M4521LE6AE [NUVOTON]

Arm® Cortex®-M 32-bit Microcontroller;
M4521LE6AE
型号: M4521LE6AE
厂家: NUVOTON    NUVOTON
描述:

Arm® Cortex®-M 32-bit Microcontroller

微控制器
文件: 总117页 (文件大小:2555K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M4521  
Arm® Cortex® -M  
32-bit Microcontroller  
NuMicro® Family  
M4521 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Oct. 15, 2018  
Page 1 of 117  
Rev.1.00  
M4521  
TABLE OF CONTENTS  
1
2
GENERAL DESCRIPTION -------------------------------------------------8  
FEATURES----------------------------------------------------------------9  
NuMicro® M4521 Features ................................................................. 9  
Abbreviations ------------------------------------------------------------ 14  
PARTS INFORMATION LIST AND PIN CONFIGURATION ---------------- 16  
NuMicro® M4521 Selection Guide....................................................... 16  
2.1  
3
4
4.1  
4.1.1  
4.1.2  
4.2  
4.2.1  
4.2.2  
4.3  
NuMicro® M4521 Naming Rule ---------------------------------------------------- 16  
NuMicro® M4521 USB Series Selection Guide ------------------------------------- 17  
Pin Configuration .......................................................................... 18  
NuMicro® M4521 Series LQFP48 Pin Diagram ------------------------------------- 18  
NuMicro® M4521 Series LQFP64 Pin Diagram ------------------------------------- 19  
Pin Description............................................................................. 20  
M4521 Series LQFP48 Pin Description -------------------------------------------- 20  
M4521 Series LQFP64 Pin Description -------------------------------------------- 27  
GPIO Multi-function Pin Summary ------------------------------------------------- 35  
4.3.1  
4.3.2  
4.3.3  
5
6
BLOCK DIAGRAM ------------------------------------------------------- 42  
NuMicro® M4521 Series Block Diagram................................................ 42  
FUNCTIONAL DESCRIPTION-------------------------------------------- 43  
Arm® Cortex® -M4 Core.................................................................... 43  
System Manager........................................................................... 46  
5.1  
6.1  
6.2  
6.2.1  
6.2.2  
Overview------------------------------------------------------------------------- 46  
System Reset -------------------------------------------------------------------- 46  
Power Modes and Wake-up Sources ---------------------------------------------- 53  
System Power Distribution -------------------------------------------------------- 55  
System Memory Map ------------------------------------------------------------- 57  
SRAM Memory Organization ------------------------------------------------------ 60  
System Timer (SysTick)----------------------------------------------------------- 62  
Nested Vectored Interrupt Controller (NVIC) --------------------------------------- 62  
Clock Controller............................................................................ 63  
Overview------------------------------------------------------------------------- 63  
Clock Generator ------------------------------------------------------------------ 65  
System Clock and SysTick Clock -------------------------------------------------- 66  
Peripherals Clock----------------------------------------------------------------- 67  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.2.8  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
Oct. 15, 2018  
Page 2 of 117  
Rev.1.00  
M4521  
6.3.5  
6.3.6  
Power-down Mode Clock---------------------------------------------------------- 68  
Clock Output --------------------------------------------------------------------- 68  
Flash Memeory Controller (FMC) ....................................................... 70  
Overview------------------------------------------------------------------------- 70  
Features ------------------------------------------------------------------------- 70  
External Bus Interface (EBI) ............................................................. 71  
Overview------------------------------------------------------------------------- 71  
Features ------------------------------------------------------------------------- 71  
General Purpose I/O (GPIO)............................................................. 72  
Overview------------------------------------------------------------------------- 72  
Features ------------------------------------------------------------------------- 72  
PDMA Controller (PDMA) ................................................................ 73  
Overview------------------------------------------------------------------------- 73  
Features ------------------------------------------------------------------------- 73  
Timer Controller (TMR) ................................................................... 74  
Overview------------------------------------------------------------------------- 74  
Features ------------------------------------------------------------------------- 74  
PWM Generator and Capture Timer (PWM)........................................... 75  
Overview------------------------------------------------------------------------- 75  
Features ------------------------------------------------------------------------- 75  
Watchdog Timer (WDT) .................................................................. 77  
Overview----------------------------------------------------------------------- 77  
Features ----------------------------------------------------------------------- 77  
Window Watchdog Timer (WWDT) ..................................................... 78  
Overview----------------------------------------------------------------------- 78  
Features ----------------------------------------------------------------------- 78  
Real Time Clock (RTC) ................................................................... 79  
Overview----------------------------------------------------------------------- 79  
Features ----------------------------------------------------------------------- 79  
UART Interface Controller (UART)...................................................... 80  
Overview----------------------------------------------------------------------- 80  
Features ----------------------------------------------------------------------- 80  
Smart Card Host Interface (SC) ......................................................... 82  
Overview----------------------------------------------------------------------- 82  
Features ----------------------------------------------------------------------- 82  
6.4  
6.4.1  
6.4.2  
6.5  
6.5.1  
6.5.2  
6.6  
6.6.1  
6.6.2  
6.7  
6.7.1  
6.7.2  
6.8  
6.8.1  
6.8.2  
6.9  
6.9.1  
6.9.2  
6.10  
6.10.1  
6.10.2  
6.11  
6.11.1  
6.11.2  
6.12  
6.12.1  
6.12.2  
6.13  
6.13.1  
6.13.2  
6.14  
6.14.1  
6.14.2  
Oct. 15, 2018  
Page 3 of 117  
Rev.1.00  
M4521  
6.15  
6.15.1  
6.15.2  
6.16  
I2C Serial Interface Controller (I2C)...................................................... 83  
Overview----------------------------------------------------------------------- 83  
Features ----------------------------------------------------------------------- 83  
Serial Peripheral Interface (SPI)......................................................... 84  
Overview----------------------------------------------------------------------- 84  
Features ----------------------------------------------------------------------- 84  
USB Device Controller (USBD).......................................................... 85  
Overview----------------------------------------------------------------------- 85  
Features ----------------------------------------------------------------------- 85  
USB 1.1 Host Controller (USBH) ........................................................ 86  
Overview----------------------------------------------------------------------- 86  
Features ----------------------------------------------------------------------- 86  
CRC Controller (CRC) .................................................................... 87  
Overview----------------------------------------------------------------------- 87  
Features ----------------------------------------------------------------------- 87  
Enhanced 12-bit Analog-to-Digital Converter (EADC) ............................... 88  
Overview----------------------------------------------------------------------- 88  
Features ----------------------------------------------------------------------- 88  
6.16.1  
6.16.2  
6.17  
6.17.1  
6.17.2  
6.18  
6.18.1  
6.18.2  
6.19  
6.19.1  
6.19.2  
6.20  
6.20.1  
6.20.2  
7
8
APPLICATION CIRCUIT ------------------------------------------------- 89  
ELECTRICAL CHARACTERISTICS--------------------------------------- 90  
Absolute Maximum Ratings .............................................................. 90  
DC Electrical Characteristics............................................................. 91  
8.1  
8.2  
8.2.1  
On-chip peripheral current consumption ------------------------------------------- 96  
AC Electrical Characteristics............................................................. 98  
External 4~20 MHz High Speed Crystal (HXT) Input Clock-------------------------- 98  
External 4~20 MHz High Speed Crystal (HXT) Oscillator---------------------------- 98  
22.1184 MHz Internal High Speed RC Oscillator (HIRC) ---------------------------- 99  
32.768 kHz External Low Speed Crystal (LXT) Input Clock------------------------- 100  
32.768 kHz External Low Speed Crystal (LXT) Oscillator -------------------------- 100  
10 kHz Internal Low Speed RC Oscillator (LIRC) ---------------------------------- 101  
Analog Characteristics ...................................................................102  
PIN AC characteristics ----------------------------------------------------------- 102  
12-bit SAR ADC ----------------------------------------------------------------- 103  
LDO ---------------------------------------------------------------------------- 105  
Low Voltage Reset--------------------------------------------------------------- 105  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
Oct. 15, 2018  
Page 4 of 117  
Rev.1.00  
M4521  
8.4.5  
8.4.6  
8.4.7  
8.4.8  
8.4.9  
Brown-out Detector -------------------------------------------------------------- 105  
Power-on Reset ----------------------------------------------------------------- 106  
Temperature Sensor------------------------------------------------------------- 106  
Internal Voltage Reference------------------------------------------------------- 107  
USB PHY ----------------------------------------------------------------------- 107  
Flash DC Electrical Characteristics ....................................................109  
I2C Dynamic Characteristics ............................................................110  
SPI Dynamic Characteristics............................................................111  
Dynamic Characteristics of Data Input and Output Pin ----------------------------- 111  
8.5  
8.6  
8.7  
8.7.1  
9
PACKAGE DIMENSIONS -----------------------------------------------114  
LQFP 64L (7x7x1.4 mm footprint 2.0 mm)............................................114  
LQFP 48L (7x7x1.4mm footprint 2.0mm) .............................................115  
9.1  
9.2  
10 REVISION HISTORY----------------------------------------------------116  
Oct. 15, 2018  
Page 5 of 117  
Rev.1.00  
M4521  
List of Figures  
Figure 4.1-1 NuMicro® M4521 Selection Code.............................................................................. 16  
Figure 4.2-1 NuMicro® M4521 Series LQFP 48-pin Diagram ........................................................ 18  
Figure 4.2-2 NuMicro® M4521 Series LQFP 64-pin Diagram ........................................................ 19  
Figure 5.1-1 NuMicro® M4521 Series Block Diagram.................................................................... 42  
Figure 6.1-1 Cortex® -M4 Block Diagram........................................................................................ 43  
Figure 6.2-1 System Reset Sources.............................................................................................. 47  
Figure 6.2-2 nRESET Reset Waveform......................................................................................... 49  
Figure 6.2-3 Power-on Reset (POR) Waveform ............................................................................ 50  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform......................................................................... 51  
Figure 6.2-5 Brown-out Detector (BOD) Waveform....................................................................... 52  
Figure 6.2-6 Power Mode State Machine ...................................................................................... 53  
Figure 6.2-7 NuMicro® M4521 Series Power Distribution Diagram ............................................... 56  
Figure 6.2-8 SRAM Block Diagram................................................................................................ 60  
Figure 6.2-9 SRAM Memory Organization..................................................................................... 61  
Figure 6.3-1 Clock Generator Global View Diagram...................................................................... 64  
Figure 6.3-2 Clock Generator Block Diagram................................................................................ 65  
Figure 6.3-3 System Clock Block Diagram .................................................................................... 66  
Figure 6.3-4 HXT Stop Protect Procedure..................................................................................... 67  
Figure 6.3-5 SysTick Clock Control Block Diagram....................................................................... 67  
Figure 6.3-6 Clock Source of Clock Output ................................................................................... 68  
Figure 6.3-7 Clock Output Block Diagram ..................................................................................... 69  
Figure 8.3-1 Typical Crystal Application Circuit ............................................................................. 99  
Figure 8.3-2 HIRC Accuracy vs. Temperature............................................................................. 100  
Figure 8.3-3 Typical Crystal Application Circuit ........................................................................... 101  
Figure 8.4-1 Typical connection diagram using the ADC ............................................................ 104  
Figure 8.4-2 Power-up Ramp Condition ...................................................................................... 106  
Figure 8.6-1 I2C Timing Diagram ................................................................................................. 110  
Figure 8.7-1 SPI Master Mode Timing Diagram .......................................................................... 111  
Figure 8.7-2 SPI Slave Mode Timing Diagram ............................................................................ 113  
Oct. 15, 2018  
Page 6 of 117  
Rev.1.00  
M4521  
List of Tables  
Table 2.1-1 List of Abbreviations.................................................................................................... 15  
Table 4.3-1 M4521 GPIO Multi-function Table .............................................................................. 41  
Table 6.2-1 Reset Value of Registers............................................................................................ 49  
Table 6.2-2 Power Mode Difference Table .................................................................................... 53  
Table 6.2-3 Clocks in Power Modes .............................................................................................. 54  
Table 6.2-4 Condition of Entering Power-down Mode Again......................................................... 55  
Table 6.2-5 Address Space Assignments for On-Chip Controllers................................................ 59  
Table 6.13-1 NuMicro® M4521 Series UART Feature ................................................................... 81  
Oct. 15, 2018  
Page 7 of 117  
Rev.1.00  
M4521  
1 GENERAL DESCRIPTION  
The NuMicro® M4521 series 32-bit microcontroller powered by Arm® Cortex® -M4F with DSP and  
FPU runs up to 72 MHz. It is embedded with 128 KB Flash ROM, 32 KB SRAM and independent  
4 KB In System Programming Flash ROM. The M4521 series is equipped with plenty of  
peripherals: 3 sets of UART with 16-byte FIFO, 2 sets of I2C that support SMBus and PMBus, SPI  
and Quad-SPI, ISO-7816, USB full-speed device/host, and EBI that provides great flexibility  
through adding external memory. It also offers four 32-bit timers, two watchdog timers, 8-ch  
peripheral DMA, 12-ch 16-bit PWM, and 16-ch 12-bit SAR ADC with 1 MSPS conversion rate.  
The M4521 series provides two special designs. One is high-resolution 144 MHz PWM with high-  
speed timer (resolution<7ns). In conjunction with a driver ADC, it delivers hardware brake  
protection and pulse capture functions to save MCU computing resource and effectively perform  
advanced computing task in motor control application, making the M4521 series exceptionally  
outstanding in industrial automation control. The other is VAI (Voltage Adjustment Interface)  
which supports voltage level adjustment on individual I/O (1.8V-5.5V) for saving additional cost on  
adjusting the interface voltage difference with external components.  
The M4521 series also provides the wide operating voltage (2.5V-5.5V), industrial operating  
temperature (-40°C - 105°C), 5V-tolerance input I/O to significantly enhance system stability. The  
22.1184 MHz internal RC oscillator (HIRC variation < ±2%) and 32.768 kHz external crystal  
oscillator can trim HIRC (HIRC variation < ±0.25%) working at -40˚C- 105˚C to enhance system  
immunity and fulfill the high precision demand of communications. The M4521 series is  
specifically suitable for high-performance and high-precision applications, such as industrial  
automation, home automation, security alarm system, and gaming peripherals.  
The M4521 series is suitable for a wide range of applications such as:  
Industrial Automation  
PLCs  
Home Automation  
Security Alarm System  
Power Metering  
Data Collector  
RFID Reader  
System Supervisors  
Smart Card Reader  
Printer  
Bar Code Scanner  
Motor Control  
Digital Power  
Oct. 15, 2018  
Page 8 of 117  
Rev.1.00  
M4521  
2 FEATURES  
2.1 NuMicro® M4521 Features  
Core  
Arm® Cortex® -M4F core running up to 72 MHz  
Supports DSP extension with hardware divider  
Supports IEEE 754 compliant Floating-point Unit (FPU)  
Supports Memory Protection Unit (MPU)  
One 24-bit system timer  
Supports Low Power Sleep mode by WFI and WFE instructions  
Single-cycle 32-bit hardware multiplier  
Supports programmable 16 level priorities of Nested Vectored Interrupt Controller  
(NVIC)  
Supports programmable mask-able interrupts  
Built-in LDO for wide operating voltage ranged from 2.5V to 5.5V  
Flash Memory  
Supports 128 KB application ROM (APROM)  
Supports 4 KB Flash for loader (LDROM)  
Supports Data Flash with configurable memory size  
Supports In-System-Programming (ISP), In-Application-Programming (IAP) update  
embedded Flash memory  
Supports 2 KB page erase for all embedded Flash  
SRAM Memory  
32 KB embedded SRAM  
Supports byte-, half-word- and word-access  
Supports PDMA mode  
PDMA (Peripheral DMA)  
Supports 8 independent configurable channels for automatic data transfer between  
memories and peripherals  
Supports Normal and Scatter-Gather Transfer modes  
Supports two types of priorities modes: Fixed-priority and Round-robin modes  
Supports byte-, half-word- and word-access  
Auto increment of the source and destination address  
Supports single and burst transfer type  
Clock Control  
Built-in 22.1184 MHz internal high speed RC oscillator (HIRC) for system operation  
(variation < 2% at -40˚C ~ +105˚C)  
Built-in 10 kHz internal low speed RC oscillator (LIRC) for Watchdog Timer and wake-  
up operation  
Built-in 4~20 MHz external high speed crystal oscillator (HXT) for precise timing  
operation  
Built-in 32.768 kHz external low speed crystal oscillator (LXT) for RTC function and  
low-power system operation  
Supports one PLL up to 144 MHz for high performance system operation, sourced  
from HIRC and HXT  
Supports clock failure detection for high/low speed external crystal oscillator  
Supports exception (NMI) generated once a clock failure detected  
Supports clock output  
GPIO  
Four I/O modes  
Oct. 15, 2018  
Page 9 of 117  
Rev.1.00  
M4521  
TTL/Schmitt trigger input selectable  
I/O pin configured as interrupt source with edge/level trigger setting  
Supports high driver and high sink current I/O (up to 20 mA at 5V)  
Supports software selectable slew rate control  
Supports 5V-tolerance function for following pins  
PA.0 ~ PA.3, PC.0 ~ PC.7, PD.2 ~ PD.3, PD.7, PD.12 ~ PD.15, PE.0, PE.8 ~  
PE.13, PF.2, PF.5 ~ PF.7  
Supports up to 49/35 GPIOs for LQFP64/48 respectively  
Timer  
Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter  
Independent clock source for each timer  
Provides One-shot, Periodic, Toggle and Continuous Counting operation modes  
Supports event counting function to count the event from external pin  
Supports input capture function to capture or reset counter value  
Watchdog Timer  
Supports multiple clock sources from LIRC (default selection), HCLK/2048 and LXT  
8 selectable time-out period from 1.6 ms ~ 26.0 sec (depending on clock source)  
Able to wake up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
Window Watchdog Timer  
Supports multiple clock sources from HCLK/2048 (default selection) and LIRC  
Window set by 6-bit counter with 11-bit prescale  
Able to wake up from Power-down or Idle mode  
Interrupt or reset selectable on time-out  
RTC  
Supports external power pin VBAT  
Supports software compensation by setting frequency compensate register (FCR)  
Supports RTC counter (second, minute, hour) and calendar counter (day, month, year)  
Supports Alarm registers (second, minute, hour, day, month, year)  
Selectable 12-hour or 24-hour mode  
Automatic leap year recognition  
Supports periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8,  
1/4, 1/2 and 1 second  
Supports wake-up function  
Supports 80 bytes spare registers  
Programmable spare register erase function  
Supports 32KHz Oscillator gain control  
Supports tamper detection function  
PWM  
Supports up to 12 independent PWM outputs with 16-bit resolution  
Supports maximum clock frequency up to 144MHz  
Supports 12-bit clock prescale  
Supports one-shot or auto-reload counter operation mode  
Supports up, down or up-down PWM counter type  
Supports synchronous function  
Supports dead time with maximum divided 12-bit prescale  
Supports brake function source from pin, comparator output and system safety events  
Supports PWM auto recovery function after brake condition removed  
Supports mask function and tri-state output for each PWM pin  
Supports PWM events interrupt  
Supports trigger EADC start conversion  
Supports up to 12 independent input capture channels with rising/falling capture and  
Oct. 15, 2018  
Page 10 of 117  
Rev.1.00  
M4521  
with counter reload option  
Supports capture counter with 16-bit resolution  
Supports capture interrupt  
Supports capture PDMA mode  
UART  
Supports up to four UARTs UART0, UART1, UART2 and UART3  
Supports 16-byte FIFOs with programmable level trigger  
Supports auto flow control ( CTS and RTS)  
Supports IrDA (SIR) function  
Supports RS-485 9-bit mode and direction control  
Programmable baud-rate generator up to 1/16 system clock  
Supports wake-up function  
Supports PDMA mode  
Smart Card Interface  
One set of ISO-7816-3 port  
Compliant to ISO-7816-3 T=0, T=1  
Separate receive / transmit 4 bytes entry FIFO for data payloads  
Programmable transmission clock frequency  
Programmable receiver buffer trigger level  
Programmable guard time selection (11 ETU ~ 266 ETU)  
A 24-bit and two 8 bit time-out counters for Answer to Request (ATR) and waiting times  
processing  
Supports auto inverse convention function  
Supports stop clock level and clock stop (clock keep) function  
Supports transmitter and receiver error retry and error limit function  
Supports hardware activation/deactivation sequence process  
Supports hardware warm reset sequence process  
Supports hardware auto deactivation sequence when detect the card is removal  
Supports UART function  
Quad SPI  
Supports one set of SPI Quad controller SPI0  
Supports Master or Slave mode operation  
Supports 2-bit Transfer mode  
Supports Dual and Quad I/O Transfer mode  
Configurable bit length of a transfer word from 8 to 32-bit  
Provides separate 8-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports the byte reorder function  
Supports Byte or Word Suspend mode  
Supports PDMA operation  
Supports 3-wired, no slave select signal, bi-direction interface  
Master up to 32 MHz, and Slave up to 16 MHz (when chip works at VDD = 5V)  
SPI  
Supports one set of SPI controller SPI1  
Supports Master or Slave mode operation  
Configurable bit length of a transfer word from 8 to 32-bit  
Provides separate 4-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports the byte reorder function  
Supports Byte or Word Suspend mode  
Supports PDMA operation  
Supports 3-wire, no slave select signal, bi-direction interface  
Master mode up to 36 MHz and Slave mode up to 18 MHz (when chip works at VDD  
=
Oct. 15, 2018  
Page 11 of 117  
Rev.1.00  
M4521  
5V)  
I2C  
Supports up to two sets of I2C devices  
Supports Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
Programmable clocks allow versatile rate control  
Supports multiple address recognition (four slave address with mask option)  
Supports SMBus and PMBus  
Supports speed up to 1Mbps  
Supports multi-address Power-down wake-up function  
USB 2.0 Full-Speed Device Controller  
Supports one set of USB 2.0 FS device  
Compliant to USB specification version 2.0  
On-chip USB Transceiver  
Supports Control, Bulk In/Out, Interrupt and Isochronous transfers  
Auto suspend function when no bus signaling for 3 ms  
Provides 8 programmable endpoints  
Supports 512 Bytes internal SRAM as USB buffer  
Provides remote wake-up capability  
Start of Frame (SOF) locked clock pulse generation for crystal-less feature (48MHz  
internal RC oscillator for USB crystal-less only)  
On-chip 5V to 3.3V LDO for USB PHY  
USB 2.0 Full-Speed Host Controller  
Compliant with USB Revision 1.1 Specification  
Compatible with OHCI (Open Host Controller Interface) Revision 1.0  
Supports full-speed (12 Mbps) and low-speed (1.5 Mbps) USB devices  
Supports Control, Bulk, Interrupt, Isochronous transfers  
Supports an integrated Root Hub  
Supports port power control and port over current detection  
Built-in DMA  
EBI  
Supports two dedicated external chip select pins for each memory block  
Supports external accessible space up to 1 Mbytes (need 20-bit address width) for  
each bank. Real addressable space size is dependent on package pin out  
Supports 8-/16-bit data width  
Supports byte write in 16-bit data width mode  
Supports PDMA mode  
Supports Address/Data multiplexed Mode  
Supports LCD interface i80 mode  
Supports Timing parameters individual adjustment for each memory block  
EADC  
Analog input voltage range: 0~ VREF (Max to AVDD)  
Supports single 12-bit SAR ADC conversion  
12-bit resolution and 10-bit accuracy is guaranteed  
Up to 1MSPS conversion rate at 5.0V  
Oct. 15, 2018  
Page 12 of 117  
Rev.1.00  
M4521  
Up to 16 external single-ended analog input channels  
Up to 8 differential analog input pairs  
Supports single ADC interrupt  
Supports external VREF pin  
Support internal reference voltages from Band-gap and Voltage divider  
An A/D conversion can be triggered by Software enable, External pin, Timer 0~3  
overflow pulse trigger and PWM trigger  
Supports 3 internal channels for VBAT, band-gap VBG input and Temperature sensor  
input  
Supports PDMA transfer  
Cyclic Redundancy Calculation Unit  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
Programmable initial value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum.  
Supports 8-/16-/32-bit of data width  
Interrupt generated once checksum error occurs  
Voltage Adjustable Interface  
Supports user Configurable 1.8~5.5V I/O Interface with a dedicated power input (VDDIO  
)
Supports UART1, SPI0, SPI1, I2C1 or I2C0 interface  
Supports 96-bit Unique ID (UID)  
Supports 128-bit Unique Customer ID (UCID)  
One built-in temperature sensor with 1resolution  
Brown-out detector  
With 4 levels: 4.4 V/ 3.7 V/ 2.7 V/ 2.2 V  
Supports Brown-out Interrupt and Reset option  
Low Voltage Reset  
Threshold voltage levels: 2.0 V  
Operating Temperature: -40~105℃  
Packages  
LQFP 64-pin (7mm x 7mm)  
LQFP 48-pin (7mm x 7mm)  
Oct. 15, 2018  
Page 13 of 117  
Rev.1.00  
M4521  
3 ABBREVIATIONS  
Acronym  
ACMP  
ADC  
AES  
APB  
AHB  
BOD  
CAN  
DAP  
DES  
EBI  
Description  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
Advanced High-Performance Bus  
Brown-out Detection  
Controller Area Network  
Debug Access Port  
Data Encryption Standard  
External Bus Interface  
EPWM  
FIFO  
FMC  
FPU  
GPIO  
HCLK  
HIRC  
HXT  
IAP  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
22.1184 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
ICP  
ISP  
In System Programming  
LDO  
LIN  
Low Dropout Regulator  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
QEI  
Pulse Width Modulation  
Quadrature Encoder Interface  
Secure Digital  
SD  
SPI  
Serial Peripheral Interface  
Oct. 15, 2018  
Page 14 of 117  
Rev.1.00  
M4521  
SPS  
Samples per Second  
TDES  
TK  
Triple Data Encryption Standard  
Touch Key  
TMR  
UART  
UCID  
USB  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
WDT  
WWDT  
Watchdog Timer  
Window Watchdog Timer  
Table 2.1-1 List of Abbreviations  
Oct. 15, 2018  
Page 15 of 117  
Rev.1.00  
M4521  
4 PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® M4521 Selection Guide  
4.1.1  
NuMicro® M4521 Naming Rule  
ARMBased  
32-bit Microcontroller  
-X X X X X  
M4521  
CPU Core  
®
Cortex -M4  
Temperature  
E: -40oC ~ +105oC  
Reserved  
Package Type  
L: LQFP 48 7x7mm  
S: LQFP 64 7x7mm  
SRAM Size  
6: 32KB  
Flash ROM  
E: 128KB  
Figure 4.1-1 NuMicro® M4521 Selection Code  
Oct. 15, 2018  
Page 16 of 117  
Rev.1.00  
M4521  
4.1.2  
NuMicro® M4521 USB Series Selection Guide  
Connectivity  
Dual Role  
M4521LE6AE 128 32  
M4521SE6AE 128 32  
4
4
35  
49  
4
4
3+1  
4+1  
1
1
1
1
1
1
2
2
--  
--  
10  
12  
--  
--  
-- 10-ch  
-- 16-ch  
8-bit  
LQFP 48  
(Device/Host)  
Dual Role  
16-bit  
LQFP 64*  
(Device/Host)  
*Marked in this table (4+1) means 4 UART + 1 SC UART  
*SC (ISO-7816) supports full duplex UART mode  
*Package dimension of LQFP64* of M4521 series is 7x7x1.4 mm footprint 2.0mm  
Oct. 15, 2018  
Page 17 of 117  
Rev.1.00  
M4521  
4.2 Pin Configuration  
4.2.1  
NuMicro® M4521 Series LQFP48 Pin Diagram  
Corresponding Part Number: M4521LE6AE  
PA.3  
PA.2  
PA.1  
PA.0  
VDD  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PE.0  
PC.4  
PC.3  
PC.2  
PC.1  
AVDD  
VREF  
PB.0  
PB.1  
PB.2  
PB.3  
PB.4  
PC.0  
LQFP 48-pin  
LDO_CAP  
VSS  
PF.4/XT1_IN  
PF.3/XT1_OUT  
PD.7  
PF.2  
Figure 4.2-1 NuMicro® M4521 Series LQFP 48-pin Diagram  
Oct. 15, 2018  
Page 18 of 117  
Rev.1.00  
M4521  
4.2.2  
NuMicro® M4521 Series LQFP64 Pin Diagram  
Corresponding Part Number: M4521SE6AE  
PA.3  
PA.2  
PA.1  
PA.0  
VSS  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PC.5  
PC.4  
PC.3  
PC.2  
PC.1  
VDD  
PC.0  
AVDD  
VREF  
LDO_CAP  
VDD  
LQFP 64-pin  
PB.0  
PB.1  
PB.2  
PB.3  
PB.4  
PB.8  
PB.11  
PB.12  
VSS  
PF.4/XT1_IN  
PF.3/XT1_OUT  
PD.7  
PD.15  
PD.14  
PD.13  
PD.12  
Figure 4.2-2 NuMicro® M4521 Series LQFP 64-pin Diagram  
Oct. 15, 2018  
Page 19 of 117  
Rev.1.00  
M4521  
4.3 Pin Description  
4.3.1  
M4521 Series LQFP48 Pin Description  
Corresponding Part Number: M4521LE6AE  
MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)  
PA.0 MFP0 means SYS_GPA_MFPL[3:0]=0x0.  
PA.9 MFP5 means SYS_GPA_MFPH[7:4]=0x5.  
Pin No.  
Pin Name  
PB.5  
Type  
I/O  
A
MFP*  
MFP0  
MFP1  
MFP2  
MFP3  
MFP7  
MFP9  
MFP0  
MFP1  
MFP2  
MFP3  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP7  
MFP10  
MFP0  
Description  
1
General purpose digital I/O pin.  
EADC analog input channel 13.  
SPI0 1st MOSI (Master Out, Slave In) pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
EBI address/data bus bit 6.  
EADC_CH13  
SPI0_MOSI0  
SPI1_MOSI  
EBI_AD6  
UART2_RXD  
PB.6  
I/O  
I/O  
I/O  
I/O  
I/O  
A
Data receiver input pin for UART2.  
General purpose digital I/O pin.  
EADC analog input channel 14.  
SPI0 1st MISO (Master In, Slave Out) pin.  
SPI1 MISO (Master In, Slave Out) pin.  
EBI address/data bus bit 5.  
2
EADC_CH14  
SPI0_MISO0  
SPI1_MISO  
EBI_AD5  
PB.7  
I/O  
I/O  
I/O  
I/O  
A
3
General purpose digital I/O pin.  
EADC analog input channel 15.  
SPI0 serial clock pin.  
EADC_CH15  
SPI0_CLK  
SPI1_CLK  
EBI_AD4  
STADC  
I/O  
I/O  
I/O  
I/O  
I
SPI1 serial clock pin  
EBI address/data bus bit 4.  
ADC external trigger input.  
4
5
nRESET  
External reset input: active LOW, with an internal pull-up.  
Set this pin low reset to initial state.  
PD.0  
I/O  
A
MFP0  
MFP1  
MFP3  
MFP8  
MFP0  
MFP0  
MFP1  
MFP2  
MFP3  
MFP6  
General purpose digital I/O pin.  
EADC analog input channel 6.  
EADC_CH6  
UART0_RXD  
INT3  
I
Data receiver input pin for UART0.  
External interrupt3 input pin.  
I
6
7
AVSS  
P
Ground pin for analog circuit.  
PD.1  
I/O  
A
General purpose digital I/O pin.  
EADC analog input channel 11.  
PWM0 counter synchronous trigger input pin.  
Data transmitter output pin for UART0.  
Timer0event counter input / toggle output  
EADC_CH11  
PWM0_SYNC_IN  
UART0_TXD  
T0  
I
O
I/O  
Oct. 15, 2018  
Page 20 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
EBI_nRD  
PD.2  
Type  
MFP*  
MFP7  
MFP0  
MFP1  
MFP3  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP3  
MFP6  
MFP7  
MFP8  
MFP0  
MFP0  
MFP1  
MFP8  
MFP0  
MFP1  
MFP0  
MFP1  
MFP0  
MFP3  
MFP4  
MFP6  
MFP7  
MFP0  
MFP1  
MFP3  
MFP0  
MFP1  
MFP3  
MFP0  
MFP0  
Description  
O
EBI read enable output pin.  
8
I/O  
General purpose digital I/O pin.  
ADC external trigger input.  
STADC  
T0_EXT  
PWM0_BRAKE0  
EBI_nWR  
INT0  
I
I
I
Timer0 external capture input  
PWM0 break input 0  
O
I
EBI write enable output pin.  
External interrupt0 input pin.  
9
PD.3  
I/O  
I/O  
I
General purpose digital I/O pin.  
Timer2 event counter input / toggle output  
Timer1 external capture input  
PWM0 break input 1  
T2  
T1_EXT  
PWM0_BRAKE1  
EBI_MCLK  
INT1  
I
O
I
EBI external clock output pin  
External interrupt1 input pin.  
10  
11  
VBAT  
Power supply by batteries for RTC and PF.0~PF.2.  
General purpose digital I/O pin.  
External 32.768 kHZ (low speed) crystal output pin.  
External interrupt5 input pin.  
PF.0  
I/O  
O
X32_OUT  
INT5  
I
12  
13  
14  
PF.1  
I/O  
I
General purpose digital I/O pin.  
External 32.768 kHZ (low speed) crystal input pin.  
General purpose digital I/O pin.  
TAMPER detector loop pin  
X32_IN  
PF.2  
I/O  
I/O  
I/O  
I
TAMPER  
PD.7  
General purpose digital I/O pin.  
PWM0 counter synchronous trigger input pin.  
Timer1 event counter input / toggle output  
PWM0 output/capture input.  
PWM0_SYNC_IN  
T1  
I/O  
I/O  
O
PWM0_CH5  
EBI_nRD  
PF.3  
EBI read enable output pin.  
15  
16  
I/O  
O
General purpose digital I/O pin.  
External 4~20 MHz (high speed) crystal output pin.  
I2C1 clock pin.  
XT1_OUT  
I2C1_SCL  
PF.4  
I/O  
I/O  
I
General purpose digital I/O pin.  
External 4~20 MHz (high speed) crystal input pin.  
I2C1 data input/output pin.  
XT1_IN  
I2C1_SDA  
VSS  
I/O  
A
17  
18  
Ground pin for digital circuit.  
LDO_CAP  
A
LDO output pin.  
Note: This pin needs to be connected with a 1uF  
Oct. 15, 2018  
Page 21 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
Type  
MFP*  
Description  
capacitor.  
19  
PC.0  
I/O  
I/O  
I
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP8  
MFP9  
MFP11  
MFP0  
MFP1  
MFP3  
MFP6  
MFP7  
MFP9  
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP3  
MFP4  
MFP5  
MFP6  
General purpose digital I/O pin.  
SPI1 serial clock pin.  
SPI1_CLK  
UART2_nCTS  
PWM0_CH0  
EBI_AD8  
INT2  
Clear to Send input pin for UART2.  
PWM0 output/capture input.  
EBI address/data bus bit 8.  
External interrupt2 input pin.  
Data transmitter output pin for UART3.  
Timer3 external capture input.  
General purpose digital I/O pin.  
Clock Out  
I/O  
I/O  
I
UART3_TXD  
T3_EXT  
O
I
20  
PC.1  
I/O  
O
CLKO  
UART2_nRTS  
PWM0_CH1  
EBI_AD9  
UART3_RXD  
PC.2  
O
Request to Send output pin for UART2.  
PWM0 output/capture input.  
EBI address/data bus bit 9.  
Data receiver input pin for UART3.  
General purpose digital I/O pin.  
SPI1 slave select pin.  
I/O  
I/O  
I/O  
I/O  
I
21  
22  
23  
24  
SPI1_SS  
UART2_TXD  
PWM0_CH2  
EBI_AD10  
PC.3  
O
Data transmitter output pin for UART2.  
PWM0 output/capture input.  
EBI address/data bus bit 10.  
General purpose digital I/O pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
Data receiver input pin for UART2.  
PWM0 output/capture input.  
EBI address/data bus bit 11.  
General purpose digital I/O pin.  
SPI1 MISO (Master In, Slave Out) pin.  
I2C1 clock pin.  
I/O  
I/O  
I/O  
I/O  
I
SPI1_MOSI  
UART2_RXD  
PWM0_CH3  
EBI_AD11  
PC.4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SPI1_MISO  
I2C1_SCL  
PWM0_CH4  
EBI_AD12  
PE.0  
PWM0 output/capture input.  
EBI address/data bus bit 12.  
General purpose digital I/O pin.  
I2C1 data input/output pin.  
I2C1_SDA  
T2_EXT  
Timer2 external capture input  
SmartCard card detect pin.  
PWM0 output/capture input.  
SC0_CD  
I
PWM0_CH0  
I/O  
Oct. 15, 2018  
Page 22 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
EBI_nCS1  
INT4  
Type  
O
MFP*  
MFP7  
MFP8  
MFP0  
MFP1  
MFP0  
MFP1  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP9  
MFP11  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP9  
MFP11  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP0  
MFP0  
Description  
EBI chip select 1 enable output pin.  
External interrupt4 input pin.  
General purpose digital I/O pin.  
Serial wired debugger clock pin  
General purpose digital I/O pin.  
Serial wired debugger data pin  
General purpose digital I/O pin.  
SPI1 MISO (Master In, Slave Out) pin.  
SPI0 1st MISO (Master In, Slave Out) pin.  
Clear to Send input pin for UART1.  
I2C0 SMBus SMBALTER# pin  
SmartCard data pin.  
I
25  
26  
27  
PF.5  
I/O  
I
ICE_CLK  
PF.6  
I/O  
I/O  
I/O  
I/O  
I/O  
I
ICE_DAT  
PE.10  
SPI1_MISO  
SPI0_MISO0  
UART1_nCTS  
I2C0_SMBAL  
SC0_DAT  
UART3_TXD  
I2C1_SCL  
PE.11  
O
I/O  
O
Data transmitter output pin for UART3.  
I2C1 clock pin.  
I/O  
I/O  
I/O  
I/O  
O
28  
General purpose digital I/O pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
SPI0 1st MOSI (Master Out, Slave In) pin.  
Request to Send output pin for UART1.  
I2C0 SMBus SMBSUS# pin (PMBus CONTROL pin)  
SmartCard clock pin.  
SPI1_MOSI  
SPI0_MOSI0  
UART1_nRTS  
I2C0_SMBSUS  
SC0_CLK  
UART3_RXD  
I2C1_SDA  
PE.12  
O
O
I
Data receiver input pin for UART3.  
I2C1 data input/output pin.  
I/O  
I/O  
I/O  
I/O  
O
29  
General purpose digital I/O pin.  
SPI1 slave select pin  
SPI1_SS  
SPI0_SS  
SPI0 slave select pin.  
UART1_TXD  
I2C0_SCL  
PE.13  
Data transmitter output pin for UART1.  
I2C0 clock pin.  
I/O  
I/O  
I/O  
I/O  
I
30  
General purpose digital I/O pin.  
SPI1 serial clock pin  
SPI1_CLK  
SPI0_CLK  
UART1_RXD  
I2C0_SDA  
VDDIO  
SPI0 serial clock pin.  
Data receiver input pin for UART1.  
I2C0 data input/output pin.  
I/O  
A
31  
32  
Power supply for PE.10~PE.13.  
Power supply from USB* host or HUB.  
USB_VBUS  
A
Oct. 15, 2018  
Page 23 of 117  
Rev.1.00  
M4521  
Pin No.  
33  
Pin Name  
USB_D-  
Type  
MFP*  
MFP0  
MFP0  
MFP0  
MFP0  
Description  
I
I
USB differential signal D-.  
34  
USB_D+  
USB differential signal D+.  
35  
PF.7  
I/O  
A
General purpose digital I/O pin.  
Internal power regulator output 3.3V decoupling pin.  
36  
USB_VDD33_CAP  
Note: This pin needs to be connected with a 1uF  
capacitor.  
37  
38  
39  
40  
41  
PA.3  
I/O  
I
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP3  
MFP5  
MFP6  
MFP7  
MFP10  
MFP0  
MFP1  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
General purpose digital I/O pin.  
Data receiver input pin for UART0.  
Request to Send output pin for UART0.  
I2C0 clock pin.  
UART0_RXD  
UART0_nRTS  
I2C0_SCL  
SC0_PWR  
PWM1_CH2  
EBI_AD3  
O
I/O  
O
SmartCard power pin.  
I/O  
I/O  
I/O  
O
PWM1 output/capture input.  
EBI address/data bus bit 3.  
General purpose digital I/O pin.  
Data transmitter output pin for UART0.  
Clear to Send input pin for UART0.  
I2C0 data input/output pin.  
PA.2  
UART0_TXD  
UART0_nCTS  
I2C0_SDA  
SC0_RST  
PWM1_CH3  
EBI_AD2  
I
I/O  
O
SmartCard reset pin.  
I/O  
I/O  
I/O  
O
PWM1 output/capture input.  
EBI address/data bus bit 2.  
General purpose digital I/O pin.  
Request to Send output pin for UART1.  
Data receiver input pin for UART1.  
SmartCard data pin.  
PA.1  
UART1_nRTS  
UART1_RXD  
SC0_DAT  
PWM1_CH4  
EBI_AD1  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I
PWM1 output/capture input.  
EBI address/data bus bit 1.  
ADC external trigger input.  
STADC  
PA.0  
General purpose digital I/O pin.  
Clear to Send input pin for UART1.  
Data transmitter output pin for UART1.  
SmartCard clock pin.  
UART1_nCTS  
UART1_TXD  
SC0_CLK  
PWM1_CH5  
EBI_AD0  
O
O
I/O  
I/O  
I
PWM1 output/capture input.  
EBI address/data bus bit 0.  
External interrupt0 input pin.  
INT0  
VDD  
A
Power supply for I/O ports and LDO source for internal  
PLL and digital function.  
Oct. 15, 2018  
Page 24 of 117  
Rev.1.00  
M4521  
Pin No.  
42  
Pin Name  
AVDD  
Type  
MFP*  
MFP0  
MFP0  
Description  
A
I
Power supply for internal analog circuit.  
43  
VREF  
Voltage reference input for ADC.  
Note: This pin needs to be connected with a 1uF  
capacitor.  
44  
PB.0  
I/O  
A
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP9  
MFP11  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP7  
MFP9  
MFP11  
General purpose digital I/O pin.  
EADC analog input.  
EADC_CH0  
SPI0_MOSI1  
UART2_RXD  
T2  
I/O  
I
SPI0 2nd MOSI (Master Out, Slave In) pin.  
Data receiver input pin for UART2.  
Timer2 event counter input / toggle output  
EBI low byte write enable output pin.  
External interrupt1 input pin.  
I/O  
O
EBI_nWRL  
INT1  
I
45  
PB.1  
I/O  
A
General purpose digital I/O pin.  
EADC analog input channel 1.  
EADC_CH1  
SPI0_MISO1  
UART2_TXD  
T3  
I/O  
O
SPI0 2nd MISO (Master In, Slave Out) pin.  
Data transmitter output pin for UART2.  
Timer3 event counter input / toggle output  
SmartCard reset pin.  
I/O  
O
SC0_RST  
PWM0_SYNC_OUT  
EBI_nWRH  
PB.2  
O
PWM0 counter synchronous trigger output pin.  
EBI high byte write enable output pin  
General purpose digital I/O pin.  
EADC analog input channel 2.  
O
46  
I/O  
A
EADC_CH2  
SPI0_CLK  
SPI1_CLK  
UART1_RXD  
SC0_CD  
I/O  
I/O  
I
SPI0 serial clock pin.  
SPI1 serial clock pin  
Data receiver input pin for UART1.  
SmartCard card detect pin.  
I
UART3_RXD  
T2_EXT  
I
Data receiver input pin for UART3.  
Timer2 external capture input.  
I
47  
PB.3  
I/O  
A
General purpose digital I/O pin.  
EADC analog input channel 3.  
EADC_CH3  
SPI0_MISO0  
SPI1_MISO  
UART1_TXD  
EBI_ALE  
I/O  
I/O  
O
SPI0 1st MISO (Master In, Slave Out) pin.  
SPI1 MISO (Master In, Slave Out) pin.  
Data transmitter output pin for UART1.  
EBI address latch enable output pin.  
Data transmitter output pin for UART3.  
Timer0 external capture input.  
O
UART3_TXD  
T0_EXT  
O
I
Oct. 15, 2018  
Page 25 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
PB.4  
Type  
I/O  
A
MFP*  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP7  
MFP9  
MFP11  
Description  
48  
General purpose digital I/O pin.  
EADC analog input channel 4.  
SPI0 slave select pin.  
EADC_CH4  
SPI0_SS  
SPI1_SS  
UART1_nCTS  
EBI_AD7  
UART2_TXD  
T1_EXT  
I/O  
I/O  
I
SPI1 slave select pin  
Clear to Send input pin for UART1.  
EBI address/data bus bit 7.  
Data transmitter output pin for UART2.  
Timer1 external capture input.  
I/O  
O
I
Oct. 15, 2018  
Page 26 of 117  
Rev.1.00  
M4521  
4.3.2  
M4521 Series LQFP64 Pin Description  
Corresponding Part Number: M4521SE6AE  
MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)  
PA.0 MFP0 means SYS_GPA_MFPL[3:0]=0x0.  
PA.9 MFP5 means SYS_GPA_MFPH[7:4]=0x5.  
Pin No.  
Pin Name  
PB.15  
Type  
I/O  
A
MFP*  
MFP0  
MFP1  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP7  
MFP9  
MFP0  
MFP1  
MFP2  
MFP3  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP7  
MFP10  
MFP0  
Description  
1
General purpose digital I/O pin.  
EADC analog input channel 12.  
EBI chip select 1 enable output pin.  
General purpose digital I/O pin.  
EADC analog input channel 13.  
SPI0 1st MOSI (Master Out, Slave In) pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
EBI address/data bus bit 6.  
EADC_CH12  
EBI_nCS1  
PB.5  
O
2
I/O  
A
EADC_CH13  
SPI0_MOSI0  
SPI1_MOSI  
EBI_AD6  
UART2_RXD  
PB.6  
I/O  
I/O  
I/O  
I/O  
I/O  
A
Data receiver input pin for UART2.  
General purpose digital I/O pin.  
EADC analog input channel 14.  
SPI0 1st MISO (Master In, Slave Out) pin.  
SPI1 MISO (Master In, Slave Out) pin.  
EBI address/data bus bit 5.  
3
EADC_CH14  
SPI0_MISO0  
SPI1_MISO  
EBI_AD5  
PB.7  
I/O  
I/O  
I/O  
I/O  
A
4
General purpose digital I/O pin.  
EADC analog input channel 15.  
SPI0 serial clock pin.  
EADC_CH15  
SPI0_CLK  
SPI1_CLK  
EBI_AD4  
STADC  
I/O  
I/O  
I/O  
I/O  
I
SPI1 serial clock pin  
EBI address/data bus bit 4.  
ADC external trigger input.  
5
6
nRESET  
External reset input: active LOW, with an internal pull-up.  
Set this pin low reset to initial state.  
PD.0  
I/O  
A
MFP0  
MFP1  
MFP3  
MFP8  
MFP11  
MFP0  
MFP0  
MFP1  
General purpose digital I/O pin.  
EADC analog input channel 6.  
Data receiver input pin for UART0.  
External interrupt3 input pin.  
EADC_CH6  
UART0_RXD  
INT3  
I
I
T3  
I/O  
P
Timer3 event counter input / toggle output.  
Ground pin for analog circuit.  
7
8
AVSS  
PD.8  
I/O  
A
General purpose digital I/O pin.  
EADC analog input channel 7.  
EADC_CH7  
Oct. 15, 2018  
Page 27 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
EBI_nCS0  
PD.9  
Type  
O
I/O  
A
MFP*  
MFP7  
MFP0  
MFP1  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP1  
MFP3  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP3  
MFP6  
MFP7  
MFP8  
MFP0  
MFP0  
MFP1  
MFP8  
MFP0  
MFP1  
MFP0  
MFP1  
MFP0  
MFP3  
MFP6  
MFP7  
Description  
EBI chip select 0 enable output pin.  
General purpose digital I/O pin.  
EADC analog input channel 10.  
EBI address latch enable output pin.  
General purpose digital I/O pin.  
EADC analog input channel 11.  
PWM0 counter synchronous trigger input pin.  
Data transmitter output pin for UART0.  
Timer0event counter input / toggle output  
EBI read enable output pin.  
9
EADC_CH10  
EBI_ALE  
PD.1  
O
I/O  
A
10  
11  
12  
EADC_CH11  
PWM0_SYNC_IN  
UART0_TXD  
T0  
I
O
I/O  
O
I/O  
I
EBI_nRD  
PD.2  
General purpose digital I/O pin.  
ADC external trigger input.  
STADC  
T0_EXT  
PWM0_BRAKE0  
EBI_nWR  
INT0  
I
Timer0 external capture input.  
PWM0 break input 0  
I
O
I
EBI write enable output pin.  
External interrupt0 input pin.  
PD.3  
I/O  
I/O  
I
General purpose digital I/O pin.  
Timer2 event counter input / toggle output  
Timer1 external capture input  
PWM0 break input 1  
T2  
T1_EXT  
PWM0_BRAKE1  
EBI_MCLK  
INT1  
I
O
I
EBI external clock output pin  
External interrupt1 input pin.  
13  
14  
VBAT  
Power supply by batteries for RTC and PF.0~PF.2.  
General purpose digital I/O pin.  
External 32.768 kHZ (low speed) crystal output pin.  
External interrupt5 input pin.  
PF.0  
I/O  
O
X32_OUT  
INT5  
I
15  
16  
17  
PF.1  
I/O  
I
General purpose digital I/O pin.  
External 32.768 kHZ (low speed) crystal input pin.  
General purpose digital I/O pin.  
TAMPER detector loop pin  
X32_IN  
PF.2  
I/O  
I/O  
I/O  
O
TAMPER  
PD.12  
General purpose digital I/O pin.  
Data transmitter output pin for UART3.  
PWM1 output/capture input.  
UART3_TXD  
PWM1_CH0  
EBI_ADR16  
I/O  
O
EBI address bus bit 16.  
Oct. 15, 2018  
Page 28 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
PD.13  
Type  
I/O  
I
MFP*  
MFP0  
MFP3  
MFP6  
MFP7  
MFP0  
MFP3  
MFP6  
MFP7  
MFP0  
MFP3  
MFP6  
MFP7  
MFP0  
MFP3  
MFP4  
MFP6  
MFP7  
MFP0  
MFP1  
MFP3  
MFP0  
MFP1  
MFP3  
MFP0  
MFP0  
Description  
18  
General purpose digital I/O pin.  
Data receiver input pin for UART3.  
PWM1 output/capture input.  
UART3_RXD  
PWM1_CH1  
EBI_ADR17  
PD.14  
I/O  
O
EBI address bus bit 17.  
19  
20  
21  
I/O  
I
General purpose digital I/O pin.  
Clear to Send input pin for UART3.  
PWM1 output/capture input.  
UART3_nCTS  
PWM1_CH2  
EBI_ADR18  
PD.15  
I/O  
O
EBI address bus bit 18.  
I/O  
O
General purpose digital I/O pin.  
Request to Send output pin for UART3.  
PWM1 output/capture input.  
UART3_nRTS  
PWM1_CH3  
EBI_ADR19  
PD.7  
I/O  
O
EBI address bus bit 19.  
I/O  
I
General purpose digital I/O pin.  
PWM0 counter synchronous trigger input pin.  
Timer1 event counter input / toggle output  
PWM0 output/capture input.  
PWM0_SYNC_IN  
T1  
I/O  
I/O  
O
PWM0_CH5  
EBI_nRD  
PF.3  
EBI read enable output pin.  
22  
23  
I/O  
O
General purpose digital I/O pin.  
External 4~20 MHz (high speed) crystal output pin.  
I2C1 clock pin.  
XT1_OUT  
I2C1_SCL  
PF.4  
I/O  
I/O  
I
General purpose digital I/O pin.  
External 4~20 MHz (high speed) crystal input pin.  
I2C1 data input/output pin.  
XT1_IN  
I2C1_SDA  
VSS  
I/O  
A
24  
25  
Ground pin for digital circuit.  
VDD  
A
Power supply for I/O ports and LDO source for internal  
PLL and digital function.  
26  
27  
LDO_CAP  
A
MFP0  
LDO output pin.  
Note: This pin needs to be connected with a 1uF  
capacitor.  
PC.0  
I/O  
I/O  
I
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP8  
MFP9  
General purpose digital I/O pin.  
SPI1 serial clock pin.  
SPI1_CLK  
UART2_nCTS  
PWM0_CH0  
EBI_AD8  
INT2  
Clear to Send input pin for UART2.  
PWM0 output/capture input.  
EBI address/data bus bit 8.  
I/O  
I/O  
I
External interrupt2 input pin.  
Data transmitter output pin for UART3.  
UART3_TXD  
O
Oct. 15, 2018  
Page 29 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
T3_EXT  
Type  
I
MFP*  
MFP11  
MFP0  
MFP1  
MFP3  
MFP6  
MFP7  
MFP9  
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP6  
MFP7  
MFP0  
MFP3  
MFP6  
MFP7  
MFP9  
MFP0  
MFP3  
MFP6  
MFP7  
Description  
Timer3 external capture input.  
General purpose digital I/O pin.  
Clock Out  
28  
PC.1  
I/O  
O
CLKO  
UART2_nRTS  
PWM0_CH1  
EBI_AD9  
O
Request to Send output pin for UART2.  
PWM0 output/capture input.  
EBI address/data bus bit 9.  
I/O  
I/O  
I/O  
I/O  
I
UART3_RXD  
PC.2  
Data receiver input pin for UART3.  
General purpose digital I/O pin.  
SPI1 slave select pin.  
29  
30  
31  
SPI1_SS  
UART2_TXD  
PWM0_CH2  
EBI_AD10  
PC.3  
O
Data transmitter output pin for UART2.  
PWM0 output/capture input.  
EBI address/data bus bit 10.  
General purpose digital I/O pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
Data receiver input pin for UART2.  
PWM0 output/capture input.  
EBI address/data bus bit 11.  
General purpose digital I/O pin.  
SPI1 MISO (Master In, Slave Out) pin.  
I2C1 clock pin.  
I/O  
I/O  
I/O  
I/O  
I
SPI1_MOSI  
UART2_RXD  
PWM0_CH3  
EBI_AD11  
PC.4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI1_MISO  
I2C1_SCL  
PWM0_CH4  
EBI_AD12  
PC.5  
PWM0 output/capture input.  
EBI address/data bus bit 12.  
General purpose digital I/O pin.  
PWM0 output/capture input.  
EBI address/data bus bit 13.  
General purpose digital I/O pin.  
I2C1 SMBus SMBALTER# pin  
PWM1 output/capture input.  
EBI address/data bus bit 14.  
Data transmitter output pin for UART0.  
General purpose digital I/O pin.  
I2C1 SMBus SMBSUS# pin (PMBus CONTROL pin)  
PWM1 output/capture input.  
EBI address/data bus bit 15.  
32  
33  
PWM0_CH5  
EBI_AD13  
PC.6  
I2C1_SMBAL  
PWM1_CH0  
EBI_AD14  
UART0_TXD  
PC.7  
I/O  
I/O  
O
34  
I/O  
O
I2C1_SMBSUS  
PWM1_CH1  
EBI_AD15  
I/O  
I/O  
Oct. 15, 2018  
Page 30 of 117  
Rev.1.00  
M4521  
Pin No.  
35  
Pin Name  
UART0_RXD  
PF.5  
Type  
I
MFP*  
MFP9  
MFP0  
MFP1  
MFP0  
MFP1  
MFP0  
MFP1  
MFP2  
MFP4  
MFP5  
MFP9  
MFP10  
MFP11  
MFP0  
MFP1  
MFP2  
MFP4  
MFP5  
MFP10  
MFP11  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP9  
MFP11  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
Description  
Data receiver input pin for UART0.  
General purpose digital I/O pin.  
Serial wired debugger clock pin  
General purpose digital I/O pin.  
Serial wired debugger data pin  
General purpose digital I/O pin.  
Data transmitter output pin for UART1.  
SPI0 2nd MISO (Master In, Slave Out) pin.  
I2C1 clock pin.  
I/O  
I
ICE_CLK  
36  
PF.6  
I/O  
I/O  
I/O  
O
ICE_DAT  
PE.8  
37  
UART1_TXD  
SPI0_MISO1  
I2C1_SCL  
SC0_PWR  
CLKO  
I/O  
I/O  
O
SmartCard power pin.  
O
Clock Out  
PWM0_BRAKE0  
T1  
I
PWM0 break input 0  
I/O  
I/O  
I
Timer1 event counter input / toggle output  
General purpose digital I/O pin.  
Data receiver input pin for UART1.  
SPI0 2nd MOSI (Master Out, Slave In) pin.  
I2C1 data input/output pin.  
38  
PE.9  
UART1_RXD  
SPI0_MOSI1  
I2C1_SDA  
SC0_RST  
PWM1_BRAKE1  
T2  
I/O  
I/O  
O
SmartCard reset pin.  
I
PWM1 break input 1  
I/O  
I/O  
I/O  
I/O  
I
Timer2 event counter input / toggle output  
General purpose digital I/O pin.  
SPI1 MISO (Master In, Slave Out) pin.  
SPI0 1st MISO (Master In, Slave Out) pin.  
Clear to Send input pin for UART1.  
I2C0 SMBus SMBALTER# pin  
SmartCard data pin.  
39  
PE.10  
SPI1_MISO  
SPI0_MISO0  
UART1_nCTS  
I2C0_SMBAL  
SC0_DAT  
UART3_TXD  
I2C1_SCL  
PE.11  
O
I/O  
O
Data transmitter output pin for UART3.  
I2C1 clock pin.  
I/O  
I/O  
I/O  
I/O  
O
40  
General purpose digital I/O pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
SPI0 1st MOSI (Master Out, Slave In) pin.  
Request to Send output pin for UART1.  
I2C0 SMBus SMBSUS# pin (PMBus CONTROL pin)  
SmartCard clock pin.  
SPI1_MOSI  
SPI0_MOSI0  
UART1_nRTS  
I2C0_SMBSUS  
SC0_CLK  
O
O
Oct. 15, 2018  
Page 31 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
UART3_RXD  
I2C1_SDA  
PE.12  
Type  
I
MFP*  
MFP9  
MFP11  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP0  
MFP0  
MFP0  
MFP0  
MFP0  
MFP0  
Description  
Data receiver input pin for UART3.  
I2C1 data input/output pin.  
General purpose digital I/O pin.  
SPI1 slave select pin  
I/O  
I/O  
I/O  
I/O  
O
41  
SPI1_SS  
SPI0_SS  
SPI0 slave select pin.  
UART1_TXD  
I2C0_SCL  
PE.13  
Data transmitter output pin for UART1.  
I2C0 clock pin.  
I/O  
I/O  
I/O  
I/O  
I
42  
General purpose digital I/O pin.  
SPI1 serial clock pin  
SPI1_CLK  
SPI0_CLK  
UART1_RXD  
I2C0_SDA  
VDDIO  
SPI0 serial clock pin.  
Data receiver input pin for UART1.  
I2C0 data input/output pin.  
Power supply for PE.8~PE.13.  
Power supply from USB* host or HUB.  
USB differential signal D-.  
USB differential signal D+.  
General purpose digital I/O pin.  
Internal power regulator output 3.3V decoupling pin.  
I/O  
A
43  
44  
45  
46  
47  
48  
USB_VBUS  
USB_D-  
A
I
USB_D+  
I
PF.7  
I/O  
A
USB_VDD33_CAP  
Note: This pin needs to be connected with a 1uF  
capacitor.  
49  
50  
51  
PA.3  
I/O  
I
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
General purpose digital I/O pin.  
Data receiver input pin for UART0.  
Request to Send output pin for UART0.  
I2C0 clock pin.  
UART0_RXD  
UART0_nRTS  
I2C0_SCL  
SC0_PWR  
PWM1_CH2  
EBI_AD3  
O
I/O  
O
SmartCard power pin.  
I/O  
I/O  
I/O  
O
PWM1 output/capture input.  
EBI address/data bus bit 3.  
General purpose digital I/O pin.  
Data transmitter output pin for UART0.  
Clear to Send input pin for UART0.  
I2C0 data input/output pin.  
SmartCard reset pin.  
PA.2  
UART0_TXD  
UART0_nCTS  
I2C0_SDA  
SC0_RST  
PWM1_CH3  
EBI_AD2  
I
I/O  
O
I/O  
I/O  
I/O  
PWM1 output/capture input.  
EBI address/data bus bit 2.  
General purpose digital I/O pin.  
PA.1  
Oct. 15, 2018  
Page 32 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
UART1_nRTS  
UART1_RXD  
SC0_DAT  
PWM1_CH4  
EBI_AD1  
STADC  
Type  
O
MFP*  
MFP1  
MFP3  
MFP5  
MFP6  
MFP7  
MFP10  
MFP0  
MFP1  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP0  
Description  
Request to Send output pin for UART1.  
Data receiver input pin for UART1.  
SmartCard data pin.  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I
PWM1 output/capture input.  
EBI address/data bus bit 1.  
ADC external trigger input.  
General purpose digital I/O pin.  
Clear to Send input pin for UART1.  
Data transmitter output pin for UART1.  
SmartCard clock pin.  
52  
PA.0  
UART1_nCTS  
UART1_TXD  
SC0_CLK  
PWM1_CH5  
EBI_AD0  
INT0  
O
O
I/O  
I/O  
I
PWM1 output/capture input.  
EBI address/data bus bit 0.  
External interrupt0 input pin.  
Ground pin for digital circuit.  
53  
54  
VSS  
A
VDD  
A
Power supply for I/O ports and LDO source for internal  
PLL and digital function.  
55  
56  
AVDD  
VREF  
A
I
MFP0  
MFP0  
Power supply for internal analog circuit.  
Voltage reference input for ADC.  
Note: This pin needs to be connected with a 1uF  
capacitor.  
57  
PB.0  
I/O  
A
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
General purpose digital I/O pin.  
EADC_CH0  
SPI0_MOSI1  
UART2_RXD  
T2  
EADC analog input.  
I/O  
I
SPI0 2nd MOSI (Master Out, Slave In) pin.  
Data receiver input pin for UART2.  
Timer2 event counter input / toggle output  
EBI low byte write enable output pin.  
External interrupt1 input pin.  
I/O  
O
EBI_nWRL  
INT1  
I
58  
PB.1  
I/O  
A
General purpose digital I/O pin.  
EADC_CH1  
SPI0_MISO1  
UART2_TXD  
T3  
EADC analog input channel 1.  
I/O  
O
SPI0 2nd MISO (Master In, Slave Out) pin.  
Data transmitter output pin for UART2.  
Timer3 event counter input / toggle output  
SmartCard reset pin.  
I/O  
O
SC0_RST  
PWM0_SYNC_OUT  
EBI_nWRH  
PB.2  
O
PWM0 counter synchronous trigger output pin.  
EBI high byte write enable output pin  
General purpose digital I/O pin.  
O
59  
I/O  
Oct. 15, 2018  
Page 33 of 117  
Rev.1.00  
M4521  
Pin No.  
Pin Name  
EADC_CH2  
SPI0_CLK  
SPI1_CLK  
UART1_RXD  
SC0_CD  
Type  
A
MFP*  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP9  
MFP11  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP7  
MFP9  
MFP11  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP7  
MFP9  
MFP11  
MFP0  
MFP1  
MFP4  
MFP6  
MFP0  
MFP1  
MFP0  
MFP1  
Description  
EADC analog input channel 2.  
SPI0 serial clock pin.  
I/O  
I/O  
I
SPI1 serial clock pin  
Data receiver input pin for UART1.  
SmartCard card detect pin.  
I
UART3_RXD  
T2_EXT  
I
Data receiver input pin for UART3.  
Timer2 external capture input.  
General purpose digital I/O pin.  
EADC analog input channel 3.  
SPI0 1st MISO (Master In, Slave Out) pin.  
SPI1 MISO (Master In, Slave Out) pin.  
Data transmitter output pin for UART1.  
EBI address latch enable output pin.  
Data transmitter output pin for UART3.  
Timer0 external capture input.  
General purpose digital I/O pin.  
EADC analog input channel 4.  
SPI0 slave select pin.  
I
60  
PB.3  
I/O  
A
EADC_CH3  
SPI0_MISO0  
SPI1_MISO  
UART1_TXD  
EBI_ALE  
I/O  
I/O  
O
O
UART3_TXD  
T0_EXT  
O
I
61  
PB.4  
I/O  
A
EADC_CH4  
SPI0_SS  
I/O  
I/O  
I
SPI1_SS  
SPI1 slave select pin  
UART1_nCTS  
EBI_AD7  
Clear to Send input pin for UART1.  
EBI address/data bus bit 7.  
I/O  
O
UART2_TXD  
T1_EXT  
Data transmitter output pin for UART2.  
Timer1 external capture input.  
General purpose digital I/O pin.  
EADC analog input channel 5.  
Request to Send output pin for UART1.  
PWM0 output/capture input.  
General purpose digital I/O pin.  
EADC analog input channel 8.  
General purpose digital I/O pin.  
EADC analog input channel 9.  
I
62  
PB.8  
I/O  
A
EADC_CH5  
UART1_nRTS  
PWM0_CH2  
PB.11  
O
I/O  
I/O  
A
63  
64  
EADC_CH8  
PB.12  
I/O  
A
EADC_CH9  
Oct. 15, 2018  
Page 34 of 117  
Rev.1.00  
M4521  
4.3.3  
GPIO Multi-function Pin Summary  
MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)  
PA.0 MFP0 means SYS_GPA_MFPL[3:0]=0x0.  
PA.9 MFP5 means SYS_GPA_MFPH[7:4]=0x5.  
Group  
Pin Name  
EADC_CH0  
EADC_CH1  
EADC_CH2  
EADC_CH3  
EADC_CH4  
EADC_CH5  
EADC_CH6  
EADC_CH7  
EADC_CH8  
EADC_CH9  
EADC_CH10  
EADC_CH11  
EADC_CH12  
EADC_CH13  
EADC_CH14  
EADC_CH15  
STADC  
GPIO  
PB.0  
PB.1  
PB.2  
PB.3  
PB.4  
PB.8  
PD.0  
PD.8  
PB.11  
PB.12  
PD.9  
PD.1  
PB.15  
PB.5  
PB.6  
PB.7  
PD.2  
PB.7  
PA.1  
PC.1  
PE.8  
PA.0  
PA.1  
PA.2  
PA.3  
PB.7  
PB.6  
PB.5  
PB.4  
PC.0  
PC.1  
MFP*  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP10  
MFP10  
MFP1  
MFP9  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
Type  
A
Description  
ADC0 analog input.  
A
ADC1 analog input.  
A
ADC2 analog input.  
A
ADC3 analog input.  
A
ADC4 analog input.  
A
ADC5 analog input.  
A
ADC6 analog input.  
A
ADC7 analog input.  
A
ADC8 analog input.  
EADC  
A
ADC9 analog input.  
A
ADC10 analog input.  
ADC11 analog input.  
ADC12 analog input.  
ADC13 analog input.  
ADC14 analog input.  
ADC15 analog input.  
ADC external trigger input.  
ADC external trigger input.  
ADC external trigger input.  
Clock Out  
A
A
A
A
A
I
STADC  
I
STADC  
I
CLKO  
O
CLKO  
CLKO  
O
Clock Out  
EBI_AD0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
EBI address/data bus bit 0.  
EBI address/data bus bit 1.  
EBI address/data bus bit 2.  
EBI address/data bus bit 3.  
EBI address/data bus bit 4.  
EBI address/data bus bit 5.  
EBI address/data bus bit 6.  
EBI address/data bus bit 7.  
EBI address/data bus bit 8.  
EBI address/data bus bit 9.  
EBI_AD1  
EBI_AD2  
EBI_AD3  
EBI_AD4  
EBI  
EBI_AD5  
EBI_AD6  
EBI_AD7  
EBI_AD8  
EBI_AD9  
Oct. 15, 2018  
Page 35 of 117  
Rev.1.00  
M4521  
Group  
Pin Name  
EBI_AD10  
EBI_AD11  
EBI_AD12  
EBI_AD13  
EBI_AD14  
EBI_AD15  
EBI_ADR16  
EBI_ADR17  
EBI_ADR18  
EBI_ADR19  
EBI_ALE  
GPIO  
PC.2  
PC.3  
PC.4  
PC.5  
PC.6  
PC.7  
PD.12  
PD.13  
PD.14  
PD.15  
PD.9  
PB.3  
MFP*  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP4  
MFP4  
MFP4  
MFP4  
MFP4  
MFP4  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Description  
EBI address/data bus bit 10.  
EBI address/data bus bit 11.  
EBI address/data bus bit 12.  
EBI address/data bus bit 13.  
EBI address/data bus bit 14.  
EBI address/data bus bit 15.  
EBI address bus bit 16.  
O
EBI address bus bit 17.  
O
EBI address bus bit 18.  
O
EBI address bus bit 19.  
O
EBI address latch enable output pin.  
EBI address latch enable output pin.  
EBI external clock output pin  
EBI chip select 0 enable output pin.  
EBI chip select 1 enable output pin.  
EBI chip select 1 enable output pin.  
EBI read enable output pin.  
EBI write enable output pin.  
EBI high byte write enable output pin  
EBI low byte write enable output pin.  
I2C0 clock pin.  
EBI_ALE  
O
EBI_MCLK  
EBI_nCS0  
EBI_nCS1  
EBI_nCS1  
EBI_nRD  
PD.3  
PD.8  
PE.0  
O
O
O
PB.15  
PD.1  
PD.2  
PB.1  
O
O
EBI_nWR  
O
EBI_nWRH  
EBI_nWRL  
I2C0_SCL  
I2C0_SCL  
I2C0_SDA  
I2C0_SDA  
I2C0_SMBAL  
I2C0_SMBSUS  
O
PB.0  
O
PE.12  
PA.3  
I/O  
I/O  
I/O  
I/O  
O
I2C0 clock pin.  
PE.13  
PA.2  
I2C0 data input/output pin.  
I2C0 data input/output pin.  
I2C0 SMBus SMBALTER# pin  
I2C0  
PE.10  
PE.11  
O
I2C0 SMBus SMBSUS# pin (PMBus  
CONTROL pin)  
I2C1_SCL  
I2C1_SCL  
I2C1_SCL  
I2C1_SCL  
I2C1_SDA  
I2C1_SDA  
I2C1_SDA  
I2C1_SDA  
PF.3  
PC.4  
PE.8  
PE.10  
PF.4  
PE.0  
PE.9  
PE.11  
MFP3  
MFP3  
MFP4  
MFP11  
MFP3  
MFP3  
MFP4  
MFP11  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I2C1 clock pin.  
I2C1 clock pin.  
I2C1 clock pin.  
I2C1 clock pin.  
I2C1  
I2C1 data input/output pin.  
I2C1 data input/output pin.  
I2C1 data input/output pin.  
I2C1 data input/output pin.  
Oct. 15, 2018  
Page 36 of 117  
Rev.1.00  
M4521  
Group  
Pin Name  
GPIO  
PC.6  
PC.7  
MFP*  
MFP3  
MFP3  
Type  
O
Description  
I2C1_SMBAL  
I2C1_SMBSUS  
I2C1 SMBus SMBALTER# pin  
O
I2C1 SMBus SMBSUS# pin (PMBus  
CONTROL pin)  
ICE_CLK  
PF.5  
PF.6  
PD.2  
PA.0  
PD.3  
PB.0  
PC.0  
PD.0  
PE.0  
PF.0  
PD.2  
PE.8  
PD.3  
PC.0  
PE.0  
PC.1  
PC.2  
PB.8  
PC.3  
PC.4  
PD.7  
PC.5  
PD.1  
PD.7  
PB.1  
PE.9  
PD.12  
PC.6  
PD.13  
PC.7  
PD.14  
PA.3  
MFP1  
MFP1  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP6  
MFP10  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP2  
MFP3  
MFP6  
MFP10  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
I
I/O  
I
Serial wired debugger clock pin  
Serial wired debugger data pin  
External interrupt0 input pin.  
External interrupt0 input pin.  
External interrupt1 input pin.  
External interrupt1 input pin.  
External interrupt2 input pin.  
External interrupt3 input pin.  
External interrupt4 input pin.  
External interrupt5 input pin.  
PWM0 break input 0  
ICE  
ICE_DAT  
INT0  
INT0  
INT1  
INT0  
I
INT1  
I
INT1  
I
INT2  
INT3  
INT4  
INT5  
INT2  
I
INT3  
I
INT4  
I
INT5  
I
PWM0_BRAKE0  
PWM0_BRAKE0  
PWM0_BRAKE1  
PWM0_CH0  
PWM0_CH0  
PWM0_CH1  
PWM0_CH2  
PWM0_CH2  
PWM0_CH3  
PWM0_CH4  
PWM0_CH5  
PWM0_CH5  
PWM0_SYNC_IN  
PWM0_SYNC_IN  
PWM0_SYNC_OUT  
PWM1_BRAKE1  
PWM1_CH0  
PWM1_CH0  
PWM1_CH1  
PWM1_CH1  
PWM1_CH2  
PWM1_CH2  
I
I
PWM0 break input 0  
I
PWM0 break input 1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
PWM0 output/capture input.  
PWM0 output/capture input.  
PWM0 output/capture input.  
PWM0 output/capture input.  
PWM0 output/capture input.  
PWM0 output/capture input.  
PWM0 output/capture input.  
PWM0 output/capture input.  
PWM0 output/capture input.  
PWM0 counter synchronous trigger input pin.  
PWM0 counter synchronous trigger input pin.  
PWM0 counter synchronous trigger output pin.  
PWM1 break input 1  
PWM0  
I
O
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PWM1 output/capture input.  
PWM1 output/capture input.  
PWM1 output/capture input.  
PWM1 output/capture input.  
PWM1 output/capture input.  
PWM1 output/capture input.  
PWM1  
Oct. 15, 2018  
Page 37 of 117  
Rev.1.00  
M4521  
Group  
Pin Name  
PWM1_CH3  
PWM1_CH3  
PWM1_CH4  
PWM1_CH5  
SC0_CD  
GPIO  
PD.15  
PA.2  
PA.1  
PA.0  
PE.0  
PB.2  
PE.11  
PA.0  
PE.10  
PA.1  
PE.8  
PA.3  
PE.9  
PA.2  
PB.1  
PB.7  
PE.13  
PB.2  
PB.6  
PE.10  
PB.3  
PE.8  
PB.1  
PB.5  
PE.11  
PE.9  
PB.0  
PE.12  
PB.4  
PB.7  
PE.13  
PB.2  
PC.0  
PB.6  
MFP*  
MFP6  
MFP6  
MFP6  
MFP6  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP3  
MFP1  
MFP3  
MFP2  
MFP3  
Type  
I/O  
I/O  
I/O  
I/O  
I
Description  
PWM1 output/capture input.  
PWM1 output/capture input.  
PWM1 output/capture input.  
PWM1 output/capture input.  
SmartCard card detect pin.  
SmartCard card detect pin.  
SmartCard clock pin.  
SC0_CD  
I
SC0_CLK  
O
SC0_CLK  
O
SmartCard clock pin.  
SC0_DAT  
I/O  
I/O  
O
SmartCard data pin.  
SC0  
SC0_DAT  
SmartCard data pin.  
SC0_PWR  
SC0_PWR  
SC0_RST  
SmartCard power pin.  
O
SmartCard power pin.  
O
SmartCard reset pin.  
SC0_RST  
O
SmartCard reset pin.  
SC0_RST  
O
SmartCard reset pin.  
SPI0_CLK  
SPI0_CLK  
SPI0_CLK  
SPI0_MISO0  
SPI0_MISO0  
SPI0_MISO0  
SPI0_MISO1  
SPI0_MISO1  
SPI0_MOSI0  
SPI0_MOSI0  
SPI0_MOSI1  
SPI0_MOSI1  
SPI0_SS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI0 serial clock pin.  
SPI0 serial clock pin.  
SPI0 serial clock pin.  
SPI0 1st MISO (Master In, Slave Out) pin.  
SPI0 1st MISO (Master In, Slave Out) pin.  
SPI0 1st MISO (Master In, Slave Out) pin.  
SPI0 2nd MISO (Master In, Slave Out) pin.  
SPI0 2nd MISO (Master In, Slave Out) pin.  
SPI0 1st MOSI (Master Out, Slave In) pin.  
SPI0 1st MOSI (Master Out, Slave In) pin.  
SPI0 2nd MOSI (Master Out, Slave In) pin.  
SPI0 2nd MOSI (Master Out, Slave In) pin.  
SPI0 slave select pin.  
SPI0  
SPI0_SS  
SPI0 slave select pin.  
SPI1_CLK  
SPI1_CLK  
SPI1_CLK  
SPI1_CLK  
SPI1_MISO  
SPI1 serial clock pin  
SPI1 serial clock pin  
SPI1  
SPI1 serial clock pin  
SPI1 serial clock pin.  
SPI1 MISO (Master In, Slave Out) pin.  
Oct. 15, 2018  
Page 38 of 117  
Rev.1.00  
M4521  
Group  
Pin Name  
SPI1_MISO  
SPI1_MISO  
SPI1_MISO  
SPI1_MOSI  
SPI1_MOSI  
SPI1_MOSI  
SPI1_SS  
SPI1_SS  
SPI1_SS  
TAMPER  
T0  
GPIO  
PE.10  
PB.3  
PC.4  
PB.5  
PE.11  
PC.3  
PE.12  
PC.2  
PB.4  
PF.2  
PD.1  
PD.2  
PB.3  
PD.7  
PE.8  
PD.3  
PB.4  
PD.3  
PB.0  
PE.9  
PE.0  
PB.2  
PB.1  
PD.0  
PE.6  
PC.0  
PD.0  
PA.3  
PC.7  
PD.1  
PA.2  
PC.6  
PA.2  
PA.3  
MFP*  
MFP1  
MFP3  
MFP2  
MFP3  
MFP1  
MFP2  
MFP1  
MFP2  
MFP3  
MFP1  
MFP6  
MFP3  
MFP11  
MFP4  
MFP11  
MFP3  
MFP11  
MFP1  
MFP4  
MFP11  
MFP4  
MFP11  
MFP4  
MFP11  
MFP3  
MFP11  
MFP3  
MFP2  
MFP9  
MFP3  
MFP2  
MFP9  
MFP3  
MFP3  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Description  
SPI1 MISO (Master In, Slave Out) pin.  
SPI1 MISO (Master In, Slave Out) pin.  
SPI1 MISO (Master In, Slave Out) pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
SPI1 slave select pin  
SPI1 slave select pin.  
SPI1 slave select pin  
TAMPER  
TMR0  
TAMPER detector loop pin  
Timer0event counter input / toggle output  
Timer0 external capture input  
T0_EXT  
T0_EXT  
T1  
I
Timer0 external capture input  
I/O  
I/O  
I
Timer1 event counter input / toggle output  
Timer1 event counter input / toggle output  
Timer1 external capture input  
T1  
TMR1  
TMR2  
TMR3  
T1_EXT  
T1_EXT  
T2  
I
Timer1 external capture input  
I/O  
I/O  
I/O  
I
Timer2 event counter input / toggle output  
Timer2 event counter input / toggle output  
Timer2 event counter input / toggle output  
Timer2 external capture input  
T2  
T2  
T2_EXT  
T2_EXT  
T3  
I
Timer2 external capture input  
I/O  
I/O  
I
Timer3 event counter input / toggle output  
Timer3 event counter input / toggle output  
Timer3 external capture input  
T3  
T3_EXT  
T3_EXT  
UART0_RXD  
UART0_RXD  
UART0_RXD  
UART0_TXD  
UART0_TXD  
UART0_TXD  
UART0_nCTS  
UART0_nRTS  
I
Timer3 external capture input  
I
Data receiver input pin for UART0.  
Data receiver input pin for UART0.  
Data receiver input pin for UART0.  
Data transmitter output pin for UART0.  
Data transmitter output pin for UART0.  
Data transmitter output pin for UART0.  
Clear to Send input pin for UART0.  
Request to Send output pin for UART0.  
I
I
O
UART0  
O
O
I
O
Oct. 15, 2018  
Page 39 of 117  
Rev.1.00  
M4521  
Group  
Pin Name  
GPIO  
PE.9  
PE.13  
PA.1  
PB.2  
PE.8  
PE.12  
PA.0  
PB.3  
PE.10  
PA.0  
PB.4  
PE.11  
PA.1  
PB.8  
PC.3  
PB.0  
PB.5  
PC.2  
PB.1  
PB.4  
PC.0  
PC.1  
PD.13  
PB.2  
PE.11  
PC.1  
PD.12  
PB.3  
PE.10  
PC.0  
PD.14  
PD.15  
PF.1  
MFP*  
MFP1  
MFP3  
MFP3  
MFP4  
MFP1  
MFP3  
MFP3  
MFP4  
MFP3  
MFP1  
MFP4  
MFP3  
MFP1  
MFP4  
MFP3  
MFP3  
MFP9  
MFP3  
MFP3  
MFP9  
MFP3  
MFP3  
MFP3  
MFP9  
MFP9  
MFP9  
MFP3  
MFP9  
MFP9  
MFP9  
MFP3  
MFP3  
MFP1  
Type  
Description  
UART1_RXD  
UART1_RXD  
UART1_RXD  
UART1_RXD  
UART1_TXD  
UART1_TXD  
UART1_TXD  
UART1_TXD  
UART1_nCTS  
UART1_nCTS  
UART1_nCTS  
UART1_nRTS  
UART1_nRTS  
UART1_nRTS  
UART2_RXD  
UART2_RXD  
UART2_RXD  
UART2_TXD  
UART2_TXD  
UART2_TXD  
UART2_nCTS  
UART2_nRTS  
UART3_RXD  
UART3_RXD  
UART3_RXD  
UART3_RXD  
UART3_TXD  
UART3_TXD  
UART3_TXD  
UART3_TXD  
UART3_nCTS  
UART3_nRTS  
X32_IN  
I
I
Data receiver input pin for UART1.  
Data receiver input pin for UART1.  
Data receiver input pin for UART1.  
Data receiver input pin for UART1.  
Data transmitter output pin for UART1.  
Data transmitter output pin for UART1.  
Data transmitter output pin for UART1.  
Data transmitter output pin for UART1.  
Clear to Send input pin for UART1.  
Clear to Send input pin for UART1.  
Clear to Send input pin for UART1.  
Request to Send output pin for UART1.  
Request to Send output pin for UART1.  
Request to Send output pin for UART1.  
Data receiver input pin for UART2.  
Data receiver input pin for UART2.  
Data receiver input pin for UART2.  
Data transmitter output pin for UART2.  
Data transmitter output pin for UART2.  
Data transmitter output pin for UART2.  
Clear to Send input pin for UART2.  
Request to Send output pin for UART2.  
Data receiver input pin for UART3.  
Data receiver input pin for UART3.  
Data receiver input pin for UART3.  
Data receiver input pin for UART3.  
Data transmitter output pin for UART3.  
Data transmitter output pin for UART3.  
Data transmitter output pin for UART3.  
Data transmitter output pin for UART3.  
Clear to Send input pin for UART3.  
Request to Send output pin for UART3.  
I
I
O
O
O
O
I
UART1  
I
I
O
O
O
I
I
I
O
O
O
I
UART2  
O
I
I
I
I
O
O
O
O
I
UART3  
O
I
External 32.768 kHZ (low speed) crystal input  
pin.  
LXT  
X32_OUT  
PF.0  
MFP1  
O
External 32.768 kHZ (low speed) crystal output  
Oct. 15, 2018  
Page 40 of 117  
Rev.1.00  
M4521  
Group  
Pin Name  
GPIO  
MFP*  
Type  
Description  
pin.  
XT1_IN  
PF.4  
PF.3  
MFP1  
MFP1  
I
External 4~20 MHz (high speed) crystal input  
pin.  
HXT  
XT1_OUT  
O
External 4~20 MHz (high speed) crystal output  
pin.  
Table 4.3-1 M4521 GPIO Multi-function Table  
Oct. 15, 2018  
Page 41 of 117  
Rev.1.00  
M4521  
5 BLOCK DIAGRAM  
5.1 NuMicro® M4521 Series Block Diagram  
Figure 5.1-1 NuMicro® M4521 Series Block Diagram  
Oct. 15, 2018  
Page 42 of 117  
Rev.1.00  
M4521  
6 FUNCTIONAL DESCRIPTION  
6.1 Arm® Cortex® -M4 Core  
The Cortex® -M4 processor, a configurable, multistage, 32-bit RISC processor, has three AMBA  
AHB-Lite interfaces for best parallel performance and includes an NVIC component. The  
processor with optional hardware debug functionality can execute Thumb code and is compatible  
with other Cortex-M profile processors. The profile supports two modes -Thread mode and  
Handler mode. Handler mode is entered as a result of an exception. An exception return can only  
be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of  
an exception return. The Cortex® -M4F is a processor with the same capability as the Cortex® -M4  
processor and includes floating point arithmetic functionality. The NuMicro® M4521 family is  
embedded with Cortex® -M4F processor. Throughout this document, the name Cortex® -M4 refers  
to both Cortex® -M4 and Cortex® -M4F processors. Figure 6.1-1 shows the functional controller of  
the processor.  
Figure 6.1-1 Cortex® -M4 Block Diagram  
Cortex® -M4 processor features:  
A low gate count processor core, with low latency interrupt processing that has:  
A subset of the Thumb instruction set, defined in the ARMv7-M Architecture  
Reference Manual  
Banked Stack Pointer (SP)  
Oct. 15, 2018  
Page 43 of 117  
Rev.1.00  
 
M4521  
Hardware integer divide instructions, SDIV and UDIV  
Handler and Thread modes  
Thumb and Debug states  
Support for interruptible-continued instructions LDM, STM, PUSH, and POP for  
low interrupt latency  
Automatic processor state saving and restoration for low latency Interrupt  
Service Routine (ISR) entry and exit  
Support for ARMv6 big-endian byte-invariant or little-endian accesses  
Support for ARMv6 unaligned accesses  
Floating Point Unit (FPU) in the Cortex® -M4F processor providing:  
32-bit instructions for single-precision (C float) data-processing operations  
Combined Multiply and Accumulate instructions for increased precision (Fused  
MAC)  
Hardware support for conversion, addition, subtraction, multiplication with  
optional accumulate, division, and square-root  
Hardware support for denormals and all IEEE rounding modes  
32 dedicated 32-bit single precision registers, also addressable as 16 double-  
word registers  
Decoupled three stage pipeline  
Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core  
to achieve low latency interrupt processing. Features include:  
External interrupts. Configurable from 1 to 240 (the NuMicro® M4521 family  
configured with 64 interrupts)  
Bits of priority, configurable from 3 to 8  
Dynamic reprioritization of interrupts  
Priority grouping which enables selection of preempting interrupt levels and  
nonpreempting interrupt levels  
Support for tril-chaining and late arrival of interrupts, which enables back-to-back  
interrupt processing without the overhead of state saving and restoration  
between interrupts.  
Processor state automatically saved on interrupt entry, and restored on interrupt  
exit with on instruction overhead  
Support for Wake-up Interrupt Controller (WIC) with Ultra-low Power Sleep mode  
Memory Protection Unit (MPU). An optional MPU for memory protection, including:  
Eight memory regions  
Sub Region Disable (SRD), enabling efficient use of memory regions  
The ability to enable a background region that implements the default memory  
map attributes  
Low-cost debug solution that features:  
Debug access to all memory and registers in the system, including access to  
memory mapped devices, access to internal core registers when the core is  
halted, and access to debug control registers even while SYSRESETn is  
Oct. 15, 2018  
Page 44 of 117  
Rev.1.00  
M4521  
asserted.  
Serial Wire Debug Port(SW-DP) or Serial Wire JTAG Debug Port (SWJ-DP)  
debug access  
Optional Flash Patch and Breakpoint (FPB) unit for implementing breakpoints  
and code patches  
Optional Data Watchpoint and Trace (DWT) unit for implementing watchpoints,  
data tracing, and system profiling  
Optional Instrumentation Trace Macrocell (ITM) for support of printf() style  
debugging  
Optional Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer  
(TPA), including Single Wire Output (SWO) mode  
Optional Embedded Trace Macrocell (ETM) for instruction trace.  
Bus interfaces:  
Three Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode,  
Dcode, and System bus interfaces  
Private Peripheral Bus (PPB) based on Advanced Peripheral Bus (APB)  
interface  
Bit-band support that includes atomic bit-band write and read operations.  
Memory access alignment  
Write buffer for buffering of write data  
Exclusive access transfers for multiprocessor systems  
Oct. 15, 2018  
Page 45 of 117  
Rev.1.00  
M4521  
6.2 System Manager  
6.2.1  
Overview  
The system manager provides the functions of system control, power modes, wake-up sources,  
reset sources, system memory map, product ID and multi-function pin control. The following  
sections describe the functions for  
System Reset  
Power Modes and Wake-up Sources  
System Power Distribution  
SRAM Memory Organization  
System Control Register for Part Number ID, Chip Reset and Multi-function Pin  
Control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control register  
6.2.2  
System Reset  
The system reset can be issued by one of the events listed below. These reset event flags can be  
read from SYS_RSTSTS register to determine the reset source. Hardware reset can reset chip  
through peripheral reset signals. Software reset can trigger reset through control registers.  
Hardware Reset Sources  
Power-on Reset (POR)  
Low level on the nRESET pin  
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD Reset)  
CPU Lockup Reset  
Software Reset Sources  
CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])  
MCU Reset to reboot but keeping the booting setting from APROM or LDROM by  
writing 1 to SYSRESETREQ (AIRCR[2])  
CPU Reset for Cortex® -M4 core Only by writing 1 to CPURST (SYS_IPRST0[1])  
Oct. 15, 2018  
Page 46 of 117  
Rev.1.00  
M4521  
Glitch Filter  
36 us  
nRESET  
~50k ohm  
@5v  
POROFF(SYS_PORCTL[15:0])  
Power-on  
Reset  
VDD  
LVREN(SYS_BODCTL[7])  
Reset Pulse Width  
3.2ms  
Low Voltage  
Reset  
AVDD  
BODRSTEN(SYS_BODCTL[3])  
Brown-out  
Reset  
WDT/WWDT  
Reset  
System Reset  
Reset Pulse Width  
64 WDT clocks  
Reset Controller  
CPU Lockup  
Reset  
Reset Pulse Width  
2 system clocks  
CHIP Reset  
CHIPRST(SYS_IPRST0[0])  
MCU Reset  
SYSRSTREQ(AIRCR[2])  
Reset Pulse Width  
2 system clocks  
Software Reset  
CPU Reset  
CPURST(SYS_IPRST0[1])  
Figure 6.2-1 System Reset Sources  
Oct. 15, 2018  
Page 47 of 117  
Rev.1.00  
M4521  
There are a total of 9 reset sources in the NuMicro® family. In general, CPU reset is used to reset  
Cortex-M4 only; the other reset sources will reset Cortex-M4 and all peripherals. However, there  
are small differences between each reset source and they are listed in Table 6.2-1.  
Reset Sources  
POR  
0x001  
nRESET  
WDT  
LVR  
BOD  
Lockup  
CHIP  
MCU  
CPU  
Register  
SYS_RSTSTS  
Bit 1 = 1  
Bit 2 = 1 Bit 3 = 1 Bit 4 = 1 Bit 8 = 1 Bit 0 = 1  
Bit 5 = 1 Bit 7 =  
1
CHIPRST  
0x0  
-
-
-
-
-
-
-
-
-
(SYS_IPRST0[0])  
BODEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
(SYS_BODCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
CONFIG0 CONFIG0 CONFIG0  
BODVL  
(SYS_BODCTL[2:1])  
BODRSTEN  
(SYS_BODCTL[3])  
HXTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
(CLK_PWRCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
LXTEN  
0x0  
0x1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_PWRCTL[1])  
WDTCKEN  
0x1  
0x1  
(CLK_APBCLK0[0])  
HCLKSEL  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
(CLK_CLKSEL0[2:0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTSEL  
0x3  
0x0  
0x0  
0x0  
0x0  
0x0  
0x3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_CLKSEL1[1:0])  
HXTSTB  
-
(CLK_STATUS[0])  
LXTSTB  
-
(CLK_STATUS[1])  
PLLSTB  
-
(CLK_STATUS[2])  
HIRCSTB  
-
(CLK_STATUS[4])  
CLKSFAIL  
0x0  
(CLK_STATUS[7])  
RSTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(WDT_CTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTEN  
(WDT_CTL[7])  
WDT_CTL  
0x0700  
0x0700  
0x0700  
0x0700  
0x0700  
-
0x0700  
-
-
except bit 1 and bit 7.  
Oct. 15, 2018  
Page 48 of 117  
Rev.1.00  
M4521  
WDT_ALTCTL  
WWDT_RLDCNT  
WWDT_CTL  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
-
-
0x0000  
0x0000  
0x3F0800  
0x0000  
0x3F  
-
-
-
-
-
-
-
-
-
-
-
-
0x3F0800 0x3F0800 0x3F0800 0x3F0800 0x3F0800 -  
WWDT_STATUS  
WWDT_CNT  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
-
-
-
BS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPCTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
FMC_DFBA  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
-
Reload  
from  
CONFIG1  
-
-
-
-
CONFIG1 CONFIG1 CONFIG1 CONFIG1 CONFIG1  
CBS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPSTS[2:1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
PGFF  
0x0  
-
0x0  
-
-
-
-
0x0  
-
-
-
-
(FMC_ISPSTS[5])  
VECMAP  
Reload  
base  
Reload  
on base  
Reload  
Reload  
Reload  
Reload  
base  
CONFIG0  
on base on base on base on  
on  
(FMC_ISPSTS[23:9])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
Other  
Peripheral Reset Value  
-
Registers  
FMC Registers  
Reset Value  
Note: -‘ means that the value of register keeps original setting.  
Table 6.2-1 Reset Value of Registers  
6.2.2.1 nRESET Reset  
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an  
asynchronous reset input pin and can be used to reset system at any time. When the nRESET  
voltage is lower than 0.2 VDD and the state keeps longer than 36 us (glitch filter), chip will be  
reset. The nRESET reset will control the chip in reset state until the nRESET voltage rises above  
0.7 VDD and the state keeps longer than 36 us (glitch filter). The PINRF(SYS_RSTSTS[1]) will be  
set to 1 if the previous reset source is nRESET reset. Figure 6.2-2 shows the nRESET reset  
waveform.  
nRESET  
0.7 VDD  
36 us  
0.2 VDD  
36 us  
nRESET  
Reset  
Figure 6.2-2 nRESET Reset Waveform  
Oct. 15, 2018  
Page 49 of 117  
Rev.1.00  
 
M4521  
6.2.2.2 Power-on Reset (POR)  
The Power-on reset (POR) is used to generate a stable system reset signal and forces the  
system to be reset when power-on to avoid unexpected behavior of MCU. When applying the  
power to MCU, the POR module will detect the rising voltage and generate reset signal to system  
until the voltage is ready for MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be  
set to 1 to indicate there is a POR reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by  
writing 1 to it. Figure 6.2-3 shows the power-on reset waveform.  
VPOR  
0.1V  
VDD  
Power-on  
Reset  
Figure 6.2-3 Power-on Reset (POR) Waveform  
6.2.2.3 Low Voltage Reset (LVR)  
If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit LVREN  
(SYS_BODCTL[7]) to 1, after 200us delay, LVR detection circuit will be stable and the LVR  
function will be active. Then LVR function will detect AVDD during system operation. When the  
AVDD voltage is lower than VLVR and the state keeps longer than De-glitch time set by LVRDGSEL  
(SYS_BODCTL[14:12]), chip will be reset. The LVR reset will control the chip in reset state until  
the AVDD voltage rises above VLVR and the state keeps longer than De-glitch time set by  
LVRDGSEL (SYS_BODCTL[14:12]). The LVRF(SYS_RSTSTS[3]) will be set to 1 if the previous  
reset source is LVR. The default setting of Low Voltage Reset is enabled without De-glitch  
function. Figure 6.2-4 shows the Low Voltage Reset waveform.  
Oct. 15, 2018  
Page 50 of 117  
Rev.1.00  
 
M4521  
AVDD  
VLVR  
T1  
T2  
( < LVRDGSEL)  
( =LVRDGSEL)  
T3  
( =LVRDGSEL)  
Low Voltage Reset  
LVREN  
200 us  
Delay for LVR stable  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform  
6.2.2.4 Brown-out Detector Reset (BOD Reset)  
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit  
BODEN (SYS_BODCTL[0]), Brown-Out Detector function will detect AVDD during system  
operation. When the AVDD voltage is lower than VBOD and the state keeps longer than De-glitch  
time set by BODDGSEL (SYS_BODCTL[10:8]), chip will be reset. The BOD reset will control the  
chip in reset state until the AVDD voltage rises above VBOD and the state keeps longer than De-  
glitch time set by BODDGSEL (SYS_BODCTL[10:8]). The default value of BODEN, BODVL and  
BODRSTEN is set by Flash controller user configuration register CBODEN (CONFIG0 [23]),  
CBOV (CONFIG0 [22:21]) and CBORST(CONFIG0[20]) respectively. User can determine the  
initial BOD setting by setting the CONFIG0 register. Figure 6.2-5 shows the Brown-Out Detector  
waveform.  
Oct. 15, 2018  
Page 51 of 117  
Rev.1.00  
M4521  
AVDD  
VBODH  
VBODL  
Hysteresis  
T1  
T2  
(< BODDGSEL)  
(= BODDGSEL)  
BODOUT  
T3  
(= BODDGSEL)  
BODRSTEN  
Brown-out  
Reset  
Figure 6.2-5 Brown-out Detector (BOD) Waveform  
6.2.2.5 Watchdog Timer Reset (WDT)  
In most industrial applications, system reliability is very important. To automatically recover the  
MCU from failure status is one way to improve system reliability. The watchdog timer(WDT) is  
widely used to check if the system works fine. If the MCU is crashed or out of control, it may  
cause the watchdog time-out. User may decide to enable system reset during watchdog time-out  
to recover the system and take action for the system crash/out-of-control after reset.  
Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a  
watchdog reset and handle the failure of MCU after watchdog time-out reset by checking  
WDTRF(SYS_RSTSTS[2]).  
6.2.2.6 CPU Lockup Reset  
CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives  
immediate indication of seriously errant kernel software. This is the result of the CPU being locked  
because of an unrecoverable exception following the activation of the processor’s built in system  
state protection hardware. When chip enters debug mode, the CPU lockup reset will be ignored.  
6.2.2.7 CPU Reset, CHIP Reset and MCU Reset  
The CPU Reset means only Cortex® -M4 core is reset and all other peripherals remain the same  
status after CPU reset. User can set the CPURST(SYS_IPRST0[1]) to 1 to assert the CPU Reset  
signal.  
The CHIP Reset is same with Power-On Reset. The CPU and all peripherals are reset and  
BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG setting. User can set the  
CHIPRST(SYS_IPRST0[1]) to 1 to assert the CHIP Reset signal.  
Oct. 15, 2018  
Page 52 of 117  
Rev.1.00  
M4521  
The MCU Reset is similar with CHIP Reset. The difference is that BS(FMC_ISPCTL[1]) will not be  
reloaded from CONFIG setting and keep its original software setting for booting from APROM or  
LDROM. User can set the SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.  
6.2.3  
Power Modes and Wake-up Sources  
There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-2 lists the  
available clocks for each power mode.  
Power Mode  
Definition  
Normal Mode  
Idle Mode  
Power-Down Mode  
CPU is in active state  
CPU is in sleep state  
CPU is in sleep state and all  
clocks stop except LXT and  
LIRC. SRAM content retended.  
Entry Condition  
Chip is in normal mode after CPU executes WFI instruction. CPU sets sleep mode enable  
system reset released  
and power down enable and  
executes WFI instruction.  
Wake-up Sources  
N/A  
All interrupts  
RTC, WDT, I²C, Timer, UART,  
BOD, GPIO and USBD  
Available Clocks  
After Wake-up  
All  
All except CPU clock  
LXT and LIRC  
N/A  
CPU back to normal mode  
CPU back to normal mode  
Table 6.2-2 Power Mode Difference Table  
System reset released  
Normal Mode  
CPU Clock ON  
HXT, HIRC, LXT, LIRC, HCLK, PCLK ON  
Flash ON  
CPU executes WFI  
Interrupts occur  
1. SCR(SCB[2]) = 1  
Wake-up events  
occur  
2. PD_EN(PWRCTL[7]) = 1 and  
PDWTCPU(PWRCTL[8]) = 1  
3. CPU executes WFI  
Idle Mode  
Power-down Mode  
CPU Clock OFF  
CPU Clock OFF  
HXT, HIRC, HCLK, PCLK OFF  
LXT, LIRC ON  
HXT, HIRC, LXT, LIRC, HCLK, PCLK ON  
Flash Halt  
Flash Halt  
Figure 6.2-6 Power Mode State Machine  
Oct. 15, 2018  
Page 53 of 117  
Rev.1.00  
 
M4521  
1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in run mode.  
2. LIRC (10 kHz OSC) ON or OFF depends on S/W setting in run mode.  
3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.  
4. If WDT clock source is selected as LIRC and LIRC is on.  
5. If RTC clock source is selected as LXT and LXT is on.  
Normal Mode  
ON  
Idle Mode  
Power-Down Mode  
Halt  
HXT (4~20 MHz XTL)  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
HIRC (12/16 MHz OSC)  
ON  
Halt  
LXT (32768 Hz XTL)  
ON  
ON/OFF1  
ON/OFF2  
Halt  
LIRC (10 kHz OSC)  
PLL  
ON  
ON  
LDO  
ON  
ON  
CPU  
ON  
Halt  
HCLK/PCLK  
SRAM retention  
FLASH  
EBI  
ON  
Halt  
ON  
ON  
ON  
Halt  
ON  
Halt  
GPIO  
ON  
Halt  
PDMA  
TIMER  
PWM  
ON  
Halt  
ON  
ON/OFF3  
Halt  
ON  
WDT  
ON  
ON/OFF4  
Halt  
WWDT  
RTC  
ON  
ON  
ON/OFF5  
Halt  
UART  
ON  
SC  
ON  
Halt  
I2C  
ON  
Halt  
SPI  
ON  
Halt  
USBD  
EADC  
ON  
Halt  
ON  
Halt  
Table 6.2-3 Clocks in Power Modes  
Wake-up sources in Power-down mode:  
RTC, WDT, I²C, Timer, UART, BOD, GPIO and USBD  
After chip enters power down, the following wake-up sources can wake chip up to normal mode.  
Table 6.2-4 lists the condition about how to enter Power-down mode again for each peripheral.  
Oct. 15, 2018  
Page 54 of 117  
Rev.1.00  
M4521  
*User needs to wait this condition before setting PDEN(CLK_PWRCTL[7]) and execute WFI to enter  
Power-down mode.  
Wake-Up  
Wake-Up Condition  
System Can Enter Power-Down Mode Again Condition*  
Source  
BOD  
Brown-Out Detector Interrupt After software writes 1 to clear SYS_BODCTL[BODIF].  
GPIO  
GPIO Interrupt  
Timer Interrupt  
After software write 1 to clear the INTSRC[n] bit.  
TIMER  
After software writes 1 to clear TWKF (TIMERx_INTSTS[1]) and TIF  
(TIMERx_INTSTS[0]).  
WDT  
RTC  
WDT Interrupt  
Alarm Interrupt  
After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect).  
After software writes 1 to clear ALMIF (RTC_INTSTS[0]).  
After software writes 1 to clear TICKIF (RTC_INTSTS[1]).  
Time Tick Interrupt  
Snoop Detection Interrupt After software writes 1 to clear SNPDIF (RTC_INTSTS[2]).  
UART  
RX Data wake-up  
nCTS wake-up  
After software writes 1 to clear DATWKIF (UARTx_INTSTS[17]).  
After software writes 1 to clear CTSWKIF (UARTx_INTSTS[16]).  
I2C  
Falling edge in the I2C_SDA  
or I2C_CLK  
After software writes 1 to clear WKIF( I2C_WKSTS[0]).  
After software writes 1 to clear BUSIF (USBD_INTSTS[0]).  
USBD  
Remote Wake-up  
Table 6.2-4 Condition of Entering Power-down Mode Again  
6.2.4  
System Power Distribution  
In this chip, power distribution is divided into five segments:  
Analog power from AVDD and AVSS provides the power for analog components  
operation. The VREF should be connected with an external 1uF capacitor that should  
be located close to the VREF pin to avoid power noise for analog applications.  
Digital power from VDD and VSS supplies the power to the internal regulator which  
provides a fixed 1.8 V power for digital operation and I/O pins.  
USB transceiver power from VBUS offers the power for operating the USB transceiver.  
RTC power from VBAT provides the power for PF.0~PF.2, RTC and 80 bytes backup  
registers.  
A dedicated power from VDDIO supplies the power for PE.8~PE.13.  
The outputs of internal voltage regulators, LDO_CAP and USB_VDD33_CAP, require an external  
capacitor which should be located close to the corresponding pin. Analog power (AVDD) should be  
the same voltage level of the digital power (VDD). Figure 6.2-7 shows the NuMicro® M4521 series  
power distribution.  
Oct. 15, 2018  
Page 55 of 117  
Rev.1.00  
M4521  
32.768 kHz  
crystal  
oscillator  
USB_D+  
USB_D-  
USB  
Transceiver  
IO Cell  
Internal  
Reference  
Voltage  
12-bit ADC  
USB_VDD33_CAP  
1uF  
3.3V  
AVDD  
AVSS  
1.8V  
Brown-out  
Detector  
Low Voltage  
Reset  
RTC &  
80 bytes  
backup  
register  
VBAT to 1.8V  
LDO  
5V to 3.3V  
LDO  
VBUS  
Temperature  
Sensor  
SRAM  
Flash  
Digital Logic  
IO Cell  
PE.8~PE.13  
1.8V  
LDO_CAP  
1uF  
22.1184 MHz  
10 kHz  
PLL  
POR18  
HIRC  
LIRC  
Oscillator  
Oscillator  
VDDIO  
GPIO except  
PF.0 ~PF.2 and  
PE.8~PE.13  
4~24 MHz  
crystal  
oscillator  
XT1_OUT  
XT1_IN  
VDD to 1.8V  
LDO  
Power On  
Control  
POR50  
IO Cell  
M4521 Power Distribution  
Figure 6.2-7 NuMicro® M4521 Series Power Distribution Diagram  
Oct. 15, 2018  
Page 56 of 117  
Rev.1.00  
M4521  
6.2.5  
System Memory Map  
The NuMicro® M4521 series provides 4G-byte addressing space. The memory locations assigned to  
each on-chip controllers are shown in Table 6.2-5. The detailed register definition, memory space, and  
programming will be described in the following sections for each on-chip peripheral. The M4521 series  
only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0001_FFFF  
0x0004_0000 0x0005_FFFF  
0x0006_0000 0x0007_FFFF  
0x2000_4000 0x2000_7FFF  
0x2000_8000 0x2000_BFFF  
0x2000_C000 0x2000_FFFF  
0x6000_0000 0x6FFF_FFFF  
FLASH_BA  
Reserved  
FLASH Memory Space (128KB)  
Reserved  
Reserved  
Reserved  
SRAM1_BA  
Reserved  
SRAM Memory Space  
Reserved  
Reserved  
Reserved  
EXTMEM_BA  
External Memory Space for EBI Interface (256 MB)  
Peripheral Controllers Space (0x4000_0000 0x400F_FFFF)  
0x4000_0000 0x4000_01FF  
0x4000_0200 0x4000_02FF  
0x4000_0300 0x4000_03FF  
0x4000_4000 0x4000_4FFF  
0x4000_8000 0x4000_8FFF  
0x4000_9000 0x4000_9FFF  
0x4000_B000 0x4000_BFFF  
0x4000_C000 0x4000_CFFF  
0x4000_D000 0x4000_DFFF  
0x4001_0000 0x4001_0FFF  
0x4001_9000 0x4001_9FFF  
0x4003_0000 0x4003_0FFF  
0x4003_1000 0x4003_1FFF  
0x5000_8000 0x5000_FFFF  
SYS_BA  
CLK_BA  
NMI_BA  
System Control Registers  
Clock Control Registers  
NMI Control Registers  
GPIO Control Registers  
Peripheral DMA Control Registers  
USB Host Control Registers  
Reserved  
GPIO_BA  
PDMA_BA  
UHC_BA  
Reserved  
FMC_BA  
Reserved  
EBI_BA  
Flash Memory Control Registers  
Reserved  
External Bus Interface Control Registers  
Reserved  
Reserved  
Reserved  
CRC_BA  
Reserved  
Reserved  
CRC Generator Registers  
Reserved  
APB Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4004_0000 0x4004_0FFF  
0x4004_1000 0x4004_1FFF  
0x4004_3000 0x4004_3FFF  
0x4004_4000 0x4004_4FFF  
0x4004_5000 0x4004_5FFF  
0x4004_6000 0x4004_6FFF  
0x4004_7000 0x4004_7FFF  
WDT_BA  
RTC_BA  
EADC_BA  
Reserved  
Reserved  
Reserved  
Reserved  
Watchdog Timer Control Registers  
Real Time Clock (RTC) Control Register  
Enhanced Analog-Digital-Converter (EADC) Control Registers  
Reserved  
Reserved  
Reserved  
Reserved  
Oct. 15, 2018  
Page 57 of 117  
Rev.1.00  
M4521  
0x4004_8000 0x4004_8FFF  
0x4004_9000 0x4004_9FFF  
0x4004_D000 0x4004_DFFF  
0x4005_0000 0x4005_0FFF  
0x4005_1000 0x4005_1FFF  
0x4005_8000 0x4005_8FFF  
0x4005_9000 0x4005_9FFF  
0x4005_C000 0x4005_CFFF  
0x4005_D000 0x4005_DFFF  
0x4006_0000 0x4006_0FFF  
0x4006_1000 0x4006_1FFF  
0x4006_2000 0x4006_2FFF  
0x4006_3000 0x4006_3FFF  
0x4007_0000 0x4007_0FFF  
0x4007_1000 0x4007_1FFF  
0x4007_2000 0x4007_2FFF  
0x4007_3000 0x4007_3FFF  
0x4007_4000 0x4007_4FFF  
0x4007_5000 0x4007_5FFF  
0x4008_0000 0x4008_0FFF  
0x4008_1000 0x4008_1FFF  
0x4008_2000 0x4008_2FFF  
0x4008_3000 0x4008_3FFF  
0x4008_4000 0x4008_4FFF  
0x4009_0000 0x4009_0FFF  
0x4009_1000 0x4009_1FFF  
0x4009_2000 0x4009_2FFF  
0x4009_3000 0x4009_3FFF  
0x4009_4000 0x4009_4FFF  
0x4009_5000 0x4009_5FFF  
0x400A_0000 0x400A_0FFF  
0x400A_1000 0x400A_1FFF  
0x400B_0000 0x400B_0FFF  
0x400B_1000 0x400B_1FFF  
0x400B_0000 0x400B_0FFF  
Reserved  
Reserved  
Reserved  
TMR01_BA  
TMR23_BA  
PWM0_BA  
PWM1_BA  
Reserved  
Reserved  
SPI0_BA  
SPI1_BA  
Reserved  
Reserved  
UART0_BA  
UART1_BA  
UART2_BA  
UART3_BA  
Reserved  
Reserved  
I2C0_BA  
Reserved  
Reserved  
Reserved  
Timer0/Timer1 Control Registers  
Timer2/Timer3 Control Registers  
PWM0 Control Registers  
PWM1 Control Registers  
Reserved  
Reserved  
SPI0 Control Registers  
SPI1 Control Registers  
Reserved  
Reserved  
UART0 Control Registers  
UART1 Control Registers  
UART2 Control Registers  
UART3 Control Registers  
Reserved  
Reserved  
I2C0 Control Registers  
I2C1 Control Registers  
Reserved  
I2C1_BA  
Reserved  
Reserved  
Reserved  
SC0_BA  
Reserved  
Reserved  
Smartcard Host 0 Control Registers  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Oct. 15, 2018  
Page 58 of 117  
Rev.1.00  
M4521  
0x400B_1000 0x400B_1FFF  
0x400C_0000 0x400C_0FFF  
0x400E_0000 0x400E_0FFF  
0x400E_2000 0x400E_2FFF  
0x5008_0000 0x5008_0FFF  
Reserved  
USBD_BA  
Reserved  
Reserved  
Reserved  
Reserved  
USB Device Control Register  
Reserved  
Reserved  
Reserved  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 6.2-5 Address Space Assignments for On-Chip Controllers  
Oct. 15, 2018  
Page 59 of 117  
Rev.1.00  
M4521  
6.2.6  
SRAM Memory Organization  
The M4521 series supports embedded SRAM with total 32 KB size and the SRAM organization is  
separated to two banks: SRAM bank0 and SRAM bank1. Each of these two banks has 16 KB  
address space and can be accessed simultaneously.  
Supports total 32 KB SRAM  
Supports byte / half word / word write  
Supports fixed 16 KB SRAM bank for independent access  
Supports oversize response error  
Supports remap address to 0x1000_0000  
AHB interface  
SRAM decoder  
controller  
SRAM bank0  
SRAM bank1  
AHB interface  
SRAM decoder  
controller  
Figure 6.2-8 SRAM Block Diagram  
Oct. 15, 2018  
Page 60 of 117  
Rev.1.00  
M4521  
Figure 6.2-9 shows the M4521 series SRAM organization. There are two SRAM banks in M4521  
and each bank is addressed to 16 KB. The bank0 address space is from 0x2000_0000 to  
0x2000_3FFF. The bank1 address space is from 0x2000_4000 to 0x2000_7FFF. The address  
between 0x2000_8000 to 0x3FFF_FFFF is illegal memory space and chip will enter hardfault if  
CPU accesses these illegal memory addresses.  
The address of each bank is remapping from 0x2000_0000 to 0x1000_0000. CPU can read  
SRAM bank0 through 0x2000_0000 to 0x2000_3FFF or 0x1000_0000 to 0x1000_3FFF, and read  
SRAM bank1 through 0x2000_4000 to 0x2000_7FFF or 0x1000_4000 to 0x1000_7FFF.  
0x3FFF_FFFF  
Reserved  
0x2000_8000  
0x2000_7FFF  
0x1000_7FFF  
remapping  
16 KB  
16 KB  
SRAM bank1  
SRAM bank1  
0x2000_4000  
0x2000_3FFF  
0x1000_4000  
0x1000_3FFF  
remapping  
16 KB  
16 KB  
SRAM bank0  
SRAM bank0  
0x2000_0000  
0x1000_0000  
32 KB device  
32 KB device  
Figure 6.2-9 SRAM Memory Organization  
Oct. 15, 2018  
Page 61 of 117  
Rev.1.00  
 
M4521  
6.2.7  
System Timer (SysTick)  
The Cortex® -M4 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_VAL) to zero, and reload (wrap) to the value in the SysTick Reload Value  
Register (SYST_LOAD) on the next clock cycle, and then decrement on subsequent clocks.  
When the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit  
clears on reads.  
The SYST_VAL value is UNKNOWN on reset. Software should write to the register to clear it to  
zero before enabling the feature. This ensures the timer will count from the SYST_LOAD value  
rather than an arbitrary value when it is enabled.  
If the SYST_LOAD is zero, the timer will be maintained with a current value of zero after it is  
reloaded with this value. This mechanism can be used to disable the feature independently from  
the timer enable bit.  
For more detailed information, please refer to the “Arm® Cortex® -M4 Technical Reference  
Manual” and “Arm® v6-M Architecture Reference Manual”.  
6.2.8  
Nested Vectored Interrupt Controller (NVIC)  
The NVIC and the processor core interface are closely coupled to enable low latency interrupt  
processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of  
the stacked, or nested, interrupts to enable tail-chaining of interrupts. You can only fully access  
the NVIC from privileged mode, but you can cause interrupts to enter a pending state in user  
mode if you enable the Configuration and Control Register. Any other user mode access causes a  
bus fault. You can access all NVIC registers using byte, halfword, and word accesses unless  
otherwise stated. NVIC registers are located within the SCS (System Control Space). All NVIC  
registers and system debug registers are little-endian regardless of the endianness state of the  
processor.  
The NVIC supports:  
An implementation-defined number of interrupts, in the range 1-240 interrupts.  
A programmable priority level of 0-15 for each interrupt; a higher level corresponds to  
a lower priority, so level 0 is the highest interrupt priority.  
Level and pulse detection of interrupt signals.  
Dynamic reprioritization of interrupts.  
Grouping of priority values into group priority and subpriority fields.  
Interrupt tail-chaining.  
An external Non Maskable Interrupt (NMI)  
WIC with Ultra-low Power Sleep mode support  
The processor automatically stacks its state on exception entry and unstacks this state on  
exception exit, with no instruction overhead. This provides low latency exception handling.  
Oct. 15, 2018  
Page 62 of 117  
Rev.1.00  
M4521  
6.3 Clock Controller  
6.3.1  
Overview  
The clock controller generates clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and a clock divider. The chip will not  
enter Power-down mode until CPU sets the Power-down enable bit PDEN(CLK_PWRCTL[7]) and  
Cortex® -M4 core executes the WFI instruction. After that, chip enters Power-down mode and wait  
for wake-up interrupt source triggered to leave Power-down mode. In Power-down mode, the  
clock controller turns off the 4~20 MHz external high speed crystal (HXT) and 22.1184 MHz  
internal high speed RC oscillator (HIRC) to reduce the overall system power consumption. Figure  
6.3-1 shows the clock generator and the overview of the clock source control.  
Oct. 15, 2018  
Page 63 of 117  
Rev.1.00  
M4521  
CPUCLK  
HCLK  
CPU  
48 MHz  
22.1184 MHz  
CRC  
EBI  
111  
011  
010  
001  
000  
22.1184  
MHz  
10 kHz  
1/(HCLKDIV+1)  
PLLFOUT  
PDMA  
32.768 kHz  
4~24 MHz  
4~24  
MHz  
PCLK0  
PCLK1  
I2C0  
I2C1  
32.768  
kHz  
CLK_CLKSEL0[2:0]  
10 kHz  
22.1184 MHz  
1
0
22.1184 MHz  
PLL FOUT  
111  
101  
4~24 MHz  
10 kHz  
TMR 0  
TMR 1  
CLK_PLLCTL[19]  
T0~T1  
PCLK0  
011  
010  
10 kHz  
BOD  
32.768 kHz  
4~24 MHz  
001  
000  
22.1184 MHz  
FMC  
USB  
48 MHz  
1
0
CLK_CLKSEL1 [10:8]  
CLK_CLKSEL1[14:12]  
1/(USBDIV+1)  
PLLFOUT  
CLK_CLKSEL0[8]  
22.1184 MHz  
10 kHz  
PCLK1  
111  
101  
1/(EADCDIV+1)  
RTC  
EADC  
TMR 2  
TMR 3  
10 kHz  
32.768 kHz  
T2~T3  
PCLK1  
1
0
011  
010  
32.768 kHz  
4~24 MHz  
001  
000  
CLK_CLKSEL3[8]  
22.1184 MHz  
CLK_CLKSEL1[18:16]  
CLK_CLKSEL1[22:20]  
11  
10  
HCLK  
Clock Output  
32.768 kHz  
4~24 MHz  
01  
00  
22.1184 MHz  
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
HCLK  
CPUCLK  
1
0
CLK_CLKSEL1[29:28]  
22.1184 MHz  
4~24 MHz  
32.768 kHz  
4~24 MHz  
SysTick  
11  
10  
SYST_CTRL[2]  
PCLK0  
PLLFOUT  
SPI0  
01  
00  
CLK_CLKSEL0[5:3]  
4~24 MHz  
PCLK0  
1
0
CLK_CLKSEL2[3:2]  
22.1184 MHz  
PWM 0  
PLLFOUT  
11  
10  
CLK_CLKSEL2[0]  
PCLK1  
PLLFOUT  
SPI1  
01  
00  
PCLK1  
4~24 MHz  
1
0
PWM 1  
PLLFOUT  
CLK_CLKSEL2[5:4]  
CLK_CLKSEL2[1]  
22.1184 MHz  
PCLK0  
11  
10  
10 kHz  
1/2048  
11  
10  
01  
1/(SC0DIV+1)  
SC0  
PLLFOUT  
4~24 MHz  
HCLK  
WDT  
01  
00  
32.768 kHz  
CLK_CLKSEL1[1:0]  
CLK_CLKSEL3[1:0]  
10 kHz  
22.1184 MHz  
32.768 kHz  
PLLFOUT  
11  
10  
11  
WWDT  
HCLK  
1/2048  
10  
01  
00  
1/(UARTDIV+1)  
UART 0-3  
CLK_CLKSEL1[31:30]  
4~24 MHz  
CLK_CLKSEL1[25:24]  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.  
Figure 6.3-1 Clock Generator Global View Diagram  
Oct. 15, 2018  
Page 64 of 117  
Rev.1.00  
M4521  
6.3.2  
Clock Generator  
The clock generator consists of 6 clock sources, which are listed below:  
32.768 kHz external low speed crystal oscillator (LXT)  
4~20 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency (PLLFOUT), PLL source can be selected  
from external 4~20 MHz external high speed crystal (HXT) or 22.1184 MHz internal  
high speed oscillator (HIRC)  
22.1184 MHz internal high speed RC oscillator (HIRC)  
10 kHz internal low speed RC oscillator (LIRC)  
48 MHz internal high speed RC oscillator (HIRC48M)  
LXTEN (CLK_PWRCTL[1])  
X32_IN  
External 32.768  
kHz Crystal  
LXT  
(LXT)  
X32_OUT  
HXTEN (CLK_PWRCTL[0])  
HXT  
XT1_IN  
External 4~24  
PLLSRC (CLK_PLLCTL[19])  
MHz Crystal  
(HXT)  
XT1_OUT  
0
1
PLL FOUT  
PLL  
HIRCEN (CLK_PWRCTL[2])  
Internal  
22.1184 MHz  
Oscillator  
(HIRC)  
HIRC  
LIRC  
LIRCEN (CLK_PWRCTL[3])  
Internal 10 kHz  
Oscillator  
(LIRC)  
HIRC48MEN (CLK_PWRCTL[24])  
Internal 48 MHz  
Oscillator  
HIRC48M  
(HIRC48M)  
Figure 6.3-2 Clock Generator Block Diagram  
Oct. 15, 2018  
Page 65 of 117  
Rev.1.00  
M4521  
6.3.3  
System Clock and SysTick Clock  
The system clock has 5 clock sources generated from clock generator block. The clock source  
switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram is shown in  
Figure 6.3-3.  
HCLKSEL  
(CLK_CLKSEL0[2:0])  
HIRC  
111  
CPUCLK  
LIRC  
PLLFOUT  
LXT  
CPU  
AHB  
011  
010  
001  
000  
HCLK  
PCLK0  
PCLK1  
1/(HCLKDIV+1)  
HCLKDIV  
(CLK_CLKDIV0[3:0])  
APB0  
APB1  
HXT  
CPU in Power Down Mode  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.  
Figure 6.3-3 System Clock Block Diagram  
There are two clock fail detectors to observe HXT and LXT clock source and they have individual  
enable and interrupt control. When HXT detector is enabled, the HIRC clock is enabled  
automatically. When LXT detector is enabled, the LIRC clock is enabled automatically.  
When HXT clock detector is enabled, the system clock will auto switch to HIRC if HXT clock stop  
being detected on the following condition: system clock source comes from HXT or system clock  
source comes from PLL with HXT as the input of PLL. If HXT clock stop condition is detected, the  
HXTFIF (CLK_CLKDSTS[0]) is set to 1 and chip will enter interrupt if HXTFIE (CLK_CLKDCTL[5])  
is set to 1. User can trying to recover HXT by disable HXT and enable HXT again to check if the  
clock stable bit is set to 1 or not. If HXT clock stable bit is set to 1, it means HXT is recover to  
oscillate after re-enable action and user can switch system clock to HXT again.  
The HXT clock stop detect and system clock switch to HIRC procedure is shown in Figure 6.3-4.  
Oct. 15, 2018  
Page 66 of 117  
Rev.1.00  
 
M4521  
Set HXTFDEN To enable  
HXT clock detector  
NO  
HXTFIF = 1?  
YES  
System clock source =  
HXT or PLL with  
HXT ?  
System clock keep  
original clock  
NO  
YES  
Switch system clock to  
HIRC  
Figure 6.3-4 HXT Stop Protect Procedure  
The clock source of SysTick in Cortex® -M4 core can use CPU clock or external clock  
(SYST_CTRL[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The  
clock source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]). The  
block diagram is shown in Figure 6.3-5.  
STCLKSEL  
(CLK_CLKSEL0[5:3])  
HIRC  
111  
011  
010  
001  
000  
1/2  
1/2  
1/2  
HCLK  
HXT  
LXT  
STCLK  
HXT  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.  
Figure 6.3-5 SysTick Clock Control Block Diagram  
6.3.4  
Peripherals Clock  
The peripherals clock has different clock source switch setting, which depends on the different  
peripheral. Please refer to the CLK_CLKSEL1 and CLK_CLKSEL2 register description in 6.3.8.  
Oct. 15, 2018  
Page 67 of 117  
Rev.1.00  
 
M4521  
6.3.5  
Power-down Mode Clock  
When entering Power-down mode, system clocks, some clock sources and some peripheral  
clocks are disabled. Some clock sources and peripherals clock are still active in Power-down  
mode.  
For theses clocks, which still keep active, are listed below:  
Clock Generator  
10 kHz internal low speed RC oscillator (LIRC) clock  
32.768 kHz external low speed crystal oscillator (LXT) clock  
Peripherals Clock (When the modules adopt LXT or LIRC as clock source)  
6.3.6  
Clock Output  
This device is equipped with a power-of-2 frequency divider which is composed by16 chained  
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one  
multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided  
clocks with the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock  
divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock  
divider output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).  
When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When  
writing 0 to CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock  
reaches low state and stays in low state.  
CLKOSEL (CLK_CLKSEL1[29:28])  
CLKOCKEN (CLK_APBCLK0[6])  
HIRC  
11  
HCLK  
CLKO_CLK  
10  
01  
00  
LXT  
HXT  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.  
Figure 6.3-6 Clock Source of Clock Output  
Oct. 15, 2018  
Page 68 of 117  
Rev.1.00  
M4521  
CLKOEN  
(CLK_CLKOCTL[4])  
Enable  
FREQSEL  
(CLK_CLKOCTL[3:0])  
divide-by-2 counter  
16 chained  
divide-by-2 counter  
DIV1EN  
(CLK_CLKOCTL[5])  
CLKO_CLK  
1/2  
1/22  
1/23  
...  
1/215 1/216  
CLK1HZEN  
(CLK_CLKOCTL[6])  
0000  
0001  
:
16 to 1  
MUX  
0
1
:
0
1
1110  
CLKO  
1111  
RTCSEL(CLK_CLKSEL3[8])  
LIRC  
LXT  
0
1
1 Hz clock from RTC  
/32768  
Figure 6.3-7 Clock Output Block Diagram  
Oct. 15, 2018  
Page 69 of 117  
Rev.1.00  
M4521  
6.4 Flash Memeory Controller (FMC)  
6.4.1  
Overview  
The M4521 series is equipped with 128 KB on-chip embedded Flash for application and  
configurable Data Flash to store some application dependent data. A User Configuration block is  
provided for system initiation. A 4 KB loader ROM (LDROM) is used for In-System-Programming  
(ISP) function. A 4KB cache with zero wait cycle is used to improve Flash access performance.  
This chip also supports In-Application-Programming (IAP) function, user switches the code  
executing without the chip reset after the embedded Flash updated.  
6.4.2  
Features  
Supports 128 KB application ROM (APROM).  
Supports 4 KB loader ROM (LDROM).  
Supports Data Flash with configurable memory size.  
Supports 8 bytes User Configuration block to control system initiation.  
Supports 2 KB page erase for all embedded Flash.  
Supports 32-bit/64-bit and multi-word Flash programming function.  
Supports fast Flash programming verification function.  
Supports checksum calculation function.  
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded Flash memory.  
Supports cache memory to improve Flash access performance and reduce power  
consumption.  
Oct. 15, 2018  
Page 70 of 117  
Rev.1.00  
M4521  
6.5 External Bus Interface (EBI)  
6.5.1  
Overview  
The M4521 series is equipped with an external bus interface (EBI) for external device used. To  
save the connections between external device and the M4521, the EBI operates in address bus  
and data bus multiplex mode. The EBI supports two chip selects that can connect two external  
devices with different timing setting requirement.  
6.5.2  
Features  
Supports address bus and data bus multiplex mode to save the address pins  
Supports two chip selects with polarity control for each bank  
Supports external accessible space up to 1 Mbytes (need 20-bit address width) for each  
bank. Real addressable space size is dependent on package pin out  
Supports variable external bus base clock (MCLK) which based on HCLK  
Supports 8-bit or 16-bit data width for each chip select  
Supports LCD interface i80 mode  
Supports variable address latch enable time (tALE)  
Supports variable data access time (tACC) and data access hold time (tAHD) for each chip  
select  
Supports configurable idle cycle for different access condition: Idle of Write command finish  
(W2X) and Idle of Read-to-Read (R2R)  
Oct. 15, 2018  
Page 71 of 117  
Rev.1.00  
M4521  
6.6 General Purpose I/O (GPIO)  
6.6.1  
Overview  
The M4521 series has up to 49 General Purpose I/O pins to be shared with other function pins  
depending on the chip configuration. These 49 pins are arranged in 6 ports named as PA, PB,  
PC, PD, PE and PF. Each of the 49 pins is independent and has the corresponding register bits to  
control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull  
output, Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all  
pins are depending on CIOIN (CONFIG0[10]). Each I/O pin has a very weakly individual pull-up  
resistor which is about 110 k~ 300 kfor VDD is from 5.0 V to 2.5 V.  
6.6.2  
Features  
Four I/O modes:  
Quasi-bidirectional mode  
Push-Pull Output mode  
Open-Drain Output mode  
Input only with high impendence mode  
TTL/Schmitt trigger input selectable  
I/O pin can be configured as interrupt source with edge/level setting  
Supports High Drive and High Slew Rate I/O mode  
Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting  
CIOIN = 0, all GPIO pins in Quasi-bidirectional mode after chip reset  
CIOIN = 1, all GPIO pins in input mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the wake-up function  
Supports 5V-tolerance function for following pins  
PA.0 ~ PA.3, PC.0 ~ PC.7, PD.2 ~ PD.3, PD.7, PD.12 ~ PD.15, PE.0, PE.8 ~ PE.13,  
PF.2, PF.5 ~ PF.7  
Oct. 15, 2018  
Page 72 of 117  
Rev.1.00  
M4521  
6.7 PDMA Controller (PDMA)  
6.7.1  
Overview  
The peripheral direct memory access (PDMA) controller is used to provide high-speed data  
transfer. The PDMA controller can transfer data from one address to another without CPU  
intervention. This has the benefit of reducing the workload of CPU and keeps CPU resources free  
for other applications. The PDMA controller has a total of 8 channels and each channel can  
perform transfer between memory and peripherals or between memory and memory.  
6.7.2  
Features  
Supports 8 independently configurable channels  
Supports selectable 2 level of priority (fixed priority or round-robin priority)  
Supports transfer data width of 8, 16, and 32 bits  
Supports source and destination address increment size can be byte, half-word, word or no  
increment  
Supports software and SPI, UART, ADC and PWM request  
Supports Scatter-Gather mode to perform sophisticated transfer through the use of the  
descriptor link list table  
Supports single and burst transfer type  
Supports time-out function for each channel  
Oct. 15, 2018  
Page 73 of 117  
Rev.1.00  
M4521  
6.8 Timer Controller (TMR)  
6.8.1  
Overview  
The Timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily  
implement a timer control for applications. The timer can perform functions, such as frequency  
measurement, delay timing, clock generation, and event counting by external input pins, and  
interval measurement by external capture pins.  
6.8.2  
Features  
Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through CNT (TIMERx_CNT[23:0])  
Supports event counting function  
24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])  
Supports external capture pin event for interval measurement  
Supports external capture pin event to reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated  
Support Timer0 ~ Timer3 time-out interrupt signal or capture interrupt signal to trigger PWM  
and EADC function  
Oct. 15, 2018  
Page 74 of 117  
Rev.1.00  
M4521  
6.9 PWM Generator and Capture Timer (PWM)  
6.9.1  
Overview  
The M4521 series provides two PWM generators  PWM0 and PWM1. Each PWM supports 6  
channels of PWM output or input capture. There is a 12-bit prescaler to support flexible clock to  
the 16-bit PWM counter with 16-bit comparator. The PWM counter supports up, down and up-  
down counter types. PWM using comparator compared with counter to generate events. These  
events use to generate PWM pulse, interrupt and trigger signal for EADC to start conversion.  
The PWM generator supports two standard PWM output modes: Independent mode and  
Complementary mode, they have difference architecture. There are two output functions based  
on standard output modes: Group function and Synchronous function. Group function can be  
enabled under Independent mode or complementary mode. Synchronous function only enabled  
under complementary mode. Complementary mode has two comparators to generate various  
PWM pulse with 12-bit dead-time generator and another free trigger comparator to generate  
trigger signal for EADC. For PWM output control unit, it supports polarity output, independent pin  
mask and brake functions.  
The PWM generator also supports input capture function. It supports latch PWM counter value to  
corresponding register when input channel has a rising transition, falling transition or both  
transition is happened. Capture function also support PDMA to transfer captured data to memory.  
6.9.2  
Features  
6.9.2.1 PWM function features  
Supports maximum clock frequency up to144MHz  
Supports up to two PWM modules, each module provides 6 output channels.  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 3 complementary paired PWM output channel  
Dead-time insertion with 12-bit resolution  
Synchronous function for phase control  
Two compared values during one period  
Supports 12-bit pre-scalar from 1 to 4096  
Supports 16-bit resolution PWM counter  
Up, down and up/down counter operation type  
Supports one-shot or auto-reload counter operation mode  
Supports group function  
Supports synchronous function  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Brake source from pin, analog comparator and system safety events (clock failed,  
Brown-out detection and CPU lockup).  
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake interrupt cleared  
Oct. 15, 2018  
Page 75 of 117  
Rev.1.00  
M4521  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM counter match zero, period value or compared value  
Brake condition happened  
Supports trigger EADC on the following events:  
PWM counter match zero, period value or compared value  
PWM counter match free trigger comparator compared value (only for EADC)  
6.9.2.2 Capture Function Features  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Supports PDMA transfer function for PWM all channels  
Oct. 15, 2018  
Page 76 of 117  
Rev.1.00  
M4521  
6.10 Watchdog Timer (WDT)  
6.10.1 Overview  
The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an  
unknown state. This prevents system from hanging for an infinite period of time. Besides, this  
Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.  
6.10.2 Features  
18-bit free running up counter for WDT time-out interval  
Selectable time-out interval (24 ~ 218) and the time-out interval is 1.6 ms ~ 26.214s if  
WDT_CLK = 10 kHz.  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports selectable WDT reset delay period, including 102613018 or 3 WDT_CLK reset  
delay period  
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0] in  
Config0 register  
Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC or  
LXT.  
Oct. 15, 2018  
Page 77 of 117  
Rev.1.00  
M4521  
6.11 Window Watchdog Timer (WWDT)  
6.11.1 Overview  
The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified  
window period to prevent software run to uncontrollable status by any unpredictable condition.  
6.11.2 Features  
6-bit down counter value (CNTDAT) and 6-bit compare value (CMPDAT) to make the  
WWDT time-out window period flexible  
Supports 4-bit value (PSCSEL) to programmable maximum 11-bit prescale counter period of  
WWDT counter  
Oct. 15, 2018  
Page 78 of 117  
Rev.1.00  
M4521  
6.12 Real Time Clock (RTC)  
6.12.1 Overview  
The Real Time Clock (RTC) controller provides the real time and calendar message. The RTC  
offers programmable time tick and alarm match interrupts. The data format of time and calendar  
messages are expressed in BCD format. A digital frequency compensation feature is available to  
compensate external crystal oscillator frequency accuracy.  
The RTC controller also offers 80 bytes spare registers to store user’s important information. The  
spare registers content is cleared when specified event on tamper pin is detected.  
6.12.2 Features  
Supports real time counter in RTC_TIME (hour, minute, second) and calendar counter in  
RTC_CAL (year, month, day) for RTC time and calendar check  
Supports alarm time (hour, minute, second) and calendar (year, month, day) settings in  
RTC_TALM and RTC_CALM  
Supports alarm time (hour, minute, second) and calendar (year, month, day) mask enable in  
RTC_TAMSK and RTC_CAMSK  
Selectable 12-hour or 24-hour time scale in RTC_CLKFMT register  
Supports Leap Year indication in RTC_LEAPYEAR register  
Supports Day of the Week counter in RTC_WEEKDAY register  
Frequency of RTC clock source compensate by RTC_FREQADJ register  
All time and calendar message expressed in BCD format  
Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32,  
1/16, 1/8, 1/4, 1/2 and 1 second  
Supports RTC Time Tick and Alarm Match interrupt  
Supports chip wake-up from Idle or Power-down mode while a RTC interrupt signal is  
generated  
Supports 80 bytes spare registers and a snoop pin detection to clear the content of these  
spare registers  
Oct. 15, 2018  
Page 79 of 117  
Rev.1.00  
M4521  
6.13 UART Interface Controller (UART)  
6.13.1 Overview  
The M4521 series provides four channels of Universal Asynchronous Receiver/Transmitters  
(UART). UART Controller performs Normal Speed UART and supports flow control function. The  
UART Controller performs a serial-to-parallel conversion on data received from the peripheral and  
a parallel-to-serial conversion on data transmitted from the CPU. Each UART Controller channel  
supports ten types of interrupts. The UART controller also supports IrDA SIR, RS-485 and auto-  
baud rate measuring function.  
6.13.2 Features  
Full-duplex asynchronous communications  
Separates receive and transmit 16/16 bytes entry FIFO for data payloads  
Supports hardware auto-flow control  
Programmable receiver buffer trigger level  
Supports programmable baud rate generator for each channel individually  
Supports nCTS and RX data wake-up function  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting DLY (UART_TOUT [15:8])  
Supports Auto-Baud Rate measurement  
Supports break error, frame error, parity error and receive/transmit buffer overflow detection  
function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5-, 6-, 7-, 8- bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode  
Supports for 3/16 bit duration for normal mode  
Supports RS-485 function mode  
Supports RS-485 9-bit mode  
Supports hardware or software enables to program nRTS pin to control RS-485  
transmission direction  
UART Feature  
UART0 / UART1  
UART2 / UART3  
SC_UART  
FIFO  
16 Bytes  
16 Bytes  
4 Bytes  
Auto Flow Control (CTS/RTS)  
IrDA  
-
-
-
-
RS-485 Function Mode  
Auto-Flow Control  
Oct. 15, 2018  
Page 80 of 117  
Rev.1.00  
M4521  
nCTS Wake-up  
-
RX Data Wake-up  
Auto-Baud Rate Measurement  
STOP Bit Length  
Word Length 5, 6,7, 8 bits  
Even / Odd Parity  
Stick Bit  
-
-
1, 1.5, 2 bit  
1, 1.5, 2 bit  
1, 2 bit  
-
= Supported  
Table 6.13-1 NuMicro® M4521 Series UART Feature  
Oct. 15, 2018  
Page 81 of 117  
Rev.1.00  
M4521  
6.14 Smart Card Host Interface (SC)  
6.14.1 Overview  
The Smart Card Interface controller (SC controller) is based on ISO/INTENC 7816-3 standard and  
fully compliant with PC/SC Specifications. It also provides status of card insertion/removal.  
6.14.2 Features  
ISO-7816-3 T = 0, T = 1 compliant.  
EMV2000 compliant  
One ISO-7816-3 port  
Separates receive/transmit 4 byte entry FIFO for data payloads.  
Programmable transmission clock frequency.  
Programmable receiver buffer trigger level.  
Programmable guard time selection (11 ETU ~ 267 ETU).  
A 24-bit and two 8-bit timers for Answer to Request (ATR) and waiting times processing.  
Supports auto inverse convention function.  
Supports transmitter and receiver error retry and error number limiting function.  
Supports hardware activation sequence, hardware warm reset sequence and hardware  
deactivation sequence process.  
Supports hardware auto deactivation sequence when detected the card removal.  
Supports UART mode  
Full duplex, asynchronous communications.  
Separates receiving / transmitting 4 bytes entry FIFO for data payloads.  
Supports programmable baud rate generator.  
Supports programmable receiver buffer trigger level.  
Programmable transmitting data delay time between the last stop bit leaving the TX-  
FIFO and the de-assertion by setting EGT (SC_EGT[7:0]).  
Programmable even, odd or no parity bit generation and detection.  
Programmable stop bit, 1- or 2- stop bit generation  
Oct. 15, 2018  
Page 82 of 117  
Rev.1.00  
M4521  
6.15 I2C Serial Interface Controller (I2C)  
6.15.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data  
exchange between devices. The I2C standard is a true multi-master bus including collision  
detection and arbitration that prevents data corruption if two or more masters attempt to control  
the bus simultaneously.  
There are two sets of I2C controller which supports Bus Management (System Management  
(SM)/Power Management (PM) bus compatible) and Power-down wake-up function.  
6.15.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to  
the bus. The main features of the I2C bus include:  
Supports up to two I2C ports  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data on  
the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and timer-  
out counter overflows.  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Bus Management (SM/PM compatible) function  
Supports Power-down wake-up function  
Oct. 15, 2018  
Page 83 of 117  
Rev.1.00  
M4521  
6.16 Serial Peripheral Interface (SPI)  
6.16.1 Overview  
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and  
allows full duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-  
direction interface. The M4521 series contains up to three sets of SPI controllers performing a  
serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial  
conversion on data transmitted to a peripheral device. Each SPI controller can be configured as a  
master or a slave device.  
SPI0 controller supports 2-bit Transfer mode to perform full-duplex 2-bit data transfer and also  
supports Dual and Quad I/O Transfer mode.  
6.16.2 Features  
Up to two sets of SPI controllers  
Supports Master or Slave mode operation  
Supports 2-bit Transfer mode  
Supports Dual and Quad I/O Transfer mode for SPI0  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 4-/8-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports PDMA transfer  
Supports 3-Wire, no slave selection signal, bi-direction interface  
Oct. 15, 2018  
Page 84 of 117  
Rev.1.00  
M4521  
6.17 USB Device Controller (USBD)  
6.17.1 Overview  
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is  
compliant with USB 2.0 full-speed device specification and supports Control/Bulk/Interrupt/  
Isochronous transfer types.  
In this device controller, there are two main interfaces: the APB bus and USB bus which comes  
from the USB PHY transceiver. For the APB bus, the CPU can program control registers through  
it. There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is  
necessary to write data to SRAM or read data from SRAM through the APB interface or SIE. User  
needs to set the effective starting address of SRAM for each endpoint buffer through buffer  
segmentation register (USBD_BUFSEGx).  
There are 8 endpoints in this controller. Each of the endpoint can be configured as IN or OUT  
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are  
implemented in this block. The block of Endpoint Control” is also used to manage the data  
sequential synchronization, endpoint state, current start address, transaction status, and data  
buffer status for each endpoint.  
There are four different interrupt events in this controller. They are the no-event-wake-up, device  
plug-in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend  
and resume, etc. Any event will cause an interrupt, and users just need to check the related event  
flags in interrupt event status register (USBD_INTSTS) to acknowledge what kind of interrupt  
occurring, and then check the related USB Endpoint Status Register (USBD_EPSTS) to  
acknowledge what kind of event occurring in this endpoint.  
A software-disconnect function is also supported for this USB controller. It is used to simulate the  
disconnection of this device from the host. If user enables SE0 bit (USBD_SE0), the USB  
controller will force the output of USB_D+ and USB_D- to level low and its function is disabled.  
After disable the SE0 bit, host will enumerate this USB device again.  
For more information on the Universal Serial Bus, please refer to Universal Serial Bus  
Specification Revision 1.1.  
6.17.2 Features  
Compliant with USB 2.0 Full-Speed specification  
Provides 1 interrupt vector with 4 different interrupt events (NEVWK, VBUSDET, USB and  
BUS)  
Supports Control/Bulk/Interrupt/Isochronous transfer types  
Supports suspend function when no bus activity existing for 3 ms  
Supports 8 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types and  
maximum 512 bytes buffer size  
Provides remote wake-up capability  
Oct. 15, 2018  
Page 85 of 117  
Rev.1.00  
M4521  
6.18 USB 1.1 Host Controller (USBH)  
6.18.1 Overview  
This chip is equipped with a USB 1.1 Host Controller (USBH) that supports Open Host Controller  
Interface (OpenHCI, OHCI) Specification, a register-level description of a host controller, to  
manage the devices and data transfer of Universal Serial Bus (USB).  
The USBH supports an integrated Root Hub with a USB port, a DMA for real-time data transfer  
between system memory and USB bus, port power control and port over current detection.  
The USBH is responsible for detecting the connect and disconnect of USB devices, managing  
data transfer, collecting status and activity of USB bus, providing power control and detecting over  
current of attached USB devices.  
6.18.2 Features  
Supports Universal Serial Bus (USB) Specification Revision 1.1.  
Supports Open Host Controller Interface (OpenHCI) Specification Revision 1.0.  
Supports both full-speed (12Mbps) and low-speed (1.5Mbps) USB devices.  
Supports Control, Bulk, Interrupt and Isochronous transfers.  
Supports an integrated Root Hub.  
Supports a USB host port shared with USB device (OTG function).  
Supports port power control and port over current detection.  
Supports DMA for real-time data transfer.  
Oct. 15, 2018  
Page 86 of 117  
Rev.1.00  
M4521  
6.19 CRC Controller (CRC)  
6.19.1 Overview  
The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with programmable  
polynomial settings.  
6.19.2 Features  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
CRC-CCITT: X16 + X12 + X5 + 1  
CRC-8: X8 + X2 + X + 1  
CRC-16: X16 + X15 + X2 + 1  
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1  
Programmable seed value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum  
Supports 8/16/32-bit of data width  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports using PDMA to write data to perform CRC operation  
Oct. 15, 2018  
Page 87 of 117  
Rev.1.00  
M4521  
6.20 Enhanced 12-bit Analog-to-Digital Converter (EADC)  
6.20.1 Overview  
The M4521 series contains one 12-bit successive approximation analog-to-digital converter  
(SAR A/D converter) with 16 external input channels and 3 internal channels. The A/D  
converter can be started by software trigger, PWM0/1 triggers, timer0~3 overflow pulse  
triggers, ADINT0, ADINT1 interrupt EOC (End of conversion) pulse trigger and external pin  
(STADC) input signal.  
6.20.2 Features  
Analog input voltage range: 0~VREF (Max to AVDD).  
Reference voltage from VREF pin or AVDD.  
12-bit resolution and 10-bit accuracy is guaranteed.  
Up to 16 single-end analog external input channels or 8 pair differential analog input  
channels.  
3 internal channels, they are band-gap voltage (VBG), temperature sensor (VTEMP), and  
Battery power (VBAT  
)
Four ADC interrupts (ADINT0~3) with individual interrupt vector addresses.  
Maximum ADC clock frequency is 20 MHz.  
Up to 1 Msps conversion rate.  
Configurable ADC internal sampling time.  
Up to 19 sample modules  
Each of sample module 0~15 which is configurable for ADC converter channel  
EADC_CH0~15 and trigger source.  
Sample module 16~18 is fixed for ADC channel 16, 17, 18 input sources as band-gap  
voltage, temperature sensor, and battery power (VBAT).  
Double buffer for sample module 0~3  
Configurable sampling time for each sample module.  
Conversion results are held in 19 data registers with valid and overrun indicators.  
An A/D conversion can be started by:  
Write 1 to SWTRGn (EADC_SWTRG[n], n = 0~18)  
External pin STADC  
Timer0~3 overflow pulse triggers  
ADINT0 and ADINT1 interrupt EOC (End of conversion) pulse triggers  
PWM triggers  
Supports PDMA transfer  
Oct. 15, 2018  
Page 88 of 117  
Rev.1.00  
M4521  
7 APPLICATION CIRCUIT  
AVCC  
VREF  
AVDD  
USB_VBUS  
USB_D-  
33R  
33R  
USB  
USB_D+  
FB  
DVCC  
VDD  
VDDIO  
15k(HOST Only)  
15k(HOST Only)  
0.1uF  
1uF  
VBAT  
VSS  
Power  
0.1uF  
USB_VDD33_CAP  
FB  
1uF  
AVSS  
DVCC  
VDD  
SPI_SS  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
CS  
CLK  
MISO  
MOSI  
VDD  
VSS  
ICE_DAT  
ICE_CLK  
nRESET  
VSS  
SWD  
Interface  
M4521 Series  
20p  
SPI Device  
XT1_IN  
DVCC  
4.7K  
DVCC  
4.7K  
4~ 24 MHz  
crystal  
20p  
20p  
XT1_OUT  
X32_IN  
CLK  
DIO  
I2C_SCL  
I2C_SDA  
VDD  
VSS  
I2C Device  
Crystal  
DVCC  
32.768kHz  
crystal  
20p  
X32_OUT  
SC_PWR  
DVCC  
SC_RST  
SC_CLK  
SC_DAT  
Smart Card Slot  
Reset  
Circuit  
10K  
SC_ Detect  
nRST  
10uF/10V  
PC COM Port  
RS 232 Transceiver  
ROUT RIN  
RXD  
TXD  
LDO CAP  
_
UART  
TIN  
TOUT  
LDO  
1uF  
Oct. 15, 2018  
Page 89 of 117  
Rev.1.00  
M4521  
8 ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
Symbol  
VDD VSS  
VIN  
Parameter  
Min  
-0.3  
VSS - 0.3  
4
Max  
+7.0  
VDD + 0.3  
20  
Unit  
V
DC Power Supply  
Input Voltage  
V
1/tCLCL  
TA  
Oscillator Frequency  
MHz  
 
Operating Temperature  
-40  
+105  
+150  
120  
TST  
Storage Temperature  
-55  
IDD  
Maximum Current into VDD  
-
mA  
mA  
mA  
mA  
mA  
mA  
ISS  
Maximum Current out of VSS  
120  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
35  
35  
IIO  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may  
adversely affect the lift and reliability of the device.  
Oct. 15, 2018  
Page 90 of 117  
Rev.1.00  
M4521  
8.2 DC Electrical Characteristics  
(VDD - VSS = 2.5 ~ 5.5 V, TA = 25C)  
SPECIFICATION  
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Operation voltage  
VDD  
2.5  
-
5.5  
V
VDD = 2.5 V ~ 5.5 V up to 72 MHz  
Power supply for  
PE.8~PE.13  
VDDIO  
1.8  
2.5  
-
-
5.5  
5.5  
0.3  
V
V
RTC Operation  
voltage for  
PF.0~PF.2  
VBAT  
Power Ground  
VSS / AVSS  
-0.3  
0
V
V
V
LDO Output Voltage  
VLDO  
1.8  
VDD ≥ 2.5 V  
Band-gap Voltage  
VBG  
1.175  
1.21  
1.225  
0.3  
VDD = 2.5 V ~ 5.5 V, TA = 25C  
Allowed voltage  
difference for VDD  
and AVDD  
VDD-AVDD  
-0.3  
0
V
All digital  
modules  
VDD  
HXT  
HIRC  
PLL  
50  
IDD1  
-
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 72 MHz  
while(1){}  
5.5V  
5.5V  
12 MHz  
12 MHz  
X
X
V
V
V
X
25  
48  
22  
IDD2  
IDD3  
IDD4  
-
-
-
-
-
-
mA  
mA  
mA  
3.3V  
3.3V  
12 MHz  
12 MHz  
X
X
V
V
V
X
executed from flash  
43  
25  
41  
22  
17  
8
IDD5  
IDD6  
IDD7  
IDD8  
IDD9  
IDD10  
IDD11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
V
V
V
V
V
V
V
X
X
X
V
X
V
X
V
X
V
Operating Current  
Normal Run Mode  
HCLK = 50 MHz  
while(1){}  
executed from flash  
Operating Current  
Normal Run Mode  
X
HCLK =22.1184  
MHz  
17  
X
while(1){}  
8
IDD12  
-
-
mA  
3.3V  
X
V
X
X
executed from flash  
10  
6
Operating Current  
Normal Run Mode  
HCLK = 12 MHz  
while(1){}  
IDD13  
IDD14  
IDD15  
IDD16  
IDD17  
-
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
X
X
X
X
X
V
X
V
X
V
8
executed from flash  
4
3
Operating Current  
Oct. 15, 2018  
Page 91 of 117  
Rev.1.00  
M4521  
SPECIFICATION  
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Normal Run Mode  
HCLK =4 MHz  
while(1){}  
2
3
2
IDD18  
IDD19  
IDD20  
-
-
-
-
-
-
mA  
mA  
mA  
5.5V  
3.3V  
3.3V  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
X
X
V
X
executed from flash  
LXT  
All digital  
modules  
VDD  
HIRC  
PLL  
(kHz)  
146  
IDD21  
-
-
uA  
Operating Current  
HCLK = 32.768 kHz  
while(1){}  
5.5V  
5.5V  
32.768  
32.768  
X
X
X
X
V
X
134  
uA  
uA  
uA  
IDD22  
IDD23  
IDD24  
executed from flash  
133  
121  
3.3V  
3.3V  
32.768  
32.768  
X
X
X
X
V
X
-
-
-
-
HXT  
/LXT  
LIRC  
(kHz)  
All digital  
modules  
VDD  
PLL  
Operating Current  
Normal Run Mode  
HCLK = 10 kHz  
while(1){}  
131  
IDD25  
μA  
5.5V  
5.5V  
3.3V  
3.3V  
X
X
X
X
10  
10  
10  
10  
X
X
X
X
V
X
V
X
128  
118  
115  
IDD26  
IDD27  
IDD28  
-
-
-
-
-
-
μA  
μA  
μA  
Executed from  
Flash  
Operating Current  
Idle Mode  
All digital  
modules  
VDD  
HXT  
HIRC  
PLL  
30  
IIDLE1  
-
-
mA  
HCLK = 72 MHz  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
X
X
X
X
V
V
V
V
X
X
V
V
V
V
V
V
V
V
X
X
X
X
X
X
V
X
V
X
V
X
V
X
V
X
V
X
V
X
10  
28  
7
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
IIDLE8  
IIDLE9  
IIDLE10  
IIDLE11  
IIDLE12  
IIDLE13  
IIDLE14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
32  
10  
29  
8
Operating Current  
Idle Mode  
HCLK = 50 MHz  
11  
2
Operating Current  
Idle Mode  
X
HCLK =22.1184  
MHz  
10  
2
X
X
7
Operating Current  
Idle Mode  
12 MHz  
12 MHz  
3
HCLK =12 MHz  
5
2
IIDLE15  
IIDLE16  
-
-
-
-
mA  
mA  
3.3V  
3.3V  
12 MHz  
12 MHz  
X
X
X
X
V
X
Oct. 15, 2018  
Page 92 of 117  
Rev.1.00  
M4521  
SPECIFICATION  
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
2.2  
Max.  
Unit  
Operating Current  
Idle Mode  
IIDLE17  
IIDLE18  
IIDLE19  
IIDLE20  
-
-
-
-
mA  
mA  
5.5V  
5.5V  
12 MHz  
12 MHz  
X
X
X
X
V
X
1.1  
HCLK =4 MHz  
1.8  
0.6  
-
-
-
-
mA  
mA  
3.3V  
3.3V  
12 MHz  
12 MHz  
X
X
X
X
V
X
Operating Current  
Idle Mode  
LXT  
All digital  
modules  
VDD  
HIRC  
PLL  
(kHz)  
136  
IIDLE21  
-
-
-
-
uA  
32.768 kHz  
5.5V  
5.5V  
32.768  
32.768  
X
X
X
X
V
X
126  
123  
114  
IIDLE22  
IIDLE23  
IIDLE24  
uA  
uA  
uA  
3.3V  
3.3V  
32.768  
32.768  
X
X
X
X
V
X
Operating Current  
Idle Mode  
HXT  
/LXT  
LIRC  
(kHz)  
All digital  
modules  
VDD  
PLL  
128  
IIDLE25  
-
-
uA  
at 10 kHz  
5.5V  
5.5V  
3.3V  
3.3V  
X
X
X
X
10  
10  
10  
10  
X
X
X
X
V
X
V
X
125  
115  
112  
IIDLE26  
IIDLE27  
IIDLE28  
-
-
-
-
-
-
μA  
μA  
μA  
Standby Current  
LXT  
HXT/HI  
RC/PLL  
RAM  
retension  
VDD  
RTC  
Power-down Mode  
(Deep Sleep Mode)  
(kHz)  
21.08  
IPWD1  
A  
5.5V  
5.5V  
5.5V  
X
X
X
X
10  
X
V
V
V
V
V
22.18  
23.21  
IPWD2  
IPWD3  
A  
A  
32.768  
10 &  
32.768  
23.23  
IPWD4  
5.5V  
X
V
V
A  
19.38  
20.44  
21.50  
IPWD5  
IPWD6  
IPWD7  
3.3V  
3.3V  
3.3V  
X
X
X
X
10  
X
V
V
V
V
V
A  
A  
A  
32.768  
10 &  
32.768  
21.55  
2.01  
IPWD8  
IVBAT  
IIN  
3.3V  
X
V
V
A  
VBAT = 5.0 V, 32.768 kHz external low speed crystal  
oscillator (LXT), RTC ON and VDD/AVDD power  
domain OFF.  
uA  
RTC Operating  
Current  
VBAT = 3.0 V, 32.768 kHz external low speed crystal  
oscillator (LXT), RTC ON and VDD/AVDD power  
domain OFF.  
1.91  
-45  
uA  
Input Current at  
/RESET[1]  
-55  
-30  
VDD = 3.3V, VIN = 0.45V  
A  
Oct. 15, 2018  
Page 93 of 117  
Rev.1.00  
M4521  
SPECIFICATION  
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Logic 0 Input  
Current (Quasi-  
bidirectional mode)  
IIL  
-
-67  
-75  
VDD = VDDIO = VBAT = 5.5 V, VIN = 0V  
A  
Logic 1 to 0  
Transition Current  
(Quasi-bidirectional  
mode) [*3]  
ITL  
-
-610  
-650  
VDD = VDDIO = VBAT =5.5 V, VIN = 2.0V  
A  
VDD = VDDIO = VBAT =5.5 V, 0 < VIN < VDD  
Input Leakage  
Current  
ILK  
-1  
-
+1  
A  
Open-drain or input only mode  
-0.3  
-0.3  
-
-
0.8  
0.6  
VDD = VDDIO = VBAT = 4.5 V  
VDD = VDDIO = VBAT = 2.5 V  
Input Low Voltage  
(TTL input)  
VIL1  
V
Input Low Voltage  
(TTL input for PE8  
~ PE13)  
VDD = VBAT = 2.5 ~ 5.5 V  
VIL2  
-0.3  
-
0.3  
V
V
V
VDDIO = 1.8 V  
VDD  
+
2.0  
1.5  
-
-
VDD = VDDIO = VBAT = 5.5 V  
VDD = VDDIO = VBAT = 3.0 V  
0.3  
Input High Voltage  
(TTL input)  
VIH1  
VDD  
+
0.3  
Input High Voltage  
(TTL input for PE8  
~ PE13)  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO  
0.3  
+
VIH2  
VHY  
VIL3  
1.0  
-
VDDIO = 1.8 V  
Hysteresis voltage of  
PA, PB, PC, PD,PE,  
PF (Schmitt input)  
0.2VDD  
V
0
0
-
-
0.8  
0.4  
V
VDD = 4.5 V  
VDD = 2.5 V  
Input Low Voltage  
XT1[*2]  
VDD  
0.3  
+
3.5  
-
-
V
VDD = 5.5 V  
VDD = 3.0 V  
Input High Voltage  
XT1[*2]  
VIH3  
VDD  
0.3  
+
2.4  
0.6  
0
X32 Output Pin  
VXOUT  
0.9  
V
Input Low Voltage  
X32I[*4]  
VXOUT -  
0.3  
VIL4  
-
V
Input High Voltage  
X32I[*4]  
VXOUT  
+0.3  
VIH4  
1.8  
V
Negative going  
threshold  
VIL5  
-0.3  
-
-
0.2 VDD  
V
(Schmitt input),  
nRST  
Positive going  
threshold  
VDD  
+
VIH5  
0.7 VDD  
V
0.3  
(Schmitt input),  
nRST  
Internal nRESET  
pin pull up resistor  
RRST  
40  
150  
kΩ  
Oct. 15, 2018  
Page 94 of 117  
Rev.1.00  
M4521  
SPECIFICATION  
Parameter  
Symbol  
VIL6  
Test Conditions  
VDD = VDDIO = VBAT = 2.5 ~ 5.5 V  
VDDIO = 1.8 V ~ 5.5V  
Min.  
Typ.  
Max.  
Unit  
Input Low Voltage  
(Schmitt input)  
-0.3  
-
0.3 VDD  
V
Input Low Voltage  
0.3  
VDDIO  
VIL7  
-0.3  
-
-
-
V
V
V
(Schmitt input for  
PE8~ PE13)  
Input High Voltage  
(Schmitt input)  
VDD +  
0.3  
VIH6  
0.7 VDD  
VDD = VDDIO = VBAT = 2.5 ~ 5.5 V  
VDDIO = 1.8 V ~ 5.5V  
Input High Voltage  
0.7  
VDDIO  
VDDIO  
0.3  
+
VIH7  
(Schmitt input for  
PE8~ PE13)  
Source Current  
(Quasi-bidirectional  
Mode)  
ISR11  
ISR12  
ISR13  
-300  
-50  
-400  
-80  
-
-
-
VDD = VDDIO = VBAT = 4.5 V, VS = 2.4 V  
VDD = VDDIO = VBAT = 2.7 V, VS = 2.2 V  
VDD = VDDIO = VBAT = 2.5 V, VS = 2.0 V  
A  
A  
A  
-40  
-73  
Source Current  
(Quasi-bidirectional  
Mode for PE8~  
PE13)  
VDD = VBAT = 2.5 ~ 5.5 V  
ISR14  
-11  
-19  
A  
VDDIO = 1.8 V, VS = 1.6 V  
Source Current  
(Push-pull Mode)  
ISR21  
ISR22  
ISR23  
-20  
-3  
-26  
-5.2  
-5  
-
-
-
mA  
mA  
mA  
VDD = VDDIO = VBAT = 4.5 V, VS = 2.4 V  
VDD = VDDIO = VBAT = 2.7 V, VS = 2.2 V  
VDD = VDDIO = VBAT = 2.5 V, VS = 2.0 V  
-2.5  
Source Current  
(Set IO as Push-pull  
Mode and basic  
driving strength  
VDD = VBAT = 2.5 ~ 5.5 V  
ISR24  
-1  
-1.5  
mA  
VDDIO = 1.8 V, VS = 1.6 V  
Only for  
PE8~PE13)  
Source Current  
VDD = VBAT = 2.5 ~ 5.5 V  
ISR31  
ISR32  
ISR33  
ISR34  
-28  
-5.3  
-4.9  
-1.5  
-47  
-8.8  
-8.1  
-2.5  
-
-
-
mA  
mA  
mA  
mA  
(Set IO as Push-pull  
Mode and high  
driving strength  
VDDIO = 4.5 V, VS = 2.4 V  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO = 2.7 V, VS = 2.2 V  
Only for  
PE8~PE13)  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO = 2.5 V, VS = 2.0 V  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO = 1.8 V, VS = 1.6 V  
Sink Current  
ISK11  
ISK12  
ISK13  
10  
6
17  
11  
10  
-
-
-
mA  
mA  
mA  
VDD = VDDIO = VBAT = 4.5 V, VS = 0.45 V  
VDD = VDDIO = VBAT = 2.7 V, VS = 0.45 V  
VDD = VDDIO = VBAT = 2.5 V, VS = 0.45 V  
(Quasi-bidirectional,  
Open-Drain and  
Push-pull Mode)  
5
Sink Current  
VDD = VBAT = 2.5 ~ 5.5 V  
ISK14  
3.6  
6
mA  
(Only for  
PE8~PE13)  
VDDIO = 1.8 V, VS = 0.45 V  
Oct. 15, 2018  
Page 95 of 117  
Rev.1.00  
M4521  
SPECIFICATION  
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Sink Current  
VDD = VBAT = 2.5 ~ 5.5 V  
ISK21  
ISK22  
ISK23  
ISK24  
14.7  
24.5  
mA  
(Set IO as high  
driving strength  
VDDIO = 4.5 V, VS = 0.45 V  
VDD = VBAT = 2.5 ~ 5.5 V  
Only for  
PE8~PE13)  
9.2  
8.5  
5.4  
15.3  
14.1  
9
mA  
mA  
mA  
VDDIO = 2.7 V, VS = 0.45 V  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO = 2.5 V, VS = 0.45 V  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO = 1.8 V, VS = 0.45 V  
Notes:  
1. nRESET pin is a Schmitt trigger input.  
2. XT1_IN is a CMOS input.  
3. All pins can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD=5.5V, the transition current reaches its maximum value when VIN approximates to  
2V.  
4. If X32I is as external clock input, the input high voltage should be lower than 1.8V to avoid chip  
damage.  
8.2.1 On-chip peripheral current consumption  
ALL GPIO pins are in push pull mode, output high.  
LDO = 1.8V  
The typical values for TA= 25 °C and VDD = AVDD = 3.3 V unless otherwise specified.  
When the peripherals are enabled HCLK is the system clock, fHCLK = 72 MHz, fPCLK0, 1 = fHCLK/2.  
Peripheral  
Unit  
IDD  
PDMA0 ON  
ISP ON  
EBI ON  
USBH ON  
CRC ON  
FMC ON  
1.026  
0.000  
0.343  
1.488  
0.220  
0.745  
0.433  
0.417  
0.568  
0.578  
0.486  
0.507  
0.086  
0.428  
0.357  
1.154  
0.924  
1.556  
1.527  
1.634  
1.549  
1.634  
0.964  
WDT ON  
RTC ON  
TMR0 ON  
TMR1 ON  
TMR2 ON  
TMR3 ON  
CLKO ON  
I2C0 ON  
I2C1 ON  
SPI0 ON  
SPI1 ON  
UART0 ON  
UART1 ON  
UART2 ON  
UART3 ON  
USBDC ON  
EADC ON  
uA  
Oct. 15, 2018  
Page 96 of 117  
Rev.1.00  
M4521  
SC0 ON  
PWM0 ON  
PWM1 ON  
1.243  
1.850  
1.640  
Note: Guaranteed by characterization results, not tested in production  
Oct. 15, 2018  
Page 97 of 117  
Rev.1.00  
M4521  
8.3 AC Electrical Characteristics  
8.3.1 External 4~20 MHz High Speed Crystal (HXT) Input Clock  
tCLCL  
tCLCH  
90%  
10%  
VIH  
tCLCX  
VIL  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
Symbol  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
VIH  
Parameter  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
V
Test Conditions  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
Input High Voltage  
Input Low Voltage  
10  
-
-
-
-
-
-
-
-
-
-
-
-
10  
2
15  
2
0.7VDD  
0
15  
VDD  
0.3VDD  
VIL  
V
8.3.2 External 4~20 MHz High Speed Crystal (HXT) Oscillator  
Symbol  
VHXT  
Parameter  
Operation Voltage  
Temperature  
Min.  
2.5  
-40  
-
Typ.  
Max  
5.5  
105  
-
Unit  
V
Test Conditions  
-
-
-
TA  
-
12 MHz, VDD = 5.5V  
12 MHz, VDD = 3.3V  
-
2
mA  
mA  
MHz  
IHXT  
Operating Current  
Clock Frequency  
-
0.8  
-
-
fHXT  
4
20  
8.3.2.1 Typical Crystal Application Circuits  
Crystal  
C1  
10~20 pF  
C2  
4 MHz ~ 20 MHz  
10~20 pF  
Oct. 15, 2018  
Page 98 of 117  
Rev.1.00  
M4521  
XTAL1  
XTAL2  
4~20 MHz  
Crystal  
C1  
C2  
Vss  
Vss  
Figure 8.3-1 Typical Crystal Application Circuit  
8.3.3 22.1184 MHz Internal High Speed RC Oscillator (HIRC)  
Symbol  
Parameter  
Supply Voltage  
Center Frequency  
Min  
1.62  
-
Typ  
1.8  
Max  
Unit  
V
Test Conditions  
VHRC  
1.98  
-
22.1184  
-
MHz  
%
-
TA = 25 , VDD = 5 V  
-1  
+1  
+2  
fHRC  
Calibrated Internal  
TA = -40   ~ 105   
Oscillator Frequency  
-2  
-
-
%
VDD = 2.5 V ~ 5 .5 V  
TA = 25 , VDD = 5 V  
IHRC  
Operating Current  
790  
-
μA  
us  
TS  
Stable time  
20  
HIRC oscillator accuracy vs. temperature  
0.80%  
0.60%  
0.40%  
0.20%  
0.00%  
-0.20%  
-0.40%  
-0.60%  
-0.80%  
-1.00%  
-1.20%  
-1.40%  
-50  
0
50  
100  
150  
Max  
Min  
TA  
Note: Number of test samples: 10.  
Oct. 15, 2018  
Page 99 of 117  
Rev.1.00  
M4521  
Figure 8.3-2 HIRC Accuracy vs. Temperature  
8.3.4 32.768 kHz External Low Speed Crystal (LXT) Input Clock  
tCLCL  
tCLCH  
90%  
10%  
Xin_VIH  
tCLCX  
Xin_VIL  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
Symbol  
tCHCX  
Parameter  
Min  
TBD  
TBD  
TBD  
TBD  
Xout+0.3  
0
Typ  
Max  
-
Unit  
ns  
ns  
ns  
ns  
V
Test Conditions  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
-
-
-
-
-
-
-
-
-
-
tCLCX  
-
tCLCH  
TBD  
TBD  
1.8  
tCHCL  
Xin_VIH  
Xin_VIL  
Xout  
LXT Input Pin Input High Voltage  
LXT Input Pin Input Low Voltage  
LXT Output Pin  
Xout-0.3  
0.9  
V
0.6  
V
8.3.5 32.768 kHz External Low Speed Crystal (LXT) Oscillator  
Parameter  
Operation Voltage VBAT  
Condition  
Min.  
2.5  
Typ.  
Max.  
5.5  
Unit  
-
-
-
-
V
Operation Temperature  
Operation Current  
Clock Frequency  
-40  
105  
32.768KHz at VBAT=5V  
External crystal  
1.6  
A  
-
32.768  
-
kHz  
8.3.5.1 LXT Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
10~20 pF  
32.768 kHz  
10~20 pF  
Oct. 15, 2018  
Page 100 of 117  
Rev.1.00  
M4521  
X32_IN  
X32_OUT  
Crystal  
C1  
C2  
Vss  
Vss  
Figure 8.3-3 Typical Crystal Application Circuit  
8.3.6 10 kHz Internal Low Speed RC Oscillator (LIRC)  
Symbol  
Parameter  
Supply Voltage  
Center Frequency  
Min  
2.5  
-
Typ  
-
Max  
5.5  
-
Unit  
V
Test Conditions  
VLRC  
-
-
10  
kHz  
VDD = 2.5 V ~ 5.5 V  
-30  
-50  
-
-
+30  
+50  
%
%
TA = 25  
fLRC  
Oscillator Frequency  
VDD = 2.5 V ~ 5.5 V  
TA = -40  ~ +105  
Oct. 15, 2018  
Page 101 of 117  
Rev.1.00  
M4521  
8.4 Analog Characteristics  
8.4.1 PIN AC characteristics  
CL = 51 pF  
Px_SLEWCTL  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
6.87  
V
V
V
V
= 5.5 V  
= 3.3 V  
= 5.5 V  
= 3.3 V  
DD  
DD  
DD  
DD  
Output high to low level fall time  
(90~10%)  
t
f(IO)out  
r(IO)out  
10.31  
Basic Slew  
Rate  
6.6  
output low to high level rise  
time (10~90%)  
t
10.4  
ns  
4.67  
6.82  
5.66  
8.46  
V
V
V
V
= 5.5 V  
= 3.3 V  
= 5.5 V  
= 3.3 V  
DD  
DD  
DD  
DD  
Output high to low level fall time  
(90~10%)  
t
f(IO)out  
Higher Slew  
Rate  
output low to high level rise  
time (10~90%)  
t
r(IO)out  
Oct. 15, 2018  
Page 102 of 117  
Rev.1.00  
M4521  
8.4.2 12-bit SAR ADC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Bit  
Test Condition  
-
DNL  
INL  
EO  
EG  
EA  
Resolution  
12  
-
Differential Nonlinearity Error  
Integral Nonlinearity Error  
Offset Error  
-
-
-
-
-
-
±2  
±2  
-
LSB  
LSB  
LSB  
LSB  
LSB  
-
-
-
-
3
-
Gain Error (Transfer Gain)  
Absolute Error  
-3  
-
-
4
-
-
-
Monotonic  
Guaranteed  
-
-
-
-
-
21  
AVDD = 4.5~5.5 V  
AVDD = 2.5~5.5 V  
FADC  
ADC Clock Frequency  
MHz  
8.4  
AVDD = 4.5~5.5 V  
TCONV = 21 clock  
FADC = 21 Mhz  
-
-
-
1000  
400  
kSPS  
FS  
Sample Rate (FADC/TCONV)  
AVDD = 2.5~5.5 V  
TCONV = 21 clock  
FADC = 8.4 Mhz  
-
kSPS  
1/FADC  
1/FADC  
Default: 6 (1/FADC  
)
TACQ  
Acquisition Time (Sample Stage)  
Total Conversion Time  
2~9  
EADC_SCTLx[31:24]=0  
TCONV = TACQ+ 15  
TCONV  
16~23  
Default: 21 (1/FADC)  
EADC_SCTLx[31:24]=0  
#1  
AVDD  
Supply Voltage  
2.5  
-
2.8  
-
5.5  
V
mA  
V
-
#1  
IDDA  
Supply Current (Avg.)  
Analog Input Voltage  
Reference Voltage  
Input Capacitance  
Input Load  
-
0
-
VREF  
AVDD  
-
AVDD = 5 V  
#1  
VIN  
-
VREF  
2.5  
-
-
V
AVDD = 5 V  
#1  
CIN  
6
pF  
kΩ  
-
-
#1  
RIN  
-
6.5  
-
Note:  
#1: Design by guarantee, no test in production.  
Oct. 15, 2018  
Page 103 of 117  
Rev.1.00  
M4521  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated  
transfer curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the  
offset and gain error from the actual transfer curve.  
Typical connection diagram using the ADC  
VDD  
(1)  
RIN  
12-bit  
Converter  
AINx  
(1)  
CIN  
Figure 8.4-1 Typical connection diagram using the ADC  
(1) Refer to ADC spec for the values of RIN, CIN  
Oct. 15, 2018  
Page 104 of 117  
Rev.1.00  
M4521  
8.4.3 LDO  
Symbol  
VDD  
Parameter  
DC Power Supply  
Output Voltage  
Temperature  
Min  
Typ  
-
Max  
Unit  
V
Test Condition  
2.5  
5.5  
-
-
VLDO  
TA  
1.8  
25  
V
-40  
105  
Notes:  
1. It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of  
the device.  
2. For ensuring power stability, a 1μF Capacitor must be connected between LDO_CAP pin and the  
closest VSS pin of the device.  
8.4.4 Low Voltage Reset  
Symbol  
AVDD  
TA  
Parameter  
Supply Voltage  
Temperature  
Min  
0
Typ  
-
Max  
5.5  
105  
5
Unit  
V
Test Condition  
-
-40  
-
25  
1
-
ILVR  
Quiescent Current  
μA  
V
AVDD = 5.5 V  
TA = 105  
2.00  
2.20  
2.45  
VLVR  
Threshold Voltage  
1.90  
1.70  
2.00  
1.90  
2.10  
2.10  
V
V
TA = 25 ℃  
TA = -40 ℃  
8.4.5 Brown-out Detector  
Symbol  
AVDD  
TA  
Parameter  
Supply Voltage  
Temperature  
Min  
0
Typ  
-
Max  
5.5  
Unit  
V
Test Condition  
-
μA  
V
-40  
-
25  
105  
140  
4.6  
-
IBOD  
Quiescent Current  
-
AVDD = 5.5 V  
4.2  
3.5  
2.55  
2.05  
4.3  
3.6  
2.6  
2.1  
4.4  
3.7  
2.7  
2.2  
4.5  
3.8  
2.75  
2.25  
BOV_VL [1:0] = 11  
BOV_VL [1:0] = 10  
BOV_VL [1:0] = 01  
BOV_VL [1:0] = 00  
BOV_VL [1:0] = 11  
BOV_VL [1:0] = 10  
BOV_VL [1:0] = 01  
BOV_VL [1:0] = 00  
3.9  
V
Brown-out Voltage  
(Falling edge)  
VBOD  
2.85  
2.35  
4.7  
V
V
V
4.0  
V
Brown-out Voltage  
(Rising edge)  
VBOD  
2.9  
V
2.4  
V
Oct. 15, 2018  
Page 105 of 117  
Rev.1.00  
M4521  
8.4.6 Power-on Reset  
Symbol  
TA  
Parameter  
Min  
-40  
1.6  
Typ  
25  
2
Max  
105  
2.4  
Unit  
Test Condition  
Temperature  
Reset Voltage  
-
-
VPOR  
V
VDD Start Voltage to Ensure  
Power-on Reset  
VPOR  
RRVDD  
tPOR  
-
-
-
-
100  
mV  
V/ms  
ms  
VDD Raising Rate to Ensure  
Power-on Reset  
0.025  
0.5  
-
-
Minimum Time for VDD Stays at  
VPOR to Ensure Power-on Reset  
VDD  
tPOR  
RRVDD  
VPOR  
Time  
Figure 8.4-2 Power-up Ramp Condition  
8.4.7 Temperature Sensor  
Symbol  
Parameter  
Temperature  
Current Consumption  
Gain  
Min  
-40  
-
Typ  
-
Max  
105  
-
Unit  
Test Condition  
TA  
ITEMP  
-
16  
μA  
mV/℃  
-1.55  
735  
-1.672  
748  
-1.75  
755  
-
Offset  
mV  
TA = 0 ℃  
Note:  
1. The temperature sensor formula for the output voltage (Vtemp) is as below equation.  
2. Vtemp (mV) = Gain (mV/ ) x Temperature ( ) + Offset (mV)  
Oct. 15, 2018  
Page 106 of 117  
Rev.1.00  
M4521  
8.4.8 Internal Voltage Reference  
Symbol  
VVREF  
Parameter  
Min.  
2.5  
Typ.  
Max.  
5.5  
Unit  
V
Test Condition  
-
AVDD  
Vref1  
Vref2  
Vref3  
Vref4  
Vref(2.56V)  
2.483  
1.986  
2.98  
2.560  
2.048  
3.072  
4.096  
2.637  
2.109  
3.164  
4.219  
V
AVDD >= 2.9V  
AVDD >= 2.5V  
AVDD >= 3.4V  
AVDD >= 4.5V  
Vref(2.048V)  
Vref(3.072V)  
Vref(4.096V)  
V
V
3.973  
V
8.4.9 USB PHY  
8.4.9.1 Low-full-Speed DC Electrical Specifications  
Symbol  
Parameter  
Input High (driven)  
Min.  
2.0  
-
Typ.  
Max.  
Unit  
V
Test Conditions  
VIH  
VIL  
VDI  
-
-
-
-
Input Low  
0.8  
V
-
Differential Input Sensitivity  
0.2  
V
|PADP-PADM|  
Differential  
VCM  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Includes VDI range  
-
Common-mode Range  
Single-ended Receiver  
Threshold  
VSE  
Receiver Hysteresis  
-
0
200  
mV  
V
-
VOL  
Output Low (driven)  
-
-
0.3  
3.6  
2.0  
1.575  
-
-
VOH  
VCRS  
RPU  
ZDRV  
CIN  
Output High (driven)  
Output Signal Cross Voltage  
Pull-up Resistor  
2.8  
1.3  
1.425  
-
V
-
-
V
-
-
-
kΩ  
Ω
Driver Output Resistance  
Transceiver Capacitance  
10  
-
Steady state drive*  
Pin to GND  
-
20  
pF  
*Driver output resistance doesn’t include series resistor resistance.  
8.4.9.2 USB Full-Speed Driver Electrical Characteristics  
Symbol  
Parameter  
Min.  
4
Typ.  
Max.  
20  
Unit  
ns  
Test Conditions  
CL=50p  
TFR  
TFF  
Rise Time  
Fall Time  
-
-
-
4
20  
ns  
CL=50p  
TFRFF  
Rise and Fall Time Matching  
90  
111.11  
%
TFRFF=TFR/TFF  
8.4.9.3 USB LDO Specification  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Oct. 15, 2018  
Page 107 of 117  
Rev.1.00  
M4521  
VBUS  
VDD33  
Cbp  
VBUS Pin Input Voltage  
LDO Output Voltage  
4.0  
5.0  
3.3  
1.0  
5.5  
V
V
-
-
-
-
-
-
-
External Bypass Capacitor  
uF  
Oct. 15, 2018  
Page 108 of 117  
Rev.1.00  
M4521  
8.5 Flash DC Electrical Characteristics  
Symbol  
Parameter  
Supply Voltage  
Endurance  
Min  
Typ  
Max  
Unit  
V
Test Condition  
[2]  
VFLA  
-
1.8  
-
NENDUR  
TRET  
20,000  
-
-
-
cycles[1]  
year  
ms  
Data Retention  
Page Erase Time  
Program Time  
Read Current  
Program Current  
Erase Current  
100  
20  
60  
-
-
TERASE  
TPROG  
IDD1  
-
TA = 25  
-
us  
-
13.5  
mA  
IDD2  
-
10  
12  
-
-
mA  
IDD3  
-
mA  
Notes:  
1. Number of program/erase cycles.  
2. VFLA is source from chip LDO output voltage.  
Oct. 15, 2018  
Page 109 of 117  
Rev.1.00  
M4521  
8.6 I2C Dynamic Characteristics  
Standard Mode[1][2]  
Fast Mode[1][2]  
Symbol  
Parameter  
Unit  
Min.  
4.7  
Max.  
-
Min.  
1.2  
Max.  
tLOW  
SCL low period  
SCL high period  
-
uS  
uS  
uS  
uS  
uS  
uS  
nS  
uS  
nS  
nS  
pF  
tHIGH  
4
4.7  
4
-
0.6  
-
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
-
1.2  
-
-
-
-
0.6  
4
0.6  
-
4.7[3]  
250  
0[4]  
-
-
1.2[3]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
100  
-
Data hold time  
3.45[5]  
1000  
300  
400  
0[4]  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
tf  
SCL/SDA fall time  
-
-
-
Cb  
Capacitive load for each bus line  
-
Notes:  
1. Guaranteed by design, not tested in production.  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must  
be higher than 8 MHz to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to  
bridge the undefined region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch  
the low period of SCL signal.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.6-1 I2C Timing Diagram  
Oct. 15, 2018  
Page 110 of 117  
Rev.1.00  
M4521  
8.7 SPI Dynamic Characteristics  
8.7.1 Dynamic Characteristics of Data Input and Output Pin  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
SPI MASTER MODE (VDD = 4.5 V~5.5V, 30 PF LOADING CAPACITOR)  
tW(SCKH)  
tW(SCKL)  
SPI high and low time, peripheral clock  
= 20MHz  
22.5  
-
27.5  
ns  
tDS  
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
2
4
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
tH(MI)  
tV  
1
-
tH(MO)  
0
SPI MASTER MODE (VDD = 3.0~3.6 V, 30 PF LOADING CAPACITOR)  
tW(SCKH)  
tW(SCKL)  
SPI high and low time, peripheral clock  
= 20MHz  
22.5  
-
27.5  
ns  
tDS  
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
2
4
ns  
ns  
ns  
ns  
tH(MI)  
tV  
-
-
1
-
tH(MO)  
0
CLKPOL=0  
TXNEG=1  
RXNEG=0  
SPI Clock  
CLKPOL=1  
TXNEG=0  
RXNEG=1  
tV  
tr(SCK)  
tf(SCK)  
SPI data output  
(SPI_MOSI)  
Data Valid  
Data Valid  
tDS  
tDH  
SPI data input  
(SPI_MISO)  
Data Valid  
Data Valid  
CLKPOL=0  
TXNEG=0  
RXNEG=1  
SPI Clock  
CLKPOL=1  
TXNEG=1  
RXNEG=0  
tV  
SPI data output  
(SPI_MOSI)  
Data Valid  
tDH  
Data Valid  
Data Valid  
tDS  
SPI data input  
(SPI_MISO)  
Data Valid  
Figure 8.7-1 SPI Master Mode Timing Diagram  
Oct. 15, 2018  
Page 111 of 117  
Rev.1.00  
M4521  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
SPI SLAVE MODE (VDD = 4.5 V~5.5V, 30 PF LOADING CAPACITOR)  
Peripheral  
clock  
tSS  
Slave select setup time  
Slave select hold time  
3
2
-
-
-
-
Peripheral  
clock  
tSH  
tDS  
Data input setup time  
Data input hold time  
Data output access time  
Data output valid time  
Data output hold time  
2
5.5  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
tH(SI)  
ta(SO)  
tV  
-
-
18.5-  
-
18  
24.5  
-
-
tH(SO)  
6
SPI SLAVE MODE (VDD = 3.0 V ~ 3.6 V, 30 PF LOADING CAPACITOR)  
Peripheral  
clock  
tSS  
Slave select setup time  
Slave select hold time  
3
2
-
-
-
-
Peripheral  
clock  
tSH  
tDS  
Data input setup time  
Data input hold time  
Data output access time  
Data output valid time  
Data output hold time  
2
6
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
tH(SI)  
ta(SO)  
tV  
-
24  
30  
-
-
23  
-
tH(SO)  
7
Oct. 15, 2018  
Page 112 of 117  
Rev.1.00  
M4521  
SSACTPOL=1  
SSACTPOL=0  
tSS  
tSH  
SPI SS  
CLKPOL=0  
TXNEG=1  
RXNEG=0  
SPI Clock  
CLKPOL=1  
TXNEG=0  
RXNEG=1  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
Data Valid  
Data Valid  
tDH  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
SSACTPOL=1  
tSS  
tSH  
SPI SS  
SSACTPOL=0  
CLKPOL=0  
TXNEG=0  
RXNEG=1  
SPI Clock  
CLKPOL=1  
TXNEG=1  
RXNEG=0  
ta(so)  
tV  
SPI data output  
(SPI_MISO)  
Data Valid  
tDH  
Data Valid  
tDS  
SPI data input  
(SPI_MOSI)  
Data Valid  
Data Valid  
Figure 8.7-2 SPI Slave Mode Timing Diagram  
Oct. 15, 2018  
Page 113 of 117  
Rev.1.00  
M4521  
9 PACKAGE DIMENSIONS  
9.1 LQFP 64L (7x7x1.4 mm footprint 2.0 mm)  
Oct. 15, 2018  
Page 114 of 117  
Rev.1.00  
M4521  
9.2 LQFP 48L (7x7x1.4mm footprint 2.0mm)  
H
36  
25  
37  
24  
H
13  
48  
12  
1
Controlling dimension  
:
Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
Min Nom Max Min Nom Max  
A
1
0.002 0.004 0.006 0.05  
0.053 0.055 0.057 1.35  
0.10 0.15  
A
2
1.40  
1.45  
0.25  
0.20  
7.10  
7.10  
0.65  
9.10  
A
0.006  
0.004  
0.008 0.010 0.15 0.20  
b
c
D
0.006  
0.10 0.15  
0.008  
7.00  
7.00  
6.90  
6.90  
0.35  
0.272 0.276 0.280  
0.272 0.276 0.280  
E
0.020  
0.354  
0.354  
0.014  
0.350  
0.350  
0.018  
0.026  
0.50  
e
H
D
0.358 8.90 9.00  
0.358 8.90 9.00  
9.10  
0.60 0.75  
1.00  
E
H
0.024 0.030  
0.45  
0
L
L
Y
0.039  
0.004  
7
1
0.10  
7
0
0
Oct. 15, 2018  
Page 115 of 117  
Rev.1.00  
M4521  
10 REVISION HISTORY  
Date  
Revision  
Description  
2018.10.15  
1.00  
Initial version.  
Oct. 15, 2018  
Page 116 of 117  
Rev.1.00  
M4521  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Oct. 15, 2018  
Page 117 of 117  
Rev.1.00  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY