter Characteristics  
Tast condition: TA= 25 °C, RF_VDD = 3.3V, RF_VDDPA = 3.3V, VDD = 3.3 V and AVDD = 3.3 V.  
Values  
Symbol  
Parameter  
Unit  
Condition  
Min  
-20  
2.4  
Typ  
Max  
8
POUT  
RF Output Power  
-
dBm  
GHz  
kHz  
kHz  
FOPERATING Operating Frequency  
2.5  
< ± 50  
< ± 50  
1 Mbps data rate  
2 Mbps data rate  
ΔF  
FΔF  
Δf1  
Frequency Drift  
kHz  
/50µs  
Frequency Drift Rate  
< ± 20  
1 Mbps & 2 Mbps data rates  
225  
450  
185  
370  
80  
260  
500  
275  
550  
kHz  
kHz  
kHz  
kHz  
%
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
Average Frequency Deviation  
(data pattern = 111000…)  
Instantaneous Deviation  
(data pattern = 10101010…)  
Δf2  
Δf2 / Δf1  
Deviation Ratio  
80  
%
Spectrum Mask with Adjacent  
Channel Offset: ± 2 MHz  
-20  
-30  
-20  
-20  
-30  
dBc  
dBc  
dBc  
dBc  
dBc  
1 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
2 Mbps data rate  
2 Mbps data rate  
Spectrum Mask with Adjacent  
Channel Offset: ≥ 3 MHz  
Spectrum Mask with Adjacent  
Channel Offset: ± 4 MHz  
Spectrum Mask with Adjacent  
Channel Offset: ± 5 MHz  
Spectrum Mask with Adjacent  
Channel Offset: ± 6 MHz  
Table 8.5-3 RF Transmitter Characteristics  
Aug. 18, 2020  
Page 127 of 140  
Rev. 1.01  
M031BT  
8.5.5.2 Receiver Characteristics  
Tast condition: TA= 25 °C, RF_VDD = 3.3V, RF_VDDPA = 3.3V, VDD = 3.3 V and AVDD = 3.3 V.  
Values  
Symbol  
Parameter  
Unit  
Condition  
Min  
Typ  
-94  
-91  
8
Max  
dBm  
dBm  
dB  
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
RF Sensitivity, NF = 6 dB, +1.2VDC  
core supply  
Carrier-to-Interference:  
C/I CO-CHANNEL  
C/I 1 MHz  
C/I + 1 MHz  
C/I 2 MHz  
C/I + 2 MHz  
C/I 3 MHz  
C/I + 3 MHz  
C/I 4 MHz  
C/I + 4MHz  
C/I 6 MHz  
C/I + 6 MHz  
C/I IMAGE  
Co-Channel Selectivity  
9
dB  
Carrier-to-Interference:  
-4  
dB  
dB  
1 Mbps data rate  
1 Mbps data rate  
- 1 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
-8.5  
+ 1 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
-36  
-2.5  
-26  
-8  
dB  
dB  
dB  
dB  
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
- 2 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
+ 2 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
-40  
-37  
-35  
-25  
-39  
-38  
dB  
dB  
dB  
dB  
dB  
dB  
1 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
2 Mbps data rate  
2 Mbps data rate  
2 Mbps data rate  
- 3 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
+ 3 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
- 4 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
+ 4 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
- 6 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
+ 6 MHz Adjacent Channel Selectivity  
Carrier-to-Interference:  
-26  
-25  
dB  
dB  
1 Mbps data rate  
2 Mbps data rate  
Image Channel Selectivity  
Carrier-to-Interference:  
-37  
-38  
-37  
-25  
-15  
dB  
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
C/I IMAGE1 MHz  
Image  
1
MHz Adjacent Channel  
dB  
Selectivity  
dBm  
dBm  
dBm  
IM  
Intermodulation Interferer Level  
Out-of-band Blocking: Interferer  
OOB  
Aug. 18, 2020  
Page 128 of 140  
Rev. 1.01  
M031BT  
Values  
Typ  
Symbol  
Parameter  
Unit  
Condition  
Min  
Max  
30 MHz ≤ f ≤ 2000 MHz  
-16  
-22  
-25  
-20  
-21  
-10  
-10  
-10  
-10  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
1 Mbps data rate  
2 Mbps data rate  
30 MHz, 2000 MHz  
OOB  
Out-of-band Blocking: Interferer  
2003 MHz ≤ f ≤ 2399 MHz  
Out-of-band Blocking: Interferer  
2484 MHz ≤ f ≤ 2997 MHz  
Out-of-band Blocking: Interferer  
2997 MHz ≤ f ≤ 6 GHz  
2000 MHz, 2399 MHz  
OOB  
2484 MHz, 2997 MHz  
OOB  
2997 MHz, 6 GHz  
OOB  
Out-of-band Blocking: Interferer  
6 GHz ≤ f ≤ 12.75 GHz  
6 GHz, 12.75 GHz  
Table 8.5-4 RF Receiver Characteristics  
Aug. 18, 2020  
Page 129 of 140  
Rev. 1.01  
M031BT  
8.6  
Communications Characteristics  
8.6.1  
I2C Dynamic Characteristics  
Symbol  
Parameter  
Standard Mode[1][2]  
Fast Mode[1][2]  
Unit  
Min  
4.7  
4
Max  
Min  
1.3  
Max  
tLOW  
SCL low period  
-
-
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
pF  
tHIGH  
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
SCL high period  
-
0.6  
-
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
4.7  
4
-
0.6  
-
-
-
-
0.6  
4
0.6  
-
4.7[3]  
250  
0[4]  
-
-
1.2[3]  
100  
0[4]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
-
Data hold time  
3.45[5]  
1000  
300  
400  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
-
tf  
SCL/SDA fall time  
-
Cb  
Capacitive load for each bus line  
-
-
Note:  
1. Guaranteed by characteristic, not tested in production  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8  
MHz to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of  
SCL signal.  
Table 8.6-1 I2C Characteristics  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.6-1 I2C Timing Diagram  
Aug. 18, 2020  
Page 130 of 140  
Rev. 1.01  
M031BT  
8.6.2  
USCI - SPI Dynamic Characteristics  
Symbol  
Parameter  
Min[*1]  
Typ  
Max[*1]  
24  
Unit  
Test Conditions  
-
-
-
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
FSPICLK  
SPI clock frequency  
MHz  
1/ TSPICLK  
-
24  
ns  
ns  
tCLKH  
tCLKL  
tDS  
Clock output High time  
Clock output Low time  
Data input setup time  
Data input hold time  
TSPICLK / 2  
TSPICLK / 2  
2
4
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
tDH  
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
5
tV  
Data output valid time  
-
8.5  
Note:  
1. Guaranteed by design.  
Table 8.6-2 USCI-SPI Master Mode Characteristics  
tCLKH  
tCLKL  
CLKP=0  
SPICLK  
CLKP=1  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8.6-2 USCI-SPI Master Mode Timing Diagram  
Aug. 18, 2020  
Page 131 of 140  
Rev. 1.01  
M031BT  
Symbol  
FSPICLK  
Parameter  
Min[*1]  
Typ  
Max[*1] Unit  
Test Conditions  
-
-
-
7
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
SPI clock frequency  
MHz  
7
1/ TSPICLK  
-
tCLKH  
tCLKL  
Clock output High time  
Clock output Low time  
TSPICLK / 2  
TSPICLK / 2  
ns  
ns  
1
TSPICLK  
+ 2ns  
-
-
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
tSS  
Slave select setup time  
ns  
1
TSPICLK  
+ 3ns  
-
-
-
1
tSH  
tDS  
tDH  
Slave select hold time  
-
ns  
TSPICLK  
Data input setup time  
Data input hold time  
2
4
-
-
-
-
-
-
ns  
ns  
-
65  
70  
2.7 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 3.6 V, CL = 30 pF  
tV  
Data output valid time  
ns  
-
Note:  
1. Guaranteed by design.  
Table 8.6-3 USCI-SPI Slave Mode Characteristics  
Aug. 18, 2020  
Page 132 of 140  
Rev. 1.01  
M031BT  
SSACTPOL=1  
SSACTPOL=0  
tSS  
tSH  
SPI SS  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=1  
RXNEG=0  
SPI Clock  
CLKPOL=1  
TXNEG=0  
RXNEG=1  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
Data Valid  
Data Valid  
tDH  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
SSACTPOL=1  
tSS  
tSH  
SPI SS  
SSACTPOL=0  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=0  
RXNEG=1  
SPI Clock  
CLKPOL=1  
TXNEG=1  
RXNEG=0  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
tDH  
Data Valid  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
Data Valid  
Figure 8.6-3 USCI-SPI Slave Mode Timing Diagram  
Aug. 18, 2020  
Page 133 of 140  
Rev. 1.01  
M031BT  
8.6.3  
USCI-I2C Dynamic Characteristics  
Symbol  
Parameter  
Standard Mode[1][2]  
Fast Mode[1][2]  
Unit  
Min  
4.7  
4
Max  
Min  
1.3  
Max  
tLOW  
SCL low period  
-
-
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
pF  
tHIGH  
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
SCL high period  
-
0.6  
-
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
4.7  
4
-
0.6  
-
-
-
-
0.6  
4
0.6  
-
4.7[3]  
250  
0[4]  
-
-
1.2[3]  
100  
0[4]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
-
Data hold time  
3.45[5]  
1000  
300  
400  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
-
tf  
SCL/SDA fall time  
-
Cb  
Capacitive load for each bus line  
-
-
Note:  
1. Guaranteed by characteristic, not tested in production  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8  
MHz to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of  
SCL signal.  
Table 8.6-4 USCI-I2C Characteristics  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.6-4 USCI-I2C Timing Diagram  
Aug. 18, 2020  
Page 134 of 140  
Rev. 1.01  
M031BT  
8.7 Flash DC Electrical Characteristics  
The devices are shipped to customers with the Flash memory erased.  
Symbol  
TERASE  
TPROG  
IDD1  
Parameter  
Page erase time  
Min  
Typ  
20  
60  
7
Max  
Unit  
ms  
Test Condition  
-
-
-
-
-
-
-
-
-
-
Program time  
Read current  
Program current  
Erase current  
µs  
mA  
mA  
mA  
IDD2  
8
IDD3  
12  
NENDUR  
Endurance  
20,000  
65  
-
-
-
cycles[1]  
year  
TJ = -40°C~85°C  
20 kcycle[2] TJ = 55°C  
20 kcycle[2] TJ = 85°C  
-
-
TRET  
Data retention  
10  
year  
Note:  
1. Number of program/erase cycles.  
2. Guaranteed by design.  
Aug. 18, 2020  
Page 135 of 140  
Rev. 1.01  
M031BT  
9 PACKAGE DIMENSIONS  
9.1 QFN 48-pin (5X5x0.9 mm Pitch:0.35 mm)  
Aug. 18, 2020  
Page 136 of 140  
Rev. 1.01  
M031BT  
10 ABBREVIATIONS  
10.1 Abbreviations  
Acronym  
ACMP  
ADC  
AES  
Description  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
APB  
AHB  
BOD  
CAN  
DAP  
DES  
ADC  
EBI  
Advanced High-Performance Bus  
Brown-out Detection  
Controller Area Network  
Debug Access Port  
Data Encryption Standard  
Enhanced Analog-to-Digital Converter  
External Bus Interface  
EMAC  
EPWM  
FIFO  
FMC  
FPU  
Ethernet MAC Controller  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
GPIO  
HCLK  
HIRC  
HXT  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
12 MHz Internal High Speed RC Oscillator  
4~32 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
IAP  
ICP  
ISP  
In System Programming  
LDO  
Low Dropout Regulator  
LIN  
Local Interconnect Network  
38.4 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
Pulse Width Modulation  
Aug. 18, 2020  
Page 137 of 140  
Rev. 1.01  
M031BT  
QEI  
Quadrature Encoder Interface  
Secure Digital  
SD  
SPI  
Serial Peripheral Interface  
Samples per Second  
SPS  
TDES  
TK  
Triple Data Encryption Standard  
Touch Key  
TMR  
UART  
UCID  
WDT  
WWDT  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Watchdog Timer  
Window Watchdog Timer  
Table 10.1-1 List of Abbreviations  
Aug. 18, 2020  
Page 138 of 140  
Rev. 1.01  
M031BT  
11 REVISION HISTORY  
Date  
Revision  
Description  
2020.07.21  
2020.08.18  
1.00  
Initial version.  
1.01  
Updated Multi-function Pin Diagram in section 4.1.2.1.  
Aug. 18, 2020  
Page 139 of 140  
Rev. 1.01  
M031BT  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Aug. 18, 2020  
Page 140 of 140  
Rev. 1.01  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY