M2351ZIAE [NUVOTON]

NuMicro® Family;
M2351ZIAE
型号: M2351ZIAE
厂家: NUVOTON    NUVOTON
描述:

NuMicro® Family

文件: 总245页 (文件大小:5936K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M2351  
NuMicro® Family  
M2351 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of Micro microcontroller based system  
design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Feb 15, 2019  
Page 1 of 245  
Rev 1.01  
M2351  
TABLE OF CONTENTS  
1 GENERAL DESCRIPTION.............................................................................11  
2 FEATURE DESCRIPTION .............................................................................13  
3 PARTS INFORMATION .................................................................................24  
3.1 Summary.......................................................................................................................24  
3.2 Package Type...............................................................................................................24  
3.3 NuMicro® M2351 Series Selection Guide ................................................................25  
3.4 NuMicro® M2351 Naming Rule..................................................................................26  
4 PIN CONFIGURATION...................................................................................27  
4.1 NuMicro® M2351 Series QFN33 Pin Diagram.........................................................27  
4.2 NuMicro® M2351 Series WLCSP49 Pin Diagram...................................................28  
4.3 NuMicro® M2351 Series LQFP64 Pin Diagram.......................................................29  
4.4 NuMicro® M2351 Series LQFP128 Pin Diagram.....................................................30  
4.5 M2351 Performance Series Pin Description............................................................31  
4.6 M2351 Multi-function Summary Table Sorted by GPIO .........................................81  
5 BLOCK DIAGRAM.......................................................................................107  
5.1 NuMicro® M2351 Series Block Diagram....................................................................107  
5.2 NuMicro® M2351 Series TrustZone® Architecture.................................................108  
6 FUNCTIONAL DESCRIPTION .....................................................................109  
6.1 Arm® Cortex®-M23 Core ...........................................................................................109  
6.2 Arm® TrustZone® ........................................................................................................111  
6.2.1 Address Space Partition ............................................................................................. 112  
6.2.2 Security Attribute Configuration ................................................................................. 114  
6.2.3 System Address Map and Access Scheme ............................................................. 115  
6.3 System Manager........................................................................................................118  
6.3.1 Overview ....................................................................................................................... 118  
6.3.2 Reset.............................................................................................................................. 118  
6.3.3 Power Modes and Wake-up Sources........................................................................ 124  
6.3.4 System Power Distribution ......................................................................................... 128  
6.3.5 Bus Matrix ..................................................................................................................... 130  
6.3.6 System Memory Map................................................................................................... 130  
6.3.7 Implementation Defined Attribution Unit (IDAU)...................................................... 134  
6.3.8 SRAM Memory Orginization....................................................................................... 136  
6.3.9 Auto Trim....................................................................................................................... 138  
6.3.10System Timer (SysTick) .............................................................................................. 139  
6.3.11Nested Vectored Interrupt Controller (NVIC) ........................................................... 139  
Feb 15, 2019  
Page 2 of 245  
Rev 1.01  
M2351  
6.4 Clock Controller..........................................................................................................140  
6.4.1 Overview ....................................................................................................................... 140  
6.4.2 Clock Generator........................................................................................................... 143  
6.4.3 System Clock and SysTick Clock .............................................................................. 145  
6.4.4 Peripherals Clock......................................................................................................... 146  
6.4.5 Power-down Mode Clock............................................................................................ 147  
6.4.6 Clock Output................................................................................................................. 147  
6.5 Security Configuration Unit (SCU)...........................................................................148  
6.5.1 Overview ....................................................................................................................... 148  
6.5.2 Features ........................................................................................................................ 148  
6.6 True Random Number Generator (TRNG).............................................................149  
6.6.1 Overview ....................................................................................................................... 149  
6.6.2 Features ........................................................................................................................ 149  
6.7 Flash Memeory Controller (FMC)............................................................................150  
6.7.1 Overview ....................................................................................................................... 150  
6.7.2 Features ........................................................................................................................ 150  
6.8 General Purpose I/O (GPIO)....................................................................................151  
6.8.1 Overview ....................................................................................................................... 151  
6.8.2 Features ........................................................................................................................ 151  
6.9 PDMA Controller (PDMA).........................................................................................152  
6.9.1 Overview ....................................................................................................................... 152  
6.9.2 Features ........................................................................................................................ 152  
6.10 Timer Controller (TMR) .......................................................................................153  
6.10.1Overview ....................................................................................................................... 153  
6.10.2Features ........................................................................................................................ 153  
6.11 Watchdog Timer (WDT).......................................................................................155  
6.11.1Overview ....................................................................................................................... 155  
6.11.2Features ........................................................................................................................ 155  
6.12 Window Watchdog Timer (WWDT) ...................................................................156  
6.12.1Overview ....................................................................................................................... 156  
6.12.2Features ........................................................................................................................ 156  
6.13 Real Time Clock (RTC) .......................................................................................157  
6.13.1Overview ....................................................................................................................... 157  
6.13.2Features ........................................................................................................................ 157  
6.14 EPWM Generator and Capture Timer (EPWM)...............................................158  
6.14.1Overview ....................................................................................................................... 158  
6.14.2Features ........................................................................................................................ 158  
6.15 Basic PWM Generator and Capture Timer (BPWM) ......................................160  
6.15.1Overview ....................................................................................................................... 160  
Feb 15, 2019  
Page 3 of 245  
Rev 1.01  
M2351  
6.15.2Features ........................................................................................................................ 160  
6.16 Quadrature Encoder Interface (QEI).................................................................161  
6.16.1Overview ....................................................................................................................... 161  
6.16.2Features ........................................................................................................................ 161  
6.17 Enhanced Input Capture Timer (ECAP) ...........................................................162  
6.17.1Overview ....................................................................................................................... 162  
6.17.2Features ........................................................................................................................ 162  
6.18 UART Interface Controller (UART)....................................................................163  
6.18.1Overview ....................................................................................................................... 163  
6.18.2Features ........................................................................................................................ 163  
6.19 Smart Card Host Interface (SC).........................................................................165  
6.19.1Overview ....................................................................................................................... 165  
6.19.2Features ........................................................................................................................ 165  
6.20 I2S Controller (I2S)................................................................................................166  
6.20.1Overview ....................................................................................................................... 166  
6.20.2Features ........................................................................................................................ 166  
6.21 Serial Peripheral Interface (SPI)........................................................................167  
6.21.1Overview ....................................................................................................................... 167  
6.21.2Features ........................................................................................................................ 167  
6.22 Quad Serial Peripheral Interface (QSPI)..........................................................168  
6.22.1Overview ....................................................................................................................... 168  
6.22.2Features ........................................................................................................................ 168  
6.23 I2C Serial Interface Controller (I2C) ...................................................................169  
6.23.1Overview ....................................................................................................................... 169  
6.23.2Features ........................................................................................................................ 169  
6.24 USCI - Universal Serial Control Interface Controller (USCI).........................170  
6.24.1Overview ....................................................................................................................... 170  
6.24.2Features ........................................................................................................................ 170  
6.25 USCI – UART Mode.............................................................................................171  
6.25.1Overview ....................................................................................................................... 171  
6.25.2Features ........................................................................................................................ 171  
6.26 USCI - SPI Mode..................................................................................................172  
6.26.1Overview ....................................................................................................................... 172  
6.26.2Features ........................................................................................................................ 172  
6.27 USCI - I2C Mode...................................................................................................174  
6.27.1Overview ....................................................................................................................... 174  
6.27.2Features ........................................................................................................................ 174  
6.28 Controller Area Network (CAN)..........................................................................175  
6.28.1Overview ....................................................................................................................... 175  
Feb 15, 2019  
Page 4 of 245  
Rev 1.01  
M2351  
6.28.2Features ........................................................................................................................ 175  
6.29 Secure Digital Host Controller (SDH)................................................................176  
6.29.1Overview ....................................................................................................................... 176  
6.29.2Features ........................................................................................................................ 176  
6.30 External Bus Interface (EBI)...............................................................................177  
6.30.1Overview ....................................................................................................................... 177  
6.30.2Features ........................................................................................................................ 177  
6.31 USB 1.1 Device Controller (USBD)...................................................................178  
6.31.1Overview ....................................................................................................................... 178  
6.31.2Features ........................................................................................................................ 178  
6.32 USB 1.1 Host Controller (USBH).......................................................................179  
6.32.1Overview ....................................................................................................................... 179  
6.32.2Features ........................................................................................................................ 179  
6.33 USB On-The-Go (OTG) ......................................................................................180  
6.33.1Overview ....................................................................................................................... 180  
6.33.2Features ........................................................................................................................ 180  
6.34 CRC Controller (CRC).........................................................................................181  
6.34.1Overview ....................................................................................................................... 181  
6.34.2Features ........................................................................................................................ 181  
6.35 Cryptographic Accelerator (CRYPTO)..............................................................182  
6.35.1Overview ....................................................................................................................... 182  
6.35.2Features ........................................................................................................................ 182  
6.36 Enhanced 12-bit Analog-to-Digital Converter (EADC) ...................................184  
6.36.1Overview ....................................................................................................................... 184  
6.36.2Features ........................................................................................................................ 184  
6.37 Digital to Analog Converter (DAC).....................................................................186  
6.37.1Overview ....................................................................................................................... 186  
6.37.2Features ........................................................................................................................ 186  
6.38 Analog Comparator Controller (ACMP)............................................................187  
6.38.1Overview ....................................................................................................................... 187  
6.38.2Features ........................................................................................................................ 187  
7 APPLICATION CIRCUIT ..............................................................................188  
7.1 Power Supply Scheme with External VREF .............................................................188  
7.2 Power Supply Scheme with Internal VREF ..............................................................189  
7.3 Peripheral Application Scheme................................................................................190  
8 ELECTRICAL CHARACTERISTICS............................................................191  
8.1 Absolute Maximum Ratings......................................................................................191  
8.1.1 Voltage Characteristics ............................................................................................... 191  
Feb 15, 2019  
Page 5 of 245  
Rev 1.01  
M2351  
8.1.2 Current Characteristics ............................................................................................... 191  
8.1.3 Thermal Characteristics.............................................................................................. 192  
8.1.4 EMC Characteristics .................................................................................................... 192  
8.2 General Operating Conditions .................................................................................194  
8.3 DC Electrical Characteristics....................................................................................195  
8.3.1 Typical Current Consumption..................................................................................... 195  
8.3.2 On-chip Peripheral Current Consumption ................................................................ 206  
8.3.3 Wakeup Time................................................................................................................ 208  
8.3.4 I/O DC Characteristics................................................................................................. 209  
8.4 AC Electrical Characteristics....................................................................................211  
8.4.1 External 4~24 MHz High Speed Crystal (HXT) Characteristics............................ 211  
8.4.2 External 4~24 MHz High Speed Crystal (OSC) Input Clock.................................. 212  
8.4.3 External 32.768 kHz Low Speed Crystal (LXT) Characteristics............................ 214  
8.4.4 External 32.768 kHz Low Speed Crystal (OSC) Input Clock................................. 214  
8.4.5 12 MHz Internal High Speed RC Oscillator (HIRC) ................................................ 215  
8.4.6 48 MHz Internal High Speed RC Oscillator (HIRC48)............................................ 215  
8.4.7 10 kHz Internal Low Speed RC Oscillator (LIRC)................................................... 216  
8.4.8 PLL Characteristics...................................................................................................... 216  
8.4.9 I/O AC Characteristics................................................................................................. 217  
8.5 Analog Electrical Characteristics.............................................................................218  
8.5.1 LDO................................................................................................................................ 218  
8.5.2 DC-DC ........................................................................................................................... 218  
8.5.3 Low-Voltage Reset....................................................................................................... 219  
8.5.4 Internal Voltage Reference......................................................................................... 221  
8.5.5 12-bit ADC..................................................................................................................... 222  
8.5.6 Temperature Sensor.................................................................................................... 225  
8.5.7 Digital to Analog Converter (DAC)............................................................................. 225  
8.5.8 Analog Comparator Controller (ACMP).................................................................... 227  
8.6 Flash DC Electrical Characteristics.........................................................................228  
8.7 I2C Dynamic Characteristics.....................................................................................229  
8.8 SPI Dynamic Characteristics....................................................................................230  
8.9 I2S Dynamic Characteristics.....................................................................................232  
8.10 USCI - I2C Dynamic Characteristics..................................................................234  
8.11 USCI - SPI Dynamic Characteristics.................................................................235  
8.12 USB Characteristics.............................................................................................237  
8.12.1USB Full-Speed PHY Characteristics....................................................................... 237  
8.13 SDIO Characteristics...........................................................................................238  
8.13.1Default Mode Timing.................................................................................................... 238  
8.13.2SDIO Dynamic Characteristics .................................................................................. 239  
Feb 15, 2019  
Page 6 of 245  
Rev 1.01  
M2351  
9 PACKAGE DIMENSIONS ............................................................................240  
9.1 QFN 33 (5x5x0.8 mm Pitch 0.5 mm) ......................................................................240  
9.2 LQFP 64 (7x7x1.4 mm Footprint 2.0 mm)..............................................................241  
9.3 LQFP 128 (14x14x1.4 mm Footprint 2.0 mm).......................................................242  
10ABBREVIATIONS ........................................................................................243  
11REVISION HISTORY....................................................................................245  
Feb 15, 2019  
Page 7 of 245  
Rev 1.01  
M2351  
LIST OF FIGURES  
Figure 4.1-1 NuMicro® M2351 Series QFN 33-pin Diagram ..........................................................27  
Figure 4.2-1 NuMicro® M2351 Series WLCSP 49-pin Diagram .....................................................28  
Figure 4.3-1 NuMicro® M2351 Series LQFP 64-pin Diagram.........................................................29  
Figure 4.4-1 NuMicro® M2351 Series LQFP 128-pin Diagram.......................................................30  
Figure 5.1-1 NuMicro® M2351 Block Diagram..............................................................................107  
Figure 5.2-1 NuMicro® M2351 Series Cortex®-M23 Architecture .......................................................108  
Figure 6.1-1 Cortex® -M23 Block Diagram ....................................................................................109  
Figure 6.2-1 Secure World View and Non-secure World View on a Chip....................................111  
Figure 6.2-2 The 4 GB Memory Map Divided Into Secure and Non-secure Regions by IDAU....113  
Figure 6.2-3 Typical Setting of SAU .............................................................................................114  
Figure 6.2-4 Example of SRAM Divided Into Secure Block and Non-secure Block.....................116  
Figure 6.2-5 Checking Point of Accesses.....................................................................................117  
Figure 6.3-1 System Reset Sources.............................................................................................119  
Figure 6.3-2 nRESET Reset Waveform .......................................................................................121  
Figure 6.3-3 Power-on Reset (POR) Waveform...........................................................................121  
Figure 6.3-4 Low Voltage Reset (LVR) Waveform .......................................................................122  
Figure 6.3-5 Brown-out Detector (BOD) Waveform .....................................................................123  
Figure 6.3-6 Power Mode State Machine.....................................................................................125  
Figure 6.3-7 Power Distribution Diagram .....................................................................................129  
Figure 6.3-8 IDAU Memory Map...................................................................................................135  
Figure 6.3-9 IDAU Block Diagram ................................................................................................136  
Figure 6.3-10 SRAM Block Diagram ............................................................................................136  
Figure 6.3-11 SRAM Memory Organization .................................................................................137  
Figure 6.3-12 SRAM Marco Organization ....................................................................................138  
Figure 6.4-1 Clock Generator Global View Diagram (1/3)............................................................141  
Figure 6.4-2 Clock Generator Global View Diagram (2/3)............................................................142  
Figure 6.4-3 Clock Generator Global View Diagram (3/3)............................................................143  
Figure 6.4-4 Clock Generator Block Diagram...............................................................................144  
Figure 6.4-5 System Clock Block Diagram...................................................................................145  
Figure 6.4-6 HXT Stop Protect Procedure....................................................................................146  
Figure 6.4-7 SysTick Clock Control Block Diagram .....................................................................146  
Figure 6.4-8 Clock Output Block Diagram....................................................................................147  
Figure 6.26-1 SPI Master Mode Application Block Diagram ........................................................172  
Figure 6.26-2 SPI Slave Mode Application Block Diagram ..........................................................172  
Figure 6.27-1 I2C Bus Timing .......................................................................................................174  
Figure 8.4-1 Typical Crystal Application Circuit............................................................................212  
Feb 15, 2019  
Page 8 of 245  
Rev 1.01  
M2351  
Figure 8.4-2 Typical Crystal Application Circuit............................................................................214  
Figure 8.5-1 Power-up Ramp Condition.......................................................................................220  
Figure 8.5-2 Typical Connection with Internal Voltage Reference ...............................................221  
Figure 8.5-3 Typical Connection Using the ADC..........................................................................224  
Figure 8.7-1 I2C Timing Diagram..................................................................................................229  
Figure 8.8-1 SPI Master Mode Timing Diagram...........................................................................230  
Figure 8.8-2 SPI Slave Mode Timing Diagram.............................................................................231  
Figure 8.9-1 I2S Master Mode Timing Diagram............................................................................232  
Figure 8.9-2 I2S Slave Mode Timing Diagram..............................................................................233  
Figure 8.10-1 I2C Timing Diagram................................................................................................234  
Figure 8.11-1 SPI Master Mode Timing Diagram.........................................................................235  
Figure 8.11-2 SPI Slave Mode Timing Diagram...........................................................................236  
Figure 8.13-1 SDIO Default Mode................................................................................................238  
Figure 8.13-2 SDIO High-speed Mode.........................................................................................239  
Feb 15, 2019  
Page 9 of 245  
Rev 1.01  
M2351  
List of Tables  
Table 6.2-1 Peripherals and Regions that are Always Secure.....................................................115  
Table 6.3-1 Reset Value of Registers...........................................................................................121  
Table 6.3-2 Power Mode Table ....................................................................................................124  
Table 6.3-3 Power Mode Entry Setting Table...............................................................................125  
Table 6.3-4 Power Mode Difference Table...................................................................................125  
Table 6.3-5 Clocks in Power Modes.............................................................................................126  
Table 6.3-6 Condition of Entering Power-down Mode Again .......................................................128  
Table 6.3-7 Address Space Assignments for On-Chip Controllers ..............................................132  
Table 6.18-1 NuMicro® M2351 Series UART Features................................................................164  
Table 8.1-1 Voltage Characteristics .............................................................................................191  
Table 8.1-2 Current Characteristics..............................................................................................192  
Table 8.1-3 Thermal Characteristics ............................................................................................192  
Table 8.1-4 EMC Characteristics..................................................................................................193  
Table 8.3-1 Current Consumption in LDO Normal Run Mode......................................................196  
Table 8.3-2 Current Consumption in DC-DC Normal Run Mode .................................................197  
Table 8.3-3 Current consumption in LDO Idle mode....................................................................198  
Table 8.3-4 Current Consumption in DC-DC Idle Mode...............................................................199  
Table 8.3-5 Chip Current Consumption in Power-down Mode.....................................................205  
Table 8.3-6 Current Consumption for VBAT ...................................................................................206  
Table 8.3-7 Low-power Mode Wakeup Timings...........................................................................208  
Table 8.3-8 PIN input Characteristics...........................................................................................209  
Table 8.3-9 PIN Output Characteristics........................................................................................210  
Table 8.3-10 nRESET Pin Characteristics ...................................................................................210  
Table 8.4-1 External 4~24 MHz High Speed Crystal (HXT) Oscillator.........................................211  
Table 8.4-2 External 32.768 kHz Crystal......................................................................................214  
Table 8.4-3 I/O AC Characteristics...............................................................................................217  
Feb 15, 2019  
Page 10 of 245  
Rev 1.01  
M2351  
1 GENERAL DESCRIPTION  
NuMicro® M2351 Series a TrustZone® empowered microcontroller series focusing on IoT security.  
The rise of the internet of things (IoT) era has increased awareness for the integration of the physical  
world into digital systems. While the efficiency improvements and economic benefits coming behind  
the digitization of our everyday lives, it has also placed pressure on system designers to deliver the  
innovative products capable of connecting and exchanging data incessantly. Since security and power  
consumption are the key requirements of IoT applications, Nuvoton NuMicro® M2351 series is  
excellence in supporting the proliferation of intelligent connected devices.  
The NuMicro® M2351 microcontroller series is powered by Arm® Cortex® -M23 core with TrustZone®  
for Armv8-M architecture, which elevates the traditional firmware security to the new level of robust  
software security.  
The low-power M2351 microcontrollers run up to 64 MHz with up to 512 Kbytes embedded Flash  
memory in dual bank mode, supporting secure OTA (Over-The-Air) firmware update and up to 96  
Kbytes embedded SRAM. Furthermore, the M2351 series provides high-performance connectivity  
peripheral interfaces such as UART, SPI, I2C, GPIOs, USB and ISO 7816-3 for smart card reader. Its  
secure and low-power features strengthen the innovation of IoT security.  
TrustZone® for Armv8-M Empowered  
The NuMicro® M2351 series is empowered by Arm® TrustZone® for Armv8-M architecture. The  
TrustZone® technology is a System on Chip (SoC) and CPU system-wide approach to security. In  
addition to the firmware-level security, the M2351 series offers a more enhanced software-level  
security for more robust security and greater power efficiency.  
Nuvoton Security Functions Strengthened  
In addition to the TrustZone® technology, the NuMicro® M2351 series is also equipped with rich  
functions to improve system security. The Secure Bootloader supports trusted boot feature. The  
hardware crypto accelerators, including ECC, support encryption and decryption operations to offload  
the main processor’s computing power. The KPROM is a password protection mechanism to allow  
Flash memory write and erase. The XOM defines execute-only memory regions to protect critical  
program codes. The Flash lock bits are designed to disable external Flash-read/ -write and debug  
interface. Tamper detection pins can detect the state transition on the tamper pins.  
Low-power Technology for IoT Innovation  
Other than security, low power is also vital for IoT applications. Regarding the power consumption of  
the M2351 series, the normal run mode consumes 97 μA/MHz in LDO mode and 45 μA/MHz in DC-DC  
mode. The current consumption of Standby Power-down mode is 2.8 μA and the Deep Power-down  
mode without VBAT is less than 2μA.  
Arm® PSA with Nuvoton Secure Microcontroller Platform (NuSMP) Supported  
The Platform Security Architecture (PSA) is a holistic set of threat models, security analysis, hardware  
and firmware architecture specifications, and an open source firmware reference implementation. The  
PSA is a contribution from Arm® to the entire IoT ecosystem, offering common ground rules and a  
more economical approach to building more secure devices.  
Nuvoton has developed the Nuvoton Secure Microcontroller Platform (NuSMP) to support Arm® PSA.  
The NuSMP is a range of hardware and software mixture technologies for security requirements of  
general purpose and secure IoT microcontrollers. With NuSMP, developers can easily achieve the  
secure services with the M2351 series in coverage of: Trusted Boot (Root of Trust), Secure OTA  
(Over-The-Air) firmware update (including secure software download), Power Management APIs for  
non-secure world and PC side crypto related development software tool.  
Feb 15, 2019  
Page 11 of 245  
Rev 1.01  
M2351  
Security Features  
Applications  
- Arm® Cortex® -M23 TrustZone® Technology  
- IoT Devices with Secure Connection  
- 8 regions MPU_NS (for non-secure world);  
- Collaborative Secure Software  
8 regions MPU_S (for secure world)  
Development Business Model  
- 8 regions Security Attribution Units (SAU)  
- Implementation Defined Attribution Unit (IDAU)  
- 2 KB OTP ROM with additional 1KB lock bits  
- Hardware Crypto Accelerators  
- Fingerprint Card, Fingerprint Lock  
- Smart Home Appliance  
- Smart City Facilities  
- Wireless Sensor Node Device (WSND)  
- Auto Meter Reading (AMR)  
- Portable Wireless Data Collector  
- Digital Currency Authentication  
- CRC calculation unit  
- Up to 6 tamper detection pins  
- 96-bit Unique ID (UID), 128-bit Unique Customer ID  
(UCID)  
- Trusted Execution Environment (TEE) with  
- Arm® Platform Security Architecture (PSA) and  
Trusted Base System Architecture-M (TBSA-M)  
supported  
Trusted Applications (TAs)  
Feb 15, 2019  
Page 12 of 245  
Rev 1.01  
M2351  
2 FEATURE DESCRIPTION  
Core and System  
Arm® Cortex® -M23 processor, running up to 64 MHz  
64MHz at 1.8V-3.6V; 48MHz at 1.7V-3.6V  
Supports Arm® TrustZone® technology  
Built-in PMSAv8 Memory Protection Unit (MPU)  
Built-in Security Attribution Unit (SAU)  
Built-in Nested Vectored Interrupt Controller (NVIC)  
Built-in Embedded Trace Macrocell (ETM)  
Arm® Cortex® -M23  
32-bit Single-cycle hardware multiplier and 32-bit 17-cycle hardware  
divider  
24-bit system tick timer  
Supports Programmble and maskable interrupt  
Supports Low Power Sleep mode by WFI and WFE instructions  
Supports single cycle I/O access  
Configures SRAMs secure attribution block by block  
Configures GPIOs secure attribution port by port  
Monitor secure violation incident on the chip  
Secure Configuration Unit  
(SCU)  
24-bit non-secure state monitor timer  
Eight-level BOD with brown-out interrupt and reset option  
Brown-out Detector (BOD)  
Low Voltage Reset (LVR)  
(3.0V/2.8V/2.6V/2.4V/2.2V/2.0V/1.8V/1.6V)  
LVR with 1.5V threshold voltage level  
Dual voltage regulator is available for DC-DC converter or LDO  
Supports 1.26v and 1.2v core voltage  
Supports Power-down mode  
Supports Standby Power-down mode  
Supports low leakage Power-down mode  
Supports ultra low leakage Power-down mode  
Supports fast wake-up Power-down mode  
Supports deep Power-down mode  
Power Manager  
96-bit Unique ID (UID)  
128-bit Unique Customer ID (UCID)  
One built-in temperature sensor with 1resolution  
Security  
Memories  
Factory pre-loaded 32 KB mask ROM for secure boot procedure  
Boot Loader  
Flash  
Root of Trust for Nuvoton Secure Microcontroller Platform  
Dual bank 512 KB on-chip Application ROM (APROM) for Over-  
Feb 15, 2019  
Page 13 of 245  
Rev 1.01  
M2351  
The-Air (OTA) upgrade  
64 MHz maximum frequency, with performance at zero wait cycle in  
continuous address read access  
4 KB on-chip Flash memory for user-defined loader (LDROM)  
4 KB non-readbale Key Protection ROM (KPROM) for firmware  
programming protection  
2 KB OTP for general-purpose control use, (2 KB data + 1 KB lock  
bit) easy for PLM (Product Lifecycle Management) implementation  
Execute Only Memory (XOM) for software intelectual property  
protection  
32 KB Secure Boot ROM  
All on-chip Flash support 2 KB page erase  
Fast Flash programming verification with CRC  
On-chip Flash programming with In-Chip Programming (ICP), In-  
System Programming (ISP) and In-Application Programming (IAP)  
capabilities  
Configurable boot up sources including boot loader, user-defined  
loader (LDROM) or Application ROM (APROM)  
2-wired ICP Flash updating through SWD interface  
32-bit/64-bit and multi-word Flash programming function  
Up to 96 KB on-chip SRAM includes:  
32 KB SRAM located in bank 0 that supports hardware  
parity check; Exception (NMI) generated upon a parity check  
error  
SRAM  
64 KB SRAM located in bank 1  
Byte-, half-word- and word-access  
PDMA operation  
Supports CRC-CCITT, CRC-8, CRC-16 and CRC-32 polynomials  
Programmable initial value and seed value  
Programmable order reverse setting and one’s complement setting  
for input data and CRC checksum  
Cyclic Redundancy  
Calculation (CRC)  
8-bit, 16-bit, and 32-bit data width  
8-bit write mode with 1-AHB clock cycle operation  
16-bit write mode with 2-AHB clock cycle operation  
32-bit write mode with 4-AHB clock cycle operation  
Uses DMA to write data with performing CRC operation  
16 independent and configurable channels for automatic data  
transfer between memories and peripherals  
8 channels of PDMA1 can be configured as secure or non-secure  
channels  
Peripheral DMA (PDMA)  
Supports time-out function when transfer time-out  
Basic and Scatter-Gather transfer modes  
Each channel supports circular buffer management using Scatter-  
Gather Transfer mode  
Feb 15, 2019  
Page 14 of 245  
Rev 1.01  
M2351  
Stride function for rectangle image data movement  
Fixed-priority and Round-robin priorities modes  
Single and burst transfer types  
Byte-, half-word- and word tranfer unit with count up to 65536  
Incremental or fixed source and destination address  
Clocks  
4~24 MHz High-speed external crystal oscillator (HXT) for precise  
timing operation  
32.768 kHz Low-speed external crystal oscillator (LXT) for RTC  
External Clock Source  
function and low-power system operation  
Supports clock failure detection for external crystal oscillators and  
exception generation (NMI)  
12 MHz High-speed Internal RC oscillator (HIRC) trimmed to 0.25%  
accuracy that can optionally be used as a system clock  
48 MHz High-speed Internal RC oscillator (HIRC48) trimmed to  
0.25% accuracy that can optionally be used as a system clock  
10 kHz Low-speed Internal RC oscillator (LIRC) for watchdog timer  
Internal Clock Source  
and wakeup operation  
32 kHz Low-speed Internal RC oscillator (LIRC32) for RTC function  
Up to 144 MHz on-chip PLL, sourced from HIRC or HXT, allowing  
for CPU operation up to the maximum CPU frequency without the  
need for a high-frequency crystal  
Real-Time Clock with a separate power domain  
The RTC clock source includes Low-speed external crystal  
oscillator (LXT) and 32kHz Low-speed Internal RC oscillator  
(LIRC32) and 10kHz Low-speed Internal RC oscillator (LIRC)  
The RTC block includes 80 bytes of battery-powered backup  
registers, which can be cleared by tamper pins  
Supports 6 static and dynamic tamper pins  
Real-Time Clock (RTC)  
Able to wake up CPU from any reduced power mode  
Supports Alarm registers (second, minute, hour, day, month, year)  
Supports RTC Time Tick and Alarm Match interrupt  
Automatic leap year recognition  
Supports 1 Hz clock output for calibration  
Frequency of RTC clock source compensate by RTC_FREQADJ  
register  
Timers  
TIMER  
Four sets of 32-bit timers with 24-bit up counter and one 8-bit pre-  
scale counter from independent clock source  
32-bit Timer  
One-shot, Periodic, Toggle and Continuous Counting operation  
modes  
Supports event counting function to count the event from external  
Feb 15, 2019  
Page 15 of 245  
Rev 1.01  
M2351  
pins  
Supports external capture pin for interval measurement and  
resetting 24-bit up counter  
Supports chip wake-up function, if a timer interrupt signal is  
generated  
PWM  
Eight 16-bit PWM counters with 12-bit clock prescale with up to 64  
MHz  
Supports 12-bit deadband (dead time)  
Up, down or up-down PWM counter type  
Supports brake function  
Supports mask function and tri-state output for each PWM channel  
Twelve 16-bit counters with 12-bit clock prescale for twelve 64 MHz  
PWM output channels  
Up to 12 independent input capture channels with 16-bit resolution  
counter  
Supports dead time with maximum divided 12-bit prescale  
Up, down or up-down PWM counter type  
Supports complementary mode for 3 complementary paired PWM  
Enhanced PWM (EPWM)  
output channels  
Synchronous function for phase control  
Counter synchronous start function  
Brake function with auto recovery mechanism  
Mask function and tri-state output for each PWM channel  
Able to trigger EADC or DAC to start conversion  
Two 16-bit counters with 12-bit clock prescale for twelve 64 MHz  
PWM output channels  
Up to 6 independent input capture channels with 16-bit resolution  
counter  
Basic PWM (BPWM)  
Up, down or up-down PWM counter type  
Counter synchronous start function  
Mask function and tri-state output for each PWM channel  
Able to trigger EADC to start conversion  
18-bit free running up counter for WDT time-out interval  
Supports multiple clock sources from LIRC (default selection),  
HCLK/2048 and LXT with 8 selectable time-out period  
Able to wake up system from Power-down or Idle mode  
Time-out event to trigger interrupt or reset system  
Watchdog  
Supports four WDT reset delay periods, including 1026, 130, 18 or 3  
WDT_CLK reset delay period  
Configured to force WDT enabled on chip power-on or reset  
Clock sourced from HCLK/2048 or LIRC; the window set by 6-bit  
Window Watchdog  
down counter with 11-bit prescale  
Feb 15, 2019  
Page 16 of 245  
Rev 1.01  
M2351  
Suspended in Idle/Power-down mode  
Analog Interfaces  
One 12-bit, 16-ch 3.76 MSPS SAR EADC with up to 16 single-  
ended input channels or 8 differential input pairs; 10-bit accuracy is  
guaranteed.  
Three internal channels for VBAT, band-gap VBG input and  
Temperature sensor input.  
Supports external VREF pin or internal reference voltage VREF:  
1.6V, 2.0V, 2.5V, and 3.0V.  
Two power saving modes: Power-down mode and Standby mode.  
Supports calibration capability.  
Enhanced Analog-to-Digital  
Converter (EADC)  
Analog-to-Digital conversion can be triggered by software enable,  
external pin, Timer 0~3 overflow pulse trigger or EPWM trigger.  
Configurable EADC sampling time.  
Up to 19 sample modules.  
Double data buffers for sample module 0~3.  
PDMA operation.  
Two 12-bit, 1 MSPS voltage type DAC with 8-bit mode and 8μs rail-  
to-rail settle time  
Maximum output voltage AVDD -0.2V in buffer mode.  
Digital-to-Analog Converter  
(DAC)  
Digital-to-Analog conversion triggered by Timer0~3, EPWM0,  
EPWM1, external trigger pin to start DAC conversion or software.  
Supports group mode for synchronized data update of two DACs.  
PDMA operation.  
Two rail-to-rail Analog Comparators.  
Supports four multiplexed I/O pins at positive input.  
Supports I/O pins, band-gap, DAC output, and 16-level Voltage  
divider from AVDD or VREF at negative input.  
Supports four programmable propagation speeds for power saving.  
Supports wake up from Power-down by interrput.  
Analog Comparator  
(ACMP)  
Supports triggers for brake events and cycle-by-cycle control for  
PWM.  
Supports window compare mode and window latch mode.  
Supports programmable hysteresis window: 0mV, 10mV, 20mV and  
30mV.  
Communication Interfaces  
Six sets of UARTs with up to 10.66 MHz baud rate  
Auto-Baud Rate measurement and baud rate compensation  
function  
Low-power UART  
Supports low power UART (LPUART): baud rate clock from  
LXT(32.768 KHz) with 9600bps in Power-down mode even system  
clock is stopped  
16-byte FIFOs with programmable level trigger  
Feb 15, 2019  
Page 17 of 245  
Rev 1.01  
M2351  
Auto flow control ( nCTS and nRTS)  
Supports IrDA (SIR) function  
Supports LIN function on UART0 and UART1  
Supports RS-485 9-bit mode and direction control  
Supports nCTS, incoming data, Received Data FIFO reached  
threshold and RS-485 Address Match (AAD mode) wake-up  
function in idle mode  
Supports hardware or software enables to program nRTS pin to  
control RS-485 transmission direction  
Supports wake-up function  
8-bit receiver FIFO time-out detection function  
Supports break error, frame error, parity error and receive/transmit  
FIFO overflow detection function  
PDMA operation  
Three sets of ISO-7816-3 which are compliant with ISO-7816-3 T=0,  
T=1  
Supports full duplex UART function  
4-byte FIFOs with programmable level trigger  
Programmable guard time selection (11 ETU ~ 266 ETU)  
One 24-bit and two 8 bit time-out counters for Answer to Request  
(ATR) and waiting times processing  
Smart Card Interface  
Auto inverse convention function  
Stop clock level and clock stop (clock keep) function  
Transmitter and receiver error retry function  
Supports hardware activation, deactivation and warm reset  
sequence process  
Supports hardware auto deactivation sequence after card removal  
Three sets of I2C devices with Master/Slave mode  
Supports Standard mode (100 kbps), Fast mode (400 kbps) and  
Fast mode plus (1 Mbps)  
Supports 10 bits mode  
Programmable clocks allowing for versatile rate control  
I2C  
Supports multiple address recognition (four slave address with  
mask option)  
Supports SM (Sytem Management) Bus and PM (Power  
Management) Bus  
Supports multi-address power-down wake-up function  
PDMA operation  
One set of SPI Quad controller with Master/Slave mode, up to 64  
MHz at 2.7V~3.6V stsyem voltage.  
Supports Dual and Quad I/O Transfer mode  
Supports one/two data channel half-duplex transfer  
Supports receive-only mode  
Quad SPI  
Feb 15, 2019  
Page 18 of 245  
Rev 1.01  
M2351  
Configurable bit length of a transfer word from 8 to 32-bit  
Provides separate 8-level depth transmit and receive FIFO buffers  
MSB first or LSB first transfer sequence  
The byte reorder function  
Supports Byte or Word Suspend mode  
Supports 3-wired, no slave select signal, bi-direction interface  
PDMA operation.  
Up to four sets of SPI/I2S controllers with Master/Slave mode  
SPI can communicate at up to 64 Mbit/s  
SPI/I2S provides separate 4-level of 32-bit (or 8-level of 16-bit)  
transmit and receive FIFO buffers  
SPI  
Configurable bit length of a transfer word from 8 to 32-bit  
MSB first or LSB first transfer sequence  
Byte reorder function  
SPI/I2S  
Supports Byte or Word Suspend mode  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
I2S  
Supports mono and stereo audio data with 8-, 16-, 24- and 32-bit  
audio data sizes  
Supports PCM mode A, PCM mode B, I2S and MSB justified data  
format  
PDMA operation  
One set of I2S interface with Master/Slave mode  
I2S audio sampling frequencies up to 192 kHz are supported  
Supports mono and stereo audio data with 8-, 16-, 24- and 32-bit  
word sizes  
Two 16-level FIFO data buffers, one for transmitting and the other  
for receiving  
I2S  
Supports I2S protocols: Philips standard, MSB-justified, and LSB-  
justified data format  
Supports PCM protocols: PCM standard, MSB-justified, and LSB-  
justified data format  
PCM protocol supports TDM multi-channel transmission in one  
audio sample; the number of data channel can be set as 2, 4, 6 or 8  
PDMA operation  
Two sets of USCI,configured as UART, SPI or I2C function  
Supports single byte TX and RX buffer mode  
UART  
Universal Serial Control  
Interface (USCI)  
Supports one transmit buffer and two receive buffers for data  
payload  
Supports hardware auto flow control function and programmable  
Feb 15, 2019  
Page 19 of 245  
Rev 1.01  
M2351  
flow control trigger level  
9-bit Data Transfer  
Baud rate detection by built-in capture event of baud rate generator  
Supports wake-up function  
PDMA operation  
SPI  
Supports Master or Slave mode operation  
Supports one transmit buffer and two receive buffer for data payload  
Configurable bit length of a transfer word from 4 to 16-bit  
Supports MSB first or LSB first transfer sequence  
Supports Word Suspend function  
Supports 3-wire, no slave select signal, bi-direction interface  
Supports wake-up function by slave select signal in slave mode  
Supports one data channel half-duplex transfer  
PDMA operation  
I2C  
Supports master and slave device capability  
Supports one transmit buffer and two receive buffer for data payload  
Communication in standard mode (100 kbps), fast mode (up to 400  
kbps), and Fast mode plus (1 Mbps)  
Supports 10-bit mode  
Supports 10-bit bus time out capability  
Supports bus monitor mode  
Supports power-down wake-up by data toggle or address match  
Supports multiple address recognition  
Supports device address flag  
Programmable setup/hold time  
Two sets of CAN 2.0B controllers  
Each supports 32 Message Objects; each Message Object has its  
own identifier mask  
Controller Area Network  
(CAN)  
Programmable FIFO mode (concatenation of Message Object)  
Disabled Automatic Re-transmission mode for Time Triggered CAN  
applications  
Supports power-down wake-up function  
One set of Secure Digital Host Controller, compliant with SD  
Memory Card Specification Version 2.0  
Secure Digital Host  
Controller (SDHC)  
Supports 50 MHz to achieve 200 Mbps at 3.3V operation  
Supports dedicated DMA master with Scatter-Gather function to  
accelerate the data transfer between system memory and  
SD/SDHC/SDIO card  
External Bus Interface  
(EBI)  
Supports up to three memory banks with individual adjustment of  
timing parameter  
Feb 15, 2019  
Page 20 of 245  
Rev 1.01  
M2351  
Each bank supports dedicated external chip select pin with polarity  
control and up to 1 MB addressing space  
8-/16-bit data width  
Supports byte write in 16-bit data width mode  
Supports variable external bus base clock (MCLK) which based on  
HCLK  
Configurable idle cycle for different access condition: Idle of Write  
command finish (W2X) and Idle of Read-to-Read (R2R)  
Supports Address/Data multiplexed mode  
Supports address bus and data bus separate mode  
Supports LCD interface i80 mode  
PDMA operation  
Supports four I/O modes: Quasi bi-direction, Push-Pull output,  
Open-Drain output and Input only with high impendence mode  
Selectable TTL/Schmitt trigger input  
Configured as interrupt source with edge/level trigger setting  
Supports independent pull-up/pull-down control  
Supports high driver and high sink current I/O  
Supports software selectable slew rate control  
GPIO  
Supports 5V-tolerance function except analog I/O. (Except PA.8 ~  
15; PB.0 ~ 15; PD.10 ~ 12; PF.2 ~ 5; nReset.)  
Improve access efficiency by using single cycle IO bus  
Control Interfaces  
Two QEI phase inputs (QEI_A, QEI_B) and one Index input  
(QEI_INDEX)  
Quadrature Encoder  
Interface (QEI)  
Supports 2/4 times free-counting mode and 2/4 compare-counting  
mode  
Supports encoder pulse width measurement mode with ECAP  
Input Capture Timer/Counter  
Supports three input channels with independent capture counter  
hold register  
24-bit Input Capture up-counting timer/counter supports captured  
Enhanced Capture (ECAP)  
events reset and/or reload capture counter  
Supports rising edge, falling edge and both edge detector options  
with noise filter in front of input ports  
Supports compare-match function  
Advanced Connectivity  
USB 2.0 Full Speed OTG (On-The-Go)  
On-chip USB 2.0 full speed OTG transceiver  
Compliant with USB OTG Supplement 2.0  
Configurable as host-only, device-only or ID-dependent  
USB 2.0 Full Speed with  
on-chip transceiver  
Feb 15, 2019  
Page 21 of 245  
Rev 1.01  
M2351  
USB 1.1 Host Controller  
Compliant with USB Revision 1.1 Specification  
Compatible with OHCI (Open Host Controller Interface) Revision 1.0  
Supports full-speed (12Mbps) and low-speed (1.5Mbps) USB  
devices  
Supports Control, Bulk, Interrupt, Isochronous and Split transfers  
Integrated a port routing logic to route full/low speed device to OHCI  
controller  
Supports an integrated Root Hub  
Supports port power control and port over current detection  
Built-in DMA  
USB 2.0 Full Speed Device Controller  
Compliant with USB Revision 2.0 Specification  
Supports crystal-less  
Supports suspend function when no bus activity existing for 3 ms  
12 configurable endpoints for configurable Isochronous, Bulk,  
Interrupt and Control transfer types  
1024 bytes configurable RAM for endpoint buffer  
Remote wake-up capability  
Cryptography Accelerator  
Hardware ECC accelerator  
Supports both prime field GF(p) and binary field GF(2m)  
Supports NIST P-192, P-224, P-256, P-384 and P-521 curve sizes  
Supports NIST B-163, B-233, B-283, B-409 and B-571 curve sizes  
Supports NIST K-163, K-233, K-283, K-409 and K-571 curve sizes  
Elliptic Curve  
Cryptography (ECC)  
Supports point multiplication, addition and doubling operations in  
GF(p) and GF(2m)  
Supports modulus division, multiplication, addition and subtraction  
operations in GF(p)  
Hardware AES accelerator  
Supports 128-bit, 192-bit and 256-bit key length and key expander,  
and is compliant with FIPS 197  
Advanced Encryption  
Standard (AES)  
Supports ECB, CBC, CFB, OFB, CTR, CBC-CS1, CBC-CS2 and  
CBC-CS3 block cipher modes  
Compliant with NIST SP800-38A and addendum  
Hardware DES accelerator  
Data Encryption Standard  
(DES)  
Supports ECB, CBC, CFB, OFB, and CTR block cipher mode  
Compliant with FIPS 46-3  
Hardware Triple DES accelerator  
Triple Data Encryption  
Standard (3DES)  
Supports two or three different keys in each round  
Supports ECB, CBC, CFB, OFB, and CTR block cipher mode  
Feb 15, 2019  
Page 22 of 245  
Rev 1.01  
M2351  
Implemented based on X9.52 standard and compliant with FIPS SP  
800-67  
Hardware SHA accelerator  
Secure Hash Algorithm  
(SHA)  
Supports SHA-160, SHA-224, SHA-256 and SHA-384  
Compliant with FIPS 180/180-2  
Pseudo Random Number  
Generator (PRNG)  
Supports 64-bit, 128-bit, 192-bit and 256-bit random number  
generation  
True Randon Number  
Generator (TRNG)  
Up to 800 random bits per second  
Feb 15, 2019  
Page 23 of 245  
Rev 1.01  
M2351  
3 PARTS INFORMATION  
3.1 Summary  
Part No.  
USB FS  
CAN  
Crypto  
M2351  
3.2 Package Type  
Part No.  
QFN33  
WLCSP49  
LQFP64  
M2351SIAAE  
LQFP128  
M2351  
M2351ZIAAE  
M2351CIAAE  
M2351KIAAE  
Feb 15, 2019  
Page 24 of 245  
Rev 1.01  
M2351  
3.3 NuMicro® M2351 Series Selection Guide  
M2351  
PART NUMBER  
ZIAAE  
CIAAE  
SIAAE  
KIAAE  
Flash (KB)  
SRAM (KB)  
ISP Loader ROM (KB)  
I/O  
512  
96  
512  
96  
512  
96  
512  
96  
4
4
25  
-
41  
-
51  
1
107  
6
32-bit Timer  
Tamper  
RTC  
6
3
LPUART  
ISO-7816  
Quad SPI  
1
SPI/I2S  
3
3
4
4
I2S  
I2C  
1
3
2
1
2
USCI (UART/I2C/ SPI)  
CAN  
LIN  
SDHC  
1
1
1
1
TRNG  
DES / 3-DES / AES  
ECC  
SHA  
16-bit Enhanced PWM  
16-bit Basic PWM  
QEI  
12  
12  
1
-
2
1
2
1
2
2
ECAP  
USB 2.0 FS OTG  
12-bit ADC  
12-bit DAC  
Analog Comparator  
Cryptography  
External Bus Interface  
Package  
2
10  
2
12  
2
16  
2
16  
2
-
QFN 33  
WLCSP 49  
LQFP 64  
LQFP 128  
Feb 15, 2019  
Page 25 of 245  
Rev 1.01  
M2351  
3.4 NuMicro® M2351 Naming Rule  
ARMBased  
32-bit Microcontroller  
X X X X  
51 X  
M23  
CPU Core  
M23: Cortex® -M23  
Product Line Function  
51: Performance line  
Temperature  
E: -40°C ~ +105°C  
Reserve  
Package Type  
SRAM size  
A: 96KB  
Z: QFN33 (5x5 mm)  
C: WLCSP49 (3x3 mm)  
S: LQFP64 (7x7 mm)  
K: LQFP128 (14x14 mm)  
Flash ROM  
I: 512KB  
Feb 15, 2019  
Page 26 of 245  
Rev 1.01  
M2351  
4 PIN CONFIGURATION  
4.1  
NuMicro® M2351 Series QFN33 Pin Diagram  
Corresponding Part Number: M2351ZIAAE  
25  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PF.2  
Top transparent view  
26  
Vsw  
27  
VDD  
28  
LDO_CAP  
QFN33  
29  
PB.14  
30  
PB.13  
31  
PB.12  
33 VSS  
32  
AVDD  
PF.3  
VDDIO power domain  
Figure 4.1-1 NuMicro® M2351 Series QFN 33-pin Diagram  
Feb 15, 2019  
Page 27 of 245  
Rev 1.01  
M2351  
4.2  
NuMicro® M2351 Series WLCSP49 Pin Diagram  
Corresponding Part Number: M2351CIAAE  
A
B
C
D
E
F
G
Figure 4.2-1 NuMicro® M2351 Series WLCSP 49-pin Diagram  
Feb 15, 2019  
Page 28 of 245  
Rev 1.01  
M2351  
4.3  
NuMicro® M2351 Series LQFP64 Pin Diagram  
Corresponding Part Number: M2351SIAAE  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
nRESET  
VDDIO  
PA.0  
50  
VSW  
51  
VDD  
52  
LDO_CAP  
PA.1  
53  
PB.15  
PA.2  
54  
PB.14  
PA.3  
55  
PB.13  
PA.4  
56  
PB.12  
PA.5  
LQFP64  
57  
AVDD  
LDO_CAP  
VDD  
58  
VREF  
59  
AVSS  
VSS  
60  
PB.11  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
61  
PB.10  
62  
PB.9  
63  
PB.8  
64  
PB.7  
VDDIO power domain  
VBAT power domain  
Figure 4.3-1 NuMicro® M2351 Series LQFP 64-pin Diagram  
Feb 15, 2019  
Page 29 of 245  
Rev 1.01  
M2351  
4.4  
NuMicro® M2351 Series LQFP128 Pin Diagram  
Corresponding Part Number: M2351KIAAE  
97  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PE.7  
nRESET  
PE.15  
PE.14  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
LDO_CAP  
VDD  
98  
PE.6  
99  
PE.5  
100  
PE.4  
101  
PE.3  
102  
PE.2  
103  
VSS  
104  
VDD  
105  
PE.1  
106  
PE.0  
107  
PH.8  
108  
PH.9  
109  
PH.10  
VSS  
110  
PH.11  
PA.6  
PA.7  
PC.6  
PC.7  
PC.8  
PE.13  
PE.12  
PE.11  
PE.10  
PE.9  
PE.8  
VDD  
111  
PD.14  
112  
VSS  
LQFP128  
113  
VSW  
114  
VDD  
115  
LDO_CAP  
116  
PB.15  
117  
PB.14  
118  
PB.13  
119  
PB.12  
120  
AVDD  
121  
VREF  
122  
AVSS  
VSS  
123  
PB.11  
PF.2  
124  
PB.10  
PF.3  
125  
PB.9  
PH.7  
PH.6  
PH.5  
PH.4  
126  
PB.8  
127  
PB.7  
128  
PB.6  
VDDIO power domain  
VBAT power domain  
Figure 4.4-1 NuMicro® M2351 Series LQFP 128-pin Diagram  
Feb 15, 2019  
Page 30 of 245  
Rev 1.01  
M2351  
4.5  
M2351 Performance Series Pin Description  
MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)  
PA.0 MFP0 means SYS_GPA_MFPL[3:0] = 0x0.  
PA.9 MFP5 means SYS_GPA_MFPH[7:4] = 0x5.  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
1
2
3
D3  
C2  
B1  
2
3
4
1
2
3
PB.5  
I/O  
A
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 5 analog input.  
MFP1 Analog comparator 1 negative input pin.  
MFP2 EBI address bus bit 0.  
EADC0_CH5  
ACMP1_N  
EBI_ADR0  
SD0_DAT3  
SPI1_MISO  
I2C0_SCL  
UART5_TXD  
USCI1_CTL0  
SC0_CLK  
I2S0_BCLK  
EPWM0_CH0  
TM0  
A
O
I/O  
I/O  
I/O  
O
MFP3 SD/SDIO0 data line bit 3.  
MFP5 SPI1 MISO (Master In, Slave Out) pin.  
MFP6 I2C0 clock pin.  
MFP7 UART5 data transmitter output pin.  
MFP8 USCI1 control 0 pin.  
I/O  
O
MFP9 Smart Card 0 clock pin.  
O
MFP10 I2S0 bit clock output pin.  
I/O  
I/O  
I
MFP11 EPWM0 channel 0 output/capture input.  
MFP14 Timer0 event counter input/toggle output pin.  
MFP15 External interrupt 0 input pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 4 analog input.  
MFP1 Analog comparator 1 positive input 1 pin.  
MFP2 EBI address bus bit 1.  
INT0  
PB.4  
I/O  
A
EADC0_CH4  
ACMP1_P1  
EBI_ADR1  
SD0_DAT2  
SPI1_MOSI  
I2C0_SDA  
UART5_RXD  
USCI1_CTL1  
SC0_DAT  
I2S0_MCLK  
EPWM0_CH1  
TM1  
A
O
I/O  
I/O  
I/O  
I
MFP3 SD/SDIO0 data line bit 2.  
MFP5 SPI1 MOSI (Master Out, Slave In) pin.  
MFP6 I2C0 data input/output pin.  
MFP7 UART5 data receiver input pin.  
MFP8 USCI1 control 1 pin.  
I/O  
I/O  
O
MFP9 Smart Card 0 data pin.  
MFP10 I2S0 master clock output pin.  
MFP11 EPWM0 channel 1 output/capture input.  
MFP14 Timer1 event counter input/toggle output pin.  
MFP15 External interrupt 1 input pin.  
MFP0 General purpose digital I/O pin.  
I/O  
I/O  
I
INT1  
PB.3  
I/O  
Feb 15, 2019  
Page 31 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
EADC0_CH3  
ACMP0_N  
EBI_ADR2  
SD0_DAT1  
SPI1_CLK  
UART1_TXD  
UART5_nRTS  
USCI1_DAT1  
SC0_RST  
I2S0_DI  
A
A
MFP1 EADC0 channel 3 analog input.  
MFP1 Analog comparator 0 negative input pin.  
MFP2 EBI address bus bit 2.  
O
I/O  
I/O  
O
MFP3 SD/SDIO0 data line bit 1.  
MFP5 SPI1 serial clock pin.  
MFP6 UART1 data transmitter output pin.  
MFP7 UART5 request to Send output pin.  
MFP8 USCI1 data 1 pin.  
O
I/O  
O
MFP9 Smart Card 0 reset pin.  
I
MFP10 I2S0 data input pin.  
EPWM0_CH2  
TM2  
I/O  
I/O  
I
MFP11 EPWM0 channel 2 output/capture input.  
MFP14 Timer2 event counter input/toggle output pin.  
MFP15 External interrupt 2 input pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 2 analog input.  
MFP1 Analog comparator 0 positive input 1 pin.  
MFP2 EBI address bus bit 3.  
INT2  
4
E3  
5
4
PB.2  
I/O  
A
EADC0_CH2  
ACMP0_P1  
EBI_ADR3  
SD0_DAT0  
SPI1_SS  
A
O
I/O  
I/O  
I
MFP3 SD/SDIO0 data line bit 0.  
MFP5 SPI1 slave select pin.  
UART1_RXD  
UART5_nCTS  
USCI1_DAT0  
SC0_PWR  
I2S0_DO  
MFP6 UART1 data receiver input pin.  
MFP7 UART5 clear to Send input pin.  
MFP8 USCI1 data 0 pin.  
I
I/O  
O
MFP9 Smart Card 0 power pin.  
O
MFP10 I2S0 data output pin.  
EPWM0_CH3  
TM3  
I/O  
I/O  
I
MFP11 EPWM0 channel 3 output/capture input.  
MFP14 Timer3 event counter input/toggle output pin.  
MFP15 External interrupt 3 input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 4.  
INT3  
5
PC.12  
I/O  
O
EBI_ADR4  
UART0_TXD  
I2C0_SCL  
SPI3_MISO  
SC0_nCD  
ECAP1_IC2  
O
MFP3 UART0 data transmitter output pin.  
MFP4 I2C0 clock pin.  
I/O  
I/O  
I
MFP6 SPI3 MISO (Master In, Slave Out) pin.  
MFP9 Smart Card 0 card detect pin.  
MFP11 Enhanced capture unit 1 input 2 pin.  
I
Feb 15, 2019  
Page 32 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
EPWM1_CH0  
I/O  
O
MFP12 EPWM1 channel 0 output/capture input.  
MFP14 Analog comparator 0 output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 5.  
ACMP0_O  
PC.11  
6
I/O  
O
EBI_ADR5  
UART0_RXD  
I2C0_SDA  
SPI3_MOSI  
ECAP1_IC1  
EPWM1_CH1  
ACMP1_O  
PC.10  
I
MFP3 UART0 data receiver input pin.  
MFP4 I2C0 data input/output pin.  
I/O  
I/O  
I
MFP6 SPI3 MOSI (Master Out, Slave In) pin.  
MFP11 Enhanced capture unit 1 input 1 pin.  
MFP12 EPWM1 channel 1 output/capture input.  
MFP14 Analog comparator 1 output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 6.  
I/O  
O
7
I/O  
O
EBI_ADR6  
SPI3_CLK  
I/O  
O
MFP6 SPI3 serial clock pin.  
UART3_TXD  
ECAP1_IC0  
EPWM1_CH2  
PC.9  
MFP7 UART3 data transmitter output pin.  
MFP11 Enhanced capture unit 1 input 0 pin.  
MFP12 EPWM1 channel 2 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 7.  
I
I/O  
I/O  
O
8
EBI_ADR7  
SPI3_SS  
I/O  
I
MFP6 SPI3 slave select pin.  
UART3_RXD  
EPWM1_CH3  
PB.1  
MFP7 UART3 data receiver input pin.  
MFP12 EPWM1 channel 3 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 1 analog input.  
MFP2 EBI address bus bit 8.  
I/O  
I/O  
A
5
D2  
6
9
EADC0_CH1  
EBI_ADR8  
SD0_CLK  
O
O
MFP3 SD/SDIO0 clock output pin  
SPI1_I2SMCLK  
SPI3_I2SMCLK  
UART2_TXD  
USCI1_CLK  
I2C1_SCL  
I/O  
I/O  
O
MFP5 SPI1 I2S master clock output pin  
MFP6 SPI3 I2S master clock output pin  
MFP7 UART2 data transmitter output pin.  
MFP8 USCI1 clock pin.  
I/O  
I/O  
O
MFP9 I2C1 clock pin.  
I2S0_LRCK  
EPWM0_CH4  
EPWM1_CH4  
EPWM0_BRAKE0  
MFP10 I2S0 left right channel clock output pin.  
MFP11 EPWM0 channel 4 output/capture input.  
MFP12 EPWM1 channel 4 output/capture input.  
MFP13 EPWM0 Brake 0 input pin.  
I/O  
I/O  
I
Feb 15, 2019  
Page 33 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
6
C1  
7
10 PB.0  
EADC0_CH0  
I/O  
A
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 0 analog input.  
MFP2 EBI address bus bit 9.  
EBI_ADR9  
O
SD0_CMD  
I/O  
I
MFP3 SD/SDIO0 command/response pin  
MFP7 UART2 data receiver input pin.  
MFP8 SPI0 I2S master clock output pin  
MFP9 I2C1 data input/output pin.  
UART2_RXD  
SPI0_I2SMCLK  
I2C1_SDA  
I/O  
I/O  
I/O  
I/O  
I
EPWM0_CH5  
EPWM1_CH5  
EPWM0_BRAKE1  
MFP11 EPWM0 channel 5 output/capture input.  
MFP12 EPWM1 channel 5 output/capture input.  
MFP13 EPWM0 Brake 1 input pin.  
11 VSS  
P
MFP0 Ground pin for digital circuit.  
12 VDD  
P
MFP0 Power supply for I/O ports and LDO source for internal  
PLL and digital circuit.  
D1  
8
13 PA.11  
I/O  
A
MFP0 General purpose digital I/O pin.  
MFP1 Analog comparator 0 positive input 0 pin.  
MFP2 EBI read enable output pin.  
MFP3 Smart Card 2 power pin.  
ACMP0_P0  
EBI_nRD  
O
SC2_PWR  
O
SPI2_SS  
I/O  
I/O  
I/O  
I/O  
O
MFP4 SPI2 slave select pin.  
USCI0_CLK  
I2C2_SCL  
MFP6 USCI0 clock pin.  
MFP7 I2C2 clock pin.  
BPWM0_CH0  
EPWM0_SYNC_OUT  
TM0_EXT  
MFP9 BPWM0 channel 0 output/capture input.  
MFP10 EPWM0 counter synchronous trigger output pin.  
MFP13 Timer0 external capture input/toggle output pin.  
MFP14 DAC1 external trigger input.  
MFP0 General purpose digital I/O pin.  
MFP1 Analog comparator 1 positive input 0 pin.  
MFP2 EBI write enable output pin.  
MFP3 Smart Card 2 reset pin.  
I/O  
I
DAC1_ST  
E2  
9
14 PA.10  
I/O  
A
ACMP1_P0  
EBI_nWR  
O
SC2_RST  
O
SPI2_CLK  
I/O  
I/O  
I/O  
I/O  
I
MFP4 SPI2 serial clock pin.  
USCI0_DAT0  
I2C2_SDA  
MFP6 USCI0 data 0 pin.  
MFP7 I2C2 data input/output pin.  
BPWM0_CH1  
QEI1_INDEX  
ECAP0_IC0  
MFP9 BPWM0 channel 1 output/capture input.  
MFP10 Quadrature encoder 1 index input  
MFP11 Enhanced capture unit 0 input 0 pin.  
I
Feb 15, 2019  
Page 34 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
TM1_EXT  
DAC0_ST  
I/O  
I
MFP13 Timer1 external capture input/toggle output pin.  
MFP14 DAC0 external trigger input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI external clock output pin.  
MFP3 Smart Card 2 data pin.  
E1 10 15 PA.9  
EBI_MCLK  
SC2_DAT  
I/O  
O
I/O  
I/O  
I/O  
O
SPI2_MISO  
USCI0_DAT1  
UART1_TXD  
BPWM0_CH2  
QEI1_A  
MFP4 SPI2 MISO (Master In, Slave Out) pin.  
MFP6 USCI0 data 1 pin.  
MFP7 UART1 data transmitter output pin.  
MFP9 BPWM0 channel 2 output/capture input.  
MFP10 Quadrature encoder 1 phase A input  
MFP11 Enhanced capture unit 0 input 1 pin.  
MFP13 Timer2 external capture input/toggle output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address latch enable output pin.  
MFP3 Smart Card 2 clock pin.  
I/O  
I
ECAP0_IC1  
TM2_EXT  
I
I/O  
I/O  
O
F2 11 16 PA.8  
EBI_ALE  
SC2_CLK  
O
SPI2_MOSI  
USCI0_CTL1  
UART1_RXD  
BPWM0_CH3  
QEI1_B  
I/O  
I/O  
I
MFP4 SPI2 MOSI (Master Out, Slave In) pin.  
MFP6 USCI0 control 1 pin.  
MFP7 UART1 data receiver input pin.  
MFP9 BPWM0 channel 3 output/capture input.  
MFP10 Quadrature encoder 1 phase B input  
MFP11 Enhanced capture unit 0 input 2 pin.  
MFP13 Timer3 external capture input/toggle output pin.  
MFP15 External interrupt 4 input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 10.  
I/O  
I
ECAP0_IC2  
TM3_EXT  
I
I/O  
I
INT4  
17 PC.13  
I/O  
O
EBI_ADR10  
SC2_nCD  
I
MFP3 Smart Card 2 card detect pin.  
MFP4 SPI2 I2S master clock output pin  
MFP6 USCI0 control 0 pin.  
SPI2_I2SMCLK  
USCI0_CTL0  
UART2_TXD  
BPWM0_CH4  
CLKO  
I/O  
I/O  
O
MFP7 UART2 data transmitter output pin.  
MFP9 BPWM0 channel 4 output/capture input.  
MFP13 Clock Out  
I/O  
O
EADC0_ST  
18 PD.12  
I
MFP14 EADC0 external trigger input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI chip select 0 output pin.  
I/O  
O
EBI_nCS0  
Feb 15, 2019  
Page 35 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
UART2_RXD  
BPWM0_CH5  
QEI0_INDEX  
CLKO  
I
I/O  
I
MFP7 UART2 data receiver input pin.  
MFP9 BPWM0 channel 5 output/capture input.  
MFP10 Quadrature encoder 0 index input  
MFP13 Clock Out  
O
EADC0_ST  
INT5  
I
MFP14 EADC0 external trigger input.  
MFP15 External interrupt 5 input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI chip select 1 output pin.  
MFP3 UART1 data transmitter output pin.  
MFP4 CAN0 bus transmitter output.  
MFP10 Quadrature encoder 0 phase A input  
MFP15 External interrupt 6 input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI chip select 2 output pin.  
MFP3 UART1 data receiver input pin.  
MFP4 CAN0 bus receiver input.  
I
19 PD.11  
EBI_nCS1  
UART1_TXD  
CAN0_TXD  
QEI0_A  
I/O  
O
O
O
I
INT6  
I
20 PD.10  
EBI_nCS2  
UART1_RXD  
CAN0_RXD  
QEI0_B  
I/O  
O
I
I
I
MFP10 Quadrature encoder 0 phase B input  
MFP15 External interrupt 7 input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 11.  
INT7  
I
21 PG.2  
EBI_ADR11  
SPI2_SS  
I/O  
O
I/O  
O
MFP3 SPI2 slave select pin.  
I2C0_SMBAL  
I2C1_SCL  
TM0  
MFP4 I2C0 SMBus SMBALTER pin  
MFP5 I2C1 clock pin.  
I/O  
I/O  
I/O  
O
MFP13 Timer0 event counter input/toggle output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 12.  
22 PG.3  
EBI_ADR12  
SPI2_CLK  
I2C0_SMBSUS  
I2C1_SDA  
TM1  
I/O  
O
MFP3 SPI2 serial clock pin.  
MFP4 I2C0 SMBus SMBSUS pin (PMBus CONTROL pin)  
MFP5 I2C1 data input/output pin.  
I/O  
I/O  
I/O  
O
MFP13 Timer1 event counter input/toggle output pin.  
MFP0 General purpose digital I/O pin.  
23 PG.4  
EBI_ADR13  
SPI2_MISO  
TM2  
MFP2 EBI address bus bit 13.  
I/O  
I/O  
MFP3 SPI2 MISO (Master In, Slave Out) pin.  
MFP13 Timer2 event counter input/toggle output pin.  
Feb 15, 2019  
Page 36 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
24 PF.11  
EBI_ADR14  
SPI2_MOSI  
TAMPER5  
TM3  
I/O  
O
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 14.  
I/O  
I/O  
I/O  
I/O  
O
MFP3 SPI2 MOSI (Master Out, Slave In) pin.  
MFP10 TAMPER detector loop pin 5.  
MFP13 Timer3 event counter input/toggle output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 15.  
25 PF.10  
EBI_ADR15  
SC0_nCD  
I2S0_BCLK  
SPI0_I2SMCLK  
TAMPER4  
26 PF.9  
I
MFP3 Smart Card 0 card detect pin.  
MFP4 I2S0 bit clock output pin.  
O
I/O  
I/O  
I/O  
O
MFP5 SPI0 I2S master clock output pin  
MFP10 TAMPER detector loop pin 4.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 16.  
EBI_ADR16  
SC0_PWR  
I2S0_MCLK  
SPI0_SS  
O
MFP3 Smart Card 0 power pin.  
O
MFP4 I2S0 master clock output pin.  
MFP5 SPI0 slave select pin.  
I/O  
I/O  
I/O  
O
TAMPER3  
27 PF.8  
MFP10 TAMPER detector loop pin 3.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 17.  
EBI_ADR17  
SC0_RST  
I2S0_DI  
O
MFP3 Smart Card 0 reset pin.  
I
MFP4 I2S0 data input pin.  
SPI0_CLK  
TAMPER2  
28 PF.7  
I/O  
I/O  
I/O  
O
MFP5 SPI0 serial clock pin.  
MFP10 TAMPER detector loop pin 2.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 18.  
EBI_ADR18  
SC0_DAT  
I2S0_DO  
I/O  
O
MFP3 Smart Card 0 data pin.  
MFP4 I2S0 data output pin.  
SPI0_MISO  
UART4_TXD  
TAMPER1  
12 29 PF.6  
EBI_ADR19  
SC0_CLK  
I2S0_LRCK  
I/O  
O
MFP5 SPI0 MISO (Master In, Slave Out) pin.  
MFP6 UART4 data transmitter output pin.  
MFP10 TAMPER detector loop pin 1.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 19.  
I/O  
I/O  
O
O
MFP3 Smart Card 0 clock pin.  
O
MFP4 I2S0 left right channel clock output pin.  
Feb 15, 2019  
Page 37 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
SPI0_MOSI  
UART4_RXD  
EBI_nCS0  
I/O  
I
MFP5 SPI0 MOSI (Master Out, Slave In) pin.  
MFP6 UART4 data receiver input pin.  
MFP7 EBI chip select 0 output pin.  
O
TAMPER0  
I/O  
P
MFP10 TAMPER detector loop pin 0.  
MFP0 Power supply by batteries for RTC.  
MFP0 General purpose digital I/O pin.  
MFP2 UART2 data receiver input pin.  
MFP4 UART2 clear to Send input pin.  
MFP8 BPWM0 channel 4 output/capture input.  
13 30 VBAT  
7
F1 14 31 PF.5  
UART2_RXD  
I/O  
I
UART2_nCTS  
BPWM0_CH4  
EPWM0_SYNC_OUT  
X32_IN  
I
I/O  
O
MFP9 EPWM0 counter synchronous trigger output pin.  
MFP10 External 32.768 kHz crystal input pin.  
MFP11 EADC0 external trigger input.  
MFP0 General purpose digital I/O pin.  
MFP2 UART2 data transmitter output pin.  
MFP4 UART2 request to Send output pin.  
MFP8 BPWM0 channel 5 output/capture input.  
MFP10 External 32.768 kHz crystal output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 3.  
I
EADC0_ST  
I
8
G1 15 32 PF.4  
I/O  
O
UART2_TXD  
UART2_nRTS  
BPWM0_CH5  
X32_OUT  
O
I/O  
O
33 PH.4  
I/O  
O
EBI_ADR3  
SPI1_MISO  
I/O  
I/O  
O
MFP3 SPI1 MISO (Master In, Slave Out) pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 2.  
34 PH.5  
EBI_ADR2  
SPI1_MOSI  
I/O  
I/O  
O
MFP3 SPI1 MOSI (Master Out, Slave In) pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 1.  
35 PH.6  
EBI_ADR1  
SPI1_CLK  
I/O  
I/O  
O
MFP3 SPI1 serial clock pin.  
36 PH.7  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 0.  
EBI_ADR0  
SPI1_SS  
I/O  
I/O  
O
MFP3 SPI1 slave select pin.  
9
G2 16 37 PF.3  
MFP0 General purpose digital I/O pin.  
MFP2 EBI chip select 0 output pin.  
MFP3 UART0 data transmitter output pin.  
MFP4 I2C0 clock pin.  
EBI_nCS0  
UART0_TXD  
I2C0_SCL  
XT1_IN  
O
I/O  
I
MFP10 External 4~24 MHz (high speed) crystal input pin.  
Feb 15, 2019  
Page 38 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
BPWM1_CH0  
10 G3 17 38 PF.2  
EBI_nCS1  
I/O  
I/O  
O
MFP11 BPWM1 channel 0 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI chip select 1 output pin.  
MFP3 UART0 data receiver input pin.  
MFP4 I2C0 data input/output pin.  
UART0_RXD  
I2C0_SDA  
I
I/O  
I/O  
O
QSPI0_CLK  
XT1_OUT  
MFP5 Quad SPI0 serial clock pin.  
MFP10 External 4~24 MHz (high speed) crystal output pin.  
MFP11 BPWM1 channel 1 output/capture input.  
MFP0 Ground pin for digital circuit.  
BPWM1_CH1  
I/O  
P
39 VSS  
40 VDD  
P
MFP0 Power supply for I/O ports and LDO source for internal  
PLL and digital circuit.  
41 PE.8  
I/O  
O
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 10.  
EBI_ADR10  
I2S0_BCLK  
O
MFP4 I2S0 bit clock output pin.  
SPI2_CLK  
I/O  
I/O  
O
MFP5 SPI2 serial clock pin.  
USCI1_CTL1  
UART2_TXD  
EPWM0_CH0  
EPWM0_BRAKE0  
ECAP0_IC0  
MFP6 USCI1 control 1 pin.  
MFP7 UART2 data transmitter output pin.  
MFP10 EPWM0 channel 0 output/capture input.  
MFP11 EPWM0 Brake 0 input pin.  
MFP12 Enhanced capture unit 0 input 0 pin.  
MFP14 ETM Trace Data 3 output pin  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 11.  
I/O  
I
I
TRACE_DATA3  
O
42 PE.9  
I/O  
O
EBI_ADR11  
I2S0_MCLK  
O
MFP4 I2S0 master clock output pin.  
MFP5 SPI2 MISO (Master In, Slave Out) pin.  
MFP6 USCI1 control 0 pin.  
SPI2_MISO  
I/O  
I/O  
I
USCI1_CTL0  
UART2_RXD  
EPWM0_CH1  
EPWM0_BRAKE1  
ECAP0_IC1  
MFP7 UART2 data receiver input pin.  
MFP10 EPWM0 channel 1 output/capture input.  
MFP11 EPWM0 Brake 1 input pin.  
MFP12 Enhanced capture unit 0 input 1 pin.  
MFP14 ETM Trace Data 2 output pin  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 12.  
I/O  
I
I
TRACE_DATA2  
O
43 PE.10  
I/O  
O
EBI_ADR12  
I2S0_DI  
I
MFP4 I2S0 data input pin.  
Feb 15, 2019  
Page 39 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
SPI2_MOSI  
USCI1_DAT0  
UART3_TXD  
EPWM0_CH2  
EPWM1_BRAKE0  
ECAP0_IC2  
TRACE_DATA1  
44 PE.11  
I/O  
I/O  
O
MFP5 SPI2 MOSI (Master Out, Slave In) pin.  
MFP6 USCI1 data 0 pin.  
MFP7 UART3 data transmitter output pin.  
MFP10 EPWM0 channel 2 output/capture input.  
MFP11 EPWM1 Brake 0 input pin.  
MFP12 Enhanced capture unit 0 input 2 pin.  
MFP14 ETM Trace Data 1 output pin  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 13.  
I/O  
I
I
O
I/O  
O
EBI_ADR13  
I2S0_DO  
O
MFP4 I2S0 data output pin.  
SPI2_SS  
I/O  
I/O  
I
MFP5 SPI2 slave select pin.  
USCI1_DAT1  
UART3_RXD  
UART1_nCTS  
EPWM0_CH3  
EPWM1_BRAKE1  
ECAP1_IC2  
TRACE_DATA0  
45 PE.12  
MFP6 USCI1 data 1 pin.  
MFP7 UART3 data receiver input pin.  
MFP8 UART1 clear to Send input pin.  
MFP10 EPWM0 channel 3 output/capture input.  
MFP11 EPWM1 Brake 1 input pin.  
MFP13 Enhanced capture unit 1 input 2 pin.  
MFP14 ETM Trace Data 0 output pin  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 14.  
I
I/O  
I
I
O
I/O  
O
EBI_ADR14  
I2S0_LRCK  
O
MFP4 I2S0 left right channel clock output pin.  
MFP5 SPI2 I2S master clock output pin  
MFP6 USCI1 clock pin.  
SPI2_I2SMCLK  
USCI1_CLK  
UART1_nRTS  
EPWM0_CH4  
ECAP1_IC1  
TRACE_CLK  
46 PE.13  
I/O  
I/O  
O
MFP8 UART1 request to Send output pin.  
MFP10 EPWM0 channel 4 output/capture input.  
MFP13 Enhanced capture unit 1 input 1 pin.  
MFP14 ETM Trace Clock output pin  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 15.  
I/O  
I
O
I/O  
O
EBI_ADR15  
I2C0_SCL  
I/O  
O
MFP4 I2C0 clock pin.  
UART4_nRTS  
UART1_TXD  
EPWM0_CH5  
EPWM1_CH0  
MFP5 UART4 request to Send output pin.  
MFP8 UART1 data transmitter output pin.  
MFP10 EPWM0 channel 5 output/capture input.  
MFP11 EPWM1 channel 0 output/capture input.  
O
I/O  
I/O  
Feb 15, 2019  
Page 40 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
BPWM1_CH5  
ECAP1_IC0  
47 PC.8  
I/O  
I
MFP12 BPWM1 channel 5 output/capture input.  
MFP13 Enhanced capture unit 1 input 0 pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address bus bit 16.  
I/O  
O
EBI_ADR16  
I2C0_SDA  
I/O  
I
MFP4 I2C0 data input/output pin.  
UART4_nCTS  
UART1_RXD  
EPWM1_CH1  
BPWM1_CH4  
MFP5 UART4 clear to Send input pin.  
MFP8 UART1 data receiver input pin.  
MFP11 EPWM1 channel 1 output/capture input.  
MFP12 BPWM1 channel 4 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 9.  
I
I/O  
I/O  
I/O  
I/O  
I/O  
O
18 48 PC.7  
EBI_AD9  
SPI1_MISO  
UART4_TXD  
SC2_PWR  
UART0_nCTS  
I2C1_SMBAL  
EPWM1_CH2  
BPWM1_CH0  
TM0  
MFP4 SPI1 MISO (Master In, Slave Out) pin.  
MFP5 UART4 data transmitter output pin.  
MFP6 Smart Card 2 power pin.  
O
I
MFP7 UART0 clear to Send input pin.  
MFP8 I2C1 SMBus SMBALTER pin  
O
I/O  
I/O  
I/O  
I
MFP11 EPWM1 channel 2 output/capture input.  
MFP12 BPWM1 channel 0 output/capture input.  
MFP14 Timer0 event counter input/toggle output pin.  
MFP15 External interrupt 3 input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 8.  
INT3  
19 49 PC.6  
I/O  
I/O  
I/O  
I
EBI_AD8  
SPI1_MOSI  
UART4_RXD  
SC2_RST  
MFP4 SPI1 MOSI (Master Out, Slave In) pin.  
MFP5 UART4 data receiver input pin.  
MFP6 Smart Card 2 reset pin.  
O
UART0_nRTS  
I2C1_SMBSUS  
EPWM1_CH3  
BPWM1_CH1  
TM1  
O
MFP7 UART0 request to Send output pin.  
O
MFP8 I2C1 SMBus SMBSUS pin (PMBus CONTROL pin)  
MFP11 EPWM1 channel 3 output/capture input.  
MFP12 BPWM1 channel 1 output/capture input.  
MFP14 Timer1 event counter input/toggle output pin.  
MFP15 External interrupt 2 input pin.  
I/O  
I/O  
I/O  
I
INT2  
F3 20 50 PA.7  
I/O  
I/O  
I/O  
MFP0 General purpose digital I/O pin.  
EBI_AD7  
MFP2 EBI address/data bus bit 7.  
SPI1_CLK  
MFP4 SPI1 serial clock pin.  
Feb 15, 2019  
Page 41 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
SC2_DAT  
UART0_TXD  
I2C1_SCL  
I/O  
O
MFP6 Smart Card 2 data pin.  
MFP7 UART0 data transmitter output pin.  
MFP8 I2C1 clock pin.  
I/O  
I/O  
I/O  
I
EPWM1_CH4  
BPWM1_CH2  
ACMP0_WLAT  
TM2  
MFP11 EPWM1 channel 4 output/capture input.  
MFP12 BPWM1 channel 2 output/capture input.  
MFP13 Analog comparator 0 window latch input pin  
MFP14 Timer2 event counter input/toggle output pin.  
MFP15 External interrupt 1 input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 6.  
I/O  
I
INT1  
G4 21 51 PA.6  
EBI_AD6  
I/O  
I/O  
I/O  
O
SPI1_SS  
MFP4 SPI1 slave select pin.  
SC2_CLK  
MFP6 Smart Card 2 clock pin.  
UART0_RXD  
I2C1_SDA  
I
MFP7 UART0 data receiver input pin.  
MFP8 I2C1 data input/output pin.  
I/O  
I/O  
I/O  
I
EPWM1_CH5  
BPWM1_CH3  
ACMP1_WLAT  
TM3  
MFP11 EPWM1 channel 5 output/capture input.  
MFP12 BPWM1 channel 3 output/capture input.  
MFP13 Analog comparator 1 window latch input pin  
MFP14 Timer3 event counter input/toggle output pin.  
MFP15 External interrupt 0 input pin.  
MFP0 Ground pin for digital circuit.  
I/O  
I
INT0  
22 52 VSS  
23 53 VDD  
P
P
MFP0 Power supply for I/O ports and LDO source for internal  
PLL and digital circuit.  
24 54 LDO_CAP  
G5 25 55 PA.5  
QSPI0_MISO1  
SPI1_I2SMCLK  
SC2_nCD  
P
I/O  
I/O  
I/O  
I
MFP0 LDO output pin.  
MFP0 General purpose digital I/O pin.  
MFP3 Quad SPI0 MISO1 (Master In, Slave Out) pin.  
MFP4 SPI1 I2S master clock output pin  
MFP6 Smart Card 2 card detect pin.  
MFP7 UART0 clear to Send input pin.  
MFP8 UART5 data transmitter output pin.  
MFP9 I2C0 clock pin.  
UART0_nCTS  
UART5_TXD  
I
O
I2C0_SCL  
I/O  
O
CAN0_TXD  
MFP10 CAN0 bus transmitter output.  
MFP12 BPWM0 channel 5 output/capture input.  
MFP13 EPWM0 channel 0 output/capture input.  
MFP14 Quadrature encoder 0 index input  
BPWM0_CH5  
EPWM0_CH0  
QEI0_INDEX  
I/O  
I/O  
I
Feb 15, 2019  
Page 42 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
F4 26 56 PA.4  
I/O  
I/O  
I/O  
I
MFP0 General purpose digital I/O pin.  
MFP3 Quad SPI0 MOSI1 (Master Out, Slave In) pin.  
MFP4 SPI0 I2S master clock output pin  
MFP6 Smart Card 0 card detect pin.  
MFP7 UART0 request to Send output pin.  
MFP8 UART5 data receiver input pin.  
MFP9 I2C0 data input/output pin.  
QSPI0_MOSI1  
SPI0_I2SMCLK  
SC0_nCD  
UART0_nRTS  
UART5_RXD  
I2C0_SDA  
O
I
I/O  
I
CAN0_RXD  
BPWM0_CH4  
EPWM0_CH1  
QEI0_A  
MFP10 CAN0 bus receiver input.  
I/O  
I/O  
I
MFP12 BPWM0 channel 4 output/capture input.  
MFP13 EPWM0 channel 1 output/capture input.  
MFP14 Quadrature encoder 0 phase A input  
MFP0 General purpose digital I/O pin.  
MFP3 Quad SPI0 slave select pin.  
11 E4 27 57 PA.3  
I/O  
I/O  
I/O  
O
QSPI0_SS  
SPI0_SS  
MFP4 SPI0 slave select pin.  
SC0_PWR  
UART4_TXD  
UART1_TXD  
I2C1_SCL  
MFP6 Smart Card 0 power pin.  
O
MFP7 UART4 data transmitter output pin.  
MFP8 UART1 data transmitter output pin.  
MFP9 I2C1 clock pin.  
O
I/O  
I/O  
I/O  
I
BPWM0_CH3  
EPWM0_CH2  
QEI0_B  
MFP12 BPWM0 channel 3 output/capture input.  
MFP13 EPWM0 channel 2 output/capture input.  
MFP14 Quadrature encoder 0 phase B input  
MFP0 General purpose digital I/O pin.  
MFP3 Quad SPI0 serial clock pin.  
12 G6 28 58 PA.2  
I/O  
I/O  
I/O  
O
QSPI0_CLK  
SPI0_CLK  
MFP4 SPI0 serial clock pin.  
SC0_RST  
MFP6 Smart Card 0 reset pin.  
UART4_RXD  
UART1_RXD  
I2C1_SDA  
I
MFP7 UART4 data receiver input pin.  
MFP8 UART1 data receiver input pin.  
MFP9 I2C1 data input/output pin.  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
BPWM0_CH2  
EPWM0_CH3  
MFP12 BPWM0 channel 2 output/capture input.  
MFP13 EPWM0 channel 3 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP3 Quad SPI0 MISO0 (Master In, Slave Out) pin.  
MFP4 SPI0 MISO (Master In, Slave Out) pin.  
MFP6 Smart Card 0 data pin.  
13 F5 29 59 PA.1  
QSPI0_MISO0  
SPI0_MISO  
SC0_DAT  
Feb 15, 2019  
Page 43 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
UART0_TXD  
UART1_nCTS  
I2C2_SCL  
O
I
MFP7 UART0 data transmitter output pin.  
MFP8 UART1 clear to Send input pin.  
MFP9 I2C2 clock pin.  
I/O  
I/O  
I/O  
I
BPWM0_CH1  
EPWM0_CH4  
DAC1_ST  
MFP12 BPWM0 channel 1 output/capture input.  
MFP13 EPWM0 channel 4 output/capture input.  
MFP15 DAC1 external trigger input.  
MFP0 General purpose digital I/O pin.  
MFP3 Quad SPI0 MOSI0 (Master Out, Slave In) pin.  
MFP4 SPI0 MOSI (Master Out, Slave In) pin.  
MFP6 Smart Card 0 clock pin.  
14 E5 30 60 PA.0  
QSPI0_MOSI0  
SPI0_MOSI  
I/O  
I/O  
I/O  
O
SC0_CLK  
UART0_RXD  
UART1_nRTS  
I2C2_SDA  
I
MFP7 UART0 data receiver input pin.  
MFP8 UART1 request to Send output pin.  
MFP9 I2C2 data input/output pin.  
O
I/O  
I/O  
I/O  
I
BPWM0_CH0  
EPWM0_CH5  
DAC0_ST  
MFP12 BPWM0 channel 0 output/capture input.  
MFP13 EPWM0 channel 5 output/capture input.  
MFP15 DAC0 external trigger input.  
MFP0 Power supply for PA.0~PA.5.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 8.  
15 F6 31 61 VDDIO  
62 PE.14  
P
I/O  
I/O  
O
EBI_AD8  
UART2_TXD  
CAN0_TXD  
MFP3 UART2 data transmitter output pin.  
MFP4 CAN0 bus transmitter output.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 9.  
O
63 PE.15  
I/O  
I/O  
I
EBI_AD9  
UART2_RXD  
CAN0_RXD  
MFP3 UART2 data receiver input pin.  
MFP4 CAN0 bus receiver input.  
I
16 G7 32 64 nRESET  
I
MFP0 External reset input: active LOW, with an internal pull-up.  
Set this pin low reset to initial state.  
17 D5 33 65 PF.0  
UART1_TXD  
I/O  
O
MFP0 General purpose digital I/O pin.  
MFP2 UART1 data transmitter output pin.  
MFP3 I2C1 clock pin.  
I2C1_SCL  
I/O  
I/O  
O
BPWM1_CH0  
MFP12 BPWM1 channel 0 output/capture input.  
MFP14 Serial wired debugger data pin.  
MFP0 General purpose digital I/O pin.  
MFP2 UART1 data receiver input pin.  
ICE_DAT  
18 E6 34 66 PF.1  
UART1_RXD  
I/O  
I
Feb 15, 2019  
Page 44 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
I2C1_SDA  
BPWM1_CH1  
ICE_CLK  
I/O  
I/O  
I
MFP3 I2C1 data input/output pin.  
MFP12 BPWM1 channel 1 output/capture input.  
MFP14 Serial wired debugger clock pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 7.  
MFP3 I2C2 clock pin.  
67 PD.9  
I/O  
I/O  
I/O  
I
EBI_AD7  
I2C2_SCL  
UART2_nCTS  
68 PD.8  
MFP4 UART2 clear to Send input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 6.  
MFP3 I2C2 data input/output pin.  
I/O  
I/O  
I/O  
O
EBI_AD6  
I2C2_SDA  
UART2_nRTS  
D6 35 69 PC.5  
EBI_AD5  
MFP4 UART2 request to Send output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 5.  
MFP4 Quad SPI0 MISO1 (Master In, Slave Out) pin.  
MFP8 UART2 data transmitter output pin.  
MFP9 I2C1 clock pin.  
I/O  
I/O  
I/O  
O
QSPI0_MISO1  
UART2_TXD  
I2C1_SCL  
I/O  
O
CAN0_TXD  
UART4_TXD  
EPWM1_CH0  
C6 36 70 PC.4  
EBI_AD4  
MFP10 CAN0 bus transmitter output.  
MFP11 UART4 data transmitter output pin.  
MFP12 EPWM1 channel 0 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 4.  
MFP4 Quad SPI0 MOSI1 (Master Out, Slave In) pin.  
MFP5 Smart Card 1 card detect pin.  
MFP6 I2S0 bit clock output pin.  
O
I/O  
I/O  
I/O  
I/O  
I
QSPI0_MOSI1  
SC1_nCD  
I2S0_BCLK  
SPI1_I2SMCLK  
UART2_RXD  
I2C1_SDA  
O
I/O  
I
MFP7 SPI1 I2S master clock output pin  
MFP8 UART2 data receiver input pin.  
MFP9 I2C1 data input/output pin.  
I/O  
I
CAN0_RXD  
UART4_RXD  
EPWM1_CH1  
F7 37 71 PC.3  
EBI_AD3  
MFP10 CAN0 bus receiver input.  
I
MFP11 UART4 data receiver input pin.  
MFP12 EPWM1 channel 1 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 3.  
MFP4 Quad SPI0 slave select pin.  
MFP5 Smart Card 1 power pin.  
I/O  
I/O  
I/O  
I/O  
O
QSPI0_SS  
SC1_PWR  
Feb 15, 2019  
Page 45 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
I2S0_MCLK  
SPI1_MISO  
O
I/O  
O
MFP6 I2S0 master clock output pin.  
MFP7 SPI1 MISO (Master In, Slave Out) pin.  
MFP8 UART2 request to Send output pin.  
MFP9 I2C0 SMBus SMBALTER pin  
MFP11 UART3 data transmitter output pin.  
MFP12 EPWM1 channel 2 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 2.  
UART2_nRTS  
I2C0_SMBAL  
UART3_TXD  
EPWM1_CH2  
E7 38 72 PC.2  
EBI_AD2  
O
O
I/O  
I/O  
I/O  
I/O  
O
QSPI0_CLK  
SC1_RST  
MFP4 Quad SPI0 serial clock pin.  
MFP5 Smart Card 1 reset pin.  
I2S0_DI  
I
MFP6 I2S0 data input pin.  
SPI1_MOSI  
I/O  
I
MFP7 SPI1 MOSI (Master Out, Slave In) pin.  
MFP8 UART2 clear to Send input pin.  
UART2_nCTS  
I2C0_SMBSUS  
UART3_RXD  
EPWM1_CH3  
19 D7 39 73 PC.1  
EBI_AD1  
O
MFP9 I2C0 SMBus SMBSUS pin (PMBus CONTROL pin)  
MFP11 UART3 data receiver input pin.  
MFP12 EPWM1 channel 3 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 1.  
I
I/O  
I/O  
I/O  
I/O  
I/O  
O
QSPI0_MISO0  
SC1_DAT  
MFP4 Quad SPI0 MISO0 (Master In, Slave Out) pin.  
MFP5 Smart Card 1 data pin.  
I2S0_DO  
MFP6 I2S0 data output pin.  
SPI1_CLK  
I/O  
O
MFP7 SPI1 serial clock pin.  
UART2_TXD  
I2C0_SCL  
MFP8 UART2 data transmitter output pin.  
MFP9 I2C0 clock pin.  
I/O  
I/O  
O
EPWM1_CH4  
ACMP0_O  
MFP12 EPWM1 channel 4 output/capture input.  
MFP14 Analog comparator 0 output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 0.  
20 C7 40 74 PC.0  
EBI_AD0  
I/O  
I/O  
I/O  
O
QSPI0_MOSI0  
SC1_CLK  
MFP4 Quad SPI0 MOSI0 (Master Out, Slave In) pin.  
MFP5 Smart Card 1 clock pin.  
I2S0_LRCK  
O
MFP6 I2S0 left right channel clock output pin.  
MFP7 SPI1 slave select pin.  
SPI1_SS  
I/O  
I
UART2_RXD  
I2C0_SDA  
MFP8 UART2 data receiver input pin.  
MFP9 I2C0 data input/output pin.  
I/O  
Feb 15, 2019  
Page 46 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
EPWM1_CH5  
ACMP1_O  
75 VSS  
I/O  
O
MFP12 EPWM1 channel 5 output/capture input.  
MFP14 Analog comparator 1 output pin.  
MFP0 Ground pin for digital circuit.  
P
76 VDD  
P
MFP0 Power supply for I/O ports and LDO source for internal  
PLL and digital circuit.  
77 PG.9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 0.  
MFP12 BPWM0 channel 5 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 1.  
MFP12 BPWM0 channel 4 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 2.  
MFP12 BPWM0 channel 3 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 3.  
MFP12 BPWM0 channel 2 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 4.  
MFP12 BPWM0 channel 1 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 5.  
MFP12 BPWM0 channel 0 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP14 Clock Out  
EBI_AD0  
BPWM0_CH5  
78 PG.10  
EBI_AD1  
BPWM0_CH4  
79 PG.11  
EBI_AD2  
BPWM0_CH3  
80 PG.12  
EBI_AD3  
BPWM0_CH2  
81 PG.13  
EBI_AD4  
BPWM0_CH1  
82 PG.14  
EBI_AD5  
BPWM0_CH0  
83 PG.15  
CLKO  
EADC0_ST  
I
MFP15 EADC0 external trigger input.  
MFP0 General purpose digital I/O pin.  
MFP3 UART1 data transmitter output pin.  
MFP4 I2C0 clock pin.  
84 PD.7  
I/O  
O
UART1_TXD  
I2C0_SCL  
I/O  
I/O  
I/O  
O
SPI1_MISO  
USCI1_CLK  
SC1_PWR  
MFP5 SPI1 MISO (Master In, Slave Out) pin.  
MFP6 USCI1 clock pin.  
MFP8 Smart Card 1 power pin.  
85 PD.6  
UART1_RXD  
I/O  
I
MFP0 General purpose digital I/O pin.  
MFP3 UART1 data receiver input pin.  
Feb 15, 2019  
Page 47 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
I2C0_SDA  
SPI1_MOSI  
USCI1_DAT1  
SC1_RST  
I/O  
I/O  
I/O  
O
MFP4 I2C0 data input/output pin.  
MFP5 SPI1 MOSI (Master Out, Slave In) pin.  
MFP6 USCI1 data 1 pin.  
MFP8 Smart Card 1 reset pin.  
MFP0 General purpose digital I/O pin.  
MFP4 I2C1 clock pin.  
86 PD.5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I2C1_SCL  
SPI1_CLK  
MFP5 SPI1 serial clock pin.  
USCI1_DAT0  
SC1_DAT  
MFP6 USCI1 data 0 pin.  
MFP8 Smart Card 1 data pin.  
87 PD.4  
MFP0 General purpose digital I/O pin.  
MFP3 USCI0 control 0 pin.  
USCI0_CTL0  
I2C1_SDA  
MFP4 I2C1 data input/output pin.  
MFP5 SPI1 slave select pin.  
SPI1_SS  
USCI1_CTL1  
SC1_CLK  
MFP6 USCI1 control 1 pin.  
MFP8 Smart Card 1 clock pin.  
MFP14 USB external VBUS regulator status pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 10.  
MFP3 USCI0 control 1 pin.  
USB_VBUS_ST  
41 88 PD.3  
EBI_AD10  
I
I/O  
I/O  
I/O  
I/O  
O
USCI0_CTL1  
SPI0_SS  
MFP4 SPI0 slave select pin.  
UART3_nRTS  
USCI1_CTL0  
SC2_PWR  
MFP5 UART3 request to Send output pin.  
MFP6 USCI1 control 0 pin.  
I/O  
O
MFP7 Smart Card 2 power pin.  
MFP8 Smart Card 1 card detect pin.  
MFP9 UART0 data transmitter output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 11.  
MFP3 USCI0 data 1 pin.  
SC1_nCD  
I
UART0_TXD  
42 89 PD.2  
EBI_AD11  
O
I/O  
I/O  
I/O  
I/O  
I
USCI0_DAT1  
SPI0_CLK  
MFP4 SPI0 serial clock pin.  
UART3_nCTS  
SC2_RST  
MFP5 UART3 clear to Send input pin.  
MFP7 Smart Card 2 reset pin.  
MFP9 UART0 data receiver input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 12.  
O
UART0_RXD  
43 90 PD.1  
EBI_AD12  
I
I/O  
I/O  
Feb 15, 2019  
Page 48 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
USCI0_DAT0  
SPI0_MISO  
UART3_TXD  
I2C2_SCL  
I/O  
I/O  
O
MFP3 USCI0 data 0 pin.  
MFP4 SPI0 MISO (Master In, Slave Out) pin.  
MFP5 UART3 data transmitter output pin.  
MFP6 I2C2 clock pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SC2_DAT  
MFP7 Smart Card 2 data pin.  
44 91 PD.0  
EBI_AD13  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 13.  
MFP3 USCI0 clock pin.  
USCI0_CLK  
SPI0_MOSI  
UART3_RXD  
I2C2_SDA  
MFP4 SPI0 MOSI (Master Out, Slave In) pin.  
MFP5 UART3 data receiver input pin.  
MFP6 I2C2 data input/output pin.  
MFP7 Smart Card 2 clock pin.  
I/O  
O
SC2_CLK  
TM2  
I/O  
I/O  
I/O  
I
MFP14 Timer2 event counter input/toggle output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 10.  
MFP3 SD/SDIO0 card detect input pin  
MFP4 SPI0 I2S master clock output pin  
MFP5 SPI1 I2S master clock output pin  
MFP7 Smart Card 2 card detect pin.  
MFP0 General purpose digital I/O pin.  
MFP2 I2S0 bit clock output pin.  
92 PD.13  
EBI_AD10  
SD0_nCD  
SPI0_I2SMCLK  
SPI1_I2SMCLK  
SC2_nCD  
I/O  
I/O  
I
21 B6 45 93 PA.12  
I2S0_BCLK  
I/O  
O
UART4_TXD  
I2C1_SCL  
O
MFP3 UART4 data transmitter output pin.  
MFP4 I2C1 clock pin.  
I/O  
I/O  
O
SPI2_SS  
MFP5 SPI2 slave select pin.  
CAN0_TXD  
MFP6 CAN0 bus transmitter output.  
MFP7 Smart Card 2 power pin.  
SC2_PWR  
O
BPWM1_CH2  
QEI1_INDEX  
USB_VBUS  
22 B7 46 94 PA.13  
I2S0_MCLK  
UART4_RXD  
I2C1_SDA  
I/O  
I
MFP11 BPWM1 channel 2 output/capture input.  
MFP12 Quadrature encoder 1 index input  
MFP14 Power supply from USB host or HUB.  
MFP0 General purpose digital I/O pin.  
MFP2 I2S0 master clock output pin.  
MFP3 UART4 data receiver input pin.  
MFP4 I2C1 data input/output pin.  
MFP5 SPI2 serial clock pin.  
P
I/O  
O
I
I/O  
I/O  
SPI2_CLK  
Feb 15, 2019  
Page 49 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
CAN0_RXD  
SC2_RST  
I
MFP6 CAN0 bus receiver input.  
O
MFP7 Smart Card 2 reset pin.  
BPWM1_CH3  
QEI1_A  
I/O  
I
MFP11 BPWM1 channel 3 output/capture input.  
MFP12 Quadrature encoder 1 phase A input  
MFP14 USB differential signal D-.  
USB_D-  
A
23 A6 47 95 PA.14  
I2S0_DI  
I/O  
I
MFP0 General purpose digital I/O pin.  
MFP2 I2S0 data input pin.  
UART0_TXD  
SPI2_MISO  
O
MFP3 UART0 data transmitter output pin.  
MFP5 SPI2 MISO (Master In, Slave Out) pin.  
MFP6 I2C2 clock pin.  
I/O  
I/O  
I/O  
I/O  
I
I2C2_SCL  
SC2_DAT  
MFP7 Smart Card 2 data pin.  
BPWM1_CH4  
QEI1_B  
MFP11 BPWM1 channel 4 output/capture input.  
MFP12 Quadrature encoder 1 phase B input  
MFP14 USB differential signal D+.  
USB_D+  
A
24 A7 48 96 PA.15  
I2S0_DO  
I/O  
O
MFP0 General purpose digital I/O pin.  
MFP2 I2S0 data output pin.  
UART0_RXD  
SPI2_MOSI  
I
MFP3 UART0 data receiver input pin.  
MFP5 SPI2 MOSI (Master Out, Slave In) pin.  
MFP6 I2C2 data input/output pin.  
I/O  
I/O  
O
I2C2_SDA  
SC2_CLK  
MFP7 Smart Card 2 clock pin.  
BPWM1_CH5  
I/O  
I
MFP11 BPWM1 channel 5 output/capture input.  
MFP12 EPWM0 counter synchronous trigger input pin.  
MFP14 USB_ identification.  
EPWM0_SYNC_IN  
USB_OTG_ID  
97 PE.7  
I
I/O  
I/O  
O
MFP0 General purpose digital I/O pin.  
MFP3 SD/SDIO0 command/response pin  
MFP8 UART5 data transmitter output pin.  
MFP11 Quadrature encoder 1 index input  
MFP12 EPWM0 channel 0 output/capture input.  
MFP13 BPWM0 channel 5 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP3 SD/SDIO0 clock output pin  
SD0_CMD  
UART5_TXD  
QEI1_INDEX  
EPWM0_CH0  
BPWM0_CH5  
I
I/O  
I/O  
I/O  
O
98 PE.6  
SD0_CLK  
SPI3_I2SMCLK  
SC0_nCD  
I/O  
I
MFP5 SPI3 I2S master clock output pin  
MFP6 Smart Card 0 card detect pin.  
MFP7 USCI0 control 0 pin.  
USCI0_CTL0  
I/O  
Feb 15, 2019  
Page 50 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
UART5_RXD  
QEI1_A  
I
MFP8 UART5 data receiver input pin.  
MFP11 Quadrature encoder 1 phase A input  
MFP12 EPWM0 channel 1 output/capture input.  
MFP13 BPWM0 channel 4 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI read enable output pin.  
MFP3 SD/SDIO0 data line bit 3.  
I
EPWM0_CH1  
BPWM0_CH4  
99 PE.5  
I/O  
I/O  
I/O  
O
EBI_nRD  
SD0_DAT3  
SPI3_SS  
I/O  
I/O  
O
MFP5 SPI3 slave select pin.  
SC0_PWR  
USCI0_CTL1  
QEI1_B  
MFP6 Smart Card 0 power pin.  
I/O  
I
MFP7 USCI0 control 1 pin.  
MFP11 Quadrature encoder 1 phase B input  
MFP12 EPWM0 channel 2 output/capture input.  
MFP13 BPWM0 channel 3 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI write enable output pin.  
MFP3 SD/SDIO0 data line bit 2.  
EPWM0_CH2  
BPWM0_CH3  
100 PE.4  
I/O  
I/O  
I/O  
O
EBI_nWR  
SD0_DAT2  
SPI3_CLK  
I/O  
I/O  
O
MFP5 SPI3 serial clock pin.  
SC0_RST  
MFP6 Smart Card 0 reset pin.  
USCI0_DAT1  
QEI0_INDEX  
EPWM0_CH3  
BPWM0_CH2  
101 PE.3  
I/O  
I
MFP7 USCI0 data 1 pin.  
MFP11 Quadrature encoder 0 index input  
MFP12 EPWM0 channel 3 output/capture input.  
MFP13 BPWM0 channel 2 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI external clock output pin.  
MFP3 SD/SDIO0 data line bit 1.  
I/O  
I/O  
I/O  
O
EBI_MCLK  
SD0_DAT1  
SPI3_MISO  
SC0_DAT  
I/O  
I/O  
I/O  
I/O  
I
MFP5 SPI3 MISO (Master In, Slave Out) pin.  
MFP6 Smart Card 0 data pin.  
USCI0_DAT0  
QEI0_A  
MFP7 USCI0 data 0 pin.  
MFP11 Quadrature encoder 0 phase A input  
MFP12 EPWM0 channel 4 output/capture input.  
MFP13 BPWM0 channel 1 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address latch enable output pin.  
MFP3 SD/SDIO0 data line bit 0.  
EPWM0_CH4  
BPWM0_CH1  
102 PE.2  
I/O  
I/O  
I/O  
O
EBI_ALE  
SD0_DAT0  
I/O  
Feb 15, 2019  
Page 51 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
SPI3_MOSI  
SC0_CLK  
I/O  
O
MFP5 SPI3 MOSI (Master Out, Slave In) pin.  
MFP6 Smart Card 0 clock pin.  
USCI0_CLK  
QEI0_B  
I/O  
I
MFP7 USCI0 clock pin.  
MFP11 Quadrature encoder 0 phase B input  
MFP12 EPWM0 channel 5 output/capture input.  
MFP13 BPWM0 channel 0 output/capture input.  
MFP0 Ground pin for digital circuit.  
EPWM0_CH5  
BPWM0_CH0  
103 VSS  
I/O  
I/O  
P
104 VDD  
P
MFP0 Power supply for I/O ports and LDO source for internal  
PLL and digital circuit.  
105 PE.1  
I/O  
I/O  
I/O  
I/O  
O
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 10.  
MFP3 Quad SPI0 MISO0 (Master In, Slave Out) pin.  
MFP4 Smart Card 2 data pin.  
EBI_AD10  
QSPI0_MISO0  
SC2_DAT  
I2S0_BCLK  
SPI1_MISO  
UART3_TXD  
I2C1_SCL  
MFP5 I2S0 bit clock output pin.  
I/O  
O
MFP6 SPI1 MISO (Master In, Slave Out) pin.  
MFP7 UART3 data transmitter output pin.  
MFP8 I2C1 clock pin.  
I/O  
I
UART4_nCTS  
106 PE.0  
MFP9 UART4 clear to Send input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 11.  
MFP3 Quad SPI0 MOSI0 (Master Out, Slave In) pin.  
MFP4 Smart Card 2 clock pin.  
I/O  
I/O  
I/O  
O
EBI_AD11  
QSPI0_MOSI0  
SC2_CLK  
I2S0_MCLK  
SPI1_MOSI  
UART3_RXD  
I2C1_SDA  
UART4_nRTS  
107 PH.8  
O
MFP5 I2S0 master clock output pin.  
MFP6 SPI1 MOSI (Master Out, Slave In) pin.  
MFP7 UART3 data receiver input pin.  
MFP8 I2C1 data input/output pin.  
MFP9 UART4 request to Send output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 12.  
MFP3 Quad SPI0 serial clock pin.  
MFP4 Smart Card 2 power pin.  
I/O  
I
I/O  
O
I/O  
I/O  
I/O  
O
EBI_AD12  
QSPI0_CLK  
SC2_PWR  
I2S0_DI  
I
MFP5 I2S0 data input pin.  
SPI1_CLK  
I/O  
O
MFP6 SPI1 serial clock pin.  
UART3_nRTS  
MFP7 UART3 request to Send output pin.  
Feb 15, 2019  
Page 52 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
I2C1_SMBAL  
I2C2_SCL  
O
I/O  
O
MFP8 I2C1 SMBus SMBALTER pin  
MFP9 I2C2 clock pin.  
UART1_TXD  
108 PH.9  
MFP10 UART1 data transmitter output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 13.  
MFP3 Quad SPI0 slave select pin.  
MFP4 Smart Card 2 reset pin.  
MFP5 I2S0 data output pin.  
I/O  
I/O  
I/O  
O
EBI_AD13  
QSPI0_SS  
SC2_RST  
I2S0_DO  
O
SPI1_SS  
I/O  
I
MFP6 SPI1 slave select pin.  
UART3_nCTS  
I2C1_SMBSUS  
I2C2_SDA  
MFP7 UART3 clear to Send input pin.  
O
MFP8 I2C1 SMBus SMBSUS pin (PMBus CONTROL pin)  
MFP9 I2C2 data input/output pin.  
I/O  
I
UART1_RXD  
109 PH.10  
MFP10 UART1 data receiver input pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 14.  
I/O  
I/O  
I/O  
I
EBI_AD14  
QSPI0_MISO1  
SC2_nCD  
MFP3 Quad SPI0 MISO1 (Master In, Slave Out) pin.  
MFP4 Smart Card 2 card detect pin.  
I2S0_LRCK  
SPI1_I2SMCLK  
UART4_TXD  
UART0_TXD  
110 PH.11  
O
MFP5 I2S0 left right channel clock output pin.  
MFP6 SPI1 I2S master clock output pin  
MFP7 UART4 data transmitter output pin.  
MFP8 UART0 data transmitter output pin.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI address/data bus bit 15.  
I/O  
O
O
I/O  
I/O  
I/O  
I
EBI_AD15  
QSPI0_MOSI1  
UART4_RXD  
UART0_RXD  
EPWM0_CH5  
111 PD.14  
MFP3 Quad SPI0 MOSI1 (Master Out, Slave In) pin.  
MFP7 UART4 data receiver input pin.  
MFP8 UART0 data receiver input pin.  
MFP11 EPWM0 channel 5 output/capture input.  
MFP0 General purpose digital I/O pin.  
MFP2 EBI chip select 0 output pin.  
I
I/O  
I/O  
O
EBI_nCS0  
SPI3_I2SMCLK  
SC1_nCD  
I/O  
I
MFP3 SPI3 I2S master clock output pin  
MFP4 Smart Card 1 card detect pin.  
USCI0_CTL0  
SPI0_I2SMCLK  
EPWM0_CH4  
I/O  
I/O  
I/O  
MFP5 USCI0 control 0 pin.  
MFP6 SPI0 I2S master clock output pin  
MFP11 EPWM0 channel 4 output/capture input.  
Feb 15, 2019  
Page 53 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
25 D4 49 112 VSS  
26 A5 50 113 Vsw  
27 A4 51 114 VDD  
P
MFP0 Ground pin for digital circuit.  
MFP0  
P
MFP0 Power supply for I/O ports and LDO source for internal  
PLL and digital circuit.  
28 B5 52 115 LDO_CAP  
A3 53 116 PB.15  
A
I/O  
A
MFP0 LDO output pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 15 analog input.  
MFP2 EBI address/data bus bit 12.  
MFP3 Smart Card 1 power pin.  
EADC0_CH15  
EBI_AD12  
I/O  
O
SC1_PWR  
SPI0_SS  
I/O  
I/O  
I
MFP4 SPI0 slave select pin.  
USCI0_CTL1  
UART0_nCTS  
UART3_TXD  
I2C2_SMBAL  
EPWM1_CH0  
TM0_EXT  
MFP5 USCI0 control 1 pin.  
MFP6 UART0 clear to Send input pin.  
MFP7 UART3 data transmitter output pin.  
MFP8 I2C2 SMBus SMBALTER pin  
MFP11 EPWM1 channel 0 output/capture input.  
MFP13 Timer0 external capture input/toggle output pin.  
MFP14 USB external VBUS regulator enable pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 14 analog input.  
MFP2 EBI address/data bus bit 13.  
MFP3 Smart Card 1 reset pin.  
O
O
I/O  
I/O  
O
USB_VBUS_EN  
29 C5 54 117 PB.14  
I/O  
A
EADC0_CH14  
EBI_AD13  
I/O  
O
SC1_RST  
SPI0_CLK  
I/O  
I/O  
O
MFP4 SPI0 serial clock pin.  
USCI0_DAT1  
UART0_nRTS  
UART3_RXD  
I2C2_SMBSUS  
EPWM1_CH1  
TM1_EXT  
MFP5 USCI0 data 1 pin.  
MFP6 UART0 request to Send output pin.  
MFP7 UART3 data receiver input pin.  
MFP8 I2C2 SMBus SMBSUS pin (PMBus CONTROL pin)  
MFP11 EPWM1 channel 1 output/capture input.  
MFP13 Timer1 external capture input/toggle output pin.  
MFP14 Clock Out  
I
O
I/O  
I/O  
O
CLKO  
USB_VBUS_ST  
I
MFP15 USB external VBUS regulator status pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 13 analog input.  
MFP1 DAC1 channel analog output.  
MFP1 Analog comparator 0 positive input 3 pin.  
30 B4 55 118 PB.13  
I/O  
A
EADC0_CH13  
DAC1_OUT  
ACMP0_P3  
A
A
Feb 15, 2019  
Page 54 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
ACMP1_P3  
EBI_AD14  
A
I/O  
I/O  
I/O  
I/O  
O
MFP1 Analog comparator 1 positive input 3 pin.  
MFP2 EBI address/data bus bit 14.  
SC1_DAT  
MFP3 Smart Card 1 data pin.  
SPI0_MISO  
MFP4 SPI0 MISO (Master In, Slave Out) pin.  
MFP5 USCI0 data 0 pin.  
USCI0_DAT0  
UART0_TXD  
UART3_nRTS  
I2C2_SCL  
MFP6 UART0 data transmitter output pin.  
MFP7 UART3 request to Send output pin.  
MFP8 I2C2 clock pin.  
O
I/O  
I/O  
I/O  
I/O  
A
EPWM1_CH2  
TM2_EXT  
MFP11 EPWM1 channel 2 output/capture input.  
MFP13 Timer2 external capture input/toggle output pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 12 analog input.  
MFP1 DAC0 channel analog output.  
MFP1 Analog comparator 0 positive input 2 pin.  
MFP1 Analog comparator 1 positive input 2 pin.  
MFP2 EBI address/data bus bit 15.  
31 C4 56 119 PB.12  
EADC0_CH12  
DAC0_OUT  
A
ACMP0_P2  
A
ACMP1_P2  
A
EBI_AD15  
I/O  
O
SC1_CLK  
MFP3 Smart Card 1 clock pin.  
SPI0_MOSI  
I/O  
I/O  
I
MFP4 SPI0 MOSI (Master Out, Slave In) pin.  
MFP5 USCI0 clock pin.  
USCI0_CLK  
UART0_RXD  
UART3_nCTS  
I2C2_SDA  
MFP6 UART0 data receiver input pin.  
MFP7 UART3 clear to Send input pin.  
MFP8 I2C2 data input/output pin.  
I
I/O  
I
SD0_nCD  
MFP9 SD/SDIO0 card detect input pin  
MFP11 EPWM1 channel 3 output/capture input.  
MFP13 Timer3 external capture input/toggle output pin.  
MFP0 Power supply for internal analog circuit.  
MFP0 ADC reference voltage input.  
EPWM1_CH3  
TM3_EXT  
I/O  
I/O  
P
32 A2 57 120 AVDD  
58 121 VREF  
A
Note: This pin needs to be connected with a 1uF  
capacitor.  
B3 59 122 AVSS  
60 123 PB.11  
EADC0_CH11  
EBI_ADR16  
P
I/O  
A
MFP0 Ground pin for analog circuit.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 11 analog input.  
MFP2 EBI address bus bit 16.  
O
I
UART0_nCTS  
UART4_TXD  
MFP5 UART0 clear to Send input pin.  
MFP6 UART4 data transmitter output pin.  
O
Feb 15, 2019  
Page 55 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
I2C1_SCL  
I/O  
O
MFP7 I2C1 clock pin.  
CAN0_TXD  
MFP8 CAN0 bus transmitter output.  
MFP9 SPI0 I2S master clock output pin  
MFP10 BPWM1 channel 0 output/capture input.  
MFP11 SPI3 serial clock pin.  
SPI0_I2SMCLK  
I/O  
I/O  
I/O  
I/O  
A
BPWM1_CH0  
SPI3_CLK  
61 124 PB.10  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 10 analog input.  
MFP2 EBI address bus bit 17.  
EADC0_CH10  
EBI_ADR17  
USCI1_CTL0  
UART0_nRTS  
UART4_RXD  
I2C1_SDA  
O
I/O  
O
MFP4 USCI1 control 0 pin.  
MFP5 UART0 request to Send output pin.  
MFP6 UART4 data receiver input pin.  
MFP7 I2C1 data input/output pin.  
MFP8 CAN0 bus receiver input.  
I
I/O  
I
CAN0_RXD  
BPWM1_CH1  
SPI3_SS  
I/O  
I/O  
I/O  
A
MFP10 BPWM1 channel 1 output/capture input.  
MFP11 SPI3 slave select pin.  
62 125 PB.9  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 9 analog input.  
MFP2 EBI address bus bit 18.  
EADC0_CH9  
EBI_ADR18  
USCI1_CTL1  
UART0_TXD  
UART1_nCTS  
I2C1_SMBAL  
BPWM1_CH2  
SPI3_MISO  
INT7  
O
I/O  
O
MFP4 USCI1 control 1 pin.  
MFP5 UART0 data transmitter output pin.  
MFP6 UART1 clear to Send input pin.  
MFP7 I2C1 SMBus SMBALTER pin  
MFP10 BPWM1 channel 2 output/capture input.  
MFP11 SPI3 MISO (Master In, Slave Out) pin.  
MFP13 External interrupt 7 input pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 8 analog input.  
MFP2 EBI address bus bit 19.  
I
O
I/O  
I/O  
I
C3 63 126 PB.8  
I/O  
A
EADC0_CH8  
EBI_ADR19  
USCI1_CLK  
UART0_RXD  
UART1_nRTS  
I2C1_SMBSUS  
BPWM1_CH3  
SPI3_MOSI  
O
I/O  
I
MFP4 USCI1 clock pin.  
MFP5 UART0 data receiver input pin.  
MFP6 UART1 request to Send output pin.  
O
O
MFP7 I2C1 SMBus SMBSUS pin (PMBus CONTROL pin)  
MFP10 BPWM1 channel 3 output/capture input.  
MFP11 SPI3 MOSI (Master Out, Slave In) pin.  
I/O  
I/O  
Feb 15, 2019  
Page 56 of 245  
Rev 1.01  
M2351  
33 49 64 128 Pin Name  
Pin Pin Pin Pin  
Type  
MFP  
Description  
INT6  
A1 64 127 PB.7  
EADC0_CH7  
EBI_nWRL  
I
I/O  
A
MFP13 External interrupt 6 input pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 7 analog input.  
MFP2 EBI low byte write enable output pin.  
MFP4 USCI1 data 0 pin.  
O
I/O  
O
O
I/O  
I
USCI1_DAT0  
UART1_TXD  
EBI_nCS0  
MFP6 UART1 data transmitter output pin.  
MFP8 EBI chip select 0 output pin.  
BPWM1_CH4  
EPWM1_BRAKE0  
EPWM1_CH4  
INT5  
MFP10 BPWM1 channel 4 output/capture input.  
MFP11 EPWM1 Brake 0 input pin.  
I/O  
I
MFP12 EPWM1 channel 4 output/capture input.  
MFP13 External interrupt 5 input pin.  
MFP14 USB external VBUS regulator status pin.  
MFP15 Analog comparator 0 output pin.  
MFP0 General purpose digital I/O pin.  
MFP1 EADC0 channel 6 analog input.  
MFP2 EBI high byte write enable output pin  
MFP4 USCI1 data 1 pin.  
USB_VBUS_ST  
ACMP0_O  
I
O
I/O  
A
B2  
1
128 PB.6  
EADC0_CH6  
EBI_nWRH  
O
I/O  
I
USCI1_DAT1  
UART1_RXD  
EBI_nCS1  
MFP6 UART1 data receiver input pin.  
MFP8 EBI chip select 1 output pin.  
O
I/O  
I
BPWM1_CH5  
EPWM1_BRAKE1  
EPWM1_CH5  
INT4  
MFP10 BPWM1 channel 5 output/capture input.  
MFP11 EPWM1 Brake 1 input pin.  
I/O  
I
MFP12 EPWM1 channel 5 output/capture input.  
MFP13 External interrupt 4 input pin.  
MFP14 USB external VBUS regulator enable pin.  
MFP15 Analog comparator 1 output pin.  
USB_VBUS_EN  
ACMP1_O  
O
O
M2351 Multi-function Summary Table  
Group  
Pin Name  
GPIO  
PB.3  
MFP  
MFP1  
MFP14  
MFP14  
MFP15  
MFP1  
MFP1  
Type  
A
Description  
ACMP0_N  
Analog comparator 0 negative input pin.  
PC.12  
PC.1  
PB.7  
O
ACMP0_O  
O
Analog comparator 0 output pin.  
ACMP0  
O
ACMP0_P0  
ACMP0_P1  
PA.11  
PB.2  
A
Analog comparator 0 positive input 0 pin.  
Analog comparator 0 positive input 1 pin.  
A
Feb 15, 2019  
Page 57 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PB.12  
PB.13  
PA.7  
MFP  
Type  
A
Description  
ACMP0_P2  
ACMP0_P3  
ACMP0_WLAT  
ACMP1_N  
MFP1  
Analog comparator 0 positive input 2 pin.  
Analog comparator 0 positive input 3 pin.  
Analog comparator 0 window latch input pin  
Analog comparator 1 negative input pin.  
MFP1  
A
MFP13  
MFP1  
I
PB.5  
A
PB.6  
MFP15  
MFP14  
MFP14  
MFP1  
O
ACMP1_O  
PC.11  
PC.0  
PA.10  
PB.4  
O
Analog comparator 1 output pin.  
O
ACMP1  
ACMP1_P0  
ACMP1_P1  
ACMP1_P2  
ACMP1_P3  
ACMP1_WLAT  
A
Analog comparator 1 positive input 0 pin.  
Analog comparator 1 positive input 1 pin.  
Analog comparator 1 positive input 2 pin.  
Analog comparator 1 positive input 3 pin.  
Analog comparator 1 window latch input pin  
MFP1  
A
PB.12  
PB.13  
PA.6  
MFP1  
A
MFP1  
A
MFP13  
MFP9  
I
PA.11  
PA.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MFP12  
MFP12  
MFP13  
MFP9  
BPWM0_CH0  
BPWM0_CH1  
BPWM0_CH2  
BPWM0_CH3  
BPWM0 channel 0 output/capture input.  
BPWM0 channel 1 output/capture input.  
BPWM0 channel 2 output/capture input.  
BPWM0 channel 3 output/capture input.  
PG.14  
PE.2  
PA.10  
PA.1  
MFP12  
MFP12  
MFP13  
MFP9  
PG.13  
PE.3  
PA.9  
PA.2  
MFP12  
MFP12  
MFP13  
MFP9  
PG.12  
PE.4  
BPWM0  
PA.8  
PA.3  
MFP12  
MFP12  
MFP13  
MFP9  
PG.11  
PE.5  
PC.13  
PF.5  
MFP8  
BPWM0_CH4  
BPWM0_CH5  
PA.4  
MFP12  
MFP12  
MFP13  
MFP9  
BPWM0 channel 4 output/capture input.  
BPWM0 channel 5 output/capture input.  
PG.10  
PE.6  
PD.12  
Feb 15, 2019  
Page 58 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PF.4  
MFP  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Description  
MFP8  
PA.5  
MFP12  
MFP12  
MFP13  
MFP11  
MFP12  
MFP12  
MFP10  
MFP11  
MFP12  
MFP12  
MFP10  
MFP12  
MFP11  
MFP10  
MFP12  
MFP11  
MFP10  
MFP12  
MFP11  
MFP10  
MFP10  
MFP12  
MFP11  
MFP4  
PG.9  
PE.7  
PF.3  
PC.7  
PF.0  
BPWM1_CH0  
BPWM1_CH1  
BPWM1 channel 0 output/capture input.  
BPWM1 channel 1 output/capture input.  
PB.11  
PF.2  
PC.6  
PF.1  
PB.10  
PA.7  
BPWM1_CH2  
BPWM1_CH3  
BPWM1_CH4  
BPWM1_CH5  
PA.12  
PB.9  
BPWM1 channel 2 output/capture input.  
BPWM1 channel 3 output/capture input.  
BPWM1 channel 4 output/capture input.  
BPWM1 channel 5 output/capture input.  
BPWM1  
PA.6  
PA.13  
PB.8  
PC.8  
PA.14  
PB.7  
PB.6  
PE.13  
PA.15  
PD.10  
PA.4  
MFP10  
MFP4  
I
PE.15  
PC.4  
PA.13  
PB.10  
PD.11  
PA.5  
I
CAN0_RXD  
CAN0 bus receiver input.  
MFP10  
MFP6  
I
I
CAN0  
MFP8  
I
MFP4  
O
MFP10  
MFP4  
O
CAN0_TXD  
CAN0 bus transmitter output.  
PE.14  
PC.5  
O
MFP10  
O
Feb 15, 2019  
Page 59 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PA.12  
PB.11  
PC.13  
PD.12  
PG.15  
PB.14  
PB.12  
PA.10  
PA.0  
MFP  
Type  
Description  
MFP6  
O
O
O
O
O
O
A
I
MFP8  
MFP13  
MFP13  
MFP14  
MFP14  
MFP1  
CLKO  
CLKO  
Clock Out  
DAC0_OUT  
DAC0_ST  
DAC0 channel analog output.  
DAC0 external trigger input.  
DAC1 channel analog output.  
DAC0  
DAC1  
MFP14  
MFP15  
MFP1  
I
DAC1_OUT  
PB.13  
PA.11  
PA.1  
A
I
MFP14  
MFP15  
DAC1_ST  
DAC1 external trigger input.  
I
EADC0_CH0  
EADC0_CH1  
EADC0_CH2  
EADC0_CH3  
EADC0_CH4  
EADC0_CH5  
EADC0_CH6  
EADC0_CH7  
EADC0_CH8  
EADC0_CH9  
EADC0_CH10  
EADC0_CH11  
EADC0_CH12  
EADC0_CH13  
EADC0_CH14  
EADC0_CH15  
PB.0  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP14  
MFP14  
MFP11  
MFP15  
MFP2  
MFP2  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
I
EADC0 channel 0 analog input.  
EADC0 channel 1 analog input.  
EADC0 channel 2 analog input.  
EADC0 channel 3 analog input.  
EADC0 channel 4 analog input.  
EADC0 channel 5 analog input.  
EADC0 channel 6 analog input.  
EADC0 channel 7 analog input.  
EADC0 channel 8 analog input.  
EADC0 channel 9 analog input.  
EADC0 channel 10 analog input.  
EADC0 channel 11 analog input.  
EADC0 channel 12 analog input.  
EADC0 channel 13 analog input.  
EADC0 channel 14 analog input.  
EADC0 channel 15 analog input.  
PB.1  
PB.2  
PB.3  
PB.4  
PB.5  
PB.6  
PB.7  
PB.8  
PB.9  
EADC0  
PB.10  
PB.11  
PB.12  
PB.13  
PB.14  
PB.15  
PC.13  
PD.12  
PF.5  
I
EADC0_ST  
EBI_AD0  
EADC0 external trigger input.  
EBI address/data bus bit 0.  
I
PG.15  
PC.0  
PG.9  
I
I/O  
I/O  
EBI  
Feb 15, 2019  
Page 60 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PC.1  
PG.10  
PC.2  
PG.11  
PC.3  
PG.12  
PC.4  
PG.13  
PC.5  
PG.14  
PA.6  
MFP  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Description  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
EBI_AD1  
EBI address/data bus bit 1.  
EBI_AD2  
EBI_AD3  
EBI_AD4  
EBI_AD5  
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
EBI address/data bus bit 2.  
EBI address/data bus bit 3.  
EBI address/data bus bit 4.  
EBI address/data bus bit 5.  
EBI address/data bus bit 6.  
EBI address/data bus bit 7.  
EBI address/data bus bit 8.  
EBI address/data bus bit 9.  
PD.8  
PA.7  
PD.9  
PC.6  
PE.14  
PC.7  
PE.15  
PD.3  
PD.13  
PE.1  
EBI_AD10  
EBI_AD11  
EBI_AD12  
EBI address/data bus bit 10.  
EBI address/data bus bit 11.  
EBI address/data bus bit 12.  
PD.2  
PE.0  
PD.1  
PH.8  
PB.15  
PD.0  
PH.9  
PB.14  
PH.10  
PB.13  
PH.11  
PB.12  
PB.5  
EBI_AD13  
EBI_AD14  
EBI address/data bus bit 13.  
EBI address/data bus bit 14.  
EBI_AD15  
EBI_ADR0  
EBI address/data bus bit 15.  
EBI address bus bit 0.  
Feb 15, 2019  
Page 61 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PH.7  
PB.4  
MFP  
Type  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Description  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
EBI_ADR1  
EBI_ADR2  
EBI_ADR3  
EBI address bus bit 1.  
EBI address bus bit 2.  
EBI address bus bit 3.  
PH.6  
PB.3  
PH.5  
PB.2  
PH.4  
PC.12  
PC.11  
PC.10  
PC.9  
PB.1  
EBI_ADR4  
EBI_ADR5  
EBI_ADR6  
EBI_ADR7  
EBI_ADR8  
EBI_ADR9  
EBI address bus bit 4.  
EBI address bus bit 5.  
EBI address bus bit 6.  
EBI address bus bit 7.  
EBI address bus bit 8.  
EBI address bus bit 9.  
PB.0  
PC.13  
PE.8  
EBI_ADR10  
EBI_ADR11  
EBI_ADR12  
EBI_ADR13  
EBI_ADR14  
EBI_ADR15  
EBI address bus bit 10.  
EBI address bus bit 11.  
EBI address bus bit 12.  
EBI address bus bit 13.  
EBI address bus bit 14.  
EBI address bus bit 15.  
PG.2  
PE.9  
PG.3  
PE.10  
PG.4  
PE.11  
PF.11  
PE.12  
PF.10  
PE.13  
PF.9  
EBI_ADR16  
PC.8  
PB.11  
PF.8  
EBI address bus bit 16.  
EBI_ADR17  
EBI_ADR18  
EBI_ADR19  
EBI address bus bit 17.  
EBI address bus bit 18.  
EBI address bus bit 19.  
PB.10  
PF.7  
PB.9  
PF.6  
PB.8  
Feb 15, 2019  
Page 62 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PA.8  
MFP  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP7  
MFP2  
MFP2  
MFP8  
MFP8  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP13  
MFP11  
MFP13  
MFP11  
MFP13  
MFP6  
MFP4  
MFP4  
Type  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Description  
EBI_ALE  
EBI address latch enable output pin.  
PE.2  
PA.9  
EBI_MCLK  
EBI_nCS0  
EBI external clock output pin.  
EBI chip select 0 output pin.  
PE.3  
PD.12  
PF.6  
PF.3  
PD.14  
PB.7  
PB.6  
EBI_nCS1  
PD.11  
PF.2  
EBI chip select 1 output pin.  
EBI_nCS2  
EBI_nRD  
PD.10  
PA.11  
PE.5  
EBI chip select 2 output pin.  
EBI read enable output pin.  
PA.10  
PE.4  
EBI_nWR  
EBI write enable output pin.  
EBI_nWRH  
EBI_nWRL  
PB.6  
EBI high byte write enable output pin  
EBI low byte write enable output pin.  
PB.7  
PA.10  
PE.8  
ECAP0_IC0  
ECAP0_IC1  
ECAP0_IC2  
ECAP1_IC0  
ECAP1_IC1  
ECAP1_IC2  
Enhanced capture unit 0 input 0 pin.  
Enhanced capture unit 0 input 1 pin.  
Enhanced capture unit 0 input 2 pin.  
Enhanced capture unit 1 input 0 pin.  
Enhanced capture unit 1 input 1 pin.  
Enhanced capture unit 1 input 2 pin.  
I
PA.9  
I
ECAP0  
PE.9  
I
PA.8  
I
PE.10  
PC.10  
PE.13  
PC.11  
PE.12  
PC.12  
PE.11  
PB.5  
I
I
I
I
ECAP1  
I
I
I
I/O  
I/O  
I/O  
I2C0  
I2C0_SCL  
PC.12  
PF.3  
I2C0 clock pin.  
Feb 15, 2019  
Page 63 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PE.13  
PA.5  
PC.1  
PD.7  
PB.4  
PC.11  
PF.2  
PC.8  
PA.4  
PC.0  
PD.6  
PG.2  
PC.3  
PG.3  
PC.2  
PB.1  
PG.2  
PA.7  
PA.3  
PF.0  
PC.5  
PD.5  
PA.12  
PE.1  
PB.11  
PB.0  
PG.3  
PA.6  
PA.2  
PF.1  
PC.4  
PD.4  
PA.13  
PE.0  
MFP  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Description  
MFP4  
MFP9  
MFP9  
MFP4  
MFP6  
MFP4  
MFP4  
MFP4  
MFP9  
MFP9  
MFP4  
MFP4  
MFP9  
MFP4  
MFP9  
MFP9  
MFP5  
MFP8  
MFP9  
MFP3  
MFP9  
MFP4  
MFP4  
MFP8  
MFP7  
MFP9  
MFP5  
MFP8  
MFP9  
MFP3  
MFP9  
MFP4  
MFP4  
MFP8  
I2C0_SDA  
I2C0 data input/output pin.  
I2C0_SMBAL  
I2C0 SMBus SMBALTER pin  
O
O
I2C0 SMBus SMBSUS pin (PMBus CONTROL  
pin)  
I2C0_SMBSUS  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I2C1_SCL  
I2C1 clock pin.  
I2C1  
I2C1_SDA  
I2C1 data input/output pin.  
Feb 15, 2019  
Page 64 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PB.10  
PC.7  
PH.8  
PB.9  
MFP  
Type  
I/O  
O
Description  
MFP7  
MFP8  
MFP8  
MFP7  
MFP8  
MFP8  
MFP7  
MFP7  
MFP9  
MFP3  
MFP6  
MFP6  
MFP9  
MFP8  
MFP7  
MFP9  
MFP3  
MFP6  
MFP6  
MFP9  
MFP8  
MFP8  
I2C1_SMBAL  
I2C1_SMBSUS  
O
I2C1 SMBus SMBALTER pin  
O
PC.6  
PH.9  
PB.8  
O
I2C1 SMBus SMBSUS pin (PMBus CONTROL  
pin)  
O
O
PA.11  
PA.1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
PD.9  
PD.1  
PA.14  
PH.8  
PB.13  
PA.10  
PA.0  
I2C2_SCL  
I2C2 clock pin.  
I2C2  
PD.8  
PD.0  
PA.15  
PH.9  
PB.12  
PB.15  
I2C2_SDA  
I2C2 data input/output pin.  
I2C2_SMBAL  
I2C2 SMBus SMBALTER pin  
I2C2 SMBus SMBSUS pin (PMBus CONTROL  
pin)  
I2C2_SMBSUS  
PB.14  
MFP8  
O
PB.5  
PF.10  
PE.8  
PC.4  
PA.12  
PE.1  
PB.3  
PF.8  
MFP10  
MFP4  
MFP4  
MFP6  
MFP2  
MFP5  
MFP10  
MFP4  
MFP4  
MFP6  
MFP2  
O
O
O
O
O
O
I
I2S0_BCLK  
I2S0 bit clock output pin.  
I2S0  
I
I2S0_DI  
PE.10  
PC.2  
PA.14  
I
I2S0 data input pin.  
I
I
Feb 15, 2019  
Page 65 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PH.8  
PB.2  
PF.7  
PE.11  
PC.1  
PA.15  
PH.9  
PB.1  
PF.6  
PE.12  
PC.0  
PH.10  
PB.4  
PF.9  
PE.9  
PC.3  
PA.13  
PE.0  
PF.1  
PF.0  
PB.5  
PA.6  
PB.4  
PA.7  
PB.3  
PC.6  
PB.2  
PC.7  
PB.6  
PA.8  
PD.12  
PB.7  
PD.11  
PB.8  
MFP  
Type  
I
Description  
MFP5  
MFP10  
MFP4  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
MFP4  
I2S0_DO  
I2S0 data output pin.  
MFP6  
MFP2  
MFP5  
MFP10  
MFP4  
I2S0_LRCK  
MFP4  
I2S0 left right channel clock output pin.  
MFP6  
MFP5  
MFP10  
MFP4  
MFP4  
I2S0_MCLK  
I2S0 master clock output pin.  
MFP6  
MFP2  
MFP5  
ICE_CLK  
ICE_DAT  
MFP14  
MFP14  
MFP15  
MFP15  
MFP15  
MFP15  
MFP15  
MFP15  
MFP15  
MFP15  
MFP13  
MFP15  
MFP15  
MFP13  
MFP15  
MFP13  
Serial wired debugger clock pin.  
Serial wired debugger data pin.  
ICE  
O
I
INT0  
INT1  
INT2  
INT3  
INT4  
INT5  
INT6  
INT0  
INT1  
INT2  
INT3  
INT4  
INT5  
INT6  
External interrupt 0 input pin.  
External interrupt 1 input pin.  
External interrupt 2 input pin.  
External interrupt 3 input pin.  
External interrupt 4 input pin.  
External interrupt 5 input pin.  
External interrupt 6 input pin.  
I
I
I
I
I
I
I
I
I
I
I
I
I
Feb 15, 2019  
Page 66 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PD.10  
PB.9  
PB.1  
PE.8  
PB.0  
PE.9  
PB.5  
PE.8  
PA.5  
PE.7  
PB.4  
PE.9  
PA.4  
PE.6  
PB.3  
PE.10  
PA.3  
PE.5  
PB.2  
PE.11  
PA.2  
PE.4  
PB.1  
PE.12  
PA.1  
PE.3  
PD.14  
PB.0  
PE.13  
PA.0  
PE.2  
PH.11  
PA.15  
MFP  
Type  
I
Description  
MFP15  
MFP13  
MFP13  
MFP11  
MFP13  
MFP11  
MFP11  
MFP10  
MFP13  
MFP12  
MFP11  
MFP10  
MFP13  
MFP12  
MFP11  
MFP10  
MFP13  
MFP12  
MFP11  
MFP10  
MFP13  
MFP12  
MFP11  
MFP10  
MFP13  
MFP12  
MFP11  
MFP11  
MFP10  
MFP13  
MFP12  
MFP11  
MFP12  
MFP10  
INT7  
INT7  
External interrupt 7 input pin.  
I
I
EPWM0_BRAKE0  
EPWM0_BRAKE1  
EPWM0 Brake 0 input pin.  
EPWM0 Brake 1 input pin.  
I
I
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
EPWM0_CH0  
EPWM0_CH1  
EPWM0_CH2  
EPWM0_CH3  
EPWM0 channel 0 output/capture input.  
EPWM0 channel 1 output/capture input.  
EPWM0 channel 2 output/capture input.  
EPWM0 channel 3 output/capture input.  
EPWM0  
EPWM0_CH4  
PWM0 channel 4 output/capture input.  
EPWM0_CH5  
EPWM0 channel 5 output/capture input.  
EPWM0_SYNC_IN  
EPWM0 counter synchronous trigger input pin.  
EPWM0 counter synchronous trigger output  
EPWM0_SYNC_OUT PA.11  
O
Feb 15, 2019  
Page 67 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PF.5  
MFP  
Type  
O
Description  
pin.  
MFP9  
PE.10  
PB.7  
MFP11  
MFP11  
MFP11  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP11  
MFP12  
MFP12  
MFP12  
MFP12  
MFP11  
MFP12  
MFP10  
MFP14  
MFP11  
MFP10  
MFP14  
I
EPWM1_BRAKE0  
EPWM1_BRAKE1  
EPWM1 Brake 0 input pin.  
EPWM1 Brake 1 input pin.  
I
PB.6  
I
PE.11  
PC.12  
PE.13  
PC.5  
PB.15  
PC.11  
PC.8  
PC.4  
PB.14  
PC.10  
PC.7  
PC.3  
PB.13  
PC.9  
PC.6  
PC.2  
PB.12  
PB.1  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
PWM1_CH0  
EPWM1_CH1  
EPWM1_CH2  
EPWM1_CH3  
EPWM1_CH4  
EPWM1_CH5  
EPWM1 channel 0 output/capture input.  
PWM1 channel 1 output/capture input.  
EPWM1 channel 2 output/capture input.  
EPWM1 channel 3 output/capture input.  
EPWM1 channel 4 output/capture input.  
EPWM1 channel 5 output/capture input.  
PWM1  
PA.7  
PC.1  
PB.7  
PB.6  
PB.0  
PA.6  
PC.0  
PD.11  
PA.4  
QEI0_A  
QEI0_B  
I
Quadrature encoder 0 phase A input  
Quadrature encoder 0 phase B input  
QEI0  
PE.3  
I
PD.10  
PA.3  
I
I
Feb 15, 2019  
Page 68 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
QEI0_INDEX  
QEI1_A  
GPIO  
PE.2  
PD.12  
PA.5  
PE.4  
PA.9  
PA.13  
PE.6  
PA.8  
PA.14  
PE.5  
PA.10  
PA.12  
PE.7  
PB.5  
PF.6  
PA.0  
PE.2  
PB.4  
PF.7  
PA.1  
PE.3  
PB.2  
PF.9  
PA.3  
PE.5  
PB.3  
PF.8  
PA.2  
PE.4  
PC.12  
PF.10  
PA.4  
PE.6  
PC.0  
MFP  
MFP11  
MFP10  
MFP14  
MFP11  
MFP10  
MFP12  
MFP11  
MFP10  
MFP12  
MFP11  
MFP10  
MFP12  
MFP11  
MFP9  
MFP3  
MFP6  
MFP6  
MFP9  
MFP3  
MFP6  
MFP6  
MFP9  
MFP3  
MFP6  
MFP6  
MFP9  
MFP3  
MFP6  
MFP6  
MFP9  
MFP3  
MFP6  
MFP6  
MFP5  
Type  
Description  
I
I
I
Quadrature encoder 0 index input  
Quadrature encoder 1 phase A input  
Quadrature encoder 1 phase B input  
Quadrature encoder 1 index input  
I
I
I
I
I
QEI1  
QEI1_B  
I
I
I
QEI1_INDEX  
I
I
O
O
O
O
I/O  
I/O  
I/O  
I/O  
O
O
O
O
O
O
O
O
I
SC0_CLK  
SC0_DAT  
SC0_PWR  
SC0_RST  
Smart Card 0 clock pin.  
Smart Card 0 data pin.  
Smart Card 0 power pin.  
Smart Card 0 reset pin.  
SC0  
I
SC0_nCD  
SC1_CLK  
Smart Card 0 card detect pin.  
Smart Card 1 clock pin.  
I
I
SC1  
O
Feb 15, 2019  
Page 69 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PD.4  
PB.12  
PC.1  
PD.5  
PB.13  
PC.3  
PD.7  
PB.15  
PC.2  
PD.6  
PB.14  
PC.4  
PD.3  
PD.14  
PA.8  
PA.6  
PD.0  
PA.15  
PE.0  
PA.9  
PA.7  
PD.1  
PA.14  
PE.1  
PA.11  
PC.7  
PD.3  
PA.12  
PH.8  
PA.10  
PC.6  
PD.2  
PA.13  
PH.9  
MFP  
Type  
O
Description  
MFP8  
MFP3  
MFP5  
MFP8  
MFP3  
MFP5  
MFP8  
MFP3  
MFP5  
MFP8  
MFP3  
MFP5  
MFP8  
MFP4  
MFP3  
MFP6  
MFP7  
MFP7  
MFP4  
MFP3  
MFP6  
MFP7  
MFP7  
MFP4  
MFP3  
MFP6  
MFP7  
MFP7  
MFP4  
MFP3  
MFP6  
MFP7  
MFP7  
MFP4  
O
I/O  
I/O  
I/O  
O
SC1_DAT  
SC1_PWR  
SC1_RST  
SC1_nCD  
Smart Card 1 data pin.  
O
Smart Card 1 power pin.  
Smart Card 1 reset pin.  
Smart Card 1 card detect pin.  
O
O
O
O
I
I
I
O
O
SC2_CLK  
SC2_DAT  
SC2_PWR  
SC2_RST  
O
Smart Card 2 clock pin.  
Smart Card 2 data pin.  
Smart Card 2 power pin.  
Smart Card 2 reset pin.  
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
O
SC2  
O
O
O
O
O
O
O
O
O
Feb 15, 2019  
Page 70 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PC.13  
PA.5  
PD.13  
PH.10  
PB.1  
PE.6  
PB.0  
PE.7  
PB.2  
PE.2  
PB.3  
PE.3  
PB.4  
PE.4  
PB.5  
PE.5  
PD.13  
PB.12  
PF.2  
PA.2  
PC.2  
PH.8  
PA.1  
PC.1  
PE.1  
PA.5  
PC.5  
PH.10  
PA.0  
PC.0  
PE.0  
PA.4  
PC.4  
PH.11  
MFP  
Type  
I
Description  
MFP3  
MFP6  
MFP7  
MFP4  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP9  
MFP5  
MFP3  
MFP4  
MFP3  
MFP3  
MFP4  
MFP3  
MFP3  
MFP4  
MFP3  
MFP3  
MFP4  
MFP3  
MFP3  
MFP4  
MFP3  
I
SC2_nCD  
Smart Card 2 card detect pin.  
I
I
O
SD0_CLK  
SD0_CMD  
SD0_DAT0  
SD0_DAT1  
SD0_DAT2  
SD0_DAT3  
SD0_nCD  
SD/SDIO0 clock output pin  
SD/SDIO0 command/response pin  
SD/SDIO0 data line bit 0.  
SD/SDIO0 data line bit 1.  
SD/SDIO0 data line bit 2.  
SD/SDIO0 data line bit 3.  
SD/SDIO0 card detect input pin  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SD0  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QSPI0_CLK  
Quad SPI0 serial clock pin.  
QSPI0_MISO0  
QSPI0_MISO1  
QSPI0_MOSI0  
QSPI0_MOSI1  
Quad SPI0 MISO0 (Master In, Slave Out) pin.  
Quad SPI0 MISO1 (Master In, Slave Out) pin.  
Quad SPI0 MOSI0 (Master Out, Slave In) pin.  
Quad SPI0 MOSI1 (Master Out, Slave In) pin.  
QSPI0  
Feb 15, 2019  
Page 71 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PA.3  
PC.3  
PH.9  
PF.8  
PA.2  
PD.2  
PB.14  
PB.0  
PF.10  
PA.4  
PD.13  
PD.14  
PB.11  
PF.7  
PA.1  
PD.1  
PB.13  
PF.6  
PA.0  
PD.0  
PB.12  
PF.9  
PA.3  
PD.3  
PB.15  
PB.3  
PH.6  
PA.7  
PC.1  
PD.5  
PH.8  
PB.1  
PA.5  
PC.4  
MFP  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Description  
MFP3  
MFP4  
MFP3  
MFP5  
MFP4  
MFP4  
MFP4  
MFP8  
MFP5  
MFP4  
MFP4  
MFP6  
MFP9  
MFP5  
MFP4  
MFP4  
MFP4  
MFP5  
MFP4  
MFP4  
MFP4  
MFP5  
MFP4  
MFP4  
MFP4  
MFP5  
MFP3  
MFP4  
MFP7  
MFP5  
MFP6  
MFP5  
MFP4  
MFP7  
QSPI0_SS  
Quad SPI0 slave select pin.  
SPI0_CLK  
SPI0 serial clock pin.  
SPI0_I2SMCLK  
SPI0 I2S master clock output pin  
SPI0  
SPI0_MISO  
SPI0 _MOSI  
SPI0_SS  
SPI0 MISO (Master In, Slave Out) pin.  
SPI0 MOSI (Master Out, Slave In) pin.  
SPI0 slave select pin.  
SPI1_CLK  
SPI1 serial clock pin.  
SPI1  
SPI1_I2SMCLK  
SPI1 I2S master clock output pin  
Feb 15, 2019  
Page 72 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PD.13  
PH.10  
PB.5  
PH.4  
PC.7  
PC.3  
PD.7  
PE.1  
PB.4  
PH.5  
PC.6  
PC.2  
PD.6  
PE.0  
PB.2  
PH.7  
PA.6  
PC.0  
PD.4  
PH.9  
PA.10  
PG.3  
PE.8  
PA.13  
PC.13  
PE.12  
PA.9  
PG.4  
PE.9  
PA.14  
PA.8  
PF.11  
PE.10  
PA.15  
MFP  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Description  
MFP5  
MFP6  
MFP5  
MFP3  
MFP4  
MFP7  
MFP5  
MFP6  
MFP5  
MFP3  
MFP4  
MFP7  
MFP5  
MFP6  
MFP5  
MFP3  
MFP4  
MFP7  
MFP5  
MFP6  
MFP4  
MFP3  
MFP5  
MFP5  
MFP4  
MFP5  
MFP4  
MFP3  
MFP5  
MFP5  
MFP4  
MFP3  
MFP5  
MFP5  
SPI1_MISO  
SPI1 MISO (Master In, Slave Out) pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
SPI1 slave select pin.  
SPI1_MOSI  
SPI1_SS  
SPI2_CLK  
SPI2 serial clock pin.  
SPI2_I2SMCLK  
SPI2_MISO  
SPI2 I2S master clock output pin  
SPI2 MISO (Master In, Slave Out) pin.  
SPI2  
SPI2_MOSI  
SPI2 MOSI (Master Out, Slave In) pin.  
Feb 15, 2019  
Page 73 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PA.11  
PG.2  
PE.11  
PA.12  
PC.10  
PE.4  
MFP  
MFP4  
MFP3  
MFP5  
MFP5  
MFP6  
MFP5  
MFP11  
MFP6  
MFP5  
MFP3  
MFP6  
MFP5  
MFP11  
MFP6  
MFP5  
MFP11  
MFP6  
MFP5  
MFP11  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Description  
SPI2_SS  
SPI2 slave select pin.  
SPI3_CLK  
SPI3 serial clock pin.  
PB.11  
PB.1  
SPI3_I2SMCLK  
SPI3_MISO  
SPI3_MOSI  
PE.6  
SPI3 I2S master clock output pin  
PD.14  
PC.12  
PE.3  
SPI3 MISO (Master In, Slave Out) pin.  
SPI3 MOSI (Master Out, Slave In) pin.  
SPI3  
PB.9  
PC.11  
PE.2  
PB.8  
PC.9  
PE.5  
SPI3_SS  
SPI3 slave select pin.  
PB.10  
TAMPER0  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
TAMPER0  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
PF.6  
MFP10  
MFP10  
MFP10  
MFP10  
MFP10  
MFP10  
MFP14  
MFP13  
MFP14  
MFP13  
MFP13  
MFP14  
MFP13  
MFP14  
MFP13  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TAMPER detector loop pin 0.  
TAMPER detector loop pin 1.  
TAMPER detector loop pin 2.  
TAMPER detector loop pin 3.  
TAMPER detector loop pin 4.  
TAMPER detector loop pin 5.  
PF.7  
PF.8  
PF.9  
PF.10  
PF.11  
PB.5  
PG.2  
PC.7  
PA.11  
PB.15  
PB.4  
PG.3  
PC.6  
PA.10  
TM0  
Timer0 event counter input/toggle output pin.  
TM0  
Timer0 external capture input/toggle output  
pin.  
TM0_EXT  
TM1  
Timer1 event counter input/toggle output pin.  
TM1  
TM1_EXT  
Timer1 external capture input/toggle output  
Feb 15, 2019  
Page 74 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PB.14  
PB.3  
MFP  
MFP13  
MFP14  
MFP13  
MFP14  
MFP14  
MFP13  
MFP13  
MFP14  
MFP13  
MFP14  
MFP13  
MFP13  
MFP14  
MFP14  
MFP14  
MFP14  
MFP14  
MFP3  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Description  
pin.  
PG.4  
PA.7  
TM2  
Timer2 event counter input/toggle output pin.  
TM2  
PD.0  
PA.9  
Timer2 external capture input/toggle output  
pin.  
TM2_EXT  
TM3  
PB.13  
PB.2  
PF.11  
PA.6  
Timer3 event counter input/toggle output pin.  
TM3  
PA.8  
Timer3 external capture input/toggle output  
pin.  
TM3_EXT  
PB.12  
PE.12  
PE.11  
PE.10  
PE.9  
TRACE_CLK  
ETM Trace Clock output pin  
ETM Trace Data 0 output pin  
ETM Trace Data 1 output pin  
ETM Trace Data 2 output pin  
ETM Trace Data 3 output pin  
TRACE_DATA0  
TRACE_DATA1  
TRACE_DATA2  
TRACE_DATA3  
O
TRACE  
O
O
PE.8  
O
PC.11  
PF.2  
I
MFP3  
I
PA.6  
MFP7  
I
PA.0  
MFP7  
I
UART0_RXD  
PD.2  
PA.15  
PH.11  
PB.12  
PB.8  
MFP9  
I
UART0 data receiver input pin.  
MFP3  
I
MFP8  
I
MFP6  
I
UART0  
MFP5  
I
PC.12  
PF.3  
MFP3  
O
MFP3  
O
PA.7  
MFP7  
O
PA.1  
MFP7  
O
UART0_TXD  
UART0 data transmitter output pin.  
PD.3  
PA.14  
PH.10  
PB.13  
MFP9  
O
MFP3  
O
MFP8  
O
MFP6  
O
Feb 15, 2019  
Page 75 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PB.9  
PC.7  
PA.5  
PB.15  
PB.11  
PC.6  
PA.4  
PB.14  
PB.10  
PB.6  
PB.2  
PA.8  
PD.10  
PC.8  
PA.2  
PF.1  
PD.6  
PH.9  
PB.3  
PA.9  
PD.11  
PE.13  
PA.3  
PF.0  
PD.7  
PH.8  
PB.7  
PE.11  
PA.1  
PB.9  
PE.12  
PA.0  
PB.8  
PB.0  
MFP  
MFP5  
MFP7  
MFP7  
MFP6  
MFP5  
MFP7  
MFP7  
MFP6  
MFP5  
MFP6  
MFP6  
MFP7  
MFP3  
MFP8  
MFP8  
MFP2  
MFP3  
MFP10  
MFP6  
MFP7  
MFP3  
MFP8  
MFP8  
MFP2  
MFP3  
MFP10  
MFP6  
MFP8  
MFP8  
MFP6  
MFP8  
MFP8  
MFP6  
MFP7  
Type  
Description  
O
I
I
UART0_nCTS  
UART0 clear to Send input pin.  
I
I
O
O
O
O
I
UART0_nRTS  
UART0 request to Send output pin.  
I
I
I
UART1_RXD  
I
UART1 data receiver input pin.  
I
I
I
I
O
O
O
O
O
O
O
O
O
I
UART1  
UART1_TXD  
UART1 data transmitter output pin.  
UART1_nCTS  
I
UART1 clear to Send input pin.  
I
O
O
O
I
UART1_nRTS  
UART2_RXD  
UART1 request to Send output pin.  
UART2 data receiver input pin.  
UART2  
Feb 15, 2019  
Page 76 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PD.12  
PF.5  
MFP  
MFP7  
MFP2  
MFP7  
MFP3  
MFP8  
MFP8  
MFP7  
MFP7  
MFP2  
MFP7  
MFP3  
MFP8  
MFP8  
MFP4  
MFP4  
MFP8  
MFP4  
MFP4  
MFP8  
MFP7  
MFP7  
MFP11  
MFP5  
MFP7  
MFP7  
MFP7  
MFP7  
MFP11  
MFP5  
MFP7  
MFP7  
MFP5  
MFP7  
MFP7  
Type  
Description  
I
I
PE.9  
PE.15  
PC.4  
PC.0  
PB.1  
PC.13  
PF.4  
I
I
I
I
O
O
O
O
O
O
O
I
UART2_TXD  
PE.8  
PE.14  
PC.5  
PC.1  
PF.5  
UART2 data transmitter output pin.  
UART2_nCTS  
UART2_nRTS  
PD.9  
PC.2  
PF.4  
I
UART2 clear to Send input pin.  
I
O
O
O
I
PD.8  
PC.3  
PC.9  
PE.11  
PC.2  
PD.0  
PE.0  
PB.14  
PC.10  
PE.10  
PC.3  
PD.1  
PE.1  
PB.15  
PD.2  
PH.9  
PB.12  
UART2 request to Send output pin.  
I
I
UART3_RXD  
UART3 data receiver input pin.  
I
I
I
O
O
O
O
O
O
I
UART3  
UART3_TXD  
UART3 data transmitter output pin.  
UART3_nCTS  
I
UART3 clear to Send input pin.  
I
Feb 15, 2019  
Page 77 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PD.3  
PH.8  
PB.13  
PF.6  
MFP  
MFP5  
MFP7  
MFP7  
MFP6  
MFP5  
MFP7  
MFP11  
MFP3  
MFP7  
MFP6  
MFP6  
MFP5  
MFP7  
MFP11  
MFP3  
MFP7  
MFP6  
MFP5  
MFP9  
MFP5  
MFP9  
MFP7  
MFP8  
MFP8  
MFP7  
MFP8  
MFP8  
MFP7  
MFP7  
MFP14  
MFP14  
MFP14  
MFP14  
MFP14  
Type  
O
O
O
I
Description  
UART3_nRTS  
UART3 request to Send output pin.  
PC.6  
PA.2  
PC.4  
PA.13  
PH.11  
PB.10  
PF.7  
I
I
UART4_RXD  
I
UART4 data receiver input pin.  
I
I
I
O
O
O
O
O
O
O
I
PC.7  
PA.3  
PC.5  
PA.12  
PH.10  
PB.11  
PC.8  
PE.1  
PE.13  
PE.0  
PB.4  
PA.4  
PE.6  
PB.5  
PA.5  
PE.7  
PB.2  
PB.3  
PA.14  
PA.13  
PA.15  
PA.12  
PB.6  
UART4  
UART4_TXD  
UART4 data transmitter output pin.  
UART4_nCTS  
UART4_nRTS  
UART4 clear to Send input pin.  
I
O
O
I
UART4 request to Send output pin.  
UART5_RXD  
UART5_TXD  
I
UART5 data receiver input pin.  
I
O
O
O
I
UART5  
UART5 data transmitter output pin.  
UART5_nCTS  
UART5_nRTS  
USB_D+  
UART5 clear to Send input pin.  
UART5 request to Send output pin.  
USB differential signal D+.  
USB differential signal D-.  
USB_ identification.  
O
A
A
I
USB_D-  
USB  
USB_OTG_ID  
USB_VBUS  
USB_VBUS_EN  
P
O
Power supply from USB host or HUB.  
USB external VBUS regulator enable pin.  
Feb 15, 2019  
Page 78 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PB.15  
PD.4  
PB.14  
PB.7  
PA.11  
PD.0  
PE.2  
PB.12  
PC.13  
PD.4  
PE.6  
PD.14  
PA.8  
PD.3  
PE.5  
PB.15  
PA.10  
PD.1  
PE.3  
PB.13  
PA.9  
PD.2  
PE.4  
PB.14  
PB.1  
PE.12  
PD.7  
PB.8  
PB.5  
PE.9  
PD.3  
PB.10  
PB.4  
PE.8  
MFP  
MFP14  
MFP14  
MFP15  
MFP14  
MFP6  
MFP3  
MFP7  
MFP5  
MFP6  
MFP3  
MFP7  
MFP5  
MFP6  
MFP3  
MFP7  
MFP5  
MFP6  
MFP3  
MFP7  
MFP5  
MFP6  
MFP3  
MFP7  
MFP5  
MFP8  
MFP6  
MFP6  
MFP4  
MFP8  
MFP6  
MFP6  
MFP4  
MFP8  
MFP6  
Type  
O
Description  
I
USB_VBUS_ST  
I
USB external VBUS regulator status pin.  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
USCI0_CLK  
USCI0_CTL0  
USCI0_CTL1  
USCI0_DAT0  
USCI0_DAT1  
USCI1_CLK  
USCI0 clock pin.  
USCI0 control 0 pin.  
USCI0 control 1 pin.  
USCI0 data 0 pin.  
USCI0 data 1 pin.  
USCI1 clock pin.  
USCI0  
USCI1  
USCI1_CTL0  
USCI1_CTL1  
USCI1 control 0 pin.  
USCI1 control 1 pin.  
Feb 15, 2019  
Page 79 of 245  
Rev 1.01  
M2351  
Group  
Pin Name  
GPIO  
PD.4  
PB.9  
PB.2  
PE.10  
PD.5  
PB.7  
PB.6  
PB.3  
PE.11  
PD.6  
PF.5  
PF.4  
MFP  
MFP6  
MFP4  
MFP8  
MFP6  
MFP6  
MFP4  
MFP4  
MFP8  
MFP6  
MFP6  
MFP10  
MFP10  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Description  
USCI1_DAT0  
USCI1_DAT1  
USCI1 data 0 pin.  
USCI1 data 1 pin.  
X32_IN  
External 32.768 kHz crystal input pin.  
External 32.768 kHz crystal output pin.  
X32  
XT1  
X32_OUT  
O
External 4~24 MHz (high speed) crystal input  
pin.  
XT1_IN  
PF.3  
PF.2  
MFP10  
MFP10  
I
External 4~24 MHz (high speed) crystal output  
pin.  
XT1_OUT  
O
Feb 15, 2019  
Page 80 of 245  
Rev 1.01  
M2351  
4.6  
M2351 Multi-function Summary Table Sorted by GPIO  
Pin Name  
Type  
I/O  
I/O  
I/O  
O
MFP  
MFP0  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
MFP9  
MFP12  
MFP13  
MFP15  
MFP0  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
MFP9  
MFP12  
MFP13  
MFP15  
MFP0  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
MFP9  
MFP12  
MFP13  
MFP0  
MFP3  
MFP4  
MFP6  
Description  
PA.0  
General purpose digital I/O pin.  
Quad SPI0 MOSI0 (Master Out, Slave In) pin.  
SPI0 MOSI (Master Out, Slave In) pin.  
Smart Card 0 clock pin.  
QSPI0_MOSI0  
SPI0_MOSI  
SC0_CLK  
UART0_RXD  
UART1_nRTS  
I2C2_SDA  
BPWM0_CH0  
EPWM0_CH5  
DAC0_ST  
I
UART0 data receiver input pin.  
UART1 request to Send output pin.  
I2C2 data input/output pin.  
PA.0  
O
I/O  
I/O  
I/O  
I
BPWM0 channel 0 output/capture input.  
EPWM0 channel 5 output/capture input.  
DAC0 external trigger input.  
PA.1  
I/O  
I/O  
I/O  
I/O  
O
General purpose digital I/O pin.  
Quad SPI0 MISO0 (Master In, Slave Out) pin.  
SPI0 MISO (Master In, Slave Out) pin.  
Smart Card 0 data pin.  
QSPI0_MISO0  
SPI0_MISO  
SC0_DAT  
UART0_TXD  
UART1_nCTS  
I2C2_SCL  
BPWM0_CH1  
EPWM0_CH4  
DAC1_ST  
UART0 data transmitter output pin.  
UART1 clear to Send input pin.  
I2C2 clock pin.  
PA.1  
I
I/O  
I/O  
I/O  
I
BPWM0 channel 1 output/capture input.  
EPWM0 channel 4 output/capture input.  
DAC1 external trigger input.  
PA.2  
I/O  
I/O  
I/O  
O
General purpose digital I/O pin.  
Quad SPI0 serial clock pin.  
QSPI0_CLK  
SPI0_CLK  
SC0_RST  
SPI serial clock pin.  
Smart Card 0 reset pin.  
PA.2 UART4_RXD  
UART1_RXD  
I2C1_SDA  
I
UART4 data receiver input pin.  
UART1 data receiver input pin.  
I2C1 data input/output pin.  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
BPWM0_CH2  
EPWM0_CH3  
PA.3  
BPWM0 channel 2 output/capture input.  
EPWM0 channel 3 output/capture input.  
General purpose digital I/O pin.  
Quad SPI0 slave select pin.  
QSPI0_SS  
PA.3  
SPI0_SS  
SPI0 slave select pin.  
SC0_PWR  
Smart Card 0 power pin.  
Feb 15, 2019  
Page 81 of 245  
Rev 1.01  
M2351  
Pin Name  
UART4_TXD  
UART1_TXD  
I2C1_SCL  
Type  
O
MFP  
MFP7  
MFP8  
MFP9  
MFP12  
MFP13  
MFP14  
MFP0  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
MFP9  
MFP10  
MFP12  
MFP13  
MFP14  
MFP0  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
MFP9  
MFP10  
MFP12  
MFP13  
MFP14  
MFP0  
MFP2  
MFP4  
MFP6  
MFP7  
MFP8  
Description  
UART4 data transmitter output pin.  
UART1 data transmitter output pin.  
I2C1 clock pin.  
O
I/O  
I/O  
I/O  
I
BPWM0_CH3  
EPWM0_CH2  
QEI0_B  
BPWM0 channel 3 output/capture input.  
EPWM0 channel 2 output/capture input.  
Quadrature encoder 0 phase B input  
General purpose digital I/O pin.  
Quad SPI0 MOSI1 (Master Out, Slave In) pin.  
SPI0 I2S master clock output pin  
Smart Card 0 card detect pin.  
UART0 request to Send output pin.  
UART5 data receiver input pin.  
I2C0 data input/output pin.  
PA.4  
I/O  
I/O  
I/O  
I
QSPI0_MOSI1  
SPI0_I2SMCLK  
SC0_nCD  
UART0_nRTS  
PA.4 UART5_RXD  
I2C0_SDA  
O
I
I/O  
I
CAN0_RXD  
BPWM0_CH4  
EPWM0_CH1  
QEI0_A  
CAN0 bus receiver input.  
I/O  
I/O  
I
BPWM0 channel 4 output/capture input.  
EPWM0 channel 1 output/capture input.  
Quadrature encoder 0 phase A input  
General purpose digital I/O pin.  
Quad SPI0 MISO1 (Master In, Slave Out) pin.  
SPI1 I2S master clock output pin  
Smart Card 2 card detect pin.  
UART0 clear to Send input pin.  
UART5 data transmitter output pin.  
I2C0 clock pin.  
PA.5  
I/O  
I/O  
I/O  
I
QSPI0_MISO1  
SPI1_I2SMCLK  
SC2_nCD  
UART0_nCTS  
PA.5 UART5_TXD  
I2C0_SCL  
I
O
I/O  
O
CAN0_TXD  
BPWM0_CH5  
EPWM0_CH0  
QEI0_INDEX  
PA.6  
CAN0 bus transmitter output.  
BPWM0 channel 5 output/capture input.  
EPWM0 channel 0 output/capture input.  
Quadrature encoder 0 index input  
General purpose digital I/O pin.  
EBI address/data bus bit 6.  
I/O  
I/O  
I
I/O  
I/O  
I/O  
O
EBI_AD6  
SPI1_SS  
PA.6  
SPI1 slave select pin.  
SC2_CLK  
Smart Card 2 clock pin.  
UART0_RXD  
I2C1_SDA  
I
UART0 data receiver input pin.  
I2C1 data input/output pin.  
I/O  
Feb 15, 2019  
Page 82 of 245  
Rev 1.01  
M2351  
Pin Name  
EPWM1_CH5  
BPWM1_CH3  
ACMP1_WLAT  
TM3  
Type  
I/O  
I/O  
I
MFP  
MFP11  
MFP12  
MFP13  
MFP14  
MFP15  
MFP0  
MFP2  
MFP4  
MFP6  
MFP7  
MFP8  
MFP11  
MFP12  
MFP13  
MFP14  
MFP15  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP9  
MFP10  
MFP11  
MFP13  
MFP15  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP9  
Description  
EPWM1 channel 5 output/capture input.  
BPWM1 channel 3 output/capture input.  
Analog comparator 1 window latch input pin  
Timer3 event counter input/toggle output pin.  
External interrupt 0 input pin.  
I/O  
I
INT0  
PA.7  
I/O  
I/O  
I/O  
I/O  
O
General purpose digital I/O pin.  
EBI address/data bus bit 7.  
EBI_AD7  
SPI1_CLK  
SC2_DAT  
UART0_TXD  
SPI1 serial clock pin.  
Smart Card 2 data pin.  
UART0 data transmitter output pin.  
I2C1 clock pin.  
PA.7 I2C1_SCL  
I/O  
I/O  
I/O  
I
EPWM1_CH4  
BPWM1_CH2  
ACMP0_WLAT  
TM2  
EPWM1 channel 4 output/capture input.  
BPWM1 channel 2 output/capture input.  
Analog comparator 0 window latch input pin  
Timer2 event counter input/toggle output pin.  
External interrupt 1 input pin.  
I/O  
I
INT1  
PA.8  
I/O  
O
General purpose digital I/O pin.  
EBI address latch enable output pin.  
Smart Card 2 clock pin.  
EBI_ALE  
SC2_CLK  
O
SPI2_MOSI  
USCI0_CTL1  
PA.8 UART1_RXD  
BPWM0_CH3  
QEI1_B  
I/O  
I/O  
I
SPI2 MOSI (Master Out, Slave In) pin.  
USCI0 control 1 pin.  
UART1 data receiver input pin.  
BPWM0 channel 3 output/capture input.  
Quadrature encoder 1 phase B input  
Enhanced capture unit 0 input 2 pin.  
Timer3 external capture input/toggle output pin.  
External interrupt 4 input pin.  
I/O  
I
ECAP0_IC2  
TM3_EXT  
I
I/O  
I
INT4  
PA.9  
I/O  
O
General purpose digital I/O pin.  
EBI external clock output pin.  
EBI_MCLK  
SC2_DAT  
I/O  
I/O  
I/O  
O
Smart Card 2 data pin.  
PA.9 SPI2_MISO  
USCI0_DAT1  
UART1_TXD  
BPWM0_CH2  
SPI2 MISO (Master In, Slave Out) pin.  
USCI0 data 1 pin.  
UART1 data transmitter output pin.  
BPWM0 channel 2 output/capture input.  
I/O  
Feb 15, 2019  
Page 83 of 245  
Rev 1.01  
M2351  
Pin Name  
QEI1_A  
Type  
I
MFP  
MFP10  
MFP11  
MFP13  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP9  
MFP10  
MFP11  
MFP13  
MFP14  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP9  
MFP10  
MFP13  
MFP14  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP11  
Description  
Quadrature encoder 1 phase A input  
Enhanced capture unit 0 input 1 pin.  
Timer2 external capture input/toggle output pin.  
General purpose digital I/O pin.  
Analog comparator 1 positive input 0 pin.  
EBI write enable output pin.  
ECAP0_IC1  
TM2_EXT  
PA.10  
I
I/O  
I/O  
A
ACMP1_P0  
EBI_nWR  
SC2_RST  
SPI2_CLK  
USCI0_DAT0  
I2C2_SDA  
BPWM0_CH1  
QEI1_INDEX  
ECAP0_IC0  
TM1_EXT  
DAC0_ST  
PA.11  
O
O
Smart Card 2 reset pin.  
I/O  
I/O  
I/O  
I/O  
I
SPI2 serial clock pin.  
USCI0 data 0 pin.  
PA.10  
I2C2 data input/output pin.  
BPWM0 channel 1 output/capture input.  
Quadrature encoder 1 index input  
Enhanced capture unit 0 input 0 pin.  
Timer1 external capture input/toggle output pin.  
DAC0 external trigger input.  
General purpose digital I/O pin.  
Analog comparator 0 positive input 0 pin.  
EBI read enable output pin.  
I
I/O  
I
I/O  
A
ACMP0_P0  
EBI_nRD  
O
SC2_PWR  
SPI2_SS  
O
Smart Card 2 power pin.  
I/O  
I/O  
I/O  
I/O  
O
SPI2 slave select pin.  
PA.11 USCI0_CLK  
I2C2_SCL  
USCI0 clock pin.  
I2C2 clock pin.  
BPWM0_CH0  
BPWM0 channel 0 output/capture input.  
EPWM0 counter synchronous trigger output pin.  
Timer0 external capture input/toggle output pin.  
DAC1 external trigger input.  
General purpose digital I/O pin.  
I2S0 bit clock output pin.  
EPWM0_SYNC_OUT  
TM0_EXT  
DAC1_ST  
PA.12  
I/O  
I
I/O  
O
I2S0_BCLK  
UART4_TXD  
I2C1_SCL  
SPI2_SS  
O
UART4 data transmitter output pin.  
I2C1 clock pin.  
I/O  
I/O  
O
PA.12  
SPI2 slave select pin.  
CAN0_TXD  
SC2_PWR  
BPWM1_CH2  
CAN0 bus transmitter output.  
Smart Card 2 power pin.  
O
I/O  
BPWM1 channel 2 output/capture input.  
Feb 15, 2019  
Page 84 of 245  
Rev 1.01  
M2351  
Pin Name  
QEI1_INDEX  
USB_VBUS  
PA.13  
Type  
I
MFP  
MFP12  
MFP14  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP11  
MFP12  
MFP14  
MFP0  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP11  
MFP12  
MFP14  
MFP0  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP11  
MFP12  
MFP14  
MFP0  
MFP1  
MFP2  
MFP3  
Description  
Quadrature encoder 1 index input  
Power supply from USB host or HUB.  
General purpose digital I/O pin.  
I2S0 master clock output pin.  
UART4 data receiver input pin.  
I2C1 data input/output pin.  
P
I/O  
O
I2S0_MCLK  
UART4_RXD  
I2C1_SDA  
SPI2_CLK  
CAN0_RXD  
SC2_RST  
BPWM1_CH3  
QEI1_A  
I
I/O  
I/O  
I
SPI2 serial clock pin.  
PA.13  
CAN0 bus receiver input.  
O
Smart Card 2 reset pin.  
I/O  
I
BPWM1 channel 3 output/capture input.  
Quadrature encoder 1 phase A input  
USB differential signal D-.  
USB_D-  
A
PA.14  
I/O  
I
General purpose digital I/O pin.  
I2S0 data input pin.  
I2S0_DI  
UART0_TXD  
SPI2_MISO  
O
UART0 data transmitter output pin.  
SPI2 MISO (Master In, Slave Out) pin.  
I2C2 clock pin.  
I/O  
I/O  
I/O  
I/O  
I
PA.14 I2C2_SCL  
SC2_DAT  
Smart Card 2 data pin.  
BPWM1_CH4  
BPWM1 channel 4 output/capture input.  
Quadrature encoder 1 phase B input  
USB differential signal D+.  
QEI1_B  
USB_D+  
A
PA.15  
I/O  
O
General purpose digital I/O pin.  
I2S0 data output pin.  
I2S0_DO  
UART0_RXD  
SPI2_MOSI  
PA.15 I2C2_SDA  
SC2_CLK  
I
UART0 data receiver input pin.  
SPI2 MOSI (Master Out, Slave In) pin.  
I2C2 data input/output pin.  
I/O  
I/O  
O
Smart Card 2 clock pin.  
BPWM1_CH5  
I/O  
I
BPWM1 channel 5 output/capture input.  
EPWM0 counter synchronous trigger input pin.  
USB_ identification.  
EPWM0_SYNC_IN  
USB_OTG_ID  
PB.0  
I
I/O  
A
General purpose digital I/O pin.  
EADC0 channel 0 analog input.  
EBI address bus bit 9.  
EADC0_CH0  
EBI_ADR9  
SD0_CMD  
PB.0  
O
I/O  
SD/SDIO0 command/response pin  
Feb 15, 2019  
Page 85 of 245  
Rev 1.01  
M2351  
Pin Name  
Type  
I
MFP  
MFP7  
MFP8  
MFP9  
MFP11  
MFP12  
MFP13  
MFP0  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP10  
MFP11  
MFP12  
MFP13  
MFP0  
MFP1  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP10  
MFP11  
MFP14  
MFP15  
MFP0  
Description  
UART2_RXD  
SPI0_I2SMCLK  
I2C1_SDA  
UART2 data receiver input pin.  
SPI0 I2S master clock output pin  
I2C1 data input/output pin.  
I/O  
I/O  
I/O  
I/O  
I
EPWM0_CH5  
EPWM1_CH5  
EPWM0_BRAKE1  
PB.1  
EPWM0 channel 5 output/capture input.  
EPWM1 channel 5 output/capture input.  
EPWM0 Brake 1 input pin.  
I/O  
A
General purpose digital I/O pin.  
EADC0 channel 1 analog input.  
EBI address bus bit 8.  
EADC0_CH1  
EBI_ADR8  
O
SD0_CLK  
O
SD/SDIO0 clock output pin  
SPI1_I2SMCLK  
SPI3_I2SMCLK  
I/O  
I/O  
O
SPI1 I2S master clock output pin  
SPI3 I2S master clock output pin  
UART2 data transmitter output pin.  
USCI1 clock pin.  
PB.1 UART2_TXD  
USCI1_CLK  
I2C1_SCL  
I2S0_LRCK  
EPWM0_CH4  
EPWM1_CH4  
EPWM0_BRAKE0  
PB.2  
I/O  
I/O  
O
I2C1 clock pin.  
I2S0 left right channel clock output pin.  
EPWM0 channel 4 output/capture input.  
EPWM1 channel 4 output/capture input.  
EPWM0 Brake 0 input pin.  
I/O  
I/O  
I
I/O  
A
General purpose digital I/O pin.  
EADC0 channel 2 analog input.  
Analog comparator 0 positive input 1 pin.  
EBI address bus bit 3.  
EADC0_CH2  
ACMP0_P1  
EBI_ADR3  
SD0_DAT0  
SPI1_SS  
A
O
I/O  
I/O  
I
SD/SDIO0 data line bit 0.  
SPI1 slave select pin.  
UART1_RXD  
UART5_nCTS  
USCI1_DAT0  
SC0_PWR  
I2S0_DO  
UART1 data receiver input pin.  
UART5 clear to Send input pin.  
USCI1 data 0 pin.  
PB.2  
I
I/O  
O
Smart Card 0 power pin.  
O
I2S0 data output pin.  
EPWM0_CH3  
TM3  
I/O  
I/O  
I
EPWM0 channel 3 output/capture input.  
Timer3 event counter input/toggle output pin.  
External interrupt 3 input pin.  
General purpose digital I/O pin.  
INT3  
PB.3 PB.3  
I/O  
Feb 15, 2019  
Page 86 of 245  
Rev 1.01  
M2351  
Pin Name  
EADC0_CH3  
ACMP0_N  
EBI_ADR2  
SD0_DAT1  
SPI1_CLK  
UART1_TXD  
UART5_nRTS  
USCI1_DAT1  
SC0_RST  
I2S0_DI  
Type  
A
MFP  
MFP1  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP10  
MFP11  
MFP14  
MFP15  
MFP0  
MFP1  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP10  
MFP11  
MFP14  
MFP15  
MFP0  
MFP1  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
Description  
EADC0 channel 3 analog input.  
Analog comparator 0 negative input pin.  
EBI address bus bit 2.  
A
O
I/O  
I/O  
O
SD/SDIO0 data line bit 1.  
SPI1 serial clock pin.  
UART1 data transmitter output pin.  
UART5 request to Send output pin.  
USCI1 data 1 pin.  
O
I/O  
O
Smart Card 0 reset pin.  
I
I2S0 data input pin.  
EPWM0_CH2  
TM2  
I/O  
I/O  
I
EPWM0 channel 2 output/capture input.  
Timer2 event counter input/toggle output pin.  
External interrupt 2 input pin.  
General purpose digital I/O pin.  
EADC0 channel 4 analog input.  
Analog comparator 1 positive input 1 pin.  
EBI address bus bit 1.  
INT2  
PB.4  
I/O  
A
EADC0_CH4  
ACMP1_P1  
EBI_ADR1  
SD0_DAT2  
SPI1_MOSI  
I2C0_SDA  
UART5_RXD  
USCI1_CTL1  
SC0_DAT  
I2S0_MCLK  
EPWM0_CH1  
TM1  
A
O
I/O  
I/O  
I/O  
I
SD/SDIO0 data line bit 2.  
SPI1 MOSI (Master Out, Slave In) pin.  
I2C0 data input/output pin.  
PB.4  
UART5 data receiver input pin.  
USCI1 control 1 pin.  
I/O  
I/O  
O
Smart Card 0 data pin.  
I2S0 master clock output pin.  
EPWM0 channel 1 output/capture input.  
Timer1 event counter input/toggle output pin.  
External interrupt 1 input pin.  
General purpose digital I/O pin.  
EADC0 channel 5 analog input.  
Analog comparator 1 negative input pin.  
EBI address bus bit 0.  
I/O  
I/O  
I
INT1  
PB.5  
I/O  
A
EADC0_CH5  
ACMP1_N  
A
PB.5 EBI_ADR0  
SD0_DAT3  
O
I/O  
I/O  
I/O  
SD/SDIO0 data line bit 3.  
SPI1_MISO  
SPI1 MISO (Master In, Slave Out) pin.  
I2C0 clock pin.  
I2C0_SCL  
Feb 15, 2019  
Page 87 of 245  
Rev 1.01  
M2351  
Pin Name  
Type  
O
MFP  
MFP7  
MFP8  
MFP9  
MFP10  
MFP11  
MFP14  
MFP15  
MFP0  
MFP1  
MFP2  
MFP4  
MFP6  
MFP8  
MFP10  
MFP11  
MFP12  
MFP13  
MFP14  
MFP15  
MFP0  
MFP1  
MFP2  
MFP4  
MFP6  
MFP8  
MFP10  
MFP11  
MFP12  
MFP13  
MFP14  
MFP15  
MFP0  
MFP1  
MFP2  
Description  
UART5_TXD  
USCI1_CTL0  
SC0_CLK  
UART5 data transmitter output pin.  
USCI1 control 0 pin.  
I/O  
O
Smart Card 0 clock pin.  
I2S0_BCLK  
EPWM0_CH0  
TM0  
O
I2S0 bit clock output pin.  
I/O  
I/O  
I
EPWM0 channel 0 output/capture input.  
Timer0 event counter input/toggle output pin.  
External interrupt 0 input pin.  
General purpose digital I/O pin.  
EADC0 channel 6 analog input.  
EBI high byte write enable output pin  
USCI1 data 1 pin.  
INT0  
PB.6  
I/O  
A
EADC0_CH6  
EBI_nWRH  
USCI1_DAT1  
UART1_RXD  
EBI_nCS1  
BPWM1_CH5  
EPWM1_BRAKE1  
EPWM1_CH5  
INT4  
O
I/O  
I
UART1 data receiver input pin.  
EBI chip select 1 output pin.  
O
PB.6  
I/O  
I
BPWM1 channel 5 output/capture input.  
EPWM1 Brake 1 input pin.  
I/O  
I
EPWM1 channel 5 output/capture input.  
External interrupt 4 input pin.  
USB external VBUS regulator enable pin.  
Analog comparator 1 output pin.  
General purpose digital I/O pin.  
EADC0 channel 7 analog input.  
EBI low byte write enable output pin.  
USCI1 data 0 pin.  
USB_VBUS_EN  
ACMP1_O  
PB.7  
O
O
I/O  
A
EADC0_CH7  
EBI_nWRL  
USCI1_DAT0  
UART1_TXD  
EBI_nCS0  
BPWM1_CH4  
EPWM1_BRAKE0  
EPWM1_CH4  
INT5  
O
I/O  
O
UART1 data transmitter output pin.  
EBI chip select 0 output pin.  
O
PB.7  
I/O  
I
BPWM1 channel 4 output/capture input.  
EPWM1 Brake 0 input pin.  
I/O  
I
EPWM1 channel 4 output/capture input.  
External interrupt 5 input pin.  
USB external VBUS regulator status pin.  
Analog comparator 0 output pin.  
General purpose digital I/O pin.  
EADC0 channel 8 analog input.  
EBI address bus bit 19.  
USB_VBUS_ST  
ACMP0_O  
PB.8  
I
O
I/O  
A
PB.8 EADC0_CH8  
EBI_ADR19  
O
Feb 15, 2019  
Page 88 of 245  
Rev 1.01  
M2351  
Pin Name  
Type  
I/O  
I
MFP  
MFP4  
MFP5  
MFP6  
MFP7  
MFP10  
MFP11  
MFP13  
MFP0  
MFP1  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP10  
MFP11  
MFP13  
MFP0  
MFP1  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP10  
MFP11  
MFP0  
MFP1  
MFP2  
MFP5  
MFP6  
MFP7  
MFP8  
Description  
USCI1_CLK  
UART0_RXD  
UART1_nRTS  
I2C1_SMBSUS  
BPWM1_CH3  
SPI3_MOSI  
INT6  
USCI1 clock pin.  
UART0 data receiver input pin.  
UART1 request to Send output pin.  
O
O
I2C1 SMBus SMBSUS pin (PMBus CONTROL pin)  
BPWM1 channel 3 output/capture input.  
SPI3 MOSI (Master Out, Slave In) pin.  
External interrupt 6 input pin.  
General purpose digital I/O pin.  
EADC0 channel 9 analog input.  
EBI address bus bit 18.  
I/O  
I/O  
I
PB.9  
I/O  
A
EADC0_CH9  
EBI_ADR18  
USCI1_CTL1  
UART0_TXD  
UART1_nCTS  
I2C1_SMBAL  
BPWM1_CH2  
SPI3_MISO  
INT7  
O
I/O  
O
USCI1 control 1 pin.  
UART0 data transmitter output pin.  
UART1 clear to Send input pin.  
I2C1 SMBus SMBALTER pin  
BPWM1 channel 2 output/capture input.  
SPI3 MISO (Master In, Slave Out) pin.  
External interrupt 7 input pin.  
General purpose digital I/O pin.  
EADC0 channel 10 analog input.  
EBI address bus bit 17.  
PB.9  
I
O
I/O  
I/O  
I
PB.10  
I/O  
A
EADC0_CH10  
EBI_ADR17  
USCI1_CTL0  
UART0_nRTS  
UART4_RXD  
I2C1_SDA  
O
I/O  
O
USCI1 control 0 pin.  
UART0 request to Send output pin.  
UART4 data receiver input pin.  
I2C1 data input/output pin.  
PB.10  
I
I/O  
I
CAN0_RXD  
BPWM1_CH1  
SPI3_SS  
CAN0 bus receiver input.  
I/O  
I/O  
I/O  
A
BPWM1 channel 1 output/capture input.  
SPI3 slave select pin.  
PB.11  
General purpose digital I/O pin.  
EADC0 channel 11 analog input.  
EBI address bus bit 16.  
EADC0_CH11  
EBI_ADR16  
O
PB.11 UART0_nCTS  
UART4_TXD  
I
UART0 clear to Send input pin.  
UART4 data transmitter output pin.  
I2C1 clock pin.  
O
I2C1_SCL  
I/O  
O
CAN0_TXD  
CAN0 bus transmitter output.  
Feb 15, 2019  
Page 89 of 245  
Rev 1.01  
M2351  
Pin Name  
SPI0_I2SMCLK  
BPWM1_CH0  
SPI3_CLK  
Type  
I/O  
I/O  
I/O  
I/O  
A
MFP  
MFP9  
MFP10  
MFP11  
MFP0  
MFP1  
MFP1  
MFP1  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP11  
MFP13  
MFP0  
MFP1  
MFP1  
MFP1  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP11  
MFP13  
MFP0  
MFP1  
Description  
SPI0 I2S master clock output pin  
BPWM1 channel 0 output/capture input.  
SPI3 serial clock pin.  
PB.12  
General purpose digital I/O pin.  
EADC0 channel 12 analog input.  
DAC0 channel analog output.  
Analog comparator 0 positive input 2 pin.  
Analog comparator 1 positive input 2 pin.  
EBI address/data bus bit 15.  
EADC0_CH12  
DAC0_OUT  
ACMP0_P2  
ACMP1_P2  
EBI_AD15  
A
A
A
I/O  
O
SC1_CLK  
Smart Card 1 clock pin.  
PB.12 SPI0_MOSI  
USCI0_CLK  
UART0_RXD  
UART3_nCTS  
I2C2_SDA  
I/O  
I/O  
I
SPI0 MOSI (Master Out, Slave In) pin.  
USCI0 clock pin.  
UART0 data receiver input pin.  
UART3 clear to Send input pin.  
I2C2 data input/output pin.  
I
I/O  
I
SD0_nCD  
SD/SDIO0 card detect input pin  
EPWM1 channel 3 output/capture input.  
Timer3 external capture input/toggle output pin.  
General purpose digital I/O pin.  
EADC0 channel 13 analog input.  
DAC1 channel analog output.  
Analog comparator 0 positive input 3 pin.  
Analog comparator 1 positive input 3 pin.  
EBI address/data bus bit 14.  
EPWM1_CH3  
TM3_EXT  
I/O  
I/O  
I/O  
A
PB.13  
EADC0_CH13  
DAC1_OUT  
ACMP0_P3  
ACMP1_P3  
EBI_AD14  
A
A
A
I/O  
I/O  
I/O  
I/O  
O
SC1_DAT  
PB.13  
Smart Card 1 data pin.  
SPI0_MISO  
SPI0 MISO (Master In, Slave Out) pin.  
USCI0 data 0 pin.  
USCI0_DAT0  
UART0_TXD  
UART3_nRTS  
I2C2_SCL  
UART0 data transmitter output pin.  
UART3 request to Send output pin.  
I2C2 clock pin.  
O
I/O  
I/O  
I/O  
I/O  
A
EPWM1_CH2  
TM2_EXT  
EPWM1 channel 2 output/capture input.  
Timer2 external capture input/toggle output pin.  
General purpose digital I/O pin.  
EADC0 channel 14 analog input.  
PB.14  
PB.14  
EADC0_CH14  
Feb 15, 2019  
Page 90 of 245  
Rev 1.01  
M2351  
Pin Name  
Type  
I/O  
O
MFP  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP11  
MFP13  
MFP14  
MFP15  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP11  
MFP13  
MFP14  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP12  
MFP14  
MFP0  
Description  
EBI_AD13  
EBI address/data bus bit 13.  
Smart Card 1 reset pin.  
SPI0 serial clock pin.  
SC1_RST  
SPI0_CLK  
I/O  
I/O  
O
USCI0_DAT1  
UART0_nRTS  
UART3_RXD  
I2C2_SMBSUS  
EPWM1_CH1  
TM1_EXT  
USCI0 data 1 pin.  
UART0 request to Send output pin.  
UART3 data receiver input pin.  
I
O
I2C2 SMBus SMBSUS pin (PMBus CONTROL pin)  
EPWM1 channel 1 output/capture input.  
Timer1 external capture input/toggle output pin.  
Clock Out  
I/O  
I/O  
O
CLKO  
USB_VBUS_ST  
PB.15  
I
USB external VBUS regulator status pin.  
General purpose digital I/O pin.  
EADC0 channel 15 analog input.  
EBI address/data bus bit 12.  
I/O  
A
EADC0_CH15  
EBI_AD12  
I/O  
O
SC1_PWR  
SPI0_SS  
Smart Card 1 power pin.  
I/O  
I/O  
I
SPI0 slave select pin.  
USCI0_CTL1  
UART0_nCTS  
UART3_TXD  
I2C2_SMBAL  
EPWM1_CH0  
TM0_EXT  
USCI0 control 1 pin.  
PB.15  
UART0 clear to Send input pin.  
UART3 data transmitter output pin.  
I2C2 SMBus SMBALTER pin  
O
O
I/O  
I/O  
O
EPWM1 channel 0 output/capture input.  
Timer0 external capture input/toggle output pin.  
USB external VBUS regulator enable pin.  
General purpose digital I/O pin.  
EBI address/data bus bit 0.  
USB_VBUS_EN  
PC.0  
I/O  
I/O  
I/O  
O
EBI_AD0  
QSPI0_MOSI0  
SC1_CLK  
Quad SPI0 MOSI0 (Master Out, Slave In) pin.  
Smart Card 1 clock pin.  
I2S0_LRCK  
SPI1_SS  
O
I2S0 left right channel clock output pin.  
SPI1 slave select pin.  
PC.0  
I/O  
I
UART2_RXD  
I2C0_SDA  
UART2 data receiver input pin.  
I2C0 data input/output pin.  
I/O  
I/O  
O
EPWM1_CH5  
ACMP1_O  
EPWM1 channel 5 output/capture input.  
Analog comparator 1 output pin.  
General purpose digital I/O pin.  
PC.1 PC.1  
I/O  
Feb 15, 2019  
Page 91 of 245  
Rev 1.01  
M2351  
Pin Name  
EBI_AD1  
Type  
I/O  
I/O  
I/O  
O
MFP  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP12  
MFP14  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP11  
MFP12  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP11  
MFP12  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
Description  
EBI address/data bus bit 1.  
Quad SPI0 MISO0 (Master In, Slave Out) pin.  
Smart Card 1 data pin.  
QSPI0_MISO0  
SC1_DAT  
I2S0_DO  
I2S0 data output pin.  
SPI1_CLK  
UART2_TXD  
I2C0_SCL  
EPWM1_CH4  
ACMP0_O  
PC.2  
I/O  
O
SPI1 serial clock pin.  
UART2 data transmitter output pin.  
I2C0 clock pin.  
I/O  
I/O  
O
EPWM1 channel 4 output/capture input.  
Analog comparator 0 output pin.  
General purpose digital I/O pin.  
EBI address/data bus bit 2.  
Quad SPI0 serial clock pin.  
Smart Card 1 reset pin.  
I/O  
I/O  
I/O  
O
EBI_AD2  
QSPI0_CLK  
SC1_RST  
I2S0_DI  
I
I2S0 data input pin.  
PC.2  
SPI1_MOSI  
UART2_nCTS  
I2C0_SMBSUS  
UART3_RXD  
EPWM1_CH3  
PC.3  
I/O  
I
SPI1 MOSI (Master Out, Slave In) pin.  
UART2 clear to Send input pin.  
O
I2C0 SMBus SMBSUS pin (PMBus CONTROL pin)  
UART3 data receiver input pin.  
EPWM1 channel 3 output/capture input.  
General purpose digital I/O pin.  
EBI address/data bus bit 3.  
I
I/O  
I/O  
I/O  
I/O  
O
EBI_AD3  
QSPI0_SS  
SC1_PWR  
I2S0_MCLK  
SPI1_MISO  
UART2_nRTS  
I2C0_SMBAL  
UART3_TXD  
EPWM1_CH2  
PC.4  
Quad SPI0 slave select pin.  
Smart Card 1 power pin.  
O
I2S0 master clock output pin.  
PC.3  
I/O  
O
SPI1 MISO (Master In, Slave Out) pin.  
UART2 request to Send output pin.  
I2C0 SMBus SMBALTER pin  
O
O
UART3 data transmitter output pin.  
EPWM1 channel 2 output/capture input.  
General purpose digital I/O pin.  
EBI address/data bus bit 4.  
I/O  
I/O  
I/O  
I/O  
I
EBI_AD4  
PC.4 QSPI0_MOSI1  
SC1_nCD  
Quad SPI0 MOSI1 (Master Out, Slave In) pin.  
Smart Card 1 card detect pin.  
I2S0_BCLK  
O
I2S0 bit clock output pin.  
Feb 15, 2019  
Page 92 of 245  
Rev 1.01  
M2351  
Pin Name  
Type  
I/O  
I
MFP  
MFP7  
MFP8  
MFP9  
MFP10  
MFP11  
MFP12  
MFP0  
MFP2  
MFP4  
MFP8  
MFP9  
MFP10  
MFP11  
MFP12  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP11  
MFP12  
MFP14  
MFP15  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP11  
MFP12  
Description  
SPI1_I2SMCLK  
UART2_RXD  
I2C1_SDA  
CAN0_RXD  
UART4_RXD  
EPWM1_CH1  
PC.5  
SPI1 I2S master clock output pin  
UART2 data receiver input pin.  
I2C1 data input/output pin.  
I/O  
I
CAN0 bus receiver input.  
I
UART4 data receiver input pin.  
EPWM1 channel 1 output/capture input.  
General purpose digital I/O pin.  
EBI address/data bus bit 5.  
I/O  
I/O  
I/O  
I/O  
O
EBI_AD5  
QSPI0_MISO1  
UART2_TXD  
I2C1_SCL  
Quad SPI0 MISO1 (Master In, Slave Out) pin.  
UART2 data transmitter output pin.  
I2C1 clock pin.  
PC.5  
I/O  
O
CAN0_TXD  
UART4_TXD  
EPWM1_CH0  
PC.6  
CAN0 bus transmitter output.  
UART4 data transmitter output pin.  
EPWM1 channel 0 output/capture input.  
General purpose digital I/O pin.  
EBI address/data bus bit 8.  
O
I/O  
I/O  
I/O  
I/O  
I
EBI_AD8  
SPI1_MOSI  
UART4_RXD  
SC2_RST  
SPI1 MOSI (Master Out, Slave In) pin.  
UART4 data receiver input pin.  
Smart Card 2 reset pin.  
O
PC.6 UART0_nRTS  
I2C1_SMBSUS  
EPWM1_CH3  
BPWM1_CH1  
TM1  
O
UART0 request to Send output pin.  
O
I2C1 SMBus SMBSUS pin (PMBus CONTROL pin)  
EPWM1 channel 3 output/capture input.  
BPWM1 channel 1 output/capture input.  
Timer1 event counter input/toggle output pin.  
External interrupt 2 input pin.  
I/O  
I/O  
I/O  
I
INT2  
PC.7  
I/O  
I/O  
I/O  
O
General purpose digital I/O pin.  
EBI_AD9  
EBI address/data bus bit 9.  
SPI1_MISO  
UART4_TXD  
PC.7 SC2_PWR  
UART0_nCTS  
I2C1_SMBAL  
EPWM1_CH2  
BPWM1_CH0  
SPI1 MISO (Master In, Slave Out) pin.  
UART4 data transmitter output pin.  
Smart Card 2 power pin.  
O
I
UART0 clear to Send input pin.  
O
I2C1 SMBus SMBALTER pin  
I/O  
I/O  
EPWM1 channel 2 output/capture input.  
BPWM1 channel 0 output/capture input.  
Feb 15, 2019  
Page 93 of 245  
Rev 1.01  
M2351  
Pin Name  
TM0  
Type  
I/O  
I
MFP  
MFP14  
MFP15  
MFP0  
MFP2  
MFP4  
MFP5  
MFP8  
MFP11  
MFP12  
MFP0  
MFP2  
MFP6  
MFP7  
MFP12  
MFP0  
MFP2  
MFP6  
MFP7  
MFP11  
MFP12  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP11  
MFP12  
MFP14  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP9  
Description  
Timer0 event counter input/toggle output pin.  
External interrupt 3 input pin.  
General purpose digital I/O pin.  
EBI address bus bit 16.  
INT3  
PC.8  
I/O  
O
EBI_ADR16  
I2C0_SDA  
PC.8 UART4_nCTS  
UART1_RXD  
EPWM1_CH1  
BPWM1_CH4  
PC.9  
I/O  
I
I2C0 data input/output pin.  
UART4 clear to Send input pin.  
UART1 data receiver input pin.  
EPWM1 channel 1 output/capture input.  
BPWM1 channel 4 output/capture input.  
General purpose digital I/O pin.  
EBI address bus bit 7.  
I
I/O  
I/O  
I/O  
O
EBI_ADR7  
PC.9 SPI3_SS  
UART3_RXD  
EPWM1_CH3  
PC.10  
I/O  
I
SPI3 slave select pin.  
UART3 data receiver input pin.  
EPWM1 channel 3 output/capture input.  
General purpose digital I/O pin.  
EBI address bus bit 6.  
I/O  
I/O  
O
EBI_ADR6  
SPI3_CLK  
PC.10  
I/O  
O
SPI3 serial clock pin.  
UART3_TXD  
UART3 data transmitter output pin.  
Enhanced capture unit 1 input 0 pin.  
EPWM1 channel 2 output/capture input.  
General purpose digital I/O pin.  
EBI address bus bit 5.  
ECAP1_IC0  
EPWM1_CH2  
PC.11  
I
I/O  
I/O  
O
EBI_ADR5  
UART0_RXD  
I
UART0 data receiver input pin.  
I2C0 data input/output pin.  
I2C0_SDA  
PC.11  
I/O  
I/O  
I
SPI3_MOSI  
SPI3 MOSI (Master Out, Slave In) pin.  
Enhanced capture unit 1 input 1 pin.  
EPWM1 channel 1 output/capture input.  
Analog comparator 1 output pin.  
General purpose digital I/O pin.  
EBI address bus bit 4.  
ECAP1_IC1  
EPWM1_CH1  
ACMP1_O  
PC.12  
I/O  
O
I/O  
O
EBI_ADR4  
UART0_TXD  
PC.12  
O
UART0 data transmitter output pin.  
I2C0 clock pin.  
I2C0_SCL  
I/O  
I/O  
I
SPI3_MISO  
SC0_nCD  
SPI3 MISO (Master In, Slave Out) pin.  
Smart Card 0 card detect pin.  
Feb 15, 2019  
Page 94 of 245  
Rev 1.01  
M2351  
Pin Name  
ECAP1_IC2  
EPWM1_CH0  
ACMP0_O  
Type  
I
MFP  
MFP11  
MFP12  
MFP14  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP9  
MFP13  
MFP14  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP14  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP7  
MFP9  
Description  
Enhanced capture unit 1 input 2 pin.  
EPWM1 channel 0 output/capture input.  
Analog comparator 0 output pin.  
General purpose digital I/O pin.  
EBI address bus bit 10.  
I/O  
O
PC.13  
I/O  
O
EBI_ADR10  
SC2_nCD  
I
Smart Card 2 card detect pin.  
SPI2 I2S master clock output pin  
USCI0 control 0 pin.  
SPI2_I2SMCLK  
PC.13 USCI0_CTL0  
UART2_TXD  
BPWM0_CH4  
CLKO  
I/O  
I/O  
O
UART2 data transmitter output pin.  
BPWM0 channel 4 output/capture input.  
Clock Out  
I/O  
O
EADC0_ST  
PD.0  
I
EADC0 external trigger input.  
General purpose digital I/O pin.  
EBI address/data bus bit 13.  
USCI0 clock pin.  
I/O  
I/O  
I/O  
I/O  
I
EBI_AD13  
USCI0_CLK  
SPI0_MOSI  
PD.0  
SPI0 MOSI (Master Out, Slave In) pin.  
UART3 data receiver input pin.  
I2C2 data input/output pin.  
Smart Card 2 clock pin.  
UART3_RXD  
I2C2_SDA  
SC2_CLK  
I/O  
O
TM2  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Timer2 event counter input/toggle output pin.  
General purpose digital I/O pin.  
EBI address/data bus bit 12.  
USCI0 data 0 pin.  
PD.1  
EBI_AD12  
USCI0_DAT0  
PD.1 SPI0_MISO  
UART3_TXD  
I2C2_SCL  
SPI0 MISO (Master In, Slave Out) pin.  
UART3 data transmitter output pin.  
I2C2 clock pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SC2_DAT  
Smart Card 2 data pin.  
PD.2  
General purpose digital I/O pin.  
EBI address/data bus bit 11.  
USCI0 data 1 pin.  
EBI_AD11  
USCI0_DAT1  
PD.2 SPI0_CLK  
UART3_nCTS  
SC2_RST  
SPI0 serial clock pin.  
UART3 clear to Send input pin.  
Smart Card 2 reset pin.  
O
UART0_RXD  
I
UART0 data receiver input pin.  
Feb 15, 2019  
Page 95 of 245  
Rev 1.01  
M2351  
Pin Name  
PD.3  
Type  
I/O  
I/O  
I/O  
I/O  
O
MFP  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP0  
MFP3  
MFP4  
MFP5  
MFP6  
MFP8  
MFP14  
MFP0  
MFP4  
MFP5  
MFP6  
MFP8  
MFP0  
MFP3  
MFP4  
MFP5  
MFP6  
MFP8  
MFP0  
MFP3  
MFP4  
MFP5  
MFP6  
MFP8  
MFP0  
Description  
General purpose digital I/O pin.  
EBI address/data bus bit 10.  
USCI0 control 1 pin.  
EBI_AD10  
USCI0_CTL1  
SPI0_SS  
SPI0 slave select pin.  
PD.3 UART3_nRTS  
USCI1_CTL0  
SC2_PWR  
UART3 request to Send output pin.  
USCI1 control 0 pin.  
I/O  
O
Smart Card 2 power pin.  
Smart Card 1 card detect pin.  
UART0 data transmitter output pin.  
General purpose digital I/O pin.  
USCI0 control 0 pin.  
SC1_nCD  
I
UART0_TXD  
PD.4  
O
I/O  
I/O  
I/O  
I/O  
I/O  
O
USCI0_CTL0  
I2C1_SDA  
I2C1 data input/output pin.  
SPI1 slave select pin.  
PD.4 SPI1_SS  
USCI1_CTL1  
SC1_CLK  
USCI1 control 1 pin.  
Smart Card 1 clock pin.  
USB_VBUS_ST  
PD.5  
I
USB external VBUS regulator status pin.  
General purpose digital I/O pin.  
I2C1 clock pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I2C1_SCL  
PD.5 SPI1_CLK  
USCI1_DAT0  
SC1_DAT  
SPI1 serial clock pin.  
USCI1 data 0 pin.  
Smart Card 1 data pin.  
PD.6  
General purpose digital I/O pin.  
UART1 data receiver input pin.  
I2C0 data input/output pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
USCI1 data 1 pin.  
UART1_RXD  
I2C0_SDA  
PD.6  
I/O  
I/O  
I/O  
O
SPI1_MOSI  
USCI1_DAT1  
SC1_RST  
PD.7  
Smart Card 1 reset pin.  
I/O  
O
General purpose digital I/O pin.  
UART1 data transmitter output pin.  
I2C0 clock pin.  
UART1_TXD  
I2C0_SCL  
PD.7  
I/O  
I/O  
I/O  
O
SPI1_MISO  
SPI1 MISO (Master In, Slave Out) pin.  
USCI1 clock pin.  
USCI1_CLK  
SC1_PWR  
Smart Card 1 power pin.  
General purpose digital I/O pin.  
PD.8 PD.8  
I/O  
Feb 15, 2019  
Page 96 of 245  
Rev 1.01  
M2351  
Pin Name  
EBI_AD6  
I2C2_SDA  
UART2_nRTS  
PD.9  
Type  
I/O  
I/O  
O
MFP  
MFP2  
MFP3  
MFP4  
MFP0  
MFP2  
MFP3  
MFP4  
MFP0  
MFP2  
MFP3  
MFP4  
MFP10  
MFP15  
MFP0  
MFP2  
MFP3  
MFP4  
MFP10  
MFP15  
MFP0  
MFP2  
MFP7  
MFP9  
MFP10  
MFP13  
MFP14  
MFP15  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP7  
MFP0  
Description  
EBI address/data bus bit 6.  
I2C2 data input/output pin.  
UART2 request to Send output pin.  
General purpose digital I/O pin.  
EBI address/data bus bit 7.  
I2C2 clock pin.  
I/O  
I/O  
I/O  
I
EBI_AD7  
I2C2_SCL  
UART2_nCTS  
PD.10  
PD.9  
UART2 clear to Send input pin.  
General purpose digital I/O pin.  
EBI chip select 2 output pin.  
UART1 data receiver input pin.  
CAN0 bus receiver input.  
I/O  
O
EBI_nCS2  
UART1_RXD  
CAN0_RXD  
QEI0_B  
I
PD.10  
I
I
Quadrature encoder 0 phase B input  
External interrupt 7 input pin.  
General purpose digital I/O pin.  
EBI chip select 1 output pin.  
UART1 data transmitter output pin.  
CAN0 bus transmitter output.  
Quadrature encoder 0 phase A input  
External interrupt 6 input pin.  
General purpose digital I/O pin.  
EBI chip select 0 output pin.  
UART2 data receiver input pin.  
BPWM0 channel 5 output/capture input.  
Quadrature encoder 0 index input  
Clock Out  
INT7  
I
PD.11  
I/O  
O
EBI_nCS1  
UART1_TXD  
CAN0_TXD  
QEI0_A  
O
PD.11  
PD.12  
PD.13  
O
I
INT6  
I
PD.12  
I/O  
O
EBI_nCS0  
UART2_RXD  
BPWM0_CH5  
QEI0_INDEX  
CLKO  
I
I/O  
I
O
EADC0_ST  
INT5  
I
EADC0 external trigger input.  
External interrupt 5 input pin.  
General purpose digital I/O pin.  
EBI address/data bus bit 10.  
SD/SDIO0 card detect input pin  
SPI0 I2S master clock output pin  
SPI1 I2S master clock output pin  
Smart Card 2 card detect pin.  
General purpose digital I/O pin.  
I
PD.13  
I/O  
I/O  
I
EBI_AD10  
SD0_nCD  
SPI0_I2SMCLK  
SPI1_I2SMCLK  
SC2_nCD  
I/O  
I/O  
I
PD.14 PD.14  
I/O  
Feb 15, 2019  
Page 97 of 245  
Rev 1.01  
M2351  
Pin Name  
EBI_nCS0  
Type  
O
MFP  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP11  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP0  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP11  
MFP12  
MFP13  
MFP0  
Description  
EBI chip select 0 output pin.  
SPI3 I2S master clock output pin  
Smart Card 1 card detect pin.  
USCI0 control 0 pin.  
SPI3_I2SMCLK  
SC1_nCD  
I/O  
I
USCI0_CTL0  
SPI0_I2SMCLK  
EPWM0_CH4  
PE.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI0 I2S master clock output pin  
EPWM0 channel 4 output/capture input.  
General purpose digital I/O pin.  
EBI address/data bus bit 11.  
Quad SPI0 MOSI0 (Master Out, Slave In) pin.  
Smart Card 2 clock pin.  
EBI_AD11  
QSPI0_MOSI0  
SC2_CLK  
PE.0 I2S0_MCLK  
SPI1_MOSI  
UART3_RXD  
I2C1_SDA  
O
I2S0 master clock output pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
UART3 data receiver input pin.  
I2C1 data input/output pin.  
I/O  
I
I/O  
O
UART4_nRTS  
PE.1  
UART4 request to Send output pin.  
General purpose digital I/O pin.  
EBI address/data bus bit 10.  
Quad SPI0 MISO0 (Master In, Slave Out) pin.  
Smart Card 2 data pin.  
I/O  
I/O  
I/O  
I/O  
O
EBI_AD10  
QSPI0_MISO0  
SC2_DAT  
PE.1 I2S0_BCLK  
SPI1_MISO  
UART3_TXD  
I2C1_SCL  
I2S0 bit clock output pin.  
I/O  
O
SPI1 MISO (Master In, Slave Out) pin.  
UART3 data transmitter output pin.  
I2C1 clock pin.  
I/O  
I
UART4_nCTS  
PE.2  
UART4 clear to Send input pin.  
General purpose digital I/O pin.  
EBI address latch enable output pin.  
SD/SDIO0 data line bit 0.  
I/O  
O
EBI_ALE  
SD0_DAT0  
SPI3_MOSI  
PE.2 SC0_CLK  
USCI0_CLK  
QEI0_B  
I/O  
I/O  
O
SPI3 MOSI (Master Out, Slave In) pin.  
Smart Card 0 clock pin.  
I/O  
I
USCI0 clock pin.  
Quadrature encoder 0 phase B input  
EPWM0 channel 5 output/capture input.  
BPWM0 channel 0 output/capture input.  
General purpose digital I/O pin.  
EPWM0_CH5  
BPWM0_CH0  
PE.3 PE.3  
I/O  
I/O  
I/O  
Feb 15, 2019  
Page 98 of 245  
Rev 1.01  
M2351  
Pin Name  
EBI_MCLK  
SD0_DAT1  
SPI3_MISO  
SC0_DAT  
USCI0_DAT0  
QEI0_A  
Type  
O
MFP  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP11  
MFP12  
MFP13  
MFP0  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP11  
MFP12  
MFP13  
MFP0  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP11  
MFP12  
MFP13  
MFP0  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP11  
MFP12  
Description  
EBI external clock output pin.  
SD/SDIO0 data line bit 1.  
I/O  
I/O  
I/O  
I/O  
I
SPI3 MISO (Master In, Slave Out) pin.  
Smart Card 0 data pin.  
USCI0 data 0 pin.  
Quadrature encoder 0 phase A input  
EPWM0 channel 4 output/capture input.  
BPWM0 channel 1 output/capture input.  
General purpose digital I/O pin.  
EBI write enable output pin.  
SD/SDIO0 data line bit 2.  
EPWM0_CH4  
BPWM0_CH1  
PE.4  
I/O  
I/O  
I/O  
O
EBI_nWR  
SD0_DAT2  
SPI3_CLK  
I/O  
I/O  
O
SPI3 serial clock pin.  
PE.4 SC0_RST  
Smart Card 0 reset pin.  
USCI0_DAT1  
QEI0_INDEX  
EPWM0_CH3  
BPWM0_CH2  
PE.5  
I/O  
I
USCI0 data 1 pin.  
Quadrature encoder 0 index input  
EPWM0 channel 3 output/capture input.  
BPWM0 channel 2 output/capture input.  
General purpose digital I/O pin.  
EBI read enable output pin.  
SD/SDIO0 data line bit 3.  
I/O  
I/O  
I/O  
O
EBI_nRD  
SD0_DAT3  
SPI3_SS  
I/O  
I/O  
O
SPI3 slave select pin.  
PE.5 SC0_PWR  
USCI0_CTL1  
QEI1_B  
Smart Card 0 power pin.  
I/O  
I
USCI0 control 1 pin.  
Quadrature encoder 1 phase B input  
EPWM0 channel 2 output/capture input.  
BPWM0 channel 3 output/capture input.  
General purpose digital I/O pin.  
SD/SDIO0 clock output pin  
EPWM0_CH2  
BPWM0_CH3  
PE.6  
I/O  
I/O  
I/O  
O
SD0_CLK  
SPI3_I2SMCLK  
I/O  
I
SPI3 I2S master clock output pin  
Smart Card 0 card detect pin.  
USCI0 control 0 pin.  
SC0_nCD  
PE.6  
USCI0_CTL0  
I/O  
I
UART5_RXD  
QEI1_A  
UART5 data receiver input pin.  
Quadrature encoder 1 phase A input  
EPWM0 channel 1 output/capture input.  
I
EPWM0_CH1  
I/O  
Feb 15, 2019  
Page 99 of 245  
Rev 1.01  
M2351  
Pin Name  
Type  
I/O  
I/O  
I/O  
O
MFP  
MFP13  
MFP0  
MFP3  
MFP8  
MFP11  
MFP12  
MFP13  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP10  
MFP11  
MFP12  
MFP14  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP10  
MFP11  
MFP12  
MFP14  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP10  
Description  
BPWM0_CH4  
PE.7  
BPWM0 channel 4 output/capture input.  
General purpose digital I/O pin.  
SD/SDIO0 command/response pin  
UART5 data transmitter output pin.  
Quadrature encoder 1 index input  
EPWM0 channel 0 output/capture input.  
BPWM0 channel 5 output/capture input.  
General purpose digital I/O pin.  
EBI address bus bit 10.  
SD0_CMD  
UART5_TXD  
QEI1_INDEX  
EPWM0_CH0  
BPWM0_CH5  
PE.8  
PE.7  
I
I/O  
I/O  
I/O  
O
EBI_ADR10  
I2S0_BCLK  
SPI2_CLK  
O
I2S0 bit clock output pin.  
I/O  
I/O  
O
SPI2 serial clock pin.  
USCI1_CTL1  
UART2_TXD  
EPWM0_CH0  
EPWM0_BRAKE0  
ECAP0_IC0  
TRACE_DATA3  
PE.9  
USCI1 control 1 pin.  
PE.8  
UART2 data transmitter output pin.  
EPWM0 channel 0 output/capture input.  
EPWM0 Brake 0 input pin.  
I/O  
I
I
Enhanced capture unit 0 input 0 pin.  
ETM Trace Data 3 output pin  
General purpose digital I/O pin.  
EBI address bus bit 11.  
O
I/O  
O
EBI_ADR11  
I2S0_MCLK  
SPI2_MISO  
USCI1_CTL0  
UART2_RXD  
EPWM0_CH1  
EPWM0_BRAKE1  
ECAP0_IC1  
TRACE_DATA2  
PE.10  
O
I2S0 master clock output pin.  
SPI2 MISO (Master In, Slave Out) pin.  
USCI1 control 0 pin.  
I/O  
I/O  
I
PE.9  
UART2 data receiver input pin.  
EPWM0 channel 1 output/capture input.  
EPWM0 Brake 1 input pin.  
I/O  
I
I
Enhanced capture unit 0 input 1 pin.  
ETM Trace Data 2 output pin  
General purpose digital I/O pin.  
EBI address bus bit 12.  
O
I/O  
O
EBI_ADR12  
I2S0_DI  
I
I2S0 data input pin.  
PE.10 SPI2_MOSI  
USCI1_DAT0  
I/O  
I/O  
O
SPI2 MOSI (Master Out, Slave In) pin.  
USCI1 data 0 pin.  
UART3_TXD  
UART3 data transmitter output pin.  
EPWM0 channel 2 output/capture input.  
EPWM0_CH2  
I/O  
Feb 15, 2019  
Page 100 of 245  
Rev 1.01  
M2351  
Pin Name  
Type  
I
MFP  
MFP11  
MFP12  
MFP14  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP10  
MFP11  
MFP13  
MFP14  
MFP0  
MFP2  
MFP4  
MFP5  
MFP6  
MFP8  
MFP10  
MFP13  
MFP14  
MFP0  
MFP2  
MFP4  
MFP5  
MFP8  
MFP10  
MFP11  
MFP12  
MFP13  
MFP0  
MFP2  
Description  
EPWM1_BRAKE0  
ECAP0_IC2  
TRACE_DATA1  
PE.11  
EPWM1 Brake 0 input pin.  
I
Enhanced capture unit 0 input 2 pin.  
ETM Trace Data 1 output pin  
General purpose digital I/O pin.  
EBI address bus bit 13.  
O
I/O  
O
EBI_ADR13  
I2S0_DO  
O
I2S0 data output pin.  
SPI2_SS  
I/O  
I/O  
I
SPI2 slave select pin.  
USCI1_DAT1  
USCI1 data 1 pin.  
PE.11 UART3_RXD  
UART3 data receiver input pin.  
UART1 clear to Send input pin.  
EPWM0 channel 3 output/capture input.  
EPWM1 Brake 1 input pin.  
UART1_nCTS  
EPWM0_CH3  
EPWM1_BRAKE1  
ECAP1_IC2  
I
I/O  
I
I
Enhanced capture unit 1 input 2 pin.  
ETM Trace Data 0 output pin  
General purpose digital I/O pin.  
EBI address bus bit 14.  
TRACE_DATA0  
PE.12  
O
I/O  
O
EBI_ADR14  
I2S0_LRCK  
O
I2S0 left right channel clock output pin.  
SPI2 I2S master clock output pin  
USCI1 clock pin.  
SPI2_I2SMCLK  
I/O  
I/O  
O
PE.12 USCI1_CLK  
UART1_nRTS  
EPWM0_CH4  
ECAP1_IC1  
UART1 request to Send output pin.  
EPWM0 channel 4 output/capture input.  
Enhanced capture unit 1 input 1 pin.  
ETM Trace Clock output pin  
General purpose digital I/O pin.  
EBI address bus bit 15.  
I/O  
I
TRACE_CLK  
PE.13  
O
I/O  
O
EBI_ADR15  
I2C0_SCL  
I/O  
O
I2C0 clock pin.  
UART4_nRTS  
PE.13 UART1_TXD  
EPWM0_CH5  
EPWM1_CH0  
BPWM1_CH5  
ECAP1_IC0  
UART4 request to Send output pin.  
UART1 data transmitter output pin.  
EPWM0 channel 5 output/capture input.  
EPWM1 channel 0 output/capture input.  
BPWM1 channel 5 output/capture input.  
Enhanced capture unit 1 input 0 pin.  
General purpose digital I/O pin.  
EBI address/data bus bit 8.  
O
I/O  
I/O  
I/O  
I
PE.14  
PE.14  
I/O  
I/O  
EBI_AD8  
Feb 15, 2019  
Page 101 of 245  
Rev 1.01  
M2351  
Pin Name  
UART2_TXD  
CAN0_TXD  
PE.15  
Type  
O
MFP  
MFP3  
MFP4  
MFP0  
MFP2  
MFP3  
MFP4  
MFP0  
MFP2  
MFP3  
MFP12  
MFP14  
MFP0  
MFP2  
MFP3  
MFP12  
MFP14  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP10  
MFP11  
MFP0  
MFP2  
MFP3  
MFP4  
MFP10  
MFP11  
MFP0  
MFP2  
MFP4  
MFP8  
MFP10  
Description  
UART2 data transmitter output pin.  
CAN0 bus transmitter output.  
General purpose digital I/O pin.  
EBI address/data bus bit 9.  
UART2 data receiver input pin.  
CAN0 bus receiver input.  
O
I/O  
I/O  
I
EBI_AD9  
PE.15  
UART2_RXD  
CAN0_RXD  
PF.0  
I
I/O  
O
General purpose digital I/O pin.  
UART1 data transmitter output pin.  
I2C1 clock pin.  
UART1_TXD  
PF.0 I2C1_SCL  
BPWM1_CH0  
I/O  
I/O  
O
BPWM1 channel 0 output/capture input.  
Serial wired debugger data pin.  
General purpose digital I/O pin.  
UART1 data receiver input pin.  
I2C1 data input/output pin.  
ICE_DAT  
PF.1  
I/O  
I
UART1_RXD  
PF.1 I2C1_SDA  
BPWM1_CH1  
ICE_CLK  
I/O  
I/O  
I
BPWM1 channel 1 output/capture input.  
Serial wired debugger clock pin.  
General purpose digital I/O pin.  
EBI chip select 1 output pin.  
UART0 data receiver input pin.  
I2C0 data input/output pin.  
PF.2  
I/O  
O
EBI_nCS1  
UART0_RXD  
PF.2 I2C0_SDA  
QSPI0_CLK  
XT1_OUT  
I
I/O  
I/O  
O
Quad SPI0 serial clock pin.  
External 4~24 MHz (high speed) crystal output pin.  
BPWM1 channel 1 output/capture input.  
General purpose digital I/O pin.  
BPWM1_CH1  
PF.3  
I/O  
I/O  
O
EBI_nCS0  
EBI chip select 0 output pin.  
UART0_TXD  
PF.3  
O
UART0 data transmitter output pin.  
I2C0 clock pin.  
I2C0_SCL  
I/O  
I
XT1_IN  
BPWM1_CH0  
PF.4  
External 4~24 MHz (high speed) crystal input pin.  
BPWM1 channel 0 output/capture input.  
General purpose digital I/O pin.  
I/O  
I/O  
O
UART2_TXD  
PF.4 UART2_nRTS  
BPWM0_CH5  
X32_OUT  
UART2 data transmitter output pin.  
UART2 request to Send output pin.  
BPWM0 channel 5 output/capture input.  
External 32.768 kHz crystal output pin.  
O
I/O  
O
Feb 15, 2019  
Page 102 of 245  
Rev 1.01  
M2351  
Pin Name  
PF.5  
Type  
I/O  
I
MFP  
MFP0  
MFP2  
MFP4  
MFP8  
MFP9  
MFP10  
MFP11  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP10  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP10  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP10  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP10  
Description  
General purpose digital I/O pin.  
UART2 data receiver input pin.  
UART2 clear to Send input pin.  
BPWM0 channel 4 output/capture input.  
EPWM0 counter synchronous trigger output pin.  
External 32.768 kHz crystal input pin.  
EADC0 external trigger input.  
General purpose digital I/O pin.  
EBI address bus bit 19.  
UART2_RXD  
UART2_nCTS  
PF.5 BPWM0_CH4  
I
I/O  
O
EPWM0_SYNC_OUT  
X32_IN  
I
EADC0_ST  
PF.6  
I
I/O  
O
EBI_ADR19  
SC0_CLK  
I2S0_LRCK  
SPI0_MOSI  
UART4_RXD  
EBI_nCS0  
TAMPER0  
PF.7  
O
Smart Card 0 clock pin.  
O
I2S0 left right channel clock output pin.  
SPI0 MOSI (Master Out, Slave In) pin.  
UART4 data receiver input pin.  
EBI chip select 0 output pin.  
TAMPER detector loop pin 0.  
General purpose digital I/O pin.  
EBI address bus bit 18.  
PF.6  
I/O  
I
O
I/O  
I/O  
O
EBI_ADR18  
SC0_DAT  
I/O  
O
Smart Card 0 data pin.  
PF.7 I2S0_DO  
SPI0_MISO  
UART4_TXD  
TAMPER1  
PF.8  
I2S0 data output pin.  
I/O  
O
SPI0 MISO (Master In, Slave Out) pin.  
UART4 data transmitter output pin.  
TAMPER detector loop pin 1.  
General purpose digital I/O pin.  
EBI address bus bit 17.  
I/O  
I/O  
O
EBI_ADR17  
SC0_RST  
PF.8  
O
Smart Card 0 reset pin.  
I2S0_DI  
I
I2S0 data input pin.  
SPI0_CLK  
TAMPER2  
PF.9  
I/O  
I/O  
I/O  
O
SPI0 serial clock pin.  
TAMPER detector loop pin 2.  
General purpose digital I/O pin.  
EBI address bus bit 16.  
EBI_ADR16  
SC0_PWR  
PF.9  
O
Smart Card 0 power pin.  
I2S0_MCLK  
O
I2S0 master clock output pin.  
SPI0 slave select pin.  
SPI0_SS  
I/O  
I/O  
TAMPER3  
TAMPER detector loop pin 3.  
Feb 15, 2019  
Page 103 of 245  
Rev 1.01  
M2351  
Pin Name  
PF.10  
Type  
I/O  
O
MFP  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP10  
MFP0  
MFP2  
MFP3  
MFP10  
MFP13  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP13  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP13  
MFP0  
MFP2  
MFP3  
MFP13  
MFP0  
MFP2  
MFP12  
MFP0  
MFP2  
MFP12  
MFP0  
Description  
General purpose digital I/O pin.  
EBI address bus bit 15.  
EBI_ADR15  
SC0_nCD  
I2S0_BCLK  
SPI0_I2SMCLK  
TAMPER4  
PF.11  
I
Smart Card 0 card detect pin.  
I2S0 bit clock output pin.  
PF.10  
O
I/O  
I/O  
I/O  
O
SPI0 I2S master clock output pin  
TAMPER detector loop pin 4.  
General purpose digital I/O pin.  
EBI address bus bit 14.  
EBI_ADR14  
PF.11 SPI2_MOSI  
TAMPER5  
TM3  
I/O  
I/O  
I/O  
I/O  
O
SPI2 MOSI (Master Out, Slave In) pin.  
TAMPER detector loop pin 5.  
Timer3 event counter input/toggle output pin.  
General purpose digital I/O pin.  
EBI address bus bit 11.  
PG.2  
EBI_ADR11  
SPI2_SS  
PG.2  
I/O  
O
SPI2 slave select pin.  
I2C0_SMBAL  
I2C0 SMBus SMBALTER pin  
I2C1 clock pin.  
I2C1_SCL  
TM0  
I/O  
I/O  
I/O  
O
Timer0 event counter input/toggle output pin.  
General purpose digital I/O pin.  
EBI address bus bit 12.  
PG.3  
EBI_ADR12  
SPI2_CLK  
PG.3  
I/O  
O
SPI2 serial clock pin.  
I2C0_SMBSUS  
I2C0 SMBus SMBSUS pin (PMBus CONTROL pin)  
I2C1 data input/output pin.  
I2C1_SDA  
TM1  
I/O  
I/O  
I/O  
O
Timer1 event counter input/toggle output pin.  
General purpose digital I/O pin.  
PG.4  
EBI_ADR13  
PG.4  
EBI address bus bit 13.  
SPI2_MISO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI2 MISO (Master In, Slave Out) pin.  
Timer2 event counter input/toggle output pin.  
General purpose digital I/O pin.  
TM2  
PG.9  
PG.9 EBI_AD0  
BPWM0_CH5  
PG.10  
EBI address/data bus bit 0.  
BPWM0 channel 5 output/capture input.  
General purpose digital I/O pin.  
PG.10 EBI_AD1  
BPWM0_CH4  
PG.11 PG.11  
EBI address/data bus bit 1.  
BPWM0 channel 4 output/capture input.  
General purpose digital I/O pin.  
Feb 15, 2019  
Page 104 of 245  
Rev 1.01  
M2351  
Pin Name  
EBI_AD2  
BPWM0_CH3  
PG.12  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
MFP  
MFP2  
MFP12  
MFP0  
MFP2  
MFP12  
MFP0  
MFP2  
MFP12  
MFP0  
MFP2  
MFP12  
MFP0  
MFP14  
MFP15  
MFP0  
MFP2  
MFP3  
MFP0  
MFP2  
MFP3  
MFP0  
MFP2  
MFP3  
MFP0  
MFP2  
MFP3  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
Description  
EBI address/data bus bit 2.  
BPWM0 channel 3 output/capture input.  
General purpose digital I/O pin.  
EBI address/data bus bit 3.  
BPWM0 channel 2 output/capture input.  
General purpose digital I/O pin.  
EBI address/data bus bit 4.  
BPWM0 channel 1 output/capture input.  
General purpose digital I/O pin.  
EBI address/data bus bit 5.  
BPWM0 channel 0 output/capture input.  
General purpose digital I/O pin.  
Clock Out  
PG.12 EBI_AD3  
BPWM0_CH2  
PG.13  
PG.13 EBI_AD4  
BPWM0_CH1  
PG.14  
PG.14 EBI_AD5  
BPWM0_CH0  
PG.15  
PG.15 CLKO  
EADC0_ST  
PH.4  
I
EADC0 external trigger input.  
General purpose digital I/O pin.  
EBI address bus bit 3.  
I/O  
O
PH.4 EBI_ADR3  
SPI1_MISO  
PH.5  
I/O  
I/O  
O
SPI1 MISO (Master In, Slave Out) pin.  
General purpose digital I/O pin.  
EBI address bus bit 2.  
PH.5 EBI_ADR2  
SPI1_MOSI  
PH.6  
I/O  
I/O  
O
SPI1 MOSI (Master Out, Slave In) pin.  
General purpose digital I/O pin.  
EBI address bus bit 1.  
PH.6 EBI_ADR1  
SPI1_CLK  
I/O  
I/O  
O
SPI1 serial clock pin.  
PH.7  
General purpose digital I/O pin.  
EBI address bus bit 0.  
PH.7 EBI_ADR0  
SPI1_SS  
I/O  
I/O  
I/O  
I/O  
O
SPI1 slave select pin.  
PH.8  
General purpose digital I/O pin.  
EBI address/data bus bit 12.  
Quad SPI0 serial clock pin.  
Smart Card 2 power pin.  
EBI_AD12  
QSPI0_CLK  
SC2_PWR  
PH.8  
I2S0_DI  
I
I2S0 data input pin.  
SPI1_CLK  
I/O  
O
SPI1 serial clock pin.  
UART3_nRTS  
I2C1_SMBAL  
UART3 request to Send output pin.  
I2C1 SMBus SMBALTER pin  
O
Feb 15, 2019  
Page 105 of 245  
Rev 1.01  
M2351  
Pin Name  
Type  
I/O  
O
MFP  
MFP9  
MFP10  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP9  
MFP10  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP2  
MFP3  
MFP7  
MFP8  
MFP11  
Description  
I2C2_SCL  
I2C2 clock pin.  
UART1_TXD  
PH.9  
UART1 data transmitter output pin.  
General purpose digital I/O pin.  
EBI address/data bus bit 13.  
Quad SPI0 slave select pin.  
Smart Card 2 reset pin.  
I2S0 data output pin.  
I/O  
I/O  
I/O  
O
EBI_AD13  
QSPI0_SS  
SC2_RST  
I2S0_DO  
O
PH.9  
SPI1_SS  
I/O  
I
SPI1 slave select pin.  
UART3_nCTS  
I2C1_SMBSUS  
I2C2_SDA  
UART1_RXD  
PH.10  
UART3 clear to Send input pin.  
O
I2C1 SMBus SMBSUS pin (PMBus CONTROL pin)  
I2C2 data input/output pin.  
I/O  
I
UART1 data receiver input pin.  
I/O  
I/O  
I/O  
I
General purpose digital I/O pin.  
EBI_AD14  
QSPI0_MISO1  
SC2_nCD  
EBI address/data bus bit 14.  
Quad SPI0 MISO1 (Master In, Slave Out) pin.  
Smart Card 2 card detect pin.  
PH.10  
I2S0_LRCK  
SPI1_I2SMCLK  
UART4_TXD  
UART0_TXD  
PH.11  
O
I2S0 left right channel clock output pin.  
SPI1 I2S master clock output pin  
UART4 data transmitter output pin.  
UART0 data transmitter output pin.  
General purpose digital I/O pin.  
I/O  
O
O
I/O  
I/O  
I/O  
I
EBI_AD15  
QSPI0_MOSI1  
UART4_RXD  
UART0_RXD  
EPWM0_CH5  
EBI address/data bus bit 15.  
Quad SPI0 MOSI1 (Master Out, Slave In) pin.  
UART4 data receiver input pin.  
PH.11  
I
UART0 data receiver input pin.  
I/O  
EPWM0 channel 5 output/capture input.  
Feb 15, 2019  
Page 106 of 245  
Rev 1.01  
M2351  
5 BLOCK DIAGRAM  
5.1 NuMicro® M2351 Series Block Diagram  
Figure 5.1-1 NuMicro® M2351 Block Diagram  
Feb 15, 2019  
Page 107 of 245  
Rev 1.01  
M2351  
5.2 NuMicro® M2351 Series TrustZone® Architecture  
Figure 5.2-1 NuMicro® M2351 Series Cortex®-M23 Architecture  
Feb 15, 2019  
Page 108 of 245  
Rev 1.01  
M2351  
6 FUNCTIONAL DESCRIPTION  
6.1 Arm® Cortex® -M23 Core  
The NuMicro® M2351 series is embedded with the Cortex® -M23 processor. The Cortex® -M23  
processor is a low gate count, two-stage, and highly energy efficient 32-bit RISC processor, which has  
an AMBA AHB5 interface supporting Arm® TrustZone® technology, a debug access port supporting  
serial wire debug and single-cycle I/O ports. It has an NVIC component and MPU for memory-  
protection functionality. The processor also supports Security Extension. Figure 6.1-1 shows the  
functional controller of the processor.  
MTB AHB  
Cortex-M23 processor  
Micro Trace  
Buffer  
(MTB)  
MTB  
SRAM  
interface  
Cross  
Trigger  
Interface  
(CTI)  
Wakeup  
Interrupt  
Controller  
(WIC)  
Nested  
Vectored  
Interrupt  
(NVIC)  
Cortex-M23  
processor  
core  
APB  
IRQ and power  
control interface  
Embedded  
Trace  
Macrocell  
(ETM)  
ETM  
ATB  
interface  
Memory Protection  
Implementation  
Defined Attribution  
Unit (IDAU)  
Security  
Attribution  
Unit (SAU)  
Data  
Watchpoint  
and Trace  
(DWT)  
Flash Patch  
and  
Breakpoint Unit  
(FPB)*  
Secure  
Memory  
Protection Unit  
(MPU_S)  
Non-secure  
Memory  
Protection Unit  
(MPU_NS)  
Slave  
AHB  
interface  
Bus matrix  
Processor  
ROM  
table  
Single-cycle  
I/O port  
AHB Master  
Configurable  
Optional  
* Flash Patching is not supported in the Cortex-M23 processor.  
Figure 6.1-1 Cortex® -M23 Block Diagram  
Feb 15, 2019  
Page 109 of 245  
Rev 1.01  
 
M2351  
Cortex® -M23 processor features:  
Arm® v8-M Baseline architecture.  
Arm® v8-M Baseline Thumb® -2 instruction set that combines high code density with 32-bit  
performance.  
Support for single-cycle I/O access.  
Power control optimization of system components.  
Integrated sleep modes for low power consumption.  
Optimized code fetching for reduced Flash and ROM power consumption.  
32-bit Single cycle Hardware multiplier.  
32-bit Hardware divider.  
Deterministic, high-performance interrupt handling for time-critical applications.  
Deterministic instruction cycle timing.  
Support for system level debug authentication.  
Support for Arm® Debug Interface Architecture ADIv5.1 Serial Wire Debug (SWD).  
ETM for instruction trace.  
Separated privileged and unprivileged modes.  
Security Extension supporting a Secure and a Non-secure state.  
Protected Memory System Architecture (PMSAv8) Memory Protection Units (MPUs) for both  
Secure and Non-secure states.  
Security Attribution Unit (SAU).  
SysTick timers for both Secure and Non-secure states.  
A Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor with up  
to 240 interrupts.  
Feb 15, 2019  
Page 110 of 245  
Rev 1.01  
M2351  
6.2  
Arm® TrustZone®  
The Arm® TrustZone® can be considered as a physical partition that divides the microcontroller into  
Secure (Trusted) and Non-secure (Non-trusted) worlds according to memory address. The secure  
world is an isolated execution environment, code and data loaded inside are protected and cannot be  
accessed from Non-secure world. Code running at secure world is called secure code that can access  
both secure and non-secure memories and peripherals; while code running at non-secure world is  
called non-secure code that can only access non-secure memories and peripherals.  
Figure 6.2-1 shows an example of a system divided into the secure world and non-secure world.  
Green blocks indicate secure components, Red blocks indicate non-secure components and white  
ones are both/either secure and/or non-secure accessible. When the core processor is in secure state  
(left side of the figure), it belongs to secure world, which has its own MSP, PSP and VTOR registers  
and can access the green, red, white blocks. Contrarily, when the core processor is in non-secure  
state (right side of the figure), it belongs to non-secure world, which also has its own MSP, PSP and  
VTOR registers, but, it can only access red and white blocks so that non-secure world components are  
not able to impact secure world.  
Secure World  
Non-Secure World  
SRAM  
SRAM  
CRYPTO  
UART  
I2C  
CRYPTO  
UART  
I2C  
Core  
Processor  
Core  
Processor  
SRAM  
SRAM  
MSP / PSP  
VTOR  
MSP / PSP  
VTOR  
DMA  
Timer  
RTC  
DMA  
Timer  
RTC  
Flash  
Flash  
Flash  
Flash  
SPI  
SPI  
NVIC  
SCU  
NVIC  
SCU  
By function calls  
GPIO  
GPIO  
AHB5 / APB Bus  
AHB5 / APB Bus  
Figure 6.2-1 Secure World View and Non-secure World View on a Chip  
In order to support TrustZone® to set up both secure world and non-secure world, Cortex® -M23  
provides three security attributes. Each memory address is assigned with one of the security  
attributes. These security attributes are listed below.  
Non-secure (NS)  
Addresses used for non-secure memory or non-secure peripheral's registers.  
Secure (S)  
Addresses used for secure memory or secure peripheral's registers.  
Non-secure Callable (NSC)  
A special type of secure memory region which can contain SG instructions. The SG  
instruction allows a non-secure function calls to a secure function.  
The address space partitioning is completed by Implementation Define Attribution Unit (IDAU) and  
Security Attribution Unit (SAU) together. The IDAU is non-programmable, which defines static partition  
of address space. The static partition specifies the default security attribute of a memory region. In  
contrast with IDAU, the SAU is programmable which provides dynamic partition of address space. The  
Feb 15, 2019  
Page 111 of 245  
Rev 1.01  
 
M2351  
dynamic partition is given by software programmer to specify the security attribute of a memory region.  
The core processor is in secure state when executing instructions from secure memory. Otherwise, the  
core processor is in non-secure state when executing instructions from non-secure memory. For  
setting IDAU and SAU, refer to sections “Implementation Defined Attribution Unit (IDAU)” and Security  
Attribution Unit (SAU)in System Managerchapter for more details.  
The security attribute of Flash, SRAM and peripherals are assigned by TrustZone® related control  
units. The NSCBA register in FMC is used to divide the APROM into two parts, one is secure and the  
other is non-secure. The security attribute of SRAM and peripherals are assigned by programming  
Secure Configuration Unit (SCU).  
Whenever being reset, the M2351 is in secure state, that is, the core processor, Flash, SRAM and  
peripherals are all in secure state. Therefore, the system boots in secure state. The boot code is  
responsible to set up TrustZone® related control units in M2351 to partition address space and assign  
non-secure resources that can be directly accessed from non-secure world.  
6.2.1  
Address Space Partition  
The SAU and IDAU are the control units used to define security attribute of memory addresses. The  
IDAU defines default partition of secure and non-secure addresses, while the SAU is programmable to  
change the security attribute defined by IDAU.  
6.2.1.1 Implementation Define Attribution Unit (IDAU)  
The IDAU uses address bit 28 to distinguish between secure and non-secure world, i.e. the bit 28 of a  
secure address is always 0, and the bit 28 of a non-secure address is always 1, except regions above  
0xE000_0000.  
The partition of 4GB address space is shown as Figure 6.2-2. Each region consists of a secure (bit 28  
is 0) and a non-secure (bit 28 is 1) sub-regions, the size of a sub-region is 256MB. In order to store  
entry functions for non-secure code, the security attribute of secure SRAM region is assigned as non-  
secure callable (NSC). Similarly, the secure Coderegion is assigned as NSC but has an exception at  
first 2 KB area. This first 2 KB area is defined as secure only to avoid accidental SG instruction after  
power on.  
Feb 15, 2019  
Page 112 of 245  
Rev 1.01  
M2351  
Region  
Range  
Memory Attribute  
0xFFFFFFFF  
0xF0000000  
Exempted  
Exempted  
Non-secure  
Secure  
Device  
System  
0xE0000000  
0xD0000000  
0xC0000000  
0xB0000000  
0xA0000000  
0x90000000  
External Device  
External RAM  
Non-secure  
Secure  
Non-secure  
Secure  
0x80000000  
0x70000000  
Non-secure  
Secure  
0x60000000  
0x50000000  
Non-secure  
Secure  
Device  
SRAM  
Code  
0x40000000  
0x30000000  
Non-secure  
Secure+ NSC  
Non-secure  
Secure + NSC  
0x20000000  
0x10000000  
0x00000800  
0x00000000  
Secure  
0x00000000  
Memory Partition  
Figure 6.2-2 The 4 GB Memory Map Divided Into Secure and Non-secure Regions by IDAU  
6.2.1.2 Security Attribution Unit (SAU)  
The SAU is a MPU-like function unit inside Cortex® -M23. Up to 8 memory regions can be defined by  
programming control registers of SAU.  
Memory regions are enabled individually by programming SAU_RNR, SAU_RBAR and SAU_RLAR.  
The memory region is enabled once RENABLE (SAU_RLAR[0]) is set to 1, and the security attribute is  
defined by NSC (SAU_RLAR[1]):  
NSC = 0, the memory region is Non-secure (NS).  
NSC = 1, the memory region is Secure and Non-secure callable (NSC).  
The security attribute of each memory region defined by SAU is either NS or NSC. Those memory  
addresses not defined by SAU regions are treated as Secure. After all memory regions are set,  
SAU_CTRL[0] should be set to 1 to enable SAU.  
Both IDAU and SAU define the security attribute of a memory address. If the definitions are different,  
the more secure attribute will be used for the memory address. The priority of the security attribute  
from high to low is Secure > NSC > NS.  
When the core processor attempts to access a target, e.g. a memory or peripheral register, the  
security attribute of the target is decided by checking IDAU and SAU. If the core processor is non-  
secure but the target is secure, a HardFault exception will be generated. Because non-specified  
memory addresses are treated as secure, non-secure memory regions need to be defined for the core  
processor to access non-secure memory and non-secure peripheral registers. Besides, whole secure  
code and SRAM regions are defined as NSC by IDAU. The size of NSC regions can be changed  
Feb 15, 2019  
Page 113 of 245  
Rev 1.01  
M2351  
according to the NSC entry functions included in application code. The example usage of SAU regions  
is shown as Figure 6.2-3.  
Not used  
Not used  
Not used  
Not used  
7
6
5
4
Allow core processor to successfully access  
Non-secure peripherals  
Define Non-secure peripheral region  
(0x50000000~0x5FFFFFFF)  
3
2
1
Define Non-secure SRAM region  
(0x30000000~0x3FFFFFFF)  
Allow core processor to successfully access  
Non-secure SRAM  
Define Non-secure code region  
(0x10000000~0x1FFFFFFF)  
Allow core processor to successfully access  
Non-secure Flash  
Define Non-secure callable area in  
Secure code region  
0
Figure 6.2-3 Typical Setting of SAU  
Security Attribute Configuration  
6.2.2  
The previous section describes how to divide the address space of core processor view into secure  
world and non-secure world. For M2351, the memory and peripherals can be assigned to either secure  
or non-secure world during system initialization. The M2351 is designed to start execution in secure  
state after reset. In other words, core processor and all system resources including Flash, SRAM and  
peripherals are secure after reset. Then, the system initialization code may change some parts of the  
system resources to be non-secure.  
6.2.2.1 Security Attribute Configuration of Flash  
The M2351 Flash memory is split into a number of different regions such as LDROM, APROM and  
others. Most of the Flash regions are always secure and cannot be changed. The only one can be  
changed is the APROM region. Non-secure APROM region is set by programming a special control  
register, NSCBA (Non-secure base address). The NSCBA[23:0] indicates the starting address of non-  
secure APROM and its value should be aligned with a Flash page size. The secure APROM region  
starts from address 0x0 and ends at NSCBA[23:0] 1, while the non-secure APROM region ranges  
from NSCBA[23:0] to the end of APROM. For setting NSCBA, refer to FMC section for more details.  
6.2.2.2 Security Attribute Configuration of SRAM and Peripherals  
The secure state of SRAM blocks and all peripherals can be configured by Security Configuration Unit  
(SCU), which contains a set of control registers used to assign the security attribute. Besides, the SCU  
monitors bus transfers to detect unsecure access. The unsecure access is one of the following  
conditions.  
Non-secure master peripheral tries to access a secure address (address bit 28 = 0).  
Secure code or secure master peripheral uses non-secure address (address bit 28 = 1) to  
Feb 15, 2019  
Page 114 of 245  
Rev 1.01  
 
M2351  
access secure SRAM or peripheral.  
When an unsecure access is detected, SCU blocks the access operation and generates a secure  
alarm interrupt.  
For more details, refer to the Security Configuration Unit (SCU) chapter.  
6.2.3  
System Address Map and Access Scheme  
In the M2351 series, the Flash, SRAM and most peripherals can be assigned to be Secure or Non-  
secure, but each of them can be accessed through either Secure address or Non-secure address  
depending on its security attribute configuration. Core processor and master peripherals should use  
correct address to access resources, i.e. the secure resource should be accessed by using secure  
address. Similarly, the non-secure resource should be accessed by using non-secure address.  
6.2.3.1 Permanent Secure Peripherals  
The security attribute of some peripherals are always secure and cannot be changed for safety and  
security. If necessary, the secure code should manage and provide functions for non-secure code to  
access these peripherals. Table 6.2-1 lists these secure peripherals.  
Peripheral  
SYS  
Function  
Address  
System Control Registers  
0x4000_0000 0x4000_01FF  
0x4000_0200 0x4000_02FF  
0x4000_0300 0x4000_03FF  
0x4000_8000 0x4000_8FFF  
0x4000_C000 0x4000_CFFF  
0x4002_F000 0x4002_FFFF  
0x4004_0000 0x4004_0FFF  
0x4005_0000 0x4005_0FFF  
CLK  
Clock Control Registers  
NMI  
NMI Control Registers  
PDMA0  
FMC  
Peripheral DMA 0 Control Registers  
Flash Memory Control Registers  
Security Configuration Unit Registers  
Watchdog Timer Control Registers  
Timer0/Timer1 Control Registers  
SCU  
WDT  
TMR01  
Table 6.2-1 Peripherals and Regions that are Always Secure  
6.2.3.2 Secure Address vs. Non-secure Address  
A memory or a peripheral register may have secure and non-secure address in system address map,  
but the memory or register only responds to the address that is consistent with its security attribute.  
The different access modes of secure and non-secure target are illustrated in Figure 6.2-4.  
Suppose that SRAM block 0, 2, and 4 are in secure state, they will respond to an access when  
address bit 28 is 0 (secure address), but will not respond to an access with address bit 28 is 1 (non-  
secure address). In this example, SRAM block 1 and 3 are in non-secure state. Hence, these blocks  
will only respond to an access when the address bit 28 is 1.  
Feb 15, 2019  
Page 115 of 245  
Rev 1.01  
 
M2351  
SRAM Block 4  
0x200XXXXX  
inaccessible  
Secure address  
range  
SRAM Block 2  
inaccessible  
SRAM Block 0  
The same SRAM Memory which  
contains secure and non-secure  
blocks  
inaccessible  
SRAM Block 3  
0x300XXXXX  
Non-secure address  
range  
inaccessible  
SRAM Block 1  
Secure Region  
inaccessible  
Non-secure Region  
Figure 6.2-4 Example of SRAM Divided Into Secure Block and Non-secure Block  
6.2.3.3 Valid Access vs. Invalid Access  
When core processor or a master peripheral is trying to access (read or write) a memory or register,  
the result depends on the following conditions.  
Non-secure code or master peripheral is not allowed to access a secure memory or  
register.  
A memory or register only responds to the related address which is consistent with its  
security attribute.  
Feb 15, 2019  
Page 116 of 245  
Rev 1.01  
M2351  
Secure  
FMC  
(NSCB  
A)  
SAU  
(a)  
(b-1)  
(c-1)  
Cortex-M23  
Flash  
IDAU  
(
b
Non-secure  
-
2
)
)
1
-
CPU bus  
e
(
(c-2)  
Secure  
SRAM  
Master  
peripheral  
(d)  
(e-2)  
SCU  
Non-secure  
(
c
-
2
)
(
e
-
Secure  
3
)
Non-secure  
Peripherals  
Non-secure  
Secure  
Non-secure  
AHB/APB Bus  
Figure 6.2-5 Checking Point of Accesses  
Figure 6.2-5 illustrates how the above conditions are checked by TrustZone® related control units.  
When the core processsor tries to fetch instructions or access data, the security attribute of the core  
processor and target address are verified by SAU and IDAU (refer to (a)). If the core processor is in  
non-secure state and target address is secure, a hard fault exception will be generated. The other  
cases will go to next checkpoints (refer to (b-1) and (b-2)). If the non-secure code tries to read/write a  
secure memory or register, the access will be blocked and a secure violation interrupt (SCU interrupt)  
can be generated. If a secure code uses non-secure address to access a secure memory or register,  
the operation has no effect. (refer to (c-1) and (c-2))  
When a master peripheral tries to read/write a memory or register, the SCU will verify the access (refer  
to (d)). When a non-secure master peripheral wants to access a secure memory or register, the  
access will be blocked and a secure violation interrupt (SCU interrupt) can be generated. If a secure  
master peripheral uses non-secure address to read/write a secure memory or register, the operation  
has no effect.  
The responses of the accesses from the core processor and master peripherals follow the rule called  
memory access policy, which is described in the Memory Access Policy (MAP)” section of Security  
Configuration Unit (SCU)chapter.  
Feb 15, 2019  
Page 117 of 245  
Rev 1.01  
 
M2351  
6.3  
System Manager  
Overview  
6.3.1  
System management includes the following sections:  
System Reset  
System Power Distribution  
SRAM Memory Orginization  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control register  
6.3.2  
Reset  
The system reset can be issued by one of the events listed below. These reset event flags can be read  
from SYS_RSTSTS register to determine the reset source. Hardware reset sourcces are from  
peripheral signals. Software reset can trigger reset through setting control registers.  
Hardware Reset Sources  
Power-on Reset (POR)  
Low level on the nRESET pin  
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD Reset)  
CPU Lockup Reset  
Software Reset Sources  
CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])  
System Reset to reboot but keeping the booting setting from APROM or LDROM by  
writing 1 to SYSRESETREQ (AIRCR[2])  
CPU Reset for Cortex® -M23 core only by writing 1 to CPURST (SYS_IPRST0[1])  
Feb 15, 2019  
Page 118 of 245  
Rev 1.01  
M2351  
Glitch Filter  
32 us  
nRESET  
VDD  
~50k ohm  
@3.3v  
PORMASK(SYS_PORCTL0[15:0])  
Power-on  
Reset  
POROFF(SYS_PORCTL1[15:0])  
LVREN(SYS_BODCTL[7])  
Reset Pulse Width  
~3.2ms  
Low Voltage  
Reset  
AVDD  
BODRSTEN(SYS_BODCTL[3])  
Brown-out  
Reset  
System Reset  
WDT/WWDT  
Reset  
Reset Pulse Width  
64 WDT clocks  
CPU Lockup  
Reset  
Reset Pulse Width  
2 system clocks  
CHIP Reset  
CHIPRST(SYS_IPRST0[0])  
System Reset  
SYSRESETREQ(AIRCR[2])  
Reset Pulse Width  
2 system clocks  
Software Reset  
CPU Reset  
CPURST(SYS_IPRST0[1])  
Figure 6.3-1 System Reset Sources  
There are a total of 9 reset sources in the NuMicro® family. In general, CPU reset is used to reset  
Cortex® -M23 only; the other reset sources will reset Cortex® -M23 and all peripherals. However, there  
are small differences between each reset source and they are listed in Table 6.3-1.  
Reset Sources  
POR  
NRESET  
WDT  
LVR  
BOD  
Lockup  
CHIP  
SYSTEM CPU  
Register  
SYS_RSTSTS  
Bit 0 = 1  
Bit 1 = 1  
Bit 2 = 1 Bit 3 = 1 Bit 4 = 1 Bit 8 = 1 Bit 0 = 1  
Bit 5 = 1 Bit 7 =  
1
CHIPRST  
0x0  
-
-
-
-
-
-
-
-
-
(SYS_IPRST0[0])  
BODEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
(SYS_BODCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
CONFIG0 CONFIG0 CONFIG0  
BODVL  
(SYS_BODCTL[18:16])  
BODRSTEN  
(SYS_BODCTL[3])  
SYS_SRAMPCTL  
SYS_SRAMPPCT  
0x0  
0x0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Feb 15, 2019  
Page 119 of 245  
Rev 1.01  
M2351  
LXTEN  
0x0  
0x1  
0x3  
0x0  
0x0  
0x0  
0x0  
0x0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_PWRCTL[1])  
WDTCKEN  
-
0x1  
0x1  
(CLK_APBCLK0[0])  
WDTSEL  
0x3  
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_CLKSEL1[1:0])  
HXTSTB  
-
(CLK_STATUS[0])  
LXTSTB  
-
(CLK_STATUS[1])  
PLLSTB  
-
(CLK_STATUS[2])  
HIRCSTB  
-
(CLK_STATUS[4])  
CLKSFAIL  
0x0  
(CLK_STATUS[7])  
CLK_PLLCTL  
0x000D_44 -  
0A  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PDMSEL  
0x0  
-
(CLK_PMUCTL [2:0])  
RSTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
Reload  
from  
CONFIG0  
-
-
(WDT_CTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTEN  
(WDT_CTL[7])  
WDT_CTL  
0x0700  
0x0700  
0x0700  
0x0700  
0x0700  
-
0x0700  
-
-
except bit 1 and bit 7.  
WDT_ALTCTL  
WWDT_RLDCNT  
WWDT_CTL  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
-
-
0x0000  
0x0000  
0x3F0800  
0x0000  
0x3F  
-
-
-
-
-
-
-
-
-
-
-
-
0x3F0800 0x3F0800 0x3F0800 0x3F0800 0x3F0800 -  
WWDT_STATUS  
WWDT_CNT  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
-
-
-
BS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPCTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
BL  
(FMC_ISPCTL[16])  
CBS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
-
Reload  
from  
CONFIG0  
-
-
-
-
(FMC_ISPSTS[2])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
VECMAP  
Reload  
base  
Reload  
on base  
Reload  
Reload  
Reload  
Reload  
base  
CONFIG0  
on base on base on base on  
on  
(FMC_ISPSTS[23:9])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
Feb 15, 2019  
Page 120 of 245  
Rev 1.01  
M2351  
Other Peripheral  
Registers  
Reset Value  
Reset Value  
-
FMC Registers  
Note: ‘-‘ means that the value of register keeps original setting.  
Table 6.3-1 Reset Value of Registers  
6.3.2.1 nRESET Reset  
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an  
asynchronous reset input pin and can be used to reset system at any time. When the nRESET voltage  
is lower than 0.2 VDD and the state keeps longer than 32 us (glitch filter), chip will be reset. The  
nRESET reset will control the chip in reset state until the nRESET voltage rises above 0.7 VDD and the  
state keeps longer than 32 us (glitch filter). The PINRF(SYS_RSTSTS[1]) will be set to 1 if the  
previous reset source is nRESET reset. Figure 6.3-2 shows the nRESET reset waveform.  
nRESET  
0.7 VDD  
32 us  
0.2 VDD  
32 us  
nRESET Reset  
Figure 6.3-2 nRESET Reset Waveform  
6.3.2.2 Power-on Reset (POR)  
The Power-on reset (POR) is used to generate a stable system reset signal and forces the system to  
be reset when power-on to avoid unexpected behavior of MCU. When applying the power to MCU, the  
POR module will detect the rising voltage and generate reset signal to system until the voltage is ready  
for MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be set to 1 to indicate there is a  
POR reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by writing 1 to it. Figure 6.3-3  
shows the power-on reset waveform.  
VPOR  
0.1V  
VDD  
Power-on  
Reset  
Figure 6.3-3 Power-on Reset (POR) Waveform  
Feb 15, 2019  
Page 121 of 245  
Rev 1.01  
 
 
M2351  
6.3.2.3 Low Voltage Reset (LVR)  
If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit LVREN  
(SYS_BODCTL[7]) to 1, after 200us delay, LVR detection circuit will be stable and the LVR function  
will be active. Then LVR function will detect AVDD during system operation. When the AVDD voltage is  
lower than VLVR and the state keeps longer than De-glitch time set by LVRDGSEL  
(SYS_BODCTL[14:12]), chip will be reset. The LVR reset will control the chip in reset state until the  
AVDD voltage rises above VLVR and the state keeps longer than De-glitch time set by LVRDGSEL  
(SYS_BODCTL[14:12]). The default setting of Low Voltage Reset is enabled without De-glitch  
function. Figure 6.3-4 shows the Low Voltage Reset waveform.  
AVDD  
VLVR  
T1  
T2  
( < LVRDGSEL)  
( =LVRDGSEL)  
T3  
( =LVRDGSEL)  
Low Voltage Reset  
LVREN  
200 us  
Delay for LVR stable  
Figure 6.3-4 Low Voltage Reset (LVR) Waveform  
6.3.2.4 Brown-out Detector Reset (BOD Reset)  
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit  
BODEN (SYS_BODCTL[0]), Brown-out Detector function will detect AVDD during system operation.  
When the AVDD voltage is lower than VBOD which is decided by BODEN and BODVL  
(SYS_BODCTL[18:16]) and the state keeps longer than De-glitch time set by BODDGSEL  
(SYS_BODCTL[10:8]), chip will be reset. The BOD reset will control the chip in reset state until the  
AVDD voltage rises above VBOD and the state keeps longer than De-glitch time set by BODDGSEL. The  
default value of BODEN, BODVL and BODRSTEN (SYS_BODCTL[3]) is set by Flash controller user  
configuration  
register  
CBODEN  
(CONFIG0  
[19]),  
CBOV  
(CONFIG0  
[23:21])  
and  
CBORST(CONFIG0[20]) respectively. User can determine the initial BOD setting by setting the  
CONFIG0 register. Figure 6.3-5 shows the Brown-out Detector waveform.  
Feb 15, 2019  
Page 122 of 245  
Rev 1.01  
 
M2351  
AVDD  
VBODH  
VBODL  
Hysteresis  
T1  
T2  
(< BODDGSEL)  
(= BODDGSEL)  
BODOUT  
T3  
(= BODDGSEL)  
BODRSTEN  
Brown-out  
Reset  
Figure 6.3-5 Brown-out Detector (BOD) Waveform  
6.3.2.5 Watchdog Timer Reset (WDT)  
In most industrial applications, system reliability is very important. To automatically recover the MCU  
from failure status is one way to improve system reliability. The watchdog timer(WDT) is widely used to  
check if the system works fine. If the MCU is crashed or out of control, it may cause the watchdog  
time-out. User may decide to enable system reset during watchdog time-out to recover the system and  
take action for the system crash/out-of-control after reset.  
Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a  
watchdog reset and handle the failure of MCU after watchdog time-out reset by checking  
WDTRF(SYS_RSTSTS[2]).  
6.3.2.6 CPU Lockup Reset  
CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives immediate  
indication of seriously errant kernel software. This is the result of the CPU being locked because of an  
unrecoverable exception following the activation of the processor’s built in system state protection  
hardware. When chip enters debug mode, the CPU lockup reset will be ignored.  
6.3.2.7 CPU Reset, CHIP Reset and System Reset  
The CPU Reset means only Cortex® -M23 core is reset and all other peripherals remain the same  
status after CPU reset. User can set the CPURST(SYS_IPRST0[1]) to 1 to assert the CPU Reset  
signal.  
The CHIP Reset is same with Power-on Reset. The CPU and all peripherals are reset and  
BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG0 setting. User can set the  
CHIPRST(SYS_IPRST0[1]) to 1 to assert the CHIP Reset signal.  
The System Reset is similar with CHIP Reset. The difference is that BS(FMC_ISPCTL[1]) will not be  
reloaded from CONFIG0 setting and keep its original software setting for booting from APROM or  
Feb 15, 2019  
Page 123 of 245  
Rev 1.01  
M2351  
LDROM. User can set the SYSRESETREQ(AIRCR[2]) to 1 to assert the System Reset.  
6.3.3 Power Modes and Wake-up Sources  
The NuMicro® M2351 series has power manager unit to support several operating modes for saving  
power. Table 6.3-2 lists all power modes in the NuMicro® M2351 series.  
Mode  
CPU Operating Maximum  
Speed  
LDO_CAP Clock Disable  
(V)  
(MHz)  
Normal mode  
Turbo mode  
48MHz  
1.20  
1.26  
All clocks are disabled by control register.  
CLK_AHBCLK,  
CLK_APBCLK1.  
CLK_APBCLK0  
and  
and  
64MHz  
All clocks are disabled by control register.  
CLK_AHBCLK,  
CLK_APBCLK1.  
CLK_APBCLK0  
Idle mode  
CPU enter Sleep mode  
keep  
keep  
Only CPU clock is disabled.  
Power-down mode (PD)  
CPU enters Deep Sleep mode  
Most clocks are disabled except LIRC/LXT, and  
only RTC/WDT/Timer/UART peripheral clocks  
still enable if their clock sources are selected as  
LIRC/LXT.  
Fast Wake-up Power-down CPU enters Deep Sleep mode  
mode (FWPD)  
keep  
0.96  
0.9  
Most clocks are disabled except LIRC/LXT, and  
only RTC/WDT/Timer/UART peripheral clocks  
still enable if their clock sources are selected as  
LIRC/LXT.  
Low  
leakage  
Power-down CPU enters Deep Sleep mode  
Most clocks are disabled except LIRC/LXT, and  
only RTC/WDT/Timer/UART peripheral clocks  
still enable if their clock sources are selected as  
LIRC/LXT.  
mode  
(LLPD)  
Ultra Low leakage Power-down CPU enters Deep Sleep mode  
mode  
Most clocks are disabled except LIRC/LXT, and  
only RTC/WDT/Timer/UART peripheral clocks  
still enable if their clock sources are selected as  
LIRC/LXT.  
(ULLPD)  
Standby Power-down mode  
(SPD)  
Power off  
Power off  
Floating Only LIRC/LXT still enable for RTC function and  
wake-up timer usage.  
Deep Power-down mode  
(DPD)  
Floating Only LIRC/LXT still enable for RTC function and  
wake-up timer usage.  
Table 6.3-2 Power Mode Table  
Each power mode has different entry setting and leaving condition. Table 6.3-3 shows the entry setting  
for each power mode. When chip power-on, chip is running in normal mode. User can enter each  
mode by setting SLEEPDEEP (SCR[2]), PDEN (CLK_PWRCT[7]) and PDMSEL (CLK_PMUCTL[2:0])  
and execute WFI instruction.  
Register/Instruction  
Mode  
SLEEPDEEP PDEN  
PDMSEL  
CPU Run WFI Instruction  
(SCR[2])  
(CLK_PWRCTL[7]) (CLK_PMUCTL[2:0])  
Normal mode  
Idle mode  
0
0
1
0
0
1
0
0
0
NO  
YES  
YES  
Power-down mode  
Feb 15, 2019  
Page 124 of 245  
Rev 1.01  
 
M2351  
Low leakage Power-down mode  
1
1
1
1
1
3
YES  
YES  
Ultra Low leakage Power-down  
mode  
Fast Wake-up Power-down mode  
Standby Power-down mode  
Deep Power-down mode  
1
1
1
1
1
1
2
4
6
YES  
YES  
YES  
Table 6.3-3 Power Mode Entry Setting Table  
There are several wake-up sources in Idle mode and Power-down mode. Table 6.3-4 lists the  
available clocks for each power mode.  
Power Mode  
Normal Mode  
Idle Mode  
Power-Down Mode  
Definition  
CPU is in active state  
CPU is in sleep state  
CPU is in sleep state and all clocks  
stop except LXT and LIRC. SRAM  
content be retained by setting  
SYS_SRAMPCTL and  
SYS_SRAMPPCT.  
Entry Condition  
Chip is in normal mode after CPU executes WFI instruction. CPU sets sleep mode enable and  
system reset released  
power down enable and executes  
WFI instruction.  
Wake-up Sources  
N/A  
All interrupts  
EINT, GPIO, UART, USBD, USBH,  
OTG, CAN, BOD, WDT, SDH,  
Timer, I²C, USCI, RTC and ACMP.  
Available Clocks  
After Wake-up  
All  
All except CPU clock  
LXT and LIRC  
N/A  
CPU back to normal mode  
CPU back to normal mode  
Table 6.3-4 Power Mode Difference Table  
System reset released  
Normal Mode  
CPU Clock ON  
HXT, HIRC, HIRC48, LXT, LIRC, HCLK,  
PCLK ON  
Flash ON  
CPU executes WFI  
Interrupts occur  
1. SLEEPDEEP(SCR[2]) = 1  
2. PDEN(CLK_PWRCTL[7]) = 1  
3. CPU executes WFI  
Wake-up events  
occur  
Power-down Mode  
CPU Clock OFF  
HXT, HIRC, HIRC48, PCLK OFF  
LXT, LIRC ON  
Idle Mode  
CPU Clock OFF  
HXT, HIRC, HIRC48, PCLK ON  
LXT, LIRC ON  
Flash Halt  
Flash Halt  
Figure 6.3-6 Power Mode State Machine  
1. LXT ON or OFF depends on software setting in normal mode.  
Feb 15, 2019  
Page 125 of 245  
Rev 1.01  
 
M2351  
2. LIRC ON or OFF depends on software setting in normal mode.  
3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.  
4. If WDT clock source is selected as LIRC and LIRC is on.  
5. If RTC clock source is selected as LXT and LXT is on.  
6. If UART clock source is selected as LXT and LXT is on.  
Power-Down Mode  
Power-Down Mode  
Normal Mode  
Idle Mode  
(PD/FWPD/LLPD/ULLPD)  
(SPD/DPD)  
HXT  
HIRC  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
Halt  
Halt  
Halt  
HIRC48  
LXT  
Halt  
Halt  
ON/OFF1  
ON/OFF2  
Halt  
ON/OFF1  
ON/OFF2  
Halt  
LIRC  
PLL  
CPU  
Halt  
Halt  
HCLK/PCLK  
FLASH  
TIMER  
WDT  
Halt  
Halt  
Halt  
Halt  
ON/OFF3  
ON/OFF4  
ON/OFF5  
ON/OFF6  
Halt  
Halt  
Halt  
RTC  
ON/OFF5  
Halt  
UART  
Others  
Halt  
Table 6.3-5 Clocks in Power Modes  
Wake-up sources in Power-down mode:  
EINT, GPIO, UART, USBD, USBH, OTG, CAN, BOD, ACMP, WDT, SDH, Timer, I²C, USCI, , , RTC.  
After chip enters power down, the following wake-up sources can wake chip up to normal mode. Table  
6.3-6 lists the condition about how to enter Power-down mode again for each peripheral.  
*User needs to wait this condition before setting PDEN(CLK_PWRCTL[7]) and execute WFI to enter  
Power-down mode.  
Power-down mode  
PD  
Wake-Up  
Source  
System Can Enter Power-Down Mode Again  
Condition*  
Wake-Up Condition  
LLPD  
ULLPD  
FWPD  
SPD DPD  
After software writes  
(SYS_BODCTL[4]).  
1
to clear BODIF  
Brown-out Detector Reset / Interrupt  
Brown-out Detector Reset  
-
-
-
BOD  
After software writes  
(CLK_PMUSTS[13]) when SPD mode is  
1 to clear BODWK  
-
entered.  
Feb 15, 2019  
Page 126 of 245  
Rev 1.01  
M2351  
After software writes  
(SYS_RSTSTS[3])  
1
to clear LVRF  
-
-
-
LVR  
LVR Reset  
After software writes  
(CLK_PMUSTS[12]) when SPD mode is  
entered.  
1 to clear LVRWK  
-
After software writes  
(SYS_RSTSTS[0]).  
1
to clear PORF  
POR  
EINT  
GPIO  
POR Reset  
External Interrupt  
GPIO Interrupt  
-
-
-
After software write 1 to clear the Px_INTSRC[n]  
bit.  
-
-
After software write 1 to clear the Px_INTSRC[n]  
bit.  
GPIO(PA~P  
D) Wake-up  
pin  
GPxWK(CLK_PMUSTS[11:8]) is cleared when  
SPD mode is entered.  
rising or falling edge event, 61-pin  
rising or falling edge event , 1-pin  
Timer Interrupt  
-
-
-
-
-
GPIO(PC.0)  
Wake-up pin  
PINWK(CLK_PMUSTS[1]) is cleared when DPD  
mode is entered.  
After software writes  
(TIMERx_INTSTS[1])  
(TIMERx_INTSTS[0]).  
1
to clear TWKF  
and TIF  
TIMER  
-
After software writes  
(CLK_PMUSTS[1]) when SPD or DPD mode is  
entered.  
1 to clear TMRWK  
Wakeup  
timer  
Wakeup by wake-up timer time-out  
-
After software writes  
(WDT_CTL[5]) (Write Protect).  
1
to clear WKF  
to clear ALMIF  
to clear TICKIF  
WDT  
WDT Interrupt  
Alarm Interrupt  
-
-
-
-
-
After software writes  
(RTC_INTSTS[0]).  
1
1
After software writes  
(RTC_INTSTS[1]).  
Time Tick Interrupt  
Wakeup by RTC alarm  
-
-
RTCWK (CLK_PMUSTS[5]) is cleared when  
DPD or SPD mode is entered.  
RTC  
RTCWK (CLK_PMUSTS[5]) is cleared when  
DPD or SPD mode is entered.  
Wakeup by RTC tick time  
-
RTCWK (CLK_PMUSTS[5]) is cleared when  
DPD or SPD mode is entered.  
Wakeup by tamper event  
nCTS wake-up  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
After software writes  
(UARTx_WKSTS[0]).  
1
1
to clear CTSWKF  
to clear DATWKF  
After software writes  
(UARTx_WKSTS[1]).  
RX Data wake-up  
After software writes 1 to clear RFRTWKF  
(UARTx_WKSTS[2]).  
UART  
Received FIFO Threshold Wake-up  
RS-485 AAD Mode Wake-up  
After software writes 1 to clear RS485WKF  
(UARTx_WKSTS[3]).  
Received FIFO Threshold Time-out  
Wake-up  
After software writes 1 to clear TOUTWKF  
(UARTx_WKSTS[4]).  
After software writes  
(UUART_WKSTS[0]).  
1
to clear WKF  
CTS Toggle  
Data Toggle  
USCI UART  
After software writes  
(UUART_WKSTS[0]).  
1
to clear WKF  
Feb 15, 2019  
Page 127 of 245  
Rev 1.01  
M2351  
After software writes  
(UI2C_WKSTS[0]).  
1
to clear WKF  
Data toggle  
Address match  
-
-
-
-
-
-
-
-
USCI I2C  
After software writes 1 to clear WKAKDONE  
(UI2C_PROTSTS[16], then writes 1 to clear  
WKF (UI2C_WKSTS[0]).  
After software writes  
(USPI_WKSTS[0]).  
1
to clear WKF  
USCI SPI  
I2C  
SS Toggle  
After software writes 1 to clear WKAKDONE  
(I2C_WKSTS[1]). Then software writes 1 to  
clear WKIF(I2C_WKSTS[0]).  
Address match wake-up  
1.Remote wake-up  
2.Pulg in wake-up  
After software writes  
(USBD_INTSTS[0]).  
1
to clear BUSIF  
USBD  
-
-
-
-
1.After  
write  
1
to  
to  
to  
clear  
clear  
clear  
RHSC  
RHSC  
RHSC  
(HcInterruptStatus[7]).  
1.Connection detected  
2.Disconnect detected  
3.Remote-wakeup  
2.After write  
(HcInterruptStatus[7]).  
3.After write  
1
USBH  
OTG  
1
(HcInterruptStatus[7]). and port suspended.  
After  
software  
writes  
1
to  
set  
ID pin state be change  
-
-
-
-
WKEN(OTG_CTL[5]).  
After software writes  
(ACMP_STATUS[8])  
(ACMP_STATUS[9]).  
1
to clear WKIF0  
and WKIF1  
Comparator Power-Down Wake-Up  
Interrupt  
ACMP  
ACMPWK (CLK_PMUSTS[3]) is cleared when  
SPD mode is entered.  
ACMPO status change  
-
-
After software writes 0 to clear WAKUP_STS  
(CAN_WU_STATUS[0])  
CAN  
SDH  
Incoming Data Toggle  
Card detection  
-
-
-
-
Clear CDIF0 (SDH_INTSTS[8]) after SDH wake-  
up.  
Table 6.3-6 Condition of Entering Power-down Mode Again  
6.3.4  
System Power Distribution  
In this chip, power distribution is divided into four segments:  
Analog power from AVDD and AVSS provides the power for analog components operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which provides  
a fixed 1.2V or 1.26V power for digital operation and I/O pins.  
USB transceiver power from VBUS offers the power for operating the USB transceiver.  
RTC power from VBAT provides the power for RTC and 80 bytes backup registers.  
The outputs of internal voltage regulators, LDO and VDD, require an external capacitor which should be  
located close to the corresponding pin. Analog power (AVDD) should be the same voltage level of the  
digital power (VDD). If system enters SPD mode SW_SPD switch needs to be turned off, and internal  
voltage regulator can be set to LDO mode or DC-DC converter mode. Figure 6.3-7 shows the power  
distribution.  
Feb 15, 2019  
Page 128 of 245  
Rev 1.01  
M2351  
Internal  
Reference  
Voltage  
32.768 kHz  
crystal  
oscillator  
VDDIO  
12-bit ADC  
12-bit DAC  
IO Cell  
IO Cell  
AVDD  
AVSS  
0.9V  
Temp. Sensor  
Analog Comparator  
RTC &  
80 bytes  
backup register  
32 KHz  
LIRC  
Oscillator  
RTCLDO  
3.3V à0.9V  
LVDR  
(Low Voltage Reset, Brown-out  
Detector)  
SRAM  
Digital Logic  
SRAM  
(32K)  
Flash  
POR12  
(64K)  
SW_SPD  
1.2V/1.26V  
LDO_CAP  
2uF  
Power Management  
and Holder Logic  
12 MHz HIRC  
Oscillator  
48 MHz HIRC  
Oscillator  
PLL  
TRNG  
GPIO except  
PF.4~PF.11 and  
PA.0~PA.5  
4~24 MHz  
crystal  
oscillator  
Power  
On  
Control  
10 kHz  
LIRC  
Oscillator  
3.3V à  
1.2V/1.26V  
Regulator  
USB 1.1  
OTG  
PHY  
PF.2  
PF.3  
POR33  
IO Cell  
M2351 Power Distribution  
Figure 6.3-7 Power Distribution Diagram  
Feb 15, 2019  
Page 129 of 245  
Rev 1.01  
M2351  
6.3.5  
Bus Matrix  
M4  
PDMA1  
M3  
M2  
M1  
M0  
USBH  
Crypto  
SDH0  
PDMA0  
Cortex-M23  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
SRAM0  
(32 KB)  
SRAM1  
(64 KB)  
APB0  
Peripheral  
APB1  
Peripheral  
AHB  
Peripheral  
FLASH  
EBI  
Figure 6.3-2 M2351 Bus Martix Architecture Diagram  
Refer to Figure 6.3-2. This chip uses Advanced Microcontroller Bus Architecture (AMBA) protocol to  
implement system bus. The system has five masters and seven slaves, in which a different master can  
communicate with a different slave at the same time through Bus Matrix. The Cortex® -M23 core  
processor acts as the master in Bus Matrix, located on M0 to communicate with any slaves through  
Bus Matrix. PDMA0 and PDMA1 are Peripheral Direct Memory Access and act as the master in Bus  
Matrix, respectively located on M1 and M4, which can communicate with any slaves through Bus  
Matrix. SDH0 and Crypto share the same master bandwidth located on M2. USBH acts as the master  
role in Bus Matrix and is located on M3. The slave AHB Peripheral is the Advanced High-performance  
Bus (AHB) controller, and any master can communicate with any AHB peripheral through Bus Matrix.  
6.3.6  
System Memory Map  
This chip provides 4G-byte addressing space. The memory locations assigned to each on-chip  
controllers are shown in Table 6.3-7. The detailed register definition, memory space, and programming  
will be described in the following sections for each on-chip peripheral. This chip implement Arm® Trust  
Zone Architecture as well as memory alias technique, secure code and non-secure code can run  
together on the chip well, while both have different memory view. Secure code view is shown in Table  
6.2-1 and non-secure code view is shown in Table 6.2-2.  
The NuMicro® M2351 series only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0003_FFFF  
0x0000_0000 0x0007_FFFF  
FLASH_BA  
FLASH_BA  
FLASH Memory Space (256 KB)  
FLASH Memory Space (512 KB)  
Feb 15, 2019  
Page 130 of 245  
Rev 1.01  
M2351  
0x2000_0000 0x2000_7FFF  
0x2000_8000 0x2001_7FFF  
0x6000_0000 0x6FFF_FFFF  
SRAM0_BA  
SRAM1_BA  
EXTMEM_BA  
SRAM Memory Space (32 KB)  
SRAM Memory Space (64 KB)  
External Memory Space (256 MB)  
Secure Peripheral Controllers Space (0x4000_0000 0x400F_FFFF)  
0x4000_0000 0x4000_01FF  
0x4000_0200 0x4000_02FF  
0x4000_0300 0x4000_03FF  
0x4000_4000 0x4000_4FFF  
0x4000_8000 0x4000_8FFF  
0x4000_9000 0x4000_9FFF  
0x4000_C000 0x4000_CFFF  
0x4000_D000 0x4000_DFFF  
0x4001_0000 0x4001_0FFF  
0x4001_8000 0x4000_8FFF  
0x4003_1000 0x4003_1FFF  
0x4003_2000 0x4003_4FFF  
0x4002_F000 0x4002_FFFF  
SYS_BA  
System Control Registers (always secure)  
Clock Control Registers (always secure)  
NMI Control Registers (always secure)  
GPIO Control Registers  
CLK_BA  
NMI_BA  
GPIO_BA  
PDMA0_BA  
USBH_BA  
FMC_BA  
SDH0_BA  
EBI_BA  
Peripheral DMA 0 Control Registers (always secure)  
USB Host Control Registers  
Flash Memory Control Registers (always secure )  
SDHOST0 Control Registers  
External Bus Interface Control Registers  
Peripheral DMA 1Control Registers (secure or non-secure)  
CRC Generator Registers  
PDMA1_BA  
CRC_BA  
CRPT_BA  
SCU_BA  
Cryptographic Accelerator Registers  
Secure Configuration Unit Registers (always secure)  
Secure APB Controllers Space (0x4004_0000 ~ 0x400F_FFFF)  
0x4004_0000 0x4004_0FFF  
0x4004_1000 0x4004_1FFF  
0x4004_3000 0x4004_3FFF  
0x4004_5000 0x4004_5FFF  
0x4004_7000 0x4004_7FFF  
0x4004_8000 0x4004_8FFF  
0x4004_D000 0x4004_DFFF  
0x4005_0000 0x4005_0FFF  
0x4005_1000 0x4005_1FFF  
0x4005_8000 0x4005_8FFF  
0x4005_9000 0x4005_9FFF  
0x4005_A000 0x4005_AFFF  
0x4005_B000 0x4005_BFFF  
0x4006_0000 0x4006_0FFF  
0x4006_1000 0x4006_1FFF  
0x4006_2000 0x4006_2FFF  
0x4006_3000 0x4006_3FFF  
WDT_BA  
Watchdog Timer Control Registers (always secure)  
Real Time Clock (RTC) Control Register  
RTC_BA  
EADC_BA  
ACMP01_BA  
DAC_BA  
Enhanced Analog-Digital-Converter (EADC) Control Registers  
Analog Comparator 0/ 1 Control Registers  
DAC Control Registers  
I2S0_BA  
I2S0 Interface Control Registers  
OTG Control Registers  
OTG_BA  
TMR01_BA  
TMR23_BA  
EPWM0_BA  
EPWM1_BA  
BPWM0_BA  
BPWM1_BA  
QSPI0_BA  
SPI0_BA  
Timer0/Timer1 Control Registers (always secure)  
Timer2/Timer3 Control Registers  
EPWM0 Control Registers  
EPWM1 Control Registers  
BPWM0 Control Registers  
BPWM1 Control Registers  
Quad SPI0 Control Registers  
SPI0 Control Registers  
SPI1_BA  
SPI1 Control Registers  
SPI2_BA  
SPI2 Control Registers  
Feb 15, 2019  
Page 131 of 245  
Rev 1.01  
M2351  
0x4006_4000 0x4006_4FFF  
0x4007_0000 0x4007_0FFF  
0x4007_1000 0x4007_1FFF  
0x4007_2000 0x4007_2FFF  
0x4007_3000 0x4007_3FFF  
0x4007_4000 0x4007_4FFF  
0x4007_5000 0x4007_5FFF  
0x4007_4000 0x4007_4FFF  
0x4007_5000 0x4007_5FFF  
0x4008_0000 0x4008_0FFF  
0x4008_1000 0x4008_1FFF  
0x4008_2000 0x4008_2FFF  
0x4009_0000 0x4009_0FFF  
0x4009_1000 0x4009_1FFF  
0x4009_2000 0x4009_2FFF  
0x400A_0000 0x400A_0FFF  
0x400B_0000 0x400B_0FFF  
0x400B_1000 0x400B_1FFF  
0x400B_4000 0x400B_4FFF  
0x400B_5000 0x400B_5FFF  
0x400B_9000 0x400B_9FFF  
0x400C_0000 0x400C_0FFF  
0x400D_0000 0x400D_0FFF  
0x400D_1000 0x400D_1FFF  
SPI3_BA  
SPI3 Control Registers  
UART0 Control Registers  
UART1 Control Registers  
UART2 Control Registers  
UART3 Control Registers  
UART4 Control Registers  
UART5 Control Registers  
Reserved  
UART0_BA  
UART1_BA  
UART2_BA  
UART3_BA  
UART4_BA  
UART5_BA  
Reserved  
Reserved  
I2C0_BA  
Reserved  
I2C0 Control Registers  
I2C1_BA  
I2C1 Control Registers  
I2C2_BA  
I2C2 Control Registers  
SC0_BA  
Smartcard Host 0 Control Registers  
Smartcard Host 1 Control Registers  
Smartcard Host 2 Control Registers  
CAN0 Bus Control Registers  
QEI0 Control Registers  
QEI1 Control Registers  
ECAP0 Control Registers  
ECAP1 Control Registers  
TRNG Control Registers  
USB Device Control Register  
USCI0 Control Registers  
USCI1 Control Registers  
SC1_BA  
SC2_BA  
CAN0_BA  
QEI0_BA  
QEI1_BA  
ECAP0_BA  
ECAP1_BA  
TRNG_BA  
USBD_BA  
USCI0_BA  
USCI1_BA  
Table 6.3-7 Address Space Assignments for On-Chip Controllers  
Feb 15, 2019  
Page 132 of 245  
Rev 1.01  
M2351  
Address Space  
Token  
Controllers  
Non-secure Peripheral Controllers Space (0x5000_0000 0x500F_FFFF)  
0x5000_4000 0x5000_4FFF  
0x5000_9000 0x5000_9FFF  
0x5000_D000 0x5000_DFFF  
0x5001_0000 0x5001_0FFF  
0x5001_8000 0x5000_8FFF  
0x5003_1000 0x5003_1FFF  
0x5003_2000 0x5003_4FFF  
GPIO_BA  
USBH_BA  
SDH0_BA  
EBI_BA  
GPIO Control Registers  
USB Host Control Registers  
SDHOST0 Control Registers  
External Bus Interface Control Registers  
Peripheral DMA 1Control Registers (secure or non-secure)  
CRC Generator Registers  
PDMA1_BA  
CRC_BA  
CRPT_BA  
Cryptographic Accelerator Registers  
Non-secure APB Controllers Space (0x5004_0000 ~ 0x500F_FFFF)  
0x5004_1000 0x5004_1FFF  
0x5004_3000 0x5004_3FFF  
0x5004_5000 0x5004_5FFF  
0x5004_7000 0x5004_7FFF  
0x5004_8000 0x5004_8FFF  
0x5004_D000 0x5004_DFFF  
0x5005_1000 0x5005_1FFF  
0x5005_8000 0x5005_8FFF  
0x5005_9000 0x5005_9FFF  
0x5005_A000 0x5005_AFFF  
0x5005_B000 0x5005_BFFF  
0x5006_0000 0x5006_0FFF  
0x5006_1000 0x5006_1FFF  
0x5006_2000 0x5006_2FFF  
0x5006_3000 0x5006_3FFF  
0x5006_4000 0x5006_4FFF  
0x5007_0000 0x5007_0FFF  
0x5007_1000 0x5007_1FFF  
0x5007_2000 0x5007_2FFF  
0x5007_3000 0x5007_3FFF  
0x5007_4000 0x5007_4FFF  
0x5007_5000 0x5007_5FFF  
0x5007_4000 0x5007_4FFF  
0x5007_5000 0x5007_5FFF  
0x5008_0000 0x5008_0FFF  
RTC_BA  
Real Time Clock (RTC) Control Register  
EADC_BA  
ACMP01_BA  
DAC_BA  
Enhanced Analog-Digital-Converter (EADC) Control Registers  
Analog Comparator 0/ 1 Control Registers  
DAC Control Registers  
I2S0_BA  
I2S0 Interface Control Registers  
OTG Control Registers  
OTG_BA  
TMR23_BA  
EPWM0_BA  
EPWM1_BA  
BPWM0_BA  
BPWM1_BA  
QSPI0_BA  
SPI0_BA  
Timer2/Timer3 Control Registers  
EPWM0 Control Registers  
EPWM1 Control Registers  
BPWM0 Control Registers  
BPWM1 Control Registers  
Quad SPI0 Control Registers  
SPI0 Control Registers  
SPI1_BA  
SPI1 Control Registers  
SPI2_BA  
SPI2 Control Registers  
SPI3_BA  
SPI3 Control Registers  
UART0_BA  
UART1_BA  
UART2_BA  
UART3_BA  
UART4_BA  
UART5_BA  
Reserved  
UART0 Control Registers  
UART1 Control Registers  
UART2 Control Registers  
UART3 Control Registers  
UART4 Control Registers  
UART5 Control Registers  
Reserved  
Reserved  
Reserved  
I2C0_BA  
I2C0 Control Registers  
Feb 15, 2019  
Page 133 of 245  
Rev 1.01  
M2351  
0x5008_1000 0x5008_1FFF  
0x5008_2000 0x5008_2FFF  
0x5009_0000 0x5009_0FFF  
0x5009_1000 0x5009_1FFF  
0x5009_2000 0x5009_2FFF  
0x500A_0000 0x500A_0FFF  
0x500B_0000 0x500B_0FFF  
0x500B_1000 0x500B_1FFF  
0x500B_4000 0x500B_4FFF  
0x500B_5000 0x500B_5FFF  
0x500B_9000 0x500B_9FFF  
0x500C_0000 0x500C_0FFF  
0x500D_0000 0x500D_0FFF  
0x500D_1000 0x500D_1FFF  
I2C1_BA  
I2C1 Control Registers  
I2C2_BA  
I2C2 Control Registers  
SC0_BA  
Smartcard Host 0 Control Registers  
Smartcard Host 1 Control Registers  
Smartcard Host 2 Control Registers  
CAN0 Bus Control Registers  
QEI0 Control Registers  
SC1_BA  
SC2_BA  
CAN0_BA  
QEI0_BA  
QEI1_BA  
ECAP0_BA  
ECAP1_BA  
TRNG_BA  
USBD_BA  
USCI0_BA  
USCI1_BA  
QEI1 Control Registers  
ECAP0 Control Registers  
ECAP1 Control Registers  
TRNG Control Registers  
USB Device Control Register  
USCI0 Control Registers  
USCI1 Control Registers  
Table 6.3-2 Non-secure Address Space Assignments for On-Chip Controllers  
6.3.7  
Implementation Defined Attribution Unit (IDAU)  
6.3.7.1 Overview  
The Arm® v8-M has the new feature called TrustZone® , which adds an additional security state to allow  
full isolation of two security levels. The processor security state is decided by the memory definition.  
For example, processor is in Secure state when the code is excuted in the Secure region. The memory  
map security state will be defined by the combination of:  
Internal Security Attribution Unit (SAU)  
Implementation Defined Attribution Unit (IDAU)  
These attribution units define the memory space into four type regions:  
Secure Region: contains Secure program code or data  
Non-secure Callable Region (NSC): contains entry functions for Non-secure programs to  
access Secure functions  
Non-secure Region: contains Non-secure program code or data  
Exempt Region: exempt region will be exempted from security check  
For each memory region defined by the SAU and IDAU has a region number generated by the SAU or  
by the IDAU. Region number is used for determine a group of memory share the same security  
attribute. Overlapping region numbers are not allow. For testing security attributes and region  
numbers, a new instruction TT(Test Target) is introduced. By using a TT instruction on the start and  
end addresses of the memory range, and identifying that both reside in the same region number, user  
can determine that the memory range is located entirely in same space. To be more specific, please  
refer to the Arm® v8-M Architecture Reference Manual. The M2351 IDAU memory map attributions and  
corresponding region numbers are shown in Figure 6.3-8. The address from 0xE000_0000 to  
0xFFFF_FFFF is marked as exempt regions because the behavior of the address is fixed, so their  
security attributes dont control by the SAU or IDAU.  
Feb 15, 2019  
Page 134 of 245  
Rev 1.01  
M2351  
Region num  
15  
0xFFFF_FFFF  
0xF000_0000  
0xE000_0000  
0xD000_0000  
0xC000_0000  
0xB000_0000  
0xA000_0000  
0x9000_0000  
0x8000_0000  
0x7000_0000  
0x6000_0000  
0x5000_0000  
0x4000_0000  
0x3000_0000  
0x2000_0000  
Device  
System  
Exempt  
Exempt  
14  
13  
12  
11  
10  
9
NON-SECURE  
SECURE  
External Device  
External RAM  
NON-SECURE  
SECURE  
NON-SECURE  
SECURE  
8
NON-SECURE  
SECURE  
7
6
NON-SECURE  
SECURE  
5
Device  
SRAM  
4
NON-SECURE  
NSC  
3
2
NON-SECURE  
1
16  
0
0x1000_0000  
0x0000_0800  
0x0000_0000  
Code  
NSC  
SECURE  
Figure 6.3-8 IDAU Memory Map  
6.3.7.2 IDAU Block Diagram  
The IDAU block diagram is shown in Figure 6.3-9. IDAU is security attribute unit connected outside of  
the processor. Both SAU and IDAU are responsible to response the security property of the address  
from processor, the only difference is that the memory security attribute of the SAU is configurable and  
the IDAU is fixed. After the processor compare the security property of the IDAU and SAU, it will take  
the highest security attribute applied. The hierarchy of security levels from high to low is: Secure >  
NSC > Non-secure.  
Feb 15, 2019  
Page 135 of 245  
Rev 1.01  
M2351  
processor  
CPU  
address  
SAU  
IDAU  
Other  
Master  
Other  
Master  
MPU MPU  
Bus Matrix  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Figure 6.3-9 IDAU Block Diagram  
SRAM Memory Orginization  
6.3.8  
This chip supports embedded SRAM with a total of 96 Kbytes size and the SRAM organization is  
separated into two banks: SRAM bank0 and SRAM bank1. The first bank has 32 Kbytes address  
space and the second bank has 64Kbyte address space. These two banks address space can be  
accessed simultaneously. The SRAM bank0 supports parity error check to make sure the chip is  
operating more stable.  
Supports total 96 Kbytes SRAM  
Supports byte / half word / word write  
Supports fixed 32 Kbytes SRAM bank0 for independent access  
Supports parity error check function for SRAM bank0  
Supports oversize response error  
AHB interface  
SRAM decoder  
controller  
SRAM bank0  
SRAM bank1  
AHB interface  
SRAM decoder  
controller  
Figure 6.3-10 SRAM Block Diagram  
Figure 6.3-11 shows the SRAM organization. There are two SRAM banks. The bank0 is addressed to  
32 Kbytes and the bank1 is addressed to 64 Kbytes. The bank0 address space is from 0x2000_0000  
Feb 15, 2019  
Page 136 of 245  
Rev 1.01  
M2351  
to 0x2000_7FFF(Secure) or 0x3000_0000 to 0x3000_7FFF(Non-secure). The bank1 address space is  
from 0x2000_8000 to 0x2001_7FFF(Secure) or 0x3000_8000 to 0x3001_7FFF(Non-secure). The  
address between 0x2001_8000 to 0x2FFF_FFFF(Secure) and 0x3001_8000 to 0x3FFF_FFFF(Non-  
secure) is illegal memory space and chip will enter hardfault if CPU accesses these illegal memory  
addresses.  
0x3FFF_FFFF  
0x2FFF_FFFF  
Reserved  
Reserved  
0x3001_8000  
0x3001_7FFF  
0x2001_8000  
0x2001_7FFF  
64 Kbytes  
64 Kbytes  
SRAM bank1  
SRAM bank1  
0x3000_8000  
0x3000_7FFF  
0x2000_8000  
0x2000_7FFF  
32 Kbytes  
32 Kbytes  
SRAM bank0  
SRAM bank0  
0x3000_0000  
0x2000_0000  
96 Kbytes device  
(secure)  
96 Kbytes device  
(non-secure)  
Figure 6.3-11 SRAM Memory Organization  
SRAM bank0 has byte parity error check function. When CPU is accessing SRAM bank0, the parity  
error checking mechanism is dynamic operating. As parity error occurs, the PERRIF  
(SYS_SRAMSTS[0]) will be asserted to 1 and the SYS_SRAMEADR register will recode the address  
with the parity error. Chip will enter interrupt when SRAM parity error occurs if PERRIEN  
(SYS_SRAMICTL[0]) is set to 1. When SRAM parity error occurs, chip will stop detecting SRAM parity  
error until user writes 1 to clear the PERRIF(SYS_SRAMSTS[0]) bit.  
Feb 15, 2019  
Page 137 of 245  
Rev 1.01  
M2351  
SRAM Power Control  
SRAM bank0 and bank1 have marco retention and power shut down function. Each SRAM marco can  
be configured to retention or power shut down mode independently by SRAMxPMn  
(SYS_SRAMPCTL[23:8], x=0-1 n=0-3). When chip entering power-down, each SRAM marco will enter  
retention  
or  
power  
shut  
down  
or  
keep  
operation  
mode  
depended  
on  
SRAMxPMn(SYS_SRAMPCTL[23:8], x=0-1 n=0-3).When chip power down wake up, SRAM marco will  
wake up from retention or power shut down mode. User must identify which SRAM marco that CPU  
first accessed for saving power down wake up time by STACK(SYS_SRAMPCTL[1:0]).  
Figure 6.3-12 shows the SRAM marco number in bank0 and bank1. When chip power down wake up,  
the first wake up SRAM marco is depened on STACK (SYS_SRAMPCTL[1:0]), the rest SRAM marcos  
wake up in the order of marco number, from SRAM marco0 to SRAM marco7.  
0x3001_7FFF  
0x3001_4000  
0x2001_7FFF  
0x2001_4000  
16 Kbytes  
SRAM Marco 7  
16 Kbytes  
SRAM Marco 7  
16 Kbytes  
16 Kbytes  
SRAM Marco 6  
SRAM Marco 6  
0x3001_0000  
0x3000_C000  
0x2001_0000  
0x2000_C000  
16 Kbytes  
SRAM Marco 5  
16 Kbytes  
SRAM Marco 5  
16 Kbytes  
16 Kbytes  
SRAM Marco 4  
SRAM Marco 4  
0x3000_8000  
0x3000_6000  
0x2000_8000  
0x2000_6000  
8 Kbytes  
SRAM Marco 3  
8 Kbytes  
SRAM Marco 3  
8 Kbytes  
8 Kbytes  
SRAM Marco 2  
SRAM Marco 2  
0x3000_4000  
0x2000_4000  
8 Kbytes  
8 Kbytes  
SRAM Marco 1  
SRAM Marco 1  
0x3000_2000  
0x3000_0000  
0x2000_2000  
0x2000_0000  
8 Kbytes  
SRAM Marco 0  
8K byte  
SRAM Marco 0  
96 Kbytes device  
(secure)  
96 Kbytes device  
(non-secure)  
Figure 6.3-12 SRAM Marco Organization  
6.3.9  
Auto Trim  
This chip supports auto-trim function: the HIRC trim (12 MHz RC oscillator, 48 MHz RC oscillator),  
according to the accurate external 32.768 kHz crystal oscillator or internal USB synchronous mode, to  
automatically get accurate HIRC output frequency, 0.25 % deviation within all temperature ranges.  
For instance, the system needs an accurate 12 MHz clock. In such case, if neither using PLL as the  
system clock source nor soldering 32.768 kHz crystal in system, user has to set REFCKSEL  
(SYS_TCTL12M[10] reference clock selection) to 1, set FREQSEL (SYS_TCTL12M[1:0] trim  
frequency selection) to “01, and the auto-trim function will be enabled. Interrupt status bit FREQLOCK  
(SYS_TISTS12M[8] HIRC frequency lock status) “1” indicates the HIRC output frequency is accurate  
within 0.25% deviation.  
Feb 15, 2019  
Page 138 of 245  
Rev 1.01  
 
M2351  
In another case, the system needs an accurate 48 MHz clock. In such case, if neither using PLL as the  
system clock source nor soldering 32.768 kHz crystal in system, user has to set REFCKSEL  
(SYS_TCTL48M[10] reference clock selection) to 1, set FREQSEL (SYS_TCTL48M[1:0] trim  
frequency selection) to “01, and the auto-trim function will be enabled. Interrupt status bit FREQLOCK  
(SYS_TISTS48M[8] HIRC48 frequency lock status) “1” indicates the HIRC output frequency is  
accurate within 0.25% deviation.  
6.3.10 System Timer (SysTick)  
The Cortex® -M23 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-  
on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be  
used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value Register  
(SYST_VAL) to zero, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_LOAD) on the next clock cycle, and then decrement on subsequent clocks. When the counter  
transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_VAL value is UNKNOWN on reset. Software should write to the register to clear it to zero  
before enabling the feature. This ensures the timer will count from the SYST_LOAD value rather than  
an arbitrary value when it is enabled.  
If the SYST_LOAD is zero, the timer will be maintained with a current value of zero after it is reloaded  
with this value. This mechanism can be used to disable the feature independently from the timer  
enable bit.  
For more detailed information, please refer to the “Arm® Cortex® -M23 Technical Reference Manual”  
and “Arm® v8-M Architecture Reference Manual”.  
6.3.11 Nested Vectored Interrupt Controller (NVIC)  
The NVIC and the processor core interface are closely coupled to enable low latency interrupt  
processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the  
stacked, or nested, interrupts to enable tail-chaining of interrupts. You can only fully access the NVIC  
from privileged mode, but you can cause interrupts to enter a pending state in user mode if you enable  
the Configuration and Control Register. Any other user mode access causes a bus fault. You can  
access all NVIC registers using byte, halfword, and word accesses unless otherwise stated. NVIC  
registers are located within the SCS (System Control Space). All NVIC registers and system debug  
registers are little-endian regardless of the endianness state of the processor.  
The NVIC supports:  
An implementation-defined number of interrupts, in the range 1-240 interrupts.  
A programmable priority level of 0-3 for each interrupt; a higher level corresponds to a  
lower priority, so level 0 is the highest interrupt priority.  
Level and pulse detection of interrupt signals.  
Dynamic reprioritization of interrupts.  
Grouping of priority values into group priority and subpriority fields.  
Interrupt tail-chaining.  
An external Non Maskable Interrupt (NMI)  
WIC with Ultra-low Power Sleep mode support  
The processor automatically stacks its state on exception entry and unstacks this state on exception  
exit, with no instruction overhead. This provides low latency exception handling.  
Feb 15, 2019  
Page 139 of 245  
Rev 1.01  
M2351  
6.4 Clock Controller  
6.4.1 Overview  
The clock controller generates clocks for the whole chip, including system clocks and all peripheral  
clocks. The clock controller also implements the power control function with the individually clock  
ON/OFF control, clock source selection and a clock divider. The chip will not enter Power-down mode  
until CPU sets the Power-down enable bit PDEN (CLK_PWRCTL[7]) and core executes the WFI  
instruction. After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to  
leave Power-down mode. In Power-down mode, the clock controller turns off the 4~24 MHz external  
high speed crystal (HXT), 48MHz internal high speed RC oscillator (HIRC48) and 12 MHz internal high  
speed RC oscillator (HIRC) to reduce the overall system power consumption. Figure 6.4-1 to Figure  
6.4-3 show the clock generator and the overview of the clock source control.  
Feb 15, 2019  
Page 140 of 245  
Rev 1.01  
M2351  
CPU  
CRC  
1/32  
1/16  
1/8  
101  
100  
011  
010  
001  
000  
CAN0  
ECAP0  
I2C0  
CRYPTO  
EBI  
12 MHz  
HIRC  
HXT  
1
0
PCLK0  
PLL FOUT  
4~24 MHz  
FMC  
1/4  
I2C2  
CLK_PLLCTL[19]  
GPIO  
ISP  
1/2  
I2S0  
EPWM0  
BPWM0  
QEI0  
PDMA0  
PDMA1  
SDH0  
SRAM  
USBH  
12 MHz  
48 MHz  
CLK_PCLKDIV[2:0]  
HIRC  
111  
SC0  
HIRC48  
LIRC  
PLL  
101  
HCLK  
SC2  
10 kHz  
1/(HCLKDIV+1)  
011  
010  
001  
QSPI0  
SPI1  
PLLFOUT  
32.768 kHz  
4~24 MHz  
LXT  
SPI3  
HXT  
000  
TMR0  
TMR1  
UART0  
UART2  
UART4  
USBD  
USCI0  
WDT  
CLK_CLKSEL0[2:0]  
12 MHz  
HIRC  
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
HCLK  
HCLK  
HXT  
LXT  
CPUCLK  
1
0
4~24 MHz  
SysTick  
32.768 kHz  
1/32  
1/16  
1/8  
101  
100  
011  
010  
001  
000  
4~24 MHz  
HXT  
ACMP  
DAC  
SYST_CTRL[2]  
PCLK1  
EADC  
DSRC  
ECAP1  
I2C1  
CLK_CLKSEL0[5:3]  
PLLFOUT  
1/4  
1/2  
USBH  
USBD  
OTG  
1/(USBDIV+1)  
OTG  
CLK_PCLKDIV[6:4]  
EPWM1  
BPWM1  
QEI1  
RTC  
HIRC  
11  
10  
01  
00  
SC1  
HCLK  
PLL  
SPI0  
1/(SDH0DIV+1)  
SDH0  
SPI2  
HXT  
SPI4  
TMR2  
TMR3  
TRNG  
UART1  
UART3  
UART5  
USCI1  
CLK_CLKSEL0[21:20]  
1/(DSRCDIV+1)  
DSRC  
HIRC  
10 kHz  
1/2048  
10 kHz  
1/2048  
LIRC  
11  
10  
01  
LIRC  
11  
10  
WWDT  
WDT  
HCLK  
HCLK  
32.768 kHz  
LXT  
CLK_CLKSEL1[31:30]  
CLK_CLKSEL1[1:0]  
Note:  
Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.  
Figure 6.4-1 Clock Generator Global View Diagram (1/3)  
Feb 15, 2019  
Page 141 of 245  
Rev 1.01  
M2351  
12 MHz  
10 kHz  
HIRC  
LIRC  
111  
101  
EPWM 0  
EPWM 1  
PCLK0  
TMR 0  
TMR 1  
TM0~TM1  
PCLK0  
TM0/TM1  
PCLK0  
LXT  
011  
010  
PCLK1  
PCLK0  
PCLK1  
32.768 kHz  
4~24 MHz  
001  
000  
BPWM 0  
BPWM 1  
HXT  
CLK_CLKSEL1 [10: 8]  
CLK_CLKSEL1 [14:12]  
12 MHz  
HIRC  
12 MHz  
PCLK0  
111  
101  
HIRC  
11  
10  
10 kHz  
LIRC  
PCLK0  
QSPI0  
TMR 2  
TMR 3  
TM2~TM3  
TM2/TM3  
PLLFOUT  
4~24 MHz  
011  
010  
SPI1  
SPI3  
01  
00  
PLLFOUT  
HXT  
PCLK1  
PCLK1  
32.768 kHz  
LXT  
001  
000  
4~24 MHz  
HXT  
CLK_CLKSEL2[3:2]  
CLK_CLKSEL2[7:6]  
CLK_CLKSEL2[13:12]  
CLK_CLKSEL1 [18:16]  
CLK_CLKSEL1 [22:20]  
12 MHz  
HIRC  
11  
10  
PCLK1  
SPI0  
SPI2  
SPI4  
12 MHz  
HIRC  
PCLK1  
11  
10  
01  
00  
PLLFOUT  
PLLFOUT  
01  
00  
32.768 kHz  
LXT  
1/(UART0DIV+1)  
UART 0  
UART 1  
4~24 MHz  
HXT  
PLLFOUT  
PLL  
1/(UART1DIV+1)  
4~24 MHz  
HXT  
CLK_CLKSEL2[5:4]  
CLK_CLKSEL2[11:10]  
CLK_CLKSEL2[15:14]  
CLK_CLKSEL1[25:24]  
CLK_CLKSEL1[27:26]  
12 MHz  
HIRC  
12 MHz  
HIRC  
11  
1/(UART2DIV+1)  
1/(UART3DIV+1)  
1/(UART4DIV+1)  
1/(UART5DIV+1)  
UART 2  
UART 3  
UART 4  
UART 5  
11  
10  
32.768 kHz  
LXT  
10  
01  
00  
PCLK0  
PCLK0  
PLLFOUT  
PLL  
1/(SC0DIV+1)  
1/(SC2DIV+1)  
SC0  
SC2  
PLLFOUT  
4~24 MHz  
PLL  
01  
00  
HXT  
4~24 MHz  
HXT  
CLK_CLKSEL3[25:24]  
CLK_CLKSEL3[27:26]  
CLK_CLKSEL3[29:28]  
CLK_CLKSEL3[31:30]  
CLK_CLKSEL3[1:0]  
CLK_CLKSEL3[5:4]  
12 MHz  
HIRC  
HCLK  
HCLK  
32.768 kHz  
LXT  
12 MHz  
11  
HIRC  
11  
10  
PCLK1  
10  
01  
00  
PCLK1  
Clock Output  
1/(SC1DIV+1)  
SC1  
PLLFOUT  
4~24 MHz  
PLL  
01  
00  
4~24 MHz  
HXT  
HXT  
CLK_CLKSEL1[29:28]  
CLK_CLKSEL3[3:2]  
Note:  
Before clock switching, both the pre-selected and newly selected clock sources must be turned on and  
stable.  
Figure 6.4-2 Clock Generator Global View Diagram (2/3)  
Feb 15, 2019  
Page 142 of 245  
Rev 1.01  
M2351  
LIRC  
LXT  
1
0
12 MHz  
HIRC  
PCLK0  
PLL  
11  
10  
RTC  
1
0
LIRC32k  
extLXT  
PCLK0  
I2S0  
PLLFOUT  
4~24 MHz  
01  
00  
HXT  
CLK_CLKSEL3[8]  
RTC_LXTCTL[7]  
CLK_CLKSEL3[17:16]  
PCLK1  
1/(EADCDIV+1)  
EADC  
12MHz  
HIRC  
FMC  
BOD  
10kHz  
LIRC  
1
0
LIRC32k  
extLXT  
32.768kHz  
TRNG  
Note:  
RTC_LXTCTL[7]  
Before clock switching, both the pre-selected and newly  
selected clock sources must be turned on and stable.  
Figure 6.4-3 Clock Generator Global View Diagram (3/3)  
6.4.2  
Clock Generator  
The clock generator consists of 6 clock sources, which are listed below:  
32.768 kHz external low speed crystal oscillator (LXT)  
4~24 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency (PLLFOUT), PLL source can be selected from  
external 4~24 MHz external high speed crystal (HXT) or 12 MHz internal high speed  
oscillator (HIRC)  
12 MHz internal high speed RC oscillator (HIRC)  
48 MHz internal high speed RC oscillator (HIRC48)  
10 kHz internal low speed RC oscillator (LIRC)  
Feb 15, 2019  
Page 143 of 245  
Rev 1.01  
M2351  
LIRC32KEN (RTC_LXTCTL[0])  
Internal 32 kHz  
Oscillator  
(LIRC32k)  
C32KS(RTC_LXTCTL[7])  
LXTEN (CLK_PWRCTL[1])  
X32_IN  
LXT  
1
0
External 32.768  
kHz Crystal  
(extLXT)  
X32_OUT  
XT1_IN  
HXTEN (CLK_PWRCTL[0])  
HXT  
External 4~24  
MHz Crystal  
(HXT)  
PLLSRC (CLK_PLLCTL[19])  
XT1_OUT  
0
1
PLL FOUT  
PLL  
HIRCEN (CLK_PWRCTL[2])  
Internal 12 MHz  
Oscillator  
(HIRC)  
HIRC  
LIRC  
LIRCEN (CLK_PWRCTL[3])  
Internal 10 kHz  
Oscillator  
(LIRC)  
HIRC48EN (CLK_PWRCTL[18])  
Internal 48 MHz  
Oscillator  
HIRC48  
(HIRC48)  
Note:  
Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 6.4-4 Clock Generator Block Diagram  
Each of these clock sources has certain stable time to wait for clock operating at stable frequency.  
When clock source is enabled, a stable counter start counting and correlated clock stable index.  
That is, HXTSTB (CLK_STATUS[0]), LXTSTB (CLK_STATUS[1]), PLLSTB (CLK_STATUS[2]),  
LIRCSTB (CLK_STATUS[3]), HIRCSTB (CLK_STATUS[4]), HIRC48STB (CLK_STATUS[6]),  
EXTLXTSTB (CLK_STATUS[8]) and LIRC32STB(CLK_STATUS[9]) these bits are set to 1 after the  
stable counter value reaches a defined value.  
Feb 15, 2019  
Page 144 of 245  
Rev 1.01  
M2351  
System and peripheral can use the clock as its operating clock only when correlate clock stable index  
is set to 1. The clock stable index will be auto cleared when the clock source (HXTEN  
(CLK_PWRCTL[0]), LXTEN (CLK_PWRCTL[1]), LIRC32KEN (RTC_LXTCTL[0]), HIRCEN  
(CLK_PWRCTL[2]), LIRCEN (CLK_PWRCTL[3]), HIRC48EN (CLK_PWRCTL[18]) and PD  
(CLK_PLLCTL[16])) are disabled.  
Besides, the clock stable index of HXT, HIRC, HIRC48 and PLL will be auto cleared when chip enters  
power-down and clock stable counter will re-count after chip wake-up if correlate clock is enabled.  
6.4.3  
System Clock and SysTick Clock  
The system clock has 6 clock sources which are generated from clock generator block. The clock  
source switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram is shown  
in Figure 6.4-5.  
HCLKSEL  
(CLK_CLKSEL0[2:0])  
111  
100  
HIRC  
CPUCLK  
HCLK  
HIRC48  
CPU  
AHB  
011  
010  
001  
000  
LIRC  
1/(HCLKDIV+1)  
PLLFOUT  
PCLK0  
PCLK1  
HCLKDIV  
(CLK_CLKDIV0[3:0])  
APB0  
APB1  
LXT  
HXT  
CPU in Power Down Mode  
Note:  
Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.  
Figure 6.4-5 System Clock Block Diagram  
There are two clock fail detectors to observe HXT and LXT clock source and they have individual  
enable and interrupt control. When HXT detector is enabled, the HIRC clock is enabled automatically.  
When LXT detector is enabled, the LIRC clock is enabled automatically.  
When HXT clock detector is enabled, the system clock will auto switch to HIRC if HXT clock stop being  
detected on the following condition: system clock source comes from HXT or system clock source  
comes from PLL with HXT as the input of PLL. If HXT clock stop condition is detected, the HXTFIF  
(CLK_CLKDSTS[0]) is set to 1 and chip will enter interrupt if HXTFIE (CLK_CLKDCTL[5]) is set to 1.  
HXT clock source stable flag, HXTSTB (CLK_STATUS[0]), will be cleared if HXT stops when using  
HXT fail detector function. User can try to recover HXT by disable HXT and enable HXT again to  
check if the clock stable bit is set to 1 or not. If HXT clock stable bit is set to 1, it means HXT is recover  
to oscillate after re-enable action and user can switch system clock to HXT again.  
The HXT clock stop detect and system clock switch to HIRC procedure is shown in Figure 6.4-6.  
Feb 15, 2019  
Page 145 of 245  
Rev 1.01  
 
M2351  
Set HXTFDEN To enable  
HXT clock detector  
NO  
HXTFIF = 1?  
YES  
System clock source =  
HXTor PLL with  
HXT?  
System clock keep  
original clock  
NO  
YES  
Switch system clock to  
HIRC  
Figure 6.4-6 HXT Stop Protect Procedure  
HIRC  
HCLK  
1/2  
1/2  
1/2  
other  
011  
010  
001  
000  
CPUCLK  
1
0
HXT  
LXT  
HXT  
SysTick  
SYST_CTRL[2]  
CLK_CLKSEL0[5:3]  
Note:  
Before clock switching, both the pre-selected and newly selected clock sources must  
be turned on and stable.  
Figure 6.4-7 SysTick Clock Control Block Diagram  
The clock source of SysTick in processor can use CPU clock or external clock (SYST_CTRL[2]). If  
using external clock, the SysTick clock (STCLK) has 5 clock sources. The clock source switch  
depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]). The block diagram is shown  
in Figure 6.4-7.  
6.4.4  
Peripherals Clock  
Each peripheral clock has its own clock source selection. Refer to the CLK_CLKSEL1, CLK_CLKSEL2  
Feb 15, 2019  
Page 146 of 245  
Rev 1.01  
 
M2351  
and CLK_CLKSEL3 register.  
6.4.5 Power-down Mode Clock  
When entering Power-down mode, system clocks, some clock sources and some peripheral clocks are  
disabled. Some clock sources and peripherals clock are still active in Power-down mode.  
For theses clocks, which still keep active, are listed below:  
Clock Generator  
10 kHz internal low speed RC oscillator (LIRC) clock  
32.768 kHz external low speed crystal oscillator (LXT) clock  
Peripherals Clock (When the modules adopt LXT or LIRC as clock source)  
6.4.6  
Clock Output  
This device is equipped with a power-of-2 frequency divider which is composed by 16 chained divide-  
by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is  
reflected to CLKO function pin. Therefore, there are 16 options of power-of-2 divided clocks with the  
frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock divider  
output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]). When writing 1 to  
CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When writing 0 to CLKOEN  
(CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock reaches low state and  
stays in low state.  
If DIV1EN(CLK_CLKOCTL[5]) set to 1, the clock output clock (CLKO_CLK) will bypass power-of-2  
frequency divider. The output divider clock will be output to CLKO pin directly.  
When entering Power-down mode, clock output does not out put clock even if the CKO clock source is  
LXT.  
Enable  
divide-by-2 counter  
FREQSEL  
(CLK_CLKOCTL[3:0])  
CLKOEN  
(CLK_CLKOCTL[4])  
16 chained  
divide-by-2 counter  
DIV1EN  
(CLK_CLKOCTL[5])  
1/2  
1/22  
1/23  
...  
1/215 1/216  
CLK1HZEN  
(CLK_CLKOCTL[6])  
0000  
0001  
:
CLKOCKEN  
(CLK_APBCLK0[6])  
16 to 1  
MUX  
HIRC  
11  
0
1
:
0
1
1110  
CLKO  
HCLK  
10  
1111  
LXT  
01  
HXT  
00  
RTCSEL(CLK_CLKSEL3[8])  
CLKOSEL (CLK_CLKSEL1[29:28])  
LIRC  
LXT  
0
1
1 Hz clock from RTC  
/32768  
Note:  
Before clock switching, both the pre-selected and newly selected clock sources must be turned on and  
stable.  
Figure 6.4-8 Clock Output Block Diagram  
Feb 15, 2019  
Page 147 of 245  
Rev 1.01  
M2351  
6.5 Security Configuration Unit (SCU)  
6.5.1 Overview  
Security configuration unit is designed for Arm® TrustZone® , and used to configure the security  
attribution of SRAM, GPIO and all other peripherals. SCU also collects AHB slavessecurity violation  
response and generates SCU interrupt. When non-secure master tries to access SCU, SCU will  
response AHB bus error and generate SCU interrupt. The AHB bus error will cause system hardfault, if  
the master is the core processor. SCU is also equipped with a timer to monitor the duration of the core  
processor in non-secure state.  
Note: SCU accepts secure access only.  
Note: For details on Arm® TrustZone® , refer to the section “Arm® TrustZone® ”  
6.5.2  
Features  
Configure SRAMs security attribution block by block  
Configure GPIOssecurity attribution port by port  
Configure peripheralssecurity attribution  
Generate secure violation interrupt  
Equipped with a 24-bit timer as a non-secure state monitor  
Feb 15, 2019  
Page 148 of 245  
Rev 1.01  
M2351  
6.6 True Random Number Generator (TRNG)  
6.6.1 Overview  
The True Random Number Generator (TRNG) is used to generate the randomness by extracting  
from physical phenomena.  
6.6.2  
Features  
Generates 800 random bits per second  
Feb 15, 2019  
Page 149 of 245  
Rev 1.01  
M2351  
6.7 Flash Memeory Controller (FMC)  
6.7.1 Overview  
The FMC is equipped with dual-bank on-chip embedded Flash (BANK0 and BANK1) for application.  
Both BANK0 and BANK1 have 64/128/256 Kbytes space. Thus, the total size of Application ROM  
(APROM) is 128/256/512 Kbytes. A User Configuration block provides for system initiation in BANK0.  
A 4 Kbytes loader ROM (LDROM) is used for In-System-Programming (ISP) function in BANK0. A 2  
Kbytes one-time-program ROM (OTP) is used for recording one-time-program data in BANK1. A 32K  
Secure Bootloader is used to check boot code integrity and authenticity, and consists of native ISP  
functions. A 4KB cache with zero wait cycle is used to improve Flash access performance. This chip  
also supports In-Application-Programming (IAP) function. User switches the code executing without  
chip reset after the embedded Flash is updated.  
6.7.2  
Features  
Supports dual-bank Flash macro for safe firmware upgrade  
Supports 128/256/512 Kbytes application ROM (APROM)  
Supports 4 Kbytes loader ROM (LDROM)  
Supports 4 XOM (Execution Only Memory) regions to conceal user program in APROM.  
Supports 16 bytes User Configuration block to control system initiation  
Supports 3 Kbytes one-time-program ROM (OTP)  
Supports 2 Kbytes page erase for all embedded Flash  
Supports block erase and bank erase for APROM, except XOM regions.  
Supports two level locks for protecting secure region and non-sec region.  
Supports Secure Bootloader with native In-System-Programming (ISP) functions  
Supports Secure Boot function for check boot code integrity and authenticity  
Supports Security Key protection function for APROM, LDROM, User Configuration block  
and KPROM protection  
Supports 32-bit/64-bit and multi-word Flash programming function  
Supports fast Flash programming verification function  
Supports CRC32 checksum calculation function  
Supports Flash all one verification function  
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded Flash memory  
Supports cache memory to improve Flash access performance and reduce power  
consumption  
Supports auto-tuning Flash access cycle function to optimize the Flash access  
performance  
Feb 15, 2019  
Page 150 of 245  
Rev 1.01  
M2351  
6.8 General Purpose I/O (GPIO)  
6.8.1 Overview  
This chip has up to 107 General Purpose I/O pins to be shared with other function pins depending on  
the chip configuration. These 107 pins are arranged in 8 ports named as PA, PB, PC, PD, PE, PF, PG  
and PH. PA, PB and PE has 16 pins on port. PC has 14 pins on port. PD has 15 pins on port. PF has  
12 pins on port. PG has 10 pins on port. PH has 8 pins on port. Each of the 107 pins is independent  
and has the corresponding register bits to control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull output,  
Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are  
depending on CIOINI (CONFIG0[10]).  
6.8.2  
Features  
Four I/O modes:  
Quasi-bidirectional mode  
Push-Pull Output mode  
Open-Drain Output mode  
Input only with high impendence mode  
TTL/Schmitt trigger input selectable  
I/O pin can be configured as interrupt source with edge/level setting  
Supports High Drive and High Slew Rate I/O mode  
Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting  
CIOINI = 0, all GPIO pins in Quasi-bidirectional mode after chip reset  
CIOINI = 1, all GPIO pins in input mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the wake-up function  
Improve access efficiency by using single cycle IO bus.  
Feb 15, 2019  
Page 151 of 245  
Rev 1.01  
M2351  
6.9  
PDMA Controller (PDMA)  
Overview  
6.9.1  
The peripheral direct memory access (PDMA) controller is used to provide high-speed data transfer.  
The PDMA controller can transfer data from one address to another without CPU intervention. This  
has the benefit of reducing the workload of CPU and keeps CPU resources free for other applications.  
There are two PDMA controller PDMA0 and PDMA1. PDMA0 is secure PDMA, PDMA1 can be  
configured as secure or non-secure PDMA. Each PDMA controller has a total of 8 channels and each  
channel can perform transfer between memory and peripherals or between memory and memory.  
6.9.2  
Features  
Supports 2 PDMA controller PDMA0 and PDMA1, PDMA0 is secure PDMA, PDMA1 can  
be configured as secure or non-secure PDMA.  
Supports 8 independently configurable channels  
Supports selectable 2 level of priority (fixed priority or round-robin priority)  
Supports transfer data width of 8, 16, and 32 bits  
Supports source and destination address increment size can be byte, half-word, word or  
no increment  
Supports software and USB, UART, USCI, SPI, EPWM, I2C, I2S, Timer, ADC, and DAC  
request  
Supports Scatter-Gather mode to perform sophisticated transfer through the use of the  
descriptor link list table  
Supports single and burst transfer type  
Supports time-out function on channel 0 and channel1  
Supports stride function from channel 0 to channel 5  
Feb 15, 2019  
Page 152 of 245  
Rev 1.01  
M2351  
6.10 Timer Controller (TMR)  
6.10.1 Overview  
The timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily implement a  
timer control for applications. The timer can perform functions, such as frequency measurement, delay  
timing, clock generation, and event counting by external input pins, and interval measurement by  
external capture pins.  
The timer controller also provides four PWM generators. Each PWM generator supports two PWM  
output channels in independent mode and complementary mode. The output state of PWM output pin  
can be control by pin mask, polarity and break control, and dead-time generator.  
6.10.2 Features  
6.10.2.1 Timer Function Features  
Four sets of 32-bit timers, each timer having one 24-bit up counter and one 8-bit prescale  
counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through CNT (TIMERx_CNT[23:0])  
Supports event counting function  
24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])  
Supports external capture pin event for interval measurement  
Supports external capture pin event to reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated  
Support Timer0 ~ Timer3 time-out interrupt signal or capture interrupt signal to trigger  
PWM, EADC, DAC and PDMA function  
Supports internal capture triggered while internal ACMP output signal transition  
Supports Inter-Timer trigger mode  
Supports event counting source from internal USB SOF signal  
6.10.2.2 PWM Function Features  
Supports maximum clock frequency up to maximum PCLK  
Supports independent mode for PWM generator with two output channels  
Supports complementary mode for PWM generator with paired PWM output channel  
12-bit dead-time insertion with 12-bit prescale  
Supports 12-bit prescale from 1 to 4096  
Supports 16-bit PWM counter  
Up, down and up-down count operation type  
One-shot or auto-reload counter operation mode  
Supports mask function and tri-state enable for each PWM output pin  
Supports brake function  
Brake source from pin, analog comparator and system safety events (clock failed,  
Brown-out detection, SRAM parity error and CPU lockup)  
Feb 15, 2019  
Page 153 of 245  
Rev 1.01  
M2351  
Brake pin noise filter control for brake source  
Edge detect brake source to control brake state until brake status cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM zero point, period point, up-count compared or down-count compared point  
events  
Brake condition happened  
Supports trigger EADC on the following events:  
PWM zero point, period, zero or period point, up-count compared or down-count  
compared point events  
Feb 15, 2019  
Page 154 of 245  
Rev 1.01  
M2351  
6.11 Watchdog Timer (WDT)  
6.11.1 Overview  
The Watchdog Timer (WDT) is used to perform a system reset when system runs into an unknown  
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer  
supports the function to wake up system from Idle/Power-down mode.  
6.11.2 Features  
18-bit free running up counter for WDT time-out interval  
Selectable time-out interval (24 ~ 218) and the time-out interval is 1.6 ms ~ 26.214 s if  
WDT_CLK = 10 kHz.  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports selectable WDT reset delay period, including 1026, 130, 18 or 3 WDT_CLK  
reset delay period  
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0]  
in Config0 register  
Supports WDT time-out wake-up function only if WDT clock source is selected as 10 kHz  
or LXT.  
Feb 15, 2019  
Page 155 of 245  
Rev 1.01  
M2351  
6.12 Window Watchdog Timer (WWDT)  
6.12.1 Overview  
The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified window  
period to prevent software run to uncontrollable status by any unpredictable condition.  
6.12.2 Features  
6-bit down counter value (CNTDAT, WWDT_CNT[5:0]) and 6-bit compare value  
(CMPDAT, WWDT_CTL[21:16]) to make the WWDT time-out window period flexible  
Supports 4-bit value (PSCSEL, WWDT_CTL[11:8]) to programmable maximum 11-bit  
prescale counter period of WWDT counter  
WWDT counter suspends in Idle/Power-down mode  
Feb 15, 2019  
Page 156 of 245  
Rev 1.01  
M2351  
6.13 Real Time Clock (RTC)  
6.13.1 Overview  
The Real Time Clock (RTC) controller provides the real time and calendar message. The RTC offers  
programmable time tick and alarm match interrupts. The data format of time and calendar messages  
are expressed in BCD format. A digital frequency compensation feature is available to compensate  
external crystal oscillator frequency accuracy.  
6.13.2 Features  
Supports external power pin V BAT.  
Supports real time counter in RTC_TIME (hour, minute, second) and calendar counter in  
RTC_CAL (year, month, day) for RTC time and calendar check.  
Supports alarm time (hour, minute, second) and calendar (year, month, day) settings in  
RTC_TALM and RTC_CALM.  
Supports alarm time (hour, minute, second) and calendar (year, month, day) mask enable  
in RTC_TAMSK and RTC_CAMSK.  
Selectable 12-hour or 24-hour time scale in RTC_CLKFMT register.  
Optional support 1/128 second HZCNT in RTC_TIME and RTC_TALM.  
Supports Leap Year indication in RTC_LEAPYEAR register.  
Supports Day of the Week counter in RTC_WEEKDAY register.  
Frequency of RTC clock source compensate by RTC_FREQADJ register.  
All time and calendar message expressed in BCD format.  
Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32,  
1/16, 1/8, 1/4, 1/2 and 1 second.  
Supports RTC Time Tick and Alarm Match interrupt.  
Supports chip wake-up from Idle or Power-down mode while a RTC interrupt signal is  
generated.  
Supports Daylight Saving Time software control in RTC_DSTCTL.  
Supports up 3 pairs dynamic loop tamper pin or 6 individual tamper pin.  
Built-in LXT frequency monitor .  
Supports 80 bytes spare registers and tamper pins detection to clear the content of these  
spare registers.  
Supports Flash mass erase operate will also clear the 80 bytes spare registers content.  
Feb 15, 2019  
Page 157 of 245  
Rev 1.01  
M2351  
6.14 EPWM Generator and Capture Timer (EPWM)  
6.14.1 Overview  
The chip provides two EPWM generators EPWM0 and EPWM1. Each EPWM supports 6 channels  
of EPWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit  
EPWM counter with 16-bit comparator. The EPWM counter supports up, down and up-down counter  
types. EPWM uses comparator compared with counter to generate events. These events use to  
generate EPWM pulse, interrupt and trigger signal for EADC/DAC to start conversion.  
The EPWM generator supports two standard EPWM output modes: Independent mode and  
Complementary mode, which have difference architecture. There are two output functions based on  
standard output modes: Group function and Synchronous function. Group function can be enabled  
under Independent mode or complementary mode. Synchronous function only enabled under  
complementary mode. Complementary mode has two comparators to generate various EPWM pulse  
with 12-bit dead-time generator and another free trigger comparator to generate trigger signal for  
EADC. For EPWM output control unit, it supports polarity output, independent pin mask and brake  
functions.  
The EPWM generator also supports input capture function. It supports latch EPWM counter value to  
corresponding register when input channel has a rising transition, falling transition or both transition is  
happened. Capture function also support PDMA to transfer captured data to memory.  
6.14.2 Features  
6.14.2.1 EPWM Function Features  
Supports maximum clock frequency up to maximum PLL frequency  
Supports up to two EPWM modules, each module provides 6 output channels  
Supports independent mode for EPWM output/Capture input channel  
Supports complementary mode for 3 complementary paired EPWM output channel  
Dead-time insertion with 12-bit resolution  
Synchronous function for phase control  
Two compared values during one period  
Supports 12-bit prescaler from 1 to 4096  
Supports 16-bit resolution EPWM counter  
Up, down and up/down counter operation type  
Supports one-shot or auto-reload counter operation mode  
Supports group function  
Supports synchronous function  
Supports mask function and tri-state enable for each EPWM pin  
Supports brake function  
Brake source from pin, analog comparator and system safety events (clock failed,  
SRAM parity error, Brown-out detection and CPU lockup).  
Noise filter for brake source from pin  
Leading edge blanking (LEB) function for brake source from analog comparator  
Edge detect brake source to control brake state until brake interrupt cleared  
Feb 15, 2019  
Page 158 of 245  
Rev 1.01  
M2351  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
EPWM counter matches 0, period value or compared value  
Brake condition happened  
Supports trigger EADC/DAC on the following events:  
EPWM counter matches 0, period value or compared value  
EPWM counter match free trigger comparator compared value (only for EADC)  
6.14.2.2 Capture Function Features  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Supports PDMA transfer function for EPWM all channels  
Feb 15, 2019  
Page 159 of 245  
Rev 1.01  
M2351  
6.15 Basic PWM Generator and Capture Timer (BPWM)  
6.15.1 Overview  
The chip provides two BPWM generators BPWM0 and BPWM1. Each BPWM supports 6 channels  
of BPWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit  
BPWM counter with 16-bit comparator. The BPWM counter supports up, down and up-down counter  
types, all 6 channels share one counter. BPWM uses the comparator compared with counter to  
generate events. These events are used to generate BPWM pulse, interrupt and trigger signal for  
EADC to start conversion. For BPWM output control unit, it supports polarity output, independent pin  
mask and tri-state output enable.  
The BPWM generator also supports input capture function to latch BPWM counter value to  
corresponding register when input channel has a rising transition, falling transition or both transition is  
happened.  
6.15.2 Features  
6.15.2.1 BPWM Function Features  
Supports maximum clock frequency up to maximum PLL frequency.  
Supports up to two BPWM modules; each module provides 6 output channels  
Supports independent mode for BPWM output/Capture input channel  
Supports 12-bit prescalar from 1 to 4096  
Supports 16-bit resolution BPWM counter; each module provides 1 BPWM counter  
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each BPWM pin  
Supports interrupt in the following events:  
BPWM counter matches 0, period value or compared value  
Supports trigger EADC in the following events:  
BPWM counter matches 0, period value or compared value  
6.15.2.2 Capture Function Features  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Feb 15, 2019  
Page 160 of 245  
Rev 1.01  
M2351  
6.16 Quadrature Encoder Interface (QEI)  
6.16.1 Overview  
There are two Quadrature Encoder Interfaces (QEI) QEI controllers in this device. The QEI decodes  
speed of rotation and motion sensor information and can be used in any application that uses a  
quadrature encoder for feedback.  
6.16.2 Features  
6.16.2.1 Quadrature Encoder Interface (QEI) Features  
Up to two QEI controllers, QEI0 and QEI1.  
Two QEI phase inputs, QEA and QEB; One Index input.  
A 32-bit up/down Quadrature Encoder Pulse Counter (QEI_CNT)  
A 32-bit software-latch Quadrature Encoder Pulse Counter Hold Register  
(QEI_CNTHOLD)  
A 32-bit Quadrature Encoder Pulse Counter Index Latch Register (QEI_CNTLATCH)  
A 32-bit Quadrature Encoder Pulse Counter Compare Register (QEI_CNTCMP) with a  
Pre-set Maximum Count Register (QEI_CNTMAX)  
One QEI control register (QEI_CTL) and one QEI Status Register (QEI_STATUS)  
Four Quadrature encoder pulse counter operation modes  
Support x4 free-counting mode  
Support x2 free-counting mode  
Support x4 compare-counting mode  
Support x2 compare-counting mode  
Encoder Pulse Width measurement mode  
Input frequency of QEA/QEB/IDX without noise filter must lower than PCLK/4  
Input frequency of QEA/QEB/IDX with noise filter must lower than Noise Filter Clk/8  
Feb 15, 2019  
Page 161 of 245  
Rev 1.01  
M2351  
6.17 Enhanced Input Capture Timer (ECAP)  
6.17.1 Overview  
This device provides up to two units of Input Capture Timer/Counter whose capture function can detect  
the digital edge-changed signal at channel inputs. Each unit has three input capture channels. The  
timer/counter is equipped with up counting, reload and compare-match capabilities.  
6.17.2 Features  
Up to two Input Capture Timer/Counter units, CAP0 and CAP1.  
Each unit has 3 input channels.  
Each unit has its own interrupt vector.  
Each input channel has its own capture counter hold register.  
24-bit Input Capture up-counting timer/counter.  
With noise filter in front end of input ports.  
Edge detector with three options:  
Rising edge detection  
Falling edge detection  
Both edge detection  
Captured events reset and/or reload capture counter.  
Supports compare-match function.  
Feb 15, 2019  
Page 162 of 245  
Rev 1.01  
M2351  
6.18 UART Interface Controller (UART)  
6.18.1 Overview  
The chip provides six channels of Universal Asynchronous Receiver/Transmitters (UART). The UART  
controller performs Normal Speed UART and supports flow control function. The UART controller  
performs a serial-to-parallel conversion on data received from the peripheral and a parallel-to-serial  
conversion on data transmitted from the CPU. Each UART controller channel supports ten types of  
interrupts. The UART controller also supports IrDA SIR, LIN and RS-485 function modes and auto-  
baud rate measuring function.  
6.18.2 Features  
Full-duplex asynchronous communications  
Separates receive and transmit 16/16 bytes entry FIFO for data payloads  
Supports hardware auto-flow control  
Programmable receiver buffer trigger level  
Supports programmable baud rate generator for each channel individually  
Supports nCTS, incoming data, Received Data FIFO reached threshold and RS-485  
Address Match (AAD mode) wake-up function  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting DLY (UART_TOUT [15:8])  
Supports Auto-Baud Rate measurement and baud rate compensation function  
Support 9600 bps for UART_CLK is selected LXT.  
Supports break error, frame error, parity error and receive/transmit buffer overflow  
detection function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5-, 6-, 7-, 8- bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode  
Supports for 3/16 bit duration for normal mode  
Supports LIN function mode (Only UART0 /UART1 with LIN function)  
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detection function for receiver  
Supports RS-485 function mode  
Supports RS-485 9-bit mode  
Supports hardware or software enables to program nRTS pin to control RS-485  
transmission direction  
Supports PDMA transfer function  
Feb 15, 2019  
Page 163 of 245  
Rev 1.01  
M2351  
UART Feature  
UART0/ UART1  
UART2/UART3/  
UART4/ UART5  
SC_UART  
USCI-UART  
TX: 1byte  
RX: 2byte  
FIFO  
16 Bytes  
16 Bytes  
4 Bytes  
Auto Flow Control (CTS/RTS)  
IrDA  
-
-
-
-
-
-
-
-
LIN  
-
RS-485 Function Mode  
nCTS Wake-up  
Imcoming Data Wake-up  
-
Received  
Data  
FIFO  
reached  
-
-
threshold Wake-up  
RS-485 Address Match (AAD mode)  
Wake-up  
-
Auto-Baud Rate Measurement  
STOP Bit Length  
Word Length  
-
1, 1.5, 2 bit  
1, 1.5, 2 bit  
1, 2 bit  
1, 2 bit  
5, 6, 7, 8 bits  
5, 6, 7, 8 bits  
5, 6, 7, 8 bits  
6~13 bits  
Even / Odd Parity  
Stick Bit  
-
-
Note: = Supported  
Table 6.18-1 NuMicro® M2351 Series UART Features  
Feb 15, 2019  
Page 164 of 245  
Rev 1.01  
M2351  
6.19 Smart Card Host Interface (SC)  
6.19.1 Overview  
The Smart Card Interface controller (SC controller) is based on ISO/IEC 7816-3 standard and fully  
compliant with PC/SC Specifications. It also provides status of card insertion/removal.  
6.19.2 Features  
ISO 7816-3 T = 0, T = 1 compliant  
EMV2000 compliant  
Three ISO 7816-3 ports  
Separates receive/transmit 4 byte entry FIFO for data payloads  
Programmable transmission clock frequency  
Programmable receiver buffer trigger level  
Programmable guard time selection (11 ETU ~ 267 ETU)  
One 24-bit timer and two 8-bit timers for Answer to Request (ATR) and waiting times  
processing  
Supports auto direct / inverse convention function  
Supports transmitter and receiver error retry and error number limiting function  
Supports hardware activation sequence process, and the time between PWR on and CLK  
start is configurable  
Supports hardware warm reset sequence process  
Supports hardware deactivation sequence process  
Supports hardware auto deactivation sequence when detected the card removal  
Supports UART mode  
Full duplex, asynchronous communications  
Separates receiving / transmitting 4 bytes entry FIFO for data payloads  
Supports programmable baud rate generator  
Supports programmable receiver buffer trigger level  
Programmable transmitting data delay time between the last stop bit leaving the TX-  
FIFO and the de-assertion by setting EGT (SCn_EGT[7:0])  
Programmable even, odd or no parity bit generation and detection  
Programmable stop bit, 1- or 2- stop bit generation  
Feb 15, 2019  
Page 165 of 245  
Rev 1.01  
M2351  
6.20 I2S Controller (I2S)  
6.20.1 Overview  
The I2S controller consists of I2S protocol to interface with external audio CODEC. Two 16-level depth  
FIFO for reading path and writing path respectively are capable of handling 8/16/24/32 bits audio data  
sizes. A PDMA controller handles the data movement between FIFO and memory.  
6.20.2 Features  
Supports Master mode and Slave mode  
Capable of handling 8, 16, 24 and 32 bits data sizes in each audio channel  
Supports monaural and stereo audio data  
Supports I2S protocols: Philips standard, MSB-justified, and LSB-justified data format  
Supports PCM protocols: PCM standard, MSB-justified, and LSB-justified data format  
PCM protocol supports TDM multi-channel transmission in one audio sample, and the  
number of data channel can be set as 2, 4, 6, or 8  
Provides two 16-level FIFO data buffers, one for transmitting and the other for receiving  
Generates interrupt requests when buffer levels cross a programmable boundary  
Supports two PDMA requests, one for transmitting and the other for receiving  
Feb 15, 2019  
Page 166 of 245  
Rev 1.01  
M2351  
6.21 Serial Peripheral Interface (SPI)  
6.21.1 Overview  
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and allows full  
duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction interface. The  
M2351 series contains up to four sets of SPI controllers performing a serial-to-parallel conversion on  
data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a  
peripheral device. Each SPI controller can be configured as a master or a slave device and supports  
the PDMA function to access the data buffer. Each SPI controller also supports I2S mode to connect  
external audio CODEC.  
6.21.2 Features  
SPI Mode  
Up to four sets of SPI controllers  
Supports Master or Slave mode operation  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 4-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports Byte or Word Suspend mode  
Supports PDMA transfer  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
I2S Mode  
Supports Master or Slave  
Capable of handling 8-, 16-, 24- and 32-bit word sizes  
Each provides two 4-level FIFO data buffers, one for transmitting and the other for  
receiving  
Supports monaural and stereo audio data  
Supports PCM mode A, PCM mode B, I2S and MSB justified data format  
Supports two PDMA requests, one for transmitting and the other for receiving  
Feb 15, 2019  
Page 167 of 245  
Rev 1.01  
M2351  
6.22 Quad Serial Peripheral Interface (QSPI)  
6.22.1 Overview  
The Quad Serial Peripheral Interface (QSPI) applies to synchronous serial data communication and  
allows full duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction  
interface. The M2351 series contains one QSPI controller performing a serial-to-parallel conversion on  
data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a  
peripheral device.  
The QSPI controller supports 2-bit Transfer mode to perform full-duplex 2-bit data transfer and also  
supports Dual and Quad I/O Transfer mode and the controller supports the PDMA function to access  
the data buffer.  
6.22.2 Features  
Supports Master or Slave mode operation  
Supports 2-bit Transfer mode  
Supports Dual and Quad I/O Transfer mode  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 8-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports Byte or Word Suspend mode  
Supports PDMA transfer  
Supports 3-Wire, no slave selection signal, bi-direction interface  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
Feb 15, 2019  
Page 168 of 245  
Rev 1.01  
M2351  
6.23 I2C Serial Interface Controller (I2C)  
6.23.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange  
between devices. The I2C standard is a true multi-master bus including collision detection and  
arbitration that prevents data corruption if two or more masters attempt to control the bus  
simultaneously.  
There are three sets of I2C controllers which support Power-down wake-up function.  
6.23.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to the  
bus. The main features of the I2C bus include:  
Supports up to three I2C ports  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Supports High speed mode 3.4Mbps  
Supports Standard mode (100 kbps), Fast mode (400 kbps) and Fast mode plus (1 Mbps)  
Arbitration between simultaneously transmitting masters without corruption of serial data  
on the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and resume  
serial transfer  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and  
timer-out counter overflows  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing and 10-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Power-down wake-up function  
Supports PDMA with one buffer capability  
Supports setup/hold time programmable  
Supports Bus Management (SM/PM compatible) function  
Feb 15, 2019  
Page 169 of 245  
Rev 1.01  
M2351  
6.24 USCI - Universal Serial Control Interface Controller (USCI)  
6.24.1 Overview  
The Universal Serial Control Interface (USCI) is a flexible interface module covering several serial  
communication protocols. The user can configure this controller as UART, SPI, or I2C functional  
protocol.  
6.24.2 Features  
The controller can be individually configured to match the application needs. The following protocols  
are supported:  
UART  
SPI  
I2C  
Feb 15, 2019  
Page 170 of 245  
Rev 1.01  
M2351  
6.25 USCI UART Mode  
6.25.1 Overview  
The asynchronous serial channel UART covers the reception and the transmission of asynchronous  
data frames. It performs a serial-to-parallel conversion on data received from the peripheral, and a  
parallel-to-serial conversion on data transmitted from the controller. The receiver and transmitter being  
independent, frames can start at different points in time for transmission and reception.  
The UART controller also provides auto flow control. There are two conditions to wake-up the system.  
6.25.2 Features  
Supports one transmit buffer and two receive buffer for data payload  
Supports hardware auto flow control function  
Supports programmable baud-rate generator  
Support 9-bit Data Transfer (Support 9-bit RS-485)  
Baud rate detection possible by built-in capture event of baud rate generator  
Supports PDMA capability  
Supports Wake-up function (Data and nCTS Wakeup Only)  
Feb 15, 2019  
Page 171 of 245  
Rev 1.01  
M2351  
6.26 USCI - SPI Mode  
6.26.1 Overview  
The SPI protocol of USCI controller applies to synchronous serial data communication and allows full  
duplex transfer. It supports both master and Slave operation mode with the 4-wire bi-direction  
interface. SPI mode of USCI controller performs a serial-to-parallel conversion on data received from a  
peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. The  
SPI mode is selected by FUNMODE (USCI_CTL[2:0]) = 0x1  
This SPI protocol can operate as master or Slave mode by setting the SLAVE (USCI_PROTCTL[0]) to  
communicate with the off-chip SPI Slave or master device. The application block diagrams in master  
and Slave mode are shown below.  
USCI SPI Master  
USCI SPI Master  
SPI Slave Device  
SPI_MOSI  
Master Transmit Data  
Master Receive Data  
Serial Bus Clock  
SPI_MOSI  
(USCIx_DAT0)  
SPI_MISO  
(USCIx_DAT1)  
SPI_MISO  
SPI_CLK  
SPI_SS  
SPI_CLK  
(USCIx_CLK)  
Slave Select  
SPI_SS  
(USCIx_CTL)  
Note: x = 0, 1  
Figure 6.26-1 SPI Master Mode Application Block Diagram  
USCI SPI Slave  
USCI SPI Slave  
SPI Master Device  
SPI_MOSI  
Slave Receive Data  
Slave Transmit Data  
Serial Bus Clock  
SPI_MOSI  
(USCIx_DAT0)  
SPI_MISO  
(USCIx_DAT1)  
SPI_MISO  
SPI_CLK  
SPI_CLK  
(USCIx_CLK)  
Slave Select  
SPI_SS  
(USCIx_CTL)  
SPI_SS  
Note: x = 0, 1  
Figure 6.26-2 SPI Slave Mode Application Block Diagram  
6.26.2 Features  
Supports Master or Slave mode operation (the maximum frequency -- Master = fPCLK / 2,  
Slave < fPCLK / 5)  
Configurable bit length of a transfer word from 4 to 16-bit  
Supports one transmit buffer and two receive buffers for data payload  
Supports MSB first or LSB first transfer sequence  
Feb 15, 2019  
Page 172 of 245  
Rev 1.01  
M2351  
Supports Word Suspend function  
Supports PDMA transfer  
Supports 3-wire, no slave select signal, bi-direction interface  
Supports wake-up function by slave select signal in Slave mode  
Supports one data channel half-duplex transfer  
Feb 15, 2019  
Page 173 of 245  
Rev 1.01  
M2351  
6.27 USCI - I2C Mode  
6.27.1 Overview  
On I2C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA  
lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit. There is one SCL clock pulse  
for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred  
byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only  
during the low period of SCL and must be held stable during the high period of SCL. A transition on the  
SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to Figure  
6.27-1 for more detailed I2C BUS Timing.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD_STA  
tSU_STA  
tSU_STO  
tSU_DAT  
tHD_DAT  
Figure 6.27-1 I2C Bus Timing  
The device’s on-chip I2C provides the serial interface that meets the I2C bus standard mode  
specification. The I2C port handles byte transfers autonomously. The I2C mode is selected by  
FUNMODE (USCI_CTL [2:0]) = 100B. When enable this port, the USCI interfaces to the I2C bus via  
two pins: SDA and SCL. When I/O pins are used as I2C ports, user must set the pins function to I2C in  
advance.  
Note: Pull-up resistor is needed for I2C operation because the SDA and SCL are set to open-drain  
pins when USCI is selected to I2C operation mode .  
6.27.2 Features  
Full master and slave device capability  
Supports of 7-bit addressing, as well as 10-bit addressing  
Communication in standard mode (100 kBit/s) or in fast mode (up to 400 kBit/s)  
Supports multi-master bus  
Supports one transmit buffer and two receive buffer for data payload  
Supports 10-bit bus time-out capability  
Supports bus monitor mode.  
Supports Power down wake-up by data toggle or address match  
Supports setup/hold time programmable  
Supports multiple address recognition (two slave address with mask option)  
Feb 15, 2019  
Page 174 of 245  
Rev 1.01  
 
M2351  
6.28 Controller Area Network (CAN)  
6.28.1 Overview  
The C_CAN consists of the CAN Core, Message RAM, Message Handler, Control Registers and  
Module Interface. The CAN Core performs communication according to the CAN protocol version 2.0  
part A and B. The bit rate can be programmed to values up to 1MBit/s. For the connection to the  
physical layer, additional transceiver hardware is required.  
For communication on a CAN network, individual Message Objects are configured. The Message  
Objects and Identifier Masks for acceptance filtering of received messages are stored in the Message  
RAM. All functions concerning the handling of messages are implemented in the Message Handler.  
These functions include acceptance filtering, the transfer of messages between the CAN Core and the  
Message RAM, and the handling of transmission requests as well as the generation of the module  
interrupt.  
The register set of the C_CAN can be accessed directly by the software through the module interface.  
These registers are used to control/configure the CAN Core and the Message Handler and to access  
the Message RAM.  
6.28.2 Features  
Supports CAN protocol version 2.0 part A and B  
Bit rates up to 1 MBit/s  
32 Message Objects  
Each Message Object has its own identifier mask  
Programmable FIFO mode (concatenation of Message Objects)  
Maskable interrupt  
Disabled Automatic Re-transmission mode for Time Triggered CAN applications  
Programmable loop-back mode for self-test operation  
16-bit module interfaces to the AMBA APB bus  
Supports wake-up function  
Feb 15, 2019  
Page 175 of 245  
Rev 1.01  
M2351  
6.29 Secure Digital Host Controller (SDH)  
6.29.1 Overview  
The Secure Digital Host Controller (SD Host) has DMAC unit and SD unit. The DMAC unit provides a  
DMA (Direct Memory Access) function for SD to exchange data between system memory and shared  
buffer (128 bytes), and the SD unit controls the interface of SD/SDHC. The SDHOST controller can  
support SD/SDHC and cooperated with DMAC to provide a fast data transfer between system memory  
and cards.  
6.29.2 Features  
AMBA AHB master/slave interface compatible, for data transfer and register read/write.  
Supports single DMA channel.  
Supports hardware Scatter-Gather function.  
Using single 128 Bytes shared buffer for data exchange between system memory and  
cards.  
Synchronous design for DMA with single clock domain, AHB bus clock (HCLK).  
Interface with DMAC for register read/write and data transfer.  
Supports SD/SDHC card.  
Completely asynchronous design for Secure Digital with two clock domains, HCLK and  
Engine clock, note that frequency of HCLK should be higher than the frequency of  
peripheral clock.  
Feb 15, 2019  
Page 176 of 245  
Rev 1.01  
M2351  
6.30 External Bus Interface (EBI)  
6.30.1 Overview  
This chip is equipped with an external bus interface (EBI) for external device use. To save the  
connections between an external device and a chip, EBI is operating at address bus and data bus  
multiplex mode. The EBI supports three chip selects that can connect three external devices with  
different timing setting requirements.  
6.30.2 Features  
Supports up to three memory banks  
Supports dedicated external chip select pin with polarity control for each bank  
Supports accessible space up to 1 Mbytes for each bank, actually external addressable  
space is dependent on package pin out  
Supports 8-/16-bit data width  
Supports byte write in 16-bit data width mode  
Supports Address/Data multiplexed Mode  
Supports Timing parameters individual adjustment for each memory block  
Supports LCD interface i80 mode  
Supports PDMA mode  
Supports variable external bus base clock (MCLK) which based on HCLK  
Supports configurable idle cycle for different access condition: Idle of Write command  
finish (W2X) and Idle of Read-to-Read (R2R)  
Supports address bus and data bus separate mode  
Feb 15, 2019  
Page 177 of 245  
Rev 1.01  
M2351  
6.31 USB 1.1 Device Controller (USBD)  
6.31.1 Overview  
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is compliant  
with USB 2.0 full-speed device specification and supports control/bulk/interrupt/isochronous transfer  
types.  
In this device controller, there are two main interfaces: the APB bus and USB bus which comes from  
the USB PHY transceiver. For the APB bus, the CPU can program control registers through it. There  
are 1 Kbytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is necessary to  
write data to SRAM or read data from SRAM through the APB interface or SIE. User needs to set the  
effective starting address of SRAM for each endpoint buffer through buffer segmentation register  
(USBD_BUFSEGx).  
There are 12 endpoints in this controller. Each of the endpoint can be configured as IN or OUT  
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are  
implemented in this block. The block of “Endpoint Control” is also used to manage the data sequential  
synchronization, endpoint states, current start address, transaction status, and data buffer status for  
each endpoint.  
There are four different interrupt events in this controller. They are the no-event-wake-up, device plug-  
in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend and  
resume, etc. Any event will cause an interrupt, and users just need to check the related event flags in  
interrupt event status register (USBD_INTSTS) to acknowledge what kind of interrupt occurring, and  
then check the related USB Endpoint Status Register (USBD_EPSTS0 and USBD_EPSTS1) to  
acknowledge what kind of event occurring in this endpoint.  
A software-disconnect function is also supported for this USB controller. It is used to simulate the  
disconnection of this device from the host. If user enables SE0 bit (USBD_SE0), the USB controller  
will force the output of USB_D+ and USB_D- to level low and its function is disabled. After disable the  
SE0 bit, host will enumerate the USB device again.  
For more information on the Universal Serial Bus, please refer to Universal Serial Bus Specification  
Revision 1.1.  
6.31.2 Features  
Compliant with USB 2.0 Full-Speed specification  
Provides 1 interrupt vector with 4 different interrupt events (NEVWK, VBDET, USB and  
BUS)  
Supports Control/Bulk/Interrupt/Isochronous transfer type  
Supports suspend function when no bus activity existing for 3 ms  
Supports 12 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types  
and maximum 1 Kbytes buffer size  
Provides remote wake-up capability  
Feb 15, 2019  
Page 178 of 245  
Rev 1.01  
M2351  
6.32 USB 1.1 Host Controller (USBH)  
6.32.1 Overview  
This chip is equipped with a USB 1.1 Host Controller (USBH) that supports Open Host Controller  
Interface (OpenHCI, OHCI) Specification, a register-level description of a host controller, to manage  
the devices and data transfer of Universal Serial Bus (USB).  
The USBH supports an integrated Root Hub with a USB port, a DMA for real-time data transfer  
between system memory and USB bus, port power control and port over current detection.  
The USBH is responsible for detecting the connect and disconnect of USB devices, managing data  
transfer, collecting status and activity of USB bus, providing power control and detecting over current  
of attached USB devices.  
6.32.2 Features  
Compliant with Universal Serial Bus (USB) Specification Revision 1.1.  
Supports Open Host Controller Interface (OpenHCI) Specification Revision 1.0.  
Supports both full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.  
Supports Control, Bulk, Interrupt and Isochronous transfers.  
Supports an integrated Root Hub.  
Supports a USB host port shared with USB device (OTG function).  
Supports port power control and port over current detection.  
Supports DMA for real-time data transfer.  
Feb 15, 2019  
Page 179 of 245  
Rev 1.01  
M2351  
6.33 USB On-The-Go (OTG)  
6.33.1 Overview  
The OTG controller interfaces to USB PHY and USB controllers which consist of a USB 1.1 host  
controller and a USB 2.0 FS device controller. The OTG controller supports HNP and SRP protocols  
defined in the “On-The-Go and Embedded Host Supplement to the USB 2.0 Revision 2.0  
Specification”.  
USB frame, including USB host, USB device, and OTG controller, can be configured as Host-only,  
Device-only, ID-dependent or OTG Device mode defined in USBROLE (SYS_USBPHY[1:0]). In Host-  
only mode, USB frame acts as USB host. USB frame can support both full-speed and low-speed  
transfer. In Device-only mode, USB frame acts as USB device. USB frame only supports full-speed  
transfer. In ID-dependent mode, USB frame can be USB Host or USB device depending on USB_ID  
pin state. In OTG device mode, the role of USB frame depends on the definition of OTG specification.  
USB frame only supports full-speed transfer when OTG device acts as a peripheral.  
6.33.2 Features  
Built in USB PHY  
Configurable to operate as:  
Host-only  
Device-only  
ID-dependent: The role of USB frame is only dependent on USB_ID pin value--as USB  
Host (USB_ID pin is low) or USB Device (USB_ID pin is high). Not support HNP or SRP  
protocol.  
OTG device: dependent on USB_ID pin status to be A-device (USB_ID pin is low) or B-  
device (USB_ID pin is high). Support HNP and SRP protocols.  
Feb 15, 2019  
Page 180 of 245  
Rev 1.01  
M2351  
6.34 CRC Controller (CRC)  
6.34.1 Overview  
The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with four common  
polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32 settings.  
6.34.2 Features  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
CRC-CCITT: X16 + X12 + X5 + 1  
CRC-8: X8 + X2 + X + 1  
CRC-16: X16 + X15 + X2 + 1  
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1  
Programmable seed value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum  
Supports 8/16/32-bit of data width  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports using PDMA to write data to perform CRC operation  
Feb 15, 2019  
Page 181 of 245  
Rev 1.01  
M2351  
6.35 Cryptographic Accelerator (CRYPTO)  
6.35.1 Overview  
The Crypto (Cryptographic Accelerator) includes a secure pseudo random number generator (PRNG)  
core and supports AES, DES/TDES, SHA and ECC algorithms.  
The PRNG core supports 64 bits, 128 bits, 192 bits, and 256 bits random number generation.  
The AES accelerator is an implementation fully compliant with the AES (Advance Encryption  
Standard) encryption and decryption algorithm. The AES accelerator supports ECB, CBC, CFB, OFB,  
CTR, CBC-CS1, CBC-CS2, and CBC-CS3 mode.  
The DES/TDES accelerator is an implementation fully compliant with the DES and Triple DES  
encryption/decryption algorithm. The DES/TDES accelerator supports ECB, CBC, CFB, OFB, and  
CTR mode.  
The SHA accelerator is an implementation fully compliant with the SHA-160, SHA-224, SHA-256, and  
SHA-384.  
The ECC accelerator is an implementation fully compliant with elliptic curve cryptography by using  
polynomial basis in binary field and prime filed.  
6.35.2 Features  
PRNG  
Supports 64 bits, 128 bits, 192 bits, and 256 bits random number generation  
AES  
Supports FIPS NIST 197  
Supports SP800-38A and addendum  
Supports 128, 192, and 256 bits key  
Supports both encryption and decryption  
Supports ECB, CBC, CFB, OFB, CTR, CBC-CS1, CBC-CS2, and CBC-CS3 mode  
Supports key expander  
DES  
Supports FIPS 46-3  
Supports both encryption and decryption  
Supports ECB, CBC, CFB, OFB, and CTR mode  
TDES  
Supports FIPS NIST 800-67  
Implemented according to the X9.52 standard  
Supports two keys or three keys mode  
Supports both encryption and decryption  
Supports ECB, CBC, CFB, OFB, and CTR mode  
SHA  
Supports FIPS NIST 180, 180-2  
Supports SHA-160, SHA-224, SHA-256, and SHA-384  
ECC  
Feb 15, 2019  
Page 182 of 245  
Rev 1.01  
M2351  
Supports both prime field GF(p) and binary filed GF(2m)  
Supports NIST P-192, P-224, P-256, P-384, and P-521  
Supports NIST B-163, B-233, B-283, B-409, and B-571  
Supports NIST K-163, K-233, K-283, K-409, and K-571  
Supports point multiplication, addition and doubling operations in GF(p) and GF(2m)  
Supports modulus division, multiplication, addition and subtraction operations in GF(p)  
Feb 15, 2019  
Page 183 of 245  
Rev 1.01  
M2351  
6.36 Enhanced 12-bit Analog-to-Digital Converter (EADC)  
6.36.1 Overview  
The chip contains one 12-bit successive approximation analog-to-digital converter (SAR ADC  
converter) with 16 external input channels and 3 internal channels. The ADC converter can be started  
by software trigger, EPWM0/1 triggers, BPWM0/1 triggers, timer0~3 overflow pulse triggers, ADINT0,  
ADINT1 interrupt EOC (End of conversion) pulse trigger and external pin (EADC0_ST) input signal.  
6.36.2 Features  
Analog input voltage range: 0~ VREF (Max to 3.6V)  
Reference voltage from VREF pin  
12-bit resolution and 10-bit accuracy is guaranteed  
Up to 16 single-end analog external input channels or 8 pair differential analog input  
channels  
Up to 3 internal channels: band-gap voltage (VBG), temperature sensor (VTEMP), and  
Battery power (VBAT  
)
Four ADC interrupts (ADINT0~3) with individual interrupt vector addresses  
Maximum ADC clock frequency is 64 MHz  
Up to 3.76 MSPS conversion rate  
Configurable ADC internal sampling time.  
12-bit, 10-bit, 8-bit, 6-bit configurable resolution.  
Supports calibration and load calibration words capability.  
Supports internal reference voltage VREF: 1.6V, 2.0V, 2.5V, and 3.0V.  
Supports three power saving modes:  
Deep Power-down mode  
Power-down mode  
Standby mode  
Up to 19 sample modules  
Each of sample modules which is configurable for ADC converter channel  
EADC_CH0~15 and trigger source  
Sample module 16~18 is fixed for ADC channel 16, 17, 18 input sources as band-gap  
voltage, temperature sensor, and battery power (VBAT  
Double buffer for sample control logic module 0~3  
Configurable sampling time for each sample module  
)
Conversion results are held in 19 data registers with valid and overrun indicators  
An ADC conversion can be started by:  
Write 1 to SWTRGn (EADC_SWTRG[n], n = 0~18)  
External pin EADC0_ST  
Timer0~3 overflow pulse triggers  
ADINT0 and ADINT1 interrupt EOC (End of conversion) pulse triggers  
EPWM/BPWM triggers  
Feb 15, 2019  
Page 184 of 245  
Rev 1.01  
M2351  
Supports PDMA transfer  
Conversion Result Monitor by Compare Mode  
Feb 15, 2019  
Page 185 of 245  
Rev 1.01  
M2351  
6.37 Digital to Analog Converter (DAC)  
6.37.1 Overview  
The DAC module is a 12-bit, voltage output digital-to-analog converter. It can be configured to 12- or  
8-bit output mode and can be used in conjunction with the PDMA controller. The DAC integrates a  
voltage output buffer that can be used to reduce output impendence and drive external loads directly  
without having to add an external operational amplifier.  
6.37.2 Features  
Analog output voltage range: 0~AVDD.  
Supports 12- or 8-bit output mode.  
Rail to rail settle time 8us.  
Supports up to two 12-bit 1 MSPS voltage type DAC.  
Reference voltage from internal reference voltage (INT_VREF), VREF pin.  
DAC maximum conversion updating rate 1 MSPS.  
Supports voltage output buffer mode and bypass voltage output buffer mode.  
Supports software and hardware trigger, including Timer0~3, EPWM0, EPWM1, and  
external trigger pin to start DAC conversion.  
Supports PDMA mode.  
Supports group mode of synchronized update capability for two DACs.  
Feb 15, 2019  
Page 186 of 245  
Rev 1.01  
M2351  
6.38 Analog Comparator Controller (ACMP)  
6.38.1 Overview  
The chip provides two comparators. The comparator output is logic 1 when positive input is greater  
than negative input; otherwise, the output is 0. Each comparator can be configured to generate an  
interrupt when the comparator output value changes.  
6.38.2 Features  
Analog input voltage range: 0 ~ AVDD (voltage of AVDD pin)  
Up to two rail-to-rail analog comparators  
Supports hysteresis function  
Supports programmable hysteresis window: 0mV, 10mV, 20mV and 30mV  
Supports wake-up function  
Supports programmable propagaion speed and low power consumption  
Selectable input sources of positive input and negative input  
ACMP0 supports:  
4 multiplexed I/O pins at positive sources:  
ACMP0_P0, ACMP0_P1, ACMP0_P2, or ACMP0_P3  
4 negative sources:  
ACMP0_N  
Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
DAC0 output (DAC0_OUT)  
ACMP1 supports  
4 multiplexed I/O pins at positive sources:  
ACMP1_P0, ACMP1_P1, ACMP1_P2, or ACMP1_P3  
4 negative sources:  
ACMP1_N  
Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
DAC0 output (DAC0_OUT)  
Shares one ACMP interrupt vector for all comparators  
Interrupts generated when compare results change (Interrupt event condition is  
programmable)  
Supports triggers for break events and cycle-by-cycle control for PWM  
Supports window compare mode and window latch mode  
Feb 15, 2019  
Page 187 of 245  
Rev 1.01  
M2351  
7 APPLICATION CIRCUIT  
7.1 Power Supply Scheme with External VREF  
as close to AVDD as possible  
L=30Z  
1uF+0.1uF+0.01uF  
EXT_PWR  
AVDD  
AVSS  
as close to LDO as possible  
EXT_PWR  
VDD  
VSW  
10uF  
4.7uH  
2.2uF  
LDO_CAP  
VSS  
as close to VREF as possible  
as close to the EXT_PWR as possible  
L=30Z  
2.2uF+1uF+470pF  
VREF  
as close to VBAT as possible  
0.1uF  
VBAT  
10uF+0.1uF  
AVSS  
VSS  
L=30Z  
as close to VDD as possible  
0.1uF*N  
as close to VDDIO as possible  
0.1uF  
VDD  
VDDIO  
VSS  
VSS  
EXT_VSS  
EXT_VSS  
Note:VDD which is near LDO need to be connected to 10 uF.(ex. QFN33 pin 27; LQFP64 pin 51; LQFP128 pin 114)  
Feb 15, 2019  
Page 188 of 245  
Rev 1.01  
M2351  
7.2 Power Supply Scheme with Internal VREF  
as close to AVDD as possible  
L=30Z  
1uF+0.1uF+0.01uF  
EXT_PWR  
AVDD  
AVSS  
as close to LDO as possible  
EXT_PWR  
VDD  
VSW  
10uF  
4.7uH  
2.2uF  
L=30Z  
LDO_CAP  
VSS  
as close to VREF as possible  
as close to the EXT_PWR as possible  
VREF  
as close to VBAT as possible  
0.1uF  
VBAT  
10uF+0.1uF  
0.1uF  
AVSS  
VSS  
as close to VDD as possible  
0.1uF*N  
as close to VDDIO as possible  
0.1uF  
VDDIO  
VDD  
VSS  
VSS  
EXT_VSS  
EXT_VSS  
Note:VDD which is near LDO need to be connected to 10 uF.(ex. QFN33 pin 27; LQFP64 pin 51; LQFP128 pin 114)  
Feb 15, 2019  
Page 189 of 245  
Rev 1.01  
M2351  
7.3 Peripheral Application Scheme  
5V  
USB Full Speed  
OTG Slot Power Switch  
(OTG Host)  
64K x 16-bit  
SRAM  
LATCH  
USB_VBUS  
D
Q
Addr[15:0]  
33R  
USB_D-  
33R  
En  
ALE  
USB_D+  
USB_ID  
nCE  
nOE  
nWE  
nLB  
nUB  
nCS  
nRD  
EBI  
nWR  
nWRL  
nWRH  
VDD  
ICE_DAT  
SWD  
Interface  
ICE_CLK  
nRESET  
AD[15:0]  
Data[15:0]  
VSS  
DVCC  
20pF  
M2351 Series  
XT1_IN  
CS  
SPI_SS  
VDD  
VSS  
SPI_CLK  
CLK  
SPI Device  
SPI_MISO  
SPI_MOSI  
MISO  
MOSI  
4~24 MHz  
crystal  
20pF  
20pF  
DVCC  
XT1_OUT  
DVCC  
Crystal  
4.7K  
4.7K  
X32_IN  
CLK  
DIO  
VDD  
VSS  
I2C_SCL  
I2C_SDA  
32.768 kHz  
crystal  
I2C Device  
20pF  
X32_OUT  
DVCC  
DVCC  
SC_PWR  
Reset  
Circuit  
10K  
nRST  
SC_RST  
SC_CLK  
Smart Card Slot  
10uF/10V  
SC_DAT  
SC_nCD  
ODB Port  
CAN Transceiver  
LDO_CAP  
CAN_TX  
CAN_RX  
D
R
CAN_H  
CAN_L  
LDO  
2.2uF  
CAN  
PC COM Port  
RS 232 Transceiver  
Audio codec  
NUC8822  
RIN  
UART_RXD  
UART_TXD  
ROUT  
TIN  
Line In  
Line Out  
I2S  
UART  
TOUT  
*Note: USB_ID could be floating using USB or USB HS without OTG.  
Feb 15, 2019  
Page 190 of 245  
Rev 1.01  
M2351  
8
ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
Stesses above the absolute maximum ratings may cause permanent damage to the device. The  
limiting values are stress ratings only and cannot be used to functional operation of the device.  
Exposure to the absolute maximum ratings may affect device reliability and proper operation is not  
guaranteed.  
8.1.1 Voltage Characteristics  
Symbol  
VDD-VSS  
VDDIO-VSS  
VBat  
Parameter  
DC Power Supply  
Min  
-0.3  
-0.3  
-0.3  
-
Max  
4.0  
4.0  
4.0  
50  
Unit  
V
VDDIO Power Supply  
V
RTC domain Power Supply  
Variations between different power pins  
V
|VDDX VDD  
|
mV  
-
|VDD AVDD  
|
Allowed voltage difference for VDD and AVDD  
Variations between different ground pins  
Allowed voltage difference for VSS and AVSS  
50  
50  
50  
mV  
mV  
mV  
-
-
|VSSX - VSS  
|
|VSS - AVSS  
|
Input Voltage on 5V-tolerance GPIO  
Input Voltage on RTC domain (PF.6 ~ PF.11)  
Input Voltage on any other pin[*2]  
VSS-0.3  
VSS-0.3  
VSS-0.3  
5.5  
4.0  
4.0  
V
V
V
VIN  
Note:  
1. All main power (VDD, AVDD) and ground (VSS, AVSS) pins must always be connected to the external power supply, in the  
permitted range.  
2. Non 5V-tolerance PIN: PA.8 ~ 15; PB.0 ~ 15; PD.10, 11, 12; PF.2, 3, 4, 5; All USB High Speed pin and nRESET pin.  
Table 8.1-1 Voltage Characteristics  
8.1.2 Current Characteristics  
Symbol  
IDD  
Parameter  
Max  
200  
100  
100  
100  
20  
Unit  
Maximum Current into VDD  
IDDIO  
IBAT  
Maximum Current into VDDIO  
Maximum Current into VBAT  
ISS  
Maximum Current out of VSS  
mA  
Maximum Current sunk by a I/O Pin  
Maximum Current Sourced by a I/O Pin  
Maximum Current Sunk by Total I/O Pins  
Maximum Current Sourced by Total I/O Pins  
20  
IIO  
100  
100  
Feb 15, 2019  
Page 191 of 245  
Rev 1.01  
M2351  
Note:  
1. Maximum allowable current is a function of device maximum power dissipation.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not  
be sunk/sourced between two consecutive power supply pins.  
3. A positive injection is caused by VIN>AVDD and a negative injection is caused by VIN<VSS. IINJ(PIN) must never be  
exceeded. It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage  
supply pin.  
Table 8.1-2 Current Characteristics  
8.1.3 Thermal Characteristics  
The average junction temperature can be calculated by using the following equation:  
T
T
+ (P  
x
)
J
=
A
D
θJA  
TA = ambient temperature ()  
θJA = thermal resistance junction-ambient (/Watt)  
P
D
= sum of internal and I/O power dissipation  
Parameter  
Symbol  
TA  
Min  
-40  
-40  
-65  
Max  
105  
125  
150  
Unit  
Operating Temperature  
TJ  
Junction temperature  
C  
TST  
Storage Temperature  
Table 8.1-3 Thermal Characteristics  
8.1.4 EMC Characteristics  
8.1.4.1 Electrostatic discharge (ESD)  
For the Nuvoton MCU products, there are ESD protection circuits which built into chips to avoid any  
damage that can be caused by typical levels of ESD.  
8.1.4.2 Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
8.1.4.3 Electrical fast transients (EFT)  
In some application circuit compoment will produce fast and narrow high-frequency trasnients bursts of  
narrow high-frequency transients on the power distribution system..  
Inductive loads:  
Relays, switch contactors  
Heavy-duty motors when de-energized etc.  
The fast transient immunity requirements for electronic products are defined in IEC 61000-4-4 by  
International ElectrotechnicalCommission (IEC).  
Feb 15, 2019  
Page 192 of 245  
Rev 1.01  
M2351  
Symbol  
Ratings  
Conditions  
Max  
Unit  
kV  
Fast transient voltage burst limits to be applied through  
100 pF on VDD and VSS pins to induce a functional  
disturbance  
[*3] [*4]  
VEFTB  
VDD = 3.3 V, LQFP128, TA  
+25 °C, fHCLK = 64 MHz,  
=
4.4  
[*5]  
Electrostatic discharge voltage (human body model)  
Electrostatic discharge voltage (charge device model)  
Static latch-up class  
TA = +25 °C  
TA = +25 °C  
TA +25 °C  
2
VESD(HBM)  
[*6]  
0.5  
400  
VESD(CDM)  
LU [*7]  
mA  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. On VBAT pin, VESD(HBM) is limited to 1000V.  
3. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test.  
4. The performace cretia class is 4A.  
5. Determined according to JEDEC EIA/JESD78 standard.  
6. Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human  
Body Model (HBM) Component Level  
7. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing –  
Charged Device Model (CDM) Component Level.  
Table 8.1-4 EMC Characteristics  
Feb 15, 2019  
Page 193 of 245  
Rev 1.01  
M2351  
8.2 General Operating Conditions  
(VDD-VSS = 1.7 ~ 3.6V, TA = 25C, HCLK = 64 MHz unless otherwise specified.)  
Conditions  
Unit  
Min.  
-
Typ.  
Max.  
64  
Symbol  
Parameter  
fHCLK  
Internal AHB clock frequency  
MHz  
-
VDD  
Operation Voltage  
1.7  
3.6  
-
[*1]  
AVDD  
Analog Operation Voltage  
Power supply for PA.0 ~ 5  
VDD  
VDDIO  
VBAT  
1.7  
1.7  
3.6  
3.6  
-
-
V
RTC Operation voltage for PF.6  
PF.11  
~
VLDO  
VBG  
LDO Output Voltage  
1.08  
1.18  
1.2  
-
1.32  
1.21  
Band-gap Voltage  
[*2]  
CLDO  
LDO Output capacitance on each pin  
2.2  
uF  
-
-
Note:  
1. It is recommended to power VDD and AVDD from the same source. A maximum difference of 0.3 V between VDD and  
AVDD can be tolerated during power-on and power-off operation .  
2. To ensure stability, an external 1 μF output capacitor, CLDO must be connected between the LDO_CAP pin and the  
closest GND pin of the device. Solid tantalum and multilayer ceramic capacitors are suitable as output capacitor.  
Additional 100 nF bypass capacitor between LDO_CAP pin and the closest GND pin of the device helps decrease  
output noise and improves the load transient response.  
Feb 15, 2019  
Page 194 of 245  
Rev 1.01  
M2351  
8.3 DC Electrical Characteristics  
8.3.1 Typical Current Consumption  
The current consumption is a combination of internal and external parameters and factors such as  
operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program  
location in memory and so on. The current consumption is measured as described in below condition  
and table to inform test characterization result.  
ALL GPIO pins are in push pull mode, output high.  
LDO = 1.26V  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature  
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
VDD = VBAT = AVDD = VDDIO  
When the peripherals are enabled HCLK is the system clock, fPCLK0, 1 = fHCLK/2.  
Program run while(1){} from Flash.  
8.3.1.1 LDO Normal Mode  
T
A
HIRC /  
HIRC48 / LIRC  
f
Symbol  
Conditions  
HXT/LXT  
PLL  
unit  
HCLK  
25 °C  
6.2  
105 °C[*1]  
7.1  
64 MHz[*2]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
64 MHz[*2]  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
V
V
-
5.2  
6.0  
-
1.7  
2.4  
-
1.4  
2.2  
-
-
1.2  
1.9  
-
-
1.1  
1.8  
-
-
Normal Run, executed from  
Flash, VDD = 3.3V, Vsw without  
Inductance, all peripherals  
disable  
6.9  
7.6  
12MHz  
V
V
48 MHz[*3]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
32.768 KHz  
10KHz  
-
12MHz  
48MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
4.2  
3.8  
1.3  
0.8  
0.7  
0.5  
0.1  
0.1  
14.1  
4.9  
4.5  
1.9  
1.4  
1.4  
1.2  
0.8  
0.8  
15.1  
-
-
-
-
-
I
-
-
mA  
DD  
-
32.768 kHz  
-
-
-
10KHz  
-
-
64 MHz[*2]  
12MHz  
V
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
64 MHz[*2]  
48 MHz[*3]  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
-
V
-
11.0  
3.7  
11.8  
4.4  
-
Normal run, executed from  
Flash, VDD = 3.3V, Vsw  
without Inductance, all  
peripherals enabled  
2.8  
3.5  
-
-
2.3  
3.1  
-
-
2.0  
2.8  
-
-
13.7  
9.6  
14.4  
10.2  
12MHz  
12MHz  
V
V
-
Feb 15, 2019  
Page 195 of 245  
Rev 1.01  
M2351  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
32.768 KHz  
10KHz  
-
48MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
9.1  
3.1  
1.9  
1.6  
1.3  
0.8  
0.9  
9.8  
3.8  
2.5  
2.2  
1.9  
1.5  
1.6  
-
-
-
-
-
-
-
-
-
-
32.768 kHz  
-
10KHz  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. In this case HCLK = system clock, system clock = 64MHz, LDO = 1.26V  
3. In this case HCLK = system clock, system clock = 48MHz, LDO = 1.2V  
4. In this case HCLK = system clock, system clock = 12MHz, LDO = 1.2V  
5. In this case HCLK = system clock/2, system clock = 12MHz, LDO = 1.2V  
6. In this case HCLK = system clock/3, system clock = 12MHz, LDO = 1.2V  
7. In this case HCLK = system clock/6, system clock = 12MHz, LDO = 1.2V  
8. When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be  
considered.  
Table 8.3-1 Current Consumption in LDO Normal Run Mode  
8.3.1.2 DC-DC Normal Mode  
T
A
HIRC /  
HIRC48 / LIRC  
f
Symbol  
Conditions  
HXT/LXT  
PLL  
unit  
HCLK  
25 °C  
3.1  
105 °C  
3.6  
64 MHz[*2]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
64 MHz[*2]  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
-
V
V
-
2.7  
3.1  
-
1.1  
1.5  
-
1.0  
1.3  
-
-
0.9  
1.2  
-
-
0.8  
1.2  
-
-
Normal Run, executed from  
Flash, VDD = 3.3V, Vsw with  
Inductance, all peripherals  
disable  
2.9  
3.3  
12MHz  
V
V
48 MHz[*3]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
32.768 KHz  
10KHz  
-
12MHz  
48MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
1.9  
1.7  
0.7  
0.5  
0.4  
0.3  
0.1  
0.1  
6.7  
2.2  
2.0  
1.0  
0.7  
0.7  
0.6  
0.4  
0.4  
7.2  
-
-
-
-
I
mA  
DD  
-
-
-
-
32.768 kHz  
-
-
-
10KHz  
-
-
64 MHz[*2]  
12MHz  
V
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
12MHz  
12MHz  
12MHz  
12MHz  
-
-
-
-
V
-
5.3  
2.0  
1.6  
1.5  
5.7  
2.4  
2.0  
1.8  
Normal run, executed from  
Flash, VDD = 3.3V, Vsw with  
Inductance, all peripherals  
enabled  
-
-
Feb 15, 2019  
Page 196 of 245  
Rev 1.01  
M2351  
2 MHz[*7]  
64 MHz[*2]  
48 MHz[*3]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
32.768 KHz  
10KHz  
12MHz  
-
-
1.3  
6.5  
4.2  
4.0  
1.4  
0.9  
0.8  
0.7  
0.5  
0.5  
1.7  
6.8  
4.5  
4.3  
1.7  
1.2  
1.1  
1.0  
0.8  
0.8  
12MHz  
12MHz  
48MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
V
V
-
-
-
-
-
-
-
-
-
-
-
-
32.768 kHz  
-
10KHz  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. In this case HCLK = system clock, system clock = 64MHz, LDO = 1.26V  
3. In this case HCLK = system clock, system clock = 48MHz, LDO = 1.2V  
4. In this case HCLK = system clock, system clock = 12MHz, LDO = 1.2V  
5. In this case HCLK = system clock/2, system clock = 12MHz, LDO = 1.2V  
6. In this case HCLK = system clock/3, system clock = 12MHz, LDO = 1.2V  
7. In this case HCLK = system clock/6, system clock = 12MHz, LDO = 1.2V  
8. When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be  
considered.  
Table 8.3-2 Current Consumption in DC-DC Normal Run Mode  
8.3.1.3 LDO Idle Mode  
TA  
Symbol  
Conditions  
fHCLK  
HXT/LXT  
HIRC/LIRC  
PLL  
Unit  
25 °C  
2.9  
105 °C[*1]  
3.7  
64 MHz[*2]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
-
V
V
-
2.4  
3.1  
1.1  
1.8  
-
1.0  
1.7  
-
-
1.0  
1.7  
-
-
2 MHz[*7]  
12MHz  
-
-
1.0  
2.3  
1.7  
3.1  
Idle mode, executed from  
Flash, VDD = 3.3V, Vsw without  
Inductance, all peripherals  
disabled  
64 MHz[*2]  
12MHz  
V
V
48 MHz[*3]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
-
-
-
-
-
-
12MHz  
48MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
1.8  
1.4  
0.6  
0.5  
0.5  
0.4  
0.1  
0.1  
10.9  
2.5  
2.1  
1.2  
1.1  
1.1  
1.0  
0.8  
0.8  
11.9  
IDD  
mA  
-
-
-
-
32.768 KHz 32.768 kHz  
-
10KHz  
64 MHz[*2]  
-
10KHz  
-
-
12MHz  
V
Idle mode, executed from  
Flash, VDD = 3.3V, Vsw without  
Inductance, all peripherals  
48 MHz[*3]  
12MHz  
-
V
8.2  
9.0  
Feb 15, 2019  
Page 197 of 245  
Rev 1.01  
M2351  
enabled  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
64 MHz[*2]  
48 MHz[*3]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
12MHz  
12MHz  
12MHz  
12MHz  
-
-
-
3.0  
2.3  
2.0  
1.8  
10.0  
7.4  
6.9  
2.2  
1.5  
1.2  
1.0  
0.7  
0.8  
3.7  
3.0  
2.8  
2.5  
10.7  
8.0  
7.5  
2.8  
2.1  
1.9  
1.6  
1.3  
1.4  
-
-
-
-
-
12MHz  
12MHz  
48MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
V
V
-
-
-
-
-
-
-
-
-
-
-
-
32.768 KHz 32.768 kHz  
10KHz  
-
10KHz  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. In this case HCLK = system clock, system clock = 64MHz, LDO = 1.26V  
3. In this case HCLK = system clock, system clock = 48MHz, LDO = 1.2V  
4. In this case HCLK = system clock, system clock = 12MHz, LDO = 1.2V  
5. In this case HCLK = system clock/2, system clock = 12MHz, LDO = 1.2V  
6. In this case HCLK = system clock/3, system clock = 12MHz, LDO = 1.2V  
7. In this case HCLK = system clock/6, system clock = 12MHz, LDO = 1.2V  
8. When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be  
considered.  
Table 8.3-3 Current consumption in LDO Idle mode  
8.3.1.4 DC-DC Idle Mode  
T
A
Symbol  
Conditions  
fHCLK  
HXT/LXT HIRC/LIRC PLL  
unit  
25 °C  
105 °C[*1]  
64 MHz[*2]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
64 MHz[*2]  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
V
1.6  
1.4  
0.9  
0.8  
0.8  
0.8  
1.1  
2.1  
1.8  
1.2  
1.2  
1.2  
1.1  
1.5  
-
-
-
-
-
V
-
-
-
-
Idle mode, executed from  
Flash, VDD = 3.3V, Vsw with  
Inductance, all peripherals  
disabled  
IDD  
mA  
12MHz  
V
V
48 MHz[*3]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
-
-
-
-
-
-
12MHz  
48MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
0.9  
0.7  
0.4  
0.3  
0.3  
0.3  
0.1  
1.2  
1.0  
0.7  
0.6  
0.6  
0.6  
0.6  
-
-
-
-
-
32.768 KHz 32.768 kHz  
Feb 15, 2019  
Page 198 of 245  
Rev 1.01  
M2351  
0.1  
5.3  
0.4  
10KHz  
64 MHz[*2]  
-
10KHz  
-
-
5.8  
4.4  
2.1  
1.8  
1.7  
1.6  
4.9  
3.5  
3.4  
1.3  
1.0  
0.9  
0.8  
0.7  
0.7  
12MHz  
V
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
64 MHz[*2]  
48 MHz[*3]  
48 MHz[*3]  
12MHz[*4]  
6 MHz[*5]  
4 MHz[*6]  
2 MHz[*7]  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
V
-
4.0  
1.7  
1.4  
1.3  
1.2  
4.6  
3.3  
3.1  
1.0  
0.7  
0.6  
0.5  
0.4  
0.4  
-
-
-
-
-
-
-
12MHz  
12MHz  
48MHz  
12MHz  
12MHz  
12MHz  
12MHz  
-
V
V
Idle mode, executed from  
Flash, VDD = 3.3V, Vsw with  
Inductance, all peripherals  
enabled  
-
-
-
-
-
-
-
-
-
-
-
-
32.768 KHz 32.768 kHz  
10KHz  
-
10KHz  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. In this case HCLK = system clock, system clock = 64MHz, LDO = 1.26V  
3. In this case HCLK = system clock, system clock = 48MHz, LDO = 1.2V  
4. In this case HCLK = system clock, system clock = 12MHz, LDO = 1.2V  
5. In this case HCLK = system clock/2, system clock = 12MHz, LDO = 1.2V  
6. In this case HCLK = system clock/3, system clock = 12MHz, LDO = 1.2V  
7. In this case HCLK = system clock/6, system clock = 12MHz, LDO = 1.2V  
8. When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be  
considered.  
Table 8.3-4 Current Consumption in DC-DC Idle Mode  
8.3.1.5 LDO Power-down Mode  
Symbol  
Conditions  
LXT  
LIRC  
PLL  
TA  
LDO  
Unit  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
96.5  
128.3  
225.0  
462.1  
698.0  
91.0  
Power-down mode, VDD = 3.3V, all peripherals  
disabled, SRAM retention  
IDD_FWPD  
-
-
-
uA  
Power-down mode, VDD = 3.3V, all peripherals  
disabled, no SRAM retention  
107.7  
131.6  
Feb 15, 2019  
Page 199 of 245  
Rev 1.01  
M2351  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
189.2  
271.8  
96.9  
129.0  
225.9  
468.8  
715.0  
91.8  
Power-down mode, VDD = 3.3V,  
RTC/WDT/Timer/UART enabled, SRAM retention  
V
-
-
109.1  
132.8  
190.5  
273.4  
95.9  
Power-down mode, VDD = 3.3V,  
RTC/WDT/Timer/UART enabled, no SRAM  
retention  
128.1  
224.6  
455.8  
737.5  
91.4  
Power-down mode, VDD = 3.3V, RTC/WDT/Timer  
use LIRC, SRAM retention  
-
V
-
107.9  
131.7  
189.6  
272.0  
96.6  
Power-down mode, VDD = 3.3V, RTC/WDT/Timer  
use LIRC, no SRAM retention  
129.2  
225.7  
446.8  
737.5  
92.4  
Power-down mode, VDD = 3.3V, WDT/Timer use  
LIRC, RTC/UART use LXT, SRAM retention  
V
V
-
109.2  
133.0  
191.3  
273.5  
18.2  
Power-down mode, VDD = 3.3V, WDT/Timer use  
LIRC, RTC/UART use LXT, no SRAM retention  
40.3  
Power-down mode, VDD = 3.3V, all peripherals  
disabled, SRAM retention  
IDD_PD  
-
-
-
115.9  
282.9  
Feb 15, 2019  
Page 200 of 245  
Rev 1.01  
M2351  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
737.5  
12.5  
20.2  
Power-down mode, VDD = 3.3V, all peripherals  
disabled, no SRAM retention  
35.7  
79.0  
140.1  
19.2  
41.5  
Power-down mode, VDD = 3.3V,  
RTC/WDT/Timer/UART enabled, SRAM retention  
117.1  
289.9  
498.8  
13.5  
V
-
-
-
-
21.6  
Power-down mode, VDD = 3.3V,  
RTC/WDT/Timer/UART enabled, no SRAM  
retention  
37.1  
80.3  
141.8  
18.6  
40.7  
Power-down mode, VDD = 3.3V, RTC/WDT/Timer  
use LIRC, SRAM retention  
116.3  
292.9  
500.0  
12.9  
-
V
20.4  
Power-down mode, VDD = 3.3V, RTC/WDT/Timer  
use LIRC, no SRAM retention  
36.0  
78.7  
140.5  
19.3  
41.7  
Power-down mode, VDD = 3.3V, WDT/Timer use  
LIRC, RTC/UART use LXT, SRAM retention  
117.6  
288.6  
503.2  
13.9  
V
V
21.7  
Power-down mode, VDD = 3.3V, WDT/Timer use  
LIRC, RTC/UART use LXT, no SRAM retention  
37.4  
80.0  
142.2  
Feb 15, 2019  
Page 201 of 245  
Rev 1.01  
M2351  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
6.2  
15.8  
55.5  
154.5  
299.3  
4.6  
Power-down mode, VDD = 3.3V, all peripherals  
disabled, SRAM retention  
-
-
-
8.2  
Power-down mode, VDD = 3.3V, all peripherals  
disabled, no SRAM retention  
17.0  
44.4  
88.0  
7.0  
16.9  
56.8  
156.2  
301.1  
5.4  
Power-down mode, VDD = 3.3V,  
RTC/WDT/Timer/UART enabled, SRAM retention  
V
-
-
9.6  
Power-down mode, VDD = 3.3V,  
RTC/WDT/Timer/UART enabled, no SRAM  
retention  
18.3  
45.8  
89.7  
6.3  
IDD_LLPD  
uA  
16.1  
55.8  
157.3  
299.6  
4.7  
Power-down mode, VDD = 3.3V, RTC/WDT/Timer  
use LIRC, SRAM retention  
-
V
-
8.4  
Power-down mode, VDD = 3.3V, RTC/WDT/Timer  
use LIRC, no SRAM retention  
17.2  
44.4  
88.5  
7.2  
17.2  
57.0  
161.2  
301.0  
5.7  
Power-down mode, VDD = 3.3V, WDT/Timer use  
LIRC, RTC/UART use LXT, SRAM retention  
V
V
-
Power-down mode, VDD = 3.3V, WDT/Timer use  
Feb 15, 2019  
Page 202 of 245  
Rev 1.01  
M2351  
LIRC, RTC/UART use LXT, no SRAM retention  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
9.6  
18.6  
45.8  
90.1  
4.4  
11.7  
43.6  
132.6  
251.4  
3.3  
Power-down mode, VDD = 3.3V, all peripherals  
disabled, SRAM retention  
-
-
-
6.2  
Power-down mode, VDD = 3.3V, all peripherals  
disabled, no SRAM retention  
13.6  
37.1  
76.4  
5.4  
12.8  
44.9  
134.6  
252.7  
4.3  
Power-down mode, VDD = 3.3V,  
RTC/WDT/Timer/UART enabled, SRAM retention  
V
-
-
IDD_ULLPD  
uA  
7.6  
Power-down mode, VDD = 3.3V,  
RTC/WDT/Timer/UART enabled, no SRAM  
retention  
14.8  
38.4  
78.0  
4.6  
11.9  
43.9  
133.3  
251.2  
3.5  
Power-down mode, VDD = 3.3V, RTC/WDT/Timer  
use LIRC, SRAM retention  
-
V
-
6.5  
Power-down mode, VDD = 3.3V, RTC/WDT/Timer  
use LIRC, no SRAM retention  
13.9  
37.4  
76.7  
5.5  
Power-down mode, VDD = 3.3V, WDT/Timer use  
LIRC, RTC/UART use LXT, SRAM retention  
V
V
-
13.0  
Feb 15, 2019  
Page 203 of 245  
Rev 1.01  
M2351  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
45.2  
134.0  
252.6  
4.4  
7.7  
Power-down mode, VDD = 3.3V, WDT/Timer use  
LIRC, RTC/UART use LXT, no SRAM retention  
15.3  
38.8  
78.3  
2.1  
2.8  
Standby Power-down mode(SPD), VDD = 3.3V, all  
peripherals disabled  
-
V
-
-
-
-
-
-
3.9  
8.1  
15.5  
3.0  
3.9  
Standby Power-down mode (SPD), VDD = 3.3V,  
RTC enabled  
IDD_SPD  
-
5.0  
9.5  
17.2  
2.1  
2.8  
Standby Power-down mode (SPD), VDD = 3.3V,  
RTC enabled  
V
3.9  
8.3  
15.6  
1.0  
1.5  
Deep Power-down mode (DPD), VDD = 3.3V, all  
peripherals disabled  
-
-
1.9  
4.2  
8.2  
1.9  
IDD_DPD  
2.4  
Deep Power-down mode(DPD), RTC enable[*1]  
V
-
-
-
3.3  
5.6  
9.8  
0.9  
Deep Power-down mode(DPD), RTC enable[*1]  
-
V
1.6  
2.0  
Feb 15, 2019  
Page 204 of 245  
Rev 1.01  
M2351  
85 °C  
4.2  
8.3  
105 °C  
Note:  
1. VDD = AVDD = VBAT = VDDIO = 3.3V  
2. Guaranteed by characterization results, not tested in production.  
3. When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be  
considered.  
Table 8.3-5 Chip Current Consumption in Power-down Mode  
8.3.1.6 Current Consumption for RTC Domain  
T
Symbol  
Conditions  
LXT  
LDO  
DCDC  
Unit  
A
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
2.3  
2.5  
3.1  
4.9  
7.8  
2.0  
2.3  
2.8  
4.7  
7.5  
1.9  
2.3  
2.8  
4.5  
7.3  
1.0  
1.4  
1.8  
3.6  
6.2  
0.9  
1.3  
1.7  
3.4  
6.0  
2.0  
2.4  
3.0  
4.7  
7.1  
1.9  
2.5  
2.9  
4.8  
7.5  
1.9  
2.2  
2.8  
4.1  
7.3  
1.2  
1.3  
1.6  
3.5  
5.7  
1.1  
1.2  
1.6  
3.2  
5.9  
RTC enabled, operating current, VBAT = 3.6V  
V
RTC enabled, operating current, VBAT = 3.3V  
RTC enabled, operating current, VBAT = 1.7V  
RTC disabled, operating current, VBAT = 3.6V  
RTC disabled, operating current, VBAT = 3.3V  
V
V
V
IBAT  
uA  
V
Feb 15, 2019  
Page 205 of 245  
Rev 1.01  
M2351  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
0.9  
1.1  
1.5  
3.0  
5.7  
0.9  
1.2  
1.6  
2.9  
5.7  
RTC disabled, operating current, VBAT = 1.7V  
V
Note: Guaranteed by characterization results, not tested in production.  
Table 8.3-6 Current Consumption for VBAT  
On-chip Peripheral Current Consumption  
8.3.2  
All GPIO pins are in push pull mode, output high.  
LDO = 1.26V  
The typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
When the peripherals are enabled HCLK is the system clock, fHCLK = 64 MHz, fPCLK0, 1  
fHCLK/2.  
=
Peripheral  
PDMA0  
PDMA1  
ISP  
IDD  
24.8  
24  
Unit  
0.1  
6.1  
36.5  
2.5  
6
EBI  
SDH0  
CRC  
CRPT  
FMC  
30  
USBH  
SRAM0IDLE  
SRAM1IDLE  
WDT  
50  
6.2  
4.8  
1.3  
3.8  
5.1  
4.9  
4.6  
4.9  
0.2  
4
uA  
RTC  
TMR0  
TMR1  
TMR2  
TMR3  
CLKO  
ACMP01  
I2C0  
1.1  
1
I2C1  
Feb 15, 2019  
Page 206 of 245  
Rev 1.01  
M2351  
I2C2  
QSPI0  
SPI0  
0.8  
10.5  
13.9  
11.5  
16.5  
6
SPI1  
SPI2  
UART0  
UART1  
UART2  
UART3  
UART4  
UART5  
CAN0  
OTG  
8.4  
4.9  
7.3  
4.9  
7.7  
8.2  
15.2  
38.7  
12.7  
2.9  
USBDC  
EADC  
I2S0  
SC0  
2.8  
SC1  
5.3  
SC2  
2.6  
SPI3  
12.8  
5.9  
USCI0  
USCI1  
DAC  
7.2  
1.4  
EPWM0  
EPWM1  
BPWM0  
BPWM1  
QEI0  
8.3  
10.4  
3.1  
5.2  
2.1  
QEI1  
3.4  
TRNG  
ECAP0  
28.8  
1.8  
ECAP1  
3.4  
Note: Guaranteed by characterization results, not tested in production.  
Feb 15, 2019  
Page 207 of 245  
Rev 1.01  
M2351  
8.3.3  
Wakeup Time  
The wakeup times given in Table 8.3-7 is measured on a wakeup phase with a 12 MHz HIRC  
oscillator. The clock source used to wake up the device depends from the current operating  
mode:  
Fast-wakeup, power down, low leakage Power-down mode: the clock source is the RC  
oscillator  
Standby and Deep Power-down mode: the clock source is the clock that was set before  
entering Sleep mode.  
The wakeup times are measured from the wakeup event to the point in which the application  
code reads the first instruction.  
The clock source is the RC oscillator from HIRC.  
Symbol  
Parameter  
Typ[*1]  
Unit  
1.63[*2]  
tWU_IDLE  
tWU_FWPD  
tWU_NPD  
tWU_LLPD  
tWU_ULLPD  
tWU_SPD  
tWU_DPD  
Wakeup from IDLE mode  
9.0[*2]  
11.5[*2]  
60[*2]  
Wakeup from Fast-wakeup Power-down mode  
Wakeup from normal Power-down mode  
Wakeup from low leakage Power-down mode  
Wakeup from ultra low leakage power down  
Wakeup from Standby Power-down mode (SPD)  
Deep Power-down mode (DPD)  
µs  
61[*2]  
525[*2]  
183[*3]  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. The wake up source is GPIO(PA.0) wake up.  
3. The wake up source is GPIO(PC.0) wake up.  
4. Based on test during characterization, not tested in production.  
5. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
Table 8.3-7 Low-power Mode Wakeup Timings  
Feb 15, 2019  
Page 208 of 245  
Rev 1.01  
 
M2351  
8.3.4  
I/O DC Characteristics  
Symbol  
Parameter  
Min  
0.8  
Typ  
Max Unit  
Test Conditions  
VDD = VDDIO = 3.6 V  
-
-
V
V
V
V
VIL1  
VIH1  
VIL2  
Input Low Voltage (TTL input)  
Input High Voltage (TTL input)  
Input Low Voltage (Schmitt input)  
-
-
-
-
-
0.56  
-
-
VDD = VDDIO = 1.7 V  
VDD = VDDIO = 3.6V  
VDD = VDDIO = 1.7V  
VDD = VDDIO = 3.6V  
2
1.04  
-
-
0.3*VDD  
0.3*VDD  
V
-
VDD = VDDIO = 1.7V  
VDD = VDDIO = 3.6V  
VDD = VDDIO = 1.7V  
0.7*VDD  
0.7*VDD  
-
-
-
0.2VDD  
-
VIH2  
Input High Voltage (Schmitt input)  
Hysteresis voltage of (Schmitt input)  
V
V
VHY  
-
VDD = VDDIO = 3.6V, 0 < VIN  
VDD, Open-drain or input only  
mode  
<
ILK  
Input Leakage Current  
-1  
1
A  
67.9  
53  
-
-
-
-
-
-
-
-
-
-
IIL  
Logic 0 Input Current (Quasi-bidirectional mode)  
Input Pull Up Resistor  
uA VDD = VDDIO = 3.6V, VIN = 0V  
VDD = VDDIO = 3.3V  
VDD = VDDIO = 1.8V  
VDD = VDDIO = 3.3V  
VDD = VDDIO = 1.8V  
RPU  
53  
53  
RPD  
Input Pull down Resistor  
53  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. Leakage could be higher than the maximum value, if abnormal injection happens.  
3. To sustain a voltage higher than VDD +0.3 V, the internal pull-up resistors must be disabled. Leakage could be higher  
than the maximum value, if positive current is injected on adjacent pins  
Table 8.3-8 PIN input Characteristics  
Typ  
Max  
Symbol  
Parameter  
Min  
Unit  
Test Conditions  
Source Current  
-7.939  
-
-6.934  
ISR1  
uA  
VDD = VDDIO = 3.3V  
(Quasi-bidirectional Mode, Set GPIO to output  
HIGH, Apply GPIO pin VIN=(VDD-0.4)V for VDD  
and measure the source current)  
-7.939  
-20.629  
-14.326  
3.576  
-
-
-
-
-6.934  
-3.43  
ISR2  
ISR3  
ISR4  
ISK1  
uA  
mA  
mA  
mA  
VDD = VDDIO = 1.8V  
VDD = VDDIO = 3.3V  
VDD = VDDIO = 1.8V  
VDD = VDDIO = 3.3V  
Source Current  
(Push-pull Mode, Set GPIO to output HIGH,  
Apply GPIO pin VIN=(VDD-0.4)V for VDD and  
measure the source current)  
-4.392  
19.98  
Sink Current  
(Quasi-bidirectional, Push-pull Mode, Set GPIO  
to output LOW, Apply GPIO pin  
VIN=(VSS+0.4)V for VSS and measure the  
source current)  
4.102  
-
12.351  
ISK2  
mA  
VDD = VDDIO = 1.8V  
Feb 15, 2019  
Page 209 of 245  
Rev 1.01  
M2351  
Logic 1 to 0 Transition Current  
(Quasi-bidirectional Mode)  
VDD = VDDIO = 3.3V  
VIN=2.0V  
-
-
ITL  
-70  
4.2  
uA  
pF  
-
-
CIO  
I/O pin capacitance  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. The ISR and ISK must always respect the abslute maximum current and the sum of I/O, CPU and peripheral must not  
exceed ΣIDD and ΣISS.  
Table 8.3-9 PIN Output Characteristics  
Symbol  
Parameter  
Negative going threshold  
Min  
Typ  
Max unit  
Test Conditions  
-
0.3*VDD  
V
V
VDD = 3.3V  
-
VILR  
(Schmitt input), nRESET  
Positive going threshold  
(Schmitt Input), nRESET  
0.7*VDD  
-
VDD = 3.3V  
-
VIHR  
50  
-
56.8  
KΩ  
RRST  
tFR1  
Internal nRESET pin pull up resistor  
nRESET input filtered time  
32  
uS  
-
-
nRESET input filtered time under SPD and DPD  
mode  
300  
nS  
VDD = 3.3V,  
-
-
tFR2  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. It is recommended to add a 10 kΩ and 10uF capacitor at nRESET pin to keep reset signal stable.  
Table 8.3-10 nRESET Pin Characteristics  
Feb 15, 2019  
Page 210 of 245  
Rev 1.01  
M2351  
8.4  
AC Electrical Characteristics  
8.4.1  
External 4~24 MHz High Speed Crystal (HXT) Characteristics  
The high-speed external (HXT) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the XT1_IN and XT1_Out pins and must not be connected to any other devices in order  
to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer  
for more details on the resonator characteristics (frequency, package, accuracy).  
TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
VDD  
Parameter  
Operating Voltage  
Min. Typ. Max. Unit  
Test Conditions  
1.7  
-
3.0  
3.6  
-
V
kΩ  
Rf  
Feedback resister  
1000  
fHXT  
Oscillator frequency  
Temperature Range  
4
-
-
24  
105  
MHz  
C  
VDD = 1.8 ~ 3.3V  
THXT  
-40  
620  
1088  
1943  
2085  
230  
4MHz  
12MHz  
16MHz  
24MHz  
4MHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Current Consumption  
(INV-type Crystal)  
IHXT_INV  
IHXT_GM  
TS_GM  
mA  
A  
s  
364  
12MHz  
16MHz  
24MHz  
4MHz  
Current Consumption  
(GM-type Crystal)  
400  
620  
2026  
602  
12MHz  
16MHz  
24MHz  
4MHz  
Stable time (GM-type)  
440  
401  
2322  
619  
443  
419  
50  
12MHz  
16MHz  
24MHz  
TS_INV  
Stable time (INV-type)  
Clock Duty  
s  
-
-
45  
55  
%
Notes:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-1 External 4~24 MHz High Speed Crystal (HXT) Oscillator  
Feb 15, 2019  
Page 211 of 245  
Rev 1.01  
M2351  
8.4.1.1 Typical Crystal Application Circuits  
Crystal  
C1  
C2  
5~20pF  
4~24 MHz  
5~20pF  
XT_OUT  
XT_IN  
C1  
C2  
Figure 8.4-1 Typical Crystal Application Circuit  
8.4.2  
External 4~24 MHz High Speed Crystal (OSC) Input Clock  
Symbol  
Parameter  
Clock High Time  
Min.  
Typ.  
Max.  
Unit  
nS  
nS  
nS  
nS  
V
Test Conditions  
18  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
-
-
-
-
-
-
-
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
Input High Voltage  
Input Low Voltage  
18  
-
10  
-
10  
-
-
0.7*VDD  
VIH  
VIL  
-
0.3*VDD  
V
External  
clock source  
XT1_IN  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
VIH  
VIL  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
Feb 15, 2019  
Page 212 of 245  
Rev 1.01  
M2351  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Note: Guaranteed by design, not tested in production.  
Feb 15, 2019  
Page 213 of 245  
Rev 1.01  
M2351  
8.4.3  
External 32.768 kHz Low Speed Crystal (LXT) Characteristics  
The low-speed external (LXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the X32_OUT and X32_IN pins and must not be connected to any other devices in  
order to minimize output distortion and startup stabilization time. Refer to the crystal resonator  
manufacturer for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
VBAT  
Parameter  
Operation Voltage  
Min. Typ. Max. Unit  
Test Conditions  
VBAT = 1.7 ~ 3.6 V  
VBAT = 3.3V  
1.7  
-
-
32.768  
-
3.6  
V
kHz  
C  
fLXT  
Oscillator frequency  
Temperature  
-
105  
-
-40  
-
TLXT  
ILXT  
Operating current  
Duty cycle  
0.45  
-
A  
%
45  
-
55  
-
TS  
Stable Time  
372  
ms  
Notes:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-2 External 32.768 kHz Crystal  
8.4.3.1 Typical Crystal Application Circuits  
Crystal  
C1  
C2  
32.768 kHz  
5~20pF  
5~20pF  
XT_OUT  
XT_IN  
C1  
C2  
Figure 8.4-2 Typical Crystal Application Circuit  
8.4.4  
External 32.768 kHz Low Speed Crystal (OSC) Input Clock  
Parameter  
Symbol  
tCHCX  
Min.  
450  
Typ.  
Max.  
Unit  
ns  
Test Conditions  
Clock High Time  
Clock Low Time  
-
-
-
-
450  
ns  
tCLCX  
Feb 15, 2019  
Page 214 of 245  
Rev 1.01  
M2351  
Parameter  
Clock Rise Time  
Symbol  
tCLCH  
Min.  
Typ.  
Max.  
Unit  
ns  
Test Conditions  
50  
-
-
-
-
-
Clock Fall Time  
50  
ns  
tCHCL  
-
0.7*VDD  
-
Xin_VIH  
Xin_VIL  
LXT Input Pin Input High Voltage  
LXT Input Pin Input Low Voltage  
V
V
0.3*VDD  
-
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
Xin_VIH  
Xin_VIL  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
8.4.5  
12 MHz Internal High Speed RC Oscillator (HIRC)  
Symbol  
Parameter  
Min.  
Typ.  
-
Max.  
Unit  
V
Test Conditions  
1.7  
3.6  
VHRC Supply voltage  
Center Frequency  
12  
MHz  
-
-
TA = 25 °C,  
-0.35  
0.35  
%
%
-
-
fHRC  
VDD = 3.3V  
Internal Oscillator Frequency[*1]  
TA = -40C ~ +105 °C,  
-3.6  
2.7  
VDD = 1.7 ~ 3.6V  
70  
3
IHRC Operating current  
TS Stable time  
-
-
-
-
A  
us  
Note: Guaranteed by characterization, not tested in production.  
8.4.6  
48 MHz Internal High Speed RC Oscillator (HIRC48)  
Symbol  
Parameter  
Min.  
Typ.  
-
Max.  
Unit  
V
Test Conditions  
1.7  
3.6  
VHRC Supply voltage  
Center Frequency  
48  
-
-
MHz  
TA = 25 °C,  
VDD = 3.3V  
-0.285  
0.8715  
-
%
fHRC  
Frequency drift over temperarure  
and volatge [*1]  
TA = -40C ~ +105 °C,  
-3.555  
-
2.41  
-
-
%
VDD = 1.7 ~ 3.6V  
100  
IHRC Operating current  
A  
Feb 15, 2019  
Page 215 of 245  
Rev 1.01  
M2351  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
5
TS  
Stable time  
-
-
us  
Note: Guaranteed by characterization, not tested in production.  
8.4.7  
Symbol  
VLRC  
10 kHz Internal Low Speed RC Oscillator (LIRC)  
Parameter  
Supply voltage  
Center Frequency  
Min.  
Typ.  
-
Max.  
Unit  
V
Test Conditions  
1.7  
3.6  
kHz  
10  
FLRC  
Frequency  
drift  
over  
-40.476  
49.772  
-
%
VDD=1.7V~3.6V, TA=-40~105°C  
VDD = 3.3V  
temperarure and volatge [*1]  
Operating current  
Stable time  
0.29  
200  
ILRC  
TS  
-
-
-
-
A  
μs  
Note: Guaranteed by characterization, not tested in production.  
8.4.8  
PLL Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
4
24  
fPLL_IN  
fPLL_OUT  
Jitter  
IDD  
PLL input clock  
PLL multiplier output clock  
Cycle-to-cycle Jitter[*2]  
Power consumption  
MHz  
MHz  
ps  
-
-
50  
200  
250  
Peak to peak at 144M  
VDD=3.3Vat 200MHz  
-
-
-
-
1
mA  
Note:  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
Feb 15, 2019  
Page 216 of 245  
Rev 1.01  
M2351  
8.4.9  
I/O AC Characteristics  
Px_SLEWCTL Symbol  
Parameter  
Conditions  
Typ Unit  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
4.1  
2.9  
9.7  
VDD = 3.6 V  
Output high to low level fall time  
(90~10%)  
t
f(IO)out  
VDD = 1.7 V  
VDD = 3.6 V  
VDD = 1.7 V  
VDD = 3.6 V  
VDD = 1.7 V  
VDD = 3.6 V  
VDD = 1.7 V  
VDD = 3.6 V  
VDD = 1.7 V  
VDD = 3.6 V  
VDD = 1.7 V  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
CL = 51 pF  
CL = 30 pF  
7.3  
4.4  
3.3  
10.0  
7.3  
3.4  
2.2  
7.4  
4.9  
00  
Output low to high level rise time  
(10~90%)  
t
r(IO)out  
Output high to low level fall time  
(90~10%)  
t
f(IO)out  
01  
ns  
3.1  
2.0  
7.2  
4.7  
3.4  
2.2  
7.4  
4.9  
3.1  
2.0  
7.2  
4.7  
Output low to high level rise time  
(10~90%)  
t
r(IO)out  
Output high to low level fall time  
(90~10%)  
t
f(IO)out  
10  
Output low to high level rise time  
(10~90%)  
t
r(IO)out  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. CL is a external capacitive load to simulate PCB and device loading.  
3. The maximum frequency is defined by   
ꢃꢄ  
.  
ꢀꢁꢂ  
ꢆꢄꢇꢄꢈꢉ ꢋꢉ  
4. The I/O dynamic current consumption is defined by ꢏꢐꢑ  ꢏꢏ ꢇꢄ ꢐꢑ  ꢐꢑ   
Table 8.4-3 I/O AC Characteristics  
Feb 15, 2019  
Page 217 of 245  
Rev 1.01  
M2351  
8.5  
Analog Electrical Characteristics  
8.5.1 LDO  
Symbol  
Parameter  
Min  
Typ  
-
Max  
Unit  
V
Test Condition  
VDD  
DC Power Supply  
1.7  
3.6  
-
-
1.26  
1.20  
-
-
V
Turbo mode  
V
Normal run mode  
VLDO  
Output Voltage  
Temperature  
Low leakage power-down  
mode  
-
0.96  
-
V
Ultra low leakage Power-  
down mode  
-
0.86  
-
-
V
TA  
-40  
105  
Note:  
1. It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of the device.  
2. For ensuring power stability, a 2.2μF Capacitor must be connected between LDO_CAP pin and the closest VSS pin of  
the device.  
3. For ensuring power stability, a 2.2μF Capacitor must be connected between LDO_CAP pin and the closest VSS pin of  
the device.  
8.5.2 DC-DC  
Typical values are at VDD = 3.3V, TA = 25°C, Vsw is connected to 4.7uH inductance and LDO_CAP is  
connected to 2.2uF capacitance unless otherwise specified.  
Symbol  
Parameter  
Min  
1.7  
1.2  
1.15  
-
Typ  
Max  
3.6  
Unit  
V
Test Condition  
VIN  
Input Voltage Range  
-
1.26  
1.20  
-
1.4  
V
VOUT  
Output Voltage Range  
1.33  
30  
V
IOUT_MAX  
IQ_DCDC  
Maximum DC Output Current  
Quiescent Current  
mA  
VIN>1.7V  
-
-
No load, normal mode, only  
buck regulator  
15  
uA  
VLINE  
Line Regulation  
Load Regulation  
-5  
-5  
-
-
5
5
%
%
IOUT=30mA, VIN=1.7V to 3.6V  
IOUT=0.2mA to 30mA  
VLOAD  
IOUT= 2~30mA  
PEFF  
Power Efficiency  
-
80  
-
%
LOUT = 4.7uH, DCR ≤ 180mΩ  
Note:  
1. It is recommended a 2.2μF and 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of the device.  
2. For ensuring power stability, a 2.2μF Capacitor must be connected between LDO_CAP pin and the closest VSS pin of  
the device.  
Feb 15, 2019  
Page 218 of 245  
Rev 1.01  
M2351  
8.5.3 Low-Voltage Reset  
Symbol  
AVDD  
TA  
Parameter  
Min Typ Max Unit  
Test Condition  
0
3.6  
Supply Voltage  
Temperature  
-
V
uA  
V
-40  
105  
-
-
0.5  
ILVR  
Operating Current  
Threshold Voltage  
Operating Current  
-
-
AVDD = 3.6V  
1.5  
65  
VLVR *  
IBOD  
-
-
-
-
μA  
AVDD = 3.6V  
BODVL  
(SYS_BODCTL[18:16])  
= 111  
BODVL  
(SYS_BODCTL[18:16])  
= 110  
BODVL  
(SYS_BODCTL[18:16])  
= 101  
BODVL  
(SYS_BODCTL[18:16])  
= 100  
BODVL  
(SYS_BODCTL[18:16])  
= 011  
BODVL  
(SYS_BODCTL[18:16])  
= 010  
BODVL  
(SYS_BODCTL[18:16])  
= 001  
BODVL  
(SYS_BODCTL[18:16])  
= 000  
BODVL  
(SYS_BODCTL[18:16])  
= 111  
BODVL  
(SYS_BODCTL[18:16])  
= 110  
BODVL  
(SYS_BODCTL[18:16])  
= 101  
BODVL  
(SYS_BODCTL[18:16])  
= 100  
BODVL  
(SYS_BODCTL[18:16])  
= 011  
BODVL  
(SYS_BODCTL[18:16])  
= 010  
BODVL  
(SYS_BODCTL[18:16])  
= 001  
BODVL  
(SYS_BODCTL[18:16])  
= 000  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
3
Brown-out Voltage  
(Falling edge)  
VBOD_F  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
Brown-out Voltage  
(Rising edge)  
VBOD_R  
-
-
-
-
TBOD_RE  
VPOR  
Respond Time  
Reset Voltage  
1
ms  
V
1.45  
VDD Raising Rate to Ensure  
Power-on Reset  
-
-
RRVDD  
10  
us/V  
Feb 15, 2019  
Page 219 of 245  
Rev 1.01  
M2351  
VDD Falling Rate to Ensure  
-
-
-
-
FRVDD  
tPOR  
500  
500  
us/V  
us  
Power-on Reset  
Minimum Time for VDD Stays at VPOR to Ensure Power-on  
Reset  
Note :  
1. Guaranteed by characterization, not tested in production.  
2. Design for specified applcaiton.  
VDD  
RVDDR  
RVDDF  
VBOD  
VLVR  
VPOR  
Time  
Figure 8.5-1 Power-up Ramp Condition  
Feb 15, 2019  
Page 220 of 245  
Rev 1.01  
M2351  
8.5.4 Internal Voltage Reference  
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature  
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Min  
Typ  
1.6  
2.0  
2.5  
3.0  
-
Max Unit  
Comments  
AVDD > 2.0v  
AVDD > 2.2v  
AVDD > 2.7v  
AVDD > 3.2v  
-
-
-
-
-
-
-
-
VREF_INT  
Internal reference voltage  
V
-
-
2
ms  
us  
CL =4.7 uF, VREF initial=0  
CL =0.1 uF, VREF initial=0  
Ts  
stable time  
-
48  
Note: Guaranteed by characterization, not tested in production.  
VREF  
1uF  
Figure 8.5-2 Typical Connection with Internal Voltage Reference  
Feb 15, 2019  
Page 221 of 245  
Rev 1.01  
M2351  
8.5.5 12-bit ADC  
8.5.5.1 Fast Speed Channel  
Symbol  
AVDD  
VREF  
Parameter  
Operating voltage  
Min.[*1]  
Typ.  
Max.[*1]  
Unit  
V
Test Conditions  
AVDD = VDD  
3.3  
-
-
AVDD  
-
3.6  
-
Reference voltage  
V
TA  
Temperature  
-40  
105  
Operating current (AVDD current)  
AVDD = VDD =VREF = 3.3V  
ADC Clock Rate = 64 MHz  
High speed channel  
IADC  
470  
-
520  
uA  
(Enable ADC and disable all other  
analog modules)  
Resolution  
-
0
-
12  
VREF  
64  
Bit  
V
VIN  
FADC  
TSMP  
TCONV  
FSPS  
TPU  
ADC channel input voltage  
ADC Clock frequency  
Sampling Time  
-
0.14  
3
-
MHz  
1/FADC  
High speed channel  
-
258  
272  
3.76  
-
Conversion time  
17  
-
1/FADC TCONV = TSMP + 14  
MSPS High speed channel  
μs  
Sampling Rate (FADC/TCONV  
Power-up time  
)
-
-
20  
-
INL  
Integral Non-Linearity Error  
-6.6  
-1  
-
2.7  
6.6  
2.0  
3.0  
6.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
pF  
VREF = AVDD  
VREF = AVDD  
VREF = AVDD  
VREF = AVDD  
VREF = AVDD  
DNL  
EG  
Differential Non-Linearity Error  
Gain error  
-
-0.6  
-0.37  
-5.94  
-
-
EOFFSET  
EA  
Offset error  
-
Absolute Error  
-
CIN  
Internal Capacitance[*1]  
Monotonic  
5
-
Guaranteed  
-
Note:  
1. Guaranteed by characterization, not tested in production.  
2. REX max formula is used to determine the maximum external impedance allowed for 1/4 LSB error. N = 12 (based on  
12-bit resoluton) and k is the number of sampling clocks (TSMP). CEX represents the capacitance of PCB and pad and  
is combined with REX into a low-pass filter. Once the REX and CEX values are too large, it is possible to filter the real  
signal and reduce the ADC accuracy. ꢗꢘ   
 ꢐꢦ  
ꢠꢣꢤ  
ꢄꢇꢄꢞ ꢄꢇꢡꢢꢈꢅ  
ꢟꢠ  
ꢛꢜꢝ  
8.5.5.2 Low Speed Channel  
Symbol  
AVDD  
VREF  
Parameter  
Min. [*1] Typ. Max. [*1] Unit  
Test Conditions  
AVDD = VDD  
Operating voltage  
Reference voltage  
Temperature  
1.7  
-
-
AVDD  
-
3.6  
-
V
V
TA  
-40  
105  
Feb 15, 2019  
Page 222 of 245  
Rev 1.01  
M2351  
Symbol  
Parameter  
Min. [*1] Typ. Max. [*1] Unit  
Test Conditions  
AVDD = VDD =VREF = 3.3V  
ADC Clock Rate = 34 MHz  
low speed channel  
223  
140  
112  
72  
-
-
-
-
237  
147  
119  
75  
IADC1  
uA  
uA  
AVDD = VDD =VREF = 1.7V  
ADC Clock Rate = 34 MHz  
low speed channel  
Operating current (AVDD current)  
(Enable ADC and disable all other  
analog modules)  
AVDD = VDD =VREF = 3.3V  
ADC Clock Rate = 14 MHz  
low speed channel  
IADC2  
AVDD = VDD =VREF = 1.7V  
ADC Clock Rate = 14 MHz  
low speed channel  
Resolution  
-
0
-
12  
VREF  
64  
Bit  
V
VIN  
FADC  
TSMP  
TCONV  
FSPS  
TPU  
ADC channel input voltage  
ADC Clock frequency  
Sampling Time  
-
0.14  
3
-
MHz Low speed channel  
1/FADC  
-
258  
272  
2
Conversion time  
17  
-
-
1/FADC TCONV = TSMP + 14  
MSPS Low speed channel  
μs  
Sampling Rate (FADC/TCONV  
Power-up time  
)
-
20  
-3.4  
-1  
-
-
INL  
Integral Non-Linearity Error  
-
4.1  
2.1  
3.6  
2.8  
7.3  
-
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
LSB VREF = AVDD  
pF  
DNL  
EG  
Differential Non-Linearity Error  
Gain error  
-
-3.1  
-1.3  
2.8  
-
-
EOFFSET  
EA  
Offset error  
-
Absolute Error  
-
CIN  
Internal Capacitance[*1]  
Monotonic  
5
-
Guaranteed  
-
Note: Guaranteed by characterization, not tested in production.  
Feb 15, 2019  
Page 223 of 245  
Rev 1.01  
M2351  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer curve and the ideal transfer  
curve. A calibrated transfer curve means it has calibrated the offset and gain error from the actual transfer curve.  
Note: GND < EADC_CHx < VREF  
VDD  
RIN  
12-bit  
Converter  
EADC_CHx  
CIN  
Figure 8.5-3 Typical Connection Using the ADC  
Feb 15, 2019  
Page 224 of 245  
Rev 1.01  
M2351  
8.5.6 Temperature Sensor  
Symbol  
Parameter  
Min Typ Max  
Unit  
VDD  
TA  
Operating Voltage  
1.7  
40  
-
-
-
3.6  
105  
-
V
Temperature Range  
°C  
ITEMP  
Tc  
Current Consumption [*3]  
Temperature Coefficient [*3]  
16  
A  
mV/°C  
mV  
-1.77 -1.82 -1.86  
Vos  
tS  
Offset Voltage when TA = 0°C [*3]  
710  
720  
1
730  
Stable time[*2]  
-
-
-
-
µs  
ADC sampling time when reading the temperature (5pF cap load) [*1]  
3
µs  
TS_temp  
Note:  
1. VTEMP (mV) = Temperature Coefficient (mV/°C) x Temperature (°C) + Offset (mV)  
2. Guaranteed by design, not tested in production  
3. Guaranteed by characteristic, not tested in production  
8.5.7 Digital to Analog Converter (DAC)  
Symbol  
Parameter  
Analog supply voltage  
Min  
Typ  
-
Max Unit  
Comments  
AVDD  
3.6  
1.8  
V
bit  
V
NR  
Resolution  
12  
VREF  
AVDD  
±2  
VREF AVDD  
Reference supply voltage  
1.5  
-
-
-
-
-
-
-
-
LSB 12-bit mode  
DNL  
INL  
Differential non-linearity error[*4]  
Integral non-linearity error[*4]  
±0.5 LSB 10-bit mode  
±4  
±1  
LSB 12-bit mode  
LSB 10-bit mode  
12-bit mode  
LSB  
-
-
±6  
DACOUT buffer ON  
OE  
Offset Error[*4]  
12-bit mode  
-
-
-
-
-
±4  
±2  
4
LSB  
DACOUT buffer OFF  
LSB 10-bit mode  
12-bit mode  
LSB  
-12  
DACOUT buffer ON  
GE  
AE  
Gain Error[*4]  
12-bit mode  
-
-
-
-
-
-
±4  
±2  
LSB  
DACOUT buffer OFF  
LSB 10-bit mode  
12-bit mode  
LSB  
Absolute Error[*4]  
±10  
DACOUT buffer ON  
Feb 15, 2019  
Page 225 of 245  
Rev 1.01  
M2351  
12-bit mode  
-
-
±4  
LSB  
DACOUT buffer OFF  
-
-
-
±2  
LSB 10-bit mode  
TA  
Temperature  
Monotonic  
-40  
105  
10-bit guaranteed  
AVDD  
-
VO  
Output Voltage  
0.2  
-
V
DACOUT buffer ON  
0.2  
Resistive load[*2]  
7.5  
-
10  
-
-
DACOUT buffer ON  
DACOUT buffer OFF  
RLOAD  
Ro  
Output impedance[*4]  
Capacitive load[*3]  
-
-
12  
50  
CLOAD  
pF  
-
-
AV  
DD = 3.6V, no load, lowest code  
175  
390  
-
195  
426  
240  
(0x000)  
Current consumption on AVDD supply[*4]  
Current consumption on AVDD supply[*4]  
Settling Time  
IAVDD  
IREF  
TS  
A  
-
AV  
DD = 3.6V, no load, middle code  
(0x800)  
VREF =3.6V, no load, middle code  
(0x800)  
170  
A  
Full scale: for a 12-bit input code  
transition between the lowest and the  
highest input codes when DAC_OUT  
reaches final value +/-1 LSB,  
-
-
5
1
6
-
μs  
CLOAD  
RLOAD  
=50p,  
=7.5k  
Max frequency for a correct DAC_OUT  
Fs  
Update Rate  
MSPSchange from core i to i+1LSB, CLOAD  
50pF and RLOAD >= 5Kohm  
=
Wakeup time from OFF state. Input  
μs code between lowest and highest  
possible codes.  
TWAKEUP  
PSRR  
Wake-up Time  
-
-
9
15  
Power Supply Rejection Ratio[*1]  
-60  
-40  
dB No RLOAD, CLOAD = 50pF  
Note:  
1. Guaranteed by design, not tested in production  
2. Resistive load between DACOUT and AVSS  
.
3. Capacitive load at DACOUT pin.  
4. Guaranteed based on test during characterization.  
Feb 15, 2019  
Page 226 of 245  
Rev 1.01  
M2351  
8.5.8 Analog Comparator Controller (ACMP)  
The maximum values are obtained for VDD = 3.6V and maximum ambient temperature (TA), and  
the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Analog supply voltage  
Min  
Typ  
-
Max Unit  
Comments  
AVDD  
3.6  
1.8  
V
TA  
Temperature  
-40  
-
105  
-
-
-
-
MODESEL[1:0] = 00  
-
1.5  
2.9  
11.4  
39.3  
-
MODESEL[1:0] = 01  
MODESEL[1:0] = 10  
MODESEL[1:0] = 11  
-
-
IDD  
Operating current  
A  
-
0.1  
AVDD  
0.1  
Input common mode voltage range [*2]  
-
VCM  
VDI  
Differential input voltage sensitivity [*2]  
Input offset voltage  
10  
-
20  
-
-
12  
-
mV Hysteresis disable  
mV Hysteresis disable,  
HYSSEL[1:0] = 00  
Voffset  
-
0
-
15  
28  
39  
70  
-
-
HYSSEL[1:0] = 01  
mV  
Vhys  
Hysteresis window  
DC voltage Gain[*1]  
-
-
HYSSEL[1:0] = 10  
-
-
HYSSEL[1:0] = 11  
Av  
-
-
dB  
-
Hysteresis disable MODESEL[1:0] = 00  
0.14  
0.2  
0.7  
1.5  
82  
124  
-
-
Hysteresis disable MODESEL[1:0] = 01  
Td  
Propagation delay[*2]  
us  
-
-
Hysteresis disable MODESEL[1:0] = 10  
-
-
Hysteresis disable MODESEL[1:0] = 11  
Hysteresis disable MODESEL[1:0] = 00  
-
-
-
-
Hysteresis disable MODESEL[1:0] = 01  
TSetup  
Setup time[*2]  
ns  
-
-
Hysteresis disable MODESEL[1:0] = 10  
274  
419  
-
-
Hysteresis disable MODESEL[1:0] = 11  
Note:  
1. Guaranteed by design, not tested in production.  
2. Guaranteed by characteristic, not tested in production.  
Feb 15, 2019  
Page 227 of 245  
Rev 1.01  
M2351  
8.6  
Flash DC Electrical Characteristics  
Symbol  
Parameter  
Supply Voltage  
Endurance  
Min  
1.08  
10000  
10  
Typ  
Max  
1.32  
-
Unit  
V
Test Condition  
[1]  
VFLA  
NENDUR  
TRET  
-
cycles[2]  
year  
mS  
Data Retention  
-
-
-
-
-
-
-
-
160  
320  
50  
TERASE  
TMER  
TPROG  
IDD1  
Page Erase Time  
Mass Erase Time  
Program Time  
Read Current  
92  
201  
42  
-
TA = 25  
uS  
mA  
mA  
uA  
4.12  
5
IDD2  
Program Current  
Erase Current  
-
IDD3  
-
5
Note:  
1. VFLA is source from chip LDO output voltage.  
2. Number of program/erase cycles.  
3. This table is guaranteed by design, not test in production.  
Feb 15, 2019  
Page 228 of 245  
Rev 1.01  
M2351  
8.7  
I2C Dynamic Characteristics  
Standard Mode[1][2]  
Fast Mode[1][2]  
Symbol  
Parameter  
Unit  
Min  
4.7  
Max  
-
Min  
1.2  
Max  
tLOW  
SCL low period  
SCL high period  
-
uS  
uS  
uS  
uS  
uS  
uS  
nS  
uS  
nS  
nS  
pF  
4
4.7  
4
0.6  
1.2  
0.6  
0.6  
tHIGH  
-
-
-
-
-
-
-
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
-
-
4
-
4.7 [3]  
1.2 [3]  
100  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
250  
-
Data hold time  
0 [4]  
3.45 [5]  
1000  
20+0.1Cb [4]  
-
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
-
-
-
300  
400  
tf  
SCL/SDA fall time  
-
-
Cb  
Capacitive load for each bus line  
Note:  
1. Guaranteed by characteristic, not tested in production  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8 MHz  
to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL  
signal.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.7-1 I2C Timing Diagram  
Feb 15, 2019  
Page 229 of 245  
Rev 1.01  
M2351  
8.8  
SPI Dynamic Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
SPI Master Mode (VDD = 3.0~3.6 V, 30 PF loading Capacitor)  
ns  
ns  
ns  
ns  
ns  
tCLKL  
tCLKH  
tDS  
Clock output High time [*1]  
Clock output Low time [*1]  
Data setup time  
-
-
-
-
TSPICLK / 2  
TSPICLK / 2  
0
2
-
-
-
-
tDH  
Data hold time  
-
tV  
Data output valid time  
0
1
tCLKH  
tCLKL  
CLKP=0  
SPICLK  
CLKP=1  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8.8-1 SPI Master Mode Timing Diagram  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
SPI Slave Mode (VDD = 3.0~3.6V, 30 PF Loading Capacitor)  
tCLKL  
tCLKH  
tSS  
Clock output High time [*1]  
Clock output Low time [*1]  
Slave select setup time  
Slave select hold time  
Data input setup time  
Data input hold time  
-
-
TSPICLK / 2  
Peripheral clock  
-
TSPICLK / 2  
Peripheral clock  
1 TSPICLK + 2ns  
-
-
-
-
-
-
-
Peripheral clock  
tSH  
1 TSPICLK  
Peripheral clock  
tDS  
0
2
-
-
ns  
ns  
ns  
tDH  
-
tV  
Data output valid time  
8
Feb 15, 2019  
Page 230 of 245  
Rev 1.01  
M2351  
Clock output High time [*1]  
-
-
TSPICLK / 2  
ns  
tCLKH  
Note: The minimum clock period for SPICLK is 41.67 ns (24 MHz).  
SSACTPOL=1  
tSS  
tSH  
SPI SS  
SSACTPOL=0  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=1  
RXNEG=0  
SPI Clock  
CLKPOL=1  
TXNEG=0  
RXNEG=1  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
Data Valid  
Data Valid  
tDH  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
SSACTPOL=1  
SSACTPOL=0  
tSS  
tSH  
SPI SS  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=0  
RXNEG=1  
SPI Clock  
CLKPOL=1  
TXNEG=1  
RXNEG=0  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
tDH  
Data Valid  
Data Valid  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
Figure 8.8-2 SPI Slave Mode Timing Diagram  
Feb 15, 2019  
Page 231 of 245  
Rev 1.01  
M2351  
8.9  
I2S Dynamic Characteristics  
Symbol  
Parameter  
I2S clock high time  
I2S clock low time  
WS valid time  
Min  
39  
39  
2
Max  
Unit  
Test Conditions  
tw(CKH)  
tw(CKL)  
tv(WS)  
th(WS)  
tsu(WS)  
th(WS)  
-
-
Master fPCLK = MHz, data: 24 bits, audio  
frequency = 256 kHz  
12  
-
Master mode  
Master mode  
Slave mode  
Slave mode  
ns  
WS hold time  
1
WS setup time  
WS hold time  
24  
0
-
-
I2S slave input clock  
duty cycle  
DuCy(SCK)  
35  
65  
%
Slave mode  
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
22  
10  
7
-
-
Master receiver  
Data input setup time  
Data input hold time  
Slave receiver  
-
Master receiver  
8
-
Slave receiver  
ns  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
-
21  
-
Slave transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Master transmitter (after enable edge)  
4
-
7
-
0
CPOL = 0  
tw(CKH)  
CPOL = 1  
tw(CKL)  
th(WS)  
tv(WS)  
WS output  
SDtransmit  
tv(SD_ST)  
Bitn transmit  
th(SD_MR)  
Bitn receive  
th(SD_ST)  
LSB transmit(2)  
MSB transmit  
MSB receive  
LSB transmit  
tsu(SD_MR)  
LSB receive(2)  
SDreceive  
LSB receive  
Figure 8.9-1 I2S Master Mode Timing Diagram  
Feb 15, 2019  
Page 232 of 245  
Rev 1.01  
M2351  
CPOL = 0  
CPOL = 1  
tw(CKH)  
tw(CKL)  
th(WS)  
WS input  
SDtransmit  
tv(SD_ST)  
Bitn transmit  
th(SD_SR)  
Bitn receive  
tsu(WS)  
th(SD_ST)  
LSB transmit(2)  
MSB transmit  
MSB receive  
LSB transmit  
tsu(SD_SR)  
SDreceive  
LSB receive(2)  
LSB receive  
Figure 8.9-2 I2S Slave Mode Timing Diagram  
Feb 15, 2019  
Page 233 of 245  
Rev 1.01  
M2351  
8.10 USCI - I2C Dynamic Characteristics  
Standard Mode[1][2]  
Fast Mode[1][2]  
Symbol  
Parameter  
Unit  
Min  
4.7  
4
Max  
Min  
Max  
tLOW  
tHIGH  
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
SCL low period  
SCL high period  
-
1.2  
-
uS  
uS  
uS  
uS  
uS  
uS  
nS  
uS  
nS  
nS  
pF  
-
0.6  
-
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
4.7  
4
-
1.2  
-
-
-
-
0.6  
4
0.6  
-
4.7 [3]  
250  
0 [4]  
-
-
1.2 [3]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
100  
-
Data hold time  
3.45 [5]  
1000  
300  
400  
20+0.1Cb [4]  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
-
-
-
tf  
SCL/SDA fall time  
-
Cb  
Capacitive load for each bus line  
-
Note:  
1. Guaranteed by characteristic, not tested in production  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8 MHz  
to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL  
signal.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.10-1 I2C Timing Diagram  
Feb 15, 2019  
Page 234 of 245  
Rev 1.01  
M2351  
8.11 USCI - SPI Dynamic Characteristics  
Symbol  
tCLKH  
tCLKL  
Parameter  
Clock output High time [*1]  
Clock output Low time [*1]  
Data setup time  
Min  
Typ  
Max  
Unit  
ns  
-
-
-
-
-
-
TSPICLK / 2  
ns  
ns  
ns  
ns  
TSPICLK / 2  
tDS  
0
2
-
-
tDH  
Data hold time  
tV  
Data output valid time  
-
0
1
Note: The minimum clock period for SPICLK is 41.67 ns (24 MHz).  
tCLKH  
tCLKL  
CLKP=0  
CLKP=1  
SPICLK  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8.11-1 SPI Master Mode Timing Diagram  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
ns  
tCLKH  
tCLKL  
tSS  
Clock output High time [*1]  
Clock output Low time [*1]  
Slave select setup time  
Slave select hold time  
Data input setup time  
Data input hold time  
-
-
-
TSPICLK / 2  
ns  
ns  
ns  
TSPICLK / 2  
1 TSPICLK + 2ns  
1 TSPICLK  
-
-
-
-
-
-
tSH  
tDS  
0
2
-
-
ns  
ns  
tDH  
-
8
tV  
Data output valid time  
Clock output High time [*1]  
ns  
ns  
tCLKH  
-
-
TSPICLK / 2  
Feb 15, 2019  
Page 235 of 245  
Rev 1.01  
M2351  
Note: The minimum clock period for SPICLK is 41.67 ns (24 MHz).  
SSACTPOL=1  
tSS  
tSH  
SPI SS  
SSACTPOL=0  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=1  
RXNEG=0  
SPI Clock  
CLKPOL=1  
TXNEG=0  
RXNEG=1  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
Data Valid  
Data Valid  
tDH  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
SSACTPOL=1  
SSACTPOL=0  
tSS  
tSH  
SPI SS  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=0  
RXNEG=1  
SPI Clock  
CLKPOL=1  
TXNEG=1  
RXNEG=0  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
tDH  
Data Valid  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
Data Valid  
Figure 8.11-2 SPI Slave Mode Timing Diagram  
Feb 15, 2019  
Page 236 of 245  
Rev 1.01  
M2351  
8.12 USB Characteristics  
8.12.1 USB Full-Speed PHY Characteristics  
Symbol  
VDD  
Parameter  
Min  
3
Typ  
Max  
3.6  
-
Unit  
V
Test Conditions  
Power  
3.3  
-
VIH  
Input High (driven)  
Input Low  
2.0  
-
-
-
-
V
VIL  
0.8  
-
V
-
VDI  
Differential Input Sensitivity  
0.2  
V
|PADP-PADM|  
Differential  
VCM  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Includes VDI range  
-
Common-mode Range  
Single-ended Receiver  
Threshold  
VSE  
Receiver Hysteresis  
Output Low (driven)  
Output High (driven)  
Output Signal Cross Voltage  
Pull-up Resistor  
-
200  
-
mV  
V
-
-
-
-
-
VOL  
VOH  
VCRS  
RPU  
RPD  
0
-
-
-
-
-
0.3  
2.8  
3.6  
V
1.3  
2.0  
V
1.425  
14.25  
1.575  
15.75  
kΩ  
kΩ  
Pull-down Resistor  
Termination Voltage for Uptream  
port pull up (RPU)  
VTRM  
3.0  
-
3.6  
V
ZDRV  
CIN  
Driver Output Resistance  
Transceiver Capacitance  
Rise Time  
-
-
10  
-
-
20  
Ω
pF  
ns  
ns  
%
Steady state drive*  
Pin to GND  
CL=50p  
TFR  
4
-
20  
TFF  
Fall Time  
4
-
20  
CL=50p  
TFRFF  
Rise and Fall Time Matching  
90  
-
111.11  
TFRFF=TFR/TFF  
Note:  
1. Guaranteed by design, not tested in production.  
2. To ensure stability, an external 1 μF output capacitor, 1uF external capacitor must be connected between the  
USB_VDD33_CAP pin and the closest GND pin of the device.  
3. USB_D+ and USB_D- must be connected with series resistors to fit USB Full-speed spec request (28 ~ 44Ω).  
Feb 15, 2019  
Page 237 of 245  
Rev 1.01  
M2351  
8.13 SDIO Characteristics  
8.13.1 Default Mode Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Condition  
SD_CLK Period  
TP_SD_CLK  
40  
-
-
ns  
-
(Data Transfer Mode)  
SD_CLK Period  
TP_SD_CLK_ID  
2,500  
-
-
ns  
(Identification Mode)  
TH_SD_CLK  
TL_SD_CLK  
SD_CLK High Time  
-
-
20  
20  
-
-
ns  
ns  
-
-
SD_CLK Low Time  
SD_DATA Setup Time to  
SD_CLK Rising  
TSU_SD_IN  
THD_SD_IN  
5
5
-
-
-
-
-
-
ns  
ns  
ns  
-
-
-
SD_DATA Hold Time from SD_CLK Rising  
SD_CLK Falling to  
TDLY_SD_OUT  
14  
Valid SD_DATA Delay  
TP_SD_CLK  
TL_SD_CLK  
TH_SD_CLK  
SDx_CLK  
SDx_CMD  
SDx_DATA[3:0]  
(Input Mode)  
TSU_SD_IN  
THD_SD_IN  
SDx_CMD  
SDx_DATA[3:0]  
(Output Mode)  
TDLY_SD_OUT  
Figure 8.13-1 SDIO Default Mode  
Feb 15, 2019  
Page 238 of 245  
Rev 1.01  
M2351  
8.13.2 SDIO Dynamic Characteristics  
Symbol  
TP_SD_CLK  
TH_SD_CLK  
TL_SD_CLK  
Parameter  
Min  
20  
7
Typ  
Max  
Unit  
ns  
Test Condition  
SD_CLK Period  
-
-
-
-
-
-
-
-
-
SD_CLK High Time  
SD_CLK Low Time  
ns  
7
ns  
SD_DATA Setup Time to  
SD_CLK Rising  
TSU_SD_IN  
THD_SD_IN  
6
2
-
-
-
-
-
-
ns  
ns  
ns  
ns  
-
-
-
-
SD_DATA Hold Time from SD_CLK Rising  
SD_CLK Falling to  
TDLY_SD_OUT  
-
14  
-
Valid SD_DATA Delay  
THD_SD_OUT SD_DATA Hold Time from SD_CLK Rising  
2.5  
TP_SD_CLK  
TL_SD_CLK  
TH_SD_CLK  
SDx_CLK  
SDx_CMD  
SDx_DATA[3:0]  
(Input Mode)  
TSU_SD_IN  
THD_SD_IN  
SDx_CMD  
SDx_DATA[3:0]  
(Output Mode)  
TDLY_SD_OUT  
THD_SD_OUT  
Figure 8.13-2 SDIO High-speed Mode  
Feb 15, 2019  
Page 239 of 245  
Rev 1.01  
M2351  
9 PACKAGE DIMENSIONS  
9.1 QFN 33 (5x5x0.8 mm Pitch 0.5 mm)  
Feb 15, 2019  
Page 240 of 245  
Rev 1.01  
M2351  
9.2 LQFP 64 (7x7x1.4 mm Footprint 2.0 mm)  
Feb 15, 2019  
Page 241 of 245  
Rev 1.01  
M2351  
9.3 LQFP 128 (14x14x1.4 mm Footprint 2.0 mm)  
Feb 15, 2019  
Page 242 of 245  
Rev 1.01  
M2351  
10 ABBREVIATIONS  
Acronym  
ACMP  
ADC  
AES  
Description  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
APB  
AHB  
Advanced High-Performance Bus  
Brown-out Detection  
BOD  
CAN  
DAP  
Controller Area Network  
Debug Access Port  
DES  
Data Encryption Standard  
EADC  
EBI  
Enhanced Analog-to-Digital Converter  
External Bus Interface  
EMAC  
EPWM  
FIFO  
FMC  
FPU  
Ethernet MAC Controller  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
GPIO  
HCLK  
HIRC  
HXT  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
12 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
IAP  
ICP  
ISP  
In System Programming  
LDO  
Low Dropout Regulator  
LIN  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
QEI  
Pulse Width Modulation  
Quadrature Encoder Interface  
Feb 15, 2019  
Page 243 of 245  
Rev 1.01  
M2351  
SD  
Secure Digital  
SPI  
Serial Peripheral Interface  
Samples per Second  
Triple Data Encryption Standard  
Touch Key  
SPS  
TDES  
TK  
TMR  
UART  
UCID  
USB  
WDT  
WWDT  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
Watchdog Timer  
Window Watchdog Timer  
Feb 15, 2019  
Page 244 of 245  
Rev 1.01  
M2351  
11 REVISION HISTORY  
Date  
Revision  
Description  
2018.08.24  
2019.02.15  
1.00  
Initial version.  
1.01  
Added electrical characteristics information.  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Feb 15, 2019  
Page 245 of 245  
Rev 1.01  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY