M251SC2AE [NUVOTON]

Arm® Cortex®-M 32-bit Microcontroller;
M251SC2AE
型号: M251SC2AE
厂家: NUVOTON    NUVOTON
描述:

Arm® Cortex®-M 32-bit Microcontroller

微控制器
文件: 总266页 (文件大小:4576K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M251/M252  
Arm® Cortex® -M  
32-bit Microcontroller  
NuMicro® Family  
M251/M252 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
July 2, 2020  
Page 1 of 266  
Rev 1.01  
M251/M252  
TABLE OF CONTENTS  
1 GENERAL DESCRIPTION.............................................................................12  
2 FEATURES.....................................................................................................14  
2.1 M251/M252 Series Features......................................................................................14  
3 PARTS INFORMATION .................................................................................29  
3.1 Package Type...............................................................................................................29  
3.2 M251/M252 Series Selection Guide .........................................................................30  
3.2.1 M251 Base Series (M251Fx / M0251Ex / M0251Zx)................................................ 30  
3.2.2 M251 Base Series (M251Lx)........................................................................................ 31  
3.2.3 M251 Base Series (M251Sx) ....................................................................................... 33  
3.2.4 M251 Base Series (M251Kx) ....................................................................................... 34  
3.2.5 M252 USB Series (M252Fx / M0252Ex / M0252Zx) ................................................ 35  
3.2.6 M252 USB Series (M252Lx)......................................................................................... 37  
3.2.7 M252 USB Series (M252Sx) ........................................................................................ 38  
3.2.8 M252 USB Series (M252Kx) ........................................................................................ 39  
3.2.9 Naming Rule................................................................................................................... 40  
4 PIN CONFIGURATION...................................................................................41  
4.1 Pin Configuration..........................................................................................................41  
4.1.1 M251 Series Pin Diagram............................................................................................. 41  
4.1.2 M251 Series Multi-function Pin Diagram.................................................................... 47  
4.1.3 M252 Series Pin Diagram............................................................................................. 84  
4.1.4 M252 Series Function Pin Diagram ............................................................................ 90  
4.2 Pin Mapping................................................................................................................126  
4.3 Pin Function Description...........................................................................................131  
5 BLOCK DIAGRAM.......................................................................................137  
5.1 M251/M252 Block Diagram......................................................................................137  
6 FUNCTIONAL DESCRIPTION .....................................................................138  
6.1 Arm® Cortex®-M23 Core ...........................................................................................138  
6.2 System Manager........................................................................................................140  
6.2.1 Overview ....................................................................................................................... 140  
6.2.2 System Reset ............................................................................................................... 140  
6.2.3 System Power Distribution ......................................................................................... 146  
6.2.4 Power Modes and Wake-up Sources........................................................................ 147  
6.2.5 Chip Bus Matrix............................................................................................................ 151  
6.2.6 System Memory Map................................................................................................... 151  
6.2.7 SRAM Memory Orginization....................................................................................... 153  
6.2.8 IRC Auto Trim ............................................................................................................... 154  
6.2.9 UART0_TXD/USCI0_DAT0 Modulation with PWM................................................. 154  
July 2, 2020  
Page 2 of 266  
Rev 1.01  
M251/M252  
6.2.10System Timer (SysTick) .............................................................................................. 155  
6.2.11Nested Vectored Interrupt Controller (NVIC) ........................................................... 156  
6.3 Clock Controller..........................................................................................................160  
6.3.1 Overview ....................................................................................................................... 160  
6.3.2 Clock Generator........................................................................................................... 162  
6.3.3 System Clock and SysTick Clock .............................................................................. 163  
6.3.4 Peripherals Clock......................................................................................................... 164  
6.3.5 Power-down Mode Clock............................................................................................ 164  
6.3.6 Clock Output................................................................................................................. 165  
6.3.7 USB Clock Source....................................................................................................... 166  
6.4 Flash Memeory Controller (FMC)............................................................................167  
6.4.1 Overview ....................................................................................................................... 167  
6.4.2 Features ........................................................................................................................ 167  
6.5 General Purpose I/O (GPIO)....................................................................................168  
6.5.1 Overview ....................................................................................................................... 168  
6.5.2 Features ........................................................................................................................ 168  
6.6 PDMA Controller (PDMA).........................................................................................169  
6.6.1 Overview ....................................................................................................................... 169  
6.6.2 Features ........................................................................................................................ 169  
6.7 Timer Controller (TMR) .............................................................................................170  
6.7.1 Overview ....................................................................................................................... 170  
6.7.2 Features ........................................................................................................................ 170  
6.8 Watchdog Timer (WDT) ............................................................................................172  
6.8.1 Overview ....................................................................................................................... 172  
6.8.2 Features ........................................................................................................................ 172  
6.9 Window Watchdog Timer (WWDT) .........................................................................173  
6.9.1 Overview ....................................................................................................................... 173  
6.9.2 Features ........................................................................................................................ 173  
6.10 Real Time Clock (RTC) .......................................................................................174  
6.10.1Overview ....................................................................................................................... 174  
6.10.2Features ........................................................................................................................ 174  
6.11 Basic PWM Generator and Capture Timer (BPWM) ......................................175  
6.11.1Overview ....................................................................................................................... 175  
6.11.2Features ........................................................................................................................ 175  
6.12 PWM Generator and Capture Timer (PWM)....................................................176  
6.12.1Overview ....................................................................................................................... 176  
6.12.2Features ........................................................................................................................ 176  
6.13 UART Interface Controller (UART)....................................................................178  
6.13.1Overview ....................................................................................................................... 178  
6.13.2Features ........................................................................................................................ 178  
July 2, 2020  
Page 3 of 266  
Rev 1.01  
M251/M252  
6.14 Smart Card Host Interface (SC).........................................................................180  
6.14.1Overview ....................................................................................................................... 180  
6.14.2Features ........................................................................................................................ 180  
6.15 Serial Peripheral Interface (SPI)........................................................................181  
6.15.1Overview ....................................................................................................................... 181  
6.15.2Features ........................................................................................................................ 181  
6.16 Quad Serial Peripheral Interface (QSPI)..........................................................182  
6.16.1Overview ....................................................................................................................... 182  
6.16.2Features ........................................................................................................................ 182  
6.17 I2C Serial Interface Controller (I2C) ...................................................................183  
6.17.1Overview ....................................................................................................................... 183  
6.17.2Features ........................................................................................................................ 183  
6.18 USCI - Universal Serial Control Interface Controller (USCI).........................184  
6.18.1Overview ....................................................................................................................... 184  
6.18.2Features ........................................................................................................................ 184  
6.19 USCI – UART Mode.............................................................................................185  
6.19.1Overview ....................................................................................................................... 185  
6.19.2Features ........................................................................................................................ 185  
6.20 USCI - SPI Mode..................................................................................................186  
6.20.1Overview ....................................................................................................................... 186  
6.20.2Features ........................................................................................................................ 186  
6.21 USCI - I2C Mode...................................................................................................188  
6.21.1Overview ....................................................................................................................... 188  
6.21.2Features ........................................................................................................................ 188  
6.22 Programmable Serial IO (PSIO) ........................................................................189  
6.22.1Overview ....................................................................................................................... 189  
6.22.2Features ........................................................................................................................ 189  
6.23 External Bus Interface (EBI)...............................................................................191  
6.23.1Overview ....................................................................................................................... 191  
6.23.2Features ........................................................................................................................ 191  
6.24 USB 1.1 Device Controller (USBD)...................................................................192  
6.24.1Overview ....................................................................................................................... 192  
6.24.2Features ........................................................................................................................ 192  
6.25 CRC Controller (CRC).........................................................................................193  
6.25.1Overview ....................................................................................................................... 193  
6.25.2Features ........................................................................................................................ 193  
6.26 Enhanced 12-bit Analog-to-Digital Converter (EADC) ...................................194  
6.26.1Overview ....................................................................................................................... 194  
6.26.2Features ........................................................................................................................ 194  
July 2, 2020  
Page 4 of 266  
Rev 1.01  
M251/M252  
6.27 Digital to Analog Converter (DAC).....................................................................196  
6.27.1Overview ....................................................................................................................... 196  
6.27.2Features ........................................................................................................................ 196  
6.28 Analog Comparator Controller (ACMP)............................................................197  
6.28.1Overview ....................................................................................................................... 197  
6.28.2Features ........................................................................................................................ 197  
6.29 OP Amplifier (OPA) ..............................................................................................198  
6.29.1Overview ....................................................................................................................... 198  
6.29.2Features ........................................................................................................................ 198  
6.30 Peripherals Interconnection................................................................................199  
6.30.1Overview ....................................................................................................................... 199  
6.30.2Peripherals Interconnect Matrix table ....................................................................... 199  
7 APPLICATION CIRCUIT ..............................................................................200  
7.1 Power Supply Scheme..............................................................................................200  
7.2 Peripheral Application Scheme................................................................................201  
8 ELECTRICAL CHARACTERISTICS............................................................202  
8.1 Absolute Maximum Ratings......................................................................................202  
8.1.1 Voltage Characteristics ............................................................................................... 202  
8.1.2 Current Characteristics ............................................................................................... 202  
8.1.3 Thermal Characteristics.............................................................................................. 203  
8.1.4 EMC Characteristics.................................................................................................... 204  
8.1.5 Package Moisture Sensitivity (MSL) ......................................................................... 206  
8.1.6 Soldering Profile........................................................................................................... 207  
8.2 General Operating Conditions .................................................................................208  
8.3 DC Electrical Characteristics....................................................................................209  
8.3.1 Supply Current Characteristics for M251xC/M251xD/M252xC/M252xD............. 209  
8.3.2 Supply Current Characteristics for M251xE/M251xG/M252xE/M252xG............. 212  
8.3.3 On-Chip Peripheral Current Consumption ............................................................... 215  
8.3.4 Wakeup Time from Low-Power Modes..................................................................... 216  
8.3.5 I/O Current Injection Characteristics ......................................................................... 217  
8.3.6 I/O DC Characteristics................................................................................................. 217  
8.4 AC Electrical Characteristics....................................................................................220  
8.4.1 48 MHz Internal High Speed RC Oscillator (HIRC) ................................................ 220  
8.4.2 4 MHz Internal Median Speed RC Oscillator (MIRC) ............................................. 221  
8.4.3 38.4 kHz Internal Low Speed RC Oscillator (LIRC)................................................ 222  
8.4.4 External 4~32 MHz High Speed Crystal/Ceramic Resonator (HXT) Characteristics  
223  
8.4.5 External 4~32 MHz High Speed Clock Input Signal Characteristics.................... 226  
8.4.6 External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) Characteristics  
for M251xC/M251xD/M252xC/M252xD ............................................................................... 226  
July 2, 2020  
Page 5 of 266  
Rev 1.01  
M251/M252  
8.4.7 External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) Characteristics  
for M251xE/M251xG/M252xE/M252xG............................................................................... 228  
8.4.8 External 32.768 kHz Low Speed Clock Input Signal Characteristics................... 229  
8.4.9 PLL Characteristics...................................................................................................... 230  
8.4.10I/O AC Characteristics................................................................................................. 231  
8.5 Analog Characteristics ..............................................................................................233  
8.5.1 LDO................................................................................................................................ 233  
8.5.2 Reset and Power Control Block Characteristics...................................................... 233  
8.5.3 12-bit SAR Analog to Digital Converter (ADC) ........................................................ 235  
8.5.4 Analog Comparator Controller (ACMP) .................................................................... 238  
8.5.5 Digital to Analog Converter (DAC)............................................................................. 239  
8.5.6 OP Amplifier (OPA) ...................................................................................................... 241  
8.5.7 Internal Voltage Reference......................................................................................... 242  
8.5.8 Temperature Sensor.................................................................................................... 243  
8.6 Communications Characteristics.............................................................................244  
8.6.1 SPI Dynamic Characteristics...................................................................................... 244  
8.6.2 SPI - I2S Dynamic Characteristics............................................................................. 247  
8.6.3 I2C Dynamic Characteristics....................................................................................... 249  
8.6.4 USCI - SPI Dynamic Characteristics......................................................................... 250  
8.6.5 USCI-I2C Dynamic Characteristics............................................................................ 253  
8.6.6 USB Characteristics .................................................................................................... 254  
8.7 Flash DC Electrical Characteristics.........................................................................255  
9 PACKAGE DIMENSIONS ............................................................................256  
9.1 TSSOP20 (4.4x6.5x0.9 mm3)...................................................................................256  
9.2 TSSOP28 (4.4x9.7x1.0 mm3)...................................................................................257  
9.3 QFN 33L (5x5x0.8 mm3) ...........................................................................................258  
9.4 LQFP 48L (7x7x1.4 mm3 Footprint 2.0 mm)..........................................................260  
9.5 LQFP 64L (7x7x1.4 mm3 Footprint 2.0 mm)..........................................................261  
9.6 LQFP 128L (14x14x1.4 mm3 Footprint 2.0 mm) ...................................................262  
10ABBREVIATIONS ........................................................................................263  
10.1 Abbreviations........................................................................................................263  
11REVISION HISTORY....................................................................................265  
July 2, 2020  
Page 6 of 266  
Rev 1.01  
M251/M252  
LIST OF FIGURES  
Figure 4.1-1 M251 Series TSSOP 20-pin Diagram ........................................................................41  
Figure 4.1-2 M251 Series TSSOP 28-pin Diagram ........................................................................41  
Figure 4.1-3 M251 Series QFN 33-pin Diagram.............................................................................42  
Figure 4.1-4 M251 Series LQFP 48-pin Diagram...........................................................................43  
Figure 4.1-5 M251 Series LQFP 64-pin Diagram without VBAT ......................................................44  
Figure 4.1-6 M251 Series LQFP 64-pin Diagram with VBAT ...........................................................45  
Figure 4.1-7 M251 Series LQFP 128-pin Diagram.........................................................................46  
Figure 4.1-8 M251FC2AE Multi-function Pin Diagram ...................................................................47  
Figure 4.1-9 M251EC2AE Multi-function Pin Diagram...................................................................48  
Figure 4.1-10 M251ZC2AE Multi-function Pin Diagram .................................................................50  
Figure 4.1-11 M251ZD2AE Function Pin Diagram.........................................................................52  
Figure 4.1-12 M251LC2AE/M251LD2AE Multi-function Pin Diagram............................................54  
Figure 4.1-13 M251LE3AE Multi-function Pin Diagram..................................................................57  
Figure 4.1-14 M251LG6AE Multi-function Pin Diagram .................................................................60  
Figure 4.1-15 M251SC2AE/M251SD2AE Multi-function Pin Diagram...........................................63  
Figure 4.1-16 M251SE3AE Multi-function Pin Diagram .................................................................66  
Figure 4.1-17 M251SG6AE Multi-function Pin Diagram.................................................................70  
Figure 4.1-18 M251KE3AE Multi-function Pin Diagram .................................................................74  
Figure 4.1-19 M251KG6AE Multi-function Pin Diagram.................................................................79  
Figure 4.1-20 M252 Series TSSOP 20-pin Diagram......................................................................84  
Figure 4.1-21 M252 Series TSSOP 28-pin Diagram......................................................................84  
Figure 4.1-22 M252 Series QFN 33-pin Diagram...........................................................................85  
Figure 4.1-23 M252 Series LQFP 48-pin Diagram.........................................................................86  
Figure 4.1-24 M252 Series LQFP 64-pin Diagram without VBAT ....................................................87  
Figure 4.1-25 M252 Series LQFP 64-pin Diagram with VBAT .........................................................88  
Figure 4.1-26 M252 Series LQFP 128-pin Diagram.......................................................................89  
Figure 4.1-27 M252FC2AE Function Pin Diagram.........................................................................90  
Figure 4.1-28 M252EC2AE Function Pin Diagram.........................................................................91  
Figure 4.1-29 M252ZC2AE Function Pin Diagram.........................................................................93  
Figure 4.1-30 M252ZD2A Function Pin Diagram ...........................................................................95  
Figure 4.1-31 M252LC2AE/M252LD2AE Function Pin Diagram ...................................................98  
Figure 4.1-32 M252LE3AE Function Pin Diagram .......................................................................101  
Figure 4.1-33 M252LG6AE Function Pin Diagram.......................................................................104  
Figure 4.1-34 M252SC2AE/M252SD2AE Function Pin Diagram.................................................107  
Figure 4.1-35 M252SE3AE Function Pin Diagram.......................................................................110  
Figure 4.1-36 M252SG3AE Function Pin Diagram ......................................................................113  
July 2, 2020  
Page 7 of 266  
Rev 1.01  
M251/M252  
Figure 4.1-37 M252KE3AE Function Pin Diagram.......................................................................116  
Figure 4.1-38 M252KG6AE Function Pin Diagram ......................................................................121  
Figure 5.1-1 M251/M252 Block Diagram......................................................................................137  
Figure 6.1-1 Cortex® -M23 Block Diagram ....................................................................................138  
Figure 6.2-1 System Reset Sources.............................................................................................141  
Figure 6.2-2 nRESET Reset Waveform .......................................................................................143  
Figure 6.2-3 Power-on Reset (POR) Waveform...........................................................................143  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform .......................................................................144  
Figure 6.2-5 Brown-out Detector (BOD) Waveform .....................................................................145  
Figure 6.2-6 NuMicro® M251/M252 Power Distribution Diagram.................................................146  
Figure 6.2-7 Power Mode State Machine.....................................................................................148  
Figure 6.2-8 SRAM Memory Organization ...................................................................................153  
Figure 6.3-1 Clock Generator Global View Diagram ....................................................................161  
Figure 6.3-2 Clock Generator Block Diagram...............................................................................162  
Figure 6.3-3 System Clock Block Diagram...................................................................................163  
Figure 6.3-4 HXT Stop Protect Procedure....................................................................................164  
Figure 6.3-5 SysTick Clock Control Block Diagram .....................................................................164  
Figure 6.3-6 Clock Output Block Diagram....................................................................................165  
Figure 6.3-7 USB Clock Source ...................................................................................................166  
Figure 6.20-1 SPI Master Mode Application Block Diagram ........................................................186  
Figure 6.20-2 SPI Slave Mode Application Block Diagram ..........................................................186  
Figure 6.21-1 I2C Bus Timing .......................................................................................................188  
Figure 6.22-1 PSIO Clock Control Diagram (8-bit Pre-scale Counter in Clock Controller)..........190  
Figure 8.1-1 Soldering profile from J-STD-020C..........................................................................207  
Figure 8.4-1 Typical Crystal Application Circuit............................................................................225  
Figure 8.4-2 Typical 32.768 kHz Crystal Application Circuit ........................................................227  
Figure 8.4-3 Typical 32.768 kHz Crystal Application Circuit ........................................................229  
Figure 8.5-1 Power Ramp Up/Down Condition ............................................................................234  
Figure 8.5-2 Typical Connection with Internal Voltage Reference ...............................................242  
Figure 8.6-1 SPI Master Mode Timing Diagram...........................................................................244  
Figure 8.6-2 SPI Slave Mode Timing Diagram.............................................................................246  
Figure 8.6-3 I2S Master Mode Timing Diagram............................................................................247  
Figure 8.6-4 I2S Slave Mode Timing Diagram..............................................................................248  
Figure 8.6-5 I2C Timing Diagram..................................................................................................249  
Figure 8.6-6 USCI-SPI Master Mode Timing Diagram .................................................................250  
Figure 8.6-7 USCI-SPI Slave Mode Timing Diagram ...................................................................252  
Figure 8.6-8 USCI-I2C Timing Diagram ........................................................................................253  
July 2, 2020  
Page 8 of 266  
Rev 1.01  
M251/M252  
List of Tables  
Table 1-1 NuMicro® M251/M252 Series Key Features Support Table...........................................13  
Table 4.1-1 M251FC2AE Multi-function Pin Table .........................................................................48  
Table 4.1-2 M251EC2AE Multi-function Pin Table.........................................................................49  
Table 4.1-3 M251ZC2AE Multi-function Pin Table .........................................................................51  
Table 4.1-4 M251ZD2AE Multi-function Pin Table .........................................................................53  
Table 4.1-5 M251LC2AE/M251LD2AE Multi-function Pin Table....................................................56  
Table 4.1-6 M251LE3AE Multi-function Pin Table .........................................................................59  
Table 4.1-7 M251LG6AE Multi-function Pin Table .........................................................................62  
Table 4.1-8 M251SC2AE/M251SD2AE Multi-function Pin Table...................................................65  
Table 4.1-9 M251SE3AE Multi-function Pin Table .........................................................................68  
Table 4.1-10 M251SG6AE Multi-function Pin Table.......................................................................72  
Table 4.1-11 M251KE3AE Multi-function Pin Table.......................................................................78  
Table 4.1-12 M251KG6AE Multi-function Pin Table.......................................................................83  
Table 4.1-13 M252FC2AE Multi-function Pin Table.......................................................................91  
Table 4.1-14 M252EC2AE Multi-function Pin Table.......................................................................92  
Table 4.1-15 M252ZC2AE Multi-function Pin Table.......................................................................94  
Table 4.1-16 M252ZD2AE Multi-function Pin Table.......................................................................96  
Table 4.1-17 M252LC2AE/M252LD2AE Multi-function Pin Table................................................100  
Table 4.1-18 M252LE3AE Multi-function Pin Table .....................................................................103  
Table 4.1-19 M252LG6AE Multi-function Pin Table.....................................................................106  
Table 4.1-20 M252SC2AE/M252SD2AE Multi-function Pin Table...............................................109  
Table 4.1-21 M252SE3AE Multi-function Pin Table.....................................................................112  
Table 4.1-22 M252SG6AE Multi-function Pin Table.....................................................................115  
Table 4.1-23 M252KE3AE Multi-function Pin Table.....................................................................120  
Table 4.1-24 M252KG6AE Multi-function Pin Table.....................................................................125  
Table 6.2-1 Reset Value of Registers...........................................................................................143  
Table 6.2-2 Power Mode Table ....................................................................................................147  
Table 6.2-3 Power Mode Difference Table...................................................................................147  
Table 6.2-4 Power Mode Difference Table...................................................................................148  
Table 6.2-5 Clocks in Power Modes.............................................................................................149  
Table 6.2-6 Condition of Entering Power-down Mode Again .......................................................151  
Table 6.2-7 Address Space Assignments for On-Chip Controllers ..............................................152  
Table 6.2-8 Exception Model........................................................................................................157  
Table 6.2-9 Interrupt Number Table .............................................................................................159  
Table 6.13-1 UART Feature List...................................................................................................179  
July 2, 2020  
Page 9 of 266  
Rev 1.01  
M251/M252  
Table 6.30-1 Peripherals Interconnect Matrix table......................................................................199  
Table 8.1-1 Voltage Characteristics .............................................................................................202  
Table 8.1-2 Current Characteristics..............................................................................................203  
Table 8.1-3 Thermal Characteristics ............................................................................................203  
Table 8.1-4 EMC Characteristics for M251xC/M251xD/M252xC/M252xD ..................................204  
Table 8.1-5 EMC Characteristics for M251xE/M251xG/M252xE/M252xG ..................................205  
Table 8.1-6 Package Moisture Sensitivity(MSL) ..........................................................................206  
Table 8.1-7 Soldering Profile ........................................................................................................207  
Table 8.2-1 General Operating Conditions...................................................................................208  
Table 8.3-1 Current Consumption in Normal Run Mode..............................................................210  
Table 8.3-2 Current consumption in Idle Mode ............................................................................210  
Table 8.3-3 Chip Current Consumption in Power-down Mode.....................................................211  
Table 8.3-4 Current consumption in Normal Run Mode...............................................................213  
Table 8.3-5 Current Consumption in Idle Mode ...........................................................................213  
Table 8.3-6 Chip Current Consumption in Power-down Mode.....................................................214  
Table 8.3-7 Peripheral Current Consumption...............................................................................216  
Table 8.3-8 Low-power Mode Wakeup Timings...........................................................................216  
Table 8.3-9 I/O Current Injection Characteristics .........................................................................217  
Table 8.3-10 I/O Input Characteristics..........................................................................................217  
Table 8.3-11 I/O Output Characteristics.......................................................................................218  
Table 8.3-12 nRESET Input Characteristics.................................................................................219  
Table 8.4-148 MHz Internal High Speed RC Oscillator(HIRC) Characteristics............................220  
Table 8.4-2 4 MHz Internal Median Speed RC Oscillator (MIRC) Characteristics.......................221  
Table 8.4-338.4 kHz Internal Low Speed RC Oscillator(LIRC) Characteristics ...........................222  
Table 8.4-4 External 4~32 MHz High Speed Crystal (HXT) Oscillator.........................................223  
Table 8.4-5 External 4~32 MHz High Speed Crystal Characteristics...........................................224  
Table 8.4-6 External 4~32 MHz High Speed Clock Input Signal..................................................226  
Table 8.4-7 External 32.768 kHz Low Speed Crystal (LXT) Oscillator ........................................227  
Table 8.4-8 External 32.768 kHz Low Speed Crystal Characteristics..........................................227  
Table 8.4-9 External 32.768 kHz Low Speed Crystal (LXT) Oscillator ........................................228  
Table 8.4-10 External 32.768 kHz Low Speed Crystal Characteristics........................................228  
Table 8.4-11 External 32.768 kHz Low Speed Clock Input Signal...............................................229  
Table 8.4-12 PLL Characteristics .................................................................................................230  
Table 8.4-13 I/O AC Characteristics.............................................................................................232  
Table 8.5-1 Reset and power control unit.....................................................................................234  
Table 8.5-2 ACMP Characteristics ...............................................................................................238  
Table 8.6-1 SPI Master Mode Characteristics..............................................................................244  
July 2, 2020  
Page 10 of 266  
Rev 1.01  
M251/M252  
Table 8.6-2 SPI Slave Mode Characteristics................................................................................245  
Table 8.6-3 I2S Characteristics.....................................................................................................247  
Table 8.6-4 I2C Characteristics.....................................................................................................249  
Table 8.6-5 USCI-SPI Master Mode Characteristics....................................................................250  
Table 8.6-6 USCI-SPI Slave Mode Characteristics......................................................................251  
Table 8.6-7 USCI-I2C Characteristics...........................................................................................253  
Table 8.6-8 USB Full-Speed Characteristics................................................................................254  
Table 8.6-9 USB Full-Speed PHY Characteristics .......................................................................254  
Table 10.1-1 List of Abbreviations................................................................................................264  
July 2, 2020  
Page 11 of 266  
Rev 1.01  
M251/M252  
1 GENERAL DESCRIPTION  
The NuMicro® M251/M252 series is a low-power microcontroller platform based on Arm® Cortex® -  
M23 core for Armv8-M architecture. It runs up to 48 MHz with 32 ~ 256 Kbytes embedded Flash  
memory and 8 ~ 32 Kbytes embedded SRAM, 4 Kbytes Flash loader memory (LDROM) for In-  
System Programming (ISP). The 32-bit low-power microcontrollers supports wide supply voltage  
from 1.75V ~ 5.5V and operating temperature range from -40~ +105.  
Low-power Technology for IoT application  
The NuMicro® M251/M252 series behaves low power consumption in Normal Run mode  
138μA/MHz at 48MHz, Idle mode 60 μA/MHz, Power-down mode 2.5 μA (RTC on, RAM  
retention), Power-down mode 1.7 μA (RTC off, RAM retention) and Deep Power-down mode. The  
NuMicro® M251/M252 series integrates RTC with independent VBAT voltage source pin to support  
low power mode with main power off and VBAT only. Its low power, wide supply voltage and fast  
wake-up features make it suitable for battery-powered IoT applications.  
Programmable Serial Interface (PSIO)  
The NuMicro® M251/M252 series provides up to 8-channel Nuvoton proprietary interface, named  
as “Programmable Serial I/O” (PSIO), which is capable of generating specific waveform to  
emulate arbitrary serial communication protocols to connect with specific peripherals by PSIO  
hardware engine. PSIO can be treated as extension of popular serial communication standard  
(UART, SPI, I2C, etc.), niche serial communication standard and proprietary protocol (SPI-like  
protocol for LED-lighting application, etc.). This PSIO hardware engine can simulate  
comprehensive serial communication protocol with low CPU loading, low control complexity and  
high timing precision at the same time. High elasticity and flexibility makes PSIO a powerful and  
useful tool while connecting to diverse peripherals.  
Voltage Adjustable Interface (VAI) - Support 2nd I/O voltage without level-shifter  
The NuMicro® M251/M252 series integrates Voltage Adjustable Interface (VAI), up to 6 I/O pins to  
support the 2nd I/O voltage from 1.65V ~ 5.5V to save level shifter components while connecting to  
external devices. These 6 I/O pins can be configured as UART/SPI/ I2C bus by software setting.  
eXecute-Only-Memory (XOM) - Protect the intelligent property of developers  
The NuMicro® M251/M252 series provides 1-region programable eXecute-Only-Memory (XOM) to  
secure critical program code. A tamper detection pin is implemented to avoid malicious damage  
from hacker. The 96-bit Unique Identification (UID) and 128-bit Unique Customer Identification  
(UCID) are used to enhance the product security.  
Crystal-less USB 2.0 full speed device interface  
Part numbers of the M252 series are all based on the M251. It supports a crystal-less USB 2.0 full  
speed device that can generate precise frequency required by USB protocol without the need of  
external crystal to reduce the BOM cost and PCB size.  
Rich Pheripherals for comprehensive product application scenarios  
The NuMicro® M251/M252 series is equipped with plenty of peripherals such as Timers,  
Watchdog Timers, RTC, PDMA, External Bus Interface (EBI), UART, Universal Serial Control  
Interface (USCI), QSPI, SPI/ I²S, I2C, ISO-7816-3, GPIOs, up to 24 channels of PWM, makes it  
highly suitable for connecting comprehensive external modules and LED lighting control. The  
NuMicro® M251/M252 series integrates high performance analog front-end circuit blocks, such as  
16 channels of 12-bit 880 kSPS ADC, 12-bit 1 MSPS DAC, analog comparator, operational  
amplifier, temperature sensor, low voltage reset (LVR) and brown-out detector (BOD) to enhance  
product performance, reduce external components and form factor simultaneously.  
The NuMicro® M251/M252 series provides 28 product types. The package types of the  
M251/M252 series include TSSOP20 (4.4mm x 6.5mm), TSSOP28 (4.4mmx9.7mm), QFN33  
(5mm x 5mm), LQFP48 (7mm x 7mm), LQFP64 (7mm x 7mm) and LQFP128 (14mm x 14mm).  
July 2, 2020  
Page 12 of 266  
Rev 1.01  
M251/M252  
Pin-to-pin compatible in same package makes optimizing product features and performance easy.  
Nuvoton NuMaker M251/M252 evaluation boards and Nu-Link debugger are available for  
evaluation and product development. 3rd Party IDEs such as Keil MDK, IAR EWARM and  
Eclippse IDE with GNU GCC compilers, are also supported.  
Product Line UART  
I2C  
QSPI SPI/ I2S PSIO USCI Timer PWM PDMA EBI  
ADC  
DAC ACMP OPA USBD  
M251/M252  
3
2
1
1
8
3
4
24  
8
1
16  
1
2
1
1
Table 1-1 NuMicro® M251/M252 Series Key Features Support Table  
The NuMicro® M251/M252 series is suitable for a wide range of applications such as:  
Smart Home / Smart Home Appliance  
Industrial Control / Industrial Automation  
Smart City  
IoT Device  
Security Alarm System  
Electronic Payments  
Communication Modules  
Portable Wireless Data Collector  
Smart Door lock  
Handheld Medical Device  
(GPS) Location Tracker  
Electronic Shelf Labels (ESL)  
July 2, 2020  
Page 13 of 266  
Rev 1.01  
M251/M252  
2 FEATURES  
2.1 M251/M252 Series Features  
Core and System  
Arm® Cortex® -M23 processor, running up to 48 MHz when VDD  
1.75V ~ 5.5V  
=
Built-in PMSAv8 Memory Protection Unit (MPU)  
Built-in Nested Vectored Interrupt Controller (NVIC)  
32-bit Single-cycle hardware multiplier and 32-bit 17-cycle  
Arm® Cortex® -M23 without  
TrustZone®  
hardware divider  
24-bit system tick timer  
Supports Programmble and maskable interrupt  
Supports Low Power Sleep mode by WFI and WFE instructions  
Supports single cycle I/O access  
Supports XOM feature with 1 region  
Low Power mode:  
Idle mode  
Low power mode and  
current  
Power-down mode (PD)  
Fast Wake-up Power-down mode (FWPD)  
Deep Power-down mode (DPD)  
USCI, RTC, WDT, I2C, Timer, UART, BOD, LVR, POR, GPIO,  
USBD, Tamper, ACMP, Debug interface, NMI and Reset pin from  
Power-down mode or Fast Wake-up Power-down mode  
Wake-up source and  
wakeup time  
RTC, Wake-up Timer, LVR, Wake-up pins, Tamper, from Deep  
Power-down mode  
Built-in LDO for wide operating voltage from 1.75V to 5.5V  
Core power voltage: 1.5V  
Brown-out detector  
Power supply and low  
voltage detect  
With 7 levels: 4.4V/3.7V/3.0V/2.7V/2.4V/2.0V/1.8V  
Supports Brown-out Interrupt and Reset option  
Low Voltage Reset  
Threshold voltage levels: 1.55V  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16,  
and CRC-32  
Cyclic Redundancy  
Calculation Unit  
Programmable order reverse setting for input data and CRC  
checksum  
Programmable 1’s complement setting for input data and CRC  
July 2, 2020  
Page 14 of 266  
Rev 1.01  
M251/M252  
checksum.  
Supports 8-/16-/32-bit of data width  
Programmable seed value  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports using PDMA to write data to perform CRC operation  
Supports up to 6 VAI pins  
Voltage Adjustable  
Interface  
User Configurable 1.65V ~ 5.5V I/O Interface with a dedicated  
power input (VDDIO)  
Supports UART0~1, SPI0~1, I2C0~1, USCI2 and SC0 interface  
96-bit Unique ID (UID)  
Security  
128-bit Unique Customer ID (UCID)  
Memories  
Up to 256 KB application ROM (APROM)  
4 KB Flash for user program loader (LDROM)  
Up to 48 MHz with zero wait state for consecutive address read  
access  
12 bytes User Configuration Block to control system initiation.  
512B page erase for all embedded Flash  
32-bit and multi-word Flash programming function.  
Flash  
Supports In-System-Programming (ISP), In-Application-  
Programming (IAP) update embedded Flash memory  
Supports CRC-32 checksum calculation function  
Supports Flash all one verification function (hardware can check  
page erase verify)  
Hardware external read protection of whole Flash memory by  
Security Lock Bit  
Supports XOM feature with 1 region  
Up to 32 KB embedded SRAM  
Supports byte-, half-word- and word-access  
Supports PDMA mode  
SRAM  
Up to 8 independent configurable channels for automatic data  
transfer between memories and peripherals  
Peripheral DMA (PDMA)  
Channel 0 to 5 support stride features  
July 2, 2020  
Page 15 of 266  
Rev 1.01  
M251/M252  
Channel 0, 1 support time-out function  
Basic and Scatter-Gather Transfer modes  
Each channel supports circular buffer management using Scatter-  
Gather Transfer mode  
Two types of priorities modes: Fixed-priority and Round-robin  
modes  
Transfer data width of 8, 16, and 32 bits  
Single and burst transfer type  
Source and destination address can be increment or fixed  
PDMA transfer count up to 65536  
Request source form software, PSIO, SPI/I2S, UART, USCI,  
EADC, DAC, PWM capture event or TIMER  
Clocks  
Built-in 4.032 MHz internal high speed RC oscillator (MIRC) for  
system operation  
Built-in 48 MHz internal high speed RC oscillator (HIRC) for  
system operation  
Built-in 38.4 kHz internal low speed RC oscillator (LIRC) for  
Watchdog Timer and wake-up operation.  
Built-in 4~32 MHz external high speed crystal oscillator (HXT) for  
precise timing operation  
Built-in 32.768 kHz external low speed crystal oscillator (LXT) for  
RTC function and low-power system operation  
Clock Source  
Supports one PLL up to 100 MHz for high performance system  
operation, sourced from HIRC and HXT  
Supports clock on-the-fly switch  
Supports clock failure detection for high/low speed external crystal  
oscillator  
HXT clock frequency accuracy detector  
Supports exception (NMI) generated once a clock failure detected  
Supports divided clock output  
Timers  
TIMER mode  
4 sets of 32-bit timers with 24-bit up counters and 8-bit prescale  
counters  
Independent clock source for each timer  
32-bit Timer  
One-shot, Periodic, Toggle and Continuous Counting operation  
modes  
Event counting function to count the event from external pin  
July 2, 2020  
Page 16 of 266  
Rev 1.01  
M251/M252  
Input capture function to capture or reset counter value  
External capture pin event for interval measurement.  
External capture pin event to reset 24-bit up counter.  
Chip wake-up from Idle/Power-down mode if a timer interrupt  
signal is generated  
Timer interrupt flag or external capture interrupt flag to trigger  
BPWM, PWM, EADC, DAC and PDMA.  
Internal capture triggered source from ACMP output.  
Inter-Timer trigger capture mode  
PWM mode  
16-bit compare register and period register  
Double buffer for period register and compare register  
Supports inverse in PWM output  
PWM interrupt wake-up from system Power-down mode  
Supports maximum clock frequency up to 96 MHz  
Each module provides 6 output channels  
Supports independent mode for BPWM output/Capture input  
channel  
Supports 12-bit prescaler from 1 to 4096  
Supports 16-bit resolution BPWM counter, each module provides  
1 BPWM counter  
Up, down or up/down counter operation type  
Supports mask function and tri-state enable for each BPWM pin  
Supports interrupt on the following events:  
BPWM  
BPWM counter match 0, period value or compared value  
Supports trigger ADC on the following events:  
BPWM counter match 0, period value or compared value  
Capture Function Features  
Up to 6 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Supports maximum clock frequency up to 96 MHz  
Up to two PWM modules; each module provides 6 output  
PWM  
channels.  
Supports independent mode for PWM output/Capture input  
channel  
July 2, 2020  
Page 17 of 266  
Rev 1.01  
M251/M252  
Supports complementary mode for 3 complementary paired PWM  
output channel  
Dead-time insertion with 12-bit resolution  
Two compared values during one period  
Supports 12-bit prescaler from 1 to 4096  
Supports 16-bit resolution PWM counter  
Up, down or up/down counter operation type  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Brake source from pin and system safety events (clock failed,  
Brown-out detection and CPU lockup)  
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake  
interrupt cleared  
Level detect brake source to auto recover function after brake  
condition removed  
Supports interrupt on the following events:  
PWM counter match 0, period value or compared value  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM counter match 0, period value or compared value  
Capture Function Features  
Up to 12 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Supports PDMA transfer function for all PWM channels  
20-bit free running up counter for WDT time-out interval  
Clock sources from LIRC (default), HCLK/2048 or LXT  
9 selectable time-out period from 488us ~ 32 sec  
Able to wake up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
Watchdog  
Selectable WDT reset delay period, including 1026, 130, 18 or 3  
WDT_CLK reset delay period  
Force WDT enabled after chip power on or reset.  
WDT time-out wake-up function only if WDT clock source is  
selected as LIRC or LXT  
July 2, 2020  
Page 18 of 266  
Rev 1.01  
M251/M252  
Clock sources from HCLK/2048 (default) or LIRC  
Window set by 6-bit down counter with 11-bit prescaler  
WWDT counter suspends in Idle/Power-down mode  
Supports Interrupt  
Window Watchdog  
Supports external power pin VBAT  
Software compensation by setting frequency compensate register  
(FCR),compensated clock accuracy reaches ±5ppm within 5  
seconds  
RTC counter (second, minute, hour) and calendar counter (day,  
month, year)  
Alarm registers (second, minute, hour, day, month, year)  
Selectable 12-hour or 24-hour mode  
Automatic leap year recognition  
RTC  
Day of the Week counter  
Daylight Saving Time software control  
Periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32,  
1/16, 1/8, 1/4, 1/2 or 1 second  
1 Hz clock output for RTC calibration  
Wake-up from idle mode and power down mode  
32 kHz oscillator gain control  
RTC Time Tick and Alarm Match interrupt  
20 bytes spare registers and 1 tamper pin to clear the content of  
these spare registers  
Tamper  
Selectable spare register erase function  
Supports Timestamp function  
Analog Interfaces  
Conversion results held in 19 data registers with valid and overrun  
indicators.  
Analog input voltage: 0~VREF (Max to AVDD).  
Reference voltage from VREF pin, AVDD or internal VREF  
12-bit resolution and 10-bit accuracy guaranteed  
Up to 16 single-end analog external input channels  
Supports 3 internal channels:  
EADC  
Band-gap VBG output or Internal voltage reference  
Temperature sensor input  
VBAT voltage measure (VBAT/4)  
July 2, 2020  
Page 19 of 266  
Rev 1.01  
M251/M252  
Four ADC interrupts (ADINT0~3) with individual interrupt vector  
addresses.  
ADC clock frequency up to 16 MHz.  
Up to 880 kSPS conversion rate.  
Configurable ADC internal sampling time  
Up to 19 sample modules  
Each of sample module 0~15 which is configurable for ADC  
converter channel  
EADC_CH0~15 and trigger source.  
Configurable PDMA  
Configured resolution for 12-bit or 16-bit result  
Supports Left-adjusted result  
Averaging and oversampling (2n times, n=0~8) to support up to  
16-bit result  
Sample module 16~18 is fixed for ADC channel 16, 17, 18  
input sources as band-gap voltage, temperature sensor, and  
battery power (VBAT/4).  
Configurable sampling time for each sample module.  
Conversion results held in 19 data registers with valid and  
overrun indicators.  
Supports digital comparator to monitor conversion result that can  
be under or over the compare register setting  
Generate an interrupt when conversion result matches the  
compare register setting.  
Internal reference voltage source:  
1.536V, 2.048V, 2.560V, 3.072V, or 4.096V  
An A/D conversion can be started by:  
Write 1 to SWTRGn (EADC_SWTRG[n], n = 0~18)  
External pin STADC  
Timer0~3 overflow pulse triggers  
ADINT0/1 interrupt EOC (End of conversion) pulse triggers  
PWM triggers  
BPWM triggers  
Supports PDMA transfer  
Auto turn on/off ADC power at power down or operation mode with  
wait state  
Analog output voltage: 0~AVDD  
Supports 12-or 8-bit output mode  
Rail to rail settle time 6us  
DAC  
July 2, 2020  
Page 20 of 266  
Rev 1.01  
M251/M252  
Up to one 12-bit, 1 MSPS voltage type DAC  
Reference voltage from internal reference voltage or VREF pin  
Conversion updating rate up to 1 MSPS  
Supports voltage output buffer mode and bypass voltage output  
buffer mode  
Supports software and hardware trigger, including Timer0~3 and  
external trigger pin to start DAC conversion  
Supports PDMA mode  
Up to two rail-to-rail analog comparators  
4 multiplexed I/O pins at positive node  
Negative node:  
One I/O pin  
Band-gap (VBG)  
DAC0 output  
Comparator Reference Voltage (CRV)  
Programmable propagation speed and low power consumption  
Analog Comparator  
(ACMP)  
Interrupts generated when compare results change (Interrupt  
event condition programmable)  
Supports Power-down Wake-up  
Supports triggers for break events and cycle-by-cycle control for  
PWM  
Supports window compare mode and window latch mode  
Supports programmable hysteresis window:  
0 mV, 10 mV, 20 mV or 30 mV  
Analog input voltage: 0~AVDD.  
Up to 1 operational amplifier  
OPA  
Supports to use schmitt trigger buffer output for simple comparator  
function  
Supports schmitt trigger buffer output interrupts.  
Internal reference voltage select: 1.536V, 2.048V, 2.560V, 3.072V,  
4.096V for EADC, DAC and CRV (comparator reference voltage)  
reference voltage  
Internal Reference Voltage  
Communication Interfaces  
Supports up to 3 UARTs: UART0, UART1 and UART2  
UART clock source can be from LIRC  
UART  
UART baud rate clock from LXT(32.768 kHz) with 9600bps in  
Power-down mode  
July 2, 2020  
Page 21 of 266  
Rev 1.01  
M251/M252  
Baud rate up to 10 Mbps  
Full-duplex asynchronous communications  
Supports one-wire half-duplex communications  
Separates receive and transmit 16/16 bytes FIFO  
Programmable receiver buffer trigger level  
Hardware auto-flow control (CTS and RTS)  
IrDA (SIR) function  
Supports 3/16 bit duration for normal mode  
RS-485 9-bit mode and direction control  
UART0 supports LIN function  
LIN master/slave mode  
Programmable break generation function for transmitter  
Break detection function for receiver  
Programmable baud-rate generator up to 1/16 system clock  
8-bit receiver FIFO time-out detection function  
Programmable transmitting data delay time between the last stop  
and the next start bit  
Auto-Baud Rate measurement and baud rate compensation  
function  
Break error, frame error, parity error and receive/transmit FIFO  
overflow detection function  
Supports RS-485 mode:  
RS-485 9-bit mode  
Hardware or software enables to program nRTS pin to control  
RS-485 transmission direction  
nCTS, incoming data, Received Data FIFO reached threshold  
and RS-485 Address Match (AAD mode) wake-up function in  
Power-down mode.  
Hardware or software enables to program nRTS pin to control  
RS-485 transmission direction  
Fully programmable serial-interface:  
Programmable number of data bit, 5-, 6-, 7-, 8- bit character  
Programmable parity bit, even, odd, no parity or stick parity bit  
generation and detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports PDMA mode  
Smart card mode  
ISO 7816-3 T = 0, T = 1 compliant  
EMV2000 compliant  
Smart Card Interface  
July 2, 2020  
Page 22 of 266  
Rev 1.01  
M251/M252  
One ISO 7816-3 port  
Separates receive/transmit 4 byte entry FIFO for data payloads  
Programmable transmission clock frequency  
Programmable receiver buffer trigger level  
Programmable guard time selection (11 ETU ~ 267 ETU)  
One 24-bit timer and two 8-bit timers for Answer to Request (ATR)  
and waiting times processing  
Supports auto direct / inverse convention function  
Supports transmitter and receiver error retry and error number  
limiting function  
Supports hardware activation sequence process, and the time  
between PWR on and CLK start is configurable  
Supports hardware warm reset sequence process  
Supports hardware deactivation sequence process  
Supports hardware auto deactivation sequence when the card  
removal is detected  
UART mode  
Full duplex, asynchronous communications  
Separates receiving / transmitting 4 bytes entry FIFO for data  
payloads  
Supports programmable baud rate generator  
Supports programmable receiver buffer trigger level  
Programmable transmitting data delay time between the last stop  
bit leaving the TX-FIFO and the de-assertion  
Programmable even, odd or no parity bit generation and detection  
Programmable stop bit, 1- or 2- stop bit generation  
Supports Master or Slave mode operation  
Master and slave mode up to 25 MHz (when chip works at VDD  
=
3.0 ~ 5.5V)  
Supports 2-bit Transfer mode  
Supports Dual and Quad I/O Transfer mode  
Configurable bit length of a transaction word from 8 to 32-bit  
SPI  
Provides separate 8-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports Byte or Word Suspend mode  
Supports PDMA transfer  
Supports 3-Wire, no slave selection signal, bi-direction interface  
July 2, 2020  
Page 23 of 266  
Rev 1.01  
M251/M252  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
Up to 2 sets of I2C devices  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
7-bit and 10-bit addressing mode  
Standard mode (100 kbps), Fast mode (400 kbps) and Fast mode  
plus (1 Mbps)  
Arbitration between simultaneously transmitting masters without  
corruption of serial data on the bus  
Serial clock synchronization allows devices with different bit rates  
I2C  
to communicate via one serial bus  
Serial clock synchronization can be used as a handshake  
mechanism to suspend and resume serial transfer  
Supports 14-bit time-out counter requesting the I2C interrupt if the  
I2C bus hangs up and timer-out counter overflows  
Programmable clocks allow versatile rate control  
Multiple address recognition (four slave address with mask option)  
Supports setup/hold time programmable  
Supports SMBus and PMBus  
Multi-address Power-down wake-up function  
Supports PDMA transfer  
SPI Mode  
Up to 1 set of SPI controller  
Master or Slave mode operation  
Configurable bit length of a transfer word from 8 to 32-bit  
Provides separate 4-level of 32-bit (or 8-level of 16-bit) transmit  
and receive FIFO buffers which depended on SPI setting of data  
width  
MSB first or LSB first transfer sequence  
Supports byte reorder function  
Byte or Word Suspend mode  
SPI/I2S  
Master and slave mode up to 25 MHz (VDD = 3.0V ~5.5V)  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
Supports PDMA transfer  
I2S Mode  
July 2, 2020  
Page 24 of 266  
Rev 1.01  
M251/M252  
Up to 1 sets of I2S by SPI controllers  
Interface with external audio CODEC  
Supports Master and Slave mode  
Capable of handling 8-, 16-, 24- and 32-bit word sizes  
Mono and stereo audio data  
PCM mode A, PCM mode B, I2S and MSB justified data format  
Each provides two 4-level FIFO data buffers, one for transmitting  
and the other for receiving  
Generates interrupt requests when buffer levels cross a  
programmable boundary  
Each supports two PDMA requests, one for transmitting and the  
other for receiving  
Up to 3 sets of USCI: USCI0, USCI1 and USCI2  
Supports UART, SPI and I2C function  
Single byte TX and RX buffer mode  
USCI_UART  
One transmit buffer and two receive buffer for data payload  
Hardware auto flow control function and programmable flow  
control trigger level  
Programmable baud-rate generator  
Supports 9-bit data transfer  
Baud rate detection by built-in capture event of baud rate  
generator  
Supports Wake-up function (Data and nCTS Wakeup Only)  
Supports PDMA transfer  
Universal Serial Control  
Interface (USCI)  
USCI_SPI  
Master or Slave mode operation  
Configurable bit length of a transfer word from 4 to 16-bit  
One transmit buffer and two receive buffer for data payload  
MSB first or LSB first transfer sequence  
Word suspend function  
Supports PDMA transfer  
Supports 3-wire, no slave select signal, bi-direction interface  
Wake-up function: input slave select transition  
Supports one data channel half-duplex transfer  
USCI_I2C  
Full master and slave device capability  
July 2, 2020  
Page 25 of 266  
Rev 1.01  
M251/M252  
7-bit/10-bit addressing mode  
Communication in Standard mode (100 kbps), Fast mode (up to  
400 kbps) and Fast mode plus (1 Mbps)  
Multi-master bus  
One transmit buffer and two receive buffer for data payload  
10-bit bus time out capability  
Supports Bus monitor mode  
Wake-up by data toggle or address match in Power-down mode  
Multiple address recognition  
Setup/hold time programmable  
Supports up to three memory banks  
Supports dedicated external chip select pin with polarity control for  
each bank  
Accessible space up to 1 Mbytes for each bank  
Byte write in 16-bit data width mode  
External Bus Interface  
(EBI)  
Address/Data multiplexed and separate mode  
Timing parameters individual adjustment for each memory block  
Supports LCD interface i80 mode  
Supports Continuous Data Access mode  
Supports PDMA mode  
Four I/O modes:  
Quasi bi-direction  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable  
I/O pin configured as interrupt source with edge/level trigger  
setting  
GPIO  
Independent pull-up/pull-down control  
High driver and high sink current I/O (up to 16 mA at 5V, 25°C)  
Minimum I/O Speed  
25 MHz when VDD = 2.7 ~ 5.5 V (-40°C ~ +105°C, CL=35p,  
high skew rate enabled)  
10 MHz when VDD = 1.75 ~ 5.5 V (-40°C ~ +105°C, CL=35p,  
high skew rate enabled)  
Software selectable slew rate control  
July 2, 2020  
Page 26 of 266  
Rev 1.01  
M251/M252  
Supports wake-up function  
Supports I/O de-bounce with LIRC at power down  
I/O configurations of multi-function pin are controlled by module or  
MFOS register settings.  
Supports up to 8 PSIO pins, from PSIO pin0 to PSIO pin7  
Supports 6 clock source selections: HXT, LXT, HIRC, LIRC, PLL,  
or PCLK1  
Supports one clock divider, which can be divided from 1 to 255  
Supports slot controller for timing sequence control  
Supports 4 slot controllers, 8 slots in each slot controller  
Supports counting from 1 PSIO clock to 15 PSIO clocks in  
each slot  
Supports 3 slot repeat modes  
Normal repeat mode  
Normal repeat mode with infinity loops  
Whole repeat mode  
Supports 4 slot trigger conditions  
Triggered by software  
Triggered by falling edge  
Triggered by rising edge  
Triggered by rising edge or falling edge  
PSIO  
Supports PSIO PIN for pin state control  
Supports 8 check points to connect with slots in each pin  
Supports 8 check point actions in each check point.  
Supports 7 kinds of check point action to setting  
Output high  
Output low  
Output data  
Output toggle  
Input data  
Input status  
Input status update  
Supports 4 I/O modes: input, output, open-drain, and quasi  
Supports switch I/O mode in different check points  
Supports 4 kinds of Interrupt trigger conditions:  
Two sets of configurable slot interrupt controllers  
Mismatch interrupt when PSIO is enabled with PDMA  
July 2, 2020  
Page 27 of 266  
Rev 1.01  
M251/M252  
Transfer Error interrupt  
Slot controller counting done interrupt  
Supports PDMA function  
Advanced Connectivity  
Compliant with USB 2.0 Full-Speed specification  
Provides 1 interrupt vector with 4 different interrupt events  
(NEVWK, VBUSDET, USB and BUS)  
Suspend function when no bus activity exists for 3 ms  
Supports 12 endpoints for configurable  
Control/Bulk/Interrupt/Isochronous transfer types and maximum  
1024 bytes buffer size  
USB 2.0 Full Speed  
Provides remote wake-up capability  
Start of Frame (SOF) locked clock pulse generation  
Supports USB 2.0 Link Power Management (LPM)  
Supports Crystal-less function  
July 2, 2020  
Page 28 of 266  
Rev 1.01  
M251/M252  
3 PARTS INFORMATION  
3.1 Package Type  
Part No.  
M251xC  
TSSOP20  
TSSOP28  
QFN33  
LQFP48  
LQFP64  
LQFP128  
M251FC2AE  
M251EC2AE  
M251ZC2AE  
M251LC2AE  
M251LD2AE  
M251SC2AE  
M251SD2AE  
M251ZD2AE  
M251xD  
M251xE  
M251LE3AE  
M251LG6AE  
M251SE3AE  
M251SG6AE  
M251KE3AE  
M251KG6AE  
M251xG  
M252FC2AE  
M252EC2AE  
M252ZC2AE  
M252ZD2AE  
M252xC  
M252xD  
M252LC2AE  
M252LD2AE  
M252SC2AE  
M252SD2AE  
M252xE  
M252xG  
M252LE3AE  
M252LG6AE  
M252SE3AE  
M252SG6AE  
M252KE3AE  
M252KG6AE  
July 2, 2020  
Page 29 of 266  
Rev 1.01  
M251/M252  
3.2 M251/M252 Series Selection Guide  
3.2.1  
M251 Base Series (M251Fx / M0251Ex / M0251Zx)  
PART NUMBER  
Flash (KB)  
SRAM (KB)  
LDROM (KB)  
PLL ( MHz)  
LXT  
32  
8
32  
8
32  
8
64  
12  
4
-
-
-
-
-
96  
I/O  
15  
23  
26  
26  
32-bit Timer/PWM  
PWM  
4
9
-
11  
-
12  
-
12  
12  
BPWM  
WDT/WWDT  
RTC  
-
-
1
2
2
3
USCI  
1
2
1
2
UART  
QSPI  
1
SPI /I2S  
I2C  
-
-
-
1
2
1
-
SC/UART  
EBI  
PSIO  
-
7
-
-
9
-
-
10  
-
4
10  
2
12-bit ADC  
ACMP  
DAC  
-
-
OPA  
PDMA  
5
-
Tamper  
VAI  
-
-
VBAT pin  
Internal VREF  
Package  
-
-
TSSOP20  
TSSOP28  
QFN33  
QFN33  
July 2, 2020  
Page 30 of 266  
Rev 1.01  
M251/M252  
3.2.2  
M251 Base Series (M251Lx)  
PART NUMBER  
Flash (KB)  
SRAM (KB)  
LDROM (KB)  
PLL ( MHz)  
LXT  
32  
8
64  
12  
128  
16  
256  
32  
4
96  
I/O  
41  
4
32-bit Timer/PWM  
PWM  
12  
12  
BPWM  
WDT/WWDT  
RTC  
USCI  
2
2
3
3
UART  
3
1
1
2
1
QSPI  
SPI /I2S  
I2C  
SC/UART  
EBI  
-
-
PSIO  
4
4
8
8
12-bit ADC  
ACMP  
12  
2
DAC  
-
-
-
-
-
-
1
1
8
OPA  
PDMA  
5
5
8
Tamper  
VAI  
-
VBAT pin  
Internal VREF  
Package  
-
-
LQFP48  
July 2, 2020  
Page 31 of 266  
Rev 1.01  
M251/M252  
July 2, 2020  
Page 32 of 266  
Rev 1.01  
M251/M252  
3.2.3  
M251 Base Series (M251Sx)  
PART NUMBER  
Flash (KB)  
SRAM (KB)  
LDROM (KB)  
PLL ( MHz)  
LXT  
32  
64  
12  
128  
16  
256  
32  
8
4
96  
I/O  
54  
54  
53  
53  
32-bit Timer/PWM  
PWM  
4
12  
12  
BPWM  
WDT/WWDT  
RTC  
USCI  
2
2
3
3
UART  
3
1
1
2
1
QSPI  
SPI /I2S  
I2C  
SC/UART  
EBI  
-
-
PSIO  
4
4
8
8
12-bit ADC  
ACMP  
16  
2
DAC  
-
-
-
-
-
-
1
1
8
OPA  
PDMA  
5
5
8
Tamper  
VAI  
VBAT pin  
Internal VREF  
Package  
-
-
LQFP64  
July 2, 2020  
Page 33 of 266  
Rev 1.01  
M251/M252  
3.2.4  
M251 Base Series (M251Kx)  
PART NUMBER  
Flash (KB)  
SRAM (KB)  
LDROM (KB)  
PLL ( MHz)  
LXT  
128  
16  
256  
32  
4
96  
I/O  
85  
4
32-bit Timer/PWM  
PWM  
12  
12  
BPWM  
WDT/WWDT  
RTC  
USCI  
3
UART  
3
QSPI  
1
SPI /I2S  
I2C  
1
2
SC/UART  
EBI  
1
PSIO  
8
12-bit ADC  
ACMP  
16  
2
DAC  
-
-
1
1
OPA  
PDMA  
8
Tamper  
VAI  
VBAT pin  
Internal VREF  
Package  
LQFP128  
July 2, 2020  
Page 34 of 266  
Rev 1.01  
M251/M252  
3.2.5  
M252 USB Series (M252Fx / M0252Ex / M0252Zx)  
PART NUMBER  
Flash (KB)  
SRAM (KB)  
LDROM (KB)  
PLL ( MHz)  
LXT  
32  
8
32  
8
32  
8
64  
12  
4
-
-
-
-
-
96  
I/O  
11  
19  
22  
22  
32-bit Timer/PWM  
PWM  
4
7
-
11  
-
12  
-
12  
8
BPWM  
WDT/WWDT  
RTC  
1
-
-
2
3
USCI  
1
2
1
2
UART  
2
QSPI  
1
SPI /I2S  
I2C  
-
-
-
1
2
1
-
SC/UART  
EBI  
PSIO  
-
3
-
-
9
-
-
10  
-
4
10  
2
12-bit ADC  
ACMP  
DAC  
-
-
OPA  
PDMA  
5
-
Tamper  
VAI  
-
-
VBAT pin  
Internal VREF  
Package  
-
-
TSSOP20  
TSSOP28  
QFN33  
QFN33  
July 2, 2020  
Page 35 of 266  
Rev 1.01  
M251/M252  
July 2, 2020  
Page 36 of 266  
Rev 1.01  
M251/M252  
3.2.6  
M252 USB Series (M252Lx)  
PART NUMBER  
Flash (KB)  
SRAM (KB)  
LDROM (KB)  
PLL ( MHz)  
LXT  
32  
8
64  
12  
128  
16  
256  
32  
4
96  
I/O  
37  
4
32-bit Timer/PWM  
PWM  
12  
12  
BPWM  
WDT/WWDT  
RTC  
USCI  
2
2
3
3
UART  
3
1
1
2
1
QSPI  
SPI /I2S  
I2C  
SC/UART  
EBI  
-
-
PSIO  
4
4
8
8
12-bit ADC  
ACMP  
12  
2
DAC  
-
-
-
-
-
-
1
1
8
OPA  
PDMA  
5
5
8
Tamper  
VAI  
-
VBAT pin  
Internal VREF  
Package  
-
-
LQFP48  
July 2, 2020  
Page 37 of 266  
Rev 1.01  
M251/M252  
3.2.7  
M252 USB Series (M252Sx)  
PART NUMBER  
Flash (KB)  
SRAM (KB)  
LDROM (KB)  
PLL ( MHz)  
LXT  
32  
64  
12  
128  
16  
256  
32  
8
4
96  
I/O  
50  
50  
49  
49  
32-bit Timer/PWM  
PWM  
4
12  
12  
BPWM  
WDT/WWDT  
RTC  
USCI  
2
2
3
3
UART  
3
1
1
2
1
QSPI  
SPI /I2S  
I2C  
SC/UART  
EBI  
-
-
PSIO  
4
4
8
8
12-bit ADC  
ACMP  
16  
2
DAC  
-
-
-
-
-
-
1
1
8
OPA  
PDMA  
5
5
8
Tamper  
VAI  
VBAT pin  
Internal VREF  
Package  
-
-
LQFP64  
July 2, 2020  
Page 38 of 266  
Rev 1.01  
M251/M252  
3.2.8  
M252 USB Series (M252Kx)  
PART NUMBER  
Flash (KB)  
SRAM (KB)  
LDROM (KB)  
PLL ( MHz)  
LXT  
128  
16  
256  
32  
4
96  
I/O  
81  
4
32-bit Timer/PWM  
PWM  
12  
12  
BPWM  
WDT/WWDT  
RTC  
USCI  
3
UART  
3
QSPI  
1
SPI /I2S  
I2C  
1
2
SC/UART  
EBI  
1
PSIO  
8
12-bit ADC  
ACMP  
16  
2
DAC  
-
-
1
1
OPA  
PDMA  
8
Tamper  
VAI  
VBAT pin  
Internal VREF  
Package  
LQFP128  
July 2, 2020  
Page 39 of 266  
Rev 1.01  
M251/M252  
3.2.9  
Naming Rule  
51  
M2  
Core  
S
G
6
A
E
Line  
Package  
Flash  
SRAM  
Reserve  
Temperature  
E: -40~ +105℃  
Cortex®-M23 51: Control  
F: TSSOP20  
(4.4x6.5 mm)  
E: TSSOP28  
(4.4x9.7 mm)  
Z: QFN33  
(5x5 mm)  
C: 32 KB  
D: 64 KB  
E: 128 KB  
G: 256 KB  
2: 8/12 KB  
3: 16 KB  
6: 32 KB  
52: USB  
L: LQFP48  
(7x7 mm)  
S: LQFP64  
(7x7 mm)  
K: LQFP128  
(14x14 mm)  
July 2, 2020  
Page 40 of 266  
Rev 1.01  
M251/M252  
4 PIN CONFIGURATION  
Users can find pin configuration information in chapter 4 or by using NuTool - PinConfig. The NuTool -  
PinConfigure contains all NuMicro® Family chip series with all part number, and helps users configure  
GPIO multi-function correctly and handily.  
4.1 Pin Configuration  
4.1.1  
M251 Series Pin Diagram  
4.1.1.1 M251 Series TSSOP 20-Pin Diagram  
Corresponding Part Number: M251FC2AE  
1
20  
19  
18  
17  
VSS  
PF.1  
2
3
LDO_CAP  
VDD  
PF.0  
nRESET  
PA.0  
4
PB.14  
PB.13  
PB.12  
AVDD  
5
16 PA.1  
15 PA.2  
6
PA.3  
PF.2  
PF.3  
PB.2  
7
14  
13  
12  
11  
PB.5  
8
PB.4  
9
PB.3  
10  
Figure 4.1-1 M251 Series TSSOP 20-pin Diagram  
4.1.1.2 M251 Series TSSOP 28-Pin Diagram  
Corresponding Part Number: M251EC2AE  
1
28  
27  
26  
25  
24  
PC.0  
PA.12  
2
PC.1  
PA.13  
3
PF.1  
PA.14  
4
PF.0  
PA.15  
5
nRESET  
VSS  
6
7
23 PA.0  
22 PA.1  
21 PA.2  
LDO_CAP  
VDD  
8
PB.14  
PB.13  
PB.12  
AVDD  
PA.3  
PF.2  
PF.3  
PB.0  
PB.1  
PB.2  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
PB.5  
PB.4  
PB.3  
Figure 4.1-2 M251 Series TSSOP 28-pin Diagram  
July 2, 2020  
Page 41 of 266  
Rev 1.01  
M251/M252  
4.1.1.3 M251 Series QFN 33-Pin Diagram  
Corresponding Part Number: M251ZC2AE, M251ZD2AE  
25  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PF.2  
Top transparent view  
26  
LDO_CAP  
27  
VDD  
28  
PB.15  
QFN33  
29  
PB.14  
30  
PB.13  
31  
PB.12  
33 VSS  
32  
AVDD  
PF.3  
Figure 4.1-3 M251 Series QFN 33-pin Diagram  
July 2, 2020  
Page 42 of 266  
Rev 1.01  
M251/M252  
4.1.1.4 M251 Series LQFP 48-Pin Diagram  
Corresponding Part Number: M251LC2AE, M251LD2AE, M251LE3AE, M251LG6AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PA.6  
PA.7  
PF.2  
PF.3  
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
LQFP48  
AVSS  
PB.7  
PB.6  
Figure 4.1-4 M251 Series LQFP 48-pin Diagram  
July 2, 2020  
Page 43 of 266  
Rev 1.01  
M251/M252  
4.1.1.5 M251 Series LQFP 64-Pin Diagram  
Corresponding Part Number: M251SC2AE, M251SD2AE, M251SE3AE, M251SG6AE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PD.15  
VDD  
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
LQFP64  
VREF  
AVSS  
VSS  
PB.11  
PB.10  
PB.9  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
PB.8  
PB.7  
Figure 4.1-5 M251 Series LQFP 64-pin Diagram without VBAT  
July 2, 2020  
Page 44 of 266  
Rev 1.01  
M251/M252  
Corresponding Part Number: M251SG6AE, M251SE3AE  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PD.15  
VDD  
50  
LDO_CAP  
51  
VDD  
52  
PC.14  
53  
PB.15  
54  
PB.14  
55  
PB.13  
56  
PB.12  
LQFP64  
57  
AVDD  
58  
VREF  
59  
AVSS  
VSS  
60  
PB.11  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
61  
PB.10  
62  
PB.9  
63  
PB.8  
64  
PB.7  
Figure 4.1-6 M251 Series LQFP 64-pin Diagram with VBAT  
July 2, 2020  
Page 45 of 266  
Rev 1.01  
M251/M252  
4.1.1.6 M251 Series LQFP 128-Pin Diagram  
Corresponding Part Number: M251KE3AE, M251KG6AE  
97  
64  
PE.7  
PE.6  
PE.5  
PE.4  
PE.3  
PE.2  
NC  
nRESET  
PE.15  
PE.14  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PD.15  
VDD  
98  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
NC  
PE.1  
PE.0  
NC  
NC  
NC  
VSS  
NC  
PA.6  
PA.7  
PC.6  
PC.7  
PC.8  
PE.13  
PE.12  
PE.11  
PE.10  
PE.9  
PE.8  
NC  
NC  
VSS  
LQFP128  
LDO_CAP  
VDD  
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
VREF  
AVSS  
PB.11  
PB.10  
PB.9  
PB.8  
PB.7  
PB.6  
NC  
PF.2  
PF.3  
NC  
NC  
NC  
NC  
Figure 4.1-7 M251 Series LQFP 128-pin Diagram  
July 2, 2020  
Page 46 of 266  
Rev 1.01  
M251/M252  
4.1.2  
M251 Series Multi-function Pin Diagram  
4.1.2.1 M251 Series TSSOP 20-Pin Multi-function Pin Diagram  
Corresponding Part Number: M251FC2AE  
M251FC2AE  
1
2
20  
19  
VSS  
LDO_CAP  
PF.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
PF.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
VDD  
3
18 nRESET  
CLKO / TM1_EXT / PWM1_CH1 / UART0_nRTS / USCI0_DAT1 / EADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / UART0_TXD / USCI0_DAT0 / EADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / UART0_RXD / USCI0_CLK / EADC0_CH12 / PB.12  
AVDD  
4
17 PA.0 / SC0_CLK / UART0_RXD / UART1_nRTS / PWM0_CH5  
16 PA.1 / SC0_DAT / UART0_TXD / UART1_nCTS / PWM0_CH4  
5
6
15 PA.2 / SC0_RST / I2C0_SMBSUS / UART1_RXD / I2C1_SDA / PWM0_CH3  
7
14 PA.3 / SC0_PWR / I2C0_SMBAL / UART1_TXD / I2C1_SCL / PWM0_CH2 / CLKO / PWM1_BRAKE1  
INT0 / TM0 / PWM0_CH0 / SC0_CLK / I2C0_SCL / EADC0_CH5 / PB.5  
INT1 / TM1 / PWM0_CH1 / SC0_DAT / I2C0_SDA / EADC0_CH4 / PB.4  
INT2 / TM2 / PWM0_BRAKE0 / PWM0_CH2 / SC0_RST / UART1_TXD / I2C1_SCL / EADC0_CH3 / PB.3  
PF.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
8
13  
12  
11  
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN  
9
PB.2 / EADC0_CH2 / I2C1_SDA / UART1_RXD / SC0_PWR / PWM0_CH3 / TM3 / INT3  
10  
Figure 4.1-8 M251FC2AE Multi-function Pin Diagram  
Pin M251FC2AE Pin Function  
1
2
3
4
5
6
7
8
9
VSS  
LDO_CAP  
VDD  
PB.14/EADC0_CH14/USCI0_DAT1/UART0_nRTS/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/USCI0_DAT0/UART0_TXD/PWM1_CH2/TM2_EXT  
PB.12/EADC0_CH12/USCI0_CLK/UART0_RXD/PWM1_CH3/TM3_EXT  
AVDD  
PB.5/EADC0_CH5/I2C0_SCL/SC0_CLK/PWM0_CH0/TM0/INT0  
PB.4/EADC0_CH4/I2C0_SDA/SC0_DAT/PWM0_CH1/TM1/INT1  
10 PB.3/EADC0_CH3/I2C1_SCL/UART1_TXD/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/INT2  
11 PB.2/EADC0_CH2/I2C1_SDA/UART1_RXD/SC0_PWR/PWM0_CH3/TM3/INT3  
12 PF.3/UART0_TXD/I2C0_SCL/XT1_IN  
13 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT  
14 PA.3/QSPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PWM0_CH2/CLKO/PWM1_BRAKE1  
15 PA.2/QSPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PWM0_CH3  
16 PA.1/QSPI0_MISO0/SC0_DAT/UART0_TXD/UART1_nCTS/PWM0_CH4  
17 PA.0/QSPI0_MOSI0/SC0_CLK/UART0_RXD/UART1_nRTS/PWM0_CH5  
nRESET  
18  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
19  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
20  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
July 2, 2020  
Page 47 of 266  
Rev 1.01  
M251/M252  
Table 4.1-1 M251FC2AE Multi-function Pin Table  
4.1.2.2 M251 Series TSSOP 28-Pin Multi-function Pin Diagram  
Corresponding Part Number: M251EC2AE  
M251EC2AE  
1
2
28  
27  
26  
25  
I2C1_SCL / PA.12  
PC.0 / I2C0_SDA / PWM1_CH5  
I2C1_SDA / PA.13  
PC.1 / I2C0_SCL / PWM1_CH4  
3
UART0_TXD / PA.14  
PF.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
PF.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
4
UART0_RXD / PA.15  
VSS  
LDO_CAP  
5
24 nRESET  
6
23 PA.0 / SC0_CLK / UART0_RXD / UART1_nRTS / PWM0_CH5  
22 PA.1 / SC0_DAT / UART0_TXD / UART1_nCTS / PWM0_CH4  
VDD  
7
CLKO / TM1_EXT / PWM1_CH1 / UART0_nRTS / USCI0_DAT1 / EADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / UART0_TXD / USCI0_DAT0 / EADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / UART0_RXD / USCI0_CLK / EADC0_CH12 / PB.12  
AVDD  
8
21 PA.2 / SC0_RST / I2C0_SMBSUS / UART1_RXD / I2C1_SDA / PWM0_CH3  
9
20 PA.3 / SC0_PWR / I2C0_SMBAL / UART1_TXD / I2C1_SCL / PWM0_CH2 / CLKO / PWM1_BRAKE1  
PF.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN  
INT0 / TM0 / PWM0_CH0 / SC0_CLK / I2C0_SCL / EADC0_CH5 / PB.5  
INT1 / TM1 / PWM0_CH1 / SC0_DAT / I2C0_SDA / EADC0_CH4 / PB.4  
INT2 / TM2 / PWM0_BRAKE0 / PWM0_CH2 / SC0_RST / UART1_TXD / I2C1_SCL / EADC0_CH3 / PB.3  
PB.0 / EADC0_CH0 / I2C1_SDA / PWM0_CH5 / PWM1_CH5 / PWM0_BRAKE1  
PB.1 / EADC0_CH1 / I2C1_SCL / PWM0_CH4 / PWM1_CH4 / PWM0_BRAKE0  
PB.2 / EADC0_CH2 / I2C1_SDA / UART1_RXD / SC0_PWR / PWM0_CH3 / TM3 / INT3  
Figure 4.1-9 M251EC2AE Multi-function Pin Diagram  
Pin M251EC2AE Pin Function  
1
2
3
4
5
6
7
8
9
PA.12/I2C1_SCL  
PA.13/I2C1_SDA  
PA.14/UART0_TXD  
PA.15/UART0_RXD  
VSS  
LDO_CAP  
VDD  
PB.14/EADC0_CH14/USCI0_DAT1/UART0_nRTS/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/USCI0_DAT0/UART0_TXD/PWM1_CH2/TM2_EXT  
10 PB.12/EADC0_CH12/USCI0_CLK/UART0_RXD/PWM1_CH3/TM3_EXT  
11 AVDD  
12 PB.5/EADC0_CH5/I2C0_SCL/SC0_CLK/PWM0_CH0/TM0/INT0  
13 PB.4/EADC0_CH4/I2C0_SDA/SC0_DAT/PWM0_CH1/TM1/INT1  
14 PB.3/EADC0_CH3/I2C1_SCL/UART1_TXD/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/INT2  
15 PB.2/EADC0_CH2/I2C1_SDA/UART1_RXD/SC0_PWR/PWM0_CH3/TM3/INT3  
16 PB.1/EADC0_CH1/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
17 PB.0/EADC0_CH0/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE1  
18 PF.3/UART0_TXD/I2C0_SCL/XT1_IN  
19 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT  
July 2, 2020  
Page 48 of 266  
Rev 1.01  
M251/M252  
20 PA.3/QSPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PWM0_CH2/CLKO/PWM1_BRAKE1  
21 PA.2/QSPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PWM0_CH3  
22 PA.1/QSPI0_MISO0/SC0_DAT/UART0_TXD/UART1_nCTS/PWM0_CH4  
23 PA.0/QSPI0_MOSI0/SC0_CLK/UART0_RXD/UART1_nRTS/PWM0_CH5  
nRESET  
24  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
25  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
26  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
27 PC.1/QSPI0_MISO0/I2C0_SCL/PWM1_CH4  
28 PC.0/QSPI0_MOSI0/I2C0_SDA/PWM1_CH5  
Table 4.1-2 M251EC2AE Multi-function Pin Table  
July 2, 2020  
Page 49 of 266  
Rev 1.01  
M251/M252  
4.1.2.3 M251 Series QFN 33-Pin Multi-function Pin Diagram  
Corresponding Part Number: M251ZC2AE  
M251ZC2AE  
nRESET  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
Top transparent view  
VDDIO  
LDO_CAP  
VDD  
PA.0 / QSPI0_MOSI0 / SC0_CLK / UART0_RXD / UART1_nRTS / PWM0_CH5  
PA.1 / QSPI0_MISO0 / SC0_DAT / UART0_TXD / UART1_nCTS / PWM0_CH4  
PA.2 / QSPI0_CLK / SC0_RST / I2C0_SMBSUS / UART1_RXD / I2C1_SDA / PWM0_CH3  
PA.3 / QSPI0_SS / SC0_PWR / I2C0_SMBAL / UART1_TXD / I2C1_SCL / PWM0_CH2 / CLKO /  
PWM1_BRAKE1  
PWM0_BRAKE1 / TM0_EXT / PWM1_CH0 / UART0_nCTS / USCI0_CTL1 / EADC0_CH15 / PB.15  
CLKO / TM1_EXT / PWM1_CH1 / UART0_nRTS / USCI0_DAT1 / EADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / UART0_TXD / USCI0_DAT0 / EADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / UART0_RXD / USCI0_CLK / EADC0_CH12 / PB.12  
AVDD  
QFN33  
33 VSS  
PF.2 / UART0_RXD / I2C0_SDA / QSPI0_CLK / XT1_OUT  
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN  
Figure 4.1-10 M251ZC2AE Multi-function Pin Diagram  
Pin M251ZC2AE Pin Function  
1
2
3
4
PB.5/EADC0_CH5/I2C0_SCL/SC0_CLK/PWM0_CH0/TM0/INT0  
PB.4/EADC0_CH4/I2C0_SDA/SC0_DAT/PWM0_CH1/TM1/INT1  
PB.3/EADC0_CH3/I2C1_SCL/UART1_TXD/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/INT2  
PB.2/EADC0_CH2/I2C1_SDA/UART1_RXD/SC0_PWR/PWM0_CH3/TM3/INT3  
July 2, 2020  
Page 50 of 266  
Rev 1.01  
M251/M252  
5
6
7
8
9
PB.1/EADC0_CH1/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
PB.0/EADC0_CH0/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE1  
PF.5/PWM0_CH0/X32_IN/EADC0_ST  
PF.4/PWM0_CH1/X32_OUT  
PF.3/UART0_TXD/I2C0_SCL/XT1_IN  
10 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT  
11 PA.3/QSPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PWM0_CH2/CLKO/PWM1_BRAKE1  
12 PA.2/QSPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PWM0_CH3  
13 PA.1/QSPI0_MISO0/SC0_DAT/UART0_TXD/UART1_nCTS/PWM0_CH4  
14 PA.0/QSPI0_MOSI0/SC0_CLK/UART0_RXD/UART1_nRTS/PWM0_CH5  
15 VDDIO  
nRESET  
16  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
17  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
18  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
19 PC.1/QSPI0_MISO0/I2C0_SCL/PWM1_CH4  
20 PC.0/QSPI0_MOSI0/I2C0_SDA/PWM1_CH5  
21 PA.12/I2C1_SCL  
22 PA.13/I2C1_SDA  
23 PA.14/UART0_TXD  
24 PA.15/UART0_RXD  
25 VSS  
26 LDO_CAP  
27 VDD  
28 PB.15/EADC0_CH15/USCI0_CTL1/UART0_nCTS/PWM1_CH0/TM0_EXT/PWM0_BRAKE1  
29 PB.14/EADC0_CH14/USCI0_DAT1/UART0_nRTS/PWM1_CH1/TM1_EXT/CLKO  
30 PB.13/EADC0_CH13/USCI0_DAT0/UART0_TXD/PWM1_CH2/TM2_EXT  
31 PB.12/EADC0_CH12/USCI0_CLK/UART0_RXD/PWM1_CH3/TM3_EXT  
32 AVDD  
Table 4.1-3 M251ZC2AE Multi-function Pin Table  
July 2, 2020  
Page 51 of 266  
Rev 1.01  
M251/M252  
Corresponding Part Number: M251ZD2AE  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
nRESET  
VDDIO  
Top transparent view  
LDO_CAP  
VDD  
PA.0 / QSPI0_MOSI0 / SPI0_MOSI / SC0_CLK / UART0_RXD / UART1_nRTS / BPWM0_CH0 / PWM0_CH5  
PA.1 / QSPI0_MISO0 / SPI0_MISO / SC0_DAT / UART0_TXD / UART1_nCTS / BPWM0_CH1 / PWM0_CH4  
PA.2 / QSPI0_CLK / SPI0_CLK / SC0_RST / I2C0_SMBSUS / UART1_RXD / I2C1_SDA / BPWM0_CH2 / PWM0_CH3  
PA.3 / QSPI0_SS / SPI0_SS / SC0_PWR / I2C0_SMBAL / UART1_TXD / I2C1_SCL / BPWM0_CH3 / PWM0_CH2 / CLKO / PWM1_BRAKE1  
PF.2 / UART0_RXD / I2C0_SDA / QSPI0_CLK / XT1_OUT / BPWM1_CH1  
PWM0_BRAKE1 / TM0_EXT / PWM1_CH0 / PSIO0_CH0 / UART0_nCTS / USCI0_CTL1 / SPI0_SS / EADC0_CH15 / PB.15  
CLKO / TM1_EXT / PWM1_CH1 / PSIO0_CH1 / UART0_nRTS / USCI0_DAT1 / SPI0_CLK / EADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / PSIO0_CH2 / UART0_TXD / USCI0_DAT0 / SPI0_MISO / ACMP1_P3 / ACMP0_P3 / EADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / PSIO0_CH3 / UART0_RXD / USCI0_CLK / SPI0_MOSI / ACMP1_P2 / ACMP0_P2 / EADC0_CH12 / PB.12  
AVDD  
QFN33  
33 VSS  
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN / BPWM1_CH0  
Figure 4.1-11 M251ZD2AE Function Pin Diagram  
Pin M251ZD2AE Pin Function  
1
2
PB.5/EADC0_CH5/ACMP1_N/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/UART2_TXD/TM0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/UART2_RXD/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/IN  
T2  
3
4
5
6
PB.2/EADC0_CH2/ACMP0_P1/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/TM3/INT3  
PB.1/EADC0_CH1/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
PB.0/EADC0_CH0/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE  
July 2, 2020  
Page 52 of 266  
Rev 1.01  
M251/M252  
1
7
8
9
PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
PF.3/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
10 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/BPWM0_CH3/PWM0_CH2/CLKO/PWM1  
_BRAKE1  
11  
12 PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/BPWM0_CH2/PWM0_CH3  
13 PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/BPWM0_CH1/PWM0_CH4  
14 PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/BPWM0_CH0/PWM0_CH5  
15 VDDIO  
nRESET  
16  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
17  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
18  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
19 PC.1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/ACMP0_O  
20 PC.0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/ACMP1_O  
21 PA.12/I2C1_SCL/BPWM1_CH2  
22 PA.13/I2C1_SDA/BPWM1_CH3  
23 PA.14/UART0_TXD/BPWM1_CH4  
24 PA.15/UART0_RXD/BPWM1_CH5  
25 VSS  
26 LDO_CAP  
27 VDD  
28 PB.15/EADC0_CH15/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_BRAKE1  
29 PB.14/EADC0_CH14/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1_CH2/TM2_  
EXT  
30  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_CH3/TM3_  
EXT  
31  
32 AVDD  
Table 4.1-4 M251ZD2AE Multi-function Pin Table  
July 2, 2020  
Page 53 of 266  
Rev 1.01  
M251/M252  
4.1.2.4 M251 Series LQFP 48-Pin Multi-function Pin Diagram  
Corresponding Part Number: M251LC2AE, M251LD2AE, M251LE3AE, M251LG6AE  
M251LC2AE / M251LD2AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PA.6  
PA.7  
PF.2  
PF.3  
/
/
/
/
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
TM1  
UART0_nCTS  
UART0_nRTS  
/
QSPI0_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
USCI0_CTL0  
SPI0_SS  
SPI0_CLK  
/
SPI0_I2SMCLK  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2  
PWM1_CH3  
/
TM0_EXT  
TM1_EXT  
PSIO0_CH2  
PSIO0_CH3  
/
PWM1_CH0  
PWM1_CH1  
UART0_TXD  
UART0_RXD  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
/
/
/
/
/
/
/
EADC0_CH15  
EADC0_CH14  
EADC0_CH13  
EADC0_CH12  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5 /  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
BPWM0_CH3  
I2C0_SDA BPWM0_CH4  
PWM0_CH0  
/
BPWM0_CH2  
PWM0_CH2  
PWM0_CH1  
/
PWM0_CH3  
/
/
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
CLKO / PWM1_BRAKE1  
LQFP48  
TM2_EXT  
/
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
/
/
/
USCI0_CLK  
/
/
/
UART0_RXD  
UART0_TXD  
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
I2C0_SDA  
I2C0_SCL  
/
PWM1_CH5  
PWM1_CH4  
QSPI0_CLK / XT1_OUT / BPWM1_CH1  
/
BPWM1_CH3  
/
ACMP1_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
AVSS  
/
/
/
BPWM1_CH2  
/
ACMP0_WLAT  
/
/
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
UART1_TXD  
UART1_RXD  
/
/
USCI1_DAT0  
USCI1_DAT1  
/
/
EADC0_CH7  
EADC0_CH6  
/
/
PB.7  
PB.6  
/
/
/
/
/
/
/
/
/ XT1_IN / BPWM1_CH0  
Figure 4.1-12 M251LC2AE/M251LD2AE Multi-function Pin Diagram  
Pin M251LC2AE/M251LD2AE Pin Function  
1
2
PB.5/EADC0_CH5/ACMP1_N/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/UART2_TXD/TM0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/UART2_RXD/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/IN  
T2  
3
July 2, 2020  
Page 54 of 266  
Rev 1.01  
M251/M252  
4
5
PB.2/EADC0_CH2/ACMP0_P1/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/TM3/INT3  
PB.1/EADC0_CH1/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
PB.0/EADC0_CH0/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE  
1
6
7
8
9
PA.11/ACMP0_P0/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
PA.9/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
10 PA.8/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
11 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
12 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
13 PF.3/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
14 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
15 PA.7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
16 PA.6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
17 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
18 PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/BPWM0_CH4/PWM0_CH1  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/BPWM0_CH3/PWM0_CH2/CLKO/PWM1  
_BRAKE1  
19  
20 PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/BPWM0_CH2/PWM0_CH3  
21 PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/BPWM0_CH1/PWM0_CH4  
22 PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/BPWM0_CH0/PWM0_CH5  
23 VDDIO  
nRESET  
24  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
25  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
26  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
27 PC.5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
28 PC.4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/PSIO0_CH1  
29 PC.3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/PSIO0_CH2  
30 PC.2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/PSIO0_CH3  
31 PC.1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/ACMP0_O  
32 PC.0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/ACMP1_O  
33 PA.12/I2C1_SCL/BPWM1_CH2  
34 PA.13/I2C1_SDA/BPWM1_CH3  
35 PA.14/UART0_TXD/BPWM1_CH4  
July 2, 2020  
Page 55 of 266  
Rev 1.01  
M251/M252  
36 PA.15/UART0_RXD/BPWM1_CH5  
37 VSS  
38 LDO_CAP  
39 VDD  
40 PC.14/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/TM1  
41 PB.15/EADC0_CH15/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_BRAKE1  
42 PB.14/EADC0_CH14/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1_CH2/TM2_  
EXT  
43  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_CH3/TM3_  
EXT  
44  
45 AVDD  
46 AVSS  
47 PB.7/EADC0_CH7/USCI1_DAT0/UART1_TXD/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/INT5/ACMP0_O  
48 PB.6/EADC0_CH6/USCI1_DAT1/UART1_RXD/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/INT4/ACMP1_O  
Table 4.1-5 M251LC2AE/M251LD2AE Multi-function Pin Table  
July 2, 2020  
Page 56 of 266  
Rev 1.01  
M251/M252  
M251LE3AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PA.6  
PA.7  
PF.2  
PF.3  
/
/
/
/
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PWM1_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
USCI0_CLK  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
LQFP48  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
EBI_AD14  
EBI_AD15  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
/
PSIO0_CH3  
/
UART0_RXD  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
AVSS  
/
/
/
/
/
/
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
EBI_nCS0  
EBI_nCS1  
/
UART1_TXD  
UART1_RXD  
/
USCI1_DAT0  
USCI1_DAT1  
/
EBI_nWRL  
EBI_nWRH  
/
/
EADC0_CH7  
EADC0_CH6  
/
/
Analog16  
Analog17  
/
/
PB.7  
PB.6  
EBI_nCS1  
EBI_nCS0  
/
/
UART0_RXD  
UART0_TXD  
/
I2C0_SDA  
I2C0_SCL  
/
QSPI0_CLK  
/ XT1_OUT / BPWM1_CH1  
/
/
/
/
/
/
/
/
/
/
XT1_IN BPWM1_CH0  
/
Figure 4.1-13 M251LE3AE Multi-function Pin Diagram  
Pin M251LE3AE Pin Function  
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
1
2
3
4
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
PB.2/EADC0_CH2/ACMP0_P1/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/PSIO0_CH  
7/TM3/INT3  
July 2, 2020  
Page 57 of 266  
Rev 1.01  
M251/M252  
PB.1/EADC0_CH1/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_  
BRAKE0  
5
6
PB.0/EADC0_CH0/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PW  
M0_BRAKE1  
7
8
9
PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
10 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
11 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
12 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
13 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
14 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
15 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
16 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
17 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
18  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
19  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
20  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
21  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5  
22  
23 VDDIO  
nRESET  
24  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
25  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
26  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
27 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
28 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
29 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
30 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
31 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
32 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
33 PA.12/I2C1_SCL/USCI2_DAT1/PSIO0_CH4/BPWM1_CH2  
34 PA.13/I2C1_SDA/USCI2_DAT0/PSIO0_CH5/BPWM1_CH3  
July 2, 2020  
Page 58 of 266  
Rev 1.01  
M251/M252  
35 PA.14/UART0_TXD/USCI2_CLK/PSIO0_CH6/BPWM1_CH4  
36 PA.15/UART0_RXD/USCI2_CTL1/PSIO0_CH7/BPWM1_CH5  
37 VSS  
38 LDO_CAP  
39 VDD  
40 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
41  
42 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
43  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_  
CH3/TM3_EXT  
44  
45 AVDD  
46 AVSS  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
47  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
48  
Table 4.1-6 M251LE3AE Multi-function Pin Table  
July 2, 2020  
Page 59 of 266  
Rev 1.01  
M251/M252  
M251LG6AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PA.6  
PA.7  
PF.2  
PF.3  
/
/
/
/
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
/ DAC0_ST  
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PSIO0_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
SPI0_MOSI  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
LQFP48  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
/
EBI_AD14  
/
ACMP1_P3  
ACMP0_P2  
/
ACMP0_P3  
DAC0_OUT  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
PWM1_CH3  
/
/
UART0_RXD  
/
USCI0_CLK  
/
EBI_AD15  
/
ACMP1_P2  
/
/
/
/
/
/
EBI_AD6  
EBI_AD7  
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
AVSS  
/
/
/
/
/
/
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
EBI_nCS0  
EBI_nCS1  
/
UART1_TXD  
UART1_RXD  
/
USCI1_DAT0  
USCI1_DAT1  
/
EBI_nWRL  
EBI_nWRH  
/
/
EADC0_CH7  
EADC0_CH6  
/
/
Analog16  
Analog17  
/
/
PB.7  
PB.6  
EBI_nCS1  
EBI_nCS0  
/
/
UART0_RXD  
UART0_TXD  
/
I2C0_SDA  
I2C0_SCL  
/
QSPI0_CLK  
/ XT1_OUT / BPWM1_CH1  
/
/
/
/
/
/
/
/
/
/
XT1_IN BPWM1_CH0  
/
Figure 4.1-14 M251LG6AE Multi-function Pin Diagram  
Pin M251LG6AE Pin Function  
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
1
2
3
4
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
PB.2/EADC0_CH2/ACMP0_P1/OPA0_O/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/P  
SIO0_CH7/TM3/INT3  
July 2, 2020  
Page 60 of 266  
Rev 1.01  
M251/M252  
PB.1/EADC0_CH1/OPA0_N/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH  
4/PWM0_BRAKE0  
5
6
PB.0/EADC0_CH0/OPA0_P/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_  
CH5/PWM0_BRAKE1  
7
8
9
PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT/DAC0_ST  
PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
10 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
11 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
12 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
13 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
14 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
15 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
16 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
17 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
18  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
19  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
20  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
21  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5/DAC0_ST  
22  
23 VDDIO  
nRESET  
24  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
25  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
26  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
27 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
28 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
29 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
30 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
31 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
32 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
33 PA.12/I2C1_SCL/USCI2_DAT1/PSIO0_CH4/BPWM1_CH2  
34 PA.13/I2C1_SDA/USCI2_DAT0/PSIO0_CH5/BPWM1_CH3  
July 2, 2020  
Page 61 of 266  
Rev 1.01  
M251/M252  
35 PA.14/UART0_TXD/USCI2_CLK/PSIO0_CH6/BPWM1_CH4  
36 PA.15/UART0_RXD/USCI2_CTL1/PSIO0_CH7/BPWM1_CH5  
37 VSS  
38 LDO_CAP  
39 VDD  
40 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
41  
42 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
43  
PB.12/EADC0_CH12/DAC0_OUT/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_  
CH3/PWM1_CH3/TM3_EXT  
44  
45 AVDD  
46 AVSS  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
47  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
48  
Table 4.1-7 M251LG6AE Multi-function Pin Table  
July 2, 2020  
Page 62 of 266  
Rev 1.01  
M251/M252  
4.1.2.5 M251 Series LQFP 64-Pin Multi-function Pin Diagram  
Corresponding Part Number: M251SC2AE, M251SD2AE, M251SE3AE, M251SG6AE  
M251SC2AE / M251SD2AE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
TM1  
UART0_nCTS  
UART0_nRTS  
/
QSPI0_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
USCI0_CTL0  
SPI0_SS  
SPI0_CLK  
/
SPI0_I2SMCLK  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2  
PWM1_CH3  
/
TM0_EXT  
TM1_EXT  
PSIO0_CH2  
PSIO0_CH3  
/
PWM1_CH0  
PWM1_CH1  
UART0_TXD  
UART0_RXD  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
USCI0_CLK  
/
/
/
/
/
/
/
EADC0_CH15  
EADC0_CH14  
EADC0_CH13  
EADC0_CH12  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5 /  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
BPWM0_CH3  
I2C0_SDA BPWM0_CH4  
PWM0_CH0  
/
BPWM0_CH2  
PWM0_CH2  
PWM0_CH1  
/
PWM0_CH3  
/
/
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
CLKO / PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
/
/
/
/
/
/
LQFP64  
PD.15  
VDD  
/
PWM0_CH5  
/
TM3  
/
VREF  
AVSS  
VSS  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
UART0_nRTS  
UART1_nCTS UART0_TXD  
UART1_nRTS UART0_RXD  
BPWM1_CH4 UART1_TXD  
/
UART0_nCTS  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
PB.11  
PB.10  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
/
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
BPWM1_CH1  
I2C1_SMBAL  
/
/
I2C1_SDA  
/
/
USCI1_CTL0  
/
/
/
/
/
/
BPWM1_CH2  
BPWM1_CH3  
PWM1_CH4 PWM1_BRAKE0  
/
/
/
USCI1_CTL1  
USCI1_CLK  
USCI1_DAT0  
/
/
/
EADC0_CH9  
EADC0_CH8  
EADC0_CH7  
/
/
/
PB.9  
PB.8  
PB.7  
UART0_nRTS  
UART0_nCTS  
/
/
I2C1_SMBSUS  
I2C1_SMBAL  
QSPI0_CLK  
/
PWM1_CH3  
PWM1_CH2  
XT1_OUT /  
/
BPWM1_CH1  
BPWM1_CH0 TM0  
BPWM1_CH1  
/
TM1  
/ INT2  
/
I2C1_SMBSUS  
/
/
/
/
/
/
/
INT3  
ACMP0_O  
/
INT5  
/
/
/
/
/
UART0_RXD  
/
I2C0_SDA  
/
/
Figure 4.1-15 M251SC2AE/M251SD2AE Multi-function Pin Diagram  
Pin M251SC2AE/M251SD2AE Pin Function  
1
2
3
PB.6/EADC0_CH6/USCI1_DAT1/UART1_RXD/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/INT4/ACMP1_O  
PB.5/EADC0_CH5/ACMP1_N/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/UART2_TXD/TM0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/UART2_RXD/TM1/INT1  
July 2, 2020  
Page 63 of 266  
Rev 1.01  
M251/M252  
PB.3/EADC0_CH3/ACMP0_N/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/IN  
T2  
4
5
6
PB.2/EADC0_CH2/ACMP0_P1/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/TM3/INT3  
PB.1/EADC0_CH1/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
PB.0/EADC0_CH0/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE  
1
7
8
9
PA.11/ACMP0_P0/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
10 PA.9/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
11 PA.8/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
12 PF.6/SC0_CLK/SPI0_MOSI/TAMPER0  
13 PF.14/PWM1_BRAKE0/PWM0_BRAKE0/PSIO0_CH3/PWM0_CH4/CLKO/TM3/INT5  
14 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
15 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
16 PF.3/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
17 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
18 PC.7/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
19 PC.6/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
20 PA.7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
21 PA.6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
22 VSS  
23 VDD  
24 PD.15/PWM0_CH5/TM3/INT1  
25 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
26 PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/BPWM0_CH4/PWM0_CH1  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/BPWM0_CH3/PWM0_CH2/CLKO/PWM1  
_BRAKE1  
27  
28 PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/BPWM0_CH2/PWM0_CH3  
29 PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/BPWM0_CH1/PWM0_CH4  
30 PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/BPWM0_CH0/PWM0_CH5  
31 VDDIO  
nRESET  
32  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
33  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
34  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
35 PC.5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
July 2, 2020  
Page 64 of 266  
Rev 1.01  
M251/M252  
36 PC.4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/PSIO0_CH1  
37 PC.3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/PSIO0_CH2  
38 PC.2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/PSIO0_CH3  
39 PC.1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/ACMP0_O  
40 PC.0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/ACMP1_O  
41 PD.3/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
42 PD.2/USCI0_DAT1/SPI0_CLK/UART0_RXD  
43 PD.1/USCI0_DAT0/SPI0_MISO  
44 PD.0/USCI0_CLK/SPI0_MOSI/TM2  
45 PA.12/I2C1_SCL/BPWM1_CH2  
46 PA.13/I2C1_SDA/BPWM1_CH3  
47 PA.14/UART0_TXD/BPWM1_CH4  
48 PA.15/UART0_RXD/BPWM1_CH5  
49 VSS  
50 LDO_CAP  
51 VDD  
52 PC.14/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/TM1  
53 PB.15/EADC0_CH15/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_BRAKE1  
54 PB.14/EADC0_CH14/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1_CH2/TM2_  
EXT  
55  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_CH3/TM3_  
EXT  
56  
57 AVDD  
58 VREF  
59 AVSS  
60 PB.11/EADC0_CH11/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
61 PB.10/EADC0_CH10/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
62 PB.9/EADC0_CH9/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
63 PB.8/EADC0_CH8/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
64 PB.7/EADC0_CH7/USCI1_DAT0/UART1_TXD/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/INT5/ACMP0_O  
Table 4.1-8 M251SC2AE/M251SD2AE Multi-function Pin Table  
July 2, 2020  
Page 65 of 266  
Rev 1.01  
M251/M252  
M251SE3AE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PWM1_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
USCI0_CLK  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
TM3 INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
EBI_AD14  
EBI_AD15  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
/
PSIO0_CH3  
/
UART0_RXD  
/
/
/
/
/
LQFP64  
PD.15  
VDD  
/
PSIO0_CH7  
/
PWM0_CH5  
/
/
VREF  
AVSS  
VSS  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
/
UART0_nCTS  
USCI1_CTL0  
UART0_TXD USCI1_CTL1  
USCI1_CLK  
/
EBI_ADR16  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
Analog12  
Analog13  
/
/
PB.11  
PB.10  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
BPWM1_CH1  
/
I2C1_SDA  
UART1_nCTS  
UART1_nRTS  
BPWM1_CH4 EBI_nCS0  
/
UART0_nRTS  
/
/
EBI_ADR17  
/
/
/
/
/
/
BPWM1_CH2  
BPWM1_CH3  
PWM1_CH4 PWM1_BRAKE0  
/
I2C1_SMBAL  
/
/
/
/
/
EBI_ADR18  
EBI_ADR19  
EBI_nWRL  
/
/
/
EADC0_CH9  
/
/
/
Analog14  
Analog15  
Analog16  
/
/
/
PB.9  
PB.8  
PB.7  
UART0_nRTS  
UART0_nCTS  
/
/
/
I2C1_SMBSUS  
I2C1_SMBAL  
I2C0_SDA QSPI0_CLK  
/
PWM1_CH3  
PWM1_CH2 BPWM1_CH0  
XT1_OUT BPWM1_CH1  
/
BPWM1_CH1  
/
TM1  
/ INT2  
/
I2C1_SMBSUS  
/
/
/
UART0_RXD  
UART1_TXD  
/
EADC0_CH8  
EADC0_CH7  
/
/
/
TM0  
/
INT3  
ACMP0_O  
/
INT5  
/
/
/
/
/
USCI1_DAT0  
/
EBI_nCS1  
/
UART0_RXD  
/
/
/
Figure 4.1-16 M251SE3AE Multi-function Pin Diagram  
Pin M251SE3AE Pin Function  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
1
2
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
3
4
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
July 2, 2020  
Page 66 of 266  
Rev 1.01  
M251/M252  
PWM0_BRAKE0/TM2/INT2  
PB.2/EADC0_CH2/ACMP0_P1/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/PSIO0_CH  
7/TM3/INT3  
5
6
7
PB.1/EADC0_CH1/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_  
BRAKE0  
PB.0/EADC0_CH0/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PW  
M0_BRAKE1  
8
9
PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
10 PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
11 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
12 PF.6/EBI_ADR19/SC0_CLK/SPI0_MOSI/EBI_nCS0/TAMPER0  
13 VBAT  
14 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
15 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
16 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
17 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
18 PC.7/EBI_AD9/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
19 PC.6/EBI_AD8/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
20 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
21 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
22 VSS  
23 VDD  
24 PD.15/PSIO0_CH7/PWM0_CH5/TM3/INT1  
25 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
26  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
27  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
28  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
29  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5  
30  
31 VDDIO  
nRESET  
32  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
33  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
July 2, 2020  
Page 67 of 266  
Rev 1.01  
M251/M252  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
34  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
35 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
36 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
37 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
38 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
39 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
40 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
41 PD.3/EBI_AD10/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
42 PD.2/EBI_AD11/USCI0_DAT1/SPI0_CLK/UART0_RXD  
43 PD.1/EBI_AD12/USCI0_DAT0/SPI0_MISO  
44 PD.0/EBI_AD13/USCI0_CLK/SPI0_MOSI/TM2  
45 PA.12/I2C1_SCL/USCI2_DAT1/PSIO0_CH4/BPWM1_CH2  
46 PA.13/I2C1_SDA/USCI2_DAT0/PSIO0_CH5/BPWM1_CH3  
47 PA.14/UART0_TXD/USCI2_CLK/PSIO0_CH6/BPWM1_CH4  
48 PA.15/UART0_RXD/USCI2_CTL1/PSIO0_CH7/BPWM1_CH5  
49 VSS  
50 LDO_CAP  
51 VDD  
52 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
53  
54 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
55  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_  
CH3/TM3_EXT  
56  
57 AVDD  
58 VREF  
59 AVSS  
60 PB.11/EADC0_CH11/EBI_ADR16/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
61 PB.10/EADC0_CH10/EBI_ADR17/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
62 PB.9/EADC0_CH9/EBI_ADR18/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
63 PB.8/EADC0_CH8/EBI_ADR19/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
64  
Table 4.1-9 M251SE3AE Multi-function Pin Table  
July 2, 2020  
Page 68 of 266  
Rev 1.01  
M251/M252  
July 2, 2020  
Page 69 of 266  
Rev 1.01  
M251/M252  
M251SG6AE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
/ DAC0_ST  
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PSIO0_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
SPI0_MOSI  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
TM3 INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
/
EBI_AD14  
/
ACMP1_P3  
ACMP0_P2  
/
ACMP0_P3  
DAC0_OUT  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
PWM1_CH3  
/
/
UART0_RXD  
/
USCI0_CLK  
/
EBI_AD15  
/
ACMP1_P2  
/
/
/
/
/
/
LQFP64  
PD.15  
VDD  
/
PSIO0_CH7  
/
PWM0_CH5  
/
/
VREF  
AVSS  
VSS  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
/
UART0_nCTS  
USCI1_CTL0  
UART0_TXD  
/
/
EBI_ADR16  
EBI_ADR17  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
Analog12  
Analog13  
/
/
PB.11  
PB.10  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
BPWM1_CH1  
/
I2C1_SDA  
UART1_nCTS  
UART1_nRTS  
BPWM1_CH4 EBI_nCS0  
/
UART0_nRTS  
/
/
/
/
/
/
/
BPWM1_CH2  
BPWM1_CH3  
PWM1_CH4 PWM1_BRAKE0  
/
I2C1_SMBAL  
/
/
/
USCI1_CTL1  
USCI1_CLK  
/
/
EBI_ADR18  
EBI_ADR19  
EBI_nWRL  
/
/
/
EADC0_CH9  
/
/
/
Analog14  
Analog15  
Analog16  
/
/
/
PB.9  
PB.8  
PB.7  
UART0_nRTS  
UART0_nCTS  
/
/
/
I2C1_SMBSUS  
I2C1_SMBAL  
I2C0_SDA QSPI0_CLK  
/
PWM1_CH3  
PWM1_CH2 BPWM1_CH0  
XT1_OUT BPWM1_CH1  
/
BPWM1_CH1  
/
TM1  
/ INT2  
/
I2C1_SMBSUS  
/
/
/
UART0_RXD  
UART1_TXD  
/
EADC0_CH8  
EADC0_CH7  
/
/
/
TM0  
/
INT3  
ACMP0_O  
/
INT5  
/
/
/
/
/
USCI1_DAT0  
/
EBI_nCS1  
/
UART0_RXD  
/
/
/
Figure 4.1-17 M251SG6AE Multi-function Pin Diagram  
Pin M251SG6AE Pin Function  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
1
2
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
3
4
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
July 2, 2020  
Page 70 of 266  
Rev 1.01  
M251/M252  
PWM0_BRAKE0/TM2/INT2  
PB.2/EADC0_CH2/ACMP0_P1/OPA0_O/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/P  
SIO0_CH7/TM3/INT3  
5
6
7
PB.1/EADC0_CH1/OPA0_N/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH  
4/PWM0_BRAKE0  
PB.0/EADC0_CH0/OPA0_P/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_  
CH5/PWM0_BRAKE1  
8
9
PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT/DAC0_ST  
10 PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
11 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
12 PF.6/EBI_ADR19/SC0_CLK/SPI0_MOSI/EBI_nCS0/TAMPER0  
13 VBAT  
14 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
15 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
16 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
17 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
18 PC.7/EBI_AD9/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
19 PC.6/EBI_AD8/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
20 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
21 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
22 VSS  
23 VDD  
24 PD.15/PSIO0_CH7/PWM0_CH5/TM3/INT1  
25 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
26  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
27  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
28  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
29  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5/DAC0_ST  
30  
31 VDDIO  
nRESET  
32  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
33  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
July 2, 2020  
Page 71 of 266  
Rev 1.01  
M251/M252  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
34  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
35 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
36 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
37 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
38 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
39 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
40 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
41 PD.3/EBI_AD10/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
42 PD.2/EBI_AD11/USCI0_DAT1/SPI0_CLK/UART0_RXD  
43 PD.1/EBI_AD12/USCI0_DAT0/SPI0_MISO  
44 PD.0/EBI_AD13/USCI0_CLK/SPI0_MOSI/TM2  
45 PA.12/I2C1_SCL/USCI2_DAT1/PSIO0_CH4/BPWM1_CH2  
46 PA.13/I2C1_SDA/USCI2_DAT0/PSIO0_CH5/BPWM1_CH3  
47 PA.14/UART0_TXD/USCI2_CLK/PSIO0_CH6/BPWM1_CH4  
48 PA.15/UART0_RXD/USCI2_CTL1/PSIO0_CH7/BPWM1_CH5  
49 VSS  
50 LDO_CAP  
51 VDD  
52 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
53  
54 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
55  
PB.12/EADC0_CH12/DAC0_OUT/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_  
CH3/PWM1_CH3/TM3_EXT  
56  
57 AVDD  
58 VREF  
59 AVSS  
60 PB.11/EADC0_CH11/EBI_ADR16/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
61 PB.10/EADC0_CH10/EBI_ADR17/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
62 PB.9/EADC0_CH9/EBI_ADR18/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
63 PB.8/EADC0_CH8/EBI_ADR19/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
64  
Table 4.1-10 M251SG6AE Multi-function Pin Table  
July 2, 2020  
Page 72 of 266  
Rev 1.01  
M251/M252  
July 2, 2020  
Page 73 of 266  
Rev 1.01  
M251/M252  
4.1.2.6 M251 Series LQFP 128-Pin Multi-function Pin Diagram  
Corresponding Part Number: M251KE3AE, M251KG3AE  
M251KE3AE  
BPWM0_CH5  
/
PWM0_CH0  
/
PSIO0_CH0  
SC0_nCD  
/
/
/
/
/
/
PE.7  
PE.6  
PE.5  
PE.4  
PE.3  
PE.2  
NC  
97  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
nRESET  
BPWM0_CH4  
/
PWM0_CH1 PSIO0_CH1  
/
/
USCI0_CTL0  
/
98  
PE.15  
PE.14  
VDDIO  
/
/
EBI_AD9  
EBI_AD8  
/
/
UART2_RXD PSIO0_CH1  
/
BPWM0_CH3  
BPWM0_CH2  
/
/
PWM0_CH2  
PWM0_CH3  
/
/
PSIO0_CH2  
PSIO0_CH3  
/
/
USCI0_CTL1  
USCI0_DAT1  
/
SC0_PWR  
SC0_RST  
/
EBI_nRD  
EBI_nWR  
99  
UART2_TXD / PSIO0_CH0  
/
/
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
BPWM0_CH1  
/
PWM0_CH4  
/
USCI0_DAT0  
/
SC0_DAT  
/
EBI_MCLK  
EBI_ALE  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
BPWM0_CH0 PWM0_CH5  
/
/
USCI2_CTL0  
/
USCI0_CLK  
/
SC0_CLK /  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
TM3 INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
NC  
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
USCI2_DAT1  
USCI2_DAT0  
/
I2C1_SCL  
I2C1_SDA  
/
/
QSPI0_MISO0  
QSPI0_MOSI0  
/
/
EBI_AD10  
EBI_AD11  
/
/
PE.1  
PE.0  
NC  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
/
/
/
/
/
PD.15  
VDD  
/
PSIO0_CH7  
/
PWM0_CH5  
/
/
NC  
NC  
VSS  
NC  
PA.6  
PA.7  
PC.6  
PC.7  
PC.8  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
NC  
/
/
/
/
/
/
VSS  
UART0_nRTS  
UART0_nCTS  
/
/
I2C1_SMBSUS  
/
PWM1_CH3  
BPWM1_CH0  
BPWM1_CH4  
PWM1_CH0 / BPWM1_CH5  
/
BPWM1_CH1  
/
TM1  
/
INT2  
LQFP128  
LDO_CAP  
VDD  
I2C1_SMBAL PWM1_CH2  
/
/
/
TM0  
/ INT3  
EBI_ADR16  
/
I2C0_SDA  
/
UART1_RXD  
/
PWM1_CH1  
/
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PE.13  
PE.12  
PE.11  
PE.10  
/
/
/
/
EBI_ADR15  
/
/
/
/
I2C0_SCL  
/
UART1_TXD  
/
PWM0_CH5  
/
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PWM1_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
USCI0_CLK  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
EBI_ADR14  
EBI_ADR13  
EBI_ADR12  
USCI1_CLK  
/
UART1_nRTS  
/
PWM0_CH4  
PWM0_CH3  
/ PWM1_BRAKE0  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
USCI1_DAT1  
USCI1_DAT0  
/
/
UART1_nCTS  
PWM0_CH2  
/
/ PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
EBI_AD14  
EBI_AD15  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
TM3_EXT  
/
/
PSIO0_CH3  
/
UART0_RXD  
/
PE.9  
PE.8  
NC  
/
/
EBI_ADR11  
EBI_ADR10  
/
/
USCI1_CTL0  
USCI1_CTL1  
/
/
UART2_RXD  
UART2_TXD  
/
PWM0_CH1  
PWM0_CH0  
/
PWM0_BRAKE1  
/
/ PWM0_BRAKE0  
VREF  
AVSS  
NC  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
/
UART0_nCTS  
USCI1_CTL0  
UART0_TXD USCI1_CTL1  
USCI1_CLK  
/
EBI_ADR16  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
Analog12  
Analog13  
/
/
PB.11  
PB.10  
PF.2  
PF.3  
NC  
/
/
EBI_nCS1  
EBI_nCS0  
/
/
UART0_RXD  
UART0_TXD  
/
I2C0_SDA  
I2C0_SCL  
/
QSPI0_CLK  
/ XT1_OUT / BPWM1_CH1  
BPWM1_CH1  
I2C1_SMBAL  
/
/
I2C1_SDA  
UART1_nCTS  
UART1_nRTS  
/
UART0_nRTS  
/
/
EBI_ADR17  
/
/
XT1_IN BPWM1_CH0  
/
BPWM1_CH2  
BPWM1_CH3  
/
/
/
/
/
EBI_ADR18  
EBI_ADR19  
/
/
/
/
EADC0_CH9  
/
/
/
/
Analog14  
Analog15  
Analog16  
Analog17  
/
/
/
/
PB.9  
PB.8  
PB.7  
PB.6  
/
I2C1_SMBSUS  
/
/
/
UART0_RXD  
UART1_TXD  
/
EADC0_CH8  
EADC0_CH7  
EADC0_CH6  
NC  
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
EBI_nCS0  
EBI_nCS1  
/
USCI1_DAT0  
USCI1_DAT1  
/
EBI_nWRL  
EBI_nWRH  
NC  
/
/
/
/
/
/
UART1_RXD  
/
/
NC  
Figure 4.1-18 M251KE3AE Multi-function Pin Diagram  
Pin M251KE3AE Pin Function  
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
1
2
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
July 2, 2020  
Page 74 of 266  
Rev 1.01  
M251/M252  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
3
4
PB.2/EADC0_CH2/ACMP0_P1/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/PSIO0_CH  
7/TM3/INT3  
5
6
7
8
PC.12/EBI_ADR4/UART0_TXD/I2C0_SCL/SC0_nCD/PWM1_CH0/ACMP0_O  
PC.11/EBI_ADR5/UART0_RXD/I2C0_SDA/PWM1_CH1/ACMP1_O  
PC.10/EBI_ADR6/PWM1_CH2  
PC.9/EBI_ADR7/PWM1_CH3  
PB.1/EADC0_CH1/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_  
BRAKE0  
9
PB.0/EADC0_CH0/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PW  
M0_BRAKE1  
10  
11 VSS  
12 VDD  
13 PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
14 PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
15 PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
16 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
17 NC  
18 PD.12/EBI_nCS0/UART2_RXD/BPWM0_CH5/CLKO/EADC0_ST/INT5  
19 PD.11/EBI_nCS1/UART1_TXD  
20 PD.10/EBI_nCS2/UART1_RXD  
21 NC  
22 NC  
23 NC  
24 NC  
25 NC  
26 NC  
27 NC  
28 PF.7/EBI_ADR18/SC0_DAT/SPI0_MISO  
29 PF.6/EBI_ADR19/SC0_CLK/SPI0_MOSI/EBI_nCS0/TAMPER0  
30 VBAT  
31 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
32 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
33 NC  
34 NC  
35 NC  
36 NC  
July 2, 2020  
Page 75 of 266  
Rev 1.01  
M251/M252  
37 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
38 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
39 NC  
40 NC  
41 PE.8/EBI_ADR10/USCI1_CTL1/UART2_TXD/PWM0_CH0/PWM0_BRAKE0  
42 PE.9/EBI_ADR11/USCI1_CTL0/UART2_RXD/PWM0_CH1/PWM0_BRAKE1  
43 PE.10/EBI_ADR12/USCI1_DAT0/PWM0_CH2/PWM1_BRAKE0  
44 PE.11/EBI_ADR13/USCI1_DAT1/UART1_nCTS/PWM0_CH3/PWM1_BRAKE1  
45 PE.12/EBI_ADR14/USCI1_CLK/UART1_nRTS/PWM0_CH4  
46 PE.13/EBI_ADR15/I2C0_SCL/UART1_TXD/PWM0_CH5/PWM1_CH0/BPWM1_CH5  
47 PC.8/EBI_ADR16/I2C0_SDA/UART1_RXD/PWM1_CH1/BPWM1_CH4  
48 PC.7/EBI_AD9/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
49 PC.6/EBI_AD8/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
50 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
51 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
52 VSS  
53 VDD  
54 PD.15/PSIO0_CH7/PWM0_CH5/TM3/INT1  
55 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
56  
57  
58  
59  
60  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5  
61 VDDIO  
62 PE.14/EBI_AD8/UART2_TXD/PSIO0_CH0  
63 PE.15/EBI_AD9/UART2_RXD/PSIO0_CH1  
nRESET  
64  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
65  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
66  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
67 PD.9/EBI_AD7/UART2_nCTS/PSIO0_CH2  
July 2, 2020  
Page 76 of 266  
Rev 1.01  
M251/M252  
68 PD.8/EBI_AD6/UART2_nRTS/PSIO0_CH3  
69 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
70 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
71 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
72 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
73 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
74 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
75 VSS  
76 VDD  
77 NC  
78 NC  
79 NC  
80 NC  
81 NC  
82 NC  
83 NC  
84 PD.7/UART1_TXD/I2C0_SCL/USCI1_CLK/PSIO0_CH4  
85 PD.6/UART1_RXD/I2C0_SDA/USCI1_DAT1/PSIO0_CH5  
86 PD.5/I2C1_SCL/USCI1_DAT0/PSIO0_CH6  
87 PD.4/USCI0_CTL0/I2C1_SDA/USCI1_CTL1/PSIO0_CH7  
88 PD.3/EBI_AD10/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
89 PD.2/EBI_AD11/USCI0_DAT1/SPI0_CLK/UART0_RXD  
90 PD.1/EBI_AD12/USCI0_DAT0/SPI0_MISO  
91 PD.0/EBI_AD13/USCI0_CLK/SPI0_MOSI/TM2  
92 PD.13/EBI_AD10/SPI0_I2SMCLK/USCI2_CTL0  
93 PA.12/I2C1_SCL/USCI2_DAT1/PSIO0_CH4/BPWM1_CH2  
94 PA.13/I2C1_SDA/USCI2_DAT0/PSIO0_CH5/BPWM1_CH3  
95 PA.14/UART0_TXD/USCI2_CLK/PSIO0_CH6/BPWM1_CH4  
96 PA.15/UART0_RXD/USCI2_CTL1/PSIO0_CH7/BPWM1_CH5  
97 PE.7/PSIO0_CH0/PWM0_CH0/BPWM0_CH5  
98 PE.6/SC0_nCD/USCI0_CTL0/PSIO0_CH1/PWM0_CH1/BPWM0_CH4  
99 PE.5/EBI_nRD/SC0_PWR/USCI0_CTL1/PSIO0_CH2/PWM0_CH2/BPWM0_CH3  
100 PE.4/EBI_nWR/SC0_RST/USCI0_DAT1/PSIO0_CH3/PWM0_CH3/BPWM0_CH2  
101 PE.3/EBI_MCLK/SC0_DAT/USCI0_DAT0/PWM0_CH4/BPWM0_CH1  
102 PE.2/EBI_ALE/SC0_CLK/USCI0_CLK/USCI2_CTL0/PWM0_CH5/BPWM0_CH0  
103 NC  
July 2, 2020  
Page 77 of 266  
Rev 1.01  
M251/M252  
104 NC  
105 PE.1/EBI_AD10/QSPI0_MISO0/I2C1_SCL/USCI2_DAT1  
106 PE.0/EBI_AD11/QSPI0_MOSI0/I2C1_SDA/USCI2_DAT0  
107 NC  
108 NC  
109 NC  
110 NC  
111 NC  
112 VSS  
113 LDO_CAP  
114 VDD  
115 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
116  
117 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
118  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_  
CH3/TM3_EXT  
119  
120 AVDD  
121 VREF  
122 AVSS  
123 PB.11/EADC0_CH11/EBI_ADR16/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
124 PB.10/EADC0_CH10/EBI_ADR17/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
125 PB.9/EADC0_CH9/EBI_ADR18/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
126 PB.8/EADC0_CH8/EBI_ADR19/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
127  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
128  
Table 4.1-11 M251KE3AE Multi-function Pin Table  
July 2, 2020  
Page 78 of 266  
Rev 1.01  
M251/M252  
M251KG6AE  
BPWM0_CH5  
/
PWM0_CH0  
/
PSIO0_CH0  
SC0_nCD  
/
/
/
/
/
/
/
/
PE.7  
PE.6  
PE.5  
PE.4  
PE.3  
PE.2  
PE.1  
PE.0  
VSS  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
nRESET  
BPWM0_CH4  
/
PWM0_CH1 PSIO0_CH1  
/
/
USCI0_CTL0  
/
PE.15  
PE.14  
VDDIO  
/
/
EBI_AD9  
EBI_AD8  
/
/
UART2_RXD PSIO0_CH1  
/
BPWM0_CH3  
BPWM0_CH2  
/
/
PWM0_CH2  
PWM0_CH3  
/
/
PSIO0_CH2  
PSIO0_CH3  
/
/
USCI0_CTL1  
USCI0_DAT1  
/
SC0_PWR  
SC0_RST  
/
EBI_nRD  
UART2_TXD / PSIO0_CH0  
/
/ EBI_nWR  
BPWM0_CH1  
/
PWM0_CH4  
/
USCI0_DAT0  
/
SC0_DAT  
/
EBI_MCLK  
EBI_ALE  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
/ DAC0_ST  
BPWM0_CH0 PWM0_CH5  
/
/
USCI2_CTL0  
/
USCI0_CLK  
/
SC0_CLK /  
USCI2_DAT1  
USCI2_DAT0  
/
I2C1_SCL  
I2C1_SDA  
/
/
QSPI0_MISO0  
QSPI0_MOSI0  
/
/
EBI_AD10  
EBI_AD11  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
TM3 INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
LDO_CAP  
VDD  
/
/
/
/
PD.15  
VDD  
/
PSIO0_CH7  
/
PWM0_CH5  
/
/
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PSIO0_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
SPI0_MOSI  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
VSS  
LQFP100  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
PA.6  
PA.7  
PC.6  
PC.7  
PC.8  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
/
EBI_AD14  
/
ACMP1_P3  
ACMP0_P2  
/
ACMP0_P3  
DAC0_OUT  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
/
/
/
/
/
/
TM3_EXT  
/
PWM1_CH3  
/
/
UART0_RXD  
/
USCI0_CLK  
/
EBI_AD15  
/
ACMP1_P2  
/
/
UART0_nRTS  
UART0_nCTS  
/
/
I2C1_SMBSUS  
I2C1_SMBAL  
/
PWM1_CH3  
PWM1_CH2 BPWM1_CH0  
BPWM1_CH4  
PWM1_CH0 / BPWM1_CH5  
/
BPWM1_CH1  
/
TM1  
/ INT2  
/
/
/
TM0 / INT3  
VREF  
EBI_ADR16  
/
I2C0_SDA  
/
UART1_RXD  
UART1_TXD  
/
PWM1_CH1  
PWM0_CH5  
/
AVSS  
PE.13  
PE.12  
PE.11  
PE.10  
/
/
/
/
EBI_ADR15  
/
/
/
/
I2C0_SCL  
/
/
/
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
/
UART0_nCTS  
USCI1_CTL0  
UART0_TXD  
/
/
EBI_ADR16  
EBI_ADR17  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
Analog12  
Analog13  
/
/
PB.11  
PB.10  
EBI_ADR14  
EBI_ADR13  
EBI_ADR12  
USCI1_CLK  
/
UART1_nRTS  
/
PWM0_CH4  
PWM0_CH3  
/ PWM1_BRAKE0  
BPWM1_CH1  
I2C1_SMBAL  
/
/
I2C1_SDA  
UART1_nCTS  
UART1_nRTS  
/
UART0_nRTS  
/
USCI1_DAT1  
USCI1_DAT0  
/
/
UART1_nCTS  
PWM0_CH2  
/
/ PWM1_BRAKE1  
BPWM1_CH2  
BPWM1_CH3  
/
/
/
USCI1_CTL1  
USCI1_CLK  
/
/
EBI_ADR18  
EBI_ADR19  
/
/
/
/
EADC0_CH9  
/
/
/
/
Analog14  
Analog15  
Analog16  
Analog17  
/
/
/
/
PB.9  
PB.8  
PB.7  
PB.6  
/
I2C1_SMBSUS  
/
/
/
UART0_RXD  
UART1_TXD  
/
EADC0_CH8  
EADC0_CH7  
EADC0_CH6  
PE.9  
PE.8  
PF.2  
/
/
/
EBI_ADR11  
EBI_ADR10  
/
/
USCI1_CTL0  
USCI1_CTL1  
/
/
UART2_RXD  
UART2_TXD  
/
PWM0_CH1 PWM0_BRAKE1  
/
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
EBI_nCS0  
EBI_nCS1  
/
USCI1_DAT0  
USCI1_DAT1  
/
EBI_nWRL  
EBI_nWRH  
/
PWM0_CH0 / PWM0_BRAKE0  
/
/
/
/
/
/
UART1_RXD  
/
/
EBI_nCS1 / UART0_RXD / I2C0_SDA / QSPI0_CLK / XT1_OUT / BPWM1_CH1  
Figure 4.1-19 M251KG6AE Multi-function Pin Diagram  
Pin M251KG6AE Pin Function  
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
1
2
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
3
4
PB.2/EADC0_CH2/ACMP0_P1/OPA0_O/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/P  
July 2, 2020  
Page 79 of 266  
Rev 1.01  
M251/M252  
SIO0_CH7/TM3/INT3  
5
6
7
8
PC.12/EBI_ADR4/UART0_TXD/I2C0_SCL/SC0_nCD/PWM1_CH0/ACMP0_O  
PC.11/EBI_ADR5/UART0_RXD/I2C0_SDA/PWM1_CH1/ACMP1_O  
PC.10/EBI_ADR6/PWM1_CH2  
PC.9/EBI_ADR7/PWM1_CH3  
PB.1/EADC0_CH1/OPA0_N/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH  
4/PWM0_BRAKE0  
9
PB.0/EADC0_CH0/OPA0_P/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_  
CH5/PWM0_BRAKE1  
10  
11 VSS  
12 VDD  
13 PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
14 PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT/DAC0_ST  
15 PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
16 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
17 NC  
18 PD.12/EBI_nCS0/UART2_RXD/BPWM0_CH5/CLKO/EADC0_ST/INT5  
19 PD.11/EBI_nCS1/UART1_TXD  
20 PD.10/EBI_nCS2/UART1_RXD  
21 NC  
22 NC  
23 NC  
24 NC  
25 NC  
26 NC  
27 NC  
28 PF.7/EBI_ADR18/SC0_DAT/SPI0_MISO  
29 PF.6/EBI_ADR19/SC0_CLK/SPI0_MOSI/EBI_nCS0/TAMPER0  
30 VBAT  
31 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
32 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
33 NC  
34 NC  
35 NC  
36 NC  
37 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
38 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
July 2, 2020  
Page 80 of 266  
Rev 1.01  
M251/M252  
39 NC  
40 NC  
41 PE.8/EBI_ADR10/USCI1_CTL1/UART2_TXD/PWM0_CH0/PWM0_BRAKE0  
42 PE.9/EBI_ADR11/USCI1_CTL0/UART2_RXD/PWM0_CH1/PWM0_BRAKE1  
43 PE.10/EBI_ADR12/USCI1_DAT0/PWM0_CH2/PWM1_BRAKE0  
44 PE.11/EBI_ADR13/USCI1_DAT1/UART1_nCTS/PWM0_CH3/PWM1_BRAKE1  
45 PE.12/EBI_ADR14/USCI1_CLK/UART1_nRTS/PWM0_CH4  
46 PE.13/EBI_ADR15/I2C0_SCL/UART1_TXD/PWM0_CH5/PWM1_CH0/BPWM1_CH5  
47 PC.8/EBI_ADR16/I2C0_SDA/UART1_RXD/PWM1_CH1/BPWM1_CH4  
48 PC.7/EBI_AD9/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
49 PC.6/EBI_AD8/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
50 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
51 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
52 VSS  
53 VDD  
54 PD.15/PSIO0_CH7/PWM0_CH5/TM3/INT1  
55 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
56  
57  
58  
59  
60  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5/DAC0_ST  
61 VDDIO  
62 PE.14/EBI_AD8/UART2_TXD/PSIO0_CH0  
63 PE.15/EBI_AD9/UART2_RXD/PSIO0_CH1  
nRESET  
64  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
65  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
66  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
67 PD.9/EBI_AD7/UART2_nCTS/PSIO0_CH2  
68 PD.8/EBI_AD6/UART2_nRTS/PSIO0_CH3  
69 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
July 2, 2020  
Page 81 of 266  
Rev 1.01  
M251/M252  
70 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
71 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
72 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
73 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
74 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
75 VSS  
76 VDD  
77 NC  
78 NC  
79 NC  
80 NC  
81 NC  
82 NC  
83 NC  
84 PD.7/UART1_TXD/I2C0_SCL/USCI1_CLK/PSIO0_CH4  
85 PD.6/UART1_RXD/I2C0_SDA/USCI1_DAT1/PSIO0_CH5  
86 PD.5/I2C1_SCL/USCI1_DAT0/PSIO0_CH6  
87 PD.4/USCI0_CTL0/I2C1_SDA/USCI1_CTL1/PSIO0_CH7  
88 PD.3/EBI_AD10/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
89 PD.2/EBI_AD11/USCI0_DAT1/SPI0_CLK/UART0_RXD  
90 PD.1/EBI_AD12/USCI0_DAT0/SPI0_MISO  
91 PD.0/EBI_AD13/USCI0_CLK/SPI0_MOSI/TM2  
92 PD.13/EBI_AD10/SPI0_I2SMCLK/USCI2_CTL0  
93 PA.12/I2C1_SCL/USCI2_DAT1/PSIO0_CH4/BPWM1_CH2  
94 PA.13/I2C1_SDA/USCI2_DAT0/PSIO0_CH5/BPWM1_CH3  
95 PA.14/UART0_TXD/USCI2_CLK/PSIO0_CH6/BPWM1_CH4  
96 PA.15/UART0_RXD/USCI2_CTL1/PSIO0_CH7/BPWM1_CH5  
97 PE.7/PSIO0_CH0/PWM0_CH0/BPWM0_CH5  
98 PE.6/SC0_nCD/USCI0_CTL0/PSIO0_CH1/PWM0_CH1/BPWM0_CH4  
99 PE.5/EBI_nRD/SC0_PWR/USCI0_CTL1/PSIO0_CH2/PWM0_CH2/BPWM0_CH3  
100 PE.4/EBI_nWR/SC0_RST/USCI0_DAT1/PSIO0_CH3/PWM0_CH3/BPWM0_CH2  
101 PE.3/EBI_MCLK/SC0_DAT/USCI0_DAT0/PWM0_CH4/BPWM0_CH1  
102 PE.2/EBI_ALE/SC0_CLK/USCI0_CLK/USCI2_CTL0/PWM0_CH5/BPWM0_CH0  
103 NC  
104 NC  
105 PE.1/EBI_AD10/QSPI0_MISO0/I2C1_SCL/USCI2_DAT1  
July 2, 2020  
Page 82 of 266  
Rev 1.01  
M251/M252  
106 PE.0/EBI_AD11/QSPI0_MOSI0/I2C1_SDA/USCI2_DAT0  
107 NC  
108 NC  
109 NC  
110 NC  
111 NC  
112 VSS  
113 LDO_CAP  
114 VDD  
115 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
116  
117 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
118  
PB.12/EADC0_CH12/DAC0_OUT/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_  
CH3/PWM1_CH3/TM3_EXT  
119  
120 AVDD  
121 VREF  
122 AVSS  
123 PB.11/EADC0_CH11/EBI_ADR16/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
124 PB.10/EADC0_CH10/EBI_ADR17/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
125 PB.9/EADC0_CH9/EBI_ADR18/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
126 PB.8/EADC0_CH8/EBI_ADR19/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
127  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
128  
Table 4.1-12 M251KG6AE Multi-function Pin Table  
July 2, 2020  
Page 83 of 266  
Rev 1.01  
M251/M252  
4.1.3  
M252 Series Pin Diagram  
4.1.3.1 M252 Series TSSOP 20-Pin Diagram  
Corresponding Part Number: M252FC2AE  
1
20  
19  
18  
17  
USB_D-  
USB_VBUS  
PF.1  
2
3
USB_D+  
USB_VDD33_CAP  
VSS  
PF.0  
4
nRESET  
LDO_CAP  
VDD  
5
16 PA.0  
15 PA.1  
6
PB.14  
PA.2  
PA.3  
PF.2  
PF.3  
7
14  
13  
12  
11  
PB.13  
8
PB.12  
9
AVDD  
10  
Figure 4.1-20 M252 Series TSSOP 20-pin Diagram  
4.1.3.2 M252 Series TSSOP 28-Pin Diagram  
Corresponding Part Number: M252EC2AE  
1
28  
27  
26  
25  
24  
PC.0  
USB_VBUS  
2
PC.1  
USB_D-  
3
PF.1  
USB_D+  
4
PF.0  
USB_VDD33_CAP  
5
nRESET  
VSS  
6
7
23 PA.0  
22 PA.1  
21 PA.2  
LDO_CAP  
VDD  
8
PB.14  
PB.13  
PB.12  
AVDD  
PA.3  
PF.2  
PF.3  
PB.0  
PB.1  
PB.2  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
PB.5  
PB.4  
PB.3  
Figure 4.1-21 M252 Series TSSOP 28-pin Diagram  
July 2, 2020  
Page 84 of 266  
Rev 1.01  
M251/M252  
4.1.3.3 M252 Series QFN 33-Pin Diagram  
Corresponding Part Number: M252ZD2AE, M252ZC2AE  
25  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PF.2  
Top transparent view  
26  
LDO_CAP  
27  
VDD  
28  
PB.15  
QFN33  
29  
PB.14  
30  
PB.13  
31  
PB.12  
33 VSS  
32  
AVDD  
PF.3  
Figure 4.1-22 M252 Series QFN 33-pin Diagram  
July 2, 2020  
Page 85 of 266  
Rev 1.01  
M251/M252  
4.1.3.4 M252 Series LQFP 48-Pin Diagram  
Corresponding Part Number: M252LG6AE, M252LE3AE, M252LD2AE, M252LC2AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PA.6  
PA.7  
PF.2  
PF.3  
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
LQFP48  
AVSS  
PB.7  
PB.6  
Figure 4.1-23 M252 Series LQFP 48-pin Diagram  
July 2, 2020  
Page 86 of 266  
Rev 1.01  
M251/M252  
4.1.3.5 M252 Series LQFP 64-Pin Diagram  
Corresponding Part Number: M252SD2AE, M252SC2AE  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PD.15  
VDD  
50  
LDO_CAP  
51  
VDD  
52  
PC.14  
53  
PB.15  
54  
PB.14  
55  
PB.13  
56  
PB.12  
LQFP64  
57  
AVDD  
58  
VREF  
59  
AVSS  
VSS  
60  
PB.11  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
61  
PB.10  
62  
PB.9  
63  
PB.8  
64  
PB.7  
Figure 4.1-24 M252 Series LQFP 64-pin Diagram without VBAT  
July 2, 2020  
Page 87 of 266  
Rev 1.01  
M251/M252  
Corresponding Part Number: M252SG6AE, M252SE3AE  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PD.15  
VDD  
50  
LDO_CAP  
51  
VDD  
52  
PC.14  
53  
PB.15  
54  
PB.14  
55  
PB.13  
56  
PB.12  
LQFP64  
57  
AVDD  
58  
VREF  
59  
AVSS  
VSS  
60  
PB.11  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
61  
PB.10  
62  
PB.9  
63  
PB.8  
64  
PB.7  
Figure 4.1-25 M252 Series LQFP 64-pin Diagram with VBAT  
July 2, 2020  
Page 88 of 266  
Rev 1.01  
M251/M252  
4.1.3.6 M252 Series LQFP 128-Pin Diagram  
Corresponding Part Number: M252KG6AE, M252KE3AE  
97  
64  
PE.7  
PE.6  
PE.5  
PE.4  
PE.3  
PE.2  
NC  
nRESET  
PE.15  
PE.14  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PD.15  
VDD  
98  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
NC  
PE.1  
PE.0  
NC  
NC  
NC  
VSS  
NC  
PA.6  
PA.7  
PC.6  
PC.7  
PC.8  
PE.13  
PE.12  
PE.11  
PE.10  
PE.9  
PE.8  
NC  
NC  
VSS  
ULQFP128  
LDO_CAP  
VDD  
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
VREF  
AVSS  
PB.11  
PB.10  
PB.9  
PB.8  
PB.7  
PB.6  
NC  
PF.2  
PF.3  
NC  
NC  
NC  
NC  
Figure 4.1-26 M252 Series LQFP 128-pin Diagram  
July 2, 2020  
Page 89 of 266  
Rev 1.01  
M251/M252  
4.1.4  
M252 Series Function Pin Diagram  
4.1.4.1 M252 Series TSSOP 20-Pin Multi-function Pin Diagram  
Corresponding Part Number: M252FC2AE  
M252FC2AE  
1
2
20  
19  
USB_D-  
USB_VBUS  
USB_D+  
PF.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
USB_VDD33_CAP  
3
18 PF.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
17 nRESET  
VSS  
4
LDO_CAP  
5
16 PA.0 / SC0_CLK / UART0_RXD / UART1_nRTS / PWM0_CH5  
15 PA.1 / SC0_DAT / UART0_TXD / UART1_nCTS / PWM0_CH4  
14 PA.2 / SC0_RST / I2C0_SMBSUS / UART1_RXD / I2C1_SDA / PWM0_CH3  
VDD  
CLKO / TM1_EXT / PWM1_CH1 / UART0_nRTS / USCI0_DAT1 / EADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / UART0_TXD / USCI0_DAT0 / EADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / UART0_RXD / USCI0_CLK / EADC0_CH12 / PB.12  
AVDD  
6
7
PA.3 / SC0_PWR / I2C0_SMBAL / UART1_TXD / I2C1_SCL / PWM0_CH2 / CLKO / PWM1_BRAKE1  
PF.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
8
13  
12  
11  
9
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN  
10  
Figure 4.1-27 M252FC2AE Function Pin Diagram  
Pin M252FC2AE Pin Function  
1
2
3
4
5
6
7
8
9
USB_D-  
USB_D+  
USB_VDD33_CAP  
VSS  
LDO_CAP  
VDD  
PB.14/EADC0_CH14/USCI0_DAT1/UART0_nRTS/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/USCI0_DAT0/UART0_TXD/PWM1_CH2/TM2_EXT  
PB.12/EADC0_CH12/USCI0_CLK/UART0_RXD/PWM1_CH3/TM3_EXT  
10 AVDD  
11 PF.3/UART0_TXD/I2C0_SCL/XT1_IN  
12 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT  
13 PA.3/QSPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PWM0_CH2/CLKO/PWM1_BRAKE1  
14 PA.2/QSPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PWM0_CH3  
15 PA.1/QSPI0_MISO0/SC0_DAT/UART0_TXD/UART1_nCTS/PWM0_CH4  
16 PA.0/QSPI0_MOSI0/SC0_CLK/UART0_RXD/UART1_nRTS/PWM0_CH5  
nRESET  
17  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
18  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
19  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
20 USB_VBUS  
July 2, 2020  
Page 90 of 266  
Rev 1.01  
M251/M252  
Table 4.1-13 M252FC2AE Multi-function Pin Table  
4.1.4.2 M252 Series TSSOP 28-Pin Multi-function Pin Diagram  
Corresponding Part Number: M252EC2AE  
M252EC2AE  
1
2
28  
27  
26  
25  
USB_VBUS  
PC.0 / I2C0_SDA / PWM1_CH5  
USB_D-  
PC.1 / I2C0_SCL / PWM1_CH4  
3
USB_D+  
PF.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK  
PF.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT  
4
USB_VDD33_CAP  
VSS  
LDO_CAP  
5
24 nRESET  
6
23 PA.0 / SC0_CLK / UART0_RXD / UART1_nRTS / PWM0_CH5  
22 PA.1 / SC0_DAT / UART0_TXD / UART1_nCTS / PWM0_CH4  
VDD  
7
CLKO / TM1_EXT / PWM1_CH1 / UART0_nRTS / USCI0_DAT1 / EADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / UART0_TXD / USCI0_DAT0 / EADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / UART0_RXD / USCI0_CLK / EADC0_CH12 / PB.12  
AVDD  
8
21 PA.2 / SC0_RST / I2C0_SMBSUS / UART1_RXD / I2C1_SDA / PWM0_CH3  
9
20 PA.3 / SC0_PWR / I2C0_SMBAL / UART1_TXD / I2C1_SCL / PWM0_CH2 / CLKO / PWM1_BRAKE1  
PF.2 / UART0_RXD / I2C0_SDA / XT1_OUT  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN  
INT0 / TM0 / PWM0_CH0 / SC0_CLK / I2C0_SCL / EADC0_CH5 / PB.5  
INT1 / TM1 / PWM0_CH1 / SC0_DAT / I2C0_SDA / EADC0_CH4 / PB.4  
INT2 / TM2 / PWM0_BRAKE0 / PWM0_CH2 / SC0_RST / UART1_TXD / I2C1_SCL / EADC0_CH3 / PB.3  
PB.0 / EADC0_CH0 / I2C1_SDA / PWM0_CH5 / PWM1_CH5 / PWM0_BRAKE1  
PB.1 / EADC0_CH1 / I2C1_SCL / PWM0_CH4 / PWM1_CH4 / PWM0_BRAKE0  
PB.2 / EADC0_CH2 / I2C1_SDA / UART1_RXD / SC0_PWR / PWM0_CH3 / TM3 / INT3  
Figure 4.1-28 M252EC2AE Function Pin Diagram  
Pin M252EC2AE Pin Function  
1
2
3
4
5
6
7
8
9
USB_VBUS  
USB_D-  
USB_D+  
USB_VDD33_CAP  
VSS  
LDO_CAP  
VDD  
PB.14/EADC0_CH14/USCI0_DAT1/UART0_nRTS/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/USCI0_DAT0/UART0_TXD/PWM1_CH2/TM2_EXT  
10 PB.12/EADC0_CH12/USCI0_CLK/UART0_RXD/PWM1_CH3/TM3_EXT  
11 AVDD  
12 PB.5/EADC0_CH5/I2C0_SCL/SC0_CLK/PWM0_CH0/TM0/INT0  
13 PB.4/EADC0_CH4/I2C0_SDA/SC0_DAT/PWM0_CH1/TM1/INT1  
14 PB.3/EADC0_CH3/I2C1_SCL/UART1_TXD/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/INT2  
15 PB.2/EADC0_CH2/I2C1_SDA/UART1_RXD/SC0_PWR/PWM0_CH3/TM3/INT3  
16 PB.1/EADC0_CH1/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
17 PB.0/EADC0_CH0/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE1  
18 PF.3/UART0_TXD/I2C0_SCL/XT1_IN  
19 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT  
July 2, 2020  
Page 91 of 266  
Rev 1.01  
M251/M252  
20 PA.3/QSPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PWM0_CH2/CLKO/PWM1_BRAKE1  
21 PA.2/QSPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PWM0_CH3  
22 PA.1/QSPI0_MISO0/SC0_DAT/UART0_TXD/UART1_nCTS/PWM0_CH4  
23 PA.0/QSPI0_MOSI0/SC0_CLK/UART0_RXD/UART1_nRTS/PWM0_CH5  
nRESET  
24  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
25  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
26  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
27 PC.1/QSPI0_MISO0/I2C0_SCL/PWM1_CH4  
28 PC.0/QSPI0_MOSI0/I2C0_SDA/PWM1_CH5  
Table 4.1-14 M252EC2AE Multi-function Pin Table  
July 2, 2020  
Page 92 of 266  
Rev 1.01  
M251/M252  
4.1.4.3 M252 Series QFN 33-Pin Multi-function Pin Diagram  
Corresponding Part Number: M252ZC2AE, M252ZD2AE  
M252ZC2AE  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
nRESET  
VDDIO  
Top transparent view  
LDO_CAP  
VDD  
PA.0 / QSPI0_MOSI0 / SC0_CLK / UART0_RXD / UART1_nRTS / PWM0_CH5  
PA.1 / QSPI0_MISO0 / SC0_DAT / UART0_TXD / UART1_nCTS / PWM0_CH4  
PA.2 / QSPI0_CLK / SC0_RST / I2C0_SMBSUS / UART1_RXD / I2C1_SDA / PWM0_CH3  
PA.3 / QSPI0_SS / SC0_PWR / I2C0_SMBAL / UART1_TXD / I2C1_SCL / PWM0_CH2 / CLKO / PWM1_BRAKE1  
PF.2 / UART0_RXD / I2C0_SDA / QSPI0_CLK / XT1_OUT  
PWM0_BRAKE1 / TM0_EXT / PWM1_CH0 / UART0_nCTS / USCI0_CTL1 / EADC0_CH15 / PB.15  
CLKO / TM1_EXT / PWM1_CH1 / UART0_nRTS / USCI0_DAT1 / EADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / UART0_TXD / USCI0_DAT0 / EADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / UART0_RXD / USCI0_CLK / EADC0_CH12 / PB.12  
AVDD  
QFN33  
33 VSS  
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN  
Figure 4.1-29 M252ZC2AE Function Pin Diagram  
Pin M252ZC2AE Pin Function  
1
2
3
PB.5/EADC0_CH5/I2C0_SCL/SC0_CLK/PWM0_CH0/TM0/INT0  
PB.4/EADC0_CH4/I2C0_SDA/SC0_DAT/PWM0_CH1/TM1/INT1  
PB.3/EADC0_CH3/I2C1_SCL/UART1_TXD/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/INT2  
July 2, 2020  
Page 93 of 266  
Rev 1.01  
M251/M252  
4
5
6
7
8
9
PB.2/EADC0_CH2/I2C1_SDA/UART1_RXD/SC0_PWR/PWM0_CH3/TM3/INT3  
PB.1/EADC0_CH1/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
PB.0/EADC0_CH0/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE1  
PF.5/PWM0_CH0/X32_IN/EADC0_ST  
PF.4/PWM0_CH1/X32_OUT  
PF.3/UART0_TXD/I2C0_SCL/XT1_IN  
10 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT  
11 PA.3/QSPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PWM0_CH2/CLKO/PWM1_BRAKE1  
12 PA.2/QSPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PWM0_CH3  
13 PA.1/QSPI0_MISO0/SC0_DAT/UART0_TXD/UART1_nCTS/PWM0_CH4  
14 PA.0/QSPI0_MOSI0/SC0_CLK/UART0_RXD/UART1_nRTS/PWM0_CH5  
15 VDDIO  
nRESET  
16  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT  
17  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK  
18  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
19 PC.1/QSPI0_MISO0/I2C0_SCL/PWM1_CH4  
20 PC.0/QSPI0_MOSI0/I2C0_SDA/PWM1_CH5  
21 USB_VBUS  
22 USB_D-  
23 USB_D+  
24 USB_VDD33_CAP  
25 VSS  
26 LDO_CAP  
27 VDD  
28 PB.15/EADC0_CH15/USCI0_CTL1/UART0_nCTS/PWM1_CH0/TM0_EXT/PWM0_BRAKE1  
29 PB.14/EADC0_CH14/USCI0_DAT1/UART0_nRTS/PWM1_CH1/TM1_EXT/CLKO  
30 PB.13/EADC0_CH13/USCI0_DAT0/UART0_TXD/PWM1_CH2/TM2_EXT  
31 PB.12/EADC0_CH12/USCI0_CLK/UART0_RXD/PWM1_CH3/TM3_EXT  
32 AVDD  
Table 4.1-15 M252ZC2AE Multi-function Pin Table  
July 2, 2020  
Page 94 of 266  
Rev 1.01  
M251/M252  
M252ZD2AE  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
Top transparent view  
PA.0 / QSPI0_MOSI0 / SPI0_MOSI / SC0_CLK / UART0_RXD / UART1_nRTS / BPWM0_CH0 / PWM0_CH5  
PA.1 / QSPI0_MISO0 / SPI0_MISO / SC0_DAT / UART0_TXD / UART1_nCTS / BPWM0_CH1 / PWM0_CH4  
PA.2 / QSPI0_CLK / SPI0_CLK / SC0_RST / I2C0_SMBSUS / UART1_RXD / I2C1_SDA / BPWM0_CH2 / PWM0_CH3  
PA.3 / QSPI0_SS / SPI0_SS / SC0_PWR / I2C0_SMBAL / UART1_TXD / I2C1_SCL / BPWM0_CH3 / PWM0_CH2 / CLKO / PWM1_BRAKE1  
PF.2 / UART0_RXD / I2C0_SDA / QSPI0_CLK / XT1_OUT / BPWM1_CH1  
PWM0_BRAKE1 / TM0_EXT / PWM1_CH0 / PSIO0_CH0 / UART0_nCTS / USCI0_CTL1 / SPI0_SS / EADC0_CH15 / PB.15  
CLKO / TM1_EXT / PWM1_CH1 / PSIO0_CH1 / UART0_nRTS / USCI0_DAT1 / SPI0_CLK / EADC0_CH14 / PB.14  
TM2_EXT / PWM1_CH2 / PSIO0_CH2 / UART0_TXD / USCI0_DAT0 / SPI0_MISO / ACMP1_P3 / ACMP0_P3 / EADC0_CH13 / PB.13  
TM3_EXT / PWM1_CH3 / PSIO0_CH3 / UART0_RXD / USCI0_CLK / SPI0_MOSI / ACMP1_P2 / ACMP0_P2 / EADC0_CH12 / PB.12  
AVDD  
UQFN33  
33 VSS  
PF.3 / UART0_TXD / I2C0_SCL / XT1_IN / BPWM1_CH0  
Figure 4.1-30 M252ZD2A Function Pin Diagram  
Pin M252ZD2AE Pin Function  
1
2
PB.5/EADC0_CH5/ACMP1_N/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/UART2_TXD/TM0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/UART2_RXD/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/IN  
T2  
3
4
5
6
PB.2/EADC0_CH2/ACMP0_P1/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/TM3/INT3  
PB.1/EADC0_CH1/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
PB.0/EADC0_CH0/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE  
July 2, 2020  
Page 95 of 266  
Rev 1.01  
M251/M252  
1
7
8
9
PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
PF.3/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
10 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/BPWM0_CH3/PWM0_CH2/CLKO/PWM1  
_BRAKE1  
11  
12 PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/BPWM0_CH2/PWM0_CH3  
13 PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/BPWM0_CH1/PWM0_CH4  
14 PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/BPWM0_CH0/PWM0_CH5  
15 VDDIO  
nRESET  
16  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
17  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
18  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
19 PC.1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/ACMP0_O  
20 PC.0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/ACMP1_O  
21 USB_VBUS  
22 USB_D-  
23 USB_D+  
24 USB_VDD33_CAP  
25 VSS  
26 LDO_CAP  
27 VDD  
28 PB.15/EADC0_CH15/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_BRAKE1  
29 PB.14/EADC0_CH14/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1_CH2/TM2_  
EXT  
30  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_CH3/TM3_  
EXT  
31  
32 AVDD  
Table 4.1-16 M252ZD2AE Multi-function Pin Table  
July 2, 2020  
Page 96 of 266  
Rev 1.01  
M251/M252  
July 2, 2020  
Page 97 of 266  
Rev 1.01  
M251/M252  
4.1.4.4 M252 Series LQFP 48-Pin Multi-function Pin Diagram  
Corresponding Part Number: M252LC2AE, M252LD2AE, M252LE3AE, M252LG6AE  
M252LC2AE / M252LD2AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PA.6  
PA.7  
PF.2  
PF.3  
/
/
/
/
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
TM1  
UART0_nCTS  
UART0_nRTS  
/
QSPI0_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
USCI0_CTL0  
SPI0_SS  
SPI0_CLK  
/
SPI0_I2SMCLK  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2  
PWM1_CH3  
/
TM0_EXT  
TM1_EXT  
PSIO0_CH2  
PSIO0_CH3  
/
PWM1_CH0  
PWM1_CH1  
UART0_TXD  
UART0_RXD  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
/
/
/
/
/
/
/
EADC0_CH15  
EADC0_CH14  
EADC0_CH13  
EADC0_CH12  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5 /  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
BPWM0_CH3  
I2C0_SDA BPWM0_CH4  
PWM0_CH0  
/
BPWM0_CH2  
PWM0_CH2  
PWM0_CH1  
/
PWM0_CH3  
/
/
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
CLKO / PWM1_BRAKE1  
LQFP48  
TM2_EXT  
/
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
/
/
/
USCI0_CLK  
/
/
/
UART0_RXD  
UART0_TXD  
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
I2C0_SDA  
I2C0_SCL  
/
PWM1_CH5  
PWM1_CH4  
QSPI0_CLK / XT1_OUT / BPWM1_CH1  
/
BPWM1_CH3  
/
ACMP1_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
AVSS  
/
/
/
BPWM1_CH2  
/
ACMP0_WLAT  
/
/
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
UART1_TXD  
UART1_RXD  
/
/
USCI1_DAT0  
USCI1_DAT1  
/
/
EADC0_CH7  
EADC0_CH6  
/
/
PB.7  
PB.6  
/
/
/
/
/
/
/
/
/ XT1_IN / BPWM1_CH0  
Figure 4.1-31 M252LC2AE/M252LD2AE Function Pin Diagram  
Pin M252LC2AE/M252LD2AE Pin Function  
1
2
PB.5/EADC0_CH5/ACMP1_N/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/UART2_TXD/TM0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/UART2_RXD/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/IN  
T2  
3
July 2, 2020  
Page 98 of 266  
Rev 1.01  
M251/M252  
4
5
PB.2/EADC0_CH2/ACMP0_P1/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/TM3/INT3  
PB.1/EADC0_CH1/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
PB.0/EADC0_CH0/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE  
1
6
7
8
9
PA.11/ACMP0_P0/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
PA.9/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
10 PA.8/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
11 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
12 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
13 PF.3/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
14 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
15 PA.7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
16 PA.6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
17 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
18 PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/BPWM0_CH4/PWM0_CH1  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/BPWM0_CH3/PWM0_CH2/CLKO/PWM1  
_BRAKE1  
19  
20 PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/BPWM0_CH2/PWM0_CH3  
21 PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/BPWM0_CH1/PWM0_CH4  
22 PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/BPWM0_CH0/PWM0_CH5  
23 VDDIO  
nRESET  
24  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
25  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
26  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
27 PC.5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
28 PC.4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/PSIO0_CH1  
29 PC.3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/PSIO0_CH2  
30 PC.2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/PSIO0_CH3  
31 PC.1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/ACMP0_O  
32 PC.0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/ACMP1_O  
33 USB_VBUS  
34 USB_D-  
35 USB_D+  
July 2, 2020  
Page 99 of 266  
Rev 1.01  
M251/M252  
36 USB_VDD33_CAP  
37 VSS  
38 LDO_CAP  
39 VDD  
40 PC.14/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/TM1  
41 PB.15/EADC0_CH15/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_BRAKE1  
42 PB.14/EADC0_CH14/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1_CH2/TM2_  
EXT  
43  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_CH3/TM3_  
EXT  
44  
45 AVDD  
46 AVSS  
47 PB.7/EADC0_CH7/USCI1_DAT0/UART1_TXD/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/INT5/ACMP0_O  
48 PB.6/EADC0_CH6/USCI1_DAT1/UART1_RXD/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/INT4/ACMP1_O  
Table 4.1-17 M252LC2AE/M252LD2AE Multi-function Pin Table  
July 2, 2020  
Page 100 of 266  
Rev 1.01  
M251/M252  
Corresponding Part Number: M252LE3AE  
M252LE3AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PA.6  
PA.7  
PF.2  
PF.3  
/
/
/
/
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PWM1_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
USCI0_CLK  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
ULQFP48  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
EBI_AD14  
EBI_AD15  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
/
PSIO0_CH3  
/
UART0_RXD  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
AVSS  
/
/
/
/
/
/
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
EBI_nCS0  
EBI_nCS1  
/
UART1_TXD  
UART1_RXD  
/
USCI1_DAT0  
USCI1_DAT1  
/
EBI_nWRL  
EBI_nWRH  
/
/
EADC0_CH7  
EADC0_CH6  
/
/
Analog16  
Analog17  
/
/
PB.7  
PB.6  
EBI_nCS1  
EBI_nCS0  
/
/
UART0_RXD  
UART0_TXD  
/
I2C0_SDA  
I2C0_SCL  
/
QSPI0_CLK  
/ XT1_OUT / BPWM1_CH1  
/
/
/
/
/
/
/
/
/
/
XT1_IN BPWM1_CH0  
/
Figure 4.1-32 M252LE3AE Function Pin Diagram  
Pin M252LE3AE Pin Function  
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
1
2
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
3
4
PB.2/EADC0_CH2/ACMP0_P1/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/PSIO0_CH  
July 2, 2020  
Page 101 of 266  
Rev 1.01  
M251/M252  
7/TM3/INT3  
PB.1/EADC0_CH1/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_  
BRAKE0  
5
6
PB.0/EADC0_CH0/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PW  
M0_BRAKE1  
7
8
9
PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
10 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
11 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
12 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
13 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
14 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
15 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
16 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
17 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
18  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
19  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
20  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
21  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5  
22  
23 VDDIO  
nRESET  
24  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
25  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
26  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
27 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
28 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
29 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
30 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
31 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
32 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
33 USB_VBUS  
July 2, 2020  
Page 102 of 266  
Rev 1.01  
M251/M252  
34 USB_D-  
35 USB_D+  
36 USB_VDD33_CAP  
37 VSS  
38 LDO_CAP  
39 VDD  
40 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
41  
42 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
43  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_  
CH3/TM3_EXT  
44  
45 AVDD  
46 AVSS  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
47  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
48  
Table 4.1-18 M252LE3AE Multi-function Pin Table  
July 2, 2020  
Page 103 of 266  
Rev 1.01  
M251/M252  
Corresponding Part Number: M252LG6AE  
M252LG6AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
PA.6  
PA.7  
PF.2  
PF.3  
/
/
/
/
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
/ DAC0_ST  
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PSIO0_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
SPI0_MOSI  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
ULQFP48  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
/
EBI_AD14  
/
ACMP1_P3  
ACMP0_P2  
/
ACMP0_P3  
DAC0_OUT  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
PWM1_CH3  
/
/
UART0_RXD  
/
USCI0_CLK  
/
EBI_AD15  
/
ACMP1_P2  
/
/
/
/
/
/
EBI_AD6  
EBI_AD7  
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
AVSS  
/
/
/
/
/
/
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
EBI_nCS0  
EBI_nCS1  
/
UART1_TXD  
UART1_RXD  
/
USCI1_DAT0  
USCI1_DAT1  
/
EBI_nWRL  
EBI_nWRH  
/
/
EADC0_CH7  
EADC0_CH6  
/
/
Analog16  
Analog17  
/
/
PB.7  
PB.6  
EBI_nCS1  
EBI_nCS0  
/
/
UART0_RXD  
UART0_TXD  
/
I2C0_SDA  
I2C0_SCL  
/
QSPI0_CLK  
/ XT1_OUT / BPWM1_CH1  
/
/
/
/
/
/
/
/
/
/
XT1_IN BPWM1_CH0  
/
Figure 4.1-33 M252LG6AE Function Pin Diagram  
Pin M252LG6AE Pin Function  
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
1
2
3
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
July 2, 2020  
Page 104 of 266  
Rev 1.01  
M251/M252  
PB.2/EADC0_CH2/ACMP0_P1/OPA0_O/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/P  
SIO0_CH7/TM3/INT3  
4
5
6
PB.1/EADC0_CH1/OPA0_N/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH  
4/PWM0_BRAKE0  
PB.0/EADC0_CH0/OPA0_P/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_  
CH5/PWM0_BRAKE1  
7
8
9
PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT/DAC0_ST  
PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
10 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
11 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
12 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
13 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
14 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
15 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
16 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
17 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
18  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
19  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
20  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
21  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5/DAC0_ST  
22  
23 VDDIO  
nRESET  
24  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
25  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
26  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
27 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
28 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
29 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
30 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
31 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
32 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
July 2, 2020  
Page 105 of 266  
Rev 1.01  
M251/M252  
33 USB_VBUS  
34 USB_D-  
35 USB_D+  
36 USB_VDD33_CAP  
37 VSS  
38 LDO_CAP  
39 VDD  
40 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
41  
42 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
43  
PB.12/EADC0_CH12/DAC0_OUT/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_  
CH3/PWM1_CH3/TM3_EXT  
44  
45 AVDD  
46 AVSS  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
47  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
48  
Table 4.1-19 M252LG6AE Multi-function Pin Table  
July 2, 2020  
Page 106 of 266  
Rev 1.01  
M251/M252  
4.1.4.5 M252 Series LQFP 64-Pin Multi-function Pin Diagram  
Corresponding Part Number: M252SC2AE, M252SD2AE, M252SE3AE, M252SG6AE  
M252SC2AE / M252SD2AE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
LDO_CAP  
VDD  
nRESET  
VDDIO  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
TM1  
UART0_nCTS  
UART0_nRTS  
/
QSPI0_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
USCI0_CTL0  
SPI0_SS  
SPI0_CLK  
/
SPI0_I2SMCLK  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PWM0_BRAKE1  
CLKO  
PWM1_CH2  
PWM1_CH3  
/
TM0_EXT  
TM1_EXT  
PSIO0_CH2  
PSIO0_CH3  
/
PWM1_CH0  
PWM1_CH1  
UART0_TXD  
UART0_RXD  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
USCI0_CLK  
/
/
/
/
/
/
/
EADC0_CH15  
EADC0_CH14  
EADC0_CH13  
EADC0_CH12  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5 /  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
BPWM0_CH3  
I2C0_SDA BPWM0_CH4  
PWM0_CH0  
/
BPWM0_CH2  
PWM0_CH2  
PWM0_CH1  
/
PWM0_CH3  
/
/
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
CLKO / PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
/
/
/
/
/
/
LQFP64  
PD.15  
VDD  
/
PWM0_CH5  
/
TM3  
/
VREF  
AVSS  
VSS  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
UART0_nRTS  
UART1_nCTS UART0_TXD  
UART1_nRTS UART0_RXD  
BPWM1_CH4 UART1_TXD  
/
UART0_nCTS  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
PB.11  
PB.10  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
/
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
BPWM1_CH1  
I2C1_SMBAL  
/
/
I2C1_SDA  
/
/
USCI1_CTL0  
/
/
/
/
/
/
BPWM1_CH2  
BPWM1_CH3  
PWM1_CH4 PWM1_BRAKE0  
/
/
/
USCI1_CTL1  
USCI1_CLK  
USCI1_DAT0  
/
/
/
EADC0_CH9  
EADC0_CH8  
EADC0_CH7  
/
/
/
PB.9  
PB.8  
PB.7  
UART0_nRTS  
UART0_nCTS  
/
/
I2C1_SMBSUS  
I2C1_SMBAL  
QSPI0_CLK  
/
PWM1_CH3  
PWM1_CH2  
XT1_OUT /  
/
BPWM1_CH1  
BPWM1_CH0 TM0  
BPWM1_CH1  
/
TM1  
/ INT2  
/
I2C1_SMBSUS  
/
/
/
/
/
/
/
INT3  
ACMP0_O  
/
INT5  
/
/
/
/
/
UART0_RXD  
/
I2C0_SDA  
/
/
Figure 4.1-34 M252SC2AE/M252SD2AE Function Pin Diagram  
Pin M252SC2AE/M252SD2AE Pin Function  
1
2
3
PB.6/EADC0_CH6/USCI1_DAT1/UART1_RXD/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/INT4/ACMP1_O  
PB.5/EADC0_CH5/ACMP1_N/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/UART2_TXD/TM0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/UART2_RXD/TM1/INT1  
July 2, 2020  
Page 107 of 266  
Rev 1.01  
M251/M252  
PB.3/EADC0_CH3/ACMP0_N/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PWM0_BRAKE0/TM2/IN  
T2  
4
5
6
PB.2/EADC0_CH2/ACMP0_P1/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/TM3/INT3  
PB.1/EADC0_CH1/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_BRAKE0  
PB.0/EADC0_CH0/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PWM0_BRAKE  
1
7
8
9
PA.11/ACMP0_P0/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
10 PA.9/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
11 PA.8/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
12 PF.6/SC0_CLK/SPI0_MOSI/TAMPER0  
13 PF.14/PWM1_BRAKE0/PWM0_BRAKE0/PSIO0_CH3/PWM0_CH4/CLKO/TM3/INT5  
14 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
15 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
16 PF.3/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
17 PF.2/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
18 PC.7/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
19 PC.6/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
20 PA.7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
21 PA.6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
22 VSS  
23 VDD  
24 PD.15/PWM0_CH5/TM3/INT1  
25 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
26 PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/BPWM0_CH4/PWM0_CH1  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/BPWM0_CH3/PWM0_CH2/CLKO/PWM1  
_BRAKE1  
27  
28 PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/BPWM0_CH2/PWM0_CH3  
29 PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/BPWM0_CH1/PWM0_CH4  
30 PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/BPWM0_CH0/PWM0_CH5  
31 VDDIO  
nRESET  
32  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
33  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
34  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
35 PC.5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
July 2, 2020  
Page 108 of 266  
Rev 1.01  
M251/M252  
36 PC.4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/PSIO0_CH1  
37 PC.3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/PSIO0_CH2  
38 PC.2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/PSIO0_CH3  
39 PC.1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/ACMP0_O  
40 PC.0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/ACMP1_O  
41 PD.3/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
42 PD.2/USCI0_DAT1/SPI0_CLK/UART0_RXD  
43 PD.1/USCI0_DAT0/SPI0_MISO  
44 PD.0/USCI0_CLK/SPI0_MOSI/TM2  
45 USB_VBUS  
46 USB_D-  
47 USB_D+  
48 USB_VDD33_CAP  
49 VSS  
50 LDO_CAP  
51 VDD  
52 PC.14/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/TM1  
53 PB.15/EADC0_CH15/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_BRAKE1  
54 PB.14/EADC0_CH14/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1_CH2/TM2_  
EXT  
55  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_CH3/TM3_  
EXT  
56  
57 AVDD  
58 VREF  
59 AVSS  
60 PB.11/EADC0_CH11/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
61 PB.10/EADC0_CH10/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
62 PB.9/EADC0_CH9/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
63 PB.8/EADC0_CH8/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
64 PB.7/EADC0_CH7/USCI1_DAT0/UART1_TXD/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/INT5/ACMP0_O  
Table 4.1-20 M252SC2AE/M252SD2AE Multi-function Pin Table  
July 2, 2020  
Page 109 of 266  
Rev 1.01  
M251/M252  
Corresponding Part Number: M252SE3AE  
M252SE3AE  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
nRESET  
VDDIO  
50  
LDO_CAP  
51  
VDD  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
52  
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PWM1_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
USCI0_CLK  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
TM3 INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
EBI_AD14  
EBI_AD15  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
/
PSIO0_CH3  
/
UART0_RXD  
/
/
/
/
/
ULQFP64  
PD.15  
VDD  
/
PSIO0_CH7  
/
PWM0_CH5  
/
/
VREF  
AVSS  
VSS  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
/
UART0_nCTS  
USCI1_CTL0  
UART0_TXD USCI1_CTL1  
USCI1_CLK  
/
EBI_ADR16  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
Analog12  
Analog13  
/
/
PB.11  
PB.10  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
BPWM1_CH1  
/
I2C1_SDA  
UART1_nCTS  
UART1_nRTS  
BPWM1_CH4 EBI_nCS0  
/
UART0_nRTS  
/
/
EBI_ADR17  
/
/
/
/
/
/
BPWM1_CH2  
BPWM1_CH3  
PWM1_CH4 PWM1_BRAKE0  
/
I2C1_SMBAL  
/
/
/
/
/
EBI_ADR18  
EBI_ADR19  
EBI_nWRL  
/
/
/
EADC0_CH9  
/
/
/
Analog14  
Analog15  
Analog16  
/
/
/
PB.9  
PB.8  
PB.7  
UART0_nRTS  
UART0_nCTS  
/
/
/
I2C1_SMBSUS  
I2C1_SMBAL  
I2C0_SDA QSPI0_CLK  
/
PWM1_CH3  
PWM1_CH2 BPWM1_CH0  
XT1_OUT BPWM1_CH1  
/
BPWM1_CH1  
/
TM1  
/ INT2  
/
I2C1_SMBSUS  
/
/
/
UART0_RXD  
UART1_TXD  
/
EADC0_CH8  
EADC0_CH7  
/
/
/
TM0  
/
INT3  
ACMP0_O  
/
INT5  
/
/
/
/
/
USCI1_DAT0  
/
EBI_nCS1  
/
UART0_RXD  
/
/
/
Figure 4.1-35 M252SE3AE Function Pin Diagram  
Pin M252SE3AE Pin Function  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
1
2
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
3
4
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
July 2, 2020  
Page 110 of 266  
Rev 1.01  
M251/M252  
PWM0_BRAKE0/TM2/INT2  
PB.2/EADC0_CH2/ACMP0_P1/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/PSIO0_CH  
7/TM3/INT3  
5
6
7
PB.1/EADC0_CH1/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_  
BRAKE0  
PB.0/EADC0_CH0/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PW  
M0_BRAKE1  
8
9
PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
10 PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
11 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
12 PF.6/EBI_ADR19/SC0_CLK/SPI0_MOSI/EBI_nCS0/TAMPER0  
13 VBAT  
14 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
15 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
16 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
17 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
18 PC.7/EBI_AD9/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
19 PC.6/EBI_AD8/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
20 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
21 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
22 VSS  
23 VDD  
24 PD.15/PSIO0_CH7/PWM0_CH5/TM3/INT1  
25 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
26  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
27  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
28  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
29  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5  
30  
31 VDDIO  
nRESET  
32  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
33  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
July 2, 2020  
Page 111 of 266  
Rev 1.01  
M251/M252  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
34  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
35 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
36 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
37 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
38 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
39 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
40 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
41 PD.3/EBI_AD10/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
42 PD.2/EBI_AD11/USCI0_DAT1/SPI0_CLK/UART0_RXD  
43 PD.1/EBI_AD12/USCI0_DAT0/SPI0_MISO  
44 PD.0/EBI_AD13/USCI0_CLK/SPI0_MOSI/TM2  
45 USB_VBUS  
46 USB_D-  
47 USB_D+  
48 USB_VDD33_CAP  
49 VSS  
50 LDO_CAP  
51 VDD  
52 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
53  
54 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
55  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_  
CH3/TM3_EXT  
56  
57 AVDD  
58 VREF  
59 AVSS  
60 PB.11/EADC0_CH11/EBI_ADR16/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
61 PB.10/EADC0_CH10/EBI_ADR17/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
62 PB.9/EADC0_CH9/EBI_ADR18/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
63 PB.8/EADC0_CH8/EBI_ADR19/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
64  
Table 4.1-21 M252SE3AE Multi-function Pin Table  
July 2, 2020  
Page 112 of 266  
Rev 1.01  
M251/M252  
Corresponding Part Number: M252SG6AE  
M252SG6AE  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
nRESET  
VDDIO  
50  
LDO_CAP  
51  
VDD  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
/ DAC0_ST  
52  
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PSIO0_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
SPI0_MOSI  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
TM3 INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
/
EBI_AD14  
/
ACMP1_P3  
ACMP0_P2  
/
ACMP0_P3  
DAC0_OUT  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
TM3_EXT  
/
PWM1_CH3  
/
/
UART0_RXD  
/
USCI0_CLK  
/
EBI_AD15  
/
ACMP1_P2  
/
/
/
/
/
/
ULQFP64  
PD.15  
VDD  
/
PSIO0_CH7  
/
PWM0_CH5  
/
/
VREF  
AVSS  
VSS  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
/
UART0_nCTS  
USCI1_CTL0  
UART0_TXD  
/
/
EBI_ADR16  
EBI_ADR17  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
Analog12  
Analog13  
/
/
PB.11  
PB.10  
PA.6  
PA.7  
PC.6  
PC.7  
PF.2  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
BPWM1_CH1  
/
I2C1_SDA  
UART1_nCTS  
UART1_nRTS  
BPWM1_CH4 EBI_nCS0  
/
UART0_nRTS  
/
/
/
/
/
/
/
BPWM1_CH2  
BPWM1_CH3  
PWM1_CH4 PWM1_BRAKE0  
/
I2C1_SMBAL  
/
/
/
USCI1_CTL1  
USCI1_CLK  
/
/
EBI_ADR18  
EBI_ADR19  
EBI_nWRL  
/
/
/
EADC0_CH9  
/
/
/
Analog14  
Analog15  
Analog16  
/
/
/
PB.9  
PB.8  
PB.7  
UART0_nRTS  
UART0_nCTS  
/
/
/
I2C1_SMBSUS  
I2C1_SMBAL  
I2C0_SDA QSPI0_CLK  
/
PWM1_CH3  
PWM1_CH2 BPWM1_CH0  
XT1_OUT BPWM1_CH1  
/
BPWM1_CH1  
/
TM1  
/ INT2  
/
I2C1_SMBSUS  
/
/
/
UART0_RXD  
UART1_TXD  
/
EADC0_CH8  
EADC0_CH7  
/
/
/
TM0  
/
INT3  
ACMP0_O  
/
INT5  
/
/
/
/
/
USCI1_DAT0  
/
EBI_nCS1  
/
UART0_RXD  
/
/
/
Figure 4.1-36 M252SG3AE Function Pin Diagram  
Pin M252SG6AE Pin Function  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
1
2
3
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
July 2, 2020  
Page 113 of 266  
Rev 1.01  
M251/M252  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
4
5
6
7
PB.2/EADC0_CH2/ACMP0_P1/OPA0_O/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/P  
SIO0_CH7/TM3/INT3  
PB.1/EADC0_CH1/OPA0_N/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH  
4/PWM0_BRAKE0  
PB.0/EADC0_CH0/OPA0_P/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_  
CH5/PWM0_BRAKE1  
8
9
PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT/DAC0_ST  
10 PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
11 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
12 PF.6/EBI_ADR19/SC0_CLK/SPI0_MOSI/EBI_nCS0/TAMPER0  
13 VBAT  
14 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
15 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
16 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
17 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
18 PC.7/EBI_AD9/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
19 PC.6/EBI_AD8/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
20 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
21 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
22 VSS  
23 VDD  
24 PD.15/PSIO0_CH7/PWM0_CH5/TM3/INT1  
25 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
26  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
27  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
28  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
29  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5/DAC0_ST  
30  
31 VDDIO  
nRESET  
32  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
33 PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
July 2, 2020  
Page 114 of 266  
Rev 1.01  
M251/M252  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
34  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
35 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
36 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
37 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
38 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
39 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
40 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
41 PD.3/EBI_AD10/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
42 PD.2/EBI_AD11/USCI0_DAT1/SPI0_CLK/UART0_RXD  
43 PD.1/EBI_AD12/USCI0_DAT0/SPI0_MISO  
44 PD.0/EBI_AD13/USCI0_CLK/SPI0_MOSI/TM2  
45 USB_VBUS  
46 USB_D-  
47 USB_D+  
48 USB_VDD33_CAP  
49 VSS  
50 LDO_CAP  
51 VDD  
52 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
53  
54 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
55  
PB.12/EADC0_CH12/DAC0_OUT/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_  
CH3/PWM1_CH3/TM3_EXT  
56  
57 AVDD  
58 VREF  
59 AVSS  
60 PB.11/EADC0_CH11/EBI_ADR16/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
61 PB.10/EADC0_CH10/EBI_ADR17/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
62 PB.9/EADC0_CH9/EBI_ADR18/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
63 PB.8/EADC0_CH8/EBI_ADR19/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
64  
Table 4.1-22 M252SG6AE Multi-function Pin Table  
July 2, 2020  
Page 115 of 266  
Rev 1.01  
M251/M252  
4.1.4.6 M252 Series LQFP 128-Pin Multi-function Pin Diagram  
Corresponding Part Number: M252KE3AE, M252KG6AE  
M252KE3AE  
BPWM0_CH5  
/
PWM0_CH0  
/
PSIO0_CH0  
SC0_nCD  
/
/
/
/
/
/
PE.7  
PE.6  
PE.5  
PE.4  
PE.3  
PE.2  
NC  
97  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
nRESET  
BPWM0_CH4  
/
PWM0_CH1 PSIO0_CH1  
/
/
USCI0_CTL0  
/
98  
PE.15  
PE.14  
VDDIO  
/
/
EBI_AD9  
EBI_AD8  
/
/
UART2_RXD PSIO0_CH1  
/
BPWM0_CH3  
BPWM0_CH2  
/
/
PWM0_CH2  
PWM0_CH3  
/
/
PSIO0_CH2  
PSIO0_CH3  
/
/
USCI0_CTL1  
USCI0_DAT1  
/
SC0_PWR  
SC0_RST  
/
EBI_nRD  
EBI_nWR  
99  
UART2_TXD / PSIO0_CH0  
/
/
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
BPWM0_CH1  
/
PWM0_CH4  
/
USCI0_DAT0  
/
SC0_DAT  
/
EBI_MCLK  
EBI_ALE  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
BPWM0_CH0 PWM0_CH5  
/
/
USCI2_CTL0  
/
USCI0_CLK  
/
SC0_CLK /  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
TM3 INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
NC  
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
USCI2_DAT1  
USCI2_DAT0  
/
I2C1_SCL  
I2C1_SDA  
/
/
QSPI0_MISO0  
QSPI0_MOSI0  
/
/
EBI_AD10  
EBI_AD11  
/
/
PE.1  
PE.0  
NC  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
/
/
/
/
/
PD.15  
VDD  
/
PSIO0_CH7  
/
PWM0_CH5  
/
/
NC  
NC  
VSS  
NC  
PA.6  
PA.7  
PC.6  
PC.7  
PC.8  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
NC  
/
/
/
/
/
/
VSS  
UART0_nRTS  
UART0_nCTS  
/
/
I2C1_SMBSUS  
/
PWM1_CH3  
BPWM1_CH0  
BPWM1_CH4  
PWM1_CH0 / BPWM1_CH5  
/
BPWM1_CH1  
/
TM1  
/
INT2  
LQFP128  
LDO_CAP  
VDD  
I2C1_SMBAL PWM1_CH2  
/
/
/
TM0  
/ INT3  
EBI_ADR16  
/
I2C0_SDA  
/
UART1_RXD  
/
PWM1_CH1  
/
TM1  
UART0_nCTS  
UART0_nRTS  
/
USCI2_CLK  
USCI0_CTL1  
USCI0_DAT1  
/
QSPI0_CLK  
SPI0_SS  
SPI0_CLK  
/
USCI0_CTL0  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PE.13  
PE.12  
PE.11  
PE.10  
/
/
/
/
EBI_ADR15  
/
/
/
/
I2C0_SCL  
/
UART1_TXD  
/
PWM0_CH5  
/
PWM0_BRAKE1  
CLKO  
PWM1_CH2 PSIO0_CH2  
PWM1_CH3  
/
TM0_EXT  
/
PWM1_CH0  
/
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
USCI0_CLK  
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
EADC0_CH15  
EADC0_CH14  
/
/
Analog8  
Analog9  
EBI_ADR14  
EBI_ADR13  
EBI_ADR12  
USCI1_CLK  
/
UART1_nRTS  
/
PWM0_CH4  
PWM0_CH3  
/ PWM1_BRAKE0  
/
TM1_EXT  
/
/
PWM1_CH1  
UART0_TXD  
/
/
/
/
USCI1_DAT1  
USCI1_DAT0  
/
/
UART1_nCTS  
PWM0_CH2  
/
/ PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
SPI0_MISO  
SPI0_MOSI  
/
/
EBI_AD14  
EBI_AD15  
/
/
ACMP1_P3  
ACMP1_P2  
/
/
ACMP0_P3  
ACMP0_P2  
/
/
EADC0_CH13  
EADC0_CH12  
/
/
Analog10  
Analog11  
TM3_EXT  
/
/
PSIO0_CH3  
/
UART0_RXD  
/
PE.9  
PE.8  
NC  
/
/
EBI_ADR11  
EBI_ADR10  
/
/
USCI1_CTL0  
USCI1_CTL1  
/
/
UART2_RXD  
UART2_TXD  
/
PWM0_CH1  
PWM0_CH0  
/
PWM0_BRAKE1  
/
/ PWM0_BRAKE0  
VREF  
AVSS  
NC  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
/
UART0_nCTS  
USCI1_CTL0  
UART0_TXD USCI1_CTL1  
USCI1_CLK  
/
EBI_ADR16  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
Analog12  
Analog13  
/
/
PB.11  
PB.10  
PF.2  
PF.3  
NC  
/
/
EBI_nCS1  
EBI_nCS0  
/
/
UART0_RXD  
UART0_TXD  
/
I2C0_SDA  
I2C0_SCL  
/
QSPI0_CLK  
/ XT1_OUT / BPWM1_CH1  
BPWM1_CH1  
I2C1_SMBAL  
/
/
I2C1_SDA  
UART1_nCTS  
UART1_nRTS  
/
UART0_nRTS  
/
/
EBI_ADR17  
/
/
XT1_IN BPWM1_CH0  
/
BPWM1_CH2  
BPWM1_CH3  
/
/
/
/
/
EBI_ADR18  
EBI_ADR19  
/
/
/
/
EADC0_CH9  
/
/
/
/
Analog14  
Analog15  
Analog16  
Analog17  
/
/
/
/
PB.9  
PB.8  
PB.7  
PB.6  
/
I2C1_SMBSUS  
/
/
/
UART0_RXD  
UART1_TXD  
/
EADC0_CH8  
EADC0_CH7  
EADC0_CH6  
NC  
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
EBI_nCS0  
EBI_nCS1  
/
USCI1_DAT0  
USCI1_DAT1  
/
EBI_nWRL  
EBI_nWRH  
NC  
/
/
/
/
/
/
UART1_RXD  
/
/
NC  
Figure 4.1-37 M252KE3AE Function Pin Diagram  
Pin M252KE3AE Pin Function  
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
1
2
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
July 2, 2020  
Page 116 of 266  
Rev 1.01  
M251/M252  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
3
4
PB.2/EADC0_CH2/ACMP0_P1/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/PSIO0_CH  
7/TM3/INT3  
5
6
7
8
PC.12/EBI_ADR4/UART0_TXD/I2C0_SCL/SC0_nCD/PWM1_CH0/ACMP0_O  
PC.11/EBI_ADR5/UART0_RXD/I2C0_SDA/PWM1_CH1/ACMP1_O  
PC.10/EBI_ADR6/PWM1_CH2  
PC.9/EBI_ADR7/PWM1_CH3  
PB.1/EADC0_CH1/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH4/PWM0_  
BRAKE0  
9
PB.0/EADC0_CH0/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_CH5/PW  
M0_BRAKE1  
10  
11 VSS  
12 VDD  
13 PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
14 PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT  
15 PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
16 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
17 NC  
18 PD.12/EBI_nCS0/UART2_RXD/BPWM0_CH5/CLKO/EADC0_ST/INT5  
19 PD.11/EBI_nCS1/UART1_TXD  
20 PD.10/EBI_nCS2/UART1_RXD  
21 NC  
22 NC  
23 NC  
24 NC  
25 NC  
26 NC  
27 NC  
28 PF.7/EBI_ADR18/SC0_DAT/SPI0_MISO  
29 PF.6/EBI_ADR19/SC0_CLK/SPI0_MOSI/EBI_nCS0/TAMPER0  
30 VBAT  
31 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
32 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
33 NC  
34 NC  
35 NC  
36 NC  
July 2, 2020  
Page 117 of 266  
Rev 1.01  
M251/M252  
37 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
38 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
39 NC  
40 NC  
41 PE.8/EBI_ADR10/USCI1_CTL1/UART2_TXD/PWM0_CH0/PWM0_BRAKE0  
42 PE.9/EBI_ADR11/USCI1_CTL0/UART2_RXD/PWM0_CH1/PWM0_BRAKE1  
43 PE.10/EBI_ADR12/USCI1_DAT0/PWM0_CH2/PWM1_BRAKE0  
44 PE.11/EBI_ADR13/USCI1_DAT1/UART1_nCTS/PWM0_CH3/PWM1_BRAKE1  
45 PE.12/EBI_ADR14/USCI1_CLK/UART1_nRTS/PWM0_CH4  
46 PE.13/EBI_ADR15/I2C0_SCL/UART1_TXD/PWM0_CH5/PWM1_CH0/BPWM1_CH5  
47 PC.8/EBI_ADR16/I2C0_SDA/UART1_RXD/PWM1_CH1/BPWM1_CH4  
48 PC.7/EBI_AD9/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
49 PC.6/EBI_AD8/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
50 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
51 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
52 VSS  
53 VDD  
54 PD.15/PSIO0_CH7/PWM0_CH5/TM3/INT1  
55 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
56  
57  
58  
59  
60  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5  
61 VDDIO  
62 PE.14/EBI_AD8/UART2_TXD/PSIO0_CH0  
63 PE.15/EBI_AD9/UART2_RXD/PSIO0_CH1  
nRESET  
64  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
65  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
66  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
67 PD.9/EBI_AD7/UART2_nCTS/PSIO0_CH2  
July 2, 2020  
Page 118 of 266  
Rev 1.01  
M251/M252  
68 PD.8/EBI_AD6/UART2_nRTS/PSIO0_CH3  
69 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
70 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
71 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
72 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
73 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
74 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
75 VSS  
76 VDD  
77 NC  
78 NC  
79 NC  
80 NC  
81 NC  
82 NC  
83 NC  
84 PD.7/UART1_TXD/I2C0_SCL/USCI1_CLK/PSIO0_CH4  
85 PD.6/UART1_RXD/I2C0_SDA/USCI1_DAT1/PSIO0_CH5  
86 PD.5/I2C1_SCL/USCI1_DAT0/PSIO0_CH6  
87 PD.4/USCI0_CTL0/I2C1_SDA/USCI1_CTL1/PSIO0_CH7  
88 PD.3/EBI_AD10/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
89 PD.2/EBI_AD11/USCI0_DAT1/SPI0_CLK/UART0_RXD  
90 PD.1/EBI_AD12/USCI0_DAT0/SPI0_MISO  
91 PD.0/EBI_AD13/USCI0_CLK/SPI0_MOSI/TM2  
92 PD.13/EBI_AD10/SPI0_I2SMCLK/USCI2_CTL0  
93 USB_VBUS  
94 USB_D-  
95 USB_D+  
96 USB_VDD33_CAP  
97 PE.7/PSIO0_CH0/PWM0_CH0/BPWM0_CH5  
98 PE.6/SC0_nCD/USCI0_CTL0/PSIO0_CH1/PWM0_CH1/BPWM0_CH4  
99 PE.5/EBI_nRD/SC0_PWR/USCI0_CTL1/PSIO0_CH2/PWM0_CH2/BPWM0_CH3  
100 PE.4/EBI_nWR/SC0_RST/USCI0_DAT1/PSIO0_CH3/PWM0_CH3/BPWM0_CH2  
101 PE.3/EBI_MCLK/SC0_DAT/USCI0_DAT0/PWM0_CH4/BPWM0_CH1  
102 PE.2/EBI_ALE/SC0_CLK/USCI0_CLK/USCI2_CTL0/PWM0_CH5/BPWM0_CH0  
103 NC  
July 2, 2020  
Page 119 of 266  
Rev 1.01  
M251/M252  
104 NC  
105 PE.1/EBI_AD10/QSPI0_MISO0/I2C1_SCL/USCI2_DAT1  
106 PE.0/EBI_AD11/QSPI0_MOSI0/I2C1_SDA/USCI2_DAT0  
107 NC  
108 NC  
109 NC  
110 NC  
111 NC  
112 VSS  
113 LDO_CAP  
114 VDD  
115 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
116  
117 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
118  
PB.12/EADC0_CH12/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_CH3/PWM1_  
CH3/TM3_EXT  
119  
120 AVDD  
121 VREF  
122 AVSS  
123 PB.11/EADC0_CH11/EBI_ADR16/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
124 PB.10/EADC0_CH10/EBI_ADR17/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
125 PB.9/EADC0_CH9/EBI_ADR18/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
126 PB.8/EADC0_CH8/EBI_ADR19/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
127  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
128  
Table 4.1-23 M252KE3AE Multi-function Pin Table  
July 2, 2020  
Page 120 of 266  
Rev 1.01  
M251/M252  
M252KG6AE  
BPWM0_CH5  
/
PWM0_CH0  
/
PSIO0_CH0  
SC0_nCD  
/
/
/
/
/
/
PE.7  
PE.6  
PE.5  
PE.4  
PE.3  
PE.2  
NC  
97  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
nRESET  
BPWM0_CH4  
/
PWM0_CH1 PSIO0_CH1  
/
/
USCI0_CTL0  
/
98  
PE.15  
PE.14  
VDDIO  
/
/
EBI_AD9  
EBI_AD8  
/
/
UART2_RXD PSIO0_CH1  
/
BPWM0_CH3  
BPWM0_CH2  
/
/
PWM0_CH2  
PWM0_CH3  
/
/
PSIO0_CH2  
PSIO0_CH3  
/
/
USCI0_CTL1  
USCI0_DAT1  
/
SC0_PWR  
SC0_RST  
/
EBI_nRD  
EBI_nWR  
99  
UART2_TXD / PSIO0_CH0  
/
/
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
BPWM0_CH1  
/
PWM0_CH4  
/
USCI0_DAT0  
/
SC0_DAT  
/
EBI_MCLK  
EBI_ALE  
PA.0  
PA.1  
PA.2  
PA.3  
PA.4  
PA.5  
/
/
/
/
/
/
QSPI0_MOSI0  
QSPI0_MISO0  
/
/
SPI0_MOSI  
SPI0_MISO  
/
/
SC0_CLK  
SC0_DAT  
/
/
UART0_RXD  
UART0_TXD  
/
/
UART1_nRTS  
UART1_nCTS  
/
/
PSIO0_CH7  
PSIO0_CH6  
/
/
USCI2_DAT1  
USCI2_DAT0  
/
/
BPWM0_CH0  
BPWM0_CH1  
/
/
PWM0_CH5  
PWM0_CH4  
/ DAC0_ST  
BPWM0_CH0 PWM0_CH5  
/
/
USCI2_CTL0  
/
USCI0_CLK  
/
SC0_CLK /  
QSPI0_CLK  
QSPI0_SS  
/
SPI0_CLK  
SPI0_SS SC0_PWR  
SPI0_I2SMCLK SC0_nCD  
UART0_nCTS UART0_TXD  
TM3 INT1  
/
SC0_RST  
I2C0_SMBAL  
UART0_nRTS  
I2C0_SCL BPWM0_CH5  
/
I2C0_SMBSUS  
UART1_TXD  
UART0_RXD  
/
UART1_RXD  
/
I2C1_SDA  
PSIO0_CH4  
I2C0_SDA USCI2_CTL1  
PWM0_CH0  
/
PSIO0_CH5  
USCI2_CTL0  
BPWM0_CH4 /  
/
USCI2_CLK  
BPWM0_CH3  
PWM0_CH1  
/
BPWM0_CH2  
/
PWM0_CH3  
NC  
/
/
/
/
/
I2C1_SCL  
/
/
/
/
PWM0_CH2  
/
CLKO / PWM1_BRAKE1  
USCI2_DAT1  
USCI2_DAT0  
/
I2C1_SCL  
I2C1_SDA  
/
/
QSPI0_MISO0  
QSPI0_MOSI0  
/
/
EBI_AD10  
EBI_AD11  
/
/
PE.1  
PE.0  
NC  
QSPI0_MOSI1  
QSPI0_MISO1  
/
/
/
/
/
/
/
/
/
/
/
/
/
PD.15  
VDD  
/
PSIO0_CH7  
/
PWM0_CH5  
/
/
NC  
NC  
VSS  
NC  
PA.6  
PA.7  
PC.6  
PC.7  
PC.8  
/
/
/
/
/
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
/
/
/
/
UART0_RXD  
UART0_TXD  
/
I2C1_SDA  
I2C1_SCL  
/
PWM1_CH5  
PWM1_CH4  
/
BPWM1_CH3  
BPWM1_CH2  
/
ACMP1_WLAT  
ACMP0_WLAT  
/
TM3  
TM2  
/
INT0  
INT1  
NC  
/
/
/
/
/
/
VSS  
UART0_nRTS  
UART0_nCTS  
/
/
I2C1_SMBSUS  
I2C1_SMBAL  
/
PWM1_CH3  
PWM1_CH2 BPWM1_CH0  
BPWM1_CH4  
PWM1_CH0 / BPWM1_CH5  
/
BPWM1_CH1  
/
TM1  
/ INT2  
ULQFP128  
LDO_CAP  
VDD  
/
/
/
TM0 / INT3  
EBI_ADR16  
/
I2C0_SDA  
/
UART1_RXD  
UART1_TXD  
/
PWM1_CH1  
PWM0_CH5  
/
TM1  
PSIO0_CH0  
PSIO0_CH1  
USCI0_DAT0  
SPI0_MOSI  
/
USCI2_CLK  
UART0_nCTS  
UART0_nRTS  
/
QSPI0_CLK  
USCI0_CTL1  
USCI0_DAT1  
EBI_AD14  
ACMP1_P2  
/
USCI0_CTL0  
SPI0_SS  
SPI0_CLK  
/
SPI0_I2SMCLK  
/
EBI_AD11  
/
/
/
/
/
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
PE.13  
PE.12  
PE.11  
PE.10  
/
/
/
/
EBI_ADR15  
/
/
/
/
I2C0_SCL  
/
/
/
PWM0_BRAKE1  
CLKO  
PWM1_CH2  
PSIO0_CH3  
/
TM0_EXT  
TM1_EXT  
PSIO0_CH2  
UART0_RXD  
/
PWM1_CH0  
PWM1_CH1  
UART0_TXD  
USCI0_CLK  
/
/
/
/
/
/
EBI_AD12  
EBI_AD13  
/
/
/
/
EADC0_CH15  
EADC0_CH14  
EADC0_CH13  
EADC0_CH12  
EBI_ADR14  
EBI_ADR13  
EBI_ADR12  
USCI1_CLK  
/
UART1_nRTS  
/
PWM0_CH4  
PWM0_CH3  
/ PWM1_BRAKE0  
/
/
/
/
/
/
USCI1_DAT1  
USCI1_DAT0  
/
/
UART1_nCTS  
PWM0_CH2  
/
/ PWM1_BRAKE1  
TM2_EXT  
/
/
/
/
/
/
SPI0_MISO  
/
/
ACMP1_P3  
ACMP0_P2  
/
ACMP0_P3  
DAC0_OUT  
TM3_EXT  
/
PWM1_CH3  
/
/
/
/
EBI_AD15  
/
/
/
PE.9  
PE.8  
NC  
/
/
EBI_ADR11  
EBI_ADR10  
/
/
USCI1_CTL0  
USCI1_CTL1  
/
/
UART2_RXD  
UART2_TXD  
/
PWM0_CH1  
PWM0_CH0  
/
PWM0_BRAKE1  
/
/ PWM0_BRAKE0  
VREF  
AVSS  
NC  
BPWM1_CH0  
/
SPI0_I2SMCLK  
/
I2C1_SCL  
/
UART0_nCTS  
USCI1_CTL0  
UART0_TXD  
/
/
EBI_ADR16  
EBI_ADR17  
/
/
EADC0_CH11  
EADC0_CH10  
/
/
PB.11  
PB.10  
PF.2  
PF.3  
NC  
/
/
EBI_nCS1  
EBI_nCS0  
/
/
UART0_RXD  
UART0_TXD  
/
I2C0_SDA  
I2C0_SCL  
/
QSPI0_CLK  
/ XT1_OUT / BPWM1_CH1  
BPWM1_CH1  
I2C1_SMBAL  
/
/
I2C1_SDA  
UART1_nCTS  
UART1_nRTS  
/
UART0_nRTS  
/
/
/
XT1_IN BPWM1_CH0  
/
BPWM1_CH2  
BPWM1_CH3  
/
/
/
USCI1_CTL1  
USCI1_CLK  
/
/
EBI_ADR18  
EBI_ADR19  
/
/
/
/
EADC0_CH9  
EADC0_CH8  
EADC0_CH7  
EADC0_CH6  
/
/
/
/
PB.9  
PB.8  
PB.7  
PB.6  
/
I2C1_SMBSUS  
/
/
/
UART0_RXD  
UART1_TXD  
/
NC  
ACMP0_O  
ACMP1_O  
/
INT5  
INT4  
/
PWM1_CH4  
PWM1_CH5  
/
PWM1_BRAKE0  
PWM1_BRAKE1  
/
BPWM1_CH4  
BPWM1_CH5  
/
EBI_nCS0  
EBI_nCS1  
/
USCI1_DAT0  
USCI1_DAT1  
/
EBI_nWRL  
EBI_nWRH  
NC  
/
/
/
/
/
/
UART1_RXD  
/
/
NC  
Figure 4.1-38 M252KG6AE Function Pin Diagram  
Pin M252KG6AE Pin Function  
PB.5/EADC0_CH5/ACMP1_N/EBI_ADR0/I2C0_SCL/USCI1_CTL0/SC0_CLK/PWM0_CH0/PSIO0_CH4/UART2_TXD/T  
M0/INT0  
1
2
3
4
PB.4/EADC0_CH4/ACMP1_P1/EBI_ADR1/I2C0_SDA/USCI1_CTL1/SC0_DAT/PWM0_CH1/PSIO0_CH5/UART2_RXD  
/TM1/INT1  
PB.3/EADC0_CH3/ACMP0_N/EBI_ADR2/I2C1_SCL/UART1_TXD/USCI1_DAT1/SC0_RST/PWM0_CH2/PSIO0_CH6/  
PWM0_BRAKE0/TM2/INT2  
PB.2/EADC0_CH2/ACMP0_P1/OPA0_O/EBI_ADR3/I2C1_SDA/UART1_RXD/USCI1_DAT0/SC0_PWR/PWM0_CH3/P  
SIO0_CH7/TM3/INT3  
July 2, 2020  
Page 121 of 266  
Rev 1.01  
M251/M252  
5
6
7
8
PC.12/EBI_ADR4/UART0_TXD/I2C0_SCL/SC0_nCD/PWM1_CH0/ACMP0_O  
PC.11/EBI_ADR5/UART0_RXD/I2C0_SDA/PWM1_CH1/ACMP1_O  
PC.10/EBI_ADR6/PWM1_CH2  
PC.9/EBI_ADR7/PWM1_CH3  
PB.1/EADC0_CH1/OPA0_N/EBI_ADR8/UART2_TXD/USCI1_CLK/I2C1_SCL/QSPI0_MISO1/PWM0_CH4/PWM1_CH  
4/PWM0_BRAKE0  
9
PB.0/EADC0_CH0/OPA0_P/EBI_ADR9/UART2_RXD/SPI0_I2SMCLK/I2C1_SDA/QSPI0_MOSI1/PWM0_CH5/PWM1_  
CH5/PWM0_BRAKE1  
10  
11 VSS  
12 VDD  
13 PA.11/ACMP0_P0/EBI_nRD/USCI0_CLK/BPWM0_CH0/TM0_EXT  
14 PA.10/ACMP1_P0/EBI_nWR/USCI0_DAT0/BPWM0_CH1/TM1_EXT/DAC0_ST  
15 PA.9/EBI_MCLK/USCI0_DAT1/UART1_TXD/BPWM0_CH2/TM2_EXT  
16 PA.8/EBI_ALE/USCI0_CTL1/UART1_RXD/BPWM0_CH3/TM3_EXT/INT4  
17 NC  
18 PD.12/EBI_nCS0/UART2_RXD/BPWM0_CH5/CLKO/EADC0_ST/INT5  
19 PD.11/EBI_nCS1/UART1_TXD  
20 PD.10/EBI_nCS2/UART1_RXD  
21 NC  
22 NC  
23 NC  
24 NC  
25 NC  
26 NC  
27 NC  
28 PF.7/EBI_ADR18/SC0_DAT/SPI0_MISO  
29 PF.6/EBI_ADR19/SC0_CLK/SPI0_MOSI/EBI_nCS0/TAMPER0  
30 VBAT  
31 PF.5/UART2_RXD/UART2_nCTS/PWM0_CH0/BPWM0_CH4/X32_IN/EADC0_ST  
32 PF.4/UART2_TXD/UART2_nRTS/PWM0_CH1/BPWM0_CH5/X32_OUT  
33 NC  
34 NC  
35 NC  
36 NC  
37 PF.3/EBI_nCS0/UART0_TXD/I2C0_SCL/XT1_IN/BPWM1_CH0  
38 PF.2/EBI_nCS1/UART0_RXD/I2C0_SDA/QSPI0_CLK/XT1_OUT/BPWM1_CH1  
39 NC  
July 2, 2020  
Page 122 of 266  
Rev 1.01  
M251/M252  
40 NC  
41 PE.8/EBI_ADR10/USCI1_CTL1/UART2_TXD/PWM0_CH0/PWM0_BRAKE0  
42 PE.9/EBI_ADR11/USCI1_CTL0/UART2_RXD/PWM0_CH1/PWM0_BRAKE1  
43 PE.10/EBI_ADR12/USCI1_DAT0/PWM0_CH2/PWM1_BRAKE0  
44 PE.11/EBI_ADR13/USCI1_DAT1/UART1_nCTS/PWM0_CH3/PWM1_BRAKE1  
45 PE.12/EBI_ADR14/USCI1_CLK/UART1_nRTS/PWM0_CH4  
46 PE.13/EBI_ADR15/I2C0_SCL/UART1_TXD/PWM0_CH5/PWM1_CH0/BPWM1_CH5  
47 PC.8/EBI_ADR16/I2C0_SDA/UART1_RXD/PWM1_CH1/BPWM1_CH4  
48 PC.7/EBI_AD9/UART0_nCTS/I2C1_SMBAL/PWM1_CH2/BPWM1_CH0/TM0/INT3  
49 PC.6/EBI_AD8/UART0_nRTS/I2C1_SMBSUS/PWM1_CH3/BPWM1_CH1/TM1/INT2  
50 PA.7/EBI_AD7/UART0_TXD/I2C1_SCL/PWM1_CH4/BPWM1_CH2/ACMP0_WLAT/TM2/INT1  
51 PA.6/EBI_AD6/UART0_RXD/I2C1_SDA/PWM1_CH5/BPWM1_CH3/ACMP1_WLAT/TM3/INT0  
52 VSS  
53 VDD  
54 PD.15/PSIO0_CH7/PWM0_CH5/TM3/INT1  
55 PA.5/QSPI0_MISO1/UART0_nCTS/UART0_TXD/I2C0_SCL/BPWM0_CH5/PWM0_CH0  
PA.4/QSPI0_MOSI1/SPI0_I2SMCLK/SC0_nCD/UART0_nRTS/UART0_RXD/I2C0_SDA/USCI2_CTL1/BPWM0_CH4/P  
WM0_CH1  
56  
57  
58  
59  
60  
PA.3/QSPI0_SS/SPI0_SS/SC0_PWR/I2C0_SMBAL/UART1_TXD/I2C1_SCL/PSIO0_CH4/USCI2_CTL0/BPWM0_CH3/  
PWM0_CH2/CLKO/PWM1_BRAKE1  
PA.2/QSPI0_CLK/SPI0_CLK/SC0_RST/I2C0_SMBSUS/UART1_RXD/I2C1_SDA/PSIO0_CH5/USCI2_CLK/BPWM0_C  
H2/PWM0_CH3  
PA.1/QSPI0_MISO0/SPI0_MISO/SC0_DAT/UART0_TXD/UART1_nCTS/PSIO0_CH6/USCI2_DAT0/BPWM0_CH1/PW  
M0_CH4  
PA.0/QSPI0_MOSI0/SPI0_MOSI/SC0_CLK/UART0_RXD/UART1_nRTS/PSIO0_CH7/USCI2_DAT1/BPWM0_CH0/PW  
M0_CH5/DAC0_ST  
61 VDDIO  
62 PE.14/EBI_AD8/UART2_TXD/PSIO0_CH0  
63 PE.15/EBI_AD9/UART2_RXD/PSIO0_CH1  
nRESET  
64  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
PF.0/UART1_TXD/I2C1_SCL/UART0_TXD/BPWM1_CH0/ICE_DAT  
65  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
PF.1/UART1_RXD/I2C1_SDA/UART0_RXD/BPWM1_CH1/ICE_CLK  
66  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
67 PD.9/EBI_AD7/UART2_nCTS/PSIO0_CH2  
68 PD.8/EBI_AD6/UART2_nRTS/PSIO0_CH3  
69 PC.5/EBI_AD5/QSPI0_MISO1/UART2_TXD/I2C1_SCL/PWM1_CH0/PSIO0_CH0  
70 PC.4/EBI_AD4/QSPI0_MOSI1/UART2_RXD/I2C1_SDA/PWM1_CH1/USCI2_CTL1/PSIO0_CH1  
July 2, 2020  
Page 123 of 266  
Rev 1.01  
M251/M252  
71 PC.3/EBI_AD3/QSPI0_SS/UART2_nRTS/I2C0_SMBAL/PWM1_CH2/USCI2_CTL0/PSIO0_CH2  
72 PC.2/EBI_AD2/QSPI0_CLK/UART2_nCTS/I2C0_SMBSUS/PWM1_CH3/USCI2_CLK/PSIO0_CH3  
73 PC.1/EBI_AD1/QSPI0_MISO0/UART2_TXD/I2C0_SCL/PWM1_CH4/USCI2_DAT0/ACMP0_O  
74 PC.0/EBI_AD0/QSPI0_MOSI0/UART2_RXD/I2C0_SDA/PWM1_CH5/USCI2_DAT1/ACMP1_O  
75 VSS  
76 VDD  
77 NC  
78 NC  
79 NC  
80 NC  
81 NC  
82 NC  
83 NC  
84 PD.7/UART1_TXD/I2C0_SCL/USCI1_CLK/PSIO0_CH4  
85 PD.6/UART1_RXD/I2C0_SDA/USCI1_DAT1/PSIO0_CH5  
86 PD.5/I2C1_SCL/USCI1_DAT0/PSIO0_CH6  
87 PD.4/USCI0_CTL0/I2C1_SDA/USCI1_CTL1/PSIO0_CH7  
88 PD.3/EBI_AD10/USCI0_CTL1/SPI0_SS/USCI1_CTL0/UART0_TXD  
89 PD.2/EBI_AD11/USCI0_DAT1/SPI0_CLK/UART0_RXD  
90 PD.1/EBI_AD12/USCI0_DAT0/SPI0_MISO  
91 PD.0/EBI_AD13/USCI0_CLK/SPI0_MOSI/TM2  
92 PD.13/EBI_AD10/SPI0_I2SMCLK/USCI2_CTL0  
93 USB_VBUS  
94 USB_D-  
95 USB_D+  
96 USB_VDD33_CAP  
97 PE.7/PSIO0_CH0/PWM0_CH0/BPWM0_CH5  
98 PE.6/SC0_nCD/USCI0_CTL0/PSIO0_CH1/PWM0_CH1/BPWM0_CH4  
99 PE.5/EBI_nRD/SC0_PWR/USCI0_CTL1/PSIO0_CH2/PWM0_CH2/BPWM0_CH3  
100 PE.4/EBI_nWR/SC0_RST/USCI0_DAT1/PSIO0_CH3/PWM0_CH3/BPWM0_CH2  
101 PE.3/EBI_MCLK/SC0_DAT/USCI0_DAT0/PWM0_CH4/BPWM0_CH1  
102 PE.2/EBI_ALE/SC0_CLK/USCI0_CLK/USCI2_CTL0/PWM0_CH5/BPWM0_CH0  
103 NC  
104 NC  
105 PE.1/EBI_AD10/QSPI0_MISO0/I2C1_SCL/USCI2_DAT1  
106 PE.0/EBI_AD11/QSPI0_MOSI0/I2C1_SDA/USCI2_DAT0  
July 2, 2020  
Page 124 of 266  
Rev 1.01  
M251/M252  
107 NC  
108 NC  
109 NC  
110 NC  
111 NC  
112 VSS  
113 LDO_CAP  
114 VDD  
115 PC.14/EBI_AD11/SPI0_I2SMCLK/USCI0_CTL0/QSPI0_CLK/USCI2_CLK/TM1  
PB.15/EADC0_CH15/EBI_AD12/SPI0_SS/USCI0_CTL1/UART0_nCTS/PSIO0_CH0/PWM1_CH0/TM0_EXT/PWM0_B  
RAKE1  
116  
117 PB.14/EADC0_CH14/EBI_AD13/SPI0_CLK/USCI0_DAT1/UART0_nRTS/PSIO0_CH1/PWM1_CH1/TM1_EXT/CLKO  
PB.13/EADC0_CH13/ACMP0_P3/ACMP1_P3/EBI_AD14/SPI0_MISO/USCI0_DAT0/UART0_TXD/PSIO0_CH2/PWM1  
_CH2/TM2_EXT  
118  
PB.12/EADC0_CH12/DAC0_OUT/ACMP0_P2/ACMP1_P2/EBI_AD15/SPI0_MOSI/USCI0_CLK/UART0_RXD/PSIO0_  
CH3/PWM1_CH3/TM3_EXT  
119  
120 AVDD  
121 VREF  
122 AVSS  
123 PB.11/EADC0_CH11/EBI_ADR16/UART0_nCTS/I2C1_SCL/SPI0_I2SMCLK/BPWM1_CH0  
124 PB.10/EADC0_CH10/EBI_ADR17/USCI1_CTL0/UART0_nRTS/I2C1_SDA/BPWM1_CH1  
125 PB.9/EADC0_CH9/EBI_ADR18/USCI1_CTL1/UART0_TXD/UART1_nCTS/I2C1_SMBAL/BPWM1_CH2  
126 PB.8/EADC0_CH8/EBI_ADR19/USCI1_CLK/UART0_RXD/UART1_nRTS/I2C1_SMBSUS/BPWM1_CH3  
PB.7/EADC0_CH7/EBI_nWRL/USCI1_DAT0/UART1_TXD/EBI_nCS0/BPWM1_CH4/PWM1_BRAKE0/PWM1_CH4/IN  
T5/ACMP0_O  
127  
PB.6/EADC0_CH6/EBI_nWRH/USCI1_DAT1/UART1_RXD/EBI_nCS1/BPWM1_CH5/PWM1_BRAKE1/PWM1_CH5/IN  
T4/ACMP1_O  
128  
Table 4.1-24 M252KG6AE Multi-function Pin Table  
July 2, 2020  
Page 125 of 266  
Rev 1.01  
M251/M252  
4.2 Pin Mapping  
Different part number with same package might has different function. Please refer to the selection  
guide in section 3.2, Pin Configuration in section 4.1 or NuTool - PinConfig.  
Corresponding Part Number: M251/M252 Series  
M251/M252 Series Pin Mapping  
M251 Series  
M252 Series  
Pin Name  
20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin 20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin  
PB.5  
PB.4  
PB.3  
PB.2  
PC.12  
PC.11  
PC.10  
PC.9  
PB.1  
PB.0  
VSS  
8
9
12  
13  
14  
15  
1
2
3
4
1
2
3
4
2
3
4
5
1
12  
13  
14  
15  
1
2
3
4
1
2
3
4
2
3
4
5
1
2
2
10  
11  
3
3
4
4
5
5
6
6
7
7
8
8
16  
17  
5
6
5
6
6
7
9
16  
17  
5
6
5
6
6
7
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
VDD  
PA.11  
PA.10  
PA.9  
PA.8  
NC  
7
8
8
9
7
8
8
9
9
10  
11  
9
10  
11  
10  
10  
PD.12  
PD.11  
PD.10  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
PF.7  
PF.6  
12  
12  
July 2, 2020  
Page 126 of 266  
Rev 1.01  
M251/M252  
M251 Series  
M252 Series  
Pin Name  
PF.14 or VBAT  
VBAT  
20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin 20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin  
13  
13  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
PF.5  
PF.4  
NC  
7
8
11  
12  
14  
15  
7
8
11  
12  
14  
15  
NC  
NC  
NC  
PF.3  
PF.2  
NC  
12  
13  
18  
19  
9
13  
14  
16  
17  
11  
12  
18  
19  
9
13  
14  
16  
17  
10  
10  
NC  
PE.8  
PE.9  
PE.10  
PE.11  
PE.12  
PE.13  
PC.8  
PC.7  
PC.6  
PA.7  
PA.6  
VSS  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
15  
16  
15  
16  
VDD  
PD.15  
PA.5  
PA.4  
PA.3  
PA.2  
PA.1  
PA.0  
VDDIO  
PE.14  
17  
18  
19  
20  
21  
22  
23  
17  
18  
19  
20  
21  
22  
23  
14  
15  
16  
17  
20  
21  
22  
23  
11  
12  
13  
14  
15  
13  
14  
15  
16  
20  
21  
22  
23  
11  
12  
13  
14  
15  
July 2, 2020  
Page 127 of 266  
Rev 1.01  
M251/M252  
M251 Series  
M252 Series  
Pin Name  
PE.15  
nRESET  
PF.0  
ICE_DAT  
PF.1  
ICE_CLK  
PD.9  
PD.8  
PC.5  
PC.4  
PC.3  
PC.2  
PC.1  
PC.0  
VSS  
20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin 20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin  
63  
64  
63  
64  
18  
19  
24  
25  
16  
17  
24  
25  
32  
33  
17  
18  
24  
25  
16  
17  
24  
25  
32  
33  
65  
66  
65  
66  
20  
26  
18  
26  
34  
19  
26  
18  
26  
34  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
27  
28  
29  
30  
31  
32  
35  
36  
37  
38  
39  
40  
27  
28  
29  
30  
31  
32  
35  
36  
37  
38  
39  
40  
27  
28  
19  
20  
27  
28  
19  
20  
VDD  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
PD.7  
PD.6  
PD.5  
PD.4  
PD.3  
PD.2  
PD.1  
PD.0  
PD.13  
PA.12  
PA.13  
41  
42  
43  
44  
41  
42  
43  
44  
1
2
21  
22  
33  
34  
45  
46  
July 2, 2020  
Page 128 of 266  
Rev 1.01  
M251/M252  
M251 Series  
M252 Series  
Pin Name  
PA.14  
20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin 20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin  
3
4
23  
24  
35  
36  
47  
48  
95  
96  
PA.15  
USB_VBUS  
USB_D-  
USB_D+  
20  
1
1
2
3
21  
22  
23  
33  
34  
35  
45  
46  
47  
93  
94  
95  
2
USB_VDD33_CAP  
3
4
24  
36  
48  
96  
PE.7  
PE.6  
PE.5  
PE.4  
PE.3  
PE.2  
NC  
97  
97  
98  
98  
99  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
NC  
PE.1  
PE.0  
NC  
NC  
NC  
NC  
NC  
VSS  
1
2
3
5
6
7
25  
26  
27  
37  
38  
39  
40  
41  
42  
43  
44  
45  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
4
5
6
5
6
7
25  
26  
27  
37  
38  
39  
40  
41  
42  
43  
44  
45  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
LDO_CAP  
VDD  
PC.14  
PB.15  
PB.14  
PB.13  
PB.12  
AVDD  
VREF  
28  
29  
30  
31  
32  
28  
29  
30  
31  
32  
4
5
6
7
8
9
7
8
8
9
10  
11  
9
10  
11  
10  
AVSS  
PB.11  
PB.10  
46  
46  
July 2, 2020  
Page 129 of 266  
Rev 1.01  
M251/M252  
M251 Series  
M252 Series  
Pin Name  
PB.9  
20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin 20 Pin 28 Pin 32 Pin 48 Pin 64 Pin 128 Pin  
62  
63  
64  
1
125  
126  
127  
128  
62  
63  
64  
1
125  
126  
127  
128  
PB.8  
PB.7  
47  
48  
47  
48  
PB.6  
July 2, 2020  
Page 130 of 266  
Rev 1.01  
M251/M252  
4.3  
Pin Function Description  
Group  
Pin Name  
Type Description  
ACMP0_N  
A
O
A
A
A
A
I
Analog comparator 0 negative input pin.  
ACMP0_O  
Analog comparator 0 output pin.  
ACMP0_P0  
ACMP0_P1  
ACMP0_P2  
ACMP0_P3  
ACMP0_WLAT  
ACMP1_N  
Analog comparator 0 positive input 0 pin.  
Analog comparator 0 positive input 1 pin.  
Analog comparator 0 positive input 2 pin.  
Analog comparator 0 positive input 3 pin.  
Analog comparator 0 window latch input pin  
Analog comparator 1 negative input pin.  
Analog comparator 1 output pin.  
ACMP0  
A
O
A
A
A
A
I
ACMP1_O  
ACMP1_P0  
ACMP1_P1  
ACMP1_P2  
ACMP1_P3  
ACMP1_WLAT  
BPWM0_CH0  
BPWM0_CH1  
BPWM0_CH2  
BPWM0_CH3  
BPWM0_CH4  
BPWM0_CH5  
BPWM1_CH0  
BPWM1_CH1  
BPWM1_CH2  
BPWM1_CH3  
BPWM1_CH4  
Analog comparator 1 positive input 0 pin.  
Analog comparator 1 positive input 1 pin.  
Analog comparator 1 positive input 2 pin.  
Analog comparator 1 positive input 3 pin.  
Analog comparator 1 window latch input pin  
ACMP1  
I/O BPWM0 channel 0 output/capture input.  
I/O BPWM0 channel 1 output/capture input.  
I/O BPWM0 channel 2 output/capture input.  
I/O BPWM0 channel 3 output/capture input.  
I/O BPWM0 channel 4 output/capture input.  
I/O BPWM0 channel 5 output/capture input.  
I/O BPWM1 channel 0 output/capture input.  
I/O BPWM1 channel 1 output/capture input.  
I/O BPWM1 channel 2 output/capture input.  
I/O BPWM1 channel 3 output/capture input.  
I/O BPWM1 channel 4 output/capture input.  
I/O BPWM1 channel 5 output/capture input.  
BPWM0  
BPWM1  
BPWM1_CH5  
CLKO  
CLKO  
DAC0  
O
A
I
Clock Out  
DAC0_OUT  
DAC0_ST  
EADC0_CH0  
DAC0 channel analog output.  
DAC0 external trigger input.  
EADC0 channel 0 analog input.  
A
EADC0_CH1  
EADC0_CH2  
EADC0_CH3  
EADC0_CH4  
A
A
A
A
EADC0 channel 1 analog input.  
EADC0 channel 2 analog input.  
EADC0 channel 3 analog input.  
EADC0 channel 4 analog input.  
EADC0  
July 2, 2020  
Page 131 of 266  
Rev 1.01  
M251/M252  
Group  
Pin Name  
Type Description  
EADC0 channel 5 analog input.  
EADC0_CH5  
A
A
A
A
A
A
A
A
A
A
A
I
EADC0_CH6  
EADC0_CH7  
EADC0_CH8  
EADC0_CH9  
EADC0_CH10  
EADC0_CH11  
EADC0_CH12  
EADC0_CH13  
EADC0_CH14  
EADC0_CH15  
EADC0 channel 6 analog input.  
EADC0 channel 7 analog input.  
EADC0 channel 8 analog input.  
EADC0 channel 9 analog input.  
EADC0 channel 10 analog input.  
EADC0 channel 11 analog input.  
EADC0 channel 12 analog input.  
EADC0 channel 13 analog input.  
EADC0 channel 14 analog input.  
EADC0 channel 15 analog input.  
EADC0_ST  
EBI_AD0  
EBI_AD1  
EBI_AD2  
EBI_AD3  
EBI_AD4  
EBI_AD5  
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
EBI_AD10  
EBI_AD11  
EBI_AD12  
EBI_AD13  
EBI_AD14  
EBI_AD15  
EBI_ADR0  
EBI_ADR1  
EBI_ADR2  
EBI_ADR3  
EBI_ADR4  
EBI_ADR5  
EBI_ADR6  
EADC0 external trigger input.  
I/O EBI address/data bus bit 0.  
I/O EBI address/data bus bit 1.  
I/O EBI address/data bus bit 2.  
I/O EBI address/data bus bit 3.  
I/O EBI address/data bus bit 4.  
I/O EBI address/data bus bit 5.  
I/O EBI address/data bus bit 6.  
I/O EBI address/data bus bit 7.  
I/O EBI address/data bus bit 8.  
I/O EBI address/data bus bit 9.  
I/O EBI address/data bus bit 10.  
I/O EBI address/data bus bit 11.  
I/O EBI address/data bus bit 12.  
I/O EBI address/data bus bit 13.  
I/O EBI address/data bus bit 14.  
I/O EBI address/data bus bit 15.  
EBI  
O
O
O
O
O
O
O
EBI address bus bit 0.  
EBI address bus bit 1.  
EBI address bus bit 2.  
EBI address bus bit 3.  
EBI address bus bit 4.  
EBI address bus bit 5.  
EBI address bus bit 6.  
July 2, 2020  
Page 132 of 266  
Rev 1.01  
M251/M252  
Group  
Pin Name  
Type Description  
EBI address bus bit 7.  
EBI_ADR7  
EBI_ADR8  
EBI_ADR9  
EBI_ADR10  
EBI_ADR11  
EBI_ADR12  
EBI_ADR13  
EBI_ADR14  
EBI_ADR15  
EBI_ADR16  
EBI_ADR17  
EBI_ADR18  
EBI_ADR19  
EBI_ALE  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
EBI address bus bit 8.  
EBI address bus bit 9.  
EBI address bus bit 10.  
EBI address bus bit 11.  
EBI address bus bit 12.  
EBI address bus bit 13.  
EBI address bus bit 14.  
EBI address bus bit 15.  
EBI address bus bit 16.  
EBI address bus bit 17.  
EBI address bus bit 18.  
EBI address bus bit 19.  
EBI address latch enable output pin.  
EBI external clock output pin.  
EBI chip select 0 output pin.  
EBI chip select 1 output pin.  
EBI chip select 2 output pin.  
EBI read enable output pin.  
EBI write enable output pin.  
EBI high byte write enable output pin  
EBI low byte write enable output pin.  
EBI_MCLK  
EBI_nCS0  
EBI_nCS1  
EBI_nCS2  
EBI_nRD  
EBI_nWR  
EBI_nWRH  
EBI_nWRL  
PA.x~PH.x  
I2C0_SCL  
GPIO  
I2C0  
I/O General purpose digital I/O pin.  
I/O I2C0 clock pin.  
I2C0_SDA  
I2C0_SMBAL  
I2C0_SMBSUS  
I2C1_SCL  
I/O I2C0 data input/output pin.  
O
O
I2C0 SMBus SMBALTER pin  
I2C0 SMBus SMBSUS pin (PMBus CONTROL pin)  
I/O I2C1 clock pin.  
I2C1_SDA  
I2C1_SMBAL  
I2C1_SMBSUS  
ICE_CLK  
I/O I2C1 data input/output pin.  
I2C1  
O
O
I2C1 SMBus SMBALTER pin  
I2C1 SMBus SMBSUS pin (PMBus CONTROL pin)  
Serial wired debugger clock pin  
I/O  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
Serial wired debugger data pin  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial  
state.  
ICE_DAT  
nRESET  
I/O  
I
ICE  
Note: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET  
pin.  
July 2, 2020  
Page 133 of 266  
Rev 1.01  
M251/M252  
Group  
INT0  
INT1  
INT3  
INT4  
INT5  
Pin Name  
Type Description  
INT0  
I
I
External interrupt 0 input pin.  
INT1  
External interrupt 1 input pin.  
External interrupt 3 input pin.  
External interrupt 4 input pin.  
External interrupt 5 input pin.  
Operational amplifier 0 negative input pin.  
INT3  
I
INT4  
I
INT5  
I
OPA0_N  
A
OPA0_O  
A
A
Operational amplifier 0 output pin.  
OPA0  
OPA0_P  
Operational amplifier 0 positive input pin.  
PSIO0_CH0  
PSIO1_CH0  
PSIO2_CH0  
PSIO3_CH0  
PSIO4_CH0  
PSIO5_CH0  
PSIO6_CH0  
PSIO7_CH0  
I/O PSIO 0 channel 0 input/output pin.  
I/O PSIO 0 channel 1 input/output pin.  
I/O PSIO 0 channel 2 input/output pin.  
I/O PSIO 0 channel 3 input/output pin.  
I/O PSIO 0 channel 4 input/output pin.  
I/O PSIO 0 channel 5 input/output pin.  
I/O PSIO 0 channel 6 input/output pin.  
I/O PSIO 0 channel 7 input/output pin.  
PSIO0  
CLKO  
CLKO  
O
I
Clock Out  
PWM0_BRAKE0  
PWM0 Brake 0 input pin.  
PWM0 Brake 1 input pin.  
PWM0_BRAKE1  
PWM0_CH0  
PWM0_CH1  
PWM0_CH2  
PWM0_CH3  
PWM0_CH4  
PWM0_CH5  
PWM1_BRAKE0  
PWM1_BRAKE1  
PWM1_CH0  
PWM1_CH1  
PWM1_CH2  
PWM1_CH3  
PWM1_CH4  
PWM1_CH5  
VDD  
I
I/O PWM0 channel 0 output/capture input.  
I/O PWM0 channel 1 output/capture input.  
I/O PWM0 channel 2 output/capture input.  
I/O PWM0 channel 3 output/capture input.  
I/O PWM0 channel 4 output/capture input.  
I/O PWM0 channel 5 output/capture input.  
PWM0  
I
I
PWM1 Brake 0 input pin.  
PWM1 Brake 1 input pin.  
I/O PWM1 channel 0 output/capture input.  
I/O PWM1 channel 1 output/capture input.  
I/O PWM1 channel 2 output/capture input.  
I/O PWM1 channel 3 output/capture input.  
I/O PWM1 channel 4 output/capture input.  
I/O PWM1 channel 5 output/capture input.  
PWM1  
P
P
Power supply for I/O ports and LDO source for internal PLL and digital circuit.  
Ground pin for digital circuit.  
Power  
VSS  
July 2, 2020  
Page 134 of 266  
Rev 1.01  
M251/M252  
Group  
Pin Name  
VDDIO  
Type Description  
P
P
P
P
Power supply for PA.0~PA.5.  
VBAT  
Power supply by batteries for RTC.  
Power supply for internal analog circuit.  
Ground pin for analog circuit.  
AVDD  
AVSS  
ADC reference voltage input.  
Note: This pin needs to be connected with a 1uF capacitor.  
VREF  
A
A
LDO output pin.  
Note: This pin needs to be connected with a 1uF capacitor.  
LDO_CAP  
QSPI0_CLK  
I/O Quad SPI0 serial clock pin.  
QSPI0_MISO0  
QSPI0_MISO1  
QSPI0_MOSI0  
QSPI0_MOSI1  
QSPI0_SS  
I/O Quad SPI0 MISO0 (Master In, Slave Out) pin.  
I/O Quad SPI0 MISO1 (Master In, Slave Out) pin.  
I/O Quad SPI0 MOSI0 (Master Out, Slave In) pin.  
I/O Quad SPI0 MOSI1 (Master Out, Slave In) pin.  
I/O Quad SPI0 slave select pin.  
QSPI0  
SC0_CLK  
O
Smart Card 0 clock pin.  
SC0_DAT  
I/O Smart Card 0 data pin.  
SC0_PWR  
O
O
I
Smart Card 0 power pin.  
SC0  
SC0_RST  
SC0_nCD  
Smart Card 0 reset pin.  
Smart Card 0 card detect pin.  
SPI0_CLK  
I/O SPI0 serial clock pin.  
SPI0_I2SMCLK  
SPI0_MISO  
SPI0_MOSI  
SPI0_SS  
I/O SPI0 I2S master clock output pin  
I/O SPI0 MISO (Master In, Slave Out) pin.  
I/O SPI0 MOSI (Master Out, Slave In) pin.  
I/O SPI0 slave select pin.  
SPI0  
TAMPER0  
I/O TAMPER detector loop pin 0.  
TAMPER0  
TM0  
TM0  
I/O Timer0 event counter input/toggle output pin.  
I/O Timer0 external capture input/toggle output pin.  
I/O Timer1 event counter input/toggle output pin.  
I/O Timer1 external capture input/toggle output pin.  
I/O Timer2 event counter input/toggle output pin.  
I/O Timer2 external capture input/toggle output pin.  
I/O Timer3 event counter input/toggle output pin.  
I/O Timer3 external capture input/toggle output pin.  
TM0_EXT  
TM1  
TM1  
TM2  
TM3  
TM1_EXT  
TM2  
TM2_EXT  
TM3  
TM3_EXT  
UART0_RXD  
UART0_TXD  
UART0_nCTS  
UART0_nRTS  
I
UART0 data receiver input pin.  
UART0 data transmitter output pin.  
UART0 clear to Send input pin.  
UART0 request to Send output pin.  
O
I
UART0  
O
July 2, 2020  
Page 135 of 266  
Rev 1.01  
M251/M252  
Group  
Pin Name  
Type Description  
UART1_RXD  
UART1_TXD  
UART1_nCTS  
UART1_nRTS  
UART2_RXD  
UART2_TXD  
UART2_nCTS  
UART2_nRTS  
USB_VBUS  
USB_D-  
I
UART1 data receiver input pin.  
O
I
UART1 data transmitter output pin.  
UART1 clear to Send input pin.  
UART1 request to Send output pin.  
UART2 data receiver input pin.  
UART1  
O
I
O
I
UART2 data transmitter output pin.  
UART2 clear to Send input pin.  
UART2 request to Send output pin.  
Power supply from USB host or HUB.  
USB differential signal D-.  
UART2  
O
P
A
A
A
USB  
USB_D+  
USB differential signal D+.  
USB_VDD33_CAP  
USCI0_CLK  
USCI0_CTL0  
USCI0_CTL1  
USCI0_DAT0  
USCI0_DAT1  
USCI1_CLK  
USCI1_CTL0  
USCI1_CTL1  
USCI1_DAT0  
USCI1_DAT1  
USCI2_CLK  
USCI2_CTL0  
USCI2_CTL1  
USCI2_DAT0  
USCI2_DAT1  
X32_IN  
Internal power regulator output 3.3V decoupling pin.  
I/O USCI0 clock pin.  
I/O USCI0 control 0 pin.  
I/O USCI0 control 1 pin.  
I/O USCI0 data 0 pin.  
I/O USCI0 data 1 pin.  
I/O USCI1 clock pin.  
I/O USCI1 control 0 pin.  
I/O USCI1 control 1 pin.  
I/O USCI1 data 0 pin.  
I/O USCI1 data 1 pin.  
I/O USCI2 clock pin.  
I/O USCI2 control 0 pin.  
I/O USCI2 control 1 pin.  
I/O USCI2 data 0 pin.  
I/O USCI2 data 1 pin.  
USCI0  
USCI1  
USCI2  
I
External 32.768 kHz crystal input pin.  
External 32.768 kHz crystal output pin.  
External high speed crystal input pin.  
External high speed crystal output pin.  
X32  
XT1  
X32_OUT  
O
I
XT1_IN  
XT1_OUT  
O
July 2, 2020  
Page 136 of 266  
Rev 1.01  
M251/M252  
5 BLOCK DIAGRAM  
5.1 M251/M252 Block Diagram  
USB* : Only supported in M252 series.  
Please refer to the selection guide in section 4.2 for detailed information.  
Figure 5.1-1 M251/M252 Block Diagram  
July 2, 2020  
Page 137 of 266  
Rev 1.01  
M251/M252  
6 FUNCTIONAL DESCRIPTION  
6.1 Arm® Cortex® -M23 Core  
The Cortex® -M23 processor is a low gate count, two-stage, and highly energy efficient 32-bit RISC  
processor, which has an AMBA AHB5 interface supporting Arm® TrustZone® technology, a debug  
access port supporting serial wire debug and single-cycle I/O ports. It has an NVIC component and  
MPU for memory-protection functionality. The processor also supports Security Extension. The  
NuMicro® M251/M252 series is embedded with Cortex® -M23 processor.Figure 6.1-1 shows the  
functional controller of the processor.  
MTB AHB  
Cortex-M23 processor  
Micro Trace  
Buffer  
(MTB)  
MTB  
SRAM  
interface  
Cross  
Trigger  
Interface  
(CTI)  
Wakeup  
Interrupt  
Controller  
(WIC)  
Nested  
Vectored  
Interrupt  
(NVIC)  
Cortex-M23  
processor  
core  
APB  
IRQ and power  
control interface  
Embedded  
Trace  
Macrocell  
(ETM)  
ETM  
ATB  
interface  
Memory Protection  
Implementation  
Defined Attribution  
Unit (IDAU)  
Security  
Attribution  
Unit (SAU)  
Data  
Watchpoint  
and Trace  
(DWT)  
Flash Patch  
and  
Breakpoint Unit  
(FPB)*  
Secure  
Memory  
Protection Unit  
(MPU_S)  
Non-secure  
Memory  
Protection Unit  
(MPU_NS)  
Slave  
AHB  
interface  
Bus matrix  
Processor  
ROM  
table  
Single-cycle  
I/O port  
AHB Master  
Configurable  
Optional  
* Flash Patching is not supported in the Cortex-M23 processor.  
Note: Security attribution unit, ETM, CTI and MTB functions are not supported in M251/M252.  
Figure 6.1-1 Cortex® -M23 Block Diagram  
July 2, 2020  
Page 138 of 266  
Rev 1.01  
 
M251/M252  
Cortex® -M23 processor features:  
Armv8-M Baseline architecture.  
Armv8-M Baseline Thumb® -2 instruction set that combines high code density with 32-bit  
performance.  
Support for single-cycle I/O access.  
Power control optimization of system components.  
Integrated sleep modes for low power consumption.  
Optimized code fetching for reduced Flash and ROM power consumption.  
A 32-bit Single cycle Hardware multiplier.  
A 32-bit Hardware divider.  
Deterministic, high-performance interrupt handling for time-critical applications.  
Deterministic instruction cycle timing.  
Support for system level debug authentication.  
Support for Arm® Debug Interface Architecture ADIv5.1 Serial Wire Debug (SWD).  
ETM for instruction trace.  
Separated privileged and unprivileged modes.  
Security Extension supporting a Secure and a Non-secure state.  
Protected Memory System Architecture (PMSAv8) Memory Protection Units (MPUs) for  
both Secure and Non-secure states.  
Security Attribution Unit (SAU).  
SysTick timers for both Secure and Non-secure states.  
A Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor with  
up to 240 interrupts.  
July 2, 2020  
Page 139 of 266  
Rev 1.01  
M251/M252  
6.2 System Manager  
6.2.1  
Overview  
System management includes the following sections:  
System Reset  
System Power Distribution  
SRAM Memory Orginization  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control register  
6.2.2  
System Reset  
The system reset can be issued by one of the events listed below. These reset event flags can be read  
from SYS_RSTSTS register to determine the reset source. Hardware reset sourcces are from  
peripheral signals. Software reset can trigger reset through setting control registers.  
Hardware Reset Sources  
Power-on Reset  
Low level on the nRESET pin with glitch filter time 24us  
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD Reset)  
CPU Lockup Reset  
Software Reset Sources  
CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])  
MCU Reset to reboot but keeping the booting setting from APROM or LDROM by  
writing 1 to SYSRESETREQ (AIRCR[2])  
CPU Reset for Cortex® -M23 core Only by writing 1 to CPURST (SYS_IPRST0[1])  
July 2, 2020  
Page 140 of 266  
Rev 1.01  
M251/M252  
Glitch Filter  
24 us  
nRESET  
~50k ohm  
@3.3v  
POROFF(SYS_PORCTL[15:0])  
Power-on  
Reset  
VDD  
LVREN(SYS_BODCTL[7])  
Reset Pulse Width  
~3.2ms  
Low Voltage  
Reset  
AVDD  
BODRSTEN(SYS_BODCTL[3])  
Brown-out  
Reset  
System Reset  
WDT/WWDT  
Reset  
Reset Pulse Width  
64 WDT clocks  
CPU Lockup  
Reset  
Reset Pulse Width  
2 system clocks  
CHIP Reset  
CHIPRST(SYS_IPRST0[0])  
MCU Reset  
SYSRSTREQ(AIRCR[2])  
Reset Pulse Width  
2 system clocks  
Software Reset  
CPU Reset  
CPURST(SYS_IPRST0[1])  
Figure 6.2-1 System Reset Sources  
There are a total of 9 reset sources in the NuMicro® family. In general, CPU reset is used to reset  
Cortex® -M23 only; the other reset sources will reset Cortex® -M23 and all peripherals. However, there  
are small differences between each reset source and they are listed in Table 6.2-1.  
Reset Sources  
POR  
0x001  
NRESET  
WDT  
LVR  
BOD  
Lockup  
CHIP  
MCU  
CPU  
Register  
SYS_RSTSTS  
Bit 1 = 1  
Bit 2 = 1 Bit 3 = 1 Bit 4 = 1 Bit 8 = 1 Bit 0 = 1  
Bit 5 = 1 Bit 7 =  
1
CHIPRST  
0x0  
-
-
-
-
-
-
-
-
-
(SYS_IPRST0[0])  
BODEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
(SYS_BODCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
CONFIG0 CONFIG0 CONFIG0  
BODVL  
(SYS_BODCTL[2:1])  
BODRSTEN  
(SYS_BODCTL[3])  
HXTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
(CLK_PWRCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
LXTEN  
0x0  
0x1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_PWRCTL[1])  
WDTCKEN  
0x1  
0x1  
(CLK_APBCLK0[0])  
July 2, 2020  
Page 141 of 266  
Rev 1.01  
M251/M252  
HCLKSEL  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
(CLK_CLKSEL0[2:0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTSEL  
0x3  
0x0  
0x0  
0x0  
0x0  
0x0  
0x3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_CLKSEL1[1:0])  
HXTSTB  
-
(CLK_STATUS[0])  
LXTSTB  
-
(CLK_STATUS[1])  
PLLSTB  
-
(CLK_STATUS[2])  
HIRCSTB  
-
(CLK_STATUS[4])  
CLKSFAIL  
0x0  
(CLK_STATUS[7])  
RSTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(WDT_CTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTEN  
(WDT_CTL[7])  
WDT_CTL  
0x0800  
0x0800  
0x0800  
0x0800  
0x0800  
-
0x0800  
-
-
except bit 1 and bit 7.  
WDT_ALTCTL  
WWDT_RLDCNT  
WWDT_CTL  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
-
-
0x0000  
0x0000  
0x3F0800  
0x0000  
0x3F  
-
-
-
-
-
-
-
-
-
-
-
-
0x3F0800 0x3F0800 0x3F0800 0x3F0800 0x3F0800 -  
WWDT_STATUS  
WWDT_CNT  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
-
-
-
BS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPCTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
BL  
(FMC_ISPCTL[16])  
FMC_DFBA  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
-
Reload  
from  
CONFIG1  
-
-
-
-
CONFIG1 CONFIG1 CONFIG1 CONFIG1 CONFIG1  
CBS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPSTS[2:1))  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
VECMAP  
Reload  
base  
Reload  
on base  
Reload  
Reload  
Reload  
-
Reload  
base  
CONFIG0  
-
-
-
on base on base on base on  
on  
(FMC_ISPSTS[23:9])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
Other Peripheral  
Registers  
Reset Value  
FMC Registers  
Reset Value  
Note: -‘ means that the value of register keeps original setting.  
July 2, 2020  
Page 142 of 266  
Rev 1.01  
M251/M252  
Table 6.2-1 Reset Value of Registers  
6.2.2.1 nRESET Reset  
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an  
asynchronous reset input pin and can be used to reset system at any time. When the nRESET voltage  
is lower than 0.2 VDD and the state keeps longer than 24 us (glitch filter), chip will be reset. The  
nRESET reset will control the chip in reset state until the nRESET voltage rises above 0.7 VDD and the  
state keeps longer than 24 us (glitch filter). The PINRF(SYS_RSTSTS[1]) will be set to 1 if the  
previous reset source is nRESET reset. Table 6.2-2 shows the nRESET reset waveform.  
nRESET  
0.7 VDD  
24 us  
0.2 VDD  
24 us  
nRESET Reset  
Figure 6.2-2 nRESET Reset Waveform  
6.2.2.2 Power-on Reset (POR)  
The Power-on reset (POR) is used to generate a stable system reset signal and forces the system to  
be reset when power-on to avoid unexpected behavior of MCU. When applying the power to MCU, the  
POR module will detect the rising voltage and generate reset signal to system until the voltage is ready  
for MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be set to 1 to indicate there is a  
POR reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by writing 1 to it. Figure 6.2-3 shows  
the power-on reset waveform.  
VPOR  
0.1V  
VDD  
Power-on  
Reset  
Figure 6.2-3 Power-on Reset (POR) Waveform  
6.2.2.3 Low Voltage Reset (LVR)  
If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit LVREN  
(SYS_BODCTL[7]) to 1, after 200us delay, LVR detection circuit will be stable and the LVR function  
will be active. Then LVR function will detect AVDD during system operation. When the AVDD voltage is  
lower than VLVR and the state keeps longer than De-glitch time set by LVRDGSEL  
(SYS_BODCTL[14:12]), chip will be reset. The LVR reset will control the chip in reset state until the  
AVDD voltage rises above VLVR and the state keeps longer than De-glitch time set by LVRDGSEL  
July 2, 2020  
Page 143 of 266  
Rev 1.01  
 
M251/M252  
(SYS_BODCTL[14:12]). The default setting of Low Voltage Reset is enabled without De-glitch  
function. Figure 6.2-4 shows the Low Voltage Reset waveform.  
AVDD  
VLVR  
T1  
T2  
( < LVRDGSEL)  
( =LVRDGSEL)  
T3  
( =LVRDGSEL)  
Low Voltage Reset  
LVREN  
200 us  
Delay for LVR stable  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform  
6.2.2.4 Brown-out Detector Reset (BOD Reset)  
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit  
BODEN (SYS_BODCTL[0]), Brown-out Detector function will detect AVDD during system operation.  
When the AVDD voltage is lower than VBOD which is decided by BODEN and BODVL  
(SYS_BODCTL[18:16]) and the state keeps longer than De-glitch time set by BODDGSEL  
(SYS_BODCTL[10:8]), chip will be reset. The BOD reset will control the chip in reset state until the  
AVDD voltage rises above VBOD and the state keeps longer than De-glitch time set by BODDGSEL. The  
default value of BODEN, BODVL and BODRSTEN (SYS_BODCTL[3]) is set by Flash controller user  
configuration  
register  
CBODEN  
(CONFIG0  
[19]),  
CBOV  
(CONFIG0  
[23:21])  
and  
CBORST(CONFIG0[20]) respectively. User can determine the initial BOD setting by setting the  
CONFIG0 register. Figure 6.2-5 shows the Brown-out Detector waveform.  
July 2, 2020  
Page 144 of 266  
Rev 1.01  
 
M251/M252  
AVDD  
VBODH  
VBODL  
Hysteresis  
T1  
T2  
(< BODDGSEL)  
(= BODDGSEL)  
BODOUT  
T3  
(= BODDGSEL)  
BODRSTEN  
Brown-out  
Reset  
Figure 6.2-5 Brown-out Detector (BOD) Waveform  
6.2.2.5 Watchdog Timer Reset (WDT)  
In most industrial applications, system reliability is very important. To automatically recover the MCU  
from failure status is one way to improve system reliability. The watchdog timer(WDT) is widely used to  
check if the system works fine. If the MCU is crashed or out of control, it may cause the watchdog  
time-out. User may decide to enable system reset during watchdog time-out to recover the system and  
take action for the system crash/out-of-control after reset.  
Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a  
watchdog reset and handle the failure of MCU after watchdog time-out reset by checking  
WDTRF(SYS_RSTSTS[2]).  
6.2.2.6 CPU Lockup Reset  
CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives immediate  
indication of seriously errant kernel software. This is the result of the CPU being locked because of an  
unrecoverable exception following the activation of the processor’s built in system state protection  
hardware. When chip enters debug mode, the CPU lockup reset will be ignored.  
6.2.2.7 CPU Reset, CHIP Reset and MCU Reset  
The CPU Reset means only Cortex® -M23 core is reset and all other peripherals remain the same  
status after CPU reset. User can set the CPURST(SYS_IPRST0[1]) to 1 to assert the CPU Reset  
signal.  
The CHIP Reset is same with Power-on Reset. The CPU and all peripherals are reset and  
BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG0 setting. User can set the  
CHIPRST(SYS_IPRST0[1]) to 1 to assert the CHIP Reset signal.  
The MCU Reset is similar with CHIP Reset. The difference is that BS(FMC_ISPCTL[1]) will not be  
reloaded from CONFIG0 setting and keep its original software setting for booting from APROM or  
July 2, 2020  
Page 145 of 266  
Rev 1.01  
M251/M252  
LDROM. User can set the SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.  
6.2.3  
System Power Distribution  
In this chip, power distribution is divided into four segments:  
Analog power from AVDD and AVSS provides the power for analog components operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which provides  
a fixed 1.5V power for digital operation and I/O pins.  
USB transceiver power from VBUS offers the power for operating the USB transceiver.  
RTC power from regulator uninterrupted power domain provides, the power for RTC and  
20 bytes backup registers.  
Analog power (AVDD) should be the same voltage level of the digital power (VDD). Figure 6.2-6 shows  
the ower distribution of the M251/M252 series.  
Internal  
Reference  
Voltage  
32.768 kHz  
crystal  
oscillator  
VDDIO  
12-bit ADC  
12-bit DAC  
IO Cell  
IO Cell  
AVDD  
AVSS  
Temp. Sensor  
OPA  
Analog  
Comparator  
1.5V  
RTC &  
20 bytes backup register  
Vbat  
LVDR  
RTC_LDO  
(Low Voltage Reset, Brown-out  
Detector)  
38.4 kHz  
LIRC  
Digital Logic  
SRAM  
Flash  
POR15  
Oscillator  
SW_DPD  
1.5V  
LDO_CAP  
1uF  
4 MHz  
MIRC  
Oscillator  
48 MHz HIRC48  
Oscillator  
Power Management  
PLL  
GPIO except  
PF.4~PF.6 and  
PA.0~PA.5  
4~32 MHz  
crystal  
oscillator  
Power  
On  
Control  
XT1_IN(PF.3)  
USB 1.1  
IO Cell  
PHY  
POR33  
5V à 1.5V Regulator  
XT1_OUT(PF.2)  
M251/M252 Power Distribution  
Figure 6.2-6 NuMicro® M251/M252 Power Distribution Diagram  
July 2, 2020  
Page 146 of 266  
Rev 1.01  
 
M251/M252  
6.2.4  
Power Modes and Wake-up Sources  
The M251/M252 series has a power manager unit to support several operating modes for saving  
power. Table 6.2-2 lists all power modes in the M251/M252 series.  
Mode  
CPU Operating Maximum  
Speed ( MHz)  
LDO_CAP(V) Clock Disable  
Normal mode  
Idle mode  
48  
1.5  
1.5  
All clocks are disabled by control register.  
CPU enters Sleep mode  
Only CPU clock is disabled.  
Power-down mode  
CPU enters Deep Sleep mode 1.5  
Most clocks are disabled except LIRC/LXT, and  
only RTC/WDT/Timer/UART peripheral clocks  
still enable if their clock sources are selected as  
LIRC/LXT.  
Fast wake up Power-  
down mode (FWPD)  
CPU enters Sleep mode  
Power off  
1.5  
1.5  
Most clocks are disabled except LIRC/LXT, and  
only RTC/WDT/Timer/UART peripheral clocks  
still enable if their clock sources are selected as  
LIRC/LXT.  
Deep Power-down  
mode  
Only LIRC/LXT still enable for RTC function and  
wake-up timer usage  
(DPD)  
Table 6.2-2 Power Mode Table  
There are different power mode entry settings. Each power mode has different entry setting and  
leaving condition. Table 6.2-3 shows the entry setting for each power mode. When chip power-on, chip  
is running ar normal mode. User can enter each mode by setting SLEEPDEEP (SCR[2]), PDEN  
(CLK_PWRCTL:[7]) and PDMSEL (CLK_PMUCTL[2:0]) and execute WFI instruction.  
Register/Instruction  
Mode  
SLEEPDEEP PDEN  
PDMSEL  
CPU Run WFI Instruction  
(SCR[2])  
(CLK_PWRCTL[7]) (CLK_PMUCTL[2:0])  
Normal mode  
0
0
0
0
0
0
NO  
Idle mode  
YES  
(CPU enters Sleep mode)  
Power-down mode  
1
1
0
YES  
(CPU enters Deep Sleep mode)  
Fast wake up Power-down mode  
(FWPD)  
1
1
1
1
2
6
YES  
YES  
Deep Power-down mode  
(CPU enters Sleep mode)  
Table 6.2-3 Power Mode Difference Table  
There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-4 lists the  
available clocks for each power mode.  
Power Mode  
Normal Mode  
Idle Mode  
Power-Down Mode  
Definition  
CPU is in active state  
CPU is in sleep state  
CPU is in sleep state and all  
clocks stop except LXT and  
LIRC. SRAM content retended.  
Entry Condition  
Chip is in normal mode after  
system reset released  
CPU executes WFI instruction. CPU sets sleep mode enable  
and power down enable and  
July 2, 2020  
Page 147 of 266  
Rev 1.01  
 
 
M251/M252  
executes WFI instruction.  
Wake-up Sources  
N/A  
All interrupts  
RTC, WDT, I²C, Timer, UART,  
BOD, GPIO, EINT, USCI,  
USBD and ACMP  
Available Clocks  
After Wake-up  
All  
All except CPU clock  
LXT and LIRC  
N/A  
CPU back to normal mode  
CPU back to normal mode  
Table 6.2-4 Power Mode Difference Table  
Fast wake up  
Power-down Mode  
CPU Clock OFF  
Deep Power-down Mode  
CPU Clock OFF  
HXT, HIRC, HIRC48, PCLK OFF  
LXT, LIRC ON  
Power-down Mode  
CPU Clock OFF  
HXT, HIRC, HIRC48, PCLK OFF  
LXT, LIRC ON  
HXT, HIRC, HIRC48, PCLK OFF  
LXT, LIRC ON  
Flash Halt  
Flash Halt  
Flash Halt  
POR Reset  
nReset Pin  
WDT reset  
CHIP reset  
LVR  
BOD reset  
Lockup reset  
System reset  
Power Level 0  
CPU Clock ON  
HXT, MIRC, HIRC48, LXT, LIRC, HCLK,  
PCLK ON  
Power Level 3  
CPU Clock ON  
LXT, LIRC, HCLK and PCLK ON  
Flash ON  
Flash ON  
CPU executes WFI  
CPU executes WFI  
Interrupts occur  
Interrupts occur  
Idle Mode (PL0)  
Idle Mode (PL3)  
CPU Clock OFF  
HXT, MIRC, HIRC48, PCLK ON  
LXT, LIRC ON  
CPU Clock OFF  
LXT, LIRC and PCLK ON  
Flash Halt  
Flash Halt  
Figure 6.2-7 Power Mode State Machine  
1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in normal mode.  
2. LIRC (38.4 kHz OSC) ON or OFF depends on S/W setting in normal mode.  
3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.  
4. If WDT clock source is selected as LIRC and LIRC is on.  
5. If RTC clock source is selected as LXT and LXT is on.  
6. If UART clock source is selected as LXT and LXT is on.  
Normal Mode  
Idle Mode  
ON  
Power-Down Mode PD  
DPD  
Halt  
HXT (4~32 MHz XTL)  
MIRC (4 MHz OSC)  
HIRC48 (48 MHz OSC)  
LXT (32768 Hz XTL)  
LIRC (38.4 kHz OSC)  
PLL  
ON  
ON  
Halt  
Halt  
ON  
Halt  
ON  
ON  
Halt  
Halt  
ON  
ON  
ON/OFF1  
ON/OFF2  
Halt  
ON/OFF1  
ON/OFF2  
Halt  
ON  
ON  
ON/OFF  
ON/OFF  
July 2, 2020  
Page 148 of 266  
Rev 1.01  
M251/M252  
LDO  
CPU  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
OFF  
Halt  
HCLK/PCLK  
SRAM retention  
FLASH  
GPIO  
Halt  
Halt  
ON  
OFF  
Halt  
Halt  
Halt  
Halt  
PDMA  
TIMER  
PWM  
Halt  
Halt  
ON/OFF3  
Halt  
Halt  
Halt  
WDT  
ON/OFF4  
Halt  
Halt  
WWDT  
RTC  
Halt  
ON/OFF5  
ON/OFF6  
Halt  
ON/OFF5  
Halt  
UART  
SC  
Halt  
USCI  
Halt  
Halt  
I2C  
Halt  
Halt  
SPI  
Halt  
Halt  
USBD  
ADC  
Halt  
Halt  
Halt  
Halt  
ACMP  
Halt  
Halt  
Table 6.2-5 Clocks in Power Modes  
Wake-up sources in Power-down mode:  
RTC, WDT, I²C, Timer, UART, USCI, BOD, GPIO, USBD, and ACMP.  
After chip enters power down, the following wake-up sources can wake chip up to normal mode. Table  
6.2-5 lists the condition about how to enter Power-down mode again for each peripheral.  
*User needs to wait this condition before setting PDEN(CLK_PWRCTL[7]) and execute WFI to enter  
Power-down mode.  
Power-Down Mode  
Wake-Up  
Wake-Up Condition  
System Can Enter Power-Down Mode Again Condition*  
PD  
Source  
DPD  
FWKPD  
Brown-Out Detector  
Interrupt  
BOD  
Y
Y
N
Y
N
N
Y
N
After software writes 1 to clear BODIF (SYS_BODCTL[4]).  
After software writes 1 to clear LVRF (SYS_RSTSTS[3])  
LVR  
LVR Reset  
After software writes 1 to clear LVRWK (CLK_PMUSTS[12])  
when DPD mode is entered.  
INT  
External Interrupt  
After software write 1 to clear the Px_INTSRC[n] bit.  
July 2, 2020  
Page 149 of 266  
Rev 1.01  
 
M251/M252  
GPIO  
GPIO Interrupt  
Y
N
N
Y
After software write 1 to clear the Px_INTSRC[n] bit.  
GPIO(PC.0)  
Wake-up pin  
Rising or falling edge  
event, 1-pin  
PINWK(CLK_PMUSTS[0]) is cleared when DPD mode is  
entered.  
GPIO(PB.0)  
Wake-up pin  
Rising or falling edge  
event, 1-pin  
PINWK(CLK_PMUSTS[3]) is cleared when DPD mode is  
entered.  
N
N
N
N
Y
Y
Y
Y
Y
N
GPIO(PB.2)  
Wake-up pin  
Rising or falling edge  
event, 1-pin  
PINWK(CLK_PMUSTS[4]) is cleared when DPD mode is  
entered.  
GPIO(PB.12) Rising or falling edge  
Wake-up pin  
PINWK(CLK_PMUSTS[5]) is cleared when DPD mode is  
entered.  
event, 1-pin  
GPIO(PF.6)  
Wake-up pin  
Rising or falling edge  
event, 1-pin  
PINWK(CLK_PMUSTS[6]) is cleared when DPD mode is  
entered.  
TIMER  
After software writes 1 to clear TWKF (TIMERx_INTSTS[1])  
and TIF (TIMERx_INTSTS[0]).  
Timer Interrupt  
Wakeup timer  
DPD_TMRWK  
(CLK_PMUSTS[2])  
or  
DPD_TMRWK  
Wakeup by wake-up  
timer time-out  
N
Y
Y
N
(CLK_PMUSTS[6]) is cleared when SPD or DPD mode is  
entered.  
WDT  
RTC  
After software writes 1 to clear WKF (WDT_CTL[5]) (Write  
Protect).  
WDT Interrupt  
Alarm Interrupt  
Y
Y
N
N
After software writes 1 to clear ALMIF (RTC_INTSTS[0]).  
After software writes 1 to clear TICKIF (RTC_INTSTS[1]).  
Time Tick Interrupt  
RTC  
RTCWK (CLK_PMUSTS[2]) is cleared when DPD mode is  
entered.  
Wakeup by RTC alarm  
N
N
N
Y
Y
Y
Wakeup by RTC tick  
time  
RTCWK (CLK_PMUSTS[2]) is cleared when DPD mode is  
entered.  
Wakeup by tamper  
event  
RTCWK (CLK_PMUSTS[2]) is cleared when DPD mode is  
entered.  
UART  
nCTS wake-up  
Y
Y
N
N
After software writes 1 to clear CTSWKF (UARTx_WKSTS[0]).  
After software writes 1 to clear DATWKF (UARTx_WKSTS[1]).  
Incoming Data wake-up  
Received FIFO  
Threshold Wake-up  
After  
software  
writes  
1
to  
clear  
RFRTWKF  
Y
Y
N
N
(UARTx_WKSTS[2]).  
RS-485 AAD Mode  
Wake-up  
After  
software  
writes  
1
to  
clear  
RS485WKF  
(UARTx_WKSTS[3]).  
Received FIFO  
Threshold Time-out  
Wake-up  
After  
software  
writes  
1
to  
clear  
TOUTWKF  
Y
N
(UARTx_WKSTS[4]).  
CTS Toggle  
Data Toggle  
Data toggle  
Y
Y
Y
N
N
N
After software writes 1 to clear WKF (UUART_WKSTS[0]).  
After software writes 1 to clear WKF (UUART_WKSTS[0]).  
After software writes 1 to clear WKF (UI2C_WKSTS[0]).  
USCI UART  
USCI I2C  
After  
software  
writes  
1
to  
clear  
WKAKDONE  
Address match  
Y
N
(UI2C_PROTSTS[16], and then writes  
(UI2C_WKSTS[0]).  
1
to clear WKF  
USCI SPI  
I2C  
SS Toggle  
Y
Y
Y
N
N
N
After software writes 1 to clear WKF (USPI_WKSTS[0]).  
After software writes 1 to clear WKAKDONE (I2C_WKSTS[1]).  
Then software writes 1 to clear WKIF(I2C_WKSTS[0]).  
Address match wake-up  
Remote Wake-up  
USBD  
After software writes 1 to clear BUSIF (USBD_INTSTS[0]).  
July 2, 2020  
Page 150 of 266  
Rev 1.01  
M251/M252  
ACMP  
Comparator Power-  
Down Wake-Up Interrupt  
After software writes 1 to clear WKIF0 (ACMP_STATUS[8])  
and WKIF1 (ACMP_STATUS[9]).  
Y
N
Table 6.2-6 Condition of Entering Power-down Mode Again  
Chip Bus Matrix  
6.2.5  
The M251/M252 series provides 4G-byte addressing space. The memory locations assigned to each  
on-chip controllers are shown in Table 6.2-7. The detailed register definition, memory space, and  
programming will be described in the following sections for each on-chip peripheral. The M251/M252  
series only supports little-endian data format.  
6.2.6  
System Memory Map  
The M251/M252 series provides 4G-byte addressing space. The memory locations assigned to each  
on-chip controllers are shown inTable 6.2-7. The detailed register definition, memory space, and  
programming will be described in the following sections for each on-chip peripheral. The M251/M252  
series only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0003_FFFF  
0x2000_0000 0x2000_7FFF  
0x6000_0000 0x6FFF_FFFF  
FLASH_BA  
SRAM0_BA  
EXTMEM_BA  
FLASH Memory Space (256 Kbytes)  
SRAM Memory Space (32 Kbytes)  
External Memory Space (256 Mbytes)  
Peripheral Controllers Space (0x4000_0000 0x400F_FFFF)  
0x4000_0000 0x4000_01FF  
0x4000_0200 0x4000_02FF  
0x4000_0300 0x4000_03FF  
0x4000_4000 0x4000_4FFF  
0x4000_8000 0x4000_8FFF  
0x4000_C000 0x4000_CFFF  
0x4001_0000 0x4001_0FFF  
0x4003_1000 0x4003_1FFF  
SYS_BA  
CLK_BA  
NMI_BA  
GPIO_BA  
PDMA_BA  
FMC_BA  
EBI_BA  
System Control Registers  
Clock Control Registers  
NMI Control Registers  
GPIO Control Registers  
Peripheral DMA Control Registers  
Flash Memory Control Registers  
External Bus Interface Control Registers  
CRC Generator Registers  
CRC_BA  
APB Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4004_0000 0x4004_0FFF  
0x4004_1000 0x4004_1FFF  
0x4004_3000 0x4004_3FFF  
0x4004_5000 0x4004_5FFF  
0x4004_6000 0x4004_6FFF  
0x4004_7000 0x4004_7FFF  
0x4005_0000 0x4005_0FFF  
0x4005_1000 0x4005_1FFF  
0x4005_8000 0x4005_8FFF  
WDT_BA  
Watchdog Timer Control Registers  
Real Time Clock (RTC) Control Register  
Enhanced Analog-Digital-Converter (EADC) Control Registers  
Analog Comparator 0/ 1 Control Registers  
OP Amplifier Control Registers  
RTC_BA  
EADC_BA  
ACMP01_BA  
OPA_BA  
DAC_BA  
DAC Control Registers  
TMR01_BA  
TMR23_BA  
PWM0_BA  
Timer0/Timer1 Control Registers  
Timer2/Timer3 Control Registers  
PWM0 Control Registers  
July 2, 2020  
Page 151 of 266  
Rev 1.01  
M251/M252  
0x4005_9000 0x4005_9FFF  
0x4005_A000 0x4005_AFFF  
0x4005_B000 0x4005_BFFF  
0x4006_0000 0x4006_0FFF  
0x4006_1000 0x4006_1FFF  
0x4007_0000 0x4007_0FFF  
0x4007_1000 0x4007_1FFF  
0x4007_2000 0x4007_2FFF  
0x4008_0000 0x4008_0FFF  
0x4008_1000 0x4008_1FFF  
0x4009_0000 0x4009_0FFF  
0x400C_0000 0x400C_0FFF  
0x400C_3000 0x400C_3FFF  
0x400D_0000 0x400D_0FFF  
0x400D_1000 0x400D_1FFF  
0x400D_2000 0x400D_2FFF  
PWM1_BA  
BPWM0_BA  
BPWM1_BA  
QSPI0_BA  
SPI0_BA  
PWM1 Control Registers  
BPWM0 Control Registers  
BPWM1 Control Registers  
QSPI0 Control Registers  
SPI0 Control Registers  
UART0_BA  
UART1_BA  
UART2_BA  
I2C0_BA  
UART0 Control Registers  
UART1 Control Registers  
UART2 Control Registers  
I2C0 Control Registers  
I2C1_BA  
I2C1 Control Registers  
SC0_BA  
Smartcard Host 0 Control Registers  
USB Device Control Register  
PSIO Control Register  
USBD_BA  
PSIO_BA  
USCI0_BA  
USCI1_BA  
USCI2_BA  
USCI0 Control Registers  
USCI1 Control Registers  
USCI2 Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 6.2-7 Address Space Assignments for On-Chip Controllers  
July 2, 2020  
Page 152 of 266  
Rev 1.01  
M251/M252  
6.2.7  
SRAM Memory Orginization  
The M251/M252 series supports embedded SRAM with up to 32 Kbytes size.  
Supports up to 32 Kbytes SRAM  
Supports byte /half word /word write  
Supports oversize response error  
Table 6.2-9 shows the M251/M252 series SRAM organization. The address between 0x2000_8000 to  
0x3FFF_FFFF is illegal memory space and chip will enter hardfault if CPU accesses these illegal  
memory addresses.  
0x3FFF_FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x2000_8000  
32K byte  
SRAM bank0  
0x2000_4000  
0x2000_2000  
0x2000_1000  
16K byte  
SRAM bank0  
8K byte  
SRAM bank0  
4K byte  
SRAM bank0  
0x2000_0000  
32K byte device  
16K byte device  
4K byte device  
8K byte device  
Figure 6.2-8 SRAM Memory Organization  
July 2, 2020  
Page 153 of 266  
Rev 1.01  
M251/M252  
6.2.8  
IRC Auto Trim  
This chip supports auto-trim function: the HIRC trim (48 MHz RC oscillator) and MIRC trim (4.032 RC  
oscillator), according to the accurate LXT (32.768 kHz crystal oscillator) or internal USB synchronous  
mode, automatically gets accurate output frequency, 0.25 % deviation within all temperature ranges.  
For instance, the system needs an accurate 4.032 MHz clock. In such case, if neither using use PLL  
as the system clock source nor soldering 32.768 kHz crystal in system, user has to set REFCKSEL  
(SYS_MIRCTRIMCTL[10] reference clock selection) to “1”, set FREQSEL (SYS_MIRCTRIMCTL[1:0]  
trim frequency selection) to “10”, and the auto-trim function will be enabled. Interrupt status bit  
FREQLOCK (SYS_MIRCTRIMSTS[0] MIRC frequency lock status) “1” indicates the MIRC output  
frequency is accurate within 0.25% deviation.  
In HIRC case, the system needs an accurate 48 MHz clock. In such case, if neither using use PLL as  
the system clock source nor soldering 32.768 kHz crystal in system, user has to set REFCKSEL  
(SYS_HIRCTRIMCTL[10] reference clock selection) to “1”, set FREQSEL (SYS_HIRCTRIMCTL[1:0]  
trim frequency selection) to “10”, and the auto-trim function will be enabled. Interrupt status bit  
FREQLOCK (SYS_HIRCTRIMSTS[8] HIRC frequency lock status) “1” indicates the HIRC output  
frequency is accurate within 0.25% deviation.  
HIRC trim and MIRC trim only can work properly when the clock sources are stable. When the RC  
clock or the reference clock are not stable or the system go into power down, HIRC trim and MIRC trim  
need to wait until the clock are stable or system wake up, then it can be enable or it will get a clock  
error flag.  
6.2.9  
UART0_TXD/USCI0_DAT0 Modulation with PWM  
This chip supports UART0_TXD/USCI_DAT0 to modulate with PWM channel. User can set  
MODPWMSEL(SYS_MODCTL[7:4]) to select which PWM0 channel to modulate with  
UART0_TXD/USCI0_DAT0 and set MODEN(SYS_MODCTL[0]) to enable modulation function.  
PWM0_CHx  
UART0_TXD/USCI0_DAT0  
MODH=0  
MODH=1  
Figure 6.2-11 UART0_TXD/USCI0_DAT0 Modulated with PWM Channel  
July 2, 2020  
Page 154 of 266  
Rev 1.01  
M251/M252  
6.2.10 System Timer (SysTick)  
The Cortex® -M23 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-  
on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be  
used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value Register  
(SYST_VAL) to zero, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_LOAD) on the next clock cycle, and then decrement on subsequent clocks. When the counter  
transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_VAL value is UNKNOWN on reset. Software should write to the register to clear it to zero  
before enabling the feature. This ensures the timer will count from the SYST_LOAD value rather than  
an arbitrary value when it is enabled.  
If the SYST_LOAD is zero, the timer will be maintained with a current value of zero after it is reloaded  
with this value. This mechanism can be used to disable the feature independently from the timer  
enable bit.  
For more detailed information, please refer to the “Arm® Cortex® -M23 Technical Reference Manual”  
and “Arm v8-M Architecture Reference Manual”.  
July 2, 2020  
Page 155 of 266  
Rev 1.01  
M251/M252  
6.2.11 Nested Vectored Interrupt Controller (NVIC)  
The NVIC and the processor core interface are closely coupled to enable low latency interrupt  
processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the  
stacked, or nested, interrupts to enable tail-chaining of interrupts. You can only fully access the NVIC  
from privileged mode, but you can cause interrupts to enter a pending state in user mode if you enable  
the Configuration and Control Register. Any other user mode access causes a bus fault. You can  
access all NVIC registers using byte, halfword, and word accesses unless otherwise stated. NVIC  
registers are located within the SCS (System Control Space). All NVIC registers and system debug  
registers are little-endian regardless of the endianness state of the processor.  
The NVIC supports:  
An implementation-defined number of interrupts, in the range 1-64 interrupts.  
A programmable priority level of 0-3 for each interrupt; a higher level corresponds to a  
lower priority, so level 0 is the highest interrupt priority.  
Level and pulse detection of interrupt signals.  
Dynamic reprioritization of interrupts.  
Grouping of priority values into group priority and subpriority fields.  
Interrupt tail-chaining.  
An external Non Maskable Interrupt (NMI)  
WIC with Ultra-low Power Sleep mode support  
The processor automatically stacks its state on exception entry and unstacks this state on exception  
exit, with no instruction overhead. This provides low latency exception handling.  
6.2.11.1 Exception Model and System Interrupt Map  
Table 6.2-8 lists the exception model supported by the M251/M252 series. Software can set 4 levels of  
priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority  
is denoted as “0x00” and the lowest priority is denoted as “0xC0” (The 6-LSB always 0). The default  
priority of all the user-configurable interrupts is “0x00”. Note that priority “0” is treated as the fourth  
priority on the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
When any interrupts is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. On system reset, the vector table is fixed  
at address 0x00000000. Privileged software can write to the VTOR to relocate the vector table start  
address to a different memory location, in the range 0x00000080 to 0x3FFFFF80,  
The vector table contains the initialization value for the stack pointer on reset, and the entry point  
addresses for all exception handlers. The vector number on previous page defines the order of entries  
in the vector table associated with exception handler entry as illustrated in previous section.  
Exception Type  
Reset  
Vector Number  
Vector Address  
0x00000004  
0x00000008  
0x0000000C  
Priority  
-3  
1
NMI  
2
-2  
Hard Fault  
Reserved  
SVCall  
3
-1  
4~ 10  
11  
Reserved  
Configurable  
Reserved  
Configurable  
0x0000002C  
Reserved  
PendSV  
12~13  
14  
0x00000038  
July 2, 2020  
Page 156 of 266  
Rev 1.01  
M251/M252  
SysTick  
15  
0x0000003C  
Configurable  
Configurable  
0x00000000 +  
Interrupt (IRQ0 ~ IRQ63)  
16 ~ 63  
(Vector Number)*4  
Table 6.2-8 Exception Model  
Interrupt Number  
(Bit In Interrupt  
Registers)  
Vector  
Number  
Interrupt Name  
Interrupt Description  
0 ~ 15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
-
-
System exceptions  
0
BODOUT  
IRC_INT  
Brown-Out low voltage detected interrupt  
IRC TRIM interrupt  
1
2
PWRWU_INT  
Reserved  
CLKFAIL  
Reserved  
RTC_INT  
TAMPER_INT  
WDT_INT  
WWDT_INT  
EINT0  
Clock controller interrupt for chip wake-up from power-down state  
Reserved  
3
4
Clock fail detected interrupt  
5
Reserved  
6
Real time clock interrupt  
7
Backup register tamper interrupt  
Watchdog Timer interrupt  
8
9
Window Watchdog Timer interrupt  
External interrupt from PA.0, PD.2 or PE.4 pins  
External interrupt from PB.0, PD.3 or PE.5 pins  
External interrupt from PC.0 pin  
External interrupt from PD.0 pin  
External interrupt from PE.0 pin  
External interrupt from PF.0 pin  
External interrupt from PA[15:0] pin  
External interrupt from PB[15:0] pin  
External interrupt from PC[15:0] pin  
External interrupt from PD[15:0] pin  
External interrupt from PE[15:0] pin  
External interrupt from PF[15:0] pin  
QSPI0 interrupt  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
EINT1  
EINT2  
EINT3  
EINT4  
EINT5  
GPA_INT  
GPB_INT  
GPC_INT  
GPD_INT  
GPE_INT  
GPF_INT  
QSPI0_INT  
SPI0_INT  
BRAKE0_INT  
PWM0_P0_INT  
PWM0_P1_INT  
SPI0 interrupt  
PWM0 brake interrupt  
PWM0 pair 0 interrupt  
PWM0 pair 1 interrupt  
July 2, 2020  
Page 157 of 266  
Rev 1.01  
M251/M252  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
PWM0_P2_INT  
BRAKE1_INT  
PWM1_P0_INT  
PWM1_P1_INT  
PWM1_P2_INT  
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART0_INT  
UART1_INT  
I2C0_INT  
PWM0 pair 2 interrupt  
PWM1 brake interrupt  
PWM1 pair 0 interrupt  
PWM1 pair 1 interrupt  
PWM1 pair 2 interrupt  
Timer 0 interrupt  
Timer 1 interrupt  
Timer 2 interrupt  
Timer 3 interrupt  
UART0 interrupt  
UART1 interrupt  
I2C0 interrupt  
I2C1_INT  
I2C1 interrupt  
PDMA_INT  
DAC_INT  
PDMA interrupt  
DAC interrupt  
EADC_INT  
EADC1_INT  
ACMP01_INT  
BPWM0  
EADC interrupt source 0  
EADC interrupt source 1  
ACMP0 and ACMP1 interrupt  
BPWM0 interrupt  
EADC interrupt source 2  
EADC interrupt source 3  
UART2 interrupt  
Reserved  
EADC_INT2  
EADC_INT  
UART2_INT  
Reserved  
USCI0  
USCI0 interrupt  
Reserved  
Reserved  
USCI1  
USCI1 interrupt  
USBD_INT  
BPWM1  
USB device interrupt  
BPWM1  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SC0_INT  
Smart card host 0 interrupt  
RTC LVR interrupt  
USCI2 interrupt  
RTCLVR_INT  
USCI2  
Reserved  
Reserved  
July 2, 2020  
Page 158 of 266  
Rev 1.01  
M251/M252  
78  
79  
62  
63  
OPA0  
OPA0 interrupt  
Reserved  
Reserved  
Table 6.2-9 Interrupt Number Table  
6.2.11.2 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or  
Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear  
policy, both registers reading back the current enabled state of the corresponding interrupts. When an  
interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the  
interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until  
cleared by reset or an exception return. Clearing the enable bit prevents new activations of the  
associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to  
enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading  
back the current pended state of the corresponding interrupts. The Clear-Pending Register has no  
effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
July 2, 2020  
Page 159 of 266  
Rev 1.01  
M251/M252  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates clocks for the whole chip, including system clocks and all peripheral  
clocks. The clock controller also implements the power control function with the individually clock  
ON/OFF control, clock source selection and a clock divider. The chip will not enter Power-down mode  
until CPU sets the Power-down enable bit PDEN(CLK_PWRCTL[7]) and Cortex® -M23 core executes  
the WFI instruction. After that, chip enters Power-down mode and wait for wake-up interrupt source  
triggered to leave Power-down mode. In Power-down mode, the clock controller turns off the 4~32  
MHz external high speed crystal (HXT) , 48 MHz internal high speed RC oscillator (HIRC) and 4 MHz  
internal median speed RC oscillator (MIRC) to reduce the overall system power consumption Figure  
6.3-1 shows the clock generator and the overview of the clock source control.  
July 2, 2020  
Page 160 of 266  
Rev 1.01  
M251/M252  
NOTE:  
Module in AHB or Bus matrix  
: xxxx is register name  
xxxx  
e.g.  
AHBCLK : AHBCLK register settings  
CLKDIVx : CLKDIV0 ~ 4 register settings  
MIRC  
4MHz  
MIRC  
HIRC  
PLL  
FMC(Read)  
ISP  
HIRC  
48MHz  
One per module  
CLKDI  
Vx  
HCLKDIV  
PDMA  
EBI  
7
PLL  
/4  
HCLK  
HCLK  
HXT OSC  
4-32MHz  
AHBCL  
CRC  
/1 ~ 16  
HXT  
K
GPIOA~F  
LIRC  
LXT  
LIRC  
38.4KHz  
HIRC  
FMC(Write)  
AHBCL  
K
LXT  
32KHz  
RTC, WDT, WWDT  
RTC  
w/ Tamper  
detection  
CPU  
SRAM  
APBCLK  
x
CLKSE  
Lx  
PCLK0SEL  
/1,2,4,8,16  
CLKSE  
WDT  
HCLK  
/2048  
for APB0  
APBCLK  
x
Peripheral Clock  
PCLK0  
PCLK1  
WWDT  
for APB1  
Peripheral Clock  
Lx  
PCLK1SEL  
/1,2,4,8,16  
SOF  
LIRC  
MIRC  
HIRC  
HCLK  
LXT  
USB Clock TreeCLKDIV  
CLKO  
x
CLKO  
HXT  
PLL  
APBCL  
Kx  
USBDIV  
/1 ~ 16  
HIRC  
48MHz USB1.1 Device  
Controller  
CLKO  
1Hz from RTC module  
APBCL  
Kx  
USB1.1  
PHY  
HCLK  
LIRC  
BOD  
T0~T3  
NOTE: T0 for TMR0,  
T1 for TMR1,  
Peripheral Clock Tree  
QSPI0  
SPI0  
1
T2 for TMR2,  
T3 for TMR3  
One per module  
PLL  
HIRC  
HXT  
SPI0  
CLKDI  
Vx  
SC0DIV  
/1 ~ 256  
4
SC0  
SC0  
2
PCLKx  
2
APBCL  
Kx  
Analog Module  
One per UART module  
CLKDI  
Vx  
UART0DIV  
/1 ~ 16  
ACMP0~1  
OPA0~2  
UART0~2  
UART0  
3
3
APBCLK  
x
LXT  
APBCL  
Kx  
One per TMR module  
APBCLK  
x
TMR0~3  
TMR0  
DAC0  
4
CLKDI  
APBCLK  
x
LIRC  
Vx  
APBCL  
Kx  
EADCDI  
EADC0  
V
PWM0~1  
PWM0  
/1 ~ 256  
APBCLK  
x
One per module  
4
BPWM0~1  
BPWM0  
APBCL  
Kx  
One per module  
3
5
USCI0~2  
I2C0~1  
APBCL  
Kx  
2
CLKDI  
Vx  
PLL  
HIRC  
HXT  
PCLKx  
LIRC  
LXT  
PSIODIV  
/1 ~ 256  
NOTE:  
1. PCLK0 for OPA0~2,  
2. PCLK1 for DAC0, ACMP0~1,EADC0  
PSIO  
APBCL  
Kx  
NOTE:  
1. PCLK0 for QSPI0, SC0, BPWM0, PWM0, USCI0, USCI2, I2C0, UART0, UART2,  
TMR0~1  
2. PCLK1 for SPI_I2S0, PWM1, BPWM1, USCI1, I2C1, TMR2~3, UART1, PSIO  
Figure 6.3-1 Clock Generator Global View Diagram  
July 2, 2020  
Page 161 of 266  
Rev 1.01  
M251/M252  
6.3.2  
Clock Generator  
The clock generator consists of 6 clock sources, which are listed below:  
32.768 kHz external low speed crystal oscillator (LXT)  
4~32 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency (PLLFOUT) - PLL source can be selected  
from external 4~32 MHz external high speed crystal (HXT), 48 MHz internal high speed  
oscillator (HIRC/4) or 4 MHz internal medium speed oscillator (MIRC)  
48 MHz internal high speed RC oscillator (HIRC)  
38.4 kHz internal low speed RC oscillator (LIRC)  
4 MHz internal medium speed oscillator (MIRC)  
LXTEN (CLK_PWRCTL[1])  
X32_IN  
External 32.768  
kHz Crystal  
LXT  
(LXT)  
X32_OUT  
HXTEN (CLK_PWRCTL[0])  
HXT  
XT1_IN  
External 4~32  
PLLSRC (CLK_PLLCTL[20:19])  
MHz Crystal  
(HXT)  
XT1_OUT  
00  
01  
HIRCEN (CLK_PWRCTL[2])  
PLL FOUT  
PLL  
/4  
Internal 48 MHz  
Oscillator  
11  
(HIRC)  
HIRC  
LIRC  
LIRCEN (CLK_PWRCTL[3])  
Internal 38.4  
kHz Oscillator  
(LIRC)  
MIRCEN (CLK_PWRCTL[19])  
Internal 4 MHz  
Oscillator  
(MIRC)  
MIRC  
Figure 6.3-2 Clock Generator Block Diagram  
July 2, 2020  
Page 162 of 266  
Rev 1.01  
M251/M252  
6.3.3  
System Clock and SysTick Clock  
The system clock has 6 clock sources, which are generated from clock generator block. The clock  
source switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram is shown  
in Figure 6.3-3  
HCLKSEL  
(CLK_CLKSEL0[2:0])  
HIRC  
111  
MIRC  
101  
CPUCLK  
LIRC  
PLLFOUT  
LXT  
CPU  
AHB  
011  
010  
001  
000  
HCLK  
PCLK0  
PCLK1  
1/(HCLKDIV+1)  
HCLKDIV  
(CLK_CLKDIV0[3:0])  
APB0  
APB1  
HXT  
CPU in Power Down Mode  
Figure 6.3-3 System Clock Block Diagram  
There are two clock fail detectors to observe HXT and LXT clock source and they have individual  
enable and interrupt control. When HXT detector is enabled, the MIRC clock is enabled automatically.  
When LXT detector is enabled, the LIRC clock is enabled automatically.  
When HXT clock detector is enabled, the system clock will auto switch to MIRC if HXT clock stop  
being detected on the following condition: system clock source comes from HXT or system clock  
source comes from PLL with HXT as the input of PLL. If HXT clock stop condition is detected, the  
HXTFIF (CLK_CLKDSTS[0]) is set to 1 and chip will enter interrupt if HXTFIE (CLK_CLKDCTL[5]) is  
set to 1. User can try to recover HXT by disable HXT and enable HXT again to check if the clock  
stable bit is set to 1 or not. If HXT clock stable bit is set to 1, it means HXT is recover to oscillate after  
re-enable action and user can switch system clock to HXT again.  
The HXT clock stop detect and system clock switch to MIRC procedure is shown in Figure 6.3-4.  
July 2, 2020  
Page 163 of 266  
Rev 1.01  
 
M251/M252  
Set HXTFDEN To enable  
HXT clock detector  
NO  
HXTFIF = 1?  
YES  
System clock source =  
HXTor PLL with  
HXT?  
System clock keep  
original clock  
NO  
YES  
Switch system clock to  
MIRC  
Figure 6.3-4 HXT Stop Protect Procedure  
The clock source of SysTick in Cortex® -M23 core can use CPU clock or external clock  
(SYST_CTRL[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The clock  
source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]). The block  
diagram is shown in Figure 6.3-5.  
STCLKSEL  
(CLK_CLKSEL0[5:3])  
HIRC  
111  
011  
010  
001  
000  
1/2  
1/2  
1/2  
HCLK  
HXT  
LXT  
STCLK  
HXT  
Figure 6.3-5 SysTick Clock Control Block Diagram  
Peripherals Clock  
6.3.4  
The peripherals clock has different clock source switch setting, which depends on the different  
peripheral. Please refer to the CLK_CLKSEL1 and CLK_CLKSEL2 register description in 5.3.8.  
6.3.5  
Power-down Mode Clock  
July 2, 2020  
Page 164 of 266  
Rev 1.01  
 
M251/M252  
When entering Power-down mode, system clocks, some clock sources and some peripheral clocks are  
disabled. Some clock sources and peripherals clock are still active in Power-down mode.  
For theses clocks, which still keep active, are listed below:  
Clock Generator  
38.4 kHz internal low speed RC oscillator (LIRC) clock  
32.768 kHz external low speed crystal oscillator (LXT) clock  
Peripherals Clock, except for HCLK, PCLK0 and PCLK1(When the modules adopt LXT or  
LIRC as clock source)  
6.3.6  
Clock Output  
This device is equipped with a power-of-2 frequency divider which is composed by 16 chained divide-  
by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is  
reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with the  
frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock divider  
output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).  
When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When writing 0 to  
CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock reaches low  
state and stays in low state.  
CLKOEN  
Enable  
(CLK_CLKOCTL[4])  
FREQSEL  
(CLK_CLKOCTL[3:0])  
divide-by-2 counter  
16 chained  
divide-by-2 counter  
SOF  
DIV1EN  
(CLK_CLKOCTL[5])  
111  
110  
101  
100  
011  
010  
001  
000  
1/2  
1/22  
1/23  
...  
1/215 1/216  
CLK1HZEN  
(CLK_CLKOCTL[6])  
PLL  
MIRC  
LIRC  
HIRC  
HCLK  
LXT  
0000  
0001  
:
16 to 1  
MUX  
0
1
:
0
1
1110  
CLKO  
1111  
HXT  
RTCSEL(RTC_LXTCTL[7])  
CLKOSEL (CLK_CLKSEL1[6:4])  
LIRC  
LXT  
0
1
1 Hz clock from LXT  
/32768  
Figure 6.3-6 Clock Output Block Diagram  
July 2, 2020  
Page 165 of 266  
Rev 1.01  
M251/M252  
6.3.7  
USB Clock Source  
The clock source of USB 1.0 is generated from 48Mhz HIRC or programmable PLL output. The  
generated clocks are shown in Figure 6.3-7.  
USBPLLDIV is the clock divider output frequency, the output formula is  
(PLLFOUT frequency) / (USBDIV + 1).  
HIRC48M  
0
1
USB1.1 Device  
Controller  
PLLFOUT  
USBPLLDIV  
/(USBDIV + 1)  
USBDSEL  
Figure 6.3-7 USB Clock Source  
July 2, 2020  
Page 166 of 266  
Rev 1.01  
 
M251/M252  
6.4 Flash Memeory Controller (FMC)  
6.4.1 Overview  
The FMC is equipped with 32/64/128/256 Kbytes on-chip embedded Flash for application. A User  
Configuration block provides for system initiation. A 4 Kbytes loader ROM (LDROM) is used for In-  
System-Programming (ISP) function. XOM (Execution Only Memory) setting block to conceal user  
program in XOM region. A 512 bytes cache with zero wait cycle is used to improve Flash access  
performance. This chip also supports In-Application-Programming (IAP) function. User switches the  
code executing without chip reset after the embedded Flash is updated.  
6.4.2  
Features  
Supports 32/64/128/256 Kbytes application ROM (APROM)  
Supports 4 Kbytes loader ROM (LDROM)  
Supports 1 XOM (Execution Only Memory) region to conceal user program in APROM  
Supports 12 bytes User Configuration block to control system initiation.  
Supports 512 bytes page erase for all embedded Flash  
Supports 32-bit and multi-word Flash programming function  
Supports CRC32 checksum calculation function  
Supports Flash all one verification function  
Supports embedded SRAM remap to system vector memory  
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded Flash memory  
Supports cache memory to improve Flash access performance and reduce power  
consumption  
July 2, 2020  
Page 167 of 266  
Rev 1.01  
M251/M252  
6.5 General Purpose I/O (GPIO)  
6.5.1 Overview  
This chip has up to 85 General Purpose I/O pins to be shared with other function pins depending on  
the chip configuration. These 85 pins are arranged in 6 ports named as PA, PB, PC, PD, PE, and PF.  
PA, PB and PE has 16 pins on port. PC has 14 pins on port, PD has 15 pins on port. PF has 8 pins on  
port. Each of the 85 pins is independent and has the corresponding register bits to control the pin  
mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull output,  
Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are  
depending on CIOINI (CONFIG0[10]). Each I/O pin has a very weakly individual pull-up resistor which  
is about 50 k.  
6.5.2  
Features  
Four I/O modes:  
Quasi-bidirectional mode  
Push-Pull Output mode  
Open-Drain Output mode  
Input only with high impendence mode  
TTL/Schmitt trigger input selectable  
I/O pin can be configured as interrupt source with edge/level setting  
Supports High Drive and High Slew Rate I/O mode  
Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting  
CIOINI = 0, all GPIO pins in Quasi-bidirectional mode after chip reset  
CIOINI = 1, all GPIO pins in input mode after chip reset  
Support independent pull-up and pull-down control  
Enabling the pin interrupt function will also enable the wake-up function  
Improve access efficiency by using single cycle I/O bus  
July 2, 2020  
Page 168 of 266  
Rev 1.01  
M251/M252  
6.6 PDMA Controller (PDMA)  
6.6.1 Overview  
The peripheral direct memory access (PDMA) controller is used to provide high-speed data transfer.  
The PDMA controller can transfer data from one address to another without CPU intervention. This  
has the benefit of reducing the workload of CPU and keeps CPU resources free for other applications.  
The PDMA controller has a total of 8 channels and each channel can perform transfer between  
memory and peripherals or between memory and memory.  
6.6.2  
Features  
Supports up to 8 independently configurable channels  
Supports selectable 2 level of priority (fixed priority or round-robin priority)  
Supports transfer data width of 8, 16, and 32 bits  
Supports source and destination address increment size can be byte, half-word, word or  
no increment  
Request source can be from software,PSIO , SPI/I2S, UART, USCI, EADC,DAC,PWM  
capture event and TIMER  
Supports Scatter-gather mode to perform sophisticated transfer through the use of the  
descriptor link list table  
Supports single and burst transfer type  
Supports time-out function on channel 0 and channel1  
Supports stride function from channel 0 to channel 5  
July 2, 2020  
Page 169 of 266  
Rev 1.01  
M251/M252  
6.7 Timer Controller (TMR)  
6.7.1 Overview  
The timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily implement a  
timer control for applications. The timer can perform functions, such as frequency measurement, delay  
timing, clock generation, and event counting by external input pins, and interval measurement by  
external capture pins.  
The timer controller also provides four PWM generators. Each PWM generator supports one PWM  
output and two selectable PWM output channels (TMx or TMx_EXT). The output state of PWM output  
pin can be control by polarity control, output enable control and output channel select.  
6.7.2  
Features  
6.7.2.1 Timer Function Features  
Four sets of 32-bit timers, each timer having one 24-bit up counter and one 8-bit prescale  
counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through CNT (TIMERx_CNT[23:0])  
Supports event counting function  
24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])  
Supports external capture pin (TMx_EXT) event for interval measurement  
Supports external capture pin (TMx_EXT) event to reset 24-bit up counter  
Supports internal clock (HIRC, LIRC, MIRC) and external clock (HXT, LXT) for capture  
event  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated  
Support Timer0 ~ Timer3 time-out interrupt signal or capture interrupt signal to trigger  
BPWM, PWM, EADC, DAC and PDMA function  
Supports internal capture triggered while internal ACMP output signal transition  
Supports Inter-Timer trigger mode  
Supports event counting source from internal USB SOF signal  
6.7.2.2 PWM Function Features  
Supports PWM generator with two selectable output channels  
Supports 16-bit PWM counter  
Up count operation type  
One-shot or auto-reload counter operation mode  
Supports 8-bit prescale from 1 to 256  
Supports 16-bit compare register and period register and double buffer for period register  
and compare register  
Supports tri-state enable and polarity control for each PWM selectable output channels  
Supports interrupt on the following events:  
PWM period point, up-count compared point events  
July 2, 2020  
Page 170 of 266  
Rev 1.01  
M251/M252  
Supports wake-up when interrupt occurs when clock source is LXT or LIRC  
PWM can generator output in power down mode  
Supports trigger EADC, PDMA, and DAC on the following events:  
PWM period point and up-count compared point events  
July 2, 2020  
Page 171 of 266  
Rev 1.01  
M251/M252  
6.8 Watchdog Timer (WDT)  
6.8.1 Overview  
The Watchdog Timer (WDT) is used to perform a system reset when system runs into an unknown  
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer  
supports the function to wake up system from Idle/Power-down mode.  
6.8.2  
Features  
20-bit free running up counter for WDT time-out interval  
Selectable time-out interval (24 ~ 220) and the time-out interval is 417us ~ 27. 3 s if  
WDT_CLK = 38.4 kHz (LIRC).  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports selectable WDT reset delay period, including 1026, 130, 18 or 3 WDT_CLK  
reset delay period  
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0]  
in Config0 register  
Supports WDT time-out wake-up function only if WDT clock source is selected as 38.4  
kHz LIRC or LXT.  
July 2, 2020  
Page 172 of 266  
Rev 1.01  
M251/M252  
6.9 Window Watchdog Timer (WWDT)  
6.9.1 Overview  
The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified window  
period to prevent software running to uncontrollable status by any unpredictable condition.  
6.9.2  
Features  
6-bit down counter value (CNTDAT, WWDT_CNT[5:0]) and 6-bit compare value  
(CMPDAT, WWDT_CTL[21:16]) to make the WWDT time-out window period flexible  
Supports 4-bit value (PSCSEL, WWDT_CTL[11:8]) to programmable maximum 11-bit  
prescale counter period of WWDT counter  
WWDT counter suspends in Idle/Power-down mode  
July 2, 2020  
Page 173 of 266  
Rev 1.01  
M251/M252  
6.10 Real Time Clock (RTC)  
6.10.1 Overview  
The Real Time Clock (RTC) controller provides the real time and calendar message. The RTC offers  
programmable time tick and alarm match interrupts. The data format of time and calendar messages  
are expressed in BCD format. A digital frequency compensation feature is available to compensate  
external crystal oscillator frequency accuracy.  
6.10.2 Features  
Supports external power pin VBAT.  
Supports real time counter in RTC_TIME (hour, minute, second) and calendar counter in  
RTC_CAL (year, month, day) for RTC time and calendar check.  
Supports alarm time (hour, minute, second) and calendar (year, month, day) settings in  
RTC_TALM and RTC_CALM.  
Supports alarm time (hour, minute, second) and calendar (year, month, day) mask enable  
in RTC_TAMSK and RTC_CAMSK.  
Selectable 12-hour or 24-hour time scale in RTC_CLKFMT register.  
Supports Leap Year indication in RTC_LEAPYEAR register.  
Supports Day of the Week counter in RTC_WEEKDAY register.  
Frequency of RTC clock source compensate by RTC_FREQADJ register.  
All time and calendar message expressed in BCD format.  
Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32,  
1/16, 1/8, 1/4, 1/2 and 1 second.  
Supports RTC Time Tick and Alarm Match interrupt.  
Supports 1 Hz clock output.  
Supports chip wake-up from Idle or Power-down mode while a RTC interrupt signal is  
generated.  
Supports Daylight Saving Time software control in RTC_DSTCTL.  
Supports one tamper pin.  
Supports 20 bytes spare registers and tamper-pin detection to clear the content of these  
spare registers.  
July 2, 2020  
Page 174 of 266  
Rev 1.01  
M251/M252  
6.11 Basic PWM Generator and Capture Timer (BPWM)  
6.11.1 Overview  
The chip provides two BPWM generators. Each BPWM supports 6 channels of BPWM output or input  
capture. There is a 12-bit prescaler to support flexible clock to the 16-bit BPWM counter with 16-bit  
comparator. The BPWM counter supports up, down and up-down counter types, all 6 channels share  
one counter. BPWM uses the comparator compared with counter to generate events. These events  
are used to generate BPWM pulse, interrupt and trigger signal for EADC to start conversion. For  
BPWM output control unit, it supports polarity output, independent pin mask and tri-state output  
enable.  
The BPWM generator also supports input capture function to latch BPWM counter value to  
corresponding register when input channel has a rising transition, falling transition or both transition is  
happened.  
6.11.2 Features  
6.11.2.1 BPWM Function Features  
Supports maximum clock frequency up to maximum PLL frequency.  
Supports up to two BPWM modules; each module provides 6 output channels  
Supports independent mode for BPWM output/Capture input channel  
Supports 12-bit prescalar from 1 to 4096  
Supports 16-bit resolution BPWM counter; each module provides 1 BPWM counter  
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each BPWM pin  
Supports interrupt in the following events:  
BPWM counter matches 0, period value or compared value  
Supports trigger EADC in the following events:  
BPWM counter matches 0, period value or compared value  
6.11.2.2 Capture Function Features  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
July 2, 2020  
Page 175 of 266  
Rev 1.01  
M251/M252  
6.12 PWM Generator and Capture Timer (PWM)  
6.12.1 Overview  
The chip provides two PWM generators PWM0 and PWM1. Each PWM supports 6 channels of  
PWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit PWM  
counter with 16-bit comparator. The PWM counter supports up, down and up-down counter types.  
PWM uses comparator compared with counter to generate events. These events use to generate  
PWM pulse, interrupt and trigger signal for ADC to start conversion.  
The PWM generator supports two standard PWM output modes: Independent mode and  
Complementary mode, they have difference architecture. In Complementary mode, there are two  
comparators to generate various PWM pulse with 12-bit dead-time generator. For PWM output control  
unit, it supports polarity output, independent pin mask and brake functions.  
The PWM generator also supports input capture function to latch PWM counter value to the  
corresponding register when input channel has a rising transition, falling transition or both transition is  
happened. Capture function also support PDMA to transfer captured data to memory.  
6.12.2 Features  
6.12.2.1 PWM function features  
Supports maximum clock frequency up to maximum PLL frequency  
Supports up to two PWM modules, each module provides 6 output channels  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 3 complementary paired PWM output channel  
Dead-time insertion with 12-bit resolution  
Two compared values during one period  
Supports 12-bit prescaler from 1 to 4096  
Supports 16-bit resolution PWM counter  
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Brake source from pin and system safety events (clock failed, Brown-out detection and  
CPU lockup)  
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake interrupt cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM counter matches 0, period value or compared value  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM counter matches 0, period value or compared value  
6.12.2.2 Capture Function Features  
Supports up to 12 capture input channels with 16-bit resolution  
July 2, 2020  
Page 176 of 266  
Rev 1.01  
M251/M252  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Supports PDMA transfer function for PWM all channels  
July 2, 2020  
Page 177 of 266  
Rev 1.01  
M251/M252  
6.13 UART Interface Controller (UART)  
6.13.1 Overview  
The chip provides three channels of Universal Asynchronous Receiver/Transmitters (UART). The  
UART controller performs Normal Speed UART and supports flow control function. The UART  
controller performs a serial-to-parallel conversion on data received from the peripheral and a parallel-  
to-serial conversion on data transmitted from the CPU. Each UART controller channel supports ten  
types of interrupts. The UART controller also supports IrDA SIR, LIN, RS-485 and Single-wire function  
modes and auto-baud rate measuring function.  
6.13.2 Features  
Full-duplex asynchronous communications  
Separates receive and transmit 16/16 bytes entry FIFO for data payloads  
Supports hardware auto-flow control  
Programmable receiver buffer trigger level  
Supports programmable baud rate generator for each channel individually  
Supports nCTS, incoming data, Received Data FIFO reached threshold and RS-485  
Address Match (AAD mode) wake-up function  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next START bit  
by setting DLY (UART_TOUT [15:8])  
Supports Auto-Baud Rate measurement and baud rate compensation function  
Support 9600 bps for UART_CLK is selected LXT.  
Supports break error, frame error, parity error and receive/transmit buffer overflow  
detection function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5-, 6-, 7-, 8- bit character  
Programmable PARITY bit, even, odd, no parity or stick PARITY bit generation and  
detection  
Programmable STOP bit, 1, 1.5, or 2 STOP bit generation  
Supports IrDA SIR function mode  
Supports for 3/16 bit duration for normal mode  
Supports LIN function mode (Only UART0 with LIN function)  
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detection function for receiver  
Supports RS-485 function mode  
Supports RS-485 9-bit mode  
Supports hardware or software enables to program nRTS pin to control RS-485  
transmission direction  
Supports PDMA transfer function  
Support Single-wire function mode.  
July 2, 2020  
Page 178 of 266  
Rev 1.01  
M251/M252  
UART Feature  
UART0  
UART1/UART2  
SC_UART  
USCI-UART  
TX: 1byte  
RX: 2byte  
FIFO  
16 Bytes  
16 Bytes  
4 Bytes  
Auto Flow Control (CTS/RTS)  
IrDA  
-
-
-
-
-
-
-
-
LIN  
-
RS-485 Function Mode  
nCTS Wake-up  
Incoming Data Wake-up  
-
Received  
Data  
FIFO  
reached  
-
-
threshold Wake-up  
RS-485 Address Match (AAD mode)  
Wake-up  
-
Auto-Baud Rate Measurement  
STOP bit Length  
Word Length  
-
1, 1.5, 2 bit  
1, 1.5, 2 bit  
1, 2 bit  
1, 2 bit  
5, 6, 7, 8 bits  
5, 6, 7, 8 bits  
5, 6, 7, 8 bits  
6~13 bits  
Even / Odd Parity  
Stick Bit  
-
-
Note: = Supported  
Table 6.13-1 UART Feature List  
July 2, 2020  
Page 179 of 266  
Rev 1.01  
M251/M252  
6.14 Smart Card Host Interface (SC)  
6.14.1 Overview  
The Smart Card Interface controller (SC controller) is based on ISO/IEC 7816-3 standard and fully  
compliant with PC/SC Specifications. It also provides status of card insertion/removal.  
6.14.2 Features  
ISO 7816-3 T = 0, T = 1 compliant  
EMV2000 compliant  
One ISO 7816-3 port  
Separates receive/transmit 4 byte entry FIFO for data payloads  
Programmable transmission clock frequency  
Programmable receiver buffer trigger level  
Programmable guard time selection (11 ETU ~ 267 ETU)  
One 24-bit timer and two 8-bit timers for Answer to Request (ATR) and waiting times  
processing  
Supports auto direct / inverse convention function  
Supports transmitter and receiver error retry and error number limiting function  
Supports hardware activation sequence process, and the time between PWR on and CLK  
start is configurable  
Supports hardware warm reset sequence process  
Supports hardware deactivation sequence process  
Supports hardware auto deactivation sequence when detected the card removal  
Supports UART mode  
Full duplex, asynchronous communications  
Separates receiving / transmitting 4 bytes entry FIFO for data payloads  
Supports programmable baud rate generator  
Supports programmable receiver buffer trigger level  
Programmable transmitting data delay time between the last stop bit leaving the TX-  
FIFO and the de-assertion by setting EGT (SCn_EGT[7:0])  
Programmable even, odd or no parity bit generation and detection  
Programmable stop bit, 1- or 2- stop bit generation  
July 2, 2020  
Page 180 of 266  
Rev 1.01  
M251/M252  
6.15 Serial Peripheral Interface (SPI)  
6.15.1 Overview  
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and allows full  
duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction interface. The  
chip contains one of SPI controller performing a serial-to-parallel conversion on data received from a  
peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. Each  
SPI controller can be configured as a master or a slave device and supports the PDMA function to  
access the data buffer. Each SPI controller also supports I2S mode to connect external audio CODEC.  
6.15.2 Features  
SPI Mode  
Support one SPI controller  
Supports Master or Slave mode operation  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 4-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports Byte or Word Suspend mode  
Supports PDMA transfer  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
I2S Mode  
Supports Master or Slave  
Capable of handling 8-, 16-, 24- and 32-bit word sizes  
Each provides two 4-level FIFO data buffers, one for transmitting and the other for  
receiving  
Supports monaural and stereo audio data  
Supports PCM mode A, PCM mode B, I2S and MSB justified data format  
Supports two PDMA requests, one for transmitting and the other for receiving  
July 2, 2020  
Page 181 of 266  
Rev 1.01  
M251/M252  
6.16 Quad Serial Peripheral Interface (QSPI)  
6.16.1 Overview  
The Quad Serial Peripheral Interface (QSPI) applies to synchronous serial data communication and  
allows full duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction  
interface. The chip contains one QSPI controller performing a serial-to-parallel conversion on data  
received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a  
peripheral device.  
The QSPI controller supports 2-bit Transfer mode to perform full-duplex 2-bit data transfer and also  
supports Dual and Quad I/O Transfer mode and the controller supports the PDMA function to access  
the data buffer.  
6.16.2 Features  
Supports one QSPI controller  
Supports Master or Slave mode operation  
Supports 2-bit Transfer mode  
Supports Dual and Quad I/O Transfer mode  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 8-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports Byte or Word Suspend mode  
Supports PDMA transfer  
Supports 3-Wire, no slave selection signal, bi-direction interface  
Supports one data channel half-duplex transfer  
Supports receive-only mode  
July 2, 2020  
Page 182 of 266  
Rev 1.01  
M251/M252  
6.17 I2C Serial Interface Controller (I2C)  
6.17.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange  
between devices. The I2C standard is a true multi-master bus including collision detection and  
arbitration that prevents data corruption if two or more masters attempt to control the bus  
simultaneously.  
There are two sets of I2C controllers that support Power-down wake-up function.  
6.17.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to the  
bus. The main features of the I2C bus include:  
Supports up to two I2C ports  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Supports Standard mode (100 kbps), Fast mode (400 kbps) and Fast mode plus (1 Mbps)  
Arbitration between simultaneously transmitting masters without corruption of serial data  
on the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and resume  
serial transfer  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and  
timer-out counter overflow  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing and 10-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Power-down wake-up function  
Supports PDMA with one buffer capability  
Supports setup/hold time programmable  
Supports Bus Management (SM/PM compatible) function.  
July 2, 2020  
Page 183 of 266  
Rev 1.01  
M251/M252  
6.18 USCI - Universal Serial Control Interface Controller (USCI)  
6.18.1 Overview  
The Universal Serial Control Interface (USCI) is a flexible interface module covering several serial  
communication protocols. The user can configure this controller as UART, SPI, or I2C functional  
protocol.  
6.18.2 Features  
The controller can be individually configured to match the application needs. The following protocols  
are supported:  
UART  
SPI  
I2C  
July 2, 2020  
Page 184 of 266  
Rev 1.01  
M251/M252  
6.19 USCI UART Mode  
6.19.1 Overview  
The asynchronous serial channel UART covers the reception and the transmission of asynchronous  
data frames. It performs a serial-to-parallel conversion on data received from the peripheral, and a  
parallel-to-serial conversion on data transmitted from the controller. The receiver and transmitter being  
independent, frames can start at different points in time for transmission and reception.  
The UART controller also provides auto flow control. There are three conditions to wake-up the  
system.  
6.19.2 Features  
Supports one transmit buffer and two receive buffer for data payload  
Supports hardware auto flow control function  
Supports programmable baud-rate generator  
Support 9-bit Data Transfer (Support 9-bit RS-485)  
Baud rate detection possible by built-in capture event of baud rate generator  
Supports PDMA capability  
Supports Wake-up function (Data and nCTS Wakeup Only)  
July 2, 2020  
Page 185 of 266  
Rev 1.01  
M251/M252  
6.20 USCI - SPI Mode  
6.20.1 Overview  
The SPI protocol of USCI controller applies to synchronous serial data communication and allows full  
duplex transfer. It supports both master and Slave operation mode with the 4-wire bi-direction  
interface. SPI mode of USCI controller performs a serial-to-parallel conversion on data received from a  
peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. The  
SPI mode is selected by FUNMODE (USPI_CTL[2:0]) = 0x1  
This SPI protocol can operate as master or Slave mode by setting the SLAVE (USPI_PROTCTL[0]) to  
communicate with the off-chip SPI Slave or master device. The application block diagrams in master  
and Slave mode are shown below.  
USCI SPI Master  
USCI SPI Master  
SPI Slave Device  
SPI_MOSI  
Master Transmit Data  
Master Receive Data  
Serial Bus Clock  
SPI_MOSI  
(USCIx_DAT0)  
SPI_MISO  
(USCIx_DAT1)  
SPI_MISO  
SPI_CLK  
SPI_SS  
SPI_CLK  
(USCIx_CLK)  
Slave Select  
SPI_SS  
(USCIx_CTL)  
Note: x = 0, 1, 2  
Figure 6.20-1 SPI Master Mode Application Block Diagram  
USCI SPI Slave  
USCI SPI Slave  
SPI Master Device  
SPI_MOSI  
Slave Receive Data  
Slave Transmit Data  
Serial Bus Clock  
SPI_MOSI  
(USCIx_DAT0)  
SPI_MISO  
(USCIx_DAT1)  
SPI_MISO  
SPI_CLK  
SPI_CLK  
(USCIx_CLK)  
Slave Select  
SPI_SS  
(USCIx_CTL)  
SPI_SS  
Note: x = 0, 1, 2  
Figure 6.20-2 SPI Slave Mode Application Block Diagram  
6.20.2 Features  
Configurable bit length of a transfer word from 4 to 16-bit  
Supports one transmit buffer and two receive buffers for data payload  
Supports MSB first or LSB first transfer sequence  
Supports Word Suspend function  
Supports PDMA transfer  
July 2, 2020  
Page 186 of 266  
Rev 1.01  
M251/M252  
Supports 3-wire, no slave select signal, bi-direction interface  
Supports wake-up function by slave select signal in Slave mode  
Supports one data channel half-duplex transfer  
July 2, 2020  
Page 187 of 266  
Rev 1.01  
M251/M252  
6.21 USCI - I2C Mode  
6.21.1 Overview  
On I2C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA  
lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit. There is one SCL clock pulse  
for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred  
byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only  
during the low period of SCL and must be held stable during the high period of SCL. A transition on the  
SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to Figure  
6.21-1 for more detailed I2C BUS Timing.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD_STA  
tSU_STA  
tSU_STO  
tSU_DAT  
tHD_DAT  
Figure 6.21-1 I2C Bus Timing  
The device’s on-chip I2C provides the serial interface that meets the I2C bus standard mode  
specification. The I2C port handles byte transfers autonomously. The I2C mode is selected by  
FUNMODE (UI2C_CTL [2:0]) = 100B. When enable this port, the USCI interfaces to the I2C bus via  
two pins: SDA and SCL. When I/O pins are used as I2C ports, user must set the pins function to I2C in  
advance.  
Note: Pull-up resistor is needed for I2C operation because the SDA and SCL are set to open-drain  
pins when USCI is selected to I2C operation mode.  
6.21.2 Features  
Full master and slave device capability  
Supports of 7-bit addressing, as well as 10-bit addressing  
Communication in standard mode (100 kBit/s) or in fast mode (up to 400 kBit/s)  
Supports multi-master bus  
Supports one transmit buffer and two receive buffer for data payload  
Supports 10-bit bus time-out capability  
Supports bus monitor mode.  
Supports Power down wake-up by data toggle or address match  
Supports setup/hold time programmable  
Supports multiple address recognition (two slave address with mask option)  
July 2, 2020  
Page 188 of 266  
Rev 1.01  
 
M251/M252  
6.22 Programmable Serial IO (PSIO)  
6.22.1 Overview  
Programmable Serial I/O (PSIO) provides a simple way to implement simple serial signal proccesing,  
e.g. UART and IR. The PSIO can control when the pin will output high or low and how long the pin  
need to output high or low. It also provides the easy way to sample the pin state.  
6.22.2 Features  
Supports up to 8 PSIO pins, from PSIO pin0 to PSIO pin7  
Supports 6 clock sources, they are HXT, LXT, HIRC, LIRC, PLL, PCLK1  
Supports one clock divider, which can be divided from 1 to 255  
Supports slot controller for timing sequence control  
Supports 4 slot controllers, 8 slots in each slot controller  
Supports counting from 1 PSIO clock to 15 PSIO clocks in each slot  
Supports 3 slot repeat modes:  
Normal repeat mode  
Normal repeat mode with infinity loops  
Whole repeat mode  
Supports 4 slot trigger conditions:  
Triggered by software  
Triggered by falling edge  
Triggered by rising edge  
Triggered by rising edge or falling edge  
Supports PSIO PIN for pin state control  
Supports 8 check points to connect with slots in each pin  
Supports 8 check point actions in each check point.  
Supports 7 kinds of check point action to setting  
Output high  
Output low  
Output data  
Output toggle  
Input data  
Input status  
Input status update  
Supports 4 I/O modes, input, output, open-drain, and quasi  
Supports switch I/O mode in different check points  
Supports 4 kinds of Interrupt trigger conditions  
Two sets of configurable slot interrupt controllers  
Mismatch interrupt when PSIO is enabled with PDMA  
July 2, 2020  
Page 189 of 266  
Rev 1.01  
M251/M252  
Transfer Error interrupt  
Slot controller counting done interrupt  
Supports PDMA function  
Clock Controller  
PSIOCKEN  
PSIO Controller  
HIRC  
LIRC  
PLL  
111  
100  
011  
010  
001  
000  
PSIO_CLK  
1/(PSIODIV+1)  
PCLK1  
LXT  
HXT  
PSIOSEL  
PSIODIV  
CLKSEL2[30:28] CLKDIV1[31:24]  
PSIOSEL  
PSIOCKEN  
CLK_APBCLK1[31]  
Figure 6.22-1 PSIO Clock Control Diagram (8-bit Pre-scale Counter in Clock Controller)  
July 2, 2020  
Page 190 of 266  
Rev 1.01  
M251/M252  
6.23 External Bus Interface (EBI)  
6.23.1 Overview  
This chip is equipped with an external bus interface (EBI) for external device use. To save the  
connections between an external device and a chip, EBI is operating at address bus and data bus  
multiplex mode. The EBI supports three chip selects that can connect three external devices with  
different timing setting requirements.  
6.23.2 Features  
Supports up to three memory banks  
Supports dedicated external chip select pin with polarity control for each bank  
Supports accessible space up to 1 Mbytes for each bank, actually external addressable  
space is dependent on package pin out  
Supports 8-/16-bit data width  
Supports byte write in 16-bit data width mode  
Supports Address/Data multiplexed Mode  
Supports Timing parameters individual adjustment for each memory block  
Supports LCD interface i80 mode  
Supports PDMA mode  
Supports variable external bus base clock (MCLK) which based on HCLK  
Supports configurable idle cycle for different access condition: Idle of Write command  
finish (W2X) and Idle of Read-to-Read (R2R)  
July 2, 2020  
Page 191 of 266  
Rev 1.01  
M251/M252  
6.24 USB 1.1 Device Controller (USBD)  
6.24.1 Overview  
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is compliant  
with USB 2.0 full-speed device specification and supports control/bulk/interrupt/isochronous transfer  
types.  
In this device controller, there are two main interfaces: the APB bus and USB bus which comes from  
the USB PHY transceiver. For the APB bus, the CPU can program control registers through it. There  
are 1 Kbytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is necessary to  
write data to SRAM or read data from SRAM through the APB interface or SIE. User needs to set the  
effective starting address of SRAM for each endpoint buffer through buffer segmentation register  
(USBD_BUFSEGx).  
There are 12 endpoints in this controller. Each of the endpoint can be configured as IN or OUT  
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are  
implemented in this block. The block of Endpoint Controlis also used to manage the data sequential  
synchronization, endpoint states, current start address, transaction status, and data buffer status for  
each endpoint.  
There are five different interrupt events in this controller. They are the no-event-wake-up, device plug-  
in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend and  
resume, etc. Any event will cause an interrupt, and users just need to check the related event flags in  
interrupt event status register (USBD_INTSTS) to acknowledge what kind of interrupt occurring, and  
then check the related USB Endpoint Status Register (USBD_EPSTS0 and USBD_EPSTS1) to  
acknowledge what kind of event occurring in this endpoint.  
A software-disconnect function is also supported for this USB controller. It is used to simulate the  
disconnection of this device from the host. If user enables SE0 bit (USBD_SE0), the USB controller  
will force the output of USB_D+ and USB_D- to level low and its function is disabled. After disable the  
SE0 bit, host will enumerate the USB device again.  
For more information on the Universal Serial Bus, please refer to Universal Serial Bus Specification  
Revision 1.1.  
6.24.2 Features  
Compliant with USB 2.0 Full-Speed specification  
Provides 1 interrupt vector with 5 different interrupt events (SOF, NEVWK, VBUSDET,  
USB and BUS)  
Supports Control/Bulk/Interrupt/Isochronous transfer type  
Supports suspend function when no bus activity existing for 3 ms  
Supports 12 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types  
and maximum 1 Kbytes buffer size  
Provides remote wake-up capability  
July 2, 2020  
Page 192 of 266  
Rev 1.01  
M251/M252  
6.25 CRC Controller (CRC)  
6.25.1 Overview  
The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with four common  
polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32 settings.  
6.25.2 Features  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
CRC-CCITT: X16 + X12 + X5 + 1  
CRC-8: X8 + X2 + X + 1  
CRC-16: X16 + X15 + X2 + 1  
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1  
Programmable seed value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum  
Supports 8/16/32-bit of data width  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports using PDMA to write data to perform CRC operation  
July 2, 2020  
Page 193 of 266  
Rev 1.01  
M251/M252  
6.26 Enhanced 12-bit Analog-to-Digital Converter (EADC)  
6.26.1 Overview  
The chip contains one 12-bit successive approximation analog-to-digital converter (SAR ADC  
converter) with 16 external input channels and 3 internal channels. The ADC converter can be started  
by software trigger, PWM0/1 triggers, BPWM0/1 triggers, Timer0~3 overflow pulse triggers, ADINT0,  
ADINT1 interrupt EOC (End of conversion) pulse trigger and external pin (EADC0_ST) input signal.  
6.26.2 Features  
Analog input voltage range: 0~VREF (Max to AVDD)  
Reference voltage from VREF pin or AVDD  
12-bit resolution and 10-bit accuracy is guaranteed  
Up to 16 single-end analog external input channels  
3 internal channels, they are band-gap voltage (VBG), temperature sensor (VTEMP), and  
Battery power (VBAT/4)  
Four EADC interrupts (ADINT0~3) with individual interrupt vector addresses  
Maximum EADC clock frequency is 16 MHz  
Up to 880 kSPS conversion rate  
Configurable EADC internal sampling time.  
Up to 19 sample modules:  
Each of sample is configurable for EADC converter channel EADC_CH0~15 and  
trigger source  
Sample module 16~18 is fixed for EADC channel 16, 17, 18 input sources as band-  
gap voltage, temperature sensor, and battery power (VBAT/4)  
Configurable sampling time for each sample module  
Support left-adjusted result  
12-bit resolution for conversion result and 16-bit resolution for accumulated conversion  
result  
Conversion results are held in 19 data registers with valid and overrun indicators  
Averaging (2n times, n=0~8) to support up to 12-bit result and over-sampling, or called  
Accumulation, (2n times, n=0~8) to support up to 16-bit result  
An ADC conversion can be started by:  
Write 1 to SWTRGn (EADC_SWTRG[n], n = 0~18)  
External pin EADC0_ST  
Timer0~3 overflow pulse triggers  
ADINT0 and ADINT1 interrupt EOC (End of conversion) pulse triggers  
PWM0/1 triggers  
BPWM0/1 triggers  
Supports configurable PDMA transfer  
Auto turn on/off EADC power at power off or operation mode with wait state(10us stable  
time)  
July 2, 2020  
Page 194 of 266  
Rev 1.01  
M251/M252  
Supports digital comparator to monitor conversion result and user can select whether to  
generate an interrupt when conversion result matches the compare register setting  
Internal reference voltage source: 1.536V, 2.048V, 2.560V, 3.072V, 4.096V and VREF pin  
Supports offset cancellation  
July 2, 2020  
Page 195 of 266  
Rev 1.01  
M251/M252  
6.27 Digital to Analog Converter (DAC)  
6.27.1 Overview  
The DAC module is a 12-bit, voltage output digital-to-analog converter. It can be configured to 12-or 8-  
bit output mode and can be used in conjunction with the PDMA controller. The DAC integrates a  
voltage output buffer that can be used to reduce output impendence and drive external loads directly  
without having to add an external operational amplifier.  
6.27.2 Features  
Analog output voltage range: 0~AVDD.  
Supports 12-or 8-bit output mode.  
Rail to rail settle time 6us.  
Supports up to one 12-bit 1 MSPS voltage type DAC.  
Reference voltage from internal reference voltage (INT_VREF), VREF pin.  
DAC maximum conversion updating rate 1 MSPS.  
Supports voltage output buffer mode and bypass voltage output buffer mode.  
Supports software and hardware trigger, including Timer0~3 and external trigger pin to  
start DAC conversion.  
Supports PDMA mode.  
July 2, 2020  
Page 196 of 266  
Rev 1.01  
M251/M252  
6.28 Analog Comparator Controller (ACMP)  
6.28.1 Overview  
The chip provides two comparators. The comparator output is logic 1 when positive input is greater  
than negative input; otherwise, the output is 0. Each comparator can be configured to generate an  
interrupt when the comparator output value changes.  
6.28.2 Features  
Analog input voltage range: 0 ~ AVDD  
Up to two rail-to-rail analog comparators  
Supports hysteresis function  
Supports programmable hysteresis window: 0mV, 10mV, 20mV and 30mV  
Supports wake-up function  
Supports programmable propagaion speed and low power consumption  
Selectable input sources of positive input and negative input  
ACMP0 supports:  
4 multiplexed I/O pins at positive sources:  
ACMP0_P0, ACMP0_P1, ACMP0_P2, or ACMP0_P3  
4 negative sources:  
ACMP0_N  
Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
DAC0 output (DAC0_OUT)  
ACMP1 supports:  
4 multiplexed I/O pins at positive sources:  
ACMP1_P0, ACMP1_P1, ACMP1_P2, or ACMP1_P3  
4 negative sources:  
ACMP1_N  
Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
DAC0 output (DAC0_OUT)  
Shares one ACMP interrupt vector for all comparators  
Interrupts generated when compare results change (Interrupt event condition is  
programmable)  
Supports triggers for break events and cycle-by-cycle control for PWM  
Supports window compare mode and window latch mode  
July 2, 2020  
Page 197 of 266  
Rev 1.01  
M251/M252  
6.29 OP Amplifier (OPA)  
6.29.1 Overview  
This chip is equipped with one operational amplifier. The OP amplifier outputs is connected to ADC  
channel for measurement requirement. The OP amplifier circuit can also be used in the application of  
Programmable Gain Amplifier (PGA).  
6.29.2 Features  
Analog input voltage range: 0~AVDD.  
Supports up to 1 operational amplifier  
Supports to use schmitt trigger buffer output for simple comparator function.  
Supports schmitt trigger buffer output interrupts.  
July 2, 2020  
Page 198 of 266  
Rev 1.01  
M251/M252  
6.30 Peripherals Interconnection  
6.30.1 Overview  
Some peripherals have interconnections which allow autonomous communication or synchronous  
action between peripherals without needing to involve the CPU. Peripherals interact without CPU  
saves CPU resources, reduces power consumption, operates with no software latency and fast  
responds.  
6.30.2 Peripherals Interconnect Matrix table  
Destination  
Source  
HIRC  
TRIM  
ACMP BPWM  
DAC  
EADC  
PWM  
Timer  
UART  
ACMP  
BandGap  
BOD  
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
14  
-
17  
-
-
-
-
-
-
-
-
-
14  
15  
14  
-
-
BPWM  
Clock Fail  
CRV  
-
3
-
11  
-
-
-
-
1
-
-
-
CPU  
Lockup  
-
-
-
-
-
-
-
-
-
-
-
-
-
14  
-
-
-
-
-
-
-
-
-
-
-
DAC  
1
-
5
-
8, 9  
-
Internal  
Module  
-
-
-
LIRC  
-
-
External  
Pin  
8, 9,  
10  
1, 2  
5, 6  
14  
LIRC  
LXT  
-
-
-
-
-
-
-
-
-
-
-
-
13  
-
-
17  
-
-
-
-
14, 15  
16  
PWM  
Timer  
UART  
3
4
-
-
11  
12  
-
-
19  
-
7
-
-
-
-
-
-
19  
USB 1.1  
Device  
-
-
-
13  
-
18  
-
Table 6.30-1 Peripherals Interconnect Matrix table  
July 2, 2020  
Page 199 of 266  
Rev 1.01  
M251/M252  
7 APPLICATION CIRCUIT  
7.1 Power Supply Scheme  
as close to AVDD as possible  
L=30Z  
EXT_PWR  
AVDD  
AVSS  
1uF+0.1uF+0.01uF  
L=30Z  
10uF+0.1uF  
as close to the  
EXT_PWR as possible  
VREF  
2.2uF+1uF+470pF  
L=30Z  
as close to VREF as possible  
LDO_CAP  
1uF  
VSS  
as close to LDO as possible  
VDD/VDDIO  
0.1uF*N  
VSS  
VBAT  
L=30Z  
0.1uF  
VSS  
EXT_VSS  
as close to VDD/VDDIO/VBAT as possible  
July 2, 2020  
Page 200 of 266  
Rev 1.01  
 
M251/M252  
7.2 Peripheral Application Scheme  
DVCC  
USB Full Speed Slot  
100K  
100K  
10R  
27R  
27R  
USB_VBUS  
USB_D-  
VDD  
ICE_DAT  
USB_D+  
SWD  
Interface  
ICE_CLK  
nRESET  
USB_VCC33_CAP  
VSS  
1uF  
20pF  
XT1_IN  
4~24 MHz  
crystal  
20pF  
20pF  
DVCC  
DVCC  
XT1_OUT  
4.7  
K
4.7  
K
Crystal  
X32_IN  
CLK  
DIO  
VDD  
VSS  
I2C_SCL  
I2C_SDA  
I2C Device  
32.768 kHz  
crystal  
20pF  
X32_OUT  
DVCC  
M251/M252 Series  
Reset  
Circuit  
PC COM Port  
RS 232 Transceiver  
10K  
nRST  
UART_RXD  
UART_TXD  
ROUT RIN  
UART  
TIN  
TOUT  
10 uF  
DVCC  
LDO_CAP  
LDO  
1 uF  
SPI_SS  
SPI_CLK  
SPI Device  
SPI_MISO  
SPI_MOSI  
64K x 16-bit  
SRAM  
LATCH  
Q
D
Addr[15:0]  
En  
ALE  
Audio codec  
nCE  
nOE  
nWE  
nLB  
nCS  
nRD  
SPI_I2SMCLK  
SPI_CLK(I2S_BCLK)  
SPI_SS (I2S_LRCLK)  
SPI_MOSI (I2S_DO)  
SPI_MISO (I2S_DI)  
EBI  
Line In  
nWR  
nWRL  
nWRH  
Line Out  
nUB  
Data[15:0]  
AD[15:0]  
Note 1: It is recommended to use 100 kΩ pull-up resistor on both ICE_DAT and ICE_CLK pin.  
Note 2: It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
Note 3: It is recommended to use 10Ω series resistor on USB_VBUS pin.  
July 2, 2020  
Page 201 of 266  
Rev 1.01  
 
M251/M252  
8 ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
Stresses above the absolute maximum ratings may cause permanent damage to the device. The  
limiting values are stress ratings only and cannot be used to functional operation of the device.  
Exposure to the absolute maximum ratings may affect device reliability and proper operation is not  
guaranteed.  
8.1.1  
Voltage Characteristics  
Symbol  
Description  
Min  
Max  
6.5  
6.5  
6.5  
50  
Unit  
V
[*1]  
VDD-VSS  
DC power supply  
VDDIO Power Supply  
VBAT Power Supply  
-0.3  
[*1]  
VDDIO-VSS  
-0.3  
V
[*1]  
VBAT-VSS  
-0.3  
V
ΔVDD  
Variations between different VDD power pins  
Allowed voltage difference for VDD and AVDD  
Variations between different ground pins  
Allowed voltage difference for VSS and AVSS  
Input voltage on any other pin[*2]  
-
mV  
mV  
mV  
mV  
V
|VDD AVDD  
|
-
50  
ΔVSS  
-
50  
|VSS - AVSS  
|
-
50  
VIN  
VSS-0.3  
6.5  
Note:  
1. All main power (VDD, VDDIO, VBAT, AVDD) and ground (VSS, AVSS) pins must be connected to the external power supply.  
2. Refer to Table 8.1-2 for the values of the maximum allowed injected current.  
Table 8.1-1 Voltage Characteristics  
8.1.2  
Current Characteristics  
Symbol  
Description  
Min  
Max  
200  
Unit  
[*1]  
ΣIDD  
Maximum current into VDD  
-
-
-
-
-
-
-
-
-
IDDIO / IBAT  
Maximum current into VDDIO / IBAT  
100 / 100  
100  
ΣISS  
Maximum current out of VSS  
Maximum current sunk by a I/O Pin  
Maximum current sourced by a I/O Pin  
Maximum current sunk by total I/O Pins[*2]  
Maximum current sourced by total I/O Pins[*2]  
Maximum injected current by a I/O Pin  
Maximum injected current by total I/O Pins  
20  
20  
mA  
IIO  
100  
100  
[*3]  
IINJ(PIN)  
±5  
[*3]  
ΣIINJ(PIN)  
±25  
Note:  
1. Maximum allowable current is a function of device maximum power dissipation.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not  
be sunk/sourced between two consecutive power supply pins.  
3. A positive injection is caused by VIN>AVDD and a negative injection is caused by VIN<VSS. IINJ(PIN) must never be  
exceeded. It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage  
supply pin.  
July 2, 2020  
Page 202 of 266  
Rev 1.01  
M251/M252  
Table 8.1-2 Current Characteristics  
8.1.3  
Thermal Characteristics  
The average junction temperature can be calculated by using the following equation:  
T
T
+ (P  
x
)
J
=
A
D
θJA  
TA = ambient temperature ()  
θJA = thermal resistance junction-ambient (/Watt)  
P
D
= sum of internal and I/O power dissipation  
Symbol  
Description  
Min  
-40  
Typ  
Max  
105  
125  
150  
Unit  
T
A
Operating ambient temperature  
Operating junction temperature  
Storage temperature  
-
-
-
T
J
-40  
T
-65  
ST  
Thermal resistance junction-ambient  
20-pin TSSOP(4.4x6.5 mm)  
-
-
-
-
-
-
38  
30  
-
-
-
-
-
-
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
/Watt  
Thermal resistance junction-ambient  
28-pin TSSOP(4.4x9.7 mm)  
Thermal resistance junction-ambient  
33-pin QFN(5x5 mm)  
39.6  
60  
[*1]  
θJA  
Thermal resistance junction-ambient  
48-pin LQFP(7x7 mm)  
Thermal resistance junction-ambient  
64-pin LQFP(7x7 mm)  
58  
Thermal resistance junction-ambient  
128-pin LQFP(14x14 mm)  
38.5  
Note:  
1. Determined according to JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions  
Table 8.1-3 Thermal Characteristics  
July 2, 2020  
Page 203 of 266  
Rev 1.01  
M251/M252  
8.1.4  
EMC Characteristics  
8.1.4.1 Electrostatic discharge (ESD)  
For the Nuvoton MCU products, there are ESD protection circuits which built into chips to avoid any  
damage that can be caused by typical levels of ESD.  
8.1.4.2 Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
8.1.4.3 Electrical fast transients (EFT)  
In some application circuit compoment will produce fast and narrow high-frequency trasnients bursts of  
narrow high-frequency transients on the power distribution system..  
Inductive loads:  
Relays, switch contactors  
Heavy-duty motors when de-energized etc.  
The fast transient immunity requirements for electronic products are defined in IEC 61000-4-4 by  
International ElectrotechnicalCommission (IEC).  
Symbol  
Description  
Electrostatic discharge,human body mode  
Electrostatic discharge,charge device model  
Pin current for latch-up[*3]  
Min  
-6000  
-1000  
-150  
Typ  
Max  
+6000  
+1000  
+150  
Unit  
[*1]  
VHBM  
-
-
-
-
V
[*2]  
VCDM  
LU[*3]  
mA  
kV  
[*4] [*5]  
VEFT  
-4.4  
Fast transient voltage burst  
+4.4  
Note:  
1. Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human  
Body Model (HBM) Component Level  
2. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing –  
Charged Device Model (CDM) Component Level.  
3. Determined according to JEDEC EIA/JESD78 standard.  
4. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test.  
5. The performace cretia class is 4A.  
Table 8.1-4 EMC Characteristics for M251xC/M251xD/M252xC/M252xD  
July 2, 2020  
Page 204 of 266  
Rev 1.01  
M251/M252  
Symbol  
Description  
Electrostatic discharge,human body mode  
Electrostatic discharge,charge device model  
Pin current for latch-up[*3]  
Min  
-6000  
-500  
-150  
-4.4  
Typ  
Max  
+6000  
+500  
+150  
+4.4  
Unit  
[*1]  
VHBM  
-
-
-
-
V
[*2]  
VCDM  
LU[*3]  
mA  
kV  
[*4] [*5]  
VEFT  
Fast transient voltage burst  
Note:  
1. Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human Body  
Model (HBM) Component Level  
2. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing –  
Charged Device Model (CDM) Component Level.  
3. Determined according to JEDEC EIA/JESD78 standard.  
4. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test.  
5. The performace cretia class is 4A.  
Table 8.1-5 EMC Characteristics for M251xE/M251xG/M252xE/M252xG  
July 2, 2020  
Page 205 of 266  
Rev 1.01  
M251/M252  
8.1.5  
Package Moisture Sensitivity (MSL)  
The MSL rating of an IC determines its floor life before the board mounting once its dry bag has been  
opened. All Nuvoton surface mount chips have a moisture level classification. The information is also  
displayed on the bag packing.  
Pacakge  
20-pin TSSOP(4.4x6.5 mm)[*1]  
28-pin TSSOP(4.4x9.7 mm) [*1]  
33-pin QFN(5x5 mm) [*1]  
MSL  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
48-pin LQFP(7x7 mm) [*1]  
64-pin LQFP(7x7 mm) [*1]  
128-pin LQFP(14x14 mm) [*1]  
Note:  
1. Determined according to IPC/JEDEC J-STD-020  
Table 8.1-6 Package Moisture Sensitivity(MSL)  
July 2, 2020  
Page 206 of 266  
Rev 1.01  
M251/M252  
8.1.6  
Soldering Profile  
Figure 8.1-1 Soldering profile from J-STD-020C  
Porfile Feature  
Pb Free Package  
3/sec. max  
Average ramp-up rate (217to peak)  
Preheat temperature 150~200℃  
Temperature maintained above 217℃  
Time with 5of actual peak temperature  
Peak temperature range  
60 sec. to 120 sec.  
60 sec. to 150 sec.  
> 30 sec.  
260℃  
Ramp-down rate  
6/sec ax.  
8 min. max  
Time 25to peak temperature  
Note:  
1. Determined according to J-STD-020C  
Table 8.1-7 Soldering Profile  
July 2, 2020  
Page 207 of 266  
Rev 1.01  
M251/M252  
8.2 General Operating Conditions  
(VDD-VSS = 1.75 ~ 5.5V, TA = 25C, HCLK = 48 MHz unless otherwise specified.)  
Symbol  
TA  
Parameter  
Temperature  
Min  
-40  
-
Typ  
Max  
105  
48  
Unit  
Test Conditions  
-
-
fHCLK  
Internal AHB clock frequency  
MHz  
VDD  
VDDIO  
VBAT  
Operation voltage  
1.75  
1.65  
1.75  
-
-
5.5  
5.5  
5.5  
VDDIO Operation voltage  
VBAT Operation voltage  
Analog operation voltage  
Analog reference voltage  
LDO output voltage  
-
V
[*1]  
AVDD  
VDD  
-
VREF  
VLDO  
VBG  
1.75  
-
AVDD  
-
1.5  
815  
1
Band-gap voltage  
795  
840  
mV  
µF  
Ω
[*2]  
CLDO  
LDO output capacitor on each pin  
ESR of CLDO output capacitor  
[*3]  
RESR  
-
-
-
0.5  
InRush current on voltage  
regulator power-on (POR or  
wakeup from Standby)  
[*3]  
IRUSH  
60  
150  
mA  
µC  
InRush energy on voltage  
regulator power-on (POR or  
wakeup from Standby)  
VDD = 1.8 V, TA = 105 °C,  
IRUSH = 60 mA for 15 µs  
[*3]  
ERUSH  
-
0.9  
-
Note:  
1.It is recommended to power VDD and AVDD from the same source. A maximum difference of 0.3 V between VDD and  
AVDD can be tolerated during power-on and power-off operation .  
2.To ensure stability, an external 1 μF output capacitor, CLDO must be connected between the LDO_CAP pin and the  
closest GND pin of the device. Solid tantalum and multilayer ceramic capacitors are suitable as output capacitor.  
Additional 100 nF bypass capacitor between LDO_CAP pin and the closest GND pin of the device helps decrease  
output noise and improves the load transient response.  
3.Guaranteed by design, not tested in production  
Table 8.2-1 General Operating Conditions  
July 2, 2020  
Page 208 of 266  
Rev 1.01  
 
M251/M252  
8.3 DC Electrical Characteristics  
8.3.1 Supply Current Characteristics for M251xC/M251xD/M252xC/M252xD  
The current consumption is a combination of internal and external parameters and factors such as  
operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program  
location in memory and so on. The current consumption is measured as described in below condition  
and table to inform test characterization result.  
All GPIO pins are in push pull mode and output high.  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature  
(TA), and the typical values for TA= 25 °C and VDD = 1.75 ~ 5.5 V unless otherwise  
specified.  
VDD = AVDD = VDDIO  
When the peripherals are enabled HCLK is the system clock, fPCLK0, 1 = fHCLK  
Program run CoreMark® code in Flash.  
.
Typ [*1]  
Max[*1][*2]  
Symbol  
Conditions  
FHCLK  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
48 MHz  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
5.4  
4.1  
6.05  
4.6  
6.25  
4.8  
6.45  
5.1  
Normal run mode with PL0  
(PLSEL = 00), executed from  
Flash, all peripherals disable.  
3.2  
3.65  
2.3  
3.85  
2.5  
4.1  
HCLK is set as HIRC, PLL or  
HXT clock.  
2.0  
2.8  
Normal run mode with PL0  
(PLSEL = 00), executed from  
Flash, all peripherals disable.  
0.74  
0.55  
0.45  
0.95  
0.75  
0.6  
1.15  
0.9  
1.35  
1.1  
2 MHz  
HCLK is set as MIRC clock.  
1 MHz  
0.80  
1.0  
Normal run mode with PL3  
(PLSEL = 11), executed from  
Flash, all peripherals disable.  
38.4 kHz  
0.01  
0.01  
0.02  
0.02  
0.06  
0.06  
0.16  
0.16  
HCLK is set as LIRC or LXT  
clock..  
32.768 kHz  
48 MHz  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
15  
10  
16.6  
11.5  
9.0  
16.8  
11.8  
9.3  
17  
12  
IDD_RUN  
mA  
Normal run mode with PL0  
(PLSEL = 00), executed from  
Flash, all peripherals enable.  
8.0  
4.5  
1.4  
0.95  
0.65  
9.5  
5.5  
2.1  
1.6  
1.3  
HCLK is set as HIRC, PLL or  
HXT clock.  
5.05  
1.65  
1.15  
0.85  
5.3  
Normal run mode with PL0  
(PLSEL = 00), executed from  
Flash, all peripherals enable.  
1.85  
1.35  
1.1  
2 MHz  
HCLK is set as MIRC clock.  
1 MHz  
Normal run mode with PL3  
(PLSEL = 11), executed from  
Flash, all peripherals enable  
38.4 kHz  
0.02  
0.03  
0.06  
0.17  
HCLK is set as LIRC or LXT  
clock..  
32.768 kHz  
0.02  
0.03  
0.06  
0.17  
July 2, 2020  
Page 209 of 266  
Rev 1.01  
M251/M252  
Note:  
1. When analog peripheral blocks such as USB, ADC, ACMP, PLL, HIRC, MIRC, LIRC, HXT and LXT are ON, an  
additional power consumption should be considered.  
2. Based on characterization, not tested in production unless otherwise specified.  
Table 8.3-1 Current Consumption in Normal Run Mode  
Typ [*1]  
Max[*1][*2]  
Symbol  
Conditions  
FHCLK  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
48 MHz  
2.25  
2.6  
2.8  
3.0  
Idle mode with PL0 (PLSEL =  
00), all peripherals disable.  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
2 MHz  
1 MHz  
2.05  
1.6  
2.4  
1.9  
2.6  
2.1  
2.8  
2.3  
HCLK is set as HIRC, PLL or  
HXT clock.  
1.2  
1.45  
0.62  
0.57  
0.53  
1.65  
0.8  
1.85  
1.0  
0.47  
0.42  
0.39  
Idle mode with PL0 (PLSEL =  
00), all peripherals disable.  
0.77  
0.73  
0.97  
0.93  
HCLK is set as MIRC clock.  
Idle mode with PL3 (PLSEL =  
11), all peripherals disable  
38.4 kHz  
0.01  
0.01  
0.02  
0.02  
0.06  
0.06  
0.16  
0.16  
HCLK is set as LIRC or LXT  
clock.  
32.768 kHz  
IDD_IDLE  
mA  
48 MHz  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
12  
8.1  
13.3  
9.1  
13.4  
9.3  
13.7  
9.5  
Idle mode with PL0 (PLSEL =  
00), all peripherals disable.  
HCLK is set as HIRC, PLL or  
HXT clock.  
6.6  
7.4  
7.6  
7.8  
3.9  
4.4  
4.6  
4.8  
1.25  
0.8  
1.5  
1.7  
1.9  
Idle mode with PL0 (PLSEL =  
00), all peripherals disable.  
2 MHz  
1.0  
1.2  
1.4  
HCLK is set as MIRC clock.  
1 MHz  
0.58  
0.74  
0.95  
1.15  
Idle mode with PL3 (PLSEL =  
11), all peripherals enable  
38.4 kHz  
0.02  
0.02  
0.03  
0.03  
0.06  
0.06  
0.17  
0.17  
HCLK is set as LIRC or LXT  
clock.  
32.768 kHz  
Note:  
1. When analog peripheral blocks such as USB, ADC, ACMP, PLL, HIRC, MIRC, LIRC, HXT and LXT are ON, an  
additional power consumption should be considered.  
2. Based on characterization, not tested in production unless otherwise specified.  
Table 8.3-2 Current consumption in Idle Mode  
July 2, 2020  
Page 210 of 266  
Rev 1.01  
M251/M252  
Typ[*2]  
Max[*3][*4]  
LXT[*1] LIRC  
32.768 38.4  
Symbol  
Test Conditions  
Unit  
T
=
T
=
T
=
T =  
A
A
A
A
kHz  
kHz  
25 °C 25 °C 85 °C 105 °C  
Deep Power-down mode, all peripherals disable  
-
-
1.45  
3.5  
15.5  
76  
IDD_DPD  
µA  
Deep Power-down mode, RTC enable and run  
Power-down mode, all peripherals disable  
Power-down mode, RTC enable and run  
Power-down mode, WDT/Timer enable and run  
V
-
-
-
2.0  
1.7  
3.95  
3.7  
16  
23.5  
25  
78  
128  
129  
130  
131  
292  
293  
295  
296  
V
-
-
2.5  
4.55  
5.65  
6.2  
IDD_PD  
µA  
V
V
-
3.65  
4.3  
26  
Power-down mode, WDT/Timer/UART/RTC enable and  
run, WDT use LIRC, UART/Timer/RTC use LXT  
V
-
26.5  
171  
173  
174  
175  
Fast wake up Power-down mode, all peripherals disable  
Fast wake up Power-down mode, RTC enable and run  
100  
101  
102  
103  
140  
141  
142  
143  
V
-
-
IDD_FWPD  
µA  
Fast wake up Power-down mode, WDT/Timer enable and  
run  
V
V
Fast wake up Power-down mode, WDT/Timer/UART/RTC  
enable and run, WDT use LIRC, UART/Timer/RTC use  
LXT  
V
Note:  
1. Crystal used: AURUM XF66RU000032C0 with a CL of 20 pF for L1 gain level  
2. VDD = AVDD = 3.3V, LVR17 enabled, POR disabled and BOD disabled.  
3. Based on characterization, not tested in production unless otherwise specified.  
4. When analog peripheral blocks such as USB, ADC and ACMP are ON, an additional power consumption should be  
considered.  
Table 8.3-3 Chip Current Consumption in Power-down Mode  
July 2, 2020  
Page 211 of 266  
Rev 1.01  
 
M251/M252  
8.3.2  
Supply Current Characteristics for M251xE/M251xG/M252xE/M252xG  
The current consumption is a combination of internal and external parameters and factors such as  
operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program  
location in memory and so on. The current consumption is measured as described in below condition  
and table to inform test characterization result.  
All GPIO pins are in push pull mode and output high.  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature  
(TA), and the typical values for TA= 25 °C and VDD = 1.75 ~ 5.5 V unless otherwise  
specified.  
VDD = AVDD = VDDIO = VBAT  
When the peripherals are enabled HCLK is the system clock, fPCLK0, 1 = fHCLK  
Program runs CoreMark® code in Flash.  
.
Typ [*1]  
Max[*1][*2]  
Symbol  
Conditions  
FHCLK  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
48 MHz  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
6.2  
4.55  
3.6  
6.95  
5.15  
4.05  
2.55  
0.95  
0.75  
0.6  
7.15  
5.35  
4.25  
2.75  
1.15  
0.9  
7.35  
5.65  
4.55  
3.0  
Normal run mode with PL0  
(PLSEL = 00), executed from  
Flash, all peripherals disable.  
HCLK is set as HIRC, PLL or  
HXT clock.  
2.25  
0.74  
0.55  
0.45  
Normal run mode with PL0  
(PLSEL = 00), executed from  
Flash, all peripherals disable.  
1.35  
1.1  
2 MHz  
HCLK is set as MIRC clock.  
1 MHz  
0.80  
1.0  
Normal run mode with PL3  
(PLSEL = 11), executed from  
Flash, all peripherals disable.  
38.4 kHz  
0.01  
0.01  
0.02  
0.02  
0.06  
0.06  
0.2  
0.2  
HCLK is set as LIRC or LXT  
clock..  
32.768 kHz  
IDD_RUN  
mA  
48 MHz  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
17.5  
11.5  
9.5  
19.5  
13  
19.8  
13.3  
10.8  
6.3  
20  
13.5  
11  
Normal run mode with PL0  
(PLSEL = 00), executed from  
Flash, all peripherals enable.  
10.5  
6.1  
HCLK is set as HIRC, PLL or  
HXT clock.  
5.5  
6.5  
2.3  
1.7  
1.35  
Normal run mode with PL0  
(PLSEL = 00), executed from  
Flash, all peripherals enable.  
1.6  
1.85  
1.25  
0.95  
2.05  
1.45  
1.15  
2 MHz  
1.0  
HCLK is set as MIRC clock.  
1 MHz  
0.7  
Normal run mode with PL3  
(PLSEL = 11), executed from  
Flash, all peripherals enable  
38.4 kHz  
0.02  
0.02  
0.03  
0.03  
0.07  
0.07  
0.22  
0.22  
HCLK is set as LIRC or LXT  
clock..  
32.768 kHz  
July 2, 2020  
Page 212 of 266  
Rev 1.01  
 
M251/M252  
Note:  
1. When analog peripheral blocks such as ADC, OPA, DAC, ACMP, PLL, HIRC, MIRC, LIRC, HXT and LXT are ON, an  
additional power consumption should be considered.  
2. Based on characterization, not tested in production unless otherwise specified.  
Table 8.3-4 Current consumption in Normal Run Mode  
Typ [*1]  
Max[*1][*2]  
Symbol  
Conditions  
FHCLK  
Unit  
T
= 25 °C  
T
= 25 °C  
T
= 85 °C  
T = 105 °C  
A
A
A
A
48 MHz  
2.4  
2.75  
2.95  
3.05  
Idle mode with PL0 (PLSEL =  
00), all peripherals disable.  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
2 MHz  
1 MHz  
2.25  
1.7  
2.6  
1.9  
2.8  
2.1  
3.0  
2.3  
HCLK is set as HIRC, PLL or  
HXT clock.  
1.25  
0.48  
0.42  
0.39  
1.5  
1.7  
1.9  
0.62  
0.57  
0.53  
0.8  
1.0  
Idle mode with PL0 (PLSEL =  
00), all peripherals disable.  
0.77  
0.73  
0.97  
0.93  
HCLK is set as MIRC clock.  
Idle mode with PL3 (PLSEL =  
11), all peripherals disable  
38.4 kHz  
0.01  
0.01  
0.02  
0.02  
0.06  
0.06  
0.2  
0.2  
HCLK is set as LIRC or LXT  
clock.  
32.768 kHz  
IDD_IDLE  
mA  
48 MHz  
32 MHz  
24 MHz  
12 MHz  
4 MHz  
13  
9.2  
7.5  
4.5  
1.3  
0.85  
0.6  
14.5  
10.5  
8.5  
14.7  
10.7  
8.7  
14.9  
10.9  
8.9  
Idle mode with PL0 (PLSEL =  
00), all peripherals disable.  
HCLK is set as HIRC, PLL or  
HXT clock.  
5.1  
5.3  
5.5  
1.55  
1.1  
1.75  
1.3  
1.95  
1.5  
Idle mode with PL0 (PLSEL =  
00), all peripherals disable.  
2 MHz  
HCLK is set as MIRC clock.  
1 MHz  
0.8  
1.0  
1.2  
Idle mode with PL3 (PLSEL =  
11), all peripherals enable  
38.4 kHz  
0.02  
0.02  
0.03  
0.03  
0.07  
0.07  
0.22  
0.22  
HCLK is set as LIRC or LXT  
clock.  
32.768 kHz  
Note:  
1. When analog peripheral blocks such as USB, OPA, DAC, ADC, ACMP, PLL, HIRC, MIRC, LIRC, HXT and LXT are  
ON, an additional power consumption should be considered.  
2. Based on characterization, not tested in production unless otherwise specified.  
Table 8.3-5 Current Consumption in Idle Mode  
July 2, 2020  
Page 213 of 266  
Rev 1.01  
M251/M252  
Typ[*2]  
Max[*3][*4]  
LXT[*1] LIRC  
32.768 38.4  
Symbol  
Test Conditions  
Unit  
T
= 25 T = 25  
T
=
T =  
A
A
A
°C  
A
kHz  
kHz  
°C  
85 °C 105 °C  
Deep Power-down mode, all peripherals disable  
-
-
1.4  
3.5  
16.5  
80  
IDD_DPD  
µA  
Deep Power-down mode, RTC enable and run  
Power-down mode, all peripherals disable  
Power-down mode, RTC enable and run  
Power-down mode, WDT/Timer enable and run  
V
-
-
-
1.9  
1.8  
4.3  
3.7  
4.7  
6
TBD  
30  
TBD  
155  
157  
159  
161  
490  
492  
494  
496  
V
-
-
2.45  
3.9  
31  
IDD_PD  
µA  
V
V
-
32.5  
34  
Power-down mode, WDT/Timer/UART/RTC enable and  
run, WDT use LIRC, UART/Timer/RTC use LXT  
V
-
4.5  
6.9  
260  
261  
262  
263  
Fast wake up Power-down mode, all peripherals disable  
Fast wake up Power-down mode, RTC enable and run  
160  
161  
162  
163  
315  
316  
318  
320  
V
-
-
IDD_FWPD  
µA  
Fast wake up Power-down mode, WDT/Timer enable and  
run  
V
V
Fast wake up Power-down mode, WDT/Timer/UART/RTC  
enable and run, WDT use LIRC, UART/Timer/RTC use  
LXT  
V
Note:  
1. Crystal used: AURUM XF66RU000032C0 with a CL of 20 pF for L3 gain level  
2. VDD = AVDD = VBAT = 3.3V, LVR17 enabled, POR disabled and BOD disabled.  
3. Based on characterization, not tested in production unless otherwise specified.  
4. When analog peripheral blocks such as USB, OPA, DAC, ADC and ACMP are ON, an additional power consumption  
should be considered.  
Table 8.3-6 Chip Current Consumption in Power-down Mode  
July 2, 2020  
Page 214 of 266  
Rev 1.01  
M251/M252  
8.3.3  
On-Chip Peripheral Current Consumption  
The typical values for TA= 25 °C and VDD = AVDD = VBAT = 3.3 V unless otherwise  
specified.  
All GPIO pins are set as output high of push pull mode without multi-function.  
HCLK is the system clock, fHCLK = 48 MHz, fPCLK0, 1 = fHCLK  
.
The result value is calculated by measuring the difference of current consumption  
between all peripherals clocked off and only one peripheral clocked on.  
The peripheral clock selection keeps reset default setting.  
[*1]  
Peripheral  
EADC[*2]  
ACMP01[*3]  
PWM0  
IDD  
0.55  
Unit  
0.067  
0.72  
PWM1  
0.75  
BPWM0  
BPWM1  
WDT/WWDT  
QSPI  
0.36  
0.39  
0.05  
0.44  
SPI/I2S  
UART0  
UART1  
UART2  
I2C0  
0.64  
0.40  
0.34  
0.33  
0.058  
0.087  
0.28  
mA  
I2C1  
USCI0  
USCI1  
0.26  
USCI2  
0.27  
SC0  
0.22  
0.75 (4 channels)  
1.4 (8 channels)  
0.12  
PSIO0  
EBI  
TMR0  
TMR1  
TMR2  
TMR3  
RTC  
0.28  
0.30  
0.29  
0.26  
0.046  
July 2, 2020  
Page 215 of 266  
Rev 1.01  
M251/M252  
USB FS Device[*4]  
CRC  
1.03  
0.045  
0.57  
PDMA  
FMC  
0.43  
Note:  
1. Guaranteed by characterization results, not tested in production.  
2. When the ADC is turned on, add an additional power consumption per ADC for the analog part.  
3. When the ACMP is turned on, add an additional power consumption per ACMP for the analog part.  
4. When the USB is turned on, add an additional power consumption per USB for the analog part.  
Table 8.3-7 Peripheral Current Consumption  
8.3.4  
Wakeup Time from Low-Power Modes  
The wakeup times given in Table 8.2-1 is measured on a wakeup phase with a 48 MHz HIRC  
oscillator.  
Symbol  
Parameter  
Typ  
5
Max  
6
Unit  
tWU_IDLE  
Wakeup from IDLE mode  
cycles  
[*1][*2]  
tWU_DPD  
Wakeup from deep Power-down mode  
Wakeup from normal Power-down mode  
Wakeup from fast wake up Power-down mode  
190  
19  
250  
30  
[*1][*2]  
[*1][*2]  
tWU_NPD  
µS  
tWU_FWPD  
12  
15  
Note:  
1. Based on test during characterization, not tested in production.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
Table 8.3-8 Low-power Mode Wakeup Timings  
July 2, 2020  
Page 216 of 266  
Rev 1.01  
 
M251/M252  
8.3.5  
I/O Current Injection Characteristics  
In general, I/O current injection due to external voltages below VSS or above VDD should be avoided  
during normal product operation. However, the analog compoenent of the MCU is most likely to be  
affected by the injection current , but it is not easily clarified when abnormal injection accidentally  
happens. It is recommended to add a Schottky diode (pin to ground or pin to VDD) to pins that include  
analog function which may potentially injection currents.  
Negative  
injection  
Positive  
injection  
Symbol  
Parameter  
Unit  
Test Condition  
-0  
-0  
0
0
Injected current on nReset pins  
Injected current on PF2~PF5, PA10,  
PA11 and PB0~PB15 for analog  
input function  
Injected current by a I/O Pin  
mA  
IINJ(PIN)  
Injected current on any other I/O  
except analog input pin  
-5  
+5  
Table 8.3-9 I/O Current Injection Characteristics  
I/O DC Characteristics  
8.3.6  
8.3.6.1 PIN Input Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
0.3*VDD  
0.8  
Unit  
Test Conditions  
Input low voltage (Schmitt trigger)  
0
-
0
-
VDD = 4.5 V  
VIL  
V
Input low voltage (TTL trigger)  
Input high voltage (Schmitt trigger)  
Input high voltage (TTL trigger)  
Hysteresis voltage of schmitt input  
0
-
0.7  
VDD = 2.7 V  
VDD = 1.8 V  
0
-
0.5  
0.7*VDD  
-
VDD  
VDD  
VDD  
VDD  
-
2
1.5  
0.8  
-
-
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.8 V  
VIH  
V
V
-
-
[*1]  
VHY  
0.2*VDD  
VSS < VIN < VDD  
,
-1  
-1  
-
-
1
1
Open-drain or input only mode  
[*2]  
ILK  
Input leakage current  
A  
VDD < VIN < 5 V, Open-drain or  
input only mode on any other 5v  
tolerance pins  
[*1]  
RPU  
Pull up resistor  
45  
45  
52  
52  
57  
57  
kΩ  
kΩ  
[*1]  
RPD  
Pull down resistor  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. Leakage could be higher than the maximum value, if abnormal injection happens.  
Table 8.3-10 I/O Input Characteristics  
July 2, 2020  
Page 217 of 266  
Rev 1.01  
M251/M252  
8.3.6.2 I/O Output Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD = 4.5 V  
-7.5  
-7.75  
-8  
µA  
VIN=(VDD-0.4) V  
Source current for quasi-  
bidirectional mode and  
high level  
VDD = 2.7 V  
-7.4  
-7.2  
-7.7  
-4.9  
-2.9  
19  
-7.7  
-7.6  
-8  
-8  
-8  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
VIN=(VDD-0.4) V  
VDD = 1.8 V  
VIN=(VDD-0.4) V  
[*1] [*2]  
ISR  
VDD = 4.5 V  
-8.3  
-5.5  
-3.5  
21  
VIN=(VDD-0.4) V  
VDD = 2.7 V  
Source current for push-  
pull mode and high level  
-5.2  
-3.2  
20  
VIN=(VDD-0.4) V  
VDD = 1.8 V  
VIN=(VDD-0.4) V  
VDD = 4.5 V  
VIN= 0.4 V  
VDD = 2.7 V  
VIN= 0.4 V  
Sinkcurrent for push-pull  
mode and low level  
[*1] [*2]  
ISK  
12  
13  
14  
VDD = 1.8 V  
VIN= 0.4 V  
7
8
9
Output high level voltage  
for  
mode  
quasi-bidirectional VDD 0.4  
-
-
VDD  
V
ISR = -7.2 µA  
[*1]  
VDD ≥ 2.7 V  
VOH  
V
V
V
ISR = -4.9 mA  
Output high level voltage  
for push-pull mode  
VDD 0.4  
VDD  
VDD ≥ 1.8 V  
ISR = -2.9 mA  
VDD ≥ 2.7 V  
ISR = 12 mA  
Output low level voltage  
for push-pull mode  
[*1]  
VOL  
VSS  
-
0.4  
-
VDD ≥ 1.8 V  
V
ISR = 7 mA  
[*1]  
CIO  
I/O pin capacitance  
-
5
pF  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. The ISR and ISK must always respect the abslute maximum current and the sum of I/O, CPU and peripheral must not  
exceed ΣIDD and ΣISS  
.
Table 8.3-11 I/O Output Characteristics  
July 2, 2020  
Page 218 of 266  
Rev 1.01  
M251/M252  
8.3.6.3 nRESET Input Characteristics  
Symbol  
VILR  
Parameter  
Negative going threshold, nRESET  
Positive going threshold, nRESET  
Internal nRESET pull up resistor  
Min  
Typ  
-
Max Unit  
Test Conditions  
-
0.3*VDD  
V
V
VIHR  
0.7*VDD  
-
-
47  
-
[*1]  
RRST  
45  
-
53  
24  
24  
TBD  
0.1  
kΩ  
Normal run and Idle mode  
-
-
Fast wake up Power-down mode  
Power-down mode  
[*1]  
tFR  
nRESET input filtered pulse time  
µS  
-
-
-
-
Deep Power-down mode  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin  
Table 8.3-12 nRESET Input Characteristics  
July 2, 2020  
Page 219 of 266  
Rev 1.01  
M251/M252  
8.4 AC Electrical Characteristics  
8.4.1  
48 MHz Internal High Speed RC Oscillator (HIRC)  
The 48 MHz RC oscillator is calibrated in production.  
Symbol.  
Parameter  
Operating voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD  
1.75  
-
5.5  
V
TA = 25 °C,  
VDD = 3.3V  
Oscillator frequnecy  
47.52  
-1  
48  
-
48.48  
1
MHz  
%
TA = 25 °C,  
VDD = 3.3V  
TA = 0C ~ +105 °C,  
-2[*1]  
-
2[*1]  
%
fHRC  
VDD = 1.75 ~ 5.5V  
Frequency drift over temperarure and  
volatge  
TA = -20C ~ +105 °C,  
-3[*1]  
-
3[*1]  
%
VDD = 1.75 ~ 5.5V  
TA = -40C ~ +105 °C,  
-4[*1]  
-
4[*1]  
800  
16  
%
VDD = 1.75 ~ 5.5V  
[*1]  
IHRC  
Operating current  
Stable time  
-
-
500  
14  
µA  
µS  
TA = -40C ~ +105 °C,  
[*2]  
TS  
VDD = 1.75 ~ 5.5V  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. Guaranteed by design.  
Table 8.4-148 MHz Internal High Speed RC Oscillator(HIRC) Characteristics  
July 2, 2020  
Page 220 of 266  
Rev 1.01  
M251/M252  
8.4.2  
4 MHz Internal Median Speed RC Oscillator (MIRC)  
The 4 MHz RC oscillator is calibrated in production.  
Symbol.  
Parameter  
Operating voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD  
1.75  
-
5.5  
V
TA = 25 °C,  
VDD = 3.3V  
Oscillator frequnecy  
3.951  
-2  
4.032  
-
4.112  
2
MHz  
%
TA = 25 °C,  
VDD = 3.3V  
FMRC  
Frequency drift over temperarure and  
volatge  
TA = -40C ~ +105 °C,  
-10[*1]  
-
-
-
10[*1]  
30  
%
VDD = 1.75 ~ 5.5V  
[*1]  
IMRC  
Operating current  
Stable time  
-
-
µA  
µS  
TA = -40C ~ +105 °C,  
[*2]  
TS  
24  
VDD = 1.75 ~ 5.5V  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. Guaranteed by design.  
Table 8.4-2 4 MHz Internal Median Speed RC Oscillator (MIRC) Characteristics  
July 2, 2020  
Page 221 of 266  
Rev 1.01  
M251/M252  
8.4.3  
38.4 kHz Internal Low Speed RC Oscillator (LIRC)  
Min[*1]  
Typ  
Max[*1]  
Unit  
Symbol  
Parameter  
Operating voltage  
Test Conditions  
VDD  
1.75  
-
5.5  
V
TA = 25 °C,  
VDD = 3.3V  
Oscillator frequnecy  
-
38.4  
-
-
kHz  
%
TA = 25 °C,  
VDD = 3.3V  
-2  
2
[*2]  
FLRC  
Frequency drift over temperarure  
and volatge  
TA=-40~105°C  
-15  
-
15  
%
VDD=1.75V~5.5V  
Without software calibration  
ILRC  
TS  
Operating current  
Stable time  
-
-
0.85  
-
1
µA  
VDD = 3.3V  
TA=-40~105°C  
70  
μS  
VDD=1.75V~5.5V  
Note:  
1. Guaranteed by characterization, not tested in production.  
2. The 38.4 kHz low speed RC oscillator can be calibrated by user.  
3. Guaranteed by design.  
Table 8.4-338.4 kHz Internal Low Speed RC Oscillator(LIRC) Characteristics  
July 2, 2020  
Page 222 of 266  
Rev 1.01  
M251/M252  
8.4.4  
External 4~32 MHz High Speed Crystal/Ceramic Resonator (HXT) Characteristics  
The high-speed external (HXT) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the XT1_IN and XT1_Out pins and must not be connected to any other devices in order  
to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer  
for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
VDD  
Parameter  
Operating voltage  
Min[*1]  
Typ  
Max[*1]  
Unit  
V
Test Conditions  
1.75  
-
1000  
-
5.5  
-
Rf  
Internal feedback resister  
Oscillator frequency  
-
kΩ  
fHXT  
4
32  
MHz  
4 MHz, Gain = L0, CL = 12.5  
pF, ESR = 120Ω  
-
-
-
-
-
45  
80  
150  
250  
430  
600  
760  
8 MHz, Gain = L1, CL = 12.5  
pF, ESR = 60Ω  
12 MHz, Gain = L2, CL = 12.5  
pF, ESR = 25Ω  
150  
230  
280  
IHXT  
Current consumption  
µA  
16 Mhz, Gain = L3, CL = 12.5  
pF, ESR = 25Ω  
24 MHz, Gain = L4, CL = 12.5  
pF, ESR = 25Ω  
32 MHz, Gain = L7, CL = 12.5  
pF, ESR = 25Ω  
-
-
630  
1550  
2950  
4 MHz, Gain = L0, CL = 12.5  
pF, ESR = 120Ω  
2550  
8 MHz, Gain = L1, CL = 12.5  
pF, ESR = 60Ω  
-
-
-
-
-
900  
550  
400  
300  
250  
1250  
850  
700  
650  
610  
12 MHz, Gain = L2, CL = 12.5  
pF, ESR = 25Ω  
TS  
Stable time  
µs  
16 Mhz, Gain = L3, CL = 12.5  
pF, ESR = 25Ω  
24 MHz, Gain = L4, CL = 12.5  
pF, ESR = 25Ω  
32 MHz, Gain = L7, CL = 12.5  
pF, ESR = 25Ω  
DuHXT  
Vpp  
Duty cycle  
40  
-
-
60  
-
%
V
Peak-to-peak amplitude  
1.6  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-4 External 4~32 MHz High Speed Crystal (HXT) Oscillator  
July 2, 2020  
Page 223 of 266  
Rev 1.01  
M251/M252  
Symbol  
Parameter  
Min  
Typ  
Max[*1]  
Unit  
Test Conditions  
Crystal @4 MHz, CL = 12.5 pF,  
Gain = L0  
-
-
120  
Crystal @8 MHz, CL = 12.5 pF,  
Gain = L1  
-
-
-
-
-
-
-
-
-
-
60  
25  
25  
25  
25  
Crystal @12 MHz, CL = 12.5  
pF, Gain = L2  
Rs  
Equivalent series resisotr(ESR)  
Ω
Crystal @16 MHz, CL = 12.5  
pF, Gain = L3  
Crystal @24 MHz, CL = 12.5  
pF, Gain = L4  
Crystal @32 MHz, CL = 12.5  
pF, Gain = L7  
Note:  
1. Guaranteed by characterization, not tested in production.  
2. Safety factor (Sf) must be higher than 5 for HXT to determine the oscillator safe operation during the application life. If  
Safety factor isn’t enough, the HXT gain need be changed to higher driving level.  
ꢃꢄ  
ꢐꢂꢄ  
ꢁꢂ  
ꢎꢏꢏꢂ  
    
ꢅꢆꢇꢈꢉꢊꢋꢂꢌꢍꢄ  
RADD: The value of smallest series resistance preventing the oscillator from starting up successfully. This resistance is  
only used to measure Safety factor (Sf) of crystal in engineer stage, not for mass produciton.  
XT1_OUT  
XT1_IN  
RADD  
C2  
C1  
Table 8.4-5 External 4~32 MHz High Speed Crystal Characteristics  
8.4.4.1 Typical Crystal Application Circuits  
For C1 and C2, it is recommended to use high-quality external ceramic capacitors in 10 pF ~ 20 pF  
range, designed for high-frequency applications, and selected to match the requirements of the crystal  
or resonator. The crystal manufacturer typically specifies a load capacitance which is the series  
combination of C1 and C2. PCB and MCU pin capacitance must be included (8 pF can be used as a  
rough estimate of the combined pin and board capacitance) when sizing C1 and C2.  
CRYSTAL  
C1  
C2  
R1  
4 MHz ~ 32 MHz  
10 ~ 20 pF  
10 ~ 20 pF  
without  
July 2, 2020  
Page 224 of 266  
Rev 1.01  
 
M251/M252  
XT1_OUT  
XT1_IN  
R1  
C1  
C2  
Figure 8.4-1 Typical Crystal Application Circuit  
July 2, 2020  
Page 225 of 266  
Rev 1.01  
M251/M252  
8.4.5  
External 4~32 MHz High Speed Clock Input Signal Characteristics  
For clock input mode, the HXT oscillator is switched off and XT1_IN is a standard input pin to receive  
external clock. The external clock signal has to respect the table below. The characteristics result from  
tests performed uses a wavefrom generator.  
Symbol  
Parameter  
Min[*1]  
Typ  
Max[*1]  
Unit  
Test Conditions  
External user clock source  
frequency  
fHXT_ext  
1
-
32  
MHz  
tCHCX  
tCLCX  
tCLCH  
Clock high time  
Clock low time  
8
8
-
-
-
-
nS  
nS  
Low (10%) to high level (90%)  
rise time  
Clock rise time  
Clock fall time  
-
-
-
-
10  
10  
nS  
nS  
High (90%) to low level (10%)  
fall time  
tCHCL  
DuE_HXT  
VIH  
Duty cycle  
40  
0.7*VDD  
VSS  
-
-
-
60  
VDD  
%
V
Input high voltage  
Input low voltage  
VIL  
0.3*VDD  
V
External  
clock source  
XT1_IN  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
VIH  
VIL  
tCHCL  
tCHCX  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-6 External 4~32 MHz High Speed Clock Input Signal  
8.4.6  
External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) Characteristics  
for M251xC/M251xD/M252xC/M252xD  
The low-speed external (LXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the X32_OUT and X32_IN pins and must not be connected to any other devices in  
order to minimize output distortion and startup stabilization time. Refer to the crystal resonator  
manufacturer for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
Parameter  
Min[*1]  
Typ Max[*1] Unit  
Test Conditions  
July 2, 2020  
Page 226 of 266  
Rev 1.01  
M251/M252  
Symbol  
VDD  
Parameter  
Min[*1]  
1.75  
-40  
Typ Max[*1] Unit  
Test Conditions  
Operation voltage  
-
-
5.5  
105  
-
V
Temperature range  
TLXT  
C  
Rf  
Internal feedback resistor  
Oscillator frequency  
-
15  
MΩ  
kHz  
FLXT  
32.768  
ESR=35 kΩ, CL = 12.5 pF, Gain =  
L1  
-
-
-
0.6  
0.74  
1
2.0  
2.5  
3.0  
ESR=70 kΩ, CL = 12.5 pF, Gain =  
L2  
ILXT  
Current consumption from VDD  
A  
ESR=70 kΩ, CL = 12.5 pF, Gain =  
L3  
TsLXT  
DuLXT  
Stable time  
-
30  
-
2
-
-
70  
-
S
%
V
Duty cycle  
[*1]  
Vpp  
Peak-to-peak amplitude  
0.4  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-7 External 32.768 kHz Low Speed Crystal (LXT) Oscillator  
Symbol  
Rs  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Equivalnet Series Resisotr(ESR)  
-
35  
70  
kΩ  
Crystal @32.768 kHz  
Table 8.4-8 External 32.768 kHz Low Speed Crystal Characteristics  
8.4.6.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R1  
32.768 kHz, ESR < 70 KΩ  
5 ~ 20 pF  
5 ~ 20 pF  
without  
X32_OUT  
X32_IN  
R1  
C1  
C2  
Figure 8.4-2 Typical 32.768 kHz Crystal Application Circuit  
July 2, 2020  
Page 227 of 266  
Rev 1.01  
M251/M252  
8.4.7  
External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) Characteristics  
for M251xE/M251xG/M252xE/M252xG  
The low-speed external (LXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the X32_OUT and X32_IN pins and must not be connected to any other devices in  
order to minimize output distortion and startup stabilization time. Refer to the crystal resonator  
manufacturer for more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
VBAT  
TLXT  
Parameter  
Min[*1]  
1.75  
-40  
Typ Max[*1] Unit  
Test Conditions  
Operation voltage  
-
-
5.5  
105  
-
V
Temperature range  
C  
Rf  
Internal feedback resistor  
Oscillator frequency  
-
15  
MΩ  
kHz  
FLXT  
32.768  
0.49  
0.55  
-
-
4.6  
ESR=35 kΩ, CL = 6 pF, Gain = L1  
ESR=35 kΩ, CL = 6 pF, Gain = L2  
4.75  
ESR=35 kΩ, CL = 12.5 pF, Gain =  
L3  
-
-
-
-
-
0.76  
0.87  
0.97  
1.4  
5
ESR=35 kΩ, CL = 12.5 pF, Gain =  
L4  
5.3  
5.55  
6.4  
7.5  
ILXT  
Current consumption from VBAT  
A  
ESR=35 kΩ, CL = 12.5 pF, Gain =  
L5  
ESR=70 kΩ, CL = 12.5 pF, Gain =  
L6  
ESR=70 kΩ, CL = 12.5 pF, Gain =  
L7  
1.ƒ  
TsLXT  
DuLXT  
Vpp  
Stable time  
-
30  
-
2
-
-
70  
-
S
%
V
Duty cycle  
Peak-to-peak amplitude  
0.3  
Note:  
1. Guaranteed by characterization, not tested in production.  
Table 8.4-9 External 32.768 kHz Low Speed Crystal (LXT) Oscillator  
Symbol  
Rs  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Equivalnet Series Resisotr(ESR)  
-
35  
70  
kΩ  
Crystal @32.768 kHz  
Table 8.4-10 External 32.768 kHz Low Speed Crystal Characteristics  
8.4.7.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R1  
32.768 kHz, ESR < 70 KΩ  
5 ~ 20 pF  
5 ~ 20 pF  
without  
July 2, 2020  
Page 228 of 266  
Rev 1.01  
M251/M252  
X32_OUT  
X32_IN  
R1  
C1  
C2  
Figure 8.4-3 Typical 32.768 kHz Crystal Application Circuit  
8.4.8  
External 32.768 kHz Low Speed Clock Input Signal Characteristics  
For clock input mode the LXT oscillator is switched off and X32_IN is a standard input pin to receive  
external clock. The external clock signal has to respect the table below. The characteristics result from  
tests performed uses a wavefrom generator.  
Symbol  
fLXT_ext  
tCHCX  
Parameter  
External clock source frequency  
Clock high time  
Min[*1]  
-
Typ  
Max[*1]  
Unit  
kHz  
nS  
Test Conditions  
32.768  
-
-
-
450  
450  
-
-
tCLCX  
Clock low time  
nS  
tCLCH  
Clock rise time  
Low (10%) to high level (90%)  
rise time  
-
-
-
-
50  
50  
nS  
nS  
tCHCL  
Clock fall time  
High (90%) to low level (10%) fall  
time  
DuE_LXT  
Xin_VIH  
Xin_VIL  
Duty cycle  
30  
0.7*VDD  
VSS  
-
-
-
70  
VDD  
%
V
LXT input pin input high voltage  
LXT input pin input low voltage  
VBAT = VDD  
VBAT = VDD  
0.3*VDD  
V
External  
clock source  
X32_IN  
tCLCL  
tCLCH  
90%  
10%  
VIH  
tCLCX  
VIL  
tCHCL  
tCHCX  
Note:  
1. Guaranteed by design, not tested in production.  
Table 8.4-11 External 32.768 kHz Low Speed Clock Input Signal  
July 2, 2020  
Page 229 of 266  
Rev 1.01  
M251/M252  
8.4.9  
PLL Characteristics  
Symbol  
fPLL_in  
Parameter  
PLL input clock  
Min[*1]  
Typ  
Max[*1]  
24  
Unit  
MHz  
MHz  
MHz  
MHz  
µS  
Test Conditions  
4
16  
4
-
-
-
-
-
fPLL_OUT  
fPLL_REF  
fPLL_VCO  
TL  
PLL multiplier output clock  
PLL reference clock  
100  
8
PLL voltage controlled oscillator  
PLL locking time  
64  
-
100  
100  
Jitter[*2]  
Cycle-to-cycle Jitter  
Power consumption  
-
-
-
500  
2
pS  
f
VDD=5.5V @ PLL_VCO = 100  
IDD  
1
mA  
MHz  
Note:  
1. Guaranteed by characterization, not tested in production  
2. Guaranteed by design, not tested in production  
Table 8.4-12 PLL Characteristics  
July 2, 2020  
Page 230 of 266  
Rev 1.01  
M251/M252  
8.4.10 I/O AC Characteristics  
Symbol  
Parameter  
Typ.  
Max[*1]  
.
Unit  
Test Conditions[*2]  
-
CL = 30 pF, V  
>= 4.5 V  
>= 4.5 V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
>= 1.8 V  
>= 4.5 V  
>= 4.5 V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
>= 1.8 V  
>= 4.5 V  
>= 4.5 V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
>= 1.8 V  
>= 4.5 V  
>= 4.5 V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
>= 1.8 V  
>= 4.5 V  
>= 4.5 V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
6.5  
4.5  
10  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
Output high (90%) to low level (10%) fall time  
(Normal Slew Rate)  
7
16.5  
11.5  
5
tf(IO)out  
nS  
3.5  
8
Output high (90%) to low level (10%) fall time  
(High Slew Rate)  
5
12.5  
8
7.5  
5
12  
Output low (10%) to high level (90%) rise time  
(Normal Slew Rate)  
nS  
8
20.5  
13.5  
6.5  
4.5  
10  
tr(IO)out  
Output low (10%) to high level (90%) rise time  
(High Slew Rate)  
nS  
6.5  
18  
10.5  
47  
70  
I/O maximum frequency  
(Normal Slew Rate)  
[*3]  
fmax(IO)out  
30  
MHz  
44  
18  
July 2, 2020  
Page 231 of 266  
Rev 1.01  
M251/M252  
-
-
-
-
-
-
-
CL = 10 pF, V  
>= 1.8 V  
>= 4.5 V  
>= 4.5 V  
>= 2.7 V  
>= 2.7 V  
>= 1.8 V  
>= 1.8 V  
= 3.3 V,  
26  
55  
80  
36  
56  
21  
35  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
CL = 10 pF, V  
CL = 30 pF, V  
I/O maximum frequency  
(High Slew Rate)  
MHz  
2.77  
-
f(IO)out = 24 MHz  
CL = 10 pF, V  
= 3.3 V,  
DD  
1.19  
0.69  
0.3  
-
-
-
f(IO)out = 24 MHz  
[*4]  
IDIO  
I/O dynamic current consumption  
mA  
CL = 30 pF, V  
= 3.3 V,  
= 3.3 V,  
DD  
f(IO)out = 6 MHz  
CL = 10 pF, V  
DD  
f(IO)out = 6 MHz  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. CL is a external capacitive load to simulate PCB and device loading.  
3. The maximum frequency is defined by ꢓꢊꢔ ꢖꢂꢗꢂꢘꢉ ꢐꢉ .  
4. The I/O dynamic current consumption is defined by ꢝꢞꢟ  ꢝꢝ ꢗꢂꢞꢟ  ꢞꢟ   
Table 8.4-13 I/O AC Characteristics  
July 2, 2020  
Page 232 of 266  
Rev 1.01  
M251/M252  
8.5 Analog Characteristics  
8.5.1 LDO  
Symbol  
Parameter  
Power supply  
Min  
1.75  
-
Typ  
-
Max  
5.5  
-
Unit  
V
Test Condition  
VDD  
VLDO  
Output voltage  
Temperature  
1.5  
V
TA  
-40  
-
105  
Note:  
1. It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of the device.  
2. For ensuring power stability, a 1μF capacitor must be connected between LDO_CAP pin and the closest VSS pin of the  
device.  
3. VLDO is only used to supply internal power.  
8.5.2  
Reset and Power Control Block Characteristics  
The parameters in the table below are derived from tests performed under ambient temperature.  
Symbol  
Parameter  
POR operating current  
LVR operating current  
BOD operating current  
Min  
Typ  
70  
Max  
100  
3
Unit  
Test Conditions  
AVDD = 5.5V  
[*1]  
IPOR  
-
-
µA  
[*1]  
ILVR  
0.3  
AVDD = 5.5V  
[*1]  
IBOD  
AVDD = 5.5V, Normal  
mode  
-
-
40  
3
60  
6
AVDD = 5.5V, Low  
Power mode  
VPOR  
VLVR  
VBOD  
POR reset voltage  
LVR reset voltage  
1.40  
1.55  
1.70  
1.90  
2.30  
2.60  
2.90  
3.60  
4.25  
1.76  
1.96  
2.36  
2.66  
2.96  
3.66  
4.31  
-
1.5  
1.65  
1.7  
V
-
1.6  
BOD brown-out detect voltage  
(Falling edge)  
1.80  
2.00  
2.40  
2.70  
3.00  
3.70  
4.40  
1.88  
2.08  
2.48  
2.78  
3.08  
3.78  
4.48  
200  
1.90  
2.10  
2.50  
2.80  
3.10  
3.80  
4.50  
2.00  
2.20  
2.60  
2.90  
3.20  
3.90  
4.60  
2000  
BODVL = 1  
BODVL = 2  
BODVL = 3  
BODVL = 4  
BODVL = 5  
BODVL = 6  
BODVL = 7  
BODVL = 1  
BODVL = 2  
BODVL = 3  
BODVL = 4  
BODVL = 5  
BODVL = 6  
BODVL = 7  
-
BOD brown-out detect voltage  
(Rising edge)  
[*1]  
TLVR_SU  
LVR startup time  
µS  
July 2, 2020  
Page 233 of 266  
Rev 1.01  
M251/M252  
[*1]  
[*1]  
TLVR_RE  
LVR respond time  
BOD startup time  
BOD respond time  
-
-
20  
50  
-
-
TBOD_SU  
1000  
2000  
[*1]  
TBOD_RE  
-
1
-
2
Normal mode  
Low Power mode  
POR Enabled  
POR Enabled  
LVR Enabled  
-
30000  
[*1]  
RVDDR  
VDD rise time rate  
VDD fall time rate  
10  
10  
250  
-
20000  
µS/V  
[*1]  
RVDDF  
-
-
-
-
BOD Enabled for  
Normal mode  
10  
-
-
Note:  
1. Guaranteed by characterization, not tested in production.  
2. Design for specified applcaiton.  
Table 8.5-1 Reset and power control unit  
VDD  
RVDDR  
RVDDF  
VBOD  
VLVR  
VPOR  
Time  
Figure 8.5-1 Power Ramp Up/Down Condition  
July 2, 2020  
Page 234 of 266  
Rev 1.01  
M251/M252  
8.5.3  
12-bit SAR Analog to Digital Converter (ADC)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
TA  
Temperature  
-40  
105  
-
AV  
=
AVDD  
VREF  
VIN  
Analog operating voltage  
Reference voltage  
1.75  
1.75  
0
-
-
-
5.5  
V
V
V
VDD  
DD  
AVDD  
VREF  
ADC channel input voltage  
AVDD = VDD =VREF = 3.3 V  
FADC = 16 MHz  
ADC Operating current (AVDD  
current)  
+ VREF  
[*1]  
IADC  
-
-
355  
µA  
TCONV = 18 * TADC  
NR  
Resolution  
12  
-
Bit  
[*1]  
FADC  
ADC Clock frequency  
4
16  
MHz  
1/TADC  
TSMP = ( EXTSMPT(EADC_SCTL  
x[31:24]) + 1 ) * TADC  
TSMP  
Sampling Time  
Conversion time  
1
-
-
256  
273  
1/FADC  
TCONV  
18  
1/FADC TCONV = TSMP + 17 * TADC  
FSPS = FADC / TCONV  
[*1]  
FSPS  
Sampling Rate  
250  
-
888.8 kSPS  
EXTSMPT(ADC_ESMPCTL[7:0])  
= 0  
TEN  
Enable to ready time  
TBD  
-3  
-
-
-
μS  
VREF = AVDD, REX = 50Ω  
+3  
LSB  
except TSSOP20 and TSSOP28  
INL[*1]  
Integral Non-Linearity Error  
Differential Non-Linearity Error  
Gain error  
VREF = AVDD, REX = 50Ω  
-TBD  
-1  
+TBD  
+3  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
TSSOP20 and TSSOP28  
VREF = AVDD, REX = 50Ω  
-
-
-
-
-
-
-
except TSSOP20 and TSSOP28  
DNL[*1]  
VREF = AVDD, REX = 50Ω  
-TBD  
-6  
+TBD  
+6  
TSSOP20 and TSSOP28  
VREF = AVDD, REX = 50Ω  
except TSSOP20 and TSSOP28  
[*1]  
EG  
VREF = AVDD, REX = 50Ω  
-TBD  
-3  
+TBD  
+3  
TSSOP20 and TSSOP28  
VREF = AVDD, REX = 50Ω  
except TSSOP20 and TSSOP28  
[*1]  
EO  
Offset error  
T
VREF = AVDD, REX = 50Ω  
-TBD  
-1.5  
+TBD  
+6.5  
TSSOP20 and TSSOP28  
[*1]  
EA  
Absolute Error  
VREF = AVDD, , REX = 50Ω  
except TSSOP20 and TSSOP28  
VREF = AVDD, REX = 50Ω  
-TBD  
TBD  
-
+TBD  
-
TSSOP20 and TSSOP28  
ENOB[*1]  
Effective number of bits  
TBD  
bits FADC = 16 MHz  
July 2, 2020  
Page 235 of 266  
Rev 1.01  
ꢧꢝꢅ ꢗꢂꢞꢨ     
ꢘꢫꢨꢐꢕ  
                                                                           
M251/M252  
Symbol  
SINAD[*1]  
SNR[*1]  
Parameter  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
Min  
TBD  
TBD  
TBD  
-
Typ  
TBD  
TBD  
TBD  
26  
Max  
Unit  
Test Conditions  
AVDD = VDD =VREF = 1.8 V ~ 5.5 V  
REX = 50Ω  
-
-
dB  
Input Frequency = 1 kHz ~ 20 kHz  
TA = 25 °C  
THD[*1]  
Total harmonic distortion  
Internal Capacitance  
-
[*1]  
CIN  
30  
-
pF  
kΩ  
kΩ  
[*1]  
RIN  
Internal Switch Resistance  
External input impedance  
-
0.5  
-
[*1]  
REX  
-
33  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. REX max formula is used to determine the maximum external impedance allowed for 1/4 LSB error. N = 12 (based on  
12-bit resoluton) and k is the number of sampling clocks (TSMP). CEX represents the capacitance of PCB and pad and  
is combined with REX into a low-pass filter. Once the REX and CEX values are too large, it is possible to filter the real  
signal and reduce the ADC accuracy.  
ꢌꢥ   
ꢬꢂꢞꢨ  
VDD  
EADC_CHx  
RIN  
REX  
12-bit  
Converter  
VEX  
CIN  
CEX  
Note: Injection current is a important topic of ADC accuracy. Injecting current on any analog input pins  
should be avoided to protect the conversion being performed on another analog input. It is  
recommended to add Schottky diodes (pin to ground and pin to power) to analog pins which may  
potentially inject currents.  
July 2, 2020  
Page 236 of 266  
Rev 1.01  
M251/M252  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer  
curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and  
gain error from the actual transfer curve.  
July 2, 2020  
Page 237 of 266  
Rev 1.01  
M251/M252  
8.5.4  
Analog Comparator Controller (ACMP)  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature (TA), and the typical values  
for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Min Typ Max Unit  
Test Conditions  
VDD = AVDD  
AVDD  
Analog supply voltage  
1.75  
-40  
-
-
5.5  
V
TA  
Temperature  
105  
-
-
-
-
38  
10  
3
90  
30  
10  
6
MODESEL = 11  
MODESEL = 10  
MODESEL = 01  
MODESEL = 00  
[*2]  
IACMP  
ACMP operating current  
A  
1.2  
1/2 AVDD  
AVDD -0.1  
[*2]  
VCM  
Input common mode voltage range  
0.1  
[*2]  
VDI  
Differential input voltage sensitivity  
Input offset voltage  
-
-
10  
±10  
10  
-
mV Hysteresis disable (HYSSEL = 00)  
mV Hysteresis disable (HYSSEL = 00)  
HYSSEL = 01  
[*2]  
±20  
20  
40  
60  
-
Voffset  
-
[*2]  
Vhys  
Hysteresis window  
DC voltage Gain  
-
20  
mV HYSSEL = 10  
HYSSEL = 11  
-
30  
Av[*1]  
43  
-
70  
dB  
175  
350  
250  
600  
MODESEL = 11  
-
MODESEL = 10  
nS  
[*2]  
Td  
Propagation delay  
-
700 2000  
1400 4500  
250 + 450 +  
MODESEL = 01  
-
MODESEL = 00  
µS  
[*2]  
TSetup  
Setup time  
-
Td  
Td  
[*2]  
ACRV  
CRV output voltage  
Unit resistor value  
Operating current  
-5  
-
-
5
%
AVDD x (1/6+CRVCTL/24)  
[*2]  
RCRV  
4.7  
30  
-
kΩ  
[*2]  
IDD_CRV  
-
120  
A  
Note:  
1. Guaranteed by design, not tested in production.  
2. Guaranteed by characteristic, not tested in production.  
Table 8.5-2 ACMP Characteristics  
July 2, 2020  
Page 238 of 266  
Rev 1.01  
M251/M252  
8.5.5  
Digital to Analog Converter (DAC)  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature (TA), and the typical values  
for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Analog supply voltage  
Min  
Typ  
Max  
Unit  
Test Condition  
AVDD  
2.5  
-
5.5  
V
-
-
NR  
Resolution  
12  
-
bit  
V
VREF  
VREF AVDD  
Reference supply voltage  
1.65  
AVDD  
±1  
-
-
-
-
-
-
-
-
LSB 12-bit mode  
DNL[*2]  
Differential non-linearity error  
Integral non-linearity error  
±0.5 LSB 8-bit mode  
12-bit mode  
±2  
LSB  
INL[*2]  
±0.5 LSB 8-bit mode  
12-bit mode  
-
-
±25  
LSB  
DACOUT buffer ON  
OE[*2]  
12-bit mode  
Offset Error  
-
-
-
-
-
-
±5  
±2  
LSB  
DACOUT buffer OFF  
LSB 8-bit mode  
12-bit mode  
LSB  
±20  
DACOUT buffer ON  
GE[*2]  
12-bit mode  
Gain Error  
-
-
-
-
-
-
±4  
±2  
±8  
LSB  
DACOUT buffer OFF  
LSB 8-bit mode  
12-bit mode  
LSB  
DACOUT buffer ON  
AE[*2]  
12-bit mode  
Absolute Error  
-
-
-
-
±4  
±2  
LSB  
DACOUT buffer OFF  
LSB 8-bit mode  
-
-
Monotonic  
10-bit guaranteed  
-
AVDD  
-
DACOUT buffer ON  
DACOUT buffer OFF  
0.2  
-
-
V
V
0.2  
[*1]  
VO  
Output Voltage  
VREF  
1*LSB  
-
1*LSB  
[*2] [*3]  
RLOAD  
Resistive load  
DACOUT buffer ON  
5
-
-
-
kΩ  
kΩ  
pF  
[*2]  
RO  
Output impedance  
Capacitive load  
DACOUT buffer OFF  
-
8
-
20  
50  
[*2] [*4]  
CLOAD  
-
July 2, 2020  
Page 239 of 266  
Rev 1.01  
M251/M252  
AVDD  
= 5.5V, no load, lowest code  
(0x000)  
[*2]  
IDAC_AVDD  
-
340  
550  
280  
A  
A  
μS  
DAC operating current on AVDD supply  
DAC operating current on VREF supply  
AVDD  
= 5.5V, no load, middle code  
(0x800)  
VREF =5.5V, no load, middle code  
(0x800)  
[*2]  
IDAC_VREF  
-
-
Full scale: for a 12-bit input code  
transition between the lowest and the  
highest input codes when DAC_OUT  
reaches final value +/-1 LSB,  
[*2]  
TB  
Settling Time  
-
-
3
-
4
1
CLOAD 50pF, RLOAD ≥ 5kΩ  
Max. frequency for  
MSPS DAC_OUT change from core i to  
a
correct  
FS  
Update Rate  
i+1LSB, CLOAD 50pF, RLOAD ≥ 5kΩ  
Wakeup time from OFF state. Input  
code between lowest and highest  
possible codes.  
TWAKEUP  
Wake-up Time  
-
-
9
15  
μS  
DAC clock source = 1MHz  
PSRR[*1] Power Supply Rejection Ratio  
Note:  
-60  
-40  
dB  
No RLOAD, CLOAD = 50pF  
1. Guaranteed by design, not tested in production  
2. Guaranteed by characteristic, not tested in production.  
3. Resistive load between DACOUT and AVSS  
.
4. Capacitive load at DACOUT pin.  
July 2, 2020  
Page 240 of 266  
Rev 1.01  
M251/M252  
8.5.6  
OP Amplifier (OPA)  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature (TA), and the  
typical values for TA = 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Analog supply voltage  
Min  
Typ  
Max  
Unit  
Test Condition  
AVDD  
2.5  
-
5.5  
V
TA  
Temperature  
-40  
-
105  
IOPA  
OPA operating current  
-
500  
1400  
A  
V
[*2]  
VCM  
Common mode input range  
Output Saturation Voltage  
0.1  
0.1  
-
-
AVDD-0.1  
AVDD-0.1  
[*2]  
VOS  
V
RLOAD = 4 KΩ  
After Offset voltage calibration  
VCM=AVDD/2  
-
-
±1  
±1  
±3  
±5  
mV  
mV  
[*2]  
VOFFSET0  
Input offset voltage  
After Offset voltage calibration  
VCM=0.1 ~ AVDD 0.1  
CMRR[*1] Common Mode Rejection Ratio  
PSRR[*1] Power Supply Rejection Ratio  
GBW[*2] Bandwidth  
-
-
-
89  
120  
5
-
-
-
dB AVDD=3.3V, VCM=AVDD/2  
dB AVDD=3.3V, VCM=AVDD/2  
MHz AVDD=3.3V, VCM=AVDD/2  
SR[*2]  
Slew rate  
-
7.5  
-
RLOAD = 4 KΩ, CLOAD = 50pF  
V/S  
AO[*1]  
PM[*1]  
GM[*1]  
Open loop gain  
-
-
91  
63  
TBD  
2
-
-
dB  
Phase Margin  
degreeAVDD=3.3V, VCM=AVDD/2  
Gain Margin  
-
-
dB  
S  
kΩ  
pF  
[*2]  
TWAKEUP  
Wake up time from disable state  
Resistive load  
-
20  
-
[*2]  
RLOAD  
4
-
-
[*2]  
CLOAD  
Capacitive load  
-
50  
Note:  
1. Guaranteed by design, not tested in production  
2.  
Guaranteed by characteristic, not tested in production.  
July 2, 2020  
Page 241 of 266  
Rev 1.01  
 
M251/M252  
8.5.7  
Internal Voltage Reference  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature (TA), and the  
typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Min  
1.49  
1.98  
2.48  
2.97  
3.97  
Typ  
Max  
1.59  
2.11  
2.64  
3.17  
4.22  
Unit  
Test Condition  
AVDD >= 2.0 V  
1.536  
2.048  
2.560  
3.072  
4.096  
AVDD >= 2.4 V  
AVDD >= 2.9 V  
AVDD >= 3.4 V  
AVDD >= 4.5 V  
Internal reference voltage  
V
VREF_INT  
CL =4.7 uF, VREF initial=0V, Preload is  
enabled.  
-
-
-
0.5  
9.3  
24  
0.8  
13  
mS  
mS  
S  
CL =4.7 uF, VREF initial=5.5V, Preload is  
enabled.  
Ts[*1]  
Stable time  
CL =1 uF, VREF initial=0V, Preload is  
enabled.  
180  
CL =1 uF, VREF initial=5.5V, Preload is  
enabled.  
-
-
2
-
2.6  
1
mS  
mA  
[*1]  
IVREF_INT  
Note:  
1. Guaranteed by characterization, not tested in production.  
Internal VREF Operating current  
VREF  
1uF  
Note: VREF_INT is only supported while package includes VREF pin with external capacitor.  
Figure 8.5-2 Typical Connection with Internal Voltage Reference  
July 2, 2020  
Page 242 of 266  
Rev 1.01  
 
M251/M252  
8.5.8  
Temperature Sensor  
The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature (TA), and the  
typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  
Symbol  
Parameter  
Temperature sensor offset voltage  
Temperature Coefficient  
Operating current  
Min  
690  
-1.74  
-
Typ  
720  
-1.83  
16  
Max  
750  
-1.9  
30  
Unit  
mV  
Test Condition  
[*1]  
TA = 0°C  
VTEMP_OS  
[*1]  
mV/°C  
A  
TC  
[*1]  
ITEMP  
Note:  
1. Guaranteed by characterization, not tested in production  
2. Guaranteed by design, not tested in production  
3. VTEMP (mV) = TC (mV/°C) x Temperature (°C) + VTEMP_OS (mV)  
July 2, 2020  
Page 243 of 266  
Rev 1.01  
M251/M252  
8.6 Communications Characteristics  
8.6.1  
SPI Dynamic Characteristics  
Specificaitons[*1]  
Test Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
24  
Unit  
-
-
-
-
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
FSPICLK  
SPI clock frequency  
-
24  
MHz  
1/ TSPICLK  
-
16  
nS  
nS  
tCLKH  
tCLKL  
tDS  
Clock output High time  
Clock output Low time  
Data input setup time  
Data input hold time  
TSPICLK / 2  
TSPICLK / 2  
2
4
-
-
-
-
-
-
-
nS  
nS  
nS  
nS  
nS  
tDH  
-
4.5  
4.5  
4.5  
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
tV  
Data output valid time  
-
-
Note:  
1.Guaranteed by design.  
Table 8.6-1 SPI Master Mode Characteristics  
tCLKH  
tCLKL  
CLKP=0  
SPICLK  
CLKP=1  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8.6-1 SPI Master Mode Timing Diagram  
July 2, 2020  
Page 244 of 266  
Rev 1.01  
M251/M252  
Specificaitons[*1]  
Test Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
11.2  
8.8  
Unit  
-
-
-
-
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
FSPICLK  
SPI clock frequency  
-
MHz  
1/ TSPICLK  
-
4.6  
tCLKH  
tCLKL  
Clock output High time  
Clock output Low time  
TSPICLK / 2  
TSPICLK / 2  
nS  
nS  
1
TSPICLK  
+ 2ns  
-
-
-
-
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1
tSS  
Slave select setup time  
TSPICLK  
+ 2ns  
nS  
1
TSPICLK  
+ 3ns  
-
-
-
-
1
tSH  
tDS  
tDH  
Slave select hold time  
nS  
TSPICLK  
Data input setup time  
Data input hold time  
1.5  
-
-
-
-
-
-
nS  
nS  
3.5  
-
-
-
-
35  
42  
74  
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
tV  
Data output valid time  
nS  
Note:  
1.Guaranteed by design.  
Table 8.6-2 SPI Slave Mode Characteristics  
July 2, 2020  
Page 245 of 266  
Rev 1.01  
M251/M252  
SSACTPOL=1  
SSACTPOL=0  
tSS  
tSH  
SPI SS  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=1  
RXNEG=0  
SPI Clock  
CLKPOL=1  
TXNEG=0  
RXNEG=1  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
Data Valid  
Data Valid  
tDH  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
SSACTPOL=1  
tSS  
tSH  
SPI SS  
SSACTPOL=0  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=0  
RXNEG=1  
SPI Clock  
CLKPOL=1  
TXNEG=1  
RXNEG=0  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
tDH  
Data Valid  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
Data Valid  
Figure 8.6-2 SPI Slave Mode Timing Diagram  
July 2, 2020  
Page 246 of 266  
Rev 1.01  
M251/M252  
8.6.2  
SPI - I2S Dynamic Characteristics  
Symbol  
Parameter  
I2S clock high time  
I2S clock low time  
WS valid time  
Min[*1]  
Max[*1]  
Unit  
Test Conditions  
tw(CKH)  
tw(CKL)  
tv(WS)  
th(WS)  
tsu(WS)  
th(WS)  
80  
80  
2
-
-
Master fPCLK = 48 MHz, data: 24 bits, audio  
frequency = 128 kHz  
6
-
Master mode  
Master mode  
Slave mode  
Slave mode  
nS  
WS hold time  
2
WS setup time  
24  
0
-
WS hold time  
-
I2S slave input clock duty  
cycle  
DuCy(SCK)  
30  
70  
%
Slave mode  
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
Note:  
10  
7
7
4
-
-
-
Master receiver  
Data input setup time  
Data input hold time  
Slave receiver  
-
Master receiver  
-
Slave receiver  
nS  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
25  
-
Slave transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Master transmitter (after enable edge)  
4
-
4
-
0
1.Guaranteed by design.  
Table 8.6-3 I2S Characteristics  
CPOL = 0  
CPOL = 1  
tw(CKH)  
tw(CKL)  
th(WS)  
tv(WS)  
WS output  
SDtransmit  
tv(SD_ST)  
Bitn transmit  
th(SD_MR)  
Bitn receive  
th(SD_ST)  
LSB transmit(2)  
MSB transmit  
MSB receive  
LSB transmit  
tsu(SD_MR)  
SDreceive  
LSB receive(2)  
LSB receive  
Figure 8.6-3 I2S Master Mode Timing Diagram  
July 2, 2020  
Page 247 of 266  
Rev 1.01  
M251/M252  
CPOL = 0  
CPOL = 1  
tw(CKH)  
tw(CKL)  
th(WS)  
WS input  
SDtransmit  
tv(SD_ST)  
Bitn transmit  
th(SD_SR)  
Bitn receive  
tsu(WS)  
th(SD_ST)  
LSB transmit(2)  
MSB transmit  
MSB receive  
LSB transmit  
tsu(SD_SR)  
SDreceive  
LSB receive(2)  
LSB receive  
Figure 8.6-4 I2S Slave Mode Timing Diagram  
July 2, 2020  
Page 248 of 266  
Rev 1.01  
M251/M252  
8.6.3  
I2C Dynamic Characteristics  
Symbol  
Parameter  
Standard Mode[1][2]  
Fast Mode[1][2]  
Unit  
Min  
4.7  
4
Max  
Min  
1.3  
Max  
tLOW  
SCL low period  
-
-
µS  
µS  
µS  
µS  
µS  
µS  
nS  
µS  
nS  
nS  
pF  
tHIGH  
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
SCL high period  
-
0.6  
-
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
4.7  
4
-
0.6  
-
-
-
-
0.6  
4
0.6  
-
4.7[3]  
250  
0[4]  
-
-
1.2[3]  
100  
0[4]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
-
Data hold time  
3.45[5]  
1000  
300  
400  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
-
tf  
SCL/SDA fall time  
-
Cb  
Capacitive load for each bus line  
-
-
Note:  
1. Guaranteed by characteristic, not tested in production  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8  
MHz to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of  
SCL signal.  
Table 8.6-4 I2C Characteristics  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.6-5 I2C Timing Diagram  
July 2, 2020  
Page 249 of 266  
Rev 1.01  
M251/M252  
8.6.4  
USCI - SPI Dynamic Characteristics  
Symbol  
Parameter  
Min[*1]  
Typ  
Max[*1]  
24  
Unit  
Test Conditions  
-
-
-
-
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
FSPICLK  
SPI clock frequency  
-
24  
MHz  
1/ TSPICLK  
-
16  
nS  
nS  
tCLKH  
tCLKL  
tDS  
Clock output High time  
Clock output Low time  
Data input setup time  
Data input hold time  
TSPICLK / 2  
TSPICLK / 2  
2
4
-
-
-
-
-
-
-
-
nS  
nS  
nS  
nS  
nS  
tDH  
9
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
tV  
Data output valid time  
-
9
-
8.5  
Note:  
1.Guaranteed by design.  
Table 8.6-5 USCI-SPI Master Mode Characteristics  
tCLKH  
tCLKL  
CLKP=0  
CLKP=1  
SPICLK  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8.6-6 USCI-SPI Master Mode Timing Diagram  
July 2, 2020  
Page 250 of 266  
Rev 1.01  
M251/M252  
Symbol  
Parameter  
Min[*1]  
Typ  
Max[*1] Unit  
Test Conditions  
-
-
-
-
6.3  
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD 5.5 V, CL = 30 pF  
FSPICLK  
SPI clock frequency  
-
5.6  
4.2  
MHz  
1/ TSPICLK  
-
tCLKH  
tCLKL  
Clock output High time  
Clock output Low time  
TSPICLK / 2  
TSPICLK / 2  
nS  
nS  
1
TSPICLK  
+ 2ns  
-
-
-
-
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1
tSS  
Slave select setup time  
TSPICLK  
+ 2ns  
nS  
1
TSPICLK  
+ 3ns  
-
-
-
-
1
tSH  
tDS  
tDH  
Slave select hold time  
nS  
TSPICLK  
Data input setup time  
Data input hold time  
2
4
-
-
-
-
-
-
-
-
nS  
nS  
79  
88  
117  
4.5 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
2.7 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
1.8 V ≤ VDD ≤ 5.5 V, CL = 30 pF  
tV  
Data output valid time  
-
nS  
-
Note:  
1.Guaranteed by design.  
Table 8.6-6 USCI-SPI Slave Mode Characteristics  
July 2, 2020  
Page 251 of 266  
Rev 1.01  
M251/M252  
SSACTPOL=1  
SSACTPOL=0  
tSS  
tSH  
SPI SS  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=1  
RXNEG=0  
SPI Clock  
CLKPOL=1  
TXNEG=0  
RXNEG=1  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
Data Valid  
Data Valid  
tDH  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
SSACTPOL=1  
tSS  
tSH  
SPI SS  
SSACTPOL=0  
tCLKH  
tCLKL  
CLKPOL=0  
TXNEG=0  
RXNEG=1  
SPI Clock  
CLKPOL=1  
TXNEG=1  
RXNEG=0  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
tDH  
Data Valid  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
Data Valid  
Figure 8.6-7 USCI-SPI Slave Mode Timing Diagram  
July 2, 2020  
Page 252 of 266  
Rev 1.01  
M251/M252  
8.6.5  
USCI-I2C Dynamic Characteristics  
Symbol  
Parameter  
Standard Mode[1][2]  
Fast Mode[1][2]  
Unit  
Min  
4.7  
4
Max  
Min  
1.3  
Max  
tLOW  
SCL low period  
-
-
µS  
µS  
µS  
µS  
µS  
µS  
nS  
µS  
nS  
nS  
pF  
tHIGH  
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
SCL high period  
-
0.6  
-
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
4.7  
4
-
0.6  
-
-
-
-
0.6  
4
0.6  
-
4.7[3]  
250  
0[4]  
-
-
1.2[3]  
100  
0[4]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
-
Data hold time  
3.45[5]  
1000  
300  
400  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
-
tf  
SCL/SDA fall time  
-
Cb  
Capacitive load for each bus line  
-
-
Note:  
1. Guaranteed by characteristic, not tested in production  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8  
MHz to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined  
region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of  
SCL signal.  
Table 8.6-7 USCI-I2C Characteristics  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.6-8 USCI-I2C Timing Diagram  
July 2, 2020  
Page 253 of 266  
Rev 1.01  
M251/M252  
8.6.6  
USB Characteristics  
8.6.6.1 USB Full-Speed Characteristics  
Symbol  
Parameter  
Min[*1]  
Typ  
Max[*1]  
Unit  
Test Conditions  
USB full speed transceiver  
operating voltage  
VBUS  
4.4  
-
5.25  
V
-
USB Internal power regulator  
output  
[*2]  
VDD33  
3.0  
3.3  
3.6  
V
-
VIH  
VIL  
VDI  
Input high (driven)  
Input low  
2.0  
-
-
-
-
-
0.8  
-
V
V
V
-
-
Differential input sensitivity  
0.2  
|(USB_D+) - (USB_D-)|  
Differential  
VCM  
0.8  
-
2.5  
V
Includes VDI range  
common-mode range  
Single-ended receiver threshold  
Receiver hysteresis  
0.8  
-
-
2.0  
-
V
mV  
V
-
-
-
-
-
-
VSE  
200  
VOL  
VOH  
VCRS  
RPU  
Output low (driven)  
0
-
-
-
-
0.3  
3.6  
2.0  
1.9  
Output high (driven)  
2.8  
1.3  
1.19  
V
Output signal cross voltage  
Pull-up resistor  
V
kΩ  
Termination voltage for  
upstream port pull-up (RPU)  
VTRM  
3.0  
-
3.6  
V
-
[*3]  
ZDRV  
Driver output resistance  
Transceiver capacitance  
-
-
10  
-
-
Ω
Steady state drive  
Pin to GND  
CIN  
26  
pF  
Note:  
1. Guaranteed by characterization result, not tested in production.  
2. To ensure stability, an external 1 μF output capacitor, 1uF external capacitor must be connected between the  
USB_VDD33_CAP pin and the closest GND pin of the device.  
3. USB_D+ and USB_D- must be connected with external series resistors to fit USB Full-speed spec request (28 ~  
44Ω).  
Table 8.6-8 USB Full-Speed Characteristics  
8.6.6.2 USB Full-Speed PHY Characteristics  
Symbol  
TFR  
Parameter  
Min[*1]  
Typ  
Max[*1]  
20  
Unit  
nS  
nS  
%
Test Conditions  
CL=50 pF  
rise time  
fall time  
4
4
-
-
-
TFF  
20  
CL=50 pF  
TFRFF  
rise and fall time matching  
90  
111.11  
TFRFF = TFR/TFF  
Note:  
1. Guaranteed by characterization result, not tested in production.  
Table 8.6-9 USB Full-Speed PHY Characteristics  
July 2, 2020  
Page 254 of 266  
Rev 1.01  
M251/M252  
8.7 Flash DC Electrical Characteristics  
The devices are shipped to customers with the Flash memory erased.  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
1.5  
20  
60  
7
Max  
Unit  
V
Test Condition  
[1]  
VFLA  
-
-
-
-
-
-
-
-
-
-
-
-
TERASE  
TPROG  
IDD1  
Page erase time  
Program time  
Read current  
mS  
µS  
TA = 25℃  
mA  
mA  
mA  
IDD2  
Program current  
Erase current  
8
IDD3  
12  
NENDUR  
TRET  
Endurance  
100,000  
10  
-
-
-
-
cycles[2]  
year  
TJ = -40~125℃  
100 kcycle[3] TJ = 85℃  
Data retention  
Note:  
1. VFLA is source from chip internal LDO output voltage.  
2. Number of program/erase cycles.  
3. Guaranteed by design.  
July 2, 2020  
Page 255 of 266  
Rev 1.01  
M251/M252  
9 PACKAGE DIMENSIONS  
9.1 TSSOP20 (4.4x6.5x0.9 mm3)  
July 2, 2020  
Page 256 of 266  
Rev 1.01  
M251/M252  
9.2 TSSOP28 (4.4x9.7x1.0 mm3)  
July 2, 2020  
Page 257 of 266  
Rev 1.01  
M251/M252  
9.3 QFN 33L (5x5x0.8 mm3)  
July 2, 2020  
Page 258 of 266  
Rev 1.01  
M251/M252  
July 2, 2020  
Page 259 of 266  
Rev 1.01  
M251/M252  
9.4 LQFP 48L (7x7x1.4 mm3 Footprint 2.0 mm)  
H
36  
25  
37  
24  
H
13  
48  
12  
1
Controlling dimension  
:
Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
Min Nom Max Min Nom Max  
A
1
0.002 0.004 0.006 0.05  
0.053 0.055 0.057 1.35  
0.10 0.15  
A
2
1.40  
1.45  
0.25  
0.20  
7.10  
7.10  
0.65  
9.10  
A
0.006  
0.004  
0.008 0.010 0.15 0.20  
b
c
D
0.006  
0.10 0.15  
0.008  
7.00  
7.00  
6.90  
6.90  
0.35  
0.272 0.276 0.280  
0.272 0.276 0.280  
E
0.020  
0.354  
0.354  
0.014  
0.350  
0.350  
0.018  
0.026  
0.50  
e
H
D
0.358 8.90 9.00  
0.358 8.90 9.00  
9.10  
0.60 0.75  
1.00  
E
H
0.024 0.030  
0.45  
0
L
L
Y
0.039  
0.004  
7
1
0.10  
7
0
0
July 2, 2020  
Page 260 of 266  
Rev 1.01  
M251/M252  
9.5 LQFP 64L (7x7x1.4 mm3 Footprint 2.0 mm)  
July 2, 2020  
Page 261 of 266  
Rev 1.01  
M251/M252  
9.6 LQFP 128L (14x14x1.4 mm3 Footprint 2.0 mm)  
July 2, 2020  
Page 262 of 266  
Rev 1.01  
M251/M252  
10 ABBREVIATIONS  
10.1 Abbreviations  
Acronym  
ACMP  
ADC  
AES  
Description  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
APB  
AHB  
Advanced High-Performance Bus  
Brown-out Detection  
BOD  
CAN  
DAP  
Controller Area Network  
Debug Access Port  
DES  
Data Encryption Standard  
EADC  
EBI  
Enhanced Analog-to-Digital Converter  
External Bus Interface  
EMAC  
EPWM  
FIFO  
FMC  
FPU  
Ethernet MAC Controller  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
GPIO  
HCLK  
HIRC  
HXT  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
12 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
IAP  
ICP  
ISP  
In System Programming  
LDO  
Low Dropout Regulator  
LIN  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
Pulse Width Modulation  
July 2, 2020  
Page 263 of 266  
Rev 1.01  
M251/M252  
QEI  
Quadrature Encoder Interface  
Secure Digital  
SD  
SPI  
Serial Peripheral Interface  
Samples per Second  
SPS  
TDES  
TK  
Triple Data Encryption Standard  
Touch Key  
TMR  
UART  
UCID  
USB  
WDT  
WWDT  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
Watchdog Timer  
Window Watchdog Timer  
Table 10.1-1 List of Abbreviations  
July 2, 2020  
Page 264 of 266  
Rev 1.01  
M251/M252  
11 REVISION HISTORY  
Date  
Revision  
Description  
2020.04.10  
1.00  
Initial version.  
1. Revised stable time test condition of internal reference voltage in section 8.5.7.  
2. Revised RADD connection that is closed to XT1_OUT pin in Table 8.4-5.  
3. Revised tWU_DPD value in Table 8.3-8  
4. Revised application circuit in Chapter 7.  
2020.07.02  
1.01  
5. Revised IDD_FWPD value in Table 8.3-3.  
6. Added a 10Ω series resistor on USB_Vbus in section 7.2  
7. Updated OPA characteristics in section 8.5.6.  
8. Updated supply current characteristics for M251xE/M251xG/M252xE/M252xG in  
section 8.3.2.  
July 2, 2020  
Page 265 of 266  
Rev 1.01  
M251/M252  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
July 2, 2020  
Page 266 of 266  
Rev 1.01  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY