MINI55LDE [NUVOTON]

ARM® Cortex®-M0 32-bit Microcontroller;
MINI55LDE
型号: MINI55LDE
厂家: NUVOTON    NUVOTON
描述:

ARM® Cortex®-M0 32-bit Microcontroller

微控制器
文件: 总74页 (文件大小:1564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Mini55  
ARM® Cortex® -M0  
32-bit Microcontroller  
NuMicro® Family  
Mini55 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Apr 18, 2017  
Page 1 of 74  
Rev.1.00  
Mini55  
Table of Contents  
1
2
3
4
GENERAL DESCRIPTION .......................................................................7  
FEATURES .........................................................................................8  
ABBREVIATIONS................................................................................11  
PARTS INFORMATION LIST AND PIN CONFIGURATION ..............................12  
NuMicro® Mini55 Series Naming Rule.............................................................12  
NuMicro® Mini55 Series Product Selection Guide...............................................13  
PIN CONFIGURATION ..............................................................................14  
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
LQFP 48-pin ...................................................................................................14  
QFN 33-pin ....................................................................................................15  
Pin Description ........................................................................................16  
4.4  
5.1  
6.1  
5
6
BLOCK DIAGRAM ...............................................................................20  
NuMicro® Mini55 Block Diagram ...................................................................20  
Functional Description...........................................................................21  
ARM® Cortex® -M0 Core..............................................................................21  
6.1.1  
6.1.2  
Overview .......................................................................................................21  
Features........................................................................................................21  
System Manager......................................................................................23  
Overview .......................................................................................................23  
System Reset..................................................................................................23  
Power Modes and Wake-up Sources......................................................................29  
System Power Architecture .................................................................................31  
System Memory Mapping ...................................................................................32  
Memory Organization ........................................................................................32  
System Timer (SysTick) .....................................................................................34  
Nested Vectored Interrupt Controller (NVIC) .............................................................35  
System Control Registers (SCB) ...........................................................................38  
Clock Controller .......................................................................................39  
Overview .......................................................................................................39  
Auto-trim........................................................................................................41  
System Clock and SysTick Clock ..........................................................................41  
Peripherals Clock Source Selection .......................................................................42  
Power-down Mode Clock ....................................................................................43  
Frequency Divider Output ...................................................................................43  
6.2  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.2.8  
6.2.9  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
Apr 18, 2017  
Page 2 of 74  
Rev.1.00  
Mini55  
6.4  
Flash Memory Controller (FMC)....................................................................45  
Overview .......................................................................................................45  
Features........................................................................................................45  
General Purpose I/O (GPIO)........................................................................46  
Overview .......................................................................................................46  
Features........................................................................................................46  
Timer Controller (TMR) ..............................................................................47  
Overview .......................................................................................................47  
Features........................................................................................................47  
Enhanced PWM Generator .........................................................................48  
Overview .......................................................................................................48  
Features........................................................................................................48  
Watchdog Timer (WDT)..............................................................................51  
Overview .......................................................................................................51  
Features........................................................................................................51  
UART Controller (UART) ............................................................................52  
Overview .......................................................................................................52  
Features........................................................................................................52  
I2C Serial Interface Controller (I2C) ................................................................53  
6.4.1  
6.4.2  
6.5  
6.5.1  
6.5.2  
6.6  
6.6.1  
6.6.2  
6.7  
6.7.1  
6.7.2  
6.8  
6.8.1  
6.8.2  
6.9  
6.9.1  
6.9.2  
6.10  
6.10.1 Overview .......................................................................................................53  
6.10.2 Features........................................................................................................53  
6.11  
Serial Peripheral Interface (SPI)....................................................................54  
6.11.1 Overview .......................................................................................................54  
6.11.2 Features........................................................................................................54  
6.12  
Analog-to-Digital Converter (ADC).................................................................55  
6.12.1 Overview .......................................................................................................55  
6.12.2 Features........................................................................................................55  
6.13  
Analog Comparator (ACMP) ........................................................................56  
6.13.1 Overview .......................................................................................................56  
6.13.2 Features........................................................................................................56  
6.14  
Hardware Divider (HDIV) ............................................................................57  
6.14.1 Overview .......................................................................................................57  
6.14.2 Features........................................................................................................57  
7
8
APPLICATION CIRCUIT........................................................................58  
ELECTRICAL CHARACTERISTICS ..........................................................59  
Apr 18, 2017  
Page 3 of 74  
Rev.1.00  
Mini55  
8.1  
8.2  
8.3  
Absolute Maximum Ratings .........................................................................59  
DC Electrical Characteristics........................................................................60  
AC Electrical Characteristics........................................................................65  
External Input Clock ..........................................................................................65  
External 4~24 MHz High Speed Crystal (HXT) ..........................................................65  
Typical Crystal Application Circuits ........................................................................65  
48 MHz Internal High Speed RC Oscillator (HIRC) .....................................................66  
10 kHz Internal Low Speed RC Oscillator (LIRC) .......................................................66  
Analog Characteristics ...............................................................................67  
10-bit SARADC................................................................................................67  
LDO & Power Management.................................................................................68  
Brown-out Detector...........................................................................................68  
Power-on Reset...............................................................................................69  
Comparator ....................................................................................................69  
Flash DC Electrical Characteristics ................................................................70  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.5  
9
PACKAGE DIMENSIONS ......................................................................71  
48-pin LQFP (7 mm x 7 mm)........................................................................71  
33-pin QFN (4 mm x 4 mm) .........................................................................72  
9.1  
9.3  
10 REVISION HISTORY............................................................................73  
Apr 18, 2017  
Page 4 of 74  
Rev.1.00  
Mini55  
List of Figures  
Figure 4.1-1 NuMicro® Mini55 Series Selection Code ................................................................... 12  
Figure 4.3-1 NuMicro® Mini55 Series LQFP 48-pin Diagram......................................................... 14  
Figure 4.3-2 NuMicro® Mini55 Series QFN 33-pin Diagram .......................................................... 15  
Figure 5.1-1 NuMicro® Mini55 Series Block Diagram .................................................................... 20  
Figure 6.1-1 Functional Block Diagram.......................................................................................... 21  
Figure 6.2-1 System Rese Resources ........................................................................................... 24  
Figure 6.2-2 nRESET Reset Waveform......................................................................................... 26  
Figure 6.2-3 Power-on Reset (POR) Waveform ............................................................................ 26  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform......................................................................... 27  
Figure 6.2-5 Brown-out Detector (BOD) Waveform....................................................................... 28  
Figure 6.2-6 Power Mode State Machine ...................................................................................... 29  
Figure 6.2-7 NuMicro® Mini55 Series Power Architecture Diagram .............................................. 31  
Figure 6.3-1 Clock Generator Block Diagram ................................................................................ 39  
Figure 6.3-2 Clock Generator Global View Diagram...................................................................... 40  
Figure 6.3-3 System Clock Block Diagram .................................................................................... 41  
Figure 6.3-4 SysTick Clock Control Block Diagram....................................................................... 42  
Figure 6.3-5 Peripherals Bus Clock Source Selection for PCLK ................................................... 42  
Figure 6.3-6 Clock Source of Frequency Divider........................................................................... 44  
Figure 6.3-7 Block Diagram of Frequency Divider ......................................................................... 44  
Figure 6.7-1 Application Circuit Diagram ....................................................................................... 50  
Figure 8-1 Mini55 Typical Crystal Application Circuit..................................................................... 66  
Apr 18, 2017  
Page 5 of 74  
Rev.1.00  
Mini55  
List of Tables  
Table 3-1 List of Abbreviations....................................................................................................... 11  
Table 4.2-1 NuMicro® Mini55 Series Product Selection Guide...................................................... 13  
Table 4.4-1 NuMicro® Mini55 Series Pin Description..................................................................... 19  
Table 6.2-1 Reset Value of Registers ............................................................................................ 25  
Table 6.2-2 Power Mode Difference Table .................................................................................... 29  
Table 6.2-3 Clocks in Power Modes .............................................................................................. 30  
Table 6.2-4 Condition of Entering Power-down Mode Again......................................................... 31  
Table 6.2-5 Memory Mapping Table .............................................................................................. 32  
Table 6.2-6 Address Space Assignments for On-Chip Modules ................................................... 33  
Table 6.2-7 Exception Model ......................................................................................................... 36  
Table 6.2-8 System Interrupt Map Vector Table............................................................................ 37  
Table 6.2-9 Vector Table Format ................................................................................................... 37  
Table 6.3-1 Peripheral Clock Source Selection Table ................................................................... 43  
Apr 18, 2017  
Page 6 of 74  
Rev.1.00  
Mini55  
1
GENERAL DESCRIPTION  
The NuMicro® Mini55 series 32-bit microcontroller is embedded with ARM® Cortex® -M0 core for  
industrial control and applications which require high performance, high integration, and low cost.  
The Cortex® -M0 is the newest ARM® embedded processor with 32-bit performance at a cost  
equivalent to the traditional 8-bit microcontroller.  
The Mini55 series can run up to 48 MHz and operate at 2.1V ~ 5.5V, -40~ 105, and thus can  
afford to support a variety of industrial control and applications which need high CPU  
performance. The Mini55 series offers 17.5K-bytes embedded program flash, size configurable  
Data Flash (shared with program flash), 2K-byte flash for the ISP, and 2K-byte SRAM.  
Many system level peripheral functions, such as I/O Port, Timer, UART, SPI, I2C, PWM, ADC,  
Watchdog Timer, Analog Comparator and Brown-out Detector, have been incorporated into the  
Mini55 series in order to reduce component count, board space and system cost. These useful  
functions make the Mini55 series powerful for a wide range of applications.  
Additionally, the Mini55 series is equipped with ISP (In-System Programming) and ICP (In-Circuit  
Programming) functions, which allow the user to update the program memory without removing  
the chip from the actual end product. The Mini55 series also supports In-Application-Programming  
(IAP) function, user switches the code executing without the chip reset after the embedded flash  
updated.  
Apr 18, 2017  
Page 7 of 74  
Rev.1.00  
Mini55  
2
FEATURES  
Core  
ARM® Cortex® -M0 core running up to 48 MHz  
One 24-bit system timer  
Supports low power Idle mode  
A single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-level of priority  
Supports Serial Wire Debug (SWD) interface and two watchpoints/four  
breakpoints  
Built-in LDO for wide operating voltage: 2.1V to 5.5V  
Memory  
17.5 KB Flash memory for program memory (APROM)  
Configurable Flash memory for data memory (Data Flash)  
2 KB Flash for loader (LDROM)  
2 KB SRAM for internal scratch-pad RAM (SRAM)  
Clock Control  
Programmable system clock source  
Switch clock sources on-the-fly  
Support 4 ~ 24 MHz external high speed crystal oscillator (HXT) for precise  
timing operation  
Support 32.768 kHz external low speed crystal oscillator (LXT) for idle wake-up  
and system operation clock  
Built-in 48 MHz internal high speed RC oscillator (HIRC) for system operation  
(1% accuracy at 250C, 5V)  
Dynamically calibrating the HIRC OSC to 48 MHz ±2% from -40to 105℃  
by external 32.768K crystal oscillator (LXT)  
Built-in 10 kHz internal low speed RC oscillator (LIRC) for Watchdog Timer and  
wake-up operation  
I/O Port  
Up to 33 general-purpose I/O (GPIO) pins for LQFP-48 package  
Four I/O modes:  
Quasi-bidirectional input/output  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
Optional Schmitt trigger input  
Timer  
Provides two channel 32-bit Timers; one 8-bit pre-scaler counter with 24-bit up-  
timer for each timer  
Supports Event Counter mode  
Apr 18, 2017  
Page 8 of 74  
Rev.1.00  
Mini55  
Supports Toggle Output mode  
Supports external trigger in Pulse Width Measurement mode  
Supports external trigger in Pulse Width Capture mode  
Support Continuous Capture function can continuous capture 4 edge on  
one signal  
WDT (Watchdog Timer)  
Programmable clock source and time-out period  
Supports wake-up function in Power-down mode and Idle mode  
Interrupt or reset selectable on watchdog time-out  
PWM  
Up to three built-in 16-bit PWM generators, providing six PWM outputs or three  
complementary paired PWM outputs  
Individual clock source, clock divider, 8-bit pre-scalar and dead-time generator  
for each PWM generator  
PWM interrupt synchronized to PWM period  
Supports edge-alignment or center-alignment  
Supports fault detection  
UART (Universal Asynchronous Receiver/Transmitters)  
Two UART devices  
Buffered receiver and transmitter, 16-byte FIFO for first UART (UART0), and 4-  
byte FIFO for second UART (UART1)  
Optional flow control function (CTSn and RTSn) in first UART 0 only  
Supports IrDA (SIR) function  
Programmable baud-rate generator up to 1/16 system clock  
Supports RS-485 function  
SPI (Serial Peripheral Interface)  
I2C  
One SPI device  
Master up to 25 MHz, and Slave up to 10 MHz  
Supports Master/Slave mode  
Full-duplex synchronous serial data transfer  
Variable length of transfer data from 8 to 32 bits  
MSB or LSB first data transfer  
RX latching data can be either at rising edge or at falling edge of serial clock  
TX sending data can be either at rising edge or at falling edge of serial clock  
Supports Byte Suspend mode in 32-bit transmission  
Supports Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Apr 18, 2017  
Page 9 of 74  
Rev.1.00  
Mini55  
Arbitration between simultaneously transmitting masters without corruption of  
serial data on the bus  
Serial clock synchronization allowing devices with different bit rates to  
communicate via one serial bus  
Serial clock synchronization can be used as a handshake mechanism to  
suspend and resume serial transfer  
Programmable clocks allow for versatile rate control  
Supports multiple address recognition (four slave addresses with mask option)  
ADC (Analog-to-Digital Converter)  
10-bit SAR ADC with 500 kSPS  
Up to 12-ch single-end input and one internal input from band-gap  
Conversion started either by software trigger or external pin trigger  
Analog Comparator  
Two analog comparators with programmable 16-level internal voltage reference  
Built-in CRV (comparator reference voltage)  
Hardware Divider  
Signed (two’s complement) integer calculation  
32-bit dividend with 16-bit divisor calculation capacity  
32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends  
to 32-bit)  
Divided by zero warning flag  
6 HCLK clocks taken for one cycle calculation  
Waiting for calculation ready automatically when reading quotient and remainder  
ISP (In-System Programming), ICP (In-Circuit Programming), and IAP (In-Application-  
Programming) update  
BOD (Brown-out Detector)  
With 8 programmable threshold levels:  
4.4V/3.7V/3.0V/2.7V/2.4V/2.2V/2.0V/1.7V  
Supports Brown-out interrupt and reset option  
96-bit unique ID  
LVR (Low Voltage Reset)  
Threshold voltage level: 2.0V  
Operating Temperature: -40~105℃  
Reliability: EFT > ± 3KV, ESD HBM pass 6KV  
Packages:  
Green package (RoHS)  
48-pin LQFP (7x7), 33-pin QFN (4x4)  
Apr 18, 2017  
Page 10 of 74  
Rev.1.00  
Mini55  
3
ABBREVIATIONS  
Acronym  
Description  
ACMP  
ADC  
AHB  
APB  
BOD  
DAP  
FIFO  
FMC  
GPIO  
HCLK  
HIRC  
HXT  
ICP  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced High-Performance Bus  
Advanced Peripheral Bus  
Brown-out Detection  
Debug Access Port  
First In, First Out  
Flash Memory Controller  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
48 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Circuit Programming  
ISP  
In System Programming  
ISR  
Interrupt Service Routine  
LDO  
LIRC  
LXT  
Low Dropout Regulator  
10 kHz internal low speed RC oscillator (LIRC)  
32.768 kHz External Low Speed Crystal Oscillator  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Phase-Locked Loop  
NVIC  
PCLK  
PLL  
PWM  
SPI  
Pulse Width Modulation  
Serial Peripheral Interface  
SPS  
TMR  
UART  
UCID  
WDT  
Samples per Second  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Watchdog Timer  
Table 3-1 List of Abbreviations  
Apr 18, 2017  
Page 11 of 74  
Rev.1.00  
Mini55  
4
PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® Mini55 Series Naming Rule  
ARMBased  
32-bit Microcontroller  
Mini55-X X X  
CPU Core  
®
Corte -M0  
Temperature  
E: -40oC ~ +105oC  
Flash ROM  
55 : 17.5 KB Flash ROM  
Reserved  
Package Type  
L: LQFP 48 7x7mm  
T: QFN 33 4x4mm  
Figure 4.1-1 NuMicro® Mini55 Series Selection Code  
Apr 18, 2017  
Page 12 of 74  
Rev.1.00  
Mini55  
4.2 NuMicro® Mini55 Series Product Selection Guide  
Connectivity  
ISP  
Part Number APROM RAM Data Flash Loader  
ROM  
ISP  
ICP  
IAP  
Timer  
ADC  
IRC  
48MHz  
I/O  
Comp. PWM  
Package  
UART SPI I2C  
(32-bit)  
(10-bit)  
MINI55LDE 17.5 KB 2 KB Configurable 2 KB  
MINI55TDE 17.5 KB 2 KB Configurable 2 KB  
33  
29  
2
2
2
2
1
1
1
1
2
2
6
6
12  
12  
v
v
v
v
LQFP48  
QFN33(4x4)  
Table 4.2-1 NuMicro® Mini55 Series Product Selection Guide  
Apr 18, 2017  
Page 13 of 74  
Rev.1.00  
Mini55  
4.3 PIN CONFIGURATION  
4.3.1 LQFP 48-pin  
NC  
NC  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
TX1, CPP0, AIN5, P1.5  
2
P0.4, SPISS,PWM5  
P0.5, MOSI  
P0.6, MISO  
P0.7, SPICLK  
NC  
3
nRESET  
CPN1, AIN6, P3.0  
AVSS  
4
5
AIN8, P5.4  
6
Mini55  
LQFP 48-pin  
CPP1, AIN7, P3.1  
CPP1, T0EX, STADC, INT0, P3.2  
AIN9, CPP1, SDA, T0, P3.4  
AIN10, CPP1, SCL, T1, P3.5  
P3.7  
7
P4.7, ICE_DAT  
8
P4.6, ICE_CLK  
NC  
9
P2.7  
10  
11  
12  
P2.6, PWM4, CPO1  
P2.5, PWM3, TX1  
NC  
Figure 4.3-1 NuMicro® Mini55 Series LQFP 48-pin Diagram  
Apr 18, 2017  
Page 14 of 74  
Rev.1.00  
Mini55  
4.3.2 QFN 33-pin  
32 31 30 29 28 27 26 25  
TX1, CPP0,AIN5, P1.5  
P0.4, SPISS,PWM5  
P0.5, MOSI  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
nRESET  
CPN1,AIN6, P3.0  
AIN8, P5.4  
P0.6, MISO  
P0.7, SPICLK  
Mini55  
QFN 33-pin  
CPP1,AIN7, P3.1  
P4.7, ICE_DAT  
P4.6, ICE_CLK  
P2.6, PWM4,CPO1  
P2.5, PWM3, TX1  
CPP1, T0EX,STADC,INT0, P3.2  
AIN9, CPP1, SDA, T0, P3.4  
AIN10, CPP1, SCL, T1, P3.5  
33 VSS  
9
10 11 12 13 14 15 16  
Figure 4.3-2 NuMicro® Mini55 Series QFN 33-pin Diagram  
Apr 18, 2017  
Page 15 of 74  
Rev.1.00  
Mini55  
4.4 Pin Description  
Pin Number  
Pin Name  
Pin Type  
Description  
LQFP  
QFN  
48-pin 33-pin  
1
NC  
Not connected  
P1.5  
I/O  
AI  
AI  
O
General purpose digital I/O pin  
ADC analog input pin  
AIN5  
2
1
ACMP0_P  
TX1  
Analog comparator positive input pin  
UART1 transmitter output pin  
The Schmitt trigger input pin for hardware device  
reset. A “Low” on this pin for 768 clock counter of  
Internal RC 48 MHz while the system clock is running  
will reset the device. nRESET pin has an internal  
pull-up resistor allowing power-on reset by simply  
connecting an external capacitor to GND.  
3
4
2
3
nRESET  
I(ST)  
P3.0  
I/O  
AI  
AI  
AP  
I/O  
AI  
I/O  
AI  
AI  
I/O  
I
General purpose digital I/O pin  
ADC analog input pin  
AIN6  
ACMP1_N  
AVSS  
Analog comparator negative input pin  
Ground pin for analog circuit  
General purpose digital I/O pin  
ADC analog input pin  
5
6
33  
4
P5.4  
AIN8  
P3.1  
General purpose digital I/O pin  
ADC analog input pin  
7
8
9
5
6
7
AIN7  
ACMP1_P  
P3.2  
Analog comparator positive input pin  
General purpose digital I/O pin  
External interrupt 0 input pin  
ADC external trigger input pin  
Timer 0 external capture/reset trigger input pin  
Analog comparator positive input pin  
General purpose digital I/O pin  
Timer 0 external event counter input pin  
I2C data I/O pin  
INT0  
STADC  
T0EX  
ACMP1_P  
P3.4  
I
I
AI  
I/O  
I/O  
I/O  
T0  
SDA  
Apr 18, 2017  
Page 16 of 74  
Rev.1.00  
Mini55  
ACMP1_P  
AIN9  
AI  
Analog comparator positive input pin  
ADC analog input pin  
AI  
P3.5  
I/O  
I/O  
I/O  
AI  
General purpose digital I/O pin  
Timer 1 external event counter input pin  
I2C clock I/O pin  
T1  
10  
8
SCL  
ACMP1_P  
AIN10  
P3.7  
Analog comparator positive input pin  
ADC analog input pin  
AI  
11  
12  
13  
I/O  
General purpose digital I/O pin  
Not connected  
NC  
NC  
Not connected  
P3.6  
I/O  
O
General purpose digital I/O pin  
Analog comparator output pin  
Frequency divider output pin  
Timer 1 external capture/reset trigger input pin  
ADC analog input pin  
ACMP0_O  
CKO  
14  
9
O
T1EX  
AIN11  
P5.1  
I
AI  
I/O  
General purpose digital I/O pin  
15  
16  
10  
11  
The output pin from the internal inverting amplifier. It  
emits the inverted signal of XT_IN.  
XT_OUT  
P5.0  
O
I/O  
I
General purpose digital I/O pin  
The input pin to the internal inverting amplifier. The  
system clock could be from external crystal or  
resonator.  
XT_IN  
12  
33  
17  
18  
VSS  
P
P
Ground pin for digital circuit  
LDO_CAP  
LDO output pin  
General purpose digital I/O pin  
19  
20  
P5.5  
I/O  
User program must enable pull-up resistor in the  
QFN-33 package.  
P5.2  
INT1  
NC  
I/O  
I
General purpose digital I/O pin  
External interrupt 1 input pin  
Not connected  
13  
14  
21  
22  
P2.2  
I/O  
General purpose digital I/O pin  
Apr 18, 2017  
Page 17 of 74  
Rev.1.00  
Mini55  
PWM0  
P2.3  
O
PWM0 output of PWM unit  
General purpose digital I/O pin  
PWM1 output of PWM unit  
General purpose input/output digital pin  
PWM2 output of PWM unit  
UART1 data receiver input pin  
General purpose digital I/O pin  
PWM3 output of PWM unit  
UART1 transmitter output pin  
General purpose digital I/O pin  
PWM4 output of PWM unit  
Analog comparator output pin  
General purpose digital I/O pin  
Not connected  
I/O  
O
23  
24  
15  
16  
PWM1  
P2.4  
I/O  
O
PWM2  
RX1  
I
P2.5  
I/O  
O
25  
26  
17  
18  
PWM3  
TX1  
O
P2.6  
I/O  
O
PWM4  
ACMP1_O  
P2.7  
O
27  
28  
I/O  
NC  
P4.6  
I/O  
I
General purpose digital I/O pin  
Serial wired debugger clock pin  
General purpose digital I/O pin  
Serial wired debugger data pin  
Not connected  
29  
19  
20  
ICE_CLK  
P4.7  
I/O  
I/O  
30  
31  
32  
ICE_DAT  
NC  
P0.7  
I/O  
I/O  
I/O  
I/O  
I/O  
O
General purpose digital I/O pin  
SPI serial clock pin  
21  
22  
23  
SPICLK  
P0.6  
General purpose digital I/O pin  
SPI MISO (master in/slave out) pin  
General purpose digital I/O pin  
SPI MOSI (master out/slave in) pin  
General purpose digital I/O pin  
SPI slave select pin  
33  
34  
MISO  
P0.5  
MOSI  
P0.4  
I/O  
I/O  
O
35  
24  
SPISS  
PWM5  
NC  
PWM5 output of PWM unit  
Not connected  
36  
37  
P0.1  
I/O  
O
General purpose digital I/O pin  
UART0 RTS pin  
25  
RTSn  
Apr 18, 2017  
Page 18 of 74  
Rev.1.00  
Mini55  
RX0  
I
UART0 data receiver input pin  
SPI slave select pin  
SPISS  
P0.0  
I/O  
I/O  
I
General purpose digital I/O pin  
UART0 CTS pin  
38  
26  
CTSn  
TX0  
O
UART0 transmitter output pin  
Not connected  
39  
40  
NC  
NC  
Not connected  
P5.3  
I/O  
AI  
AI  
P
General purpose digital I/O pin  
ADC analog input pin  
41  
27  
28  
29  
AIN0  
ADC VREF  
VDD  
External voltage reference of ADC  
Power supply for digital circuit  
Power supply for analog circuit  
General purpose digital I/O pin  
ADC analog input pin  
42  
43  
AVDD  
P1.0  
P
I/O  
AI  
AI  
I/O  
AI  
I
44  
AIN1  
ACMP0_P  
P1.2  
Analog comparator positive input pin  
General purpose digital I/O pin  
ADC analog input pin  
AIN2  
45  
30  
31  
32  
RX  
UART data receiver input pin  
Analog comparator positive input pin  
General purpose digital I/O pin  
ADC analog input pin  
ACMP0_P  
P1.3  
AI  
I/O  
AI  
O
AIN3  
46  
TX  
UART transmitter output pin  
Analog comparator positive input pin  
External interrupt 0 input pin  
General purpose digital I/O pin  
PWM5: PWM output/Capture input  
Analog comparator negative input pin  
UART1 data receiver input pin  
General purpose digital I/O pin  
ACMP0_P  
INT0  
AI  
I
P1.4  
I/O  
I/O  
AI  
I
AIN4  
47  
48  
ACMP0_N  
RX1  
P1.6  
I/O  
Table 4.4-1 NuMicro® Mini55 Series Pin Description  
[1] I/O type description. I: input, O: output, I/O: quasi bi-direction, D: open-drain, P: power pin, ST:  
Schmitt trigger, A: Analog input.  
Apr 18, 2017  
Page 19 of 74  
Rev.1.00  
Mini55  
5
BLOCK DIAGRAM  
5.1 NuMicro® Mini55 Block Diagram  
Figure 5.1-1 NuMicro® Mini55 Series Block Diagram  
Apr 18, 2017  
Page 20 of 74  
Rev.1.00  
Mini55  
6
FUNCTIONAL DESCRIPTION  
6.1 ARM® Cortex® -M0 Core  
6.1.1 Overview  
The Cortex® -M0 processor, a configurable, multistage, 32-bit RISC processor, has an AMBA  
AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex® -M  
profile processors. The profile supports two modes - Thread mode and Handler mode. Handler  
mode is entered as a result of an exception. An exception return can only be issued in Handler  
mode. Thread mode is entered on Reset and can be entered as a result of an exception return.  
Figure 6.1-1 shows the functional controller of the processor.  
Cortex-M0 components  
Cortex-M0 processor  
Debug  
Interrupts  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Breakpoint  
and  
Watchpoint  
unit  
Cortex-M0  
Processor  
core  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debug  
Access Port  
(DAP)  
Debugger  
interface  
Bus matrix  
Serial Wire or  
JTAG debug port  
AHB-Lite interface  
Figure 6.1-1 Functional Block Diagram  
6.1.2 Features  
A low gate count processor  
ARMv6-M Thumb® instruction set  
Thumb-2 technology  
ARMv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and  
restarted to facilitate rapid interrupt handling  
C Application Binary Interface compliant exception model:  
This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant  
exception model that enables the use of pure C functions as interrupt handlers  
Low power Idle mode entry using the Wait For Interrupt (WFI), Wait For Event  
(WFE) instructions, or return from interrupt sleep-on-exit feature  
Apr 18, 2017  
Page 21 of 74  
Rev.1.00  
 
Mini55  
NVIC  
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Idle  
mode  
Debug support  
Four hardware breakpoints  
Two watch points  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces  
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration  
to all system peripherals and memory  
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Apr 18, 2017  
Page 22 of 74  
Rev.1.00  
Mini55  
6.2 System Manager  
6.2.1 Overview  
System management includes the following sections:  
System Reset  
System Power Architecture  
System Memory Map  
System management registers for Part Number ID, chip reset and on-chip controllers  
reset, and multi-functional pin control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control registers  
6.2.2 System Reset  
The system reset can be issued by one of the following listed events. For these reset events flags  
can be read by SYS_RSTSTS register.  
Hardware Reset  
Power-on Reset (POR)  
Low level on the nRESET pin  
Watchdog Time-out Reset (WDT)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD)  
Software Reset  
CPU Reset  
Write 1 to CPURST (SYS_IPRST0[1])  
Whole Chip Reset  
Write 1 to SYSRESETREQ (SYS_AIRCR[2])  
Write 1 to CHIPRST (SYS_IPRST0[0])  
Apr 18, 2017  
Page 23 of 74  
Rev.1.00  
Mini55  
Glitch Filter  
36 us  
nRESET  
~50k ohm  
@5v  
Power On  
Reset  
VDD  
Reset Pulse Width  
3.2ms  
Low Voltage  
Reset  
System Reset  
AVDD  
BODRSTEN(SYS_BODCTL[3])  
Brown Out  
Reset  
WDT/WWDT  
Reset  
Reset Pulse Width  
64 WDT clocks  
SYSRSTREQ Reset  
AIRCR[2]  
CHIP_RST Reset  
SYS_IPRST0[0]  
Reset Pulse Width  
2 system clocks  
CPU Reset  
SYS_IPRST0[1]  
Figure 6.2-1 System Rese Resources  
There are a total of 8 reset sources in the NuMicro® family. In general, CPU reset is used to reset  
Cortex-M0 only; the other reset sources will reset Cortex-M0 and all peripherals. However, there  
are small differences between each reset source and they are listed in Table 6.2-1.  
Reset Sources  
POR  
nRESET  
WDT  
LVR  
BOD  
CHIP  
MCU  
CPU  
Register  
SYS_RSTSTS  
0x001  
Bit 1 = 1  
-
Bit 2 = 1  
-
0x001  
Bit 4 = 1  
-
Bit 0 = 1  
-
Bit 5 = 1  
-
Bit 7 = 1  
-
CHIPRST  
0x0  
-
(SYS_IPRST0[0])  
BODEN  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
-
Reload from  
CONFIG0  
Reload  
from  
CONFIG0  
-
(SYS_BODCTL[0])  
BODVL  
(SYS_BODCTL[2:1])  
BODRSTEN  
(SYS_BODCTL[3])  
XTLEN  
0x0  
0x1  
0x8  
0x3  
0x0  
-
0x0  
0x1  
0x8  
-
0x0  
0x0  
0x0  
0x1  
0x8  
-
0x0  
(CLK_PWRCTL[1:0])  
WDTCKEN  
-
-
-
-
-
(CLK_APBCLK0[0])  
HCLKSEL  
0x8  
0x3  
0x8  
-
0x8  
-
0x8  
-
(CLK_CLKSEL0[2:0])  
WDTSEL  
-
Apr 18, 2017  
Page 24 of 74  
Rev.1.00  
Mini55  
(CLK_CLKSEL1[1:0])  
XLTSTB  
0x0  
-
-
-
-
-
-
-
(CLK_STATUS[0])  
LIRCSTB  
0x0  
(CLK_STATUS[3])  
HIRCSTB  
0x0  
-
-
-
-
-
-
-
-
-
(CLK_STATUS[4])  
CLKSFAIL  
0x0  
0x0  
-
-
-
-
(CLK_STATUS[7])  
WDT_CTL  
0x0700  
0x0700  
0x0700  
0x0700  
0x0700  
0x0700  
-
-
-
-
BS  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload from  
CONFIG0  
(FMC_ISPCTL[1])  
ISPEN  
(FMC_ISPCTL[16])  
FMC_DFBA  
Reload  
from  
CONFIG1  
Reload  
from  
CONFIG1  
Reload  
from  
CONFIG1  
Reload  
from  
CONFIG1  
Reload  
from  
CONFIG1  
Reload from  
CONFIG1  
-
-
-
-
-
-
CBS  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload  
from  
CONFIG0  
Reload from  
CONFIG0  
(FMC_ISPSTS[2:1))  
VECMAP  
Reload  
Reload  
Reload  
Reload  
Reload  
Reload  
base on  
CONFIG0  
base on  
CONFIG0  
base on  
CONFIG0  
base on  
CONFIG0  
base on  
CONFIG0  
base on  
CONFIG0  
(FMC_ISPSTS[20:9])  
Other Peripheral  
Registers  
Reset Value  
Reset Value  
FMC Registers  
Note: -‘ means that the value of register keeps original setting.  
Table 6.2-1 Reset Value of Registers  
6.2.2.1 nRESET Reset  
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an  
asynchronous reset input pin and can be used to reset system at any time. When the nRESET  
voltage is lower than 0.2 VDD and the state keeps longer than 32 us (glitch filter), chip will be  
reset. The nRESET reset will control the chip in reset state until the nRESET voltage rises above  
0.7 VDD and the state keeps longer than 32 us (glitch filter). The PINRF(SYS_RSTSTS[1]) will be  
set to 1 if the previous reset source is nRESET reset. Figure 6.2-2 shows the nRESET reset  
waveform.  
Apr 18, 2017  
Page 25 of 74  
Rev.1.00  
Mini55  
nRESET  
0.7 VDD  
0.2 VDD  
32 us  
32 us  
nRESET  
Reset  
Figure 6.2-2 nRESET Reset Waveform  
6.2.2.2 Power-on Reset (POR)  
The Power-on reset (POR) is used to generate a stable system reset signal and forces the  
system to be reset when power-on to avoid unexpected behavior of MCU. When applying the  
power to MCU, the POR module will detect the rising voltage and generate reset signal to system  
until the voltage is ready for MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be  
set to 1 to indicate there is a POR reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by  
writing 1 to it. Figure 6.2-3 shows the power-on reset waveform.  
VPOR  
0.1V  
VDD  
Power-on  
Reset  
Figure 6.2-3 Power-on Reset (POR) Waveform  
6.2.2.3 Low Voltage Reset (LVR)  
Low Voltage Reset detects AVDD during system operation. When the AVDD voltage is lower than  
VLVR and the state keeps longer than De-glitch time (16*HCLK cycles), chip will be reset. The LVR  
reset will control the chip in reset state until the AVDD voltage rises above VLVR and the state  
keeps longer than De-glitch time. The PINRF (SYS_RSTSTS[1]) will be set to 1 if the previous  
reset source is nRESET reset. Figure 6.2-4 shows the Low Voltage Reset waveform.  
Apr 18, 2017  
Page 26 of 74  
Rev.1.00  
 
Mini55  
AVDD  
VLVR  
T1  
T2  
( < de-glitch time) ( = de-glitch time)  
Low Voltage Reset  
T3  
( = de-glitch time)  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform  
6.2.2.4 Brown-out Detector Reset (BOD Reset)  
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Threshold  
Voltage Selection BODVL[1:0] (SYS_BODCTL[2:1]), BODVL[2] (SYS_BODCTL[7]) and Brown-  
Out Detector Selection Extension BODVLEXT (SYS_BODCTL[0]). Brown-Out Detector function  
will detect AVDD during system operation. When the AVDD voltage is lower than VBOD and the state  
keeps longer than De-glitch time (Max(20*HCLK cycles, 1*LIRC cycle)), chip will be reset if  
BODRSTEN (SYS_BODCTL[3]) is enabled. The BOD reset will control the chip in reset state until  
the AVDD voltage rises above VBOD and the state keeps longer than De-glitch time. The default  
value of BODVL[1:0] (SYS_BODCTL[2:1]), BODVL[2] (SYS_BODCTL[7]), BODVLEXT  
(SYS_BODCTL[0]) and BODRSTEN (SYS_BODCTL[3]) is set by flash controller user  
configuration register CBOVEXT (CONFIG0 [23]), CBOV[1:0] (CONFIG0 [22:21]), CBOV[2]  
(CONFIG0 [19]) and CBORST(CONFIG0[20]) respectively. User can determine the initial BOD  
setting by setting the CONFIG0 register. Figure 6.2-5 shows the Brown-Out Detector waveform.  
Apr 18, 2017  
Page 27 of 74  
Rev.1.00  
Mini55  
AVDD  
VBODH  
VBODL  
Hysteresis  
T1  
T2  
(< de-glitch time) (= de-glitch time)  
BODOUT  
T3  
(= de-glitch time)  
BODRSTEN  
Brown-out  
Reset  
Figure 6.2-5 Brown-out Detector (BOD) Waveform  
6.2.2.5 Watchdog Timer Reset (WDT)  
In most industrial applications, system reliability is very important. To automatically recover the  
MCU from failure status is one way to improve system reliability. The watchdog timer (WDT) is  
widely used to check if the system works fine. If the MCU is crashed or out of control, it may  
cause the watchdog time-out. User may decide to enable system reset during watchdog time-out  
to recover the system and take action for the system crash/out-of-control after reset.  
Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a  
watchdog reset and handle the failure of MCU after watchdog time-out reset by checking WDTRF  
(SYS_RSTSTS[2]).  
6.2.2.6 CPU Reset, CHIP Reset and MCU Reset  
The CPU Reset means only Cortex® -M0 core is reset and all other peripherals remain the same  
status after CPU reset. User can set the CPURST (SYS_IPRST0[1]) to 1 to assert the CPU Reset  
signal.  
The CHIP Reset is same with Power-On Reset. The CPU and all peripherals are reset and  
BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG0 setting. User can set the  
CHIPRST (SYS_IPRST0[1]) to 1 to assert the CHIP Reset signal.  
The MCU Reset is similar with CHIP Reset. The difference is that BS (FMC_ISPCTL[1]) will not  
be reloaded from CONFIG0 setting and keep its original software setting for booting from APROM  
or LDROM. User can set the SYSRESETREQ (AIRCR[2]) to 1 to assert the MCU Reset.  
Apr 18, 2017  
Page 28 of 74  
Rev.1.00  
Mini55  
6.2.3 Power Modes and Wake-up Sources  
There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-2 lists the  
available clocks for each power mode.  
Power Mode  
Definition  
Normal Mode  
Idle Mode  
Power-down Mode  
CPU is in active state  
CPU is in sleep state  
CPU is in sleep state  
and all clocks stop  
except LXT and LIRC.  
SRAM content  
retended.  
Entry Condition  
Chip is in normal  
mode after system  
reset released  
CPU executes WFI  
instruction.  
CPU sets sleep mode  
enable and power  
down enable and  
executes WFI  
instruction.  
Wake-up Sources  
N/A  
All interrupts  
WDT, I²C, Timer,  
UART, BOD and  
GPIO  
Available Clocks  
After Wake-up  
All  
All except CPU clock  
LXT and LIRC  
N/A  
CPU back to normal  
mode  
CPU back to normal  
mode  
Table 6.2-2 Power Mode Difference Table  
System reset released  
Normal Mode  
CPU Clock ON  
HXT, HIRC, LXT, LIRC, HCLK, PCLK ON  
Flash ON  
CPU executes WFI  
Interrupts occur  
1. SLEEPDEEP (SCS_SCR[2]) = 1  
2. PDEN (CLK_PWRCTL[7]) = 1 and  
PDWKIF (CLK_PWRCTL[8]) = 1  
3. CPU executes WFI  
Wake-up events  
occur  
Idle Mode  
Power-down Mode  
CPU Clock OFF  
CPU Clock OFF  
HXT, HIRC, HCLK, PCLK OFF  
LXT, LIRC ON  
HXT, HIRC, LXT, LIRC, HCLK, PCLK ON  
Flash Halt  
Flash Halt  
Figure 6.2-6 Power Mode State Machine  
1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in run mode.  
2. LIRC (10 kHz OSC) ON or OFF depends on S/W setting in run mode.  
3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.  
4. If WDT clock source is selected as LIRC and LIRC is on.  
Apr 18, 2017  
Page 29 of 74  
Rev.1.00  
 
Mini55  
Normal Mode  
ON  
Idle Mode  
ON  
Power-down Mode  
HXT (4~20 MHz XTL)  
Halt  
Halt  
HIRC (12/16 MHz OSC)  
ON  
ON  
LXT (32768 Hz XTL)  
ON  
ON  
ON/OFF1  
ON/OFF2  
Halt  
LIRC (10 kHz OSC)  
PLL  
ON  
ON  
ON  
ON  
LDO  
ON  
ON  
ON  
CPU  
ON  
Halt  
ON  
Halt  
HCLK/PCLK  
SRAM retention  
FLASH  
GPIO  
ON  
Halt  
ON  
ON  
ON  
ON  
ON  
Halt  
ON  
ON  
Halt  
TIMER  
PWM  
ON  
ON  
ON/OFF3  
Halt  
ON  
ON  
WDT  
ON  
ON  
ON/OFF4  
Halt  
UART  
ON  
ON  
I2C  
ON  
ON  
Halt  
SPI  
ON  
ON  
Halt  
ADC  
ON  
ON  
Halt  
ACMP  
ON  
ON  
Halt  
Table 6.2-3 Clocks in Power Modes  
Wake-up sources in Power-down mode:  
WDT, I²C, Timer, UART, BOD and GPIO  
After chip enters power down, the following wake-up sources can wake chip up to normal mode.  
Table 6.2-4 lists the condition about how to enter Power-down mode again for each peripheral.  
*User needs to wait this condition before setting PDEN (CLK_PWRCTL[7]) and execute WFI to enter  
Power-down mode.  
Wake-up  
Wake-up condition  
System can enter Power-down mode again condition*  
Source  
Brown-Out Detector  
Interrupt  
BOD  
After software writes 1 to clear SYS_BODCTL[BODIF].  
After software write 1 to clear the Px_INTSRC[n] bit.  
GPIO  
GPIO Interrupt  
Timer Interrupt  
WDT Interrupt  
TIMER  
After software writes 1 to clear TWKF (TIMERx_INTSTS[1]) and TIF  
(TIMERx_INTSTS[0]).  
WDT  
After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect).  
Apr 18, 2017  
Page 30 of 74  
Rev.1.00  
Mini55  
UART  
I2C  
nCTS wake-up  
After software writes 1 to clear CTSWKIF (UARTx_INTSTS[16]).  
After software writes 1 to clear WKIF ( I2C_STATUS1[0]).  
Falling edge in the  
I2C_SDA or I2C_CLK  
Table 6.2-4 Condition of Entering Power-down Mode Again  
6.2.4 System Power Architecture  
In this chip, the power distribution is divided into three segments.  
Analog power from AVDD and AVSS provides the power for analog components  
operation. AVDD must be equal to VDD to avoid leakage current.  
Digital power from VDD and VSS supplies power to the I/O pins and internal regulator  
which provides a fixed 1.8V power for digital operation.  
Built-in a capacitor for internal voltage regulator  
The output of internal voltage regulator, LDO_CAP, requires an external capacitor which should  
be located close to the corresponding pin. Analog power (AVDD) should be the same voltage level  
as the digital power (VDD). Figure 6.2-7 shows the power distribution of the Mini55 series.  
AVDD  
Low  
Voltage  
Reset  
Brown  
Out  
Detector  
10-bit  
SAR-ADC  
Analog  
Comparator  
AVSS  
48 MHz  
HIRC  
10 kHz  
LIRC  
FLASH  
SRAM  
Oscillator  
Oscillator  
1.8V  
LDO_CAP  
POR18  
Digital Logic  
4~24 MHz  
or  
32.768 kHz  
crystal  
XT_OUT  
XT_IN  
2.1~5.5V  
to 1.8V  
LDO  
IO cell  
GPIO Pins  
oscillator  
VDD VSS  
Figure 6.2-7 NuMicro® Mini55 Series Power Architecture Diagram  
Apr 18, 2017  
Page 31 of 74  
Rev.1.00  
 
Mini55  
6.2.5 System Memory Mapping  
Mini55  
System Control  
System Control  
4 GB  
0xFFFF_FFFF  
0xE000_ED00  
0xE000_E100  
0xE000_E010  
SCS_BA  
SCS_BA  
SCS_BA  
Reserved  
|
External Interrupt Control  
System Timer Control  
0xE000_F000  
0xE000_EFFF  
0xE000_E000  
0xE000_E00F  
|
System Control  
Reserved  
0x6002_0000  
0x6001_FFFF  
0x6000_0000  
0x5FFF_FFFF  
|
Reserved  
Reserved  
AHB peripherals  
0x5020_0000  
0x501F_FFFF  
0x5000_0000  
0x4FFF_FFFF  
HDIV  
0x5001_4000  
0x5000_C000  
0x5000_4000  
FMC_BA  
FMC_BA  
GP_BA  
FMC  
AHB  
GPIO Control  
Interrupt Multiplexer Control 0x5000_0300  
INT_BA  
CLK_BA  
SYS_BA  
Clock Control  
0x5000_0200  
0x5000_0000  
Reserved  
|
System Global Control  
0x4020_0000  
0x401F_FFFF  
APB  
|
1 GB  
0x4000_0000  
0x3FFF_FFFF  
APB peripherals  
UART1 Control  
ADC Control  
0x4015_0000  
0x400E_0000  
0x400D_0000  
0x4005_0000  
0x4004_0000  
0x4003_0000  
0x4002_0000  
0x4001_0000  
0x4000_4000  
UART1_BA  
ADC_BA  
CMP_BA  
UART0_BA  
PWM_BA  
SPI_BA  
Reserved  
|
ACMP Control  
UART0 Control  
PWM Control  
0x2000_0800  
0x2000_07FF  
0x2000_0000  
0x1FFF_FFFF  
SPI Control  
2 KB SRAM  
Reserved  
I2C0 Control  
0.5 GB  
I2C0_BA  
TMR_BA  
WDT_BA  
Timer0/Timer1 Control  
WDT Control  
|
0x0000_4600  
0x0000_45FF  
17.5 KB on-chip Flash (Mini5  
|
0 GB  
0x0000_0000  
Table 6.2-5 Memory Mapping Table  
6.2.6 Memory Organization  
6.2.6.1 Overview  
The NuMicro® Mini55 series provides 4G-byte addressing space. The addressing space assigned  
to each on-chip controllers is shown in Table 6.2-6. The detailed register definition, addressing  
space, and programming details will be described in the following sections for each on-chip  
peripheral. The Mini55 series only supports little-endian data format.  
Apr 18, 2017  
Page 32 of 74  
Rev.1.00  
Mini55  
6.2.6.2 System Memory Map  
The memory locations assigned to each on-chip controllers are shown in Table 6.2-6.  
Addressing Space  
Token  
Modules  
Flash and SRAM Memory Space  
0x0000_0000 0x0000_7FFF  
0x2000_0000 0x2000_07FF  
FLASH_BA  
SRAM_BA  
Flash Memory Space (32 KB)  
SRAM Memory Space (4 KB)  
AHB Modules Space (0x5000_0000 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
0x5000_0200 0x5000_02FF  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_C000 0x5000_FFFF  
0x5001_4000 0x5001_7FFF  
SYS_BA  
CLK_BA  
INT_BA  
GP_BA  
System Global Control Registers  
Clock Control Registers  
Interrupt Multiplexer Control Registers  
GPIO (P0~P5) Control Registers  
Flash Memory Control Registers  
Hardware Divider Control Register  
FMC_BA  
HDIV_BA  
APB Modules Space (0x4000_0000 0x401F_FFFF)  
0x4000_4000 0x4000_00FF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4004_0000 0x4004_3FFF  
0x4005_0000 0x4005_3FFF  
0x400D_0000 0x400D_3FFF  
0x400E_0000 0x400E_3FFF  
0x4015_0000 0x4015_3FFF  
WDT_BA  
TMR_BA  
I2C0_BA  
SPI_BA  
Watchdog Timer Control Registers  
Timer0/Timer1 Control Registers  
I2C0 Interface Control Registers  
SPI with Master/slave Function Control Registers  
PWM Control Registers  
PWM_BA  
UART0_BA  
ACMP_BA  
ADC_BA  
UART1_BA  
UART0 Control Registers  
Analog Comparator Control Registers  
Analog-Digital-Converter (ADC) Control Registers  
UART1 Control Registers  
System Control Space (0xE000_E000 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCS_BA  
System Timer Control Registers  
Nested Vectored Interrupt Control Registers  
System Control Block Registers  
Table 6.2-6 Address Space Assignments for On-Chip Modules  
Apr 18, 2017  
Page 33 of 74  
Rev.1.00  
 
Mini55  
6.2.7 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value  
Register (SYST_RVR) on the next clock edge, and then decrement on subsequent clocks. When  
the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on  
reads.  
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to  
zero before enabling the feature. This ensures the timer to count from the SYST_RVR value  
rather than an arbitrary value when it is enabled.  
If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is  
reloaded with this value. This mechanism can be used to disable the feature independently from  
the timer enable bit.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Apr 18, 2017  
Page 34 of 74  
Rev.1.00  
Mini55  
6.2.8 Nested Vectored Interrupt Controller (NVIC)  
6.2.8.1 Overview  
The Cortex® -M0 CPU provides an interrupt controller as an integral part of the exception mode,  
named as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the  
processor core and provides following features.  
6.2.8.2 Features  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Dynamic priority change  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When an interrupt is accepted, the starting address of the Interrupt Service Routine (ISR) is  
fetched from a vector table in memory. There is no need to determine which interrupt is accepted  
and branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
6.2.8.3 Exception Model and System Interrupt Map  
Table 6.2-7 lists the exception model supported by NuMicro® Mini55 series. Software can set four  
levels of priority on some of these exceptions as well as on all interrupts. The highest user-  
configurable priority is denoted as 0 and the lowest priority is denoted as 3. The default priority of  
all the user-configurable interrupts is 0. Note that the priority 0 is treated as the fourth priority on  
the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Apr 18, 2017  
Page 35 of 74  
Rev.1.00  
Mini55  
Exception Name  
Reset  
Vector Number  
Priority  
-3  
1
2
NMI  
-2  
Hard Fault  
Reserved  
3
-1  
4 ~ 10  
11  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
Reserved  
12 ~ 13  
14  
PendSV  
SysTick  
15  
Interrupt (IRQ0 ~ IRQ31)  
16 ~ 47  
Table 6.2-7 Exception Model  
Interrupt Number  
(Bit In Interrupt Interrupt Name  
Registers)  
Exception  
Number  
Source  
Module  
Power-down  
Wake-up  
Interrupt Description  
1 ~ 15  
16  
-
-
-
System exceptions  
-
0
1
2
3
BODOUT  
WDT_INT  
EINT0  
Brown-out Brown-out low voltage detected interrupt  
Yes  
Yes  
Yes  
Yes  
17  
WDT  
GPIO  
GPIO  
Watchdog Timer interrupt  
18  
External signal interrupt from P3.2 pin  
External signal interrupt from P5.2 pin  
19  
EINT1  
External signal interrupt from GPIO  
group P0~P1  
20  
21  
4
5
GP0/1_INT  
GPIO  
GPIO  
Yes  
Yes  
External signal interrupt from GPIO  
group P2~P4 except P3.2  
GP2/3/4_INT  
22  
23  
6
PWM_INT  
BRAKE_INT  
TMR0_INT  
TMR1_INT  
-
PWM  
PWM  
TMR0  
TMR1  
-
PWM interrupt  
PWM Brake interrupt  
Timer 0 interrupt  
Timer 1 interrupt  
-
No  
No  
7
8
24  
Yes  
Yes  
25  
9
26 ~ 27  
28  
10 ~ 11  
12  
UART0_INT  
UART1_INT  
SPI_INT  
-
UART0  
UART1  
SPI  
UART0 interrupt  
UART1 interrupt  
SPI interrupt  
-
Yes  
Yes  
No  
29  
13  
30  
14  
31  
15  
-
External signal interrupt from GPIO  
group P5 except P5.2  
32  
16  
GP5_INT  
GPIO  
Yes  
HIRC_TRIM_IN  
T
33  
34  
17  
18  
HIRC  
I2C0  
HIRC trim interrupt  
I2C0 interrupt  
No  
I2C0_INT  
Yes  
Apr 18, 2017  
Page 36 of 74  
Rev.1.00  
Mini55  
Interrupt Number  
(Bit In Interrupt Interrupt Name  
Registers)  
Exception  
Number  
Source  
Module  
Power-down  
Wake-up  
Interrupt Description  
35 ~ 40  
41  
19 ~ 24  
25  
-
-
-
Analog Comparator 0 or Comparator 1  
interrupt  
ACMP_INT  
-
ACMP  
-
Yes  
42 ~ 43  
44  
26 ~ 27  
28  
-
Clock controller interrupt for chip wake-  
up from Power-down state  
PWRWU_INT  
CLKC  
Yes  
No  
45  
29  
ADC_INT  
-
ADC  
-
ADC interrupt  
-
46 ~ 47  
30 ~ 31  
Table 6.2-8 System Interrupt Map Vector Table  
6.2.8.4 Vector Table  
When an interrupt is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table  
based address is fixed at 0x00000000. The vector table contains the initialization value for the  
stack pointer on reset, and the entry point addresses for all exception handlers. The vector  
number on previous page defines the order of entries in the vector table associated with the  
exception handler entry as illustrated in previous section.  
Vector Table Word Offset (Bytes)  
0x00  
Description  
Initial Stack Pointer Value  
Exception Number * 0x04  
Exception Entry Pointer using that Exception Number  
Table 6.2-9 Vector Table Format  
6.2.8.5 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-  
Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-  
1-to-clear policy, both registers reading back the current enabled state of the corresponding  
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become  
Pending; however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it  
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit  
prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used  
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers  
reading back the current pended state of the corresponding interrupts. The Clear-Pending  
Register has no effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
Apr 18, 2017  
Page 37 of 74  
Rev.1.00  
Mini55  
6.2.9 System Control Registers (SCB)  
The Cortex® -M0 status and operating mode control are managed System Control Registers. Including  
CPUID, Cortex® -M0 interrupt priority and Cortex® -M0 power management can be controlled through  
these system control registers.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference Manual”  
and “ARM® v6-M Architecture Reference Manual”.  
Apr 18, 2017  
Page 38 of 74  
Rev.1.00  
Mini55  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and clock divider. The chip enters  
Power-down mode when Cortex® -M0 core executes the WFI instruction only if the PDEN  
(CLK_PWRCTL[7]) bit is set to 1. After that, chip enters Power-down mode and waits for wake-up  
interrupt source triggered to exit Power-down mode. In Power-down mode, the clock controller  
turns off the 4~24 MHz external high speed crystal (HXT) and 48 MHz internal high speed RC  
oscillator (HIRC) to reduce the overall system power consumption. Figure 6.3-1 and Figure 6.3-2  
show the clock generator and the overview of the clock source control.  
The clock generator consists of 3 sources as listed below:  
4~24 MHz external high speed crystal oscillator (HXT) or 32.768 kHz (LXT) external  
low speed crystal oscillator  
48 MHz internal high speed RC oscillator (HIRC)  
10 kHz internal low speed RC oscillator (LIRC)  
XTLEN (CLK_PWRCTL[1:0])  
4~24 MHz HXT  
XT1_IN  
HXT or LXT  
or  
32.768 kHz LXT  
XT1_OUT  
HIRCEN (CLK_PWRCTL[2])  
HIRC  
48 MHz  
HIRC  
LIRCEN (CLK_PWRCTL[3])  
LIRC  
10 kHz  
LIRC  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
LXT = 32.768 kHz external low speed crystal oscillator  
HIRC = 48 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Figure 6.3-1 Clock Generator Block Diagram  
Apr 18, 2017  
Page 39 of 74  
Rev.1.00  
 
Mini55  
HIRC  
48 MHz  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
ISP  
10 kHz  
4~24  
MHz or  
32.768k  
Hz  
Reserved  
Reserved  
1/(HCLKDIV+1)  
PCLK  
I2C 0  
4~24 MHz or  
32.768kHz  
10 kHz  
ACMP  
HIRC  
External trigger  
HCLK  
CLKSEL0[2:0]  
111  
011  
010  
001  
000  
TMR 1  
TMR 0  
10 kHz  
4~24 MHz or  
32.768kHz  
CLKSEL1[14:12]  
HIRC  
FMC  
CLKSEL1[10:8]  
CPUCLK  
HIRC  
1
0
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
SysTick  
HCLK  
SYST_CSR[2]  
4~24 MHz or  
32.768kHz  
Reserved  
HCLK  
HCLK  
HCLK  
PWMCH45  
PWMCH23  
PWMCH01  
4~24 MHz or  
32.768kHz  
CLKSEL0[5:3]  
10 kHz  
11  
10  
00  
HCLK  
1/2048  
WDT  
4~24 MHz or  
32.768kHz  
CLKSEL1[1:0]  
HCLK  
1
HIRC  
SPI  
10, 11  
01  
4~24 MHz or  
0
32.768kHz  
Reserved  
CLKSEL1[4]  
4~24 MHz or  
32.768kHz  
00  
1/(UART0DIV+1)  
1/(UART1DIV+1)  
UART 0  
UART 1  
CLKSEL1[27:26]  
CLKSEL1[25:24]  
HIRC  
HCLK  
11  
10  
01  
00  
1/(ADC_DIV+1)  
ADC  
BOD  
Reserved  
HIRC  
HCLK  
10 kHz  
11  
10  
01  
00  
4~24 MHz or  
32.768kHz  
FREQDIV  
Reserved  
CLKSEL1[3:2]  
4~24 MHz or  
32.768kHz  
Note: Before clock switching, both the pre-  
selected and newly selected clock sources  
must be turned on and stable.  
CLKSEL2[3:2]  
Figure 6.3-2 Clock Generator Global View Diagram  
Apr 18, 2017  
Page 40 of 74  
Rev.1.00  
Mini55  
6.3.2 Auto-trim  
This chip supports auto-trim function: the HIRC trim (48 MHz internal RC oscillator), according to  
the accurate LXT (32.768 kHz crystal oscillator), automatically gets accurate HIRC output  
frequency, 1 % deviation within all temperature ranges. For instance, the system needs an  
accurate 48 MHz clock. In such case, if users do not want to use 48 MHz HXT as the system  
clock source, they need to solder 32.768 kHz crystal in system, and set FREQSEL  
(SYS_IRCTCTL[0] trim frequency selection) to “1”, and the auto-trim function will be enabled.  
Interrupt status bit FREQLOCK (SYS_IRCTISTS[0] HIRC frequency lock status) high indicates  
the HIRC output frequency is accurate within 1% deviation. To get better results, it is  
recommended to set both LOOPSEL (SYS_IRCTCTL[5:4] trim calculation loop) and RETRYCNT  
(SYS_IRCTCTL[7:6] trim value update limitation count) to “11”.  
6.3.3 System Clock and SysTick Clock  
The system clock has 4 clock sources which were generated from clock generator block. The  
clock source switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram  
is shown in Figure 6.3-3.  
HCLKSEL (CLK_CLKSEL0[2:0])  
HIRC  
111  
10 kHz LIRC  
011  
CPUCLK  
CPU  
Reserved  
010  
HCLK  
1/(HCLK_N+1)  
AHB  
APB  
Reserved  
001  
000  
HCLKDIV (CLK_CLKDIV[3:0])  
PCLK  
4~24 MHz HXT or  
32.768 kHz LXT  
CPU in Power Down Mode  
Legend:  
Note: Before clock switching, both the pre-  
selected and newly selected clock sources  
must be turned on and stable.  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 48 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Figure 6.3-3 System Clock Block Diagram  
The source of PCLK is equal to HCLK in system clock architecture.  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock  
CLKSRC(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources.  
The clock source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]).  
The block diagram is shown in Figure 6.3-4.  
Apr 18, 2017  
Page 41 of 74  
Rev.1.00  
 
Mini55  
STCLKSEL (CLK_CLKSEL0[5:3])  
HIRC  
1/2  
1/2  
1/2  
111  
011  
CPUCLK  
HCLK  
4~24 MHz HXT or  
32.768 kHz LXT  
1
0
STCLK  
010  
001  
Reserved  
4~24 MHz HXT or  
SYST_CSR[2]  
32.768 kHz LXT  
000  
Legend:  
Note: Before clock switching, both the pre-  
selected and newly selected clock sources  
must be turned on and stable.  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 48 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Figure 6.3-4 SysTick Clock Control Block Diagram  
6.3.4 Peripherals Clock Source Selection  
The peripheral clock has different clock source switch settings depending on different peripherals.  
Please refer to the CLK_CLKSEL1 and CLK_APBCLK register description in NuMicro® Mini55  
Series Technical Reference Manual section 6.3.8. Please to note that, while switching clock  
source from one to another, user must wait until both clock sources are running stabled.  
PCLK  
Watch Dog Timer  
WDTCKEN (CLK_APBCLK[0])  
Timer0  
TMR0CKEN (CLK_APBCLK[2])  
Timer1  
TMR1CKEN (CLK_APBCLK[3])  
Frequency Divider  
CLKOCKEN (CLK_APBCLK[6])  
I2C0  
I2C0CKEN (CLK_APBCLK[8])  
SPI  
SPIEN (CLK_APBCLK[12])  
UART0  
UART0CKEN (CLK_APBCLK[16])  
UART1  
UART1CKEN (CLK_APBCLK[17])  
PWM01  
PWMCH01CKEN (CLK_APBCLK[20])  
PWM23  
PWMCH23CKEN (CLK_APBCLK[21])  
PWM45  
PWMCH45CKEN (CLK_APBCLK[22])  
ADC  
ADCCKEN (CLK_APBCLK[28])  
ACMP  
ACMPCKEN (CLK_APBCLK[30])  
Figure 6.3-5 Peripherals Bus Clock Source Selection for PCLK  
Apr 18, 2017  
Page 42 of 74  
Rev.1.00  
Mini55  
Peripheral Clok  
Selectable  
Ext. CLK (HXT Or  
LXT)  
HIRC  
LIRC  
HCLK  
WDT  
Timer0  
Timer1  
I2C0  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
-
No  
Yes  
Yes  
-
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
-
SPI  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
-
No  
Yes  
Yes  
-
No  
No  
No  
-
Yes  
No  
No  
-
UART0  
UART1  
PWM  
ADC  
Yes  
No  
Yes  
-
Yes  
-
No  
-
Yes  
-
ACMP  
Table 6.3-1 Peripheral Clock Source Selection Table  
Note: For the peripherals those peripheral clock are not selectable, its clock source is fixed to PCLK.  
6.3.5 Power-down Mode Clock  
When chip enters Power-down mode, system clocks, some clock sources, and some peripheral  
clocks will be disabled. Some clock sources and peripheral clocks are still active in Power-down  
mode.  
The clocks still kept active are listed below:  
Clock Generator  
10 kHz internal low speed oscillator (LIRC) clock  
32.768 kHz external low speed crystal oscillator (LXT) clock (If PDLXT = 1 and  
XTLEN[1:0] = 10)  
Peripherals Clock (When 10 kHz low speed oscillator is adopted as clock source)  
Watchdog Clock  
Timer 0/1 Clock  
6.3.6 Frequency Divider Output  
This device is equipped with a power-of-2 frequency divider which is composed of 16 chained  
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one  
multiplexer is reflected to the CLKO pin. Therefore there are 16 options of power-of-2 divided  
clocks with the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock  
divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock  
divider output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).  
Apr 18, 2017  
Page 43 of 74  
Rev.1.00  
Mini55  
When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When  
writing 0 to CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock  
reaches low state and stay in low state.  
If DIV1EN (CLK_CLKOCTL[5]) set to 1, the frequency divider clock (FRQDIV_CLK) will bypass  
power-of-2 frequency divider. The frequency divider clock will be output to CLKO pin directly.  
FREQSEL (CLK_CLKSEL2[3:2])  
CLKOCKEN (CLK_APBCLK[6])  
HIRC  
11  
HCLK  
CLKO_CLK  
10  
01  
00  
LIRC  
4~24 MHz HXT or  
32.768 kHz LXT  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
LXT = 32.768 kHz external low speed crystal oscillator  
HIRC = 48 MHz internal high speed RC oscillator  
Note: Before clock switching, both the pre-  
selected and newly selected clock sources  
must be turned on and stable.  
Figure 6.3-6 Clock Source of Frequency Divider  
CLKOEN  
(CLK_CLKOCTL[4])  
Enable  
divide-by-2 counter  
FREQSEL  
(CLK_CLKOCTL[3:0])  
16 chained  
divide-by-2 counter  
CLKO_CLK  
1/22  
1/23  
...  
1/215 1/216  
DIV1EN  
(CLK_CLKOCTL[5])  
1/2  
0000  
0001  
:
16 to 1  
MUX  
0
:
CLKO  
1110  
1
1111  
Figure 6.3-7 Block Diagram of Frequency Divider  
Apr 18, 2017  
Page 44 of 74  
Rev.1.00  
Mini55  
6.4 Flash Memory Controller (FMC)  
6.4.1 Overview  
The NuMicro® Mini55 series is equipped with 17.5 Kbytes on-chip embedded flash for application  
and Data Flash to store some application dependent data. A User Configuration block provides  
for system initialization. A 2 Kbytes loader ROM (LDROM) is used for In-System-Programming  
(ISP) function. This chip also supports In-Application-Programming (IAP) function, user switches  
the code executing without the chip reset after the embedded flash updated.  
6.4.2 Features  
Supports 17.5 Kbytes application ROM (APROM).  
Supports 2 Kbytes loader ROM (LDROM).  
Supports configurable Data Flash size to share with APROM.  
Supports User Configuration block to control system initialization.  
Supports 512 bytes page erase for all embedded flash.  
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded flash memory.  
Apr 18, 2017  
Page 45 of 74  
Rev.1.00  
Mini55  
6.5 General Purpose I/O (GPIO)  
6.5.1 Overview  
The NuMicro® Mini55 series has up to 33 General Purpose I/O pins to be shared with other  
function pins depending on the chip configuration. These 33 pins are arranged in 6 ports named  
as P0, P1, P2, P3, P4 and P5. Each of the 33 pins is independent and has the corresponding  
register bits to control the pin mode function and data.  
The I/O type of each pin can be configured by software individually as Input, Push-pull output,  
Open-drain output, or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins is  
stay in input mode and each port data register Px_DOUT[n] resets to 1. For Quasi-bidirectional  
mode, each I/O pin is equipped with a very weak individual pull-up resistor about 110 k~ 300  
kfor VDD is from 5.0 V to 2.1 V.  
6.5.2 Features  
Four I/O modes:  
Quasi-bidirectional mode  
Push-pull output  
Open-drain output  
Input-only with high impendence  
Quasi-bidirectional TTL/Schmitt trigger input mode selected by SYS_Px_MFP[23:16]  
I/O pin configured as interrupt source with edge/level setting  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the pin wake-up function  
High driver and high sink I/O mode support  
Configurable default I/O mode of all pins after reset by CIOINI (Config0[10]) setting  
CIOINI = 0, all GPIO pins in Quasi-bidirectional mode after chip reset  
CIOINI = 1, all GPIO pins in Input tri-state mode after chip reset  
Apr 18, 2017  
Page 46 of 74  
Rev.1.00  
Mini55  
6.6 Timer Controller (TMR)  
6.6.1 Overview  
The Timer Controller includes two 32-bit timers, TMR0 and TMR1, allowing user to easily  
implement a timer control for applications. The timer can perform functions, such as frequency  
measurement, delay timing, clock generation, event counting by external input pins, and interval  
measurement by external capture pins.  
6.6.2 Features  
Two sets of 32-bit timer with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through CNT (TIMRTx_CNT[23:0])  
Supports event counting function  
24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])  
Supports external capture pin event for interval measurement  
Supports external capture pin event to reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is  
generated  
Supports internal capture triggered while internal ACMP output signal transition  
Apr 18, 2017  
Page 47 of 74  
Rev.1.00  
Mini55  
6.7 Enhanced PWM Generator  
6.7.1 Overview  
The NuMicro® Mini55 series has built in one PWM unit (PWM0) which is specially designed for  
motor driving control applications. The PWM0 supports six PWM generators which can be  
configured as six independent PWM outputs, PWM0_CH0~PWM0_CH5, or as three  
complementary PWM pairs, (PWM0_CH0, PWM0_CH1), (PWM0_CH2, PWM0_CH3) and  
(PWM0_CH4, PWM0_CH5) with three programmable dead-time generators.  
Every complementary PWM pairs share one 8-bit prescaler. There are six clock dividers providing  
five divided frequencies (1, 1/2, 1/4, 1/8, 1/16) for each channel. Each PWM output has  
independent 16-bit counter for PWM period control, and 16-bit comparators for PWM duty control.  
The six PWM generators provide twelve independent PWM interrupt flags which are set by  
hardware when the corresponding PWM period counter comparison matched period and duty.  
Each PWM interrupt source with its corresponding enable bit can request PWM interrupt. The  
PWM generators can be configured as One-shot mode to produce only one PWM cycle signal or  
Auto-reload mode to output PWM waveform continuously.  
To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and  
16-bit comparator are implemented with double buffer. When user writes data to  
counter/comparator buffer registers, the updated value will be loaded into the 16-bit down  
counter/ comparator at the end of current period. The double buffering feature avoids glitch at  
PWM outputs.  
Besides PWM, Motor controlling also need Timer, ACMP and ADC to work together. In order to  
control motor more precisely, we provide some registers that not only configure PWM but also  
Timer, ADC and ACMP, by doing so, it can save more CPU time and control motor with ease  
especially in BLDC.  
6.7.2 Features  
The PWM0 supports the following features:  
Six independent 16-bit PWM duty control units with maximum six port pins:  
Six independent PWM outputs PWM0_CH0, PWM0_CH1, PWM0_CH2,  
PWM0_CH3, PWM0_CH4, and PWM0_CH5  
Three complementary PWM pairs, with each pin in a pair mutually complement  
to each other and capable of programmable dead-time insertion (PWM0_CH0,  
PWM0_CH1), (PWM0_CH2, PWM0_CH3) and (PWM0_CH4, PWM0_CH5)  
Three synchronous PWM pairs, with each pin in a pair in-phase (PWM0_CH0,  
PWM0_CH1), (PWM0_CH2, PWM0_CH3) and (PWM0_CH4, PWM0_CH5)  
Group control bit PWM0_CH2 and PWM0_CH4 are synchronized with PWM0_CH0,  
PWM0_CH3 and PWM0_CH5 are synchronized with PWM0_CH1  
One-shot (only support edge-aligned type) or Auto-reload mode PWM  
Up to 16-bit resolution  
Supports edge-aligned and center-aligned mode  
Supports asymmetric PWM generating in center-aligned mode  
Supports center loading in center-aligned mode  
Programmable dead-time insertion between complementary paired PWMs  
Apr 18, 2017  
Page 48 of 74  
Rev.1.00  
Mini55  
Each pin of PWM0_CH0 to PWM0_CH5 has independent polarity setting control  
Hardware fault brake protections  
Supports software trigger  
Two Interrupt source types:  
Synchronously requested at PWM frequency when down counter  
comparison matched (edge- and center-aligned type) or underflow (edge-  
aligned type)  
Requested when external fault brake asserted  
BKP0: EINT0 or CPO1  
BKP1: EINT1 or CPO0  
The PWM signals before polarity control stage are defined in the view of positive logic.  
The PWM ports is active high or active low are controlled by polarity control register  
Supports mask aligned function  
Supports independently rising CMP matching, PERIOD matching, falling CMP  
matching (in Center-aligned type), period matching to trigger ADC conversion  
Timer comparing matching event trigger PWM to do phase change in BLDC  
application  
Supports ACMP output event trigger PWM to force PWM output at most one period  
low, this feature is usually for step motor control  
Provides interrupt accumulation function  
Apr 18, 2017  
Page 49 of 74  
Rev.1.00  
Mini55  
Trapezoidal Commutation System Architecture  
+VDC Bus  
Hyper Terminal  
UART Interface  
DC Bus  
+
BLDC  
Isolation  
circuit  
UART  
N
S
MINI58  
+5V  
+5V  
UART  
Timer  
DC Bus  
-
nINT0  
CPO0  
Push  
Button  
3-Phase Inverter  
(IPM, MOSFET, IGBT)  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
PWM0  
ADC  
AIN[6]  
AIN[0]  
AIN[1]  
AIN[2]  
AIN[3]  
AIN[7]  
+VDC Bus  
+5V  
Option 1  
Option 2  
Sensorless circuit  
Figure 6.7-1 Application Circuit Diagram  
Apr 18, 2017  
Page 50 of 74  
Rev.1.00  
Mini55  
6.8 Watchdog Timer (WDT)  
6.8.1 Overview  
The Watchdog Timer is used to perform a system reset when system runs into an unknown state.  
This prevents system from hanging for an infinite period of time. Besides, the Watchdog Timer  
supports the function to wake-up system from Idle/Power-down mode.  
6.8.2 Features  
18-bit free running up counter for WDT time-out interval  
Selectable time-out interval (24 ~ 218) WDT_CLK cycles and the time-out interval is 1.6 ms ~  
26.214s if WDT_CLK = 10 kHz  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC or  
LXT  
Apr 18, 2017  
Page 51 of 74  
Rev.1.00  
Mini55  
6.9 UART Controller (UART)  
6.9.1 Overview  
The NuMicro® Mini55 series provides two channels of Universal Asynchronous  
Receiver/Transmitters (UART). The UART0 performs supports flow control function. The UART0  
performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-  
serial conversion on data transmitted from the CPU. The UART0 controller also supports IrDA  
SIR Function, and RS-485 function mode. The UART0 channel supports six types of interrupts.  
The UART1 channel supports five types of interrupts. The UART1 only performs a serial-to-  
parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on  
data transmitted from the CPU. The UART0 has 16 bytes Receiver/Transmitter FIFO. The UART1  
has 4 bytes Receiver/Transmitter FIFO.  
6.9.2 Features  
Full duplex, asynchronous communications  
Separates receive/transmit 16/16 bytes entry FIFO for data payloads (Only Available in  
UART0)  
Separates receive/transmit 4/4 byte buffer for data payloads (Only Available in UART1)  
Supports hardware auto flow control/flow control function (CTS, RTS) and programmable  
RTS flow control trigger level (Only Available in UART0)  
Programmable receiver buffer trigger level  
Supports programmable baud-rate generator for each channel individually  
Supports CTS wake-up function (Only Available in UART0)  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting UART_TOUT[15:8] register  
Supports break error, frame error, parity error and receive/transmit buffer overflow detection  
function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5, 6, 7, 8 character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode (Only Available in UART0)  
Supports 3/16-bit duration for normal mode  
Supports RS-485 function mode (Only Available in UART0)  
Supports RS-485 9-bit mode  
Supports hardware or software enable to program RTS pin to control RS-485  
transmission direction directly  
Apr 18, 2017  
Page 52 of 74  
Rev.1.00  
Mini55  
6.10 I2C Serial Interface Controller (I2C)  
6.10.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method for data  
exchange between devices. The I2C standard is a true multi-master bus including collision detection  
and arbitration that prevents data corruption if two or more masters attempt to control the bus  
simultaneously. There are two sets of I2C controller and only I2C0 supports Power-down wake-up  
function.  
6.10.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to  
the bus. The main features of the bus include:  
Master/Slave mode  
Bi-directional data transfer between masters and slaves  
Multi-master bus  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allowing devices with different bit rates to communicate  
via one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
Built-in 14-bit time-out counter that requests the I2C interrupt if the I2C bus hangs up  
and timer-out counter overflows  
Programmable clocks allowing for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition (four slave address registers with mask option)  
Supports Power-down wake-up function  
Supports two-level buffer function  
Apr 18, 2017  
Page 53 of 74  
Rev.1.00  
Mini55  
6.11 Serial Peripheral Interface (SPI)  
6.11.1 Overview  
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and  
allows full duplex transfer. Devices communicate in Master/Slave mode with 4-wire bi-direction  
interface. The SPI controller performing a serial-to-parallel conversion on data received from a  
peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device.  
SPI controller can be configured as a master or a slave device.  
6.11.2 Features  
Supports Master or Slave mode operation  
Configurable transfer bit length  
Provides four 32-bit FIFO buffers  
Supports MSB first or LSB first transfer  
Supports byte reorder function  
Supports byte or word suspend mode  
Supports Slave 3-wire mode  
Apr 18, 2017  
Page 54 of 74  
Rev.1.00  
Mini55  
6.12 Analog-to-Digital Converter (ADC)  
6.12.1 Overview  
The Mini55 series contains one 10-bit successive approximation analog-to-digital converters  
(SAR A/D converter) with 12 input channels. The A/D converters can be started by software,  
external pin (STADC/P3.2) or PWM trigger.  
6.12.2 Features  
Analog input voltage range: 0 ~ Analog Supply Voltage from AVDD  
10-bit resolution and 8-bit accuracy is guaranteed  
Up to 12 single-end analog input channels  
Maximum ADC clock frequency is 8 MHz, and 16 ADC clocks per sample  
Two operating modes  
Single mode: A/D conversion is performed one time on a specified channel  
PWM sequence mode: When PWM trigger, two of three ADC channels from 0 to 2  
will automatically convert analog data in the sequence of channel [0,1] or  
channel[1,2] or channel[0,2] defined by MODESEL (ADC_SEQCTL[3:2])  
An A/D conversion can be started by:  
Software write 1 to SWTRG bit  
External pin STADC  
PWM trigger with optional start delay period  
Each Conversion result is held in data register with valid and overrun indicators  
Conversion results can be compared with specified value and user can select whether  
to generate an interrupt when conversion result matches the compare register setting  
Channel 0 supports 2 input sources: External analog voltage and ADC input internal  
fixed band-gap voltage  
Channel 7 supports 2 input sources: internal fixed band-gap voltage and ADC input  
Apr 18, 2017  
Page 55 of 74  
Rev.1.00  
Mini55  
6.13 Analog Comparator (ACMP)  
6.13.1 Overview  
The NuMicro® Mini55 series contains two comparators which can be used in a number of different  
configurations. The comparator output is logic 1 when positive input is greater than negative input,  
otherwise the output is 0. Each comparator can be configured to generate interrupt when the  
comparator output value changes.  
6.13.2 Features  
Analog input voltage range: 0 ~ AVDD  
Supports Hysteresis function  
Optional internal reference voltage source for each comparator negative input  
ACMP0 supports:  
Four positive sources  
P1.5, P1.0, P1.2, or P1.3  
Three negative sources  
P1.4  
Internal Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
ACMP1 supports:  
Four positive sources  
P3.1, P3.2, P3.4, or P3.5  
Three negative sources  
P3.0  
Internal Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
Apr 18, 2017  
Page 56 of 74  
Rev.1.00  
Mini55  
6.14 Hardware Divider (HDIV)  
6.14.1 Overview  
The hardware divider (HDIV) is useful to the high performance application. The hardware divider  
is a signed, integer divider with both quotient and remainder outputs.  
6.14.2 Features  
Signed (two’s complement) integer calculation  
32-bit dividend with 16-bit divisor calculation capacity  
32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-  
bit)  
Divided by zero warning flag  
6 HCLK clocks taken for one cycle calculation  
Write divisor to trigger calculation  
Waiting for calculation ready automatically when reading quotient and remainder  
Apr 18, 2017  
Page 57 of 74  
Rev.1.00  
Mini55  
7
APPLICATION CIRCUIT  
DVCC  
[1]  
AVCC  
AVDD  
SPI_SS  
SPI_CLK  
CS  
CLK  
VDD  
SPI Device  
FB  
FB  
DVCC  
MISO  
MOSI  
SPI_MISO  
SPI_MOSI  
VDD  
VSS  
Power  
0.1uF  
0.1uF  
VSS  
AVSS  
VDD  
DVCC  
4.7K  
DVCC  
ICE_DAT  
ICE_CLK  
nRESET  
VSS  
SWD  
Interface  
4.7K  
20p  
20p  
[2]  
CLK  
DIO  
XT1_IN  
I2Cx_SCL  
I2Cx_SDA  
VDD  
Mini55LDE  
LQFP48  
I2C Device  
4~24 MHz  
or  
32.768 kHz  
crystal  
VSS  
Crystal  
XT1_OUT  
DVCC  
10K  
Reset  
Circuit  
RS232 Transceiver  
ROUT RIN  
PC COM Port  
nRESET  
[2]  
UARTx_RXD  
UARTx_TXD  
10uF/25V  
UART  
TIN  
TOUT  
LDO_CAP  
1uF  
Note 1: For the SPI device, the Mini55 chip  
supply voltage must be equal to SPI device  
working voltage. For example, when the SPI  
LDO  
Flash working voltage is 3.3 V, the Mini58 chip  
supply voltage must also be 3.3V.  
Note 2: x denotes 0 or 1.  
Apr 18, 2017  
Page 58 of 74  
Rev.1.00  
Mini55  
8
ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
Symbol  
VDDVSS  
VIN  
Parameter  
Min  
Max  
+7.0  
VDD +0.3  
24  
Unit  
V
DC Power Supply  
-0.3  
Input Voltage  
VSS -0.3  
V
1/tCLCL  
TA  
Oscillator Frequency  
4
MHz  
Operating Temperature  
-40  
+105  
+150  
120  
TST  
Storage Temperature  
-55  
IDD  
Maximum Current into VDD  
Maximum Current out of VSS  
Maximum Current sunk by an I/O pin  
Maximum Current sourced by an I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
ISS  
120  
35  
35  
IIO  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may  
adversely affects the life and reliability of the device.  
Apr 18, 2017  
Page 59 of 74  
Rev.1.00  
Mini55  
8.2 DC Electrical Characteristics  
(VDD - VSS = 2.1 ~ 5.5 V, TA = 25C)  
Symbol Parameter  
Min  
2.1  
Typ  
-
Max  
5.5  
Unit Test Conditions  
VDD  
Operation voltage  
V
VDD = 2.1V ~ 5.5V up to 48 MHz  
VSS / AVSS Power Ground  
-0.3  
-
-
V
V
VLDO  
LDO Output Voltage 1.62  
Allowed Voltage  
1.8  
1.98  
VDD 2.1 V  
VDD-AVDD Difference for VDD and -0.3  
AVDD  
0
0.3  
-
V
-
All Didital  
Modules  
VDD  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
HXT HIRC PLL  
IDD1  
-
16.8  
mA  
Operating Current  
Normal Run Mode  
HCLK = 48 MHz  
while(1){}  
X
V
X
V
IDD2  
IDD3  
IDD4  
-
-
-
11.5  
16.1  
11.1  
-
-
-
mA  
mA  
mA  
X
X
V
V
X
X
X
V
Executed from Flash  
X
V
X
X
All Didital  
Modules  
HXT HIRC PLL  
IDD5  
-
15.7  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 44.2368 MHz  
while(1){}  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
V
X
V
IDD6  
IDD7  
IDD8  
-
-
-
10.8  
15.1  
10.4  
-
-
-
mA  
mA  
mA  
X
X
V
V
X
X
X
V
Executed from Flash  
X
V
X
X
All Didital  
Modules  
HXT HIRC PLL  
24  
IDD9  
-
8.0  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 24 MHz  
while(1){}  
5.5V  
5.5V  
X
X
X
X
X
X
V
X
V
MHz  
24  
MHz  
IDD10  
IDD11  
-
-
6.5  
8.0  
-
-
mA  
mA  
24  
MHz  
3.3V  
3.3V  
Executed from Flash  
24  
MHz  
IDD12  
-
-
6.5  
-
-
mA  
mA  
X
X
X
All Didital  
Modules  
VDD  
5.5V  
5.5V  
3.3V  
HXT HIRC PLL  
Operating Current  
Normal Run Mode  
HCLK = 24 MHz  
while(1){}  
IDD13  
10.0  
X
V
X
V
IDD14  
IDD15  
-
-
7.1  
9.7  
-
-
mA  
mA  
X
X
V
V
X
X
X
V
Executed from Flash  
Apr 18, 2017  
Page 60 of 74  
Rev.1.00  
Mini55  
IDD16  
-
-
6.9  
9.3  
-
-
mA  
mA  
X
V
X
X
3.3V  
VDD  
All Digital  
Modules  
HXT HIRC PLL  
IDD17  
Operating Current  
Normal Run Mode  
HCLK = 22.1184 MHz  
while(1){}  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
V
V
V
V
X
X
X
X
V
X
V
X
IDD18  
IDD19  
IDD20  
-
-
-
6.7  
9.0  
6.5  
-
-
-
mA  
mA  
mA  
X
X
Executed from Flash  
All Digital  
Modules  
HXT HIRC PLL  
12  
IDD21  
-
4.5  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 12MHz  
while(1){}  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
X
X
X
X
X
X
V
X
V
X
MHz  
12  
MHz  
IDD22  
IDD23  
IDD24  
-
-
-
3.5  
4.5  
3.5  
-
-
-
mA  
mA  
mA  
12  
MHz  
Executed from Flash  
12  
MHz  
All Digital  
Modules  
HXT HIRC PLL  
4
IDD25  
-
2.0  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 4 MHz  
while(1){}  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
X
X
X
X
X
X
V
X
V
X
MHz  
4
MHz  
IDD26  
IDD27  
IDD28  
-
-
-
1.6  
2.0  
1.6  
-
-
-
mA  
mA  
mA  
4
MHz  
Executed from Flash  
4
MHz  
All Digital  
Modules  
HXT LIRC PLL  
IDD29  
-
100  
-
μA  
Operating Current  
Normal Run Mode  
HCLK = 10 kHz  
while(1){}  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
X
X
V
V
V
V
X
X
X
X
V[4]  
IDD30  
IDD31  
IDD32  
-
-
-
100  
90  
-
-
-
μA  
μA  
μA  
X
V[4]  
X
Executed from Flash  
90  
All Digital  
Modules  
HXT HIRC PLL  
IIDLE1  
-
10.0  
-
mA  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
X
X
V
V
V
V
X
X
X
X
V
X
V
X
Operating Current  
Idle Mode  
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
-
-
-
-
4.6  
9.6  
4.5  
9.3  
-
-
-
-
mA  
mA  
mA  
mA  
HCLK = 48 MHz  
All Digital  
Modules  
Operating Current  
HXT HIRC PLL  
Apr 18, 2017  
Page 61 of 74  
Rev.1.00  
Mini55  
Idle Mode  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
X
X
V
V
V
V
X
X
X
X
V
X
V
X
HCLK = 44.2368 MHz  
IIDLE6  
IIDLE7  
IIDLE8  
-
-
-
4.3  
9.0  
4.2  
-
-
-
mA  
mA  
mA  
All Digital  
Modules  
HXT HIRC PLL  
24  
IIDLE9  
-
4.0  
-
mA  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
X
X
X
X
X
X
V
X
V
X
MHz  
Operating Current  
Idle Mode  
24  
MHz  
IIDLE10  
IIDLE11  
IIDLE12  
-
-
-
2.2  
4.0  
2.0  
-
-
-
mA  
mA  
mA  
HCLK = 24MHz  
24  
MHz  
24  
MHz  
All Digital  
Modules  
HXT HIRC PLL  
IIDLE13  
-
6.1  
-
mA  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
X
X
V
V
V
V
X
X
X
X
V
X
V
X
Operating Current  
Idle Mode  
IIDLE14  
IIDLE15  
IIDLE16  
-
-
-
3.2  
5.9  
3.2  
-
-
-
mA  
mA  
mA  
HCLK = 24 MHz  
All Digital  
Modules  
HXT HIRC PLL  
IIDLE17  
-
5.7  
-
mA  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
X
X
X
X
V
V
V
V
X
X
X
X
V
X
V
X
Operating Current  
Idle Mode  
IIDLE18  
IIDLE19  
IIDLE20  
-
-
-
3.0  
5.6  
3.0  
-
-
-
mA  
mA  
mA  
HCLK=22.1184 MHz  
All Digital  
Modules  
HXT HIRC PLL  
IIDLE9  
-
2.5  
-
mA  
5.5V  
5.5V  
3.3V  
3.3V  
VDD  
V
V
V
V
X
X
X
X
X
X
X
X
V
X
V
X
Operating Current  
Idle Mode  
IIDLE10  
IIDLE11  
IIDLE12  
-
-
-
1.5  
2.5  
1.5  
-
-
-
mA  
mA  
mA  
HCLK =12 MHz  
All Digital  
Modules  
HXT HIRC PLL  
Operating Current  
Idle Mode  
IIDLE13  
-
-
1.5  
1.0  
-
-
mA  
mA  
5.5V  
5.5V  
V
V
X
X
X
X
V
X
HCLK = 4 MHz  
IIDLE14  
Apr 18, 2017  
Page 62 of 74  
Rev.1.00  
Mini55  
IIDLE15  
IIDLE16  
-
-
1.5  
1.0  
-
-
mA  
mA  
3.3V  
3.3V  
VDD  
V
V
X
X
X
X
V
X
All Digital  
Modules  
HXT LIRC PLL  
IDD17  
-
90  
-
μA  
5.5V  
5.5V  
3.3V  
3.3V  
X
X
X
X
V
V
V
V
X
X
X
X
V[4]  
Operating Current  
Idle Mode  
IDD18  
IDD19  
IDD20  
-
-
-
90  
80  
80  
-
-
-
μA  
μA  
μA  
X
HCLK = 10 kHz  
V[4]  
X
VDD = 5.5 V, All oscillators and analog  
blocks turned off.  
IPWD1  
1.5  
1.4  
-
-
A  
A  
-
-
Standby Current  
Power-down Mode  
(Deep Sleep Mode)  
VDD = 3.3 V, All oscillators and analog  
blocks turned off.  
IPWD2  
Logic 0 Input Current  
P0/1/2/3/4/5 (Quasi-  
bidirectional Mode)  
IIL  
-70  
-75  
VDD = 5.5 V, VIN = 0V  
A  
A  
-
Logic 1 to 0  
Transition Current  
P0/1/2/3/4/5 (Quasi-  
bidirectional Mode)  
[*3]  
ITL  
-590  
-
-750  
+1  
VDD = 5.5 V, VIN = 2.0V  
-
VDD = 5.5 V, 0 < VIN< VDD  
Input Leakage  
Current P0/1/2/3/4  
ILK  
-1  
A  
Open-drain or input only mode  
-0.3  
-0.3  
2.0  
1.5  
0
-
-
-
-
-
-
-
-
0.8  
VDD = 4.5 V  
VDD = 2.5 V  
VDD = 5.5 V  
VDD = 3.0 V  
VDD = 4.5 V  
VDD = 2.5 V  
VDD = 5.5 V  
VDD = 3.0 V  
Input Low Voltage  
P0/1/2/3/4 (TTL Input)  
VIL1  
V
0.6  
VDD + 0.3  
VDD + 0.3  
0.8  
Input High Voltage  
P0/1/2/3/4 (TTL Input)  
VIH1  
VIL3  
VIH3  
V
V
Input Low Voltage  
XTAL1[*2]  
0
0.4  
3.5  
2.4  
VDD + 0.3  
VDD + 0.3  
V
V
Input High Voltage  
XTAL1[*2]  
Negative-going  
Threshold  
VILS  
-0.3  
-
-
0.2 VDD  
-
(Schmitt Input),  
nRESET  
Positive-going  
Threshold  
VIHS  
0.7 VDD  
17.5  
VDD + 0.3  
150  
V
-
(Schmitt Input),  
nRESET  
Internal nRESETPin  
Pull-up Resistor  
RRST  
kΩ  
VDD = 2.1 V ~ 5.5V  
Apr 18, 2017  
Page 63 of 74  
Rev.1.00  
Mini55  
Negative-going  
Threshold  
VILS  
-0.3  
-
-
0.3 VDD  
V
V
-
-
(Schmitt input),  
P0/1/2/3/4/5  
Positive-going  
Threshold  
VIHS  
0.7 VDD  
-300  
VDD + 0.3  
(Schmitt input),  
P0/1/2/3/4/5  
ISR11  
ISR12  
ISR13  
ISR21  
ISR22  
ISR23  
ISK11  
ISK12  
ISK13  
-400  
-80  
-73  
-26  
-5  
-
-
-
-
-
-
-
-
-
VDD = 4.5 V, VSS = 2.4 V  
VDD = 2.7 V, VSS = 2.2 V  
VDD = 2.5 V, VSS = 2.0 V  
VDD = 4.5 V, VSS = 2.4 V  
VDD = 2.7 V, VSS = 2.2 V  
VDD = 2.5 V, VSS = 2.0 V  
VDD = 4.5 V, VSS = 0.45 V  
VDD = 2.7 V, VSS = 0.45 V  
VDD = 2.5 V, VSS = 0.45 V  
A  
Source Current  
P0/1/2/3/4/5 (Quasi- -50  
bidirectional Mode)  
-40  
A  
A  
-20  
mA  
mA  
mA  
mA  
mA  
mA  
Source Current  
P0/1/2/3/4/5 (Push-  
pull Mode)  
-3  
-2.5  
10  
6
-5  
Sink Current  
15  
9
P0/1/2/3/4/5 (Quasi-  
bidirectional, Open-  
Drain and Push-pull  
Mode)  
5
8
Note1: nRST pin is a Schmitt trigger input.  
Note2: XT_IN is a CMOS input.  
Note3: Pins of P0, P1, P2, P3, P4 and P5 can source a transition current when they are being  
externally driven from 1 to 0. In the condition of VDD=5.5V, the transition current reaches its  
maximum value when VIN approximates to 2V.  
Note4: Only enable modules which support 10 kHz LIRC clock source  
Apr 18, 2017  
Page 64 of 74  
Rev.1.00  
Mini55  
8.3 AC Electrical Characteristics  
8.3.1 External Input Clock  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
0.7 VDD  
0.3 VDD  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
Symbol  
tCHCX  
Parameter  
Min  
Typ  
Max  
Unit  
ns  
Test Conditions  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
10  
10  
2
-
-
-
-
-
-
-
-
-
tCLCX  
-
ns  
tCLCH  
15  
15  
ns  
tCHCL  
2
ns  
8.3.2 External 4~24 MHz High Speed Crystal (HXT)  
Symbol  
VHXT  
Parameter  
Min.  
2.1  
-40  
-
Typ.  
Max  
5.5  
105  
-
Unit  
V
Test Conditions  
Operation Voltage  
Temperature  
-
-
TA  
-
-
IHXT  
fHXT  
Operating Current  
Clock Frequency  
410  
-
uA  
12 MHz, VDD = 5.5V  
-
4
24  
MHz  
8.3.3 Typical Crystal Application Circuits  
Crystal  
C1  
C2  
10~20 pF  
4 MHz ~ 24 MHz  
10~20 pF  
Apr 18, 2017  
Page 65 of 74  
Rev.1.00  
Mini55  
XT_IN  
XT_OUT  
4~24 MHz  
Crystal  
C1  
C2  
Vss  
Vss  
Figure 8-1 Mini55 Typical Crystal Application Circuit  
8.3.4 48 MHz Internal High Speed RC Oscillator (HIRC)  
Symbol  
Parameter  
Min  
1.62  
-
Typ  
1.8  
48  
Max  
Unit  
V
Test Conditions  
VHRC  
Supply Voltage  
Center Frequency  
1.98  
-
-
MHz  
TA = 25  
-1  
-
+1  
%
fHRC  
VDD = 5 V  
Calibrated Internal  
Oscillator Frequency  
TA = -40~105℃  
-3[1]  
-
-
+3[1]  
-
%
VDD = 2.1 V~ 5.5 V  
TA = 25 , VDD = 5 V  
IHRC  
Operating Current  
700  
μA  
Note: These parameters are characterized but not tested.  
8.3.5 10 kHz Internal Low Speed RC Oscillator (LIRC)  
Symbol  
Parameter  
Min  
2.1  
-
Typ  
-
Max  
5.5  
-
Unit  
V
Test Conditions  
VLRC  
Supply Voltage  
Center Frequency  
-
-
10  
kHz  
fLRC  
VDD = 2.1 V ~ 5.5 V  
Oscillator Frequency  
-50[1]  
-
+50[1]  
%
TA = -40~ +105℃  
Note: These parameters are characterized but not tested.  
Apr 18, 2017  
Page 66 of 74  
Rev.1.00  
Mini55  
8.4 Analog Characteristics  
8.4.1 10-bit SARADC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Bit  
Test Condition  
-
Resolution  
-
-
-
-
-
-
-
10  
-
DNL  
INL  
EO  
EG  
EA  
-
Differential Nonlinearity Error  
Integral Nonlinearity Error  
Offset Error  
-1~1.5 -1~+3  
LSB  
LSB  
LSB  
LSB  
LSB  
-
±1  
1
±2  
2
-
-
Gain Error (Transfer Gain)  
Absolute Error  
-1  
3
-1.5  
5
-
-
Monotonic  
Guaranteed  
-
-
-
-
-
-
-
-
-
-
8
AVDD = 4.5~5.5 V  
AVDD = 2.1~5.5 V  
AVDD = 4.5~5.5 V  
AVDD = 2.1~5.5 V  
FADC  
ADC Clock Frequency  
MHz  
5.4  
500  
300  
kSPS  
kSPS  
FS  
Sample Rate (FADC/TCONV)  
TACQ  
TCONV  
AVDD  
IDDA  
VIN  
Acquisition Time (Sample Stage) N+1  
1/FADC N is sampling counter,  
N=0,1,2, 4,8, 16,32, 4,  
Total Conversion Time  
Supply Voltage  
N+14  
1/FADC  
128, 256,1024  
2.1  
-
5.5  
V
-
μA  
V
Supply Current (Avg.)  
Analog Input Voltage  
Input Capacitance  
Input Load  
-
200  
-
-
AVDD = 5.5 V  
0
-
AVDD  
-
-
-
CIN  
12  
7
-
-
pF  
RIN  
-
kΩ  
Note: ADC voltage reference is same with AVDD  
Apr 18, 2017  
Page 67 of 74  
Rev.1.00  
Mini55  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
1023  
1022  
1021  
1020  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
1023  
Analog input voltage  
(LSB)  
Offset Error  
EO  
8.4.2 LDO & Power Management  
Symbol  
VDD  
Parameter  
Min  
2.1  
Typ  
-
Max  
5.5  
Unit  
V
Test Condition  
DC Power Supply  
Output Voltage  
Temperature  
-
-
VLDO  
TA  
1.62  
-40  
1.8  
25  
1.98  
105  
V
Note: It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of the  
device.  
8.4.3 Brown-out Detector  
Symbol  
AVDD  
TA  
Parameter  
Min  
0
Typ  
-
Max  
5.5  
Unit  
V
Test Condition  
Supply Voltage  
Temperature  
-
-
-40  
25  
105  
Apr 18, 2017  
Page 68 of 74  
Rev.1.00  
Mini55  
IBOD  
Quiescent Current  
-
100  
4.3  
3.7  
3.0  
2.7  
2.4  
2.2  
2.0  
1.7  
-
μA  
V
V
V
V
V
V
V
V
AVDD =5.5V  
BOV_VL [2:0] = 3  
BOV_VL [2:0] = 2  
BOV_VL [2:0] = 7  
BOV_VL [2:0] = 1  
BOV_VL [2:0] = 6  
BOV_VL [2:0] = 0  
BOV_VL [2:0] = 5  
BOV_VL [2:0] = 4  
Brown-out Detector  
(Falling edge)  
VBOD  
8.4.4 Power-on Reset  
Symbol  
TA  
Parameter  
Min  
Typ  
25  
Max  
Unit  
Test Condition  
Temperature  
Reset Voltage  
-40  
105  
-
-
VPOR  
1.25  
V
8.4.5 Comparator  
Symbol  
VCMP  
TA  
Parameter  
Min  
2.1  
-40  
-
Typ  
-
Max  
5.5  
105  
80  
Unit  
Test Condition  
Supply Voltage  
Temperature  
V
25  
40  
10  
-
-
ICMP  
VOFF  
VSW  
VCOM  
-
Operation Current  
Input Offset Voltage  
Output Swing  
μA  
mV  
AVDD=5V  
20  
-
-
-
-
0.1  
AVDD 0.1 V  
AVDD 0.1 V  
Input Common Mode Range 0.1  
-
DC Gain  
-
-
60  
-
-
dB  
VCOM=1.2 V,  
VDIFF=0.1 V  
TPGD  
Propagation Delay  
200  
ns  
VHYS  
TSTB  
Hysteresis  
Stable time  
-
-
±30  
-
-
mV  
VCOM=1.2 V  
1.2  
μs  
Apr 18, 2017  
Page 69 of 74  
Rev.1.00  
Mini55  
8.5 Flash DC Electrical Characteristics  
Symbol  
Parameter  
Min  
Typ  
1.8  
-
Max  
Unit  
V
Test Condition  
[2]  
VFLA  
Supply Voltage  
Endurance  
1.62  
1.98  
NENDUR  
TRET  
20,000  
-
-
-
-
-
-
-
cycles[1]  
year  
ms  
TA =85℃  
Data Retention  
Sector Erase Time  
Program Time  
Read Current  
Program Current  
Erase Current  
10  
-
-
TERASE  
TPROG  
IDD1  
6
7.5  
4
us  
-
mA  
-
IDD2  
3.5  
2
mA  
-
IDD3  
mA  
-
Note1: Number of program/erase cycles.  
Note2: VFLA is source from chip LDO output voltage.  
Note3: Guaranteed by design, not test in production.  
Apr 18, 2017  
Page 70 of 74  
Rev.1.00  
Mini55  
9
PACKAGE DIMENSIONS  
9.1 48-pin LQFP (7 mm x 7 mm)  
Apr 18, 2017  
Page 71 of 74  
Rev.1.00  
Mini55  
9.3 33-pin QFN (4 mm x 4 mm)  
Apr 18, 2017  
Page 72 of 74  
Rev.1.00  
Mini55  
10 REVISION HISTORY  
Date  
Revision  
Description  
2017.04.18  
1.00  
Preliminary version.  
Apr 18, 2017  
Page 73 of 74  
Rev.1.00  
Mini55  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Apr 18, 2017  
Page 74 of 74  
Rev.1.00  

相关型号:

MINI55TDE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

MINI57

ARM Cortex®-M0 32-bit Microcontroller
NUVOTON

MINI57-EE

ARM Cortex®-M0 32-bit Microcontroller
NUVOTON

MINI57-FE

ARM Cortex®-M0 32-bit Microcontroller
NUVOTON

MINI57-TE

ARM Cortex®-M0 32-bit Microcontroller
NUVOTON

Mini57EDE

ARM Cortex®-M0 32-bit Microcontroller
NUVOTON

Mini57FDE

ARM Cortex®-M0 32-bit Microcontroller
NUVOTON

Mini57TDE

ARM Cortex®-M0 32-bit Microcontroller
NUVOTON

MINI58-FE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

MINI58-LE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

MINI58-TE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON

MINI58-ZE

ARM® Cortex®-M0 32-bit Microcontroller
NUVOTON