MS51BBAAE [NUVOTON]

8-bit Microcontroller;
MS51BBAAE
型号: MS51BBAAE
厂家: NUVOTON    NUVOTON
描述:

8-bit Microcontroller

微控制器
文件: 总81页 (文件大小:1748K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1T 8051  
8-bit Microcontroller  
NuMicro® Family  
MS51 Series  
MS51EB0AE  
MS51FC0AE  
MS51XC0BE  
MS51EC0AE  
MS51TC0AE  
MS51PC0AE  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Feb. 25, 2021  
1 of 81  
Rev 1.02  
TABLE OF CONTENTS  
1
2
3
GENERAL DESCRIPTION.................................................................................7  
FEATURES ........................................................................................................8  
PARTS INFORMATION ................................................................................... 12  
3.1 MS51 Series Package Type ...................................................................................... 12  
3.2 MS51 Series Selection Gude .................................................................................... 12  
3.3 MS51 Series Selection Code..................................................................................... 13  
PIN CONFIGURATION .................................................................................... 14  
4
4.1 MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE /  
MS51PC0AE Multi Function Pin Diagram...................................................................... 14  
4.1.1 QFN 33-pin Package Pin Diagram .............................................................................14  
4.1.2 LQFP 32-pin Package Pin Diagram ...........................................................................15  
4.1.3 TSSOP 28-pin Package Pin Diagram ........................................................................16  
4.1.4 TSSOP 20-pin Package Pin Diagram ........................................................................16  
4.1.5 QFN 20-pin Package Pin Diagram .............................................................................17  
4.2 MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE /  
MS51PC0AE Pin Description........................................................................................... 18  
5
6
BLOCK DIAGRAM........................................................................................... 22  
5.1 MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE /  
MS51PC0AE Block Diagram............................................................................................ 22  
FUNCTIONAL DESCRIPTION......................................................................... 23  
6.1 Memory Organization.................................................................................................. 23  
6.1.1 Overview..........................................................................................................................23  
6.2 Flash Memory Control ................................................................................................ 24  
6.2.1 Reset................................................................................................................................24  
6.3 General Purpose I/O (GPIO) ..................................................................................... 33  
6.4 Timer.............................................................................................................................. 34  
6.4.1 Timer/Counter 0 And 1...................................................................................................34  
6.4.2 Timer2 And Input Capture .............................................................................................34  
6.4.3 Timer 3.............................................................................................................................36  
6.5 Pulse Width Modulated (PWM)................................................................................. 37  
6.5.1 Overview..........................................................................................................................37  
6.6 Watchdog Timer (WDT).............................................................................................. 39  
6.6.1 Overview..........................................................................................................................39  
6.7 Self Wake-Up Timer (WKT) ....................................................................................... 40  
6.7.1 Overview..........................................................................................................................40  
6.8 Serial Port (UART0 & UART1) .................................................................................. 41  
Feb. 25, 2021  
2 of 81  
Rev 1.02  
6.8.1 Overview..........................................................................................................................41  
6.9 ISO 7816-3 Interface (SC0~2 & UART2 ~ 4).......................................................... 42  
6.9.1 Overview..........................................................................................................................42  
6.10 Inter-Integrated Circuit (I2C)................................................................................. 44  
6.10.1Overview..........................................................................................................................44  
6.11 Serial Peripheral Interface (SPI) ......................................................................... 45  
6.11.1Overview..........................................................................................................................45  
6.12 12-Bit Analog-To-Digital Converter (ADC) ......................................................... 48  
6.12.1Overview..........................................................................................................................48  
APPLICATION CIRCUIT.................................................................................. 49  
7.1 Power supply scheme................................................................................................. 49  
7.2 Peripheral Application scheme.................................................................................. 50  
ELECTRICAL CHARACTERISTICS................................................................ 51  
8.1 General Operating Conditions................................................................................... 51  
8.2 DC Electrical Characteristics..................................................................................... 52  
7
8
8.2.1 Supply Current Characteristics.....................................................................................52  
8.2.2 Wakeup Time from Low-Power Modes .......................................................................54  
8.2.3 I/O DC Characteristics...................................................................................................55  
8.3 AC Electrical Characteristics ..................................................................................... 58  
8.3.1 Internal High Speed RC Oscillator (HIRC) .................................................................58  
8.3.2 External 4~24 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics  
60  
8.3.3 External 4~24 MHz High Speed Clock Input Signal Characteristics ......................61  
8.3.4 10 kHz Internal Low Speed RC Oscillator (LIRC) .....................................................62  
8.3.5 I/O AC Characteristics ...................................................................................................63  
8.4 Analog Characteristics................................................................................................ 64  
8.4.1 Reset and Power Control Block Characteristics........................................................64  
8.4.2 12-bit SAR ADC..............................................................................................................66  
8.5 Flash DC Electrical Characteristics .......................................................................... 68  
8.6 Absolute Maximum Ratings....................................................................................... 69  
8.6.1 Voltage Characteristics..................................................................................................69  
8.6.2 Current Characteristics..................................................................................................69  
8.6.3 Thermal Characteristics.................................................................................................70  
8.6.4 EMC Characteristics ......................................................................................................71  
8.6.5 Package Moisture Sensitivity(MSL).............................................................................72  
8.6.6 Soldering Profile .............................................................................................................73  
9
PACKAGE DIMENSIONS................................................................................ 74  
9.1 QFN 33-pin (4.0 x 4.0 x 0.8 mm) .............................................................................. 74  
Feb. 25, 2021  
3 of 81  
Rev 1.02  
9.2 LQFP 32-pin (7.0 x 7.0 x 1.4 mm)............................................................................. 75  
9.3 TSSOP 28-pin (4.4 x 9.7 x 1.0 mm) ......................................................................... 76  
9.4 TSSOP 20-pin (4.4 x 6.5 x 0.9 mm) ........................................................................ 77  
9.5 QFN 20-pin (3.0 x 3.0 x 0.6mm) .............................................................................. 78  
10 ABBREVIATIONS............................................................................................ 79  
10.1 Abbreviations List .................................................................................................. 79  
11 REVISION HISTORY........................................................................................ 80  
Feb. 25, 2021  
4 of 81  
Rev 1.02  
LIST OF FIGURES  
Figure 4.1-1 Pin Assignment of LQFP-32 Package....................................................................... 14  
Figure 4.1-2 Pin Assignment of LQFP-32 Package....................................................................... 15  
Figure 4.1-3 Pin Assignment of TSSOP28 Package ..................................................................... 16  
Figure 4.1-4 Pin Assignment of TSSOP20 Package ..................................................................... 16  
Figure 4.1-5 Pin Assignment of QFN20 Package.......................................................................... 17  
Figure 5.1-1 Functional Block Diagram.......................................................................................... 22  
Figure 6.2-1 CONFIG0 Any Reset Reloading................................................................................ 29  
Figure 6.2-2 CONFIG2 Power-On Reset Reloading...................................................................... 31  
Figure 6.4-1 Timer 2 Block Diagram .............................................................................................. 35  
Figure 6.4-2 Timer 3 Block Diagram .............................................................................................. 36  
Figure 6.7-1 Self Wake-Up Timer Block Diagram.......................................................................... 40  
Figure 6.9-1 SC Controller Block Diagram..................................................................................... 42  
Figure 6.11-1 SPI Block Diagram................................................................................................... 45  
Figure 6.11-2 SPI Multi-Master, Multi-Slave Interconnection ........................................................ 46  
Figure 6.11-3 SPI Single-Master, Single-Slave Interconnection.................................................... 46  
Figure 7.1-1 NuMicro® MS51 Power supply circuit........................................................................ 49  
Figure 7.2-1 NuMicro® MS51 Peripheral interface circuit .............................................................. 50  
Figure 8.6-1 Soldering profile from J-STD-020C ........................................................................... 73  
Figure 9.1-1 QFN-33 Package Dimension..................................................................................... 74  
Figure 9.2-1 LQFP-32 Package Dimension................................................................................... 75  
Figure 9.3-1 TSSOP-28 Package Dimension ................................................................................ 76  
Figure 9.4-1 TSSOP-20 Package Dimension ................................................................................ 77  
Figure 9.5-1 QFN-20 Package Dimension for MS51XC0BE ......................................................... 78  
Feb. 25, 2021  
5 of 81  
Rev 1.02  
LIST OF TABLES  
Table 6.5-1 PWM Pin Define And Enable Control Register........................................................... 38  
Table 6.6-1 Watchdog Timer-out Interval Under Different Pre-scalars.......................................... 39  
Table 6.9-1 Smart Card or UART Pin Define And Enable Control Register.................................. 43  
Table 8.1-1 General operating conditions...................................................................................... 51  
Table 8.2-1 Current consumption in Normal Run mode ................................................................ 52  
Table 8.2-2 Current consumption in Idle mode.............................................................................. 53  
Table 8.2-3 Chip Current Consumption in Power down mode ...................................................... 53  
Table 8.2-4 Low-power mode wakeup timings .............................................................................. 54  
Table 8.2-5 I/O input characteristics .............................................................................................. 55  
Table 8.2-6 I/O output characteristics ............................................................................................ 56  
Table 8.2-7 nRESET Input Characteristics.................................................................................... 57  
Table 8.3-1 16 MHz Internal High Speed RC Oscillator(HIRC) characteristics............................ 58  
Table 8.3-2 24MHz Internal High Speed RC Oscillator(HIRC) characteristics.............................. 59  
Table 8.3-3 External 4~24 MHz High Speed Crystal (HXT) Oscillator .......................................... 60  
Table 8.3-4 External 4~24 MHz High Speed Clock Input Signal ................................................... 61  
Table 8.3-5 10 kHz Internal Low Speed RC Oscillator(LIRC) characteristics ............................... 62  
Table 8.3-6 I/O AC characteristics ................................................................................................. 63  
Table 8.4-1 Reset and power control unit...................................................................................... 64  
Table 8.4-2 Minimum Brown-out Detect Pulse Width.................................................................... 65  
Table 8.4-3 ADC characteristics .................................................................................................... 66  
Table 8.5-1 Flash memory characteristics..................................................................................... 68  
Table 8.6-1 Voltage characteristics................................................................................................ 69  
Table 8.6-2 Current characteristics................................................................................................ 69  
Table 8.6-3 Thermal characteristics............................................................................................... 70  
Table 8.6-4 EMC characteristics.................................................................................................... 71  
Table 8.6-5 Package Moisture Sensitivity(MSL)............................................................................ 72  
Table 8.6-6 Soldering Profile.......................................................................................................... 73  
Table 10.1-1 List of Abbreviations.................................................................................................. 79  
Feb. 25, 2021  
6 of 81  
Rev 1.02  
1 GENERAL DESCRIPTION  
The MS51 is an embedded Flash type, 8-bit high performance 1T 8051-based microcontroller. The  
instruction set is fully compatible with the standard 80C51 and performance enhanced.  
The MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE contains  
a 32 Kbytes and MS51EB0AE contains a 16 Kbytes of main Flash called APROM, in which the contents  
of User Code resides. The MS51 Flash supports In-Application-Programming (IAP) function, which  
enables on-chip firmware updates. IAP also makes it possible to configure any block of User Code array  
to be used as non-volatile data storage, which is written by IAP and read by IAP or MOVC instruction.  
There is an additional Flash called LDROM, in which the Boot Code normally resides for carrying out  
In-System-Programming (ISP). The LDROM size is configurable with a maximum of 4 Kbytes. To  
facilitate programming and verification, the Flash allows to be programmed and read electronically by  
parallel Writer or In-Circuit-Programming (ICP). Once the code is confirmed, user can lock the code for  
security.  
The MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE provides  
rich peripherals including 256 bytes of SRAM, 2 Kbytes of auxiliary RAM (XRAM), Up to 29 general  
purpose I/O, two 16-bit Timers/Counters 0/1, one 16-bit Timer2 with three-channel input capture module,  
one Watchdog Timer (WDT), one Self Wake-up Timer (WKT), one 16-bit auto-reload Timer3 for general  
purpose or baud rate generator, two UARTs with frame error detection and automatic address  
recognition, three ISO 7816-3 interfaces, one SPI, one I2C, six basic PWM output channels, six  
enhanced PWM output channels, eight-channel shared pin interrupt for all I/O, and one 12-bit ADC. The  
peripherals are equipped with 24 sources with 4-level-priority interrupts capability.  
The MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE series is  
equipped with three clock sources and supports switching on-the-fly via software. The three clock  
sources include external clock input, 10 kHz internal oscillator, and one 16 MHz internal precise  
oscillator that is factory trimmed to ±1% at room temperature. The MS51 provides additional power  
monitoring detection such as power-on reset and 4-level brown-out detection, which stabilizes the  
power-on/off sequence for a high reliability system design.  
The MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE  
microcontroller operation consumes a very low power with two economic power modes to reduce power  
consumption Idle and Power-down mode, which are software selectable. Idle mode turns off the CPU  
clock but allows continuing peripheral operation. Power-down mode stops the whole system clock for  
minimum power consumption. The system clock of the MS51 can also be slowed down by software  
clock divider, which allows for a flexibility between execution performance and power consumption.  
With high performance CPU core and rich well-designed peripherals, the MS51EB0AE / MS51FC0AE /  
MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE benefits to meet a general purpose, home  
appliances, or motor control system accomplishment.  
Feb. 25, 2021  
7 of 81  
Rev 1.02  
2 FEATURES  
Core and System  
Fully static design 8-bit high performance 1T 8051-based  
CMOS microcontroller.  
Instruction set fully compatible with MCS-51.  
4-priority-level interrupts capability.  
Dual Data Pointers (DPTRs).  
8051  
Power on Reset (POR)  
POR with 1.15V threshold voltage level  
Brown-out Detector  
(BOD)  
4-level selection, with brown-out interrupt and reset option.  
(4.4V / 3.7V / 2.7V / 2.2V)  
Low Voltage Reset (LVR)  
LVR with 2.0V threshold voltage level  
96-bit Unique ID (UID)  
Security  
128-bit Unique Customer ID (UCID)  
128-bytes security protection memory SPROM  
Memories  
Up to 32 KBytes of APROM for User Code.  
4/3/2/1 Kbytes of Flash for loader (LDROM) configure from  
APROM for In-System-Programmable (ISP)  
Flash Memory accumulated with pages of 128 Bytes from  
APROM by In-Application-Programmable (IAP) means whole  
APROM can be use as Data Flash  
Flash  
An additional 128 bytes security protection memory SPROM  
Code lock for security by CONFIG  
256 Bytes on-chip RAM.  
SRAM  
Additional 2 KBytes on-chip auxiliary RAM (XRAM) accessed  
by MOVX instruction.  
Clocks  
4~24 MHz High-speed external crystal oscillator (HXT) for  
precise timing operation  
External Clock Source  
Default 16 MHz high-speed internal oscillator (HIRC) trimmed  
to ±1% (accuracy at 25 °C, 3.3 V), ±2% in -20~105°C.  
Internal Clock Source  
Selectable 24 MHz high-speed internal oscillator (HIRC).  
Feb. 25, 2021  
8 of 81  
Rev 1.02  
10 kHz low-speed internal oscillator (LIRC) calibrating to ±1%  
by software from high-speed internal oscillator  
Timers  
Two 16-bit Timers/Counters 0 and 1 compatible with  
standard 8051.  
One 16-bit Timer2 with three-channel input capture module  
and 9 input pin can be selected.  
16-bit Timer  
One 16-bit auto-reload Timer3, which can be the baud rate  
clock source of UART0 and UART1.  
6-bit free running up counter for WDT time-out interval.  
Selectable time-out interval is 6.40 ms ~ 1.638s since  
WDT_CLK = 10 kHz (LIRC).  
Watchdog  
Able to wake up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
16-bit free running up counter for time-out interval.  
Clock sources from LIRC  
Wake-up Timer  
Able self Wake-up wake up from Power-down or Idle mode,  
and auto reload count value.  
Supports Interrupt  
Up To 12 output pins can be selected  
Supports maximum clock source frequency up to 24 MHz  
Supports up to Three PWM modules, each module provides  
6 output channels.  
Supports independent mode for PWM output  
Supports complementary mode for 3 complementary paired  
PWM output channels  
PWM  
Dead-time insertion with 8-bit resolution  
Supports 16-bit resolution PWM counter  
Supports mask function and tri-state enable for each PWM  
pin  
Supports brake function  
Supports trigger ADC on the following events  
Analog Interfaces  
Analog input voltage range: 0 ~ AVDD.  
12-bit resolution and 10-bit accuracy is guaranteed.  
Up to 8 single-end analog input channels  
Analog-to-Digital  
Converter (ADC)  
1 internal channels, they are band-gap voltage (VBG).  
Maximum ADC peripheral clock frequency is 1 MHz.  
Feb. 25, 2021  
9 of 81  
Rev 1.02  
Up to 500 KSPS sampling rate.  
Software Write 1 to ADCS bit.  
External pin (STADC) trigger  
PWM trigger.  
Support continues convert function auto store the A/D  
conversion result in XRAM.  
Communication Interfaces  
Supports up to 2 UARTs: UART0, UART1,  
Up to three sets ISO 7816-3 device configuration as UART  
UART baud rate clock from HIRC or HXT.  
Full-duplex asynchronous communications  
Programmable 9th bit.  
UART  
TXD and RXD pins of UART0 exchangeable via software.  
1 sets of I2C devices  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
7-bit addressing mode  
I2C  
Standard mode (100 kbps) and Fast mode (400 kbps).  
Supports 8-bit time-out counter requesting the I2C interrupt if  
the I2C bus hangs up and timer-out counter overflows  
Supports hold time programmable  
1 sets of SPI devices  
Supports Master or Slave mode operation  
Supports MSB first or LSB first transfer sequence  
slave mode up to 12 MHz  
SPI  
Up to three sets ISO 7816-3 device  
Supports ISO 7816-3 compliant T=0, T=1  
Supports full-duplex UART mode.  
ISO-7816  
Four I/O modes:  
Quasi-bidirectional mode  
Push-Pull Output mode  
Open-Drain Output mode  
GPIO  
Input only with high impendence mode  
Schmitt trigger input / TTL mode selectable.  
Each I/O pin configured as interrupt source with edge/level  
trigger setting  
Feb. 25, 2021  
10 of 81  
Rev 1.02  
̅̅̅̅̅̅̅  
̅̅̅̅̅̅̅  
Standard interrupt pins INT0 and INT1.  
Supports high drive and high sink current I/O  
I/O pin internal pull-up or pull-down resistor enabled in input  
mode.  
Maximum I/O Speed is 24 MHz  
Enabling the pin interrupt function will also enable the wake-  
up function  
ESD & EFT  
HBM pass 8 kV  
> ± 4.4 kV  
ESD  
EFT  
150 mA pass  
Latch-up  
Feb. 25, 2021  
11 of 81  
Rev 1.02  
3 PARTS INFORMATION  
3.1 MS51 Series Package Type  
MSOP10  
TSSOP14  
TSSOP20  
QFN20  
TSSOP28  
LQFP32  
QFN33  
MS51BA9AE  
MS51DA9AE  
MS51FB9AE  
MS51FC0AE  
MS51XB9AE  
MS51XB9BE  
MS51XC0BE  
MS51EC0AE  
MS51EB0AE  
MS51PC0AE  
MS51TC0AE  
Part  
No.  
3.2 MS51 Series Selection Gude  
Connectivity  
Part Number  
MS51BA9AE  
MS51DA9AE  
MS51XB9AE  
MS51XB9BE  
MS51FB9AE  
MS51EB0AE  
MS51FC0AE  
MS51XC0BE  
MS51EC0AE  
MS51PC0AE  
MS51TC0AE  
8
1
1
1
1
1
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
8
4
4
4
4
4
4
4
4
4
4
4
5
5
-
-
2
2
2
2
2
2
2
2
2
2
2
-
1
5-ch  
8-ch  
MSOP10  
TSSOP14  
QFN20[3]  
QFN20[3]  
TSSOP20  
TSSOP28  
TSSOP20  
QFN20  
8
12  
18  
18  
18  
26  
18  
18  
26  
30  
30  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
16  
16  
16  
16  
32  
32  
32  
32  
32  
6
-
8-ch  
6
-
8-ch  
6
-
8-ch  
11  
11  
8
3
2
2
3
3
3
15-ch  
10-ch  
10-ch  
15-ch  
15-ch  
15-ch  
11  
12  
12  
TSSOP28  
LQFP32  
QFN33  
Note:  
1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.  
2. ISO 7816-3 configurable as UART function, GPIO defined as UART2 ~ UART4.  
3. Detailed package information please refer to MS51FB9AE / MS51XB9AE / MS51XB9BE series document.  
4. This document is only for MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE  
products.  
Feb. 25, 2021  
12 of 81  
Rev 1.02  
3.3 MS51 Series Selection Code  
MS  
51  
F
B
9
A
E
Core  
Line  
Package  
Flash  
SRAM  
Reserve  
Temperature  
1T 8051  
Industry  
51: Base  
B: MSOP10 (3x3 mm)  
D: TSSOP14 (4.4x5.0 mm)  
E: TSSOP28 (4.4x9.7 mm)  
F: TSSOP20 (4.4x6.5 mm)  
I: SOP8 (4x5 mm)  
A: 8 KB  
0: 2 KB  
E:-40 ~ 105°C  
B: 16 KB  
C: 32 KB  
1: 4 KB  
2: 8/12 KB  
3: 16 KB  
6: 32 KB  
8: 64 KB  
9: 1 KB  
O: SOP20 (300 mil)  
P: LQFP32 (7x7 mm)  
T: QFN33 (4x4 mm)  
A: 96 KB  
U: SOP28 (300 mil)  
X: QFN20 (3x3mm)  
Feb. 25, 2021  
13 of 81  
Rev 1.02  
4 PIN CONFIGURATION  
Users can find pin configuaration informations by using NuTool - PinConfigure. The NuTool -  
PinConfigure contains all Nuvoton NuMicro® Family chip series with all part number, and helps users  
configure GPIO multi-function correctly and handily.  
4.1 MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE /  
MS51PC0AE Multi Function Pin Diagram  
4.1.1  
QFN 33-pin Package Pin Diagram  
Corresponding Part Number: MS51TC0AE  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
PWM0_BRAKE / CLKO / PWM0_CH0 / P3.3  
UART1_RXD / I2C0_SCL / ICE_CLK / P0.2  
P2.1 / ADC_CH9 / PWM2_CH0  
Top transparent view  
P2.2 / ADC_CH10 / PWM1_CH1 / UART4_RXD  
P2.3 / ADC_CH11 / PWM1_CH0 / UART4_TXD  
P2.4 / ADC_CH12 / T0  
PWM3_CH1 / UART2_TXD / PWM0_CH5 / IC5 / ADC_CH6 / P0.3  
PWM2_CH1 / UART2_RXD / STADC / PWM0_CH3 / IC3 / ADC_CH5 / P0.4  
PWM2_CH0 / UART3_TXD / T0 / PWM0_CH2 / IC6 / ADC_CH4 / P0.5  
UART0_TXD / ADC_CH3 / P0.6  
QFN33  
P1.3 / STADC / I2C0_SCL / ADC_CH13  
P1.4 / PWM0_CH1 / I2C0_SDA / PWM0_BRAKE / ADC_CH14 / PWM1_CH1  
P3.6 / UART1_RXD  
UART0_RXD / ADC_CH2 / P0.7  
33 VSS  
UART3_RXD / PWM3_CH1 / P3.4  
P3.7 / UART1_TXD  
Figure 4.1-1 Pin Assignment of LQFP-32 Package  
Feb. 25, 2021  
14 of 81  
Rev 1.02  
4.1.2  
LQFP 32-pin Package Pin Diagram  
Corresponding Part Number: MS51PC0AE  
25  
16  
15  
14  
13  
12  
11  
10  
9
PWM0_BRAKE / CLKO / PWM0_CH0 / P3.3  
P2.1 / ADC_CH9 / PWM2_CH0  
26  
UART1_RXD / I2C0_SCL / ICE_CLK / P0.2  
P2.2 / ADC_CH10 / PWM1_CH1 / UART4_RXD  
P2.3 / ADC_CH11 / PWM1_CH0 / UART4_TXD  
P2.4 / ADC_CH12 / T0  
27  
PWM3_CH1 / UART2_TXD / PWM0_CH5 / IC5 / ADC_CH6 / P0.3  
28  
PWM2_CH1 / UART2_RXD / STADC / PWM0_CH3 / IC3 / ADC_CH5 / P0.4  
LQFP32  
29  
PWM2_CH0 / UART3_TXD / T0 / PWM0_CH2 / IC6 / ADC_CH4 / P0.5  
P1.3 / STADC / I2C0_SCL / ADC_CH13  
30  
UART0_TXD / ADC_CH3 / P0.6  
P1.4 / PWM0_CH1 / I2C0_SDA / PWM0_BRAKE / ADC_CH14 / PWM1_CH1  
31  
UART0_RXD / ADC_CH2 / P0.7  
P3.6 / UART1_RXD  
P3.7 / UART1_TXD  
32  
UART3_RXD / PWM3_CH1 / P3.4  
Figure 4.1-2 Pin Assignment of LQFP-32 Package  
Feb. 25, 2021  
15 of 81  
Rev 1.02  
4.1.3  
TSSOP 28-pin Package Pin Diagram  
Corresponding Part Number: MS51EC0AE  
1
2
28  
27  
26  
25  
24  
VSS  
P1.7 / ADC_CH0 / INT1 / UART2_RXD / SPI0_CLK  
P3.0 / ADC_CH1 / OSCIN / INT0 / UART2_TXD / SPI0_MOSI  
P2.0 / nRESET  
UART1_TXD / I2C0_SDA / ICE_DAT / P1.6  
VDD  
3
4
PWM3_CH1 / UART3_TXD / IC7 / SPI0_SS / PWM0_CH5 / P1.5  
SPI0_MISO / UART3_RXD / ADC_CH15 / P2.5  
PWM1_CH1 / ADC_CH14 / PWM0_BRAKE / I2C0_SDA / PWM0_CH1 / P1.4  
ADC_CH13 / I2C0_SCL / STADC / P1.3  
P3.4 / PWM3_CH1 / UART3_RXD  
5
P0.7 / ADC_CH2 / UART0_RXD  
6
23 P0.6 / ADC_CH3 / UART0_TXD  
7
22 P0.5 / ADC_CH4 / IC6 / PWM0_CH2 / T0 / UART3_TXD / PWM2_CH0  
T0 / ADC_CH12 / P2.4  
8
21 P0.4 / ADC_CH5 / IC3 / PWM0_CH3 / STADC / UART2_RXD / PWM2_CH1  
20 P0.3 / ADC_CH6 / IC5 / PWM0_CH5 / UART2_TXD / PWM3_CH1  
UART4_TXD / PWM1_CH0 / ADC_CH11 / P2.3  
UART4_RXD / PWM1_CH1 / ADC_CH10 / P2.2  
PWM2_CH0 / ADC_CH9 / P2.1  
9
P0.2 / ICE_CLK / I2C0_SCL / UART1_RXD  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
P3.3 / PWM0_CH0 / CLKO / PWM0_BRAKE  
SPI0_SS / P3.5  
P0.1 / PWM0_CH4 / SPI0_MISO / IC4 / HXTOUT / PWM3_CH0  
P0.0 / PWM0_CH3 / SPI0_MOSI / IC3 / UART1_RXD / T1 / HXTIN / PWM2_CH1  
P1.0 / PWM0_CH2 / SPI0_CLK / IC2 / UART1_TXD / PWM2_CH0  
PWM1_CH0 / UART3_TXD / IC0 / PWM0_CH0 / P1.2  
PWM1_CH1 / UART3_RXD / PWM0_CH1 / IC1 / CLKO / ADC_CH7 / P1.1  
Figure 4.1-3 Pin Assignment of TSSOP28 Package  
TSSOP 20-pin Package Pin Diagram  
4.1.4  
Corresponding Part Number: MS51FC0AE  
1
2
20  
19  
18  
PWM2_CH0 / UART3_TXD / T0 / PWM0_CH2 / IC6 / ADC_CH4 / P0.5  
UART0_TXD / ADC_CH3 / P0.6  
P0.4 / ADC_CH5 / IC3 / PWM0_CH3 / STADC / UART2_RXD / PWM2_CH1  
P0.3 / ADC_CH6 / IC5 / PWM0_CH5 / UART2_TXD / PWM3_CH1  
P0.2 / ICE_CLK / I2C0_SCL / UART1_RXD  
3
UART0_RXD / ADC_CH2 / P0.7  
nRESET / P2.0  
4
17 P0.1 / PWM0_CH4 / SPI0_MISO / IC4 / HXTOUT / PWM3_CH0  
SPI0_MOSI / UART2_TXD / INT0 / OSCIN / ADC_CH1 / P3.0  
SPI0_CLK / UART2_RXD / INT1 / ADC_CH0 / P1.7  
VSS  
5
16 P0.0 / PWM0_CH3 / SPI0_MOSI / IC3 / UART1_RXD / T1 / HXTIN / PWM2_CH1  
15 P1.0 / PWM0_CH2 / SPI0_CLK / IC2 / UART1_TXD / PWM2_CH0  
14 P1.1 / ADC_CH7 / CLKO / IC1 / PWM0_CH1 / UART3_RXD / PWM1_CH1  
6
7
UART1_TXD / I2C0_SDA / ICE_DAT / P1.6  
VDD  
P1.2 / PWM0_CH0 / IC0 / UART3_TXD / PWM1_CH0  
P1.3 / STADC / I2C0_SCL / ADC_CH13  
8
13  
12  
11  
9
PWM3_CH1 / UART3_TXD / IC7 / SPI0_SS / PWM0_CH5 / P1.5  
P1.4 / PWM0_CH1 / I2C0_SDA / PWM0_BRAKE / ADC_CH14 / PWM1_CH1  
10  
Figure 4.1-4 Pin Assignment of TSSOP20 Package  
Feb. 25, 2021  
16 of 81  
Rev 1.02  
4.1.5  
QFN 20-pin Package Pin Diagram  
Corresponding Part Number: MS51XC0BE  
16  
17  
18  
19  
20  
10  
9
PWM3_CH1 / UART2_TXD / PWM0_CH5 / IC5 / ADC_CH6 / P0.3  
PWM2_CH1 / UART2_RXD / STADC / PWM0_CH3 / IC3 / ADC_CH5 / P0.4  
PWM2_CH0 / UART3_TXD / T0 / PWM0_CH2 / IC6 / ADC_CH4 / P0.5  
UART0_TXD / ADC_CH3 / P0.6  
P1.2 / PWM0_CH0 / IC0 / UART3_TXD / PWM1_CH0  
P1.3 / STADC / I2C0_SCL / ADC_CH13  
Top transparent view  
QFN20  
33 VSS  
8
P1.4 / PWM0_CH1 / I2C0_SDA / PWM0_BRAKE / ADC_CH14 / PWM1_CH1  
7
P1.5 / PWM0_CH5 / SPI0_SS / IC7 / UART3_TXD / PWM3_CH1  
VDD  
6
UART0_RXD / ADC_CH2 / P0.7  
Figure 4.1-5 Pin Assignment of QFN20 Package  
Feb. 25, 2021  
17 of 81  
Rev 1.02  
4.2  
MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE /  
MS51PC0AE Pin Description  
Pin Number  
MS51PC0AE  
Symbol  
Multi-Function Description[1]  
MS51XC0BE MS51FC0AE  
MS51EC0AE  
TSSOP28  
LQFP 32  
MS51TC0AE  
QFN 33  
QFN 20  
TSSOP20  
6
4
9
7
3
1
6
4
VDD  
Supply voltage VDD for operation.  
Ground potential.  
VSS  
P0.0  
Port 0 bit 0.  
PWM0_CH3  
PWM2_CH1  
IC3  
PWM0 output channel 3.  
PWM2 output channel 1.  
Input capture channel 3.  
SPI master output/slave input.  
UART1 receive input.  
SPI0_MOSI  
UART1_RXD  
13  
16  
16  
23  
External 4~24 MHz (high speed) crystal input  
pin.  
XT1_IN  
OSCIN  
T1  
If the EXTEN[1:0] = 10b, OSCIN is the external  
clock input pin.  
External count input to Timer/Counter 1 or its  
toggle output.  
P0.1  
Port 0 bit 1.  
PWM0_CH4  
PWM3_CH0  
IC4  
PWM0 output channel 4.  
PWM3 output channel 0.  
Input capture channel 4.  
SPI master input/slave output.  
14  
15  
16  
17  
18  
19  
17  
19  
20  
24  
26  
27  
SPI0_MISO  
External 4~24 MHz (high speed) crystal output  
pin.  
XT1_OUT  
P0.2  
Port 0 bit 2.  
I2C clock.  
I2C0_SCL  
UART1_RXD  
ICE_CLK  
P0.3  
UART1 receive input.  
ICE / ICP clock input.  
Port 0 bit 3.  
ADC_CH6  
PWM0_CH5  
PWM3_CH1  
IC5  
ADC input channel 6.  
PWM0 output channel5  
PWM3 output channel1  
Input capture channel 5.  
UART2 transmit data output.  
Smart Card 0 clock pin  
Port 0 bit 4.  
UART2_TXD  
SC0_CLK  
P0.4  
ADC_CH5  
PWM0_CH3  
PWM2_CH1  
IC3  
ADC input channel 5.  
PWM0 output channel 3.  
PWM2 output channel 1.  
Input capture channel 3.  
UART2 receive input.  
Smart Card 0 data pin  
External start ADC trigger  
Port 0 bit 5.  
17  
20  
21  
28  
UART2_RXD  
SC0_DAT  
STADC  
P0.5  
ADC_CH4  
PWM0_CH2  
PWM2_CH0  
IC6  
ADC input channel 4.  
PWM0 output channel 2.  
PWM2 output channel 0.  
Input capture channel 6.  
UART3 transmit data output.  
Smart card clock pin.  
18  
19  
1
2
22  
23  
29  
30  
UART3_TXD  
SC1_CLK  
External count input to Timer/Counter 0 or its  
toggle output.  
T0  
P0.6  
Port 0 bit 6.  
Feb. 25, 2021  
18 of 81  
Rev 1.02  
Pin Number  
MS51PC0AE  
LQFP 32  
MS51TC0AE  
QFN 33  
Symbol  
Multi-Function Description[1]  
MS51XC0BE MS51FC0AE  
MS51EC0AE  
TSSOP28  
QFN 20  
TSSOP20  
ADC_CH3  
UART0_TXD  
P0.7  
ADC input channel 3.  
UART0 transmit data output.  
Port 0 bit 7.  
20  
3
24  
31  
22  
ADC_CH2  
UART0_RXD  
P1.0  
ADC input channel 2.  
UART0 transmit data output.  
Port 1 bit 0.  
PWM0_CH2  
PWM2_CH0  
IC2  
PWM0 output channel 2.  
PWM2 output channel 0.  
Input capture channel 2.  
SPI0 clock.  
12  
15  
15  
SPI0_CLK  
UART1_TXD  
P1.1  
UART1 receive input.  
Port 1 bit 1  
ADC_CH7  
PWM0_CH1  
PWM1_CH1  
IC1  
ADC input channel 7.  
PWM0 output channel 1.  
PWM1 output channel 1.  
Input capture channel 1.  
UART3 receive input.  
Smart Card 1 data pin.  
System clock output.  
Port 1 bit 2.  
11  
14  
14  
21  
UART3_RXD  
SC1_DAT  
CLKO  
P1.2  
PWM0_CH0  
PWM1_CH0  
IC0  
PWM0 output channel 0.  
PWM1 output channel 0.  
Input capture channel 0.  
UART3 transmit data output.  
Smart Card 1 clock pin.  
Port 1 bit 3.  
10  
9
13  
12  
11  
13  
7
20  
12  
11  
UART3_TXD  
SC1_CLK  
P1.3  
ADC_CH13  
I2C0_SCL  
STADC  
ADC input channel 13.  
I2C0 clock.  
External start ADC trigger  
Port 1 bit 4.  
P1.4  
ADC_CH14  
PWM0_CH1  
PWM1_CH1  
I2C0_SDA  
ADC input channel 14.  
PWM0 output channel 1.  
PWM1 output channel 1.  
I2C0 data.  
8
6
PWM0_BRAKE PWM0 Fault Brake input.  
P1.5  
Port 1 bit 5.  
PWM0_CH5  
PWM3_CH1  
IC7  
PWM0 output channel 5.  
PWM3 output channel 1.  
Input capture channel 7.  
SPI0 slave select input.  
UART3 transmit data output.  
Smart card 2 clock pin  
Port 1 bit 6.  
7
10  
4
7
SPI0_SS  
UART3_TXD  
SC1_CLK  
P1.6  
I2C0 data.  
I2C0_SDA  
UART1_TXD  
ICE_DAT  
P1.7  
5
3
8
6
2
5
3
UART1 transmit data output.  
ICE data input or output.  
Port 1 bit 7.  
ADC_CH0  
PWM3_CH0  
SPI0_CLK  
UART2_RXD  
SC0_DAT  
ADC input channel 0.  
PWM3 output channel 0.  
SPI0 clock.  
28  
UART2 receive input.  
Smart Card 0 data pin  
Feb. 25, 2021  
19 of 81  
Rev 1.02  
Pin Number  
MS51PC0AE  
LQFP 32  
Symbol  
Multi-Function Description[1]  
MS51XC0BE MS51FC0AE  
MS51EC0AE  
QFN 20  
TSSOP20  
TSSOP28  
MS51TC0AE  
QFN 33  
INT1  
External interrupt 1 input.  
Port 2 bit 0 input pin available when RPD  
(CONFIG0.2) is programmed as 0.  
P2.0  
It is a Schmitt trigger input pin for hardware  
device reset. A low on this pin resets the  
device. nRESET pin has an internal pull-up  
resistor allowing power-on reset by simply  
connecting an external capacitor to VSS.  
1
4
26  
1
nRESET  
P2.1  
Port 2 bit 1.  
-
-
-
-
11  
10  
16  
15  
ADC_CH9  
PWM2_CH0  
P2.2  
ADC input channel 9.  
PWM2 output channel 0.  
Port 2 bit 2.  
ADC_CH10  
PWM1_CH1  
UART4_RXD  
SC2_DAT6  
P2.3  
ADC input channel 10.  
PWM1 output channel 1.  
UART4 receive input.  
Smart card 2 data pin  
Port 2 bit 3.  
ADC_CH11  
PWM1_CH0  
UART4_TXD  
SC2_CLK6  
P2.4  
ADC input channel 11.  
PWM1 output channel 0.  
UART4 transmit data output.  
Smart card 2 clock pin  
Port 2 bit 4.  
-
-
-
-
-
-
9
8
5
14  
13  
8
ADC_CH12  
ADC input channel 12.  
External count input to Timer/Counter 0 or its  
toggle output.  
T0  
P2.5  
Port 2 bit 5.  
ADC_CH15  
SPI0_MISO  
UART3_RXD  
SC1_DAT6  
P3.0  
ADC input channel 15.  
SPI master input/slave output.  
UART3 receive input.  
Smart card 1 data pin  
Port 3 bit 0.  
ADC_CH1  
PWM2_CH1  
PI0_MOSI  
UART2_TXD  
SC0_CLK6  
INT0  
ADC input channel 1.  
PWM2 output channel 1.  
SPI master output/slave input.  
UART2 transmit data output.  
Smart card 0 clock pin  
External interrupt 0 input.  
2
5
27  
2
If the EXTEN[1:0] = 11b, OSCIN is the external  
clock input pin.  
OSCIN  
P3.1  
Port 3 bit 1.  
-
-
-
-
-
-
18  
19  
PWM2_CH1  
P3.2  
PWM2 output channel 1.  
Port 3 bit 2.  
PWM3_CH0  
P3.3  
PWM3 output channel 0.  
Port 3 bit 3.  
PWM0_CH0  
CLK_OUT  
PWM3 output channel 0.  
System clock output.  
-
-
18  
25  
PWM0_BRAKE PWM0 Fault Brake input.  
P3.4  
Port 3 bit 4.  
PWM3_CH1  
UART3_RXD  
SC1_DAT  
P3.5  
PWM3 output channel 0.  
UART3 receive input.  
Smart card 0 data pin  
Port 3 bit 5.  
-
-
-
-
25  
12  
32  
17  
SPI0_SS  
SPI0 slave select input.  
Feb. 25, 2021  
20 of 81  
Rev 1.02  
Pin Number  
MS51PC0AE  
LQFP 32  
Symbol  
Multi-Function Description[1]  
MS51XC0BE MS51FC0AE  
MS51EC0AE  
QFN 20  
TSSOP20  
TSSOP28  
MS51TC0AE  
QFN 33  
P3.6  
Port 3 bit 6.  
-
-
-
-
-
9
UART1_TXD  
P3.7  
UART1 transmit data output.  
Port 3 bit 7.  
-
10  
UART1_RXD  
UART1 receive input.  
Note:  
1. All I/O pins can be configured as a interrupt pin. This feature is not listed in multi-function description.  
2. UART0_TXD and UART0_RXD pins are software exchangeable by UART0PX (AUXR1.2).  
3. [I2C] alternate function remapping option. I2C pins is software switched by I2CPX (I2CON.0).  
4. [STADC] alternate function remapping option. STADC pin is software switched by  
STADCPX(ADCCON1.6).  
5. PIOx register decides which pins are PWM or GPIO.  
6. UART2_TXD and UART2_RXD pin is defined by AUXR2 register. UART3_TXD, UART3_RXD,  
UART4_TXD and UART4_RXD pin defined by AUXR3 register.  
Feb. 25, 2021  
21 of 81  
Rev 1.02  
5 BLOCK DIAGRAM  
5.1 MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE /  
MS51PC0AE Block Diagram  
Figure 5.1-1 Functional Block Diagram shows the MS51 functional block diagram and gives the outline  
of the device. User can find all the peripheral functions of the device in the diagram.  
1T High  
Power  
VDD  
POR / LVR / BOD  
Performance  
8051 Core  
VSS  
Management  
T0  
T1  
32 KB APROM  
Flash  
Memory  
Access  
Timer 0/1  
Max. 4KB  
LDROM Flash  
Timer 2  
with  
3
ICAP0~2  
Input Capture  
Max. Bytes  
Data Flash  
(page: 128B)  
Timer 3  
Digital  
Peripheral  
Self Wake-up  
Timer  
256 bytes  
Internal RAM  
Watchdog Timer  
2 Kbytes XRAM  
(Auxiliary RAM)  
UART0/1_TX  
UART0/1_RX  
Serial Ports  
(UART 0/1)  
8
8
P0[7:0]  
P0  
P1  
P2  
P3  
UART2/3/4_TX  
UART2/3/4_RX  
UART2/3/4  
(ISO 7816-3 port)  
P1[7:0]  
GPIO  
6
8
I2C0_SDA  
I2C0_SCL  
I2C0  
SPI0  
P2[5:0]  
P3[7:0]  
SPI0_MOSI  
SPI0_MISO  
SPI0_SS  
SPI0_SCK  
PWM0CH0~5  
6
6
8
Any Port  
GPIO Interrupt  
PWM0/1/2/3  
PWM1/2/3CH0~1  
FB0  
INT0  
INT1  
15  
External Interrupt  
AIN0~7, 9~15 Analog  
12-bit ADC  
STADC  
Peripheral  
System Clock  
16/24 MHz Internal  
RC Oscillator  
(HIRC)  
System Clock  
Source  
4-24 MHz  
Oscillator Circuit  
(HXT)  
XIN  
Clock Divider  
10 kHz Internal RC  
Oscillator  
XOUT  
(LIRC)  
Figure 5.1-1 Functional Block Diagram  
Feb. 25, 2021  
22 of 81  
Rev 1.02  
 
6 FUNCTIONAL DESCRIPTION  
6.1 Memory Organization  
6.1.1  
Overview  
A standard 80C51 based microcontroller divides the memory into two different sections, Program  
Memory and Data Memory. The Program Memory is used to store the instruction codes, whereas the  
Data Memory is used to store data or variations during the program execution.  
The Data Memory occupies a separate address space from Program Memory. In MS51, there are 256  
bytes of internal scratch-pad RAM. For many applications those need more internal RAM, the MS51  
provides another on-chip 2 Kbytes of RAM, which is called XRAM, accessed by MOVX instruction.  
The whole embedded Flash, functioning as Program Memory, is divided into three blocks: Application  
ROM (APROM) normally for User Code, Loader ROM (LDROM) normally for Boot Code, and CONFIG  
bytes for hardware initialization. Actually, APROM and LDROM function in the same way but have  
different size. Each block is accumulated page by page and the page size is 128 bytes. The Flash  
control unit supports Erase, Program, and Read modes. The external writer tools though specific I/O  
pins, In-Application-Programming (IAP), or In-System-Programming (ISP) can both perform these  
modes.  
Feb. 25, 2021  
23 of 81  
Rev 1.02  
6.2  
Flash Memory Control  
Reset  
6.2.1  
Overview  
The MS51 has several options to place device in reset condition. It also offers the software flags to  
indicate the source, which causes a reset. In general, most SFR go to their Reset value irrespective of  
the reset condition, but there are several reset source indicating flags whose state depends on the  
source of reset. User can read back these flags to determine the cause of reset using software. There  
are five ways of putting the device into reset state. They are power-on reset, brown-out reset, external  
reset, WDT reset, and software reset.  
Power-On Reset (POR) and Low Voltage Reset (LVR)  
The MS51 incorporates an internal power-on reset (POR) and a low voltage reset (LVR). During a  
power-on process of rising power supply voltage VDD, the POR or LVR will hold the MCU in reset mode  
when VDD is lower than the voltage reference thresholds. This design makes CPU not access program  
Flash while the VDD is not adequate performing the Flash reading. If an undetermined operating code is  
read from the program Flash and executed, this will put CPU and even the whole system in to an  
erroneous state. After a while, VDD rises above the threshold where the system can work, the selected  
oscillator will start and then program code will execute from 0000H. At the same time, a power-on flag  
POF (PCON.4) will be set 1 to indicate a cold reset, a power-on process complete. Note that the contents  
of internal RAM will be undetermined after a power-on. It is recommended that user gives initial values  
for the RAM block.  
The POF is recommended to be cleared to 0 via software to check if a cold reset or warm reset  
performed after the next reset occurs. If a cold reset caused by power off and on, POF will be set 1  
again. If the reset is a warm reset caused by other reset sources, POF will remain 0. User may take a  
different course to check other reset flags and deal with the warm reset event. For detailed electrical  
characteristics, refer to the table 35-7 and 35-8.  
PCON  
Power  
Control  
Register  
SFR Address  
Reset Value  
POR: 0001_0000b  
PCON  
87H, All pages  
Others: 000U _0000b  
7
6
5
4
3
2
1
0
SMOD  
R/W  
SMOD0  
R/W  
LPR  
RW  
POF  
R/W  
GF1  
R/W  
GF0  
R/W  
PD  
R/W  
IDL  
R/W  
Bit  
Name  
POF  
Description  
4
Power-on reset flag  
This bit will be set as 1 after a power-on reset. It indicates a cold reset, a power-on reset complete.  
This bit remains its value after any other resets. This flag is recommended to be cleared via  
software.  
Brown-Out Reset  
The brown-out detection circuit is used for monitoring the VDD level during execution. When VDD drops  
Feb. 25, 2021  
24 of 81  
Rev 1.02  
to the selected brown-out trigger level (VBOD), the brown-out detection logic will reset the MCU if BORST  
(BODCON0.2) setting 1. After a brown-out reset, BORF (BODCON0.1) will be set as 1 via hardware.  
BORF will not be altered by any reset other than a power-on reset or brown-out reset itself. This bit can  
be set or cleared by software.  
Feb. 25, 2021  
25 of 81  
Rev 1.02  
BODCON0  
Brown-out  
Detection  
Control  
0
Register  
SFR Address  
Reset Value  
POR,CCCC XC0X b  
BOD, UUUU XU1X b  
Others,UUUU XUUX b  
BODCON0  
A3H, Page 0, TA protected  
7
6
5
4
3
2
1
0
BOS  
R
BODEN  
R/W  
BOV[2:0]  
R/W  
BOF  
R/W  
BORST  
R/W  
BORF  
R/W  
Bit  
Name  
Description  
1
BORF  
Brown-out reset flag  
When the MCU is reset by brown-out event, this bit will be set via hardware. This flag is  
recommended to be cleared via software.  
External Reset and Hard Fault Reset  
̅̅̅̅̅̅  
The external reset pin RST is an input with a Schmitt trigger. An external reset is accomplished by  
̅̅̅̅̅̅  
holding the RST pin low for at least 24 system clock cycles to ensure detection of a valid hardware reset  
signal. The reset circuitry then synchronously applies the internal reset signal. Thus, the reset is a  
synchronous operation and requires the clock to be running to cause an external reset.  
̅̅̅̅̅̅  
̅̅̅̅̅̅  
Once the device is in reset condition, it will remain as long as RST pin is low. After the RST high is  
removed, the MCU will exit the reset state and begin code executing from address 0000H. If an external  
reset applies while CPU is in Power-down mode, the way to trigger a hardware reset is slightly different.  
Since the Power-down mode stops system clock, the reset signal will asynchronously cause the system  
clock resuming. After the system clock is stable, MCU will enter the reset state.  
There is a RSTPINF (AUXR0.6) flag, which indicates an external reset took place. After the external  
reset, this bit will be set as 1 via hardware. RSTPINF will not change after any reset other than a power-  
on reset or the external reset itself. This bit can be cleared via software.  
Hard Fault reset will occur if CPU fetches instruction address over Flash size, HardF (AUXR0.5) flag  
will be set via hardware. HardF will not change after any reset other than a power-on reset or the external  
reset itself. This bit can be cleared via software. If MCU run in OCD debug mode and OCDEN = 0, hard  
fault reset will be disabled. Only HardF flag be asserted.  
Feb. 25, 2021  
26 of 81  
Rev 1.02  
AUXR1  
1
Auxiliary  
Register  
Register  
SFR Address  
Reset Value  
POR: 0000 0000b,  
Software reset: 1U00 0000b,  
nRESET pin: U100 0000b,  
Others: UUU0 0000b  
AUXR1  
A2H , Page 0  
7
6
5
4
3
2
1
0
0
SWRF  
R/W  
RSTPINF  
R/W  
HardF  
R/W  
SLOW  
R/W  
GF2  
R/W  
UART0PX  
R/W  
DPS  
R/W  
R
Bit  
Name  
Description  
6
RSTPINF  
External reset flag  
When the MCU is reset by the external reset, this bit will be set via hardware. It is recommended  
that the flag be cleared via software.  
5
HardF  
Hard Fault reset flag  
Once CPU fetches instruction address over Flash size while EHFI (EIE1.4)=0, MCU will reset  
and this bit will be set via hardware. It is recommended that the flag be cleared via software.  
Note: If MCU run in OCD debug mode and OCDEN = 0, Hard fault reset will disable. Only  
HardF flag be asserted.  
Watchdog Timer Reset  
The WDT is a free running timer with programmable time-out intervals and a dedicated internal clock  
source. User can clear the WDT at any time, causing it to restart the counter. When the selected time-  
out occurs but no software response taking place for a while, the WDT will reset the system directly and  
CPU will begin execution from 0000H.  
Once a reset due to WDT occurs, the WDT reset flag WDTRF (WDCON.3) will be set. This bit keeps  
unchanged after any reset other than a power-on reset or WDT reset itself. User can clear WDTRF via  
software.  
WDCON Watchdog Timer Control  
Register  
SFR Address  
Reset Value  
POR 0000_0111 b  
WDT 0000_1UUU b  
Others 0000_UUUU b  
WDCON  
AAH, Page 0, TA protected  
7
6
5
4
3
2
1
0
WDTR  
R/W  
WDCLR  
R/W  
WDTF  
R/W  
WIDPD  
R/W  
WDTRF  
R/W  
WDPS[2:0]  
R/W  
Feb. 25, 2021  
27 of 81  
Rev 1.02  
Bit  
Name  
Description  
3
WDTRF  
WDT reset flag  
When the CPU is reset by WDT time-out event, this bit will be set via hardware. This flag is  
recommended to be cleared via software after reset.  
Software Reset  
The MS51 provides a software reset, which allows the software to reset the whole system just similar to  
an external reset, initializing the MCU as it reset state. The software reset is quite useful in the end of  
an ISP progress. For example, if an ISP of Boot Code updating User Code finishes, a software reset  
can be asserted to re-boot CPU to execute new User Code immediately. Writing 1 to SWRST  
(CHPCON.7) will trigger a software reset. Note that this bit is writing TA protection. The instruction that  
sets the SWRST bit is the last instruction that will be executed before the device reset. See demo code  
below.  
If a software reset occurs, SWRF (AUXR0.7) will be automatically set by hardware. User can check it  
as the reset source indicator. SWRF keeps unchanged after any reset other than a power-on reset or  
software reset itself. SWRF can be cleared via software.  
Feb. 25, 2021  
28 of 81  
Rev 1.02  
CONFIG0  
7
6
-
5
4
3
-
2
1
0
-
CBS  
R/W  
OCDPWM  
R/W  
OCDEN  
R/W  
RPD  
R/W  
LOCK  
R/W  
-
-
-
Factory default value: 1111 1111b  
Bit  
Name  
Description  
7
CBS  
CONFIG boot select  
This bit defines from which block that MCU re-boots after resets except software reset.  
1 = MCU will re-boot from APROM after resets except software reset.  
0 = MCU will re-boot from LDROM after resets except software reset.  
5
4
OCDPWM  
PWM output state under OCD halt  
This bit decides the output state of PWM when OCD halts CPU.  
1 = Tri-state pins those are used as PWM outputs.  
0 = PWM continues.  
Note that this bit is valid only when the corresponding PIO bit of PWM channel is set as 1.  
OCDEN  
OCD enable  
1 = OCD Disabled.  
0 = OCD Enabled.  
Note: If MCU run in OCD debug mode and OCDEN = 0, hard fault reset will be disabled and  
only Hard F flag be asserted.  
2
1
RPD  
Reset pin disable  
1 = The reset function of P2.0/Nrst pin Enabled. P2.0/Nrst functions as the external reset pin.  
0 = The reset function of P2.0/Nrst pin Disabled. P2.0/Nrst functions as an input-only pin P2.0.  
LOCK  
Chip lock enable  
1 = Chip is unlocked. Flash Memory is not locked. Their contents can be read out through a  
parallel Writer/ICP programmer.  
0 = Chip is locked. Whole Flash Memory is locked. Their contents read through a parallel  
Writer or ICP programmer will be all blank (FFH). Programming to Flash Memory is invalid.  
Note that CONFIG bytes are always unlocked and can be read. Hence, once the chip is  
locked, the CONFIG bytes cannot be erased or programmed individually. The only way to  
disable chip lock is execute “whole chip erase”. However, all data within the Flash Memory  
and CONFIG bits will be erased when this procedure is executed.  
If the chip is locked, it does not alter the IAP function.  
7
6
-
5
4
3
-
2
1
0
-
CONFIG0  
CHPCON  
CBS  
OCDPWM  
OCDEN  
RPD  
LOCK  
Software reset does not reload  
7
6
5
-
4
-
3
-
2
-
1
0
SWRST  
IAPFF  
BS  
IAPEN  
Figure 6.2-1 CONFIG0 Any Reset Reloading  
Feb. 25, 2021  
29 of 81  
Rev 1.02  
CONFIG1  
7
-
6
-
5
-
4
-
3
-
2
1
0
LDSIZE[2:0]  
R/W  
-
-
-
-
-
Factory default value: 1111 1111b  
Bit  
Name  
Description  
2:0  
LDSIZE[2:0]  
LDROM size select  
This field selects the size of LDROM.  
111 = No LDROM. APROM is 32 Kbytes.  
110 = LDROM is 1 Kbytes. APROM is 31 Kbytes.  
101 = LDROM is 2 Kbytes. APROM is 30 Kbytes.  
100 = LDROM is 3 Kbytes. APROM is 29 Kbytes.  
0xx = LDROM is 4 Kbytes. APROM is 28 Kbytes.  
Feb. 25, 2021  
30 of 81  
Rev 1.02  
CONFIG2  
7
6
5
4
3
2
1
-
0
-
CBODEN  
R/W  
CBOV[2:0]  
R/W  
BOIAP  
R/W  
CBORST  
R/W  
-
-
Factory default value: 1111 1111b  
Bit Name Description  
CBODEN  
7
CONFIG brown-out detect enable  
1 = Brown-out detection circuit on.  
0 = Brown-out detection circuit off.  
5:4  
CBOV[1:0]  
CONFIG brown-out voltage select  
11 = VBOD is 2.2V.  
10 = VBOD is 2.7V.  
01 = VBOD is 3.7V.  
00 = VBOD is 4.4V.  
3
2
BOIAP  
Brown-out inhibiting IAP  
This bit decides whether IAP erasing or programming is inhibited by brown-out status. This bit  
is valid only when brown-out detection is enabled.  
1 = IAP erasing or programming is inhibited if VDD is lower than VBOD  
.
0 = IAP erasing or programming is allowed under any workable VDD  
.
CBORST  
CONFIG brown-out reset enable  
This bit decides whether a brown-out reset is caused by a power drop below VBOD  
.
1 = Brown-out reset Enabled.  
0 = Brown-out reset Disabled.  
7
6
5
4
4
3
2
1
0
CONFIG2  
CBODEN  
CBOV[2:0]  
BOIAP  
CBORST  
-
-
7
6
5
3
2
1
0
BODCON0  
BODEN  
BOV[2:0]  
BOF  
BORST  
BORF  
BOS  
Figure 6.2-2 CONFIG2 Power-On Reset Reloading  
Feb. 25, 2021  
31 of 81  
Rev 1.02  
CONFIG4  
7
6
5
4
3
-
2
-
1
-
0
-
WDTEN[3:0]  
R/W  
-
-
-
-
Factory default value: 1111 1111b  
Bit Name  
WDTEN[3:0]  
Description  
7:4  
WDT enable  
This field configures the WDT behavior after MCU execution.  
1111 = WDT is Disabled. WDT can be used as a general purpose timer via software control.  
0101 = WDT is Enabled as a time-out reset timer and it stops running during Idle or Power-  
down mode.  
Others = WDT is Enabled as a time-out reset timer and it keeps running during Idle or Power-  
down mode.  
3:0  
-
Reserved  
Feb. 25, 2021  
32 of 81  
Rev 1.02  
6.3  
General Purpose I/O (GPIO)  
The MS51 has a maximum of 30 general purpose I/O pins which 29 bit-addressable general I/O pins  
grouped as 4 ports, P0 to P3, and 1 input only pin as P20. Each port has its port control register (Px  
register). The writing and reading of a port control register have different meanings. A write to port  
control register sets the port output latch logic value, whereas a read gets the port pin logic state. These  
four modes are quasi-bidirectional (standard 8051 port structure), push-pull, input-only, and open-drain  
modes. Each port spends two special function registers PxM1 and PxM2 to select the I/O mode of port  
Px. The list below illustrates how to select the I/O mode of Px.n. Note that the default configuration of is  
input-only (high-impedance) after any reset.  
Feb. 25, 2021  
33 of 81  
Rev 1.02  
6.4  
Timer  
Timer/Counter 0 And 1  
Overview  
6.4.1  
Timer/Counter 0 and 1 on MS51 are two 16-bit Timers/Counters. Each of them has two 8-bit registers  
those form the 16-bit counting register. For Timer/Counter 0 they are TH0, the upper 8-bit register, and  
TL0, the lower 8-bit register. Similarly Timer/Counter 1 has two 8-bit registers, TH1 and TL1. TCON and  
TMOD can configure modes of Timer/Counter 0 and 1.  
The Timer or Counter function is selected by the C/T bit in TMOD. Each Timer/Counter has its own  
selection bit. TMOD.2 selects the function for Timer/Counter 0 and TMOD.6 selects the function for  
Timer/Counter 1  
When configured as a “Timer”, the timer counts the system clock cycles. The timer clock is 1/12 of the  
system clock (FSYS) for standard 8051 capability or direct the system clock for enhancement, which is  
selected by T0M (CKCON.3) bit for Timer 0 and T1M (CKCON.4) bit for Timer 1. In the “Counter” mode,  
the countering register increases on the falling edge of the external input pin T0. If the sampled value is  
high in one clock cycle and low in the next, a valid 1-to-0 transition is recognized on T0 or T1 pin.  
The Timers 0 and 1 can be configured to automatically to toggle output whenever a timer overflow  
occurs. The same device pins that are used for the T0 and T1 count inputs are also used for the timer  
toggle outputs. This function is enabled by control bits T0OE and T1OE in the CKCON register, and  
apply to Timer 0 and Timer 1 respectively. The port outputs will be logic 1 prior to the first timer overflow  
when this mode is turned on. In order for this mode to function, the C/T bit should be cleared selecting  
the system clock as the clock source for the timer.  
Note that the TH0 (TH1) and TL0 (TL1) are accessed separately. It is strongly recommended that in  
mode 0 or 1, user should stop Timer temporally by clearing TR0 (TR1) bit before reading from or writing  
to TH0 (TH1) and TL0 (TL1). The free-running reading or writing may cause unpredictable result.  
6.4.2  
Timer2 And Input Capture  
Overview  
Timer 2 is a 16-bit up counter cascaded with TH2, the upper 8 bits register, and TL2, the lower 8 bit  
register. Equipped with RCMP2H and RCMP2L, Timer 2 can operate under compare mode and auto-  
̅̅̅̅̅̅  
reload mode selected by CM/RL2 (T2CON.0). An 3-channel input capture module makes Timer 2 detect  
and measure the width or period of input pulses. The results of 3 input captures are stores in C0H and  
C0L, C1H and C1L, C2H and C2L individually. The clock source of Timer 2 is from the system clock  
pre-scaled by a clock divider with 8 different scales for wide field application. The clock is enabled when  
TR2 (T2CON.2) is 1, and disabled when TR2 is 0. The following registers are related to Timer 2 function.  
Feb. 25, 2021  
34 of 81  
Rev 1.02  
C0L  
C0H  
1000  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
P1.5/IC7  
P0.5/IC6  
P0.3/IC5  
P0.1/IC4  
P0.4/IC3  
P0.0/IC3  
P1.0/IC2  
P1.1/IC1  
P1.2/IC0  
CAPF0  
CAPF1  
CAPF0  
[00]  
[01]  
[10]  
CAP0  
CAP1  
CAP2  
Noise  
Filter  
Input Capture Interrupt  
CAPF2  
ENF0  
(CAPCON2.4)  
or  
CAPEN0  
(CAPCON0.4)  
CAP0LS[1:0]  
(CAPCON1[1:0])  
Input Capture 0 Module  
Input Capture 1 Module  
Input Capture 2 Module  
Input Capture Flags (CAPF[2:0])  
CAPF0  
CAPF1  
CAPF2  
CMPCR  
(T2MOD.2)  
Clear  
Counter  
Clear Timer 2  
CAPCR[1]  
(T2MOD.3)  
Clear Timer 2  
FSYS  
Pre-scalar  
TL2  
TH2  
TF2  
Timer 2 Interrupt  
T2DIV[2:0]  
(T2MOD[6:4])  
TR2  
(T2CON.2)  
00  
01  
10  
11  
CAPF0  
CAPF1  
CAPF2  
=
LDEN[1]  
(T2MOD.7)  
LDTS[1:0]  
(T2MOD[1:0])  
RCMP2L  
RCMP2H  
Timer 2 Module  
[1] Once CAPCR and LDEN are both set, an input capture event only clears TH2 and TL2 without reloading RCMP2H and RCMP2L contents.  
Figure 6.4-1 Timer 2 Block Diagram  
Feb. 25, 2021  
35 of 81  
Rev 1.02  
6.4.3  
Timer 3  
Overview  
Timer 3 is implemented simply as a 16-bit auto-reload, up-counting timer. The user can select the pre-  
scale with T3PS[2:0] (T3CON[2:0]) and fill the reload value into RH3 and RL3 registers to determine its  
overflow rate. User then can set TR3 (T3CON.3) to start counting. When the counter rolls over FFFFH,  
TF3 (T3CON.4) is set as 1 and a reload is generated and causes the contents of the RH3 and RL3  
registers to be reloaded into the internal 16-bit counter. If ET3 (EIE1.1) is set as 1, Timer 3 interrupt  
service routine will be served. TF3 is auto-cleared by hardware after entering its interrupt service routine.  
Timer 3 can also be the baud rate clock source of both UARTs..  
Timer 3  
Overflow  
FSYS  
TF3  
(T3CON.4)  
Pre-scalar  
(1/1~1/128)  
Internal 16-bit Counter  
Timer 3 Interrupt  
TR3  
(T3CON.3)  
T3PS[2:0]  
(T3CON[2:0])  
0
7
0
7
RL3  
RH3  
Figure 6.4-2 Timer 3 Block Diagram  
Feb. 25, 2021  
36 of 81  
Rev 1.02  
6.5 Pulse Width Modulated (PWM)  
6.5.1 Overview  
The PWM (Pulse Width Modulation) signal is a useful control solution in wide application field. It can  
used on motor driving, fan control, backlight brightness tuning, LED light dimming, or simulating as a  
simple digital to analog converter output through a low pass filter circuit.  
The MS51 PWM0 is especially designed for motor control by providing three pairs, maximum 16-bit  
resolution of PWM0 output with programmable period and duty. The architecture makes user easy to  
drive the one-phase or three-phase brushless DC motor (BLDC), or three-phase AC induction motor.  
Each of six PWM can be configured as one of independent mode, complementary mode, or synchronous  
mode. If the complementary mode is used, a programmable dead-time insertion is available to protect  
MOS turn-on simultaneously. The PWM waveform can be edge-aligned or center-aligned with variable  
interrupt points.  
The MS51 PWM1/2/3 provide individual configurable period and duty. maximum 16-bit resolution output.  
Each of two PWM1/2/3 can be configured as one of independent mode, complementary mode, or  
synchronous mode.The PWM1/2/3 waveform can be edge-aligned or center-aligned with variable  
interrupt points.  
PWM output pin define and enable control register table.  
Control register 1  
Control register2  
Bit name  
PWM1C0P  
-
Output  
Pin  
PWM Channel  
PWM0_CH0  
PWM0_CH1  
SFR Byte Name Bit name  
Value  
SFR Byte Name  
AUXR4[1:0]  
-
Value  
00  
-
P1.2  
P3.3  
P1.1  
P1.4  
P0.5  
P1.0  
P0.4  
P0.0  
P0.1  
P0.3  
P1.5  
P2.3  
P1.2  
P2.2  
P1.4  
P1.1  
P2.1  
P1.0  
P0.5  
P3.0  
PIOCON0  
PIOCON2  
PIOCON0  
PIOCON1  
PIOCON1  
PIOCON0  
PIOCON1  
PIOCON0  
PIOCON0  
PIOCON0  
PIOCON1  
PIOCON2  
PIOCON0  
PIOCON2  
PIOCON1  
PIOCON0  
PIOCON2  
PIOCON0  
PIOCON1  
PIOCON2  
PIO12  
PIO33  
PIO11  
PIO14  
PIO05  
PIO10  
PIO04  
PIO00  
PIO01  
PIO03  
PIO15  
PIO23  
PIO12  
PIO22  
PIO14  
PIO11  
PIO21  
PIO10  
PIO05  
PIO30  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
AUXR4[3:2]  
AUXR4[3:2]  
AUXR4[5:4]  
-
PWM1C1P  
PWM1C1P  
PWM2C0P  
-
00  
00  
00  
-
PWM0_CH2  
PWM0_CH3  
AUXR4[7:6]  
AUXR4[7:6]  
AUXR5[1:0]  
AUXR5[3:2]  
AUXR5[3:2]  
PWM2C1P  
PWM2C1P  
PWM3C0P  
PWM3C1P  
PWM3C1P  
00  
00  
00  
00  
00  
01  
10  
01  
10  
11  
00  
01  
10  
00  
PWM0_CH4  
PWM0_CH5  
AUXR4[1:0]  
AUXR4[3:2]  
PWM1C0P  
PWM1C1P  
PWM1_CH0  
PWM1_CH1  
PWM2_CH0  
PWM2_CH1  
AUXR4[5:4]  
AUXR4[7:6]  
PWM2C0P  
PWM2C1P  
Feb. 25, 2021  
37 of 81  
Rev 1.02  
Control register 1  
Control register2  
Bit name  
Output  
Pin  
PWM Channel  
SFR Byte Name Bit name  
Value  
SFR Byte Name  
Value  
P3.1  
P0.0  
P0.4  
P3.2  
P0.1  
P1.7  
P3.4  
P1.5  
P0.3  
PIOCON2  
PIOCON0  
PIOCON1  
PIOCON2  
PIOCON0  
PIOCON1  
PIOCON2  
PIOCON1  
PIOCON0  
PIO31  
PIO00  
PIO04  
PIO32  
PIO01  
PIO17  
PIO34  
PIO15  
PIO03  
1
1
1
1
1
1
1
1
1
01  
10  
11  
01  
10  
-
PWM3_CH0  
PWM3_CH1  
AUXR5[1:0]  
AUXR5[3:2]  
PWM3C0P  
PWM3C1P  
01  
10  
11  
Table 6.5-1 PWM Pin Define And Enable Control Register  
Feb. 25, 2021  
38 of 81  
Rev 1.02  
6.6 Watchdog Timer (WDT)  
6.6.1 Overview  
The MS51 provides one Watchdog Timer (WDT). It can be configured as a time-out reset timer to reset  
whole device. Once the device runs in an abnormal status or hangs up by outward interference, a WDT  
reset recover the system. It provides a system monitor, which improves the reliability of the system.  
Therefore, WDT is especially useful for system that is susceptible to noise, power glitches, or  
electrostatic discharge. The WDT also can be configured as a general purpose timer, of which the  
periodic interrupt serves as an event timer or a durational system supervisor in a monitoring system,  
which is able to operate during Idle or Power-down mode. WDTEN[3:0] (CONFIG4[7:4]) initialize the  
WDT to operate as a time-out reset timer or a general purpose timer.  
1
The Watchdog time-out interval is determined by the formula  
× 64 , where  
F
LIRC × clockdividerscalar  
FLIRC is the frequency of internal 10 kHz oscillator. The following table shows an example of the  
Watchdog time-out interval with different pre-scales.  
WDPS.2  
WDPS.1  
WDPS.0  
Clock Divider Scale  
WDT Time-Out Timing[1]  
6.40 ms  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1/1  
1/4  
25.60 ms  
1/8  
51.20 ms  
1/16  
1/32  
1/64  
1/128  
1/256  
102.40 ms  
204.80 ms  
409.60 ms  
819.20 ms  
1.638 s  
Note: This is an approximate value since the deviation of LIRC.  
Table 6.6-1 Watchdog Timer-out Interval Under Different Pre-scalars  
Since the limitation of the maxima vaule of WDT timer delay. To up MS51 from idle mode or power down  
mode suggest use WKT function see Chapter 6.7 Self Wake-Up Timer (WKT).  
Feb. 25, 2021  
39 of 81  
Rev 1.02  
6.7 Self Wake-Up Timer (WKT)  
6.7.1 Overview  
The MS51 has a dedicated Self Wake-up Timer (WKT), which serves for a periodic wake-up timer in  
low power mode or for general purpose timer. WKT remains counting in Idle or Power-down mode.  
When WKT is being used as a wake-up timer, a start of WKT can occur just prior to entering a power  
management mode. WKT has one clock source, internal 10 kHz. Note that the system clock frequency  
must be twice over WKT clock. If WKT starts counting, the selected clock source will remain active once  
the device enters Idle or Power-down mode. Note that the selected clock source of WKT will not  
automatically enabled along with WKT configuration. User should manually enable the selected clock  
source and waiting for stability to ensure a proper operation.  
The WKT is implemented simply as a 8-bit auto-reload, up-counting timer with pre-scale 1/1 to 1/2048  
selected by WKPS[2:0] (WKCON[2:0]). User fills the reload value into RWK register to determine its  
overflow rate. The WKTR (WKCON.3) can be set to start counting. When the counter rolls over FFH,  
WKTF (WKCON.4) is set as 1 and a reload is generated and causes the contents of the RWK register  
to be reloaded into the internal 8-bit counter. If EWKT (EIE1.2) is set as 1, WKT interrupt service routine  
will be served.  
WKT  
Overflow  
10 kHz Internal  
Oscillator  
FLIRC  
Pre-scalar  
(1/1~1/2048)  
WKTF  
(WKCON.4)  
Internal 16-bit Counter  
WKT Interrupt  
WKPS[2:0]  
(WKCON[2:0])  
0
15  
WKTR  
(WKCON.3)  
RWK  
Figure 6.7-1 Self Wake-Up Timer Block Diagram  
Feb. 25, 2021  
40 of 81  
Rev 1.02  
6.8 Serial Port (UART0 & UART1)  
6.8.1 Overview  
The MS51 includes two enhanced full duplex serial ports enhanced with automatic address recognition  
and framing error detection. As control bits of these two serial ports are implemented the same.  
Generally speaking, in the following contents, there will not be any reference to serial port 1, but only to  
serial port 0.  
Each serial port supports one synchronous communication mode, Mode 0, and three modes of full  
duplex UART (Universal Asynchronous Receiver and Transmitter), Mode 1, 2, and 3. This means it can  
transmit and receive simultaneously. The serial port is also receiving-buffered, meaning it can  
commence reception of a second byte before a previously received byte has been read from the register.  
The receiving and transmitting registers are both accessed at SBUF. Writing to SBUF loads the  
transmitting register, and reading SBUF accesses a physically separate receiving register. There are  
four operation modes in serial port. In all four modes, transmission initiates by any instruction that uses  
SBUF as a destination register.  
Feb. 25, 2021  
41 of 81  
Rev 1.02  
6.9 ISO 7816-3 Interface (SC0~2 & UART2 ~ 4)  
6.9.1 Overview  
The MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE provides  
ISO 7816-3 Interface controller (SC controller) with asynchronous protocal based on ISO/IEC 7816-3  
standard. Software controls GPIO pins as the smartcard reset function and card detection function. This  
controller also provides UART emulation for high precision baud rate communication.  
Internal Data Bus  
Control and Status  
RX_FIFO  
TX_FIFO  
Registers  
RX_IN  
TX_OUT  
RX Shift  
Register  
TX/RX  
Control Unit  
TX Shift  
Register  
Baud Rate  
Generator  
ETU Clock  
Generator  
Figure 6.9-1 SC Controller Block Diagram  
ISO-7816-3 T = 0, T = 1 compliant  
Programmable transmission clock frequency  
Programmable extra guard time selection  
Supports auto inverse convention function  
Supports UART mode  
Full duplex, asynchronous communications  
Supports programmable baud rate generator for each channel  
Programmable transmitting data delay time between the last stop bit leaving the TX-  
FIFO and the de-assertion by setting SCnEGT register  
Programmable even, odd or no parity bit generation and detection  
Programmable stop bit, 1 or 2 stop bit generation  
Following is the ISO 7816-3 multi function pin define  
SFR Define  
URAT Pin  
UART2_TXD  
UART2_RXD  
SC Pin  
Pin Name  
SFR Byte Name  
SFR Bit Name  
Value  
01  
P0.3  
P3.0  
P0.4  
P1.7  
SC0_CLK  
SC0_DAT  
AUXR2[7:6]  
UART2TXP  
UART2RXP  
10  
01  
AUXR2[5:4]  
10  
Feb. 25, 2021  
42 of 81  
Rev 1.02  
SFR Define  
URAT Pin  
SC Pin  
Pin Name  
SFR Byte Name  
SFR Bit Name  
Value  
P1.2  
P1.5  
P0.5  
P1.1  
P2.5  
P3.4  
P2.3  
P2.2  
01  
10  
11  
01  
10  
11  
01  
01  
UART3_TXD  
SC1_CLK  
AUXR3[3:2]  
UART3TXP  
UART3RXP  
UART3_RXD  
SC1_DAT  
AUXR3[1:0]  
UART4_TXD  
UART4_RXD  
SC2_CLK  
SC2_DAT  
AUXR3[7:6]  
AUXR3[5:4]  
UART4TXP  
UART4RXP  
Table 6.9-1 Smart Card or UART Pin Define And Enable Control Register  
Feb. 25, 2021  
43 of 81  
Rev 1.02  
6.10 Inter-Integrated Circuit (I2C)  
6.10.1 Overview  
The MS51 provides two Inter-Integrated Circuit (I2C) bus to serves as an serial interface between the  
microcontrollers and the I2C devices such as EEPROM, LCD module, temperature sensor, and so on.  
The I2C bus used two wires design (a serial data line I2C0_SDA and a serial clock line I2C0_SCL) to  
transfer information between devices.  
The I2C bus uses bi-directional data transfer between masters and slaves. There is no central master  
and the multi-master system is allowed by arbitration between simultaneously transmitting masters. The  
serial clock synchronization allows devices with different bit rates to communicate via one serial bus.  
The I2C bus supports four transfer modes including master transmitter, master receiver, slave receiver,  
and slave transmitter. The I2C interface only supports 7-bit addressing mode. A special mode General  
Call is also available. The I2C can meet both standard (up to 100kbps) and fast (up to 400k bps) speeds.  
Feb. 25, 2021  
44 of 81  
Rev 1.02  
6.11 Serial Peripheral Interface (SPI)  
6.11.1 Overview  
The MS51 provides two Serial Peripheral Interface (SPI) block to support high-speed serial  
communication. SPI is a full-duplex, high-speed, synchronous communication bus between  
microcontrollers or other peripheral devices such as serial EEPROM, LCD driver, or D/A converter. It  
provides either Master or Slave mode, high-speed rate up to FSYS/2, transfer complete and write collision  
flag. For a multi-master system, SPI supports Master Mode Fault to protect a multi-master conflict.  
FSYS  
S
Divider  
/2, /4, /8, /16  
MISO  
MOSI  
M
MSB  
LSB  
Write Data Buffer  
8-bit Shift Register  
Read Data Buffer  
M
S
Select  
CLOCK  
SPCLK  
SS  
Clock Logic  
MSTR  
SPIEN  
SPI Status Control Logic  
SPI Status Register  
SPI Interrupt  
SPI Control Register  
Internal  
Data Bus  
Figure 6.11-1 SPI Block Diagram  
Figure15.1 SPI Block Diagram shows SPI block diagram. It provides an overview of SPI architecture in  
this device. The main blocks of SPI are the SPI control register logic, SPI status logic, clock rate control  
logic, and pin control logic. For a serial data transfer or receiving, The SPI block exists a write data  
buffer, a shift out register and a read data buffer. It is double buffered in the receiving and transmit  
directions. Transmit data can be written to the shifter until when the previous transfer is not complete.  
Receiving logic consists of parallel read data buffer so the shift register is free to accept a second data,  
as the first received data will be transferred to the read data buffer.  
The four pins of SPI interface are Master-In/Slave-Out (MISO), Master-Out/Slave-In (MOSI), Shift Clock  
̅̅̅̅  
(SPCLK), and Slave Select (SS). The MOSI pin is used to transfer a 8-bit data in series from the Master  
to the Slave. Therefore, MOSI is an output pin for Master device and an input for Slave. Respectively,  
the MISO is used to receive a serial data from the Slave to the Master.  
Feb. 25, 2021  
45 of 81  
Rev 1.02  
The SPCLK pin is the clock output in Master mode, but is the clock input in Slave mode. The shift clock  
is used to synchronize the data movement both in and out of the devices through their MOSI and MISO  
pins. The shift clock is driven by the Master mode device for eight clock cycles. Eight clocks exchange  
one byte data on the serial lines. For the shift clock is always produced out of the Master device, the  
system should never exist more than one device in Master mode for avoiding device conflict.  
̅̅̅̅  
Each Slave peripheral is selected by one Slave Select pin (SS). The signal should stay low for any Slave  
̅̅̅̅  
access. When SS is driven high, the Slave device will be inactivated. If the system is multi-slave, there  
̅̅̅̅  
should be only one Slave device selected at the same time. In the Master mode MCU, the SS pin does  
̅̅̅̅  
not function and it can be configured as a general purpose I/O. However, SS can be used as Master  
Mode Fault detection via software setting if multi-master environment exists. The MS51 also provides  
̅̅̅̅  
auto-activating function to toggle SS between each byte-transfer.  
Master/Slave  
MCU1  
Master/Slave  
MCU2  
MISO  
MOSI  
SPCLK  
SS  
MISO  
MOSI  
SPCLK  
SS  
0
0
I/O  
PORT  
1
2
3
I/O  
PORT  
1
2
3
Slave device 1  
Slave device 2  
Slave device 3  
Figure 6.11-2 SPI Multi-Master, Multi-Slave Interconnection  
Figure 6.11-2 shows a typical interconnection of SPI devices. The bus generally connects devices  
together through three signal wires, MOSI to MOSI, MISO to MISO, and SPCLK to SPCLK. The Master  
̅̅̅̅  
devices select the individual Slave devices by using four pins of a parallel port to control the four SS  
̅̅̅̅  
pins. MCU1 and MCU2 play either Master or Slave mode. The SS should be configured as Master Mode  
Fault detection to avoid multi-master conflict.  
MOSI  
MISO  
MOSI  
MISO  
SPI shift register  
SPI shift register  
7 6 5 4 3 2 1 0  
7 6 5 4 3 2 1 0  
SPCLK SPCLK  
SPI clock  
generator  
SS  
SS  
*
Master MCU  
* SS configuration follows DISMODF and SSOE bits.  
Slave MCU  
GND  
Figure 6.11-3 SPI Single-Master, Single-Slave Interconnection  
Figure 6.11-3 shows the simplest SPI system interconnection, single-master and signal-slave. During a  
transfer, the Master shifts data out to the Slave via MOSI line. While simultaneously, the Master shifts  
data in from the Slave via MISO line. The two shift registers in the Master MCU and the Slave MCU can  
Feb. 25, 2021  
46 of 81  
Rev 1.02  
 
 
be considered as one 16-bit circular shift register. Therefore, while a transfer data pushed from Master  
into Slave, the data in Slave will also be pulled in Master device respectively. The transfer effectively  
exchanges the data, which was in the SPI shift registers of the two MCUs.  
By default, SPI data is transferred MSB first. If the LSBFE (SPCR.5) is set, SPI data shifts LSB first.  
This bit does not affect the position of the MSB and LSB in the data register. Note that all the following  
description and figures are under the condition of LSBFE logic 0. MSB is transmitted and received first.  
There are three SPI registers to support its operations, including SPI control register (SPCR), SPI status  
register (SPSR), and SPI data register (SPDR). These registers provide control, status, data storage  
functions, and clock rate selection. The following registers relate to SPI function.  
Feb. 25, 2021  
47 of 81  
Rev 1.02  
6.12 12-Bit Analog-To-Digital Converter (ADC)  
6.12.1 Overview  
The MS51EB0AE / MS51FC0AE / MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE is  
embedded with a 12-bit SAR ADC. The ADC (analog-to-digital converter) allows conversion of an analog  
input signal to a 12-bit binary representation of that signal. The MS51EB0AE / MS51FC0AE /  
MS51XC0BE / MS51EC0AE / MS51TC0AE / MS51PC0AE is selected as 8-channel inputs in single end  
mode. The internal band-gap voltage 1.22 V also can be the internal ADC input. The analog input,  
multiplexed into one sample and hold circuit, charges a sample and hold capacitor. The output of the  
sample and hold capacitor is the input into the converter. The converter then generates a digital result  
of this analog level via successive approximation and stores the result in the result registers. The ADC  
controller also supports continuous conversion and storage result data into XRAM.  
Feb. 25, 2021  
48 of 81  
Rev 1.02  
7 APPLICATION CIRCUIT  
7.1 Power supply scheme  
EXT_PWR  
10uF+0.1uF  
MS51  
Series  
as close to the EXT_PWR as possible  
VDD  
VSS  
EXT_VSS  
0.1uF  
as close to VDD as possible  
Figure 7.1-1 NuMicro® MS51 Power supply circuit  
Feb. 25, 2021  
49 of 81  
Rev 1.02  
7.2 Peripheral Application scheme  
DVCC  
ICE / ICP  
DVCC  
Interface  
CS  
SPI_SS  
SPI_CLK  
VDD  
VSS  
SPI  
Device  
CLK  
100K 100K  
SPI_MISO  
SPI_MOSI  
MISO  
MOSI  
VDD  
ICE_DAT  
100 *  
ICE_CLK  
nRESET  
100 *  
VSS  
DVCC  
MS51 Series  
DVCC  
20pF  
20pF  
4.7K  
4.7K  
XT1_IN  
I2C  
Device  
4~32 MHz  
crystal  
HXT  
CLK  
DIO  
VDD  
VSS  
I2C_SCL  
I2C_SDA  
XT1_OUT  
DVCC  
10K  
RS 232 Transceiver  
nRESET  
RIN  
UART_RXD  
UART_TXD  
ROUT  
TIN  
Reset  
Circuit  
UART  
10 uF  
TOUT  
PC COM Port  
*ICE/ICP interface ICE_DAT/ICE_CLK pin 100ohm resister is selectable only for filter the disturb of noise on the circuit.  
Note:  
1. It is recommended to use 100 kΩ pull-up resistor on both ICE_DAT and ICE_CLK pin.  
2. It is recommended to use 10 kΩ pull-up resistor and 10 uF capacitor on nRESET pin.  
3. It is optional add 100ohm resistor series between ICE_DAT/ICE_CLK pin to help filtering noise interference.  
4. The HXT external capacitor value please reference Section 8.3.2.2Typical Crystal Application Circuits Capacitors Value  
Figure 7.2-1 NuMicro® MS51 Peripheral interface circuit  
Feb. 25, 2021  
50 of 81  
Rev 1.02  
8 ELECTRICAL CHARACTERISTICS  
Please refer to the relative Datasheet for detailed information about the MS51 electrical characteristics.  
8.1 General Operating Conditions  
(VDD-VSS = 2.4 ~ 5.5V, TA = 25C, Fsys = 16 MHz unless otherwise specified.)  
Symbol  
TA  
Parameter  
Temperature  
Min  
-40  
2.4  
Typ  
Max  
105  
5.5  
Unit  
Test Conditions  
-
VDD  
Operation voltage  
-
[*1]  
AVDD  
Analog operation voltage  
VDD  
V
1.17  
1.14  
1.30  
1.33  
TA = 25 °C  
VBG  
Band-gap voltage[2]  
1.22  
TA = -40°C ~105 °C,  
Note:  
1.It is recommended to power VDD and AVDD from the same source. A maximum difference of 0.3V between VDD and  
AVDD can be tolerated during power-on and power-off operation .  
2.Based on characterization, tested in production.  
Table 8.1-1 General operating conditions  
Feb. 25, 2021  
51 of 81  
Rev 1.02  
8.2 DC Electrical Characteristics  
8.2.1 Supply Current Characteristics  
The current consumption is a combination of internal and external parameters and factors such as  
operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program  
location in memory and so on. The current consumption is measured as described in below condition  
and table to inform test characterization result.  
All GPIO pins are in push pull mode and output high.  
The maximum values are obtained for VDD = 2.4V ~ 5.5 V and maximum ambient  
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise  
specified.  
VDD = AVDD  
When the peripherals clock base is the system clock Fsys.  
Program run while (1);in Flash.  
Typ [6]  
Max[6][7]  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
T
= -40 °C  
T
= 25 °C  
T = 105 °C  
A
A
A
A
24 MHz(HIRC)[1]  
@5.5V  
3.6  
24 MHz(HIRC)[1]  
@3.3V  
3.2  
2.9  
3.3  
3.1  
4.2  
4.6  
4.8  
24 MHz(HIRC)[1]  
@2.4V  
Normal run mode,  
IDD_RUN  
executed from Flash, all  
peripherals disable  
16 MHz (HIRC) [1]  
@5.5V  
mA  
16 MHz (HIRC) [1]  
@3.3V  
3.4  
3.9  
4.6  
16 MHz (HIRC) [1]  
@2.4V  
2.8  
10 kHz (LIRC)[2]  
0.30  
0.32  
0.46  
2.33  
Notes:  
1. This value base on HIRC enable, LIRC enable  
2. This value base on HIRC disable, LIRC enable  
3. LVR17 enabled, POR enable and BOD enable.  
4. Based on characterization, not tested in production unless otherwise specified.  
Table 8.2-1 Current consumption in Normal Run mode  
Feb. 25, 2021  
52 of 81  
Rev 1.02  
Typ [3]  
Max[3][4]  
= 85 °C  
Symbol  
Conditions  
Fsys  
Unit  
T
= 25 °C  
2.8  
T
= 25 °C  
T
T = 105 °C  
A
A
A
A
24 MHz(HIRC)[1]  
@5.5V  
24 MHz(HIRC)[1]  
@3.3V  
2.4  
2.2  
2.2  
1.9  
2.9  
3.2  
3.8  
24 MHz(HIRC)[1]  
@2.4V  
Idle mode, executed from  
Flash, all peripherals  
disable  
16 MHz (HIRC)[1]  
@5.5V  
mA  
IDD_IDLE  
16 MHz (HIRC)[1]  
@3.3V  
2.5  
0.5  
2.6  
0.9  
3.2  
2.3  
16 MHz (HIRC)[1]  
@2.4V  
1.8  
0.3  
10 kHz (LIRC)[2]  
Notes:  
1. This value base on HIRC enable, LIRC enable  
2. This value base on HIRC disable, LIRC enable  
3. LVR17 enabled, POR enable and BOD enable.  
4. Based on characterization, not tested in production unless otherwise specified.  
Table 8.2-2 Current consumption in Idle mode  
Typ[1]  
Max[2]  
= 25 °C  
Symbol  
Test Conditions  
Unit  
T
= 25 °C  
T
= -40 °C  
6.2  
T
T = 105 °C  
A
A
A
A
Power down mode, all peripherals disable@5.5V  
Power down mode, all peripherals disable@3.3V  
Power down mode, all peripherals disable@2.4V  
6.5  
6
9
55  
5.8  
IDD_PD  
µA  
Power down mode, LVR enable all other peripherals  
disable  
7.5  
6.7  
10[3]  
197  
57  
Power down mode, LVR enable BOD enable all  
other peripherals disable  
180  
165  
292  
Notes:  
1. AVDD = VDD = 3.3V unless otherwise specified, LVR17 disabled, POR disabled and BOD disabled.  
2. Based on characterization, not tested in production unless otherwise specified.  
3. Based on characterization, tested in production.  
Table 8.2-3 Chip Current Consumption in Power down mode  
Feb. 25, 2021  
53 of 81  
Rev 1.02  
8.2.2  
Wakeup Time from Low-Power Modes  
Symbol  
Parameter  
Typ  
Max  
6
Unit  
cycles  
µs  
[1]  
tWU_IDLE  
Wakeup from IDLE mode  
5
-
Fsys = HIRC @16MHz  
Fsys = HIRC @ 24MHz  
30  
30  
[2][3]  
tWU_NPD  
Wakeup from Power down mode  
µs  
Notes:  
1. Measured on a wakeup phase with a 16 MHz HIRC oscillator.  
2. Based on test during characterization, not tested in production.  
3. The wakeup times are measured from the wakeup event to the point in which the application code reads the first.  
Table 8.2-4 Low-power mode wakeup timings  
Feb. 25, 2021  
54 of 81  
Rev 1.02  
8.2.3  
I/O DC Characteristics  
8.2.3.1 PIN Input Characteristics  
Symbol  
Parameter  
Input low voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VIL  
0
-
0.3*VDD  
V
Input low voltage  
(I/O with TTL input)  
VIL1  
VIH  
VSS-0.3  
-
-
0.2VDD-0.1  
VDD+0.3  
V
V
0.2VDD+0.9  
Input high voltage  
Input high voltage  
VIH1  
0.7*VDD  
-
VDD  
V
V
(I/O with Schmitt trigger input and Xin)  
[1]  
VHY  
Hysteresis voltage of schmitt input  
Input leakage current  
-
0.2*VDD  
-
VSS < VIN < VDD  
,
-1  
1
Open-drain or input only mode  
[2]  
ILK  
A  
VDD < VIN < 5.5 V,  
Open-drain or input only mode  
-1  
1
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. Leakage could be higher than the maximum value, if abnormal injection happens.  
3. To sustain a voltage higher than VDD +0.3 V, the internal pull-up resistors must be disabled. Leakage could be higher than  
the maximum value, if positive current is injected on adjacent pins  
Table 8.2-5 I/O input characteristics  
Feb. 25, 2021  
55 of 81  
Rev 1.02  
8.2.3.2 I/O Output Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD = 5.5 V  
-7.4  
-
-7.5  
µA  
VIN =(VDD-0.4) V  
VDD = 3.3 V  
-7.3  
-7.3  
-57.2  
-9  
-
-
-
-
-
-
-
-
-
-7.5  
-7.5  
-58.3  
-9.6  
-6.6  
-4.9  
-20  
µA  
µA  
Source current for quasi-  
bidirectional mode and high  
level  
VIN =(VDD-0.4) V  
VDD = 2.4 V  
VIN =(VDD-0.4) V  
VDD = 5.5 V  
VIN = 2.4 V  
µA  
[1] [2]  
ISR  
VDD = 5.5 V  
mA  
mA  
mA  
mA  
mA  
mA  
VIN =(VDD-0.4) V  
VDD = 3.3 V  
-6  
VIN =(VDD-0.4) V  
Source current for push-pull  
mode and high level  
VDD = 2.7 V  
-4.2  
-18  
18  
VIN =(VDD-0.4) V  
VDD = 5.5 V  
VIN = 2.4 V  
VDD = 5.5 V  
VIN = 0.4 V  
20  
VDD = 3.3 V  
VIN = 0.4 V  
Sink current for push-pull  
mode and low level  
[1] [2]  
ISK  
16  
18  
VDD = 2.4 V  
VIN = 0.4 V  
9.7  
-
-
11  
-
mA  
pF  
[1]  
CIO  
I/O pin capacitance  
5
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. The ISR and ISK must always respect the abslute maximum current and the sum of I/O, CPU and peripheral must not  
exceed ΣIDD and ΣISS  
.
Table 8.2-6 I/O output characteristics  
Feb. 25, 2021  
56 of 81  
Rev 1.02  
8.2.3.3 nRESET Input Characteristics  
Symbol  
VILR  
Parameter  
Negative going threshold, nRESET  
Positive going threshold, nRESET  
Min  
Typ  
Max Unit  
Test Conditions  
-
0.7*VDD  
45  
-
0.3*VDD  
V
V
VIHR  
-
-
-
-
60  
65  
-
VDD = 5.5 V  
[1]  
RRST  
Internal nRESET pull up resistor  
nRESET input response time  
KΩ  
45  
VDD = 2.4 V  
-
1.5  
-
Normal run and Idle mode  
Power down mode  
[1]  
tFR  
µs  
10  
25  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. It is recommended to add a 10 kΩ and 10uF capacitor at nRESET pin to keep reset signal stable.  
Table 8.2-7 nRESET Input Characteristics  
Feb. 25, 2021  
57 of 81  
Rev 1.02  
8.3 AC Electrical Characteristics  
8.3.1 Internal High Speed RC Oscillator (HIRC)  
8.3.1.1 16MHz RC Oscillator (HIRC)  
Symbol.  
Parameter  
Operating voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD  
2.4  
-
5.5  
V
TA = 25 °C,  
VDD = 3.3  
Oscillator frequnecy  
-
16[1]  
-
MHz  
%
TA = 25 °C,  
VDD = 3.3V  
-1[3]  
-2[4]  
-
-
1[3]  
FHRC  
TA = -20 C ~ +105 °C,  
Frequency drift over temperarure and  
volatge  
2[4]  
%
VDD = 2.4 ~ 5.5V  
TA = -40 C ~ -20 °C,  
-4[4]  
4[4]  
550  
5
%
µA  
µs  
VDD = 2.4 ~ 5.5V  
[2]  
IHRC  
Operating current  
Stable time  
-
-
490  
3
TA = -40C ~ +105 °C,  
[3]  
TS  
VDD = 2.4 ~ 5.5V  
Notes:  
1. Default setting value for the product  
2. Based on reload value.  
3. Based on characterization, tested in production.  
4. Guaranteed by characterization result, not tested in production.  
5. Guaranteed by design.  
Table 8.3-1 16 MHz Internal High Speed RC Oscillator(HIRC) characteristics  
Feb. 25, 2021  
58 of 81  
Rev 1.02  
8.3.1.2 24MHz RC Oscillator (HIRC)  
Symbol.  
Parameter  
Operating voltage  
Min  
Typ  
Max  
Unit  
Test Conditions  
VDD  
2.4  
-
5.5  
V
TA = 25 °C,  
VDD = 3.3  
Oscillator frequnecy  
-
24[1]  
-
MHz  
%
TA = 25 °C,  
VDD = 3.3V  
-1[3]  
-2[4]  
-
-
1[3]  
FHRC  
TA = -20C ~ +85 °C,  
Frequency drift over temperarure and  
volatge  
2[4]  
%
VDD = 2.4 ~ 5.5V  
TA = -40C ~ +105 °C,  
-4[4]  
4[4]  
550  
5
%
µA  
µs  
VDD = 2.4 ~ 5.5V  
[2]  
IHRC  
Operating current  
Stable time  
-
-
490  
3
TA = -40C ~ +105 °C,  
[3]  
TS  
VDD = 2.4 ~ 5.5V  
Notes:  
1. Default setting value for the product  
2. Based on reload value.  
3. Based on characterization, tested in production.  
4. Guaranteed by characterization result, not tested in production.  
5. Guaranteed by design.  
Table 8.3-2 24MHz Internal High Speed RC Oscillator(HIRC) characteristics  
Feb. 25, 2021  
59 of 81  
Rev 1.02  
8.3.2  
External 4~24 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics  
The high-speed external (HXT) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close as  
possible to the XT1_IN and XT1_Out pins and must not be connected to any other devices in order to  
minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for  
more details on the resonator characteristics (frequency, package, accuracy).  
Symbol  
VDD  
Parameter  
Operating voltage  
Min[1]  
Typ  
-
Max[1]  
5.5  
Unit  
V
Test Conditions[2]  
1.8  
Rf  
Internal feedback resister  
Oscillator frequency  
-
4
-
500  
-
-
kΩ  
fHXT  
24  
MHz  
80  
180  
300  
500  
650  
975  
3700  
1050  
850  
550  
570  
60  
4 MHz, Gain = L0  
-
110  
180  
230  
360  
3500  
950  
700  
450  
400  
-
8 MHz, Gain = L1  
12 MHz, Gain = L2  
16 Mhz, Gain = L3  
24 MHz, Gain = L4  
4 MHz, Gain = L0  
8 MHz, Gain = L1  
12 MHz, Gain = L2  
16 Mhz, Gain = L3  
24 MHz, Gain = L4  
IHXT  
Current consumption  
-
µA  
-
-
-
-
TS  
Stable time  
Duty cycle  
-
µs  
%
-
-
DuHXT  
40  
Notes:  
1. Guaranteed by characterization, not tested in production.  
2. L0 ~ L4 defined by SFR XLTCON[6:4] HXSG  
Table 8.3-3 External 4~24 MHz High Speed Crystal (HXT) Oscillator  
Typical Crystal Application Circuits Capacitors Value  
For C1 and C2, it is recommended to use high-quality external ceramic capacitors in 10 pF ~ 25 pF  
range, designed for high-frequency applications, and selected to match the requirements of the crystal  
or resonator. The crystal manufacturer typically specifies a load capacitance which is the series  
combination of C1 and C2. PCB and MCU pin capacitance must be included (8 pF can be used as a  
rough estimate of the combined pin and board capacitance) when sizing C1 and C2.  
CRYSTAL  
C1  
C2  
R1  
4 MHz ~ 24 MHz  
10 ~ 25 pF  
10 ~ 25 pF  
without  
Feb. 25, 2021  
60 of 81  
Rev 1.02  
8.3.3  
External 4~24 MHz High Speed Clock Input Signal Characteristics  
For clock input mode the HXT oscillator is switched off and XT1_IN is a standard input pin to receive  
external clock. The external clock signal has to respect the below Table. The characteristics result from  
tests performed using a wavefrom generator.  
Symbol  
Parameter  
Min[*1]  
Typ  
Max[*1]  
Unit  
Test Conditions  
External user clock source  
frequency  
fHXT_ext  
4
-
24  
MHz  
tCHCX  
tCLCX  
tCLCH  
Clock high time  
Clock low time  
8
8
-
-
-
-
ns  
ns  
Low (10%) to high level (90%)  
rise time  
Clock rise time  
Clock fall time  
-
-
-
-
10  
10  
ns  
ns  
High (90%) to low level (10%)  
fall time  
tCHCL  
DuE_HXT  
VIH  
Duty cycle  
40  
0.7*VDD  
VSS  
-
-
-
60  
VDD  
%
V
Input high voltage  
Input low voltage  
VIL  
0.3*VDD  
V
External  
clock source  
XT1_IN  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
VIH  
VIL  
tCHCL  
tCHCX  
Notes:  
1. Guaranteed by characterization, not tested in production.  
Table 8.3-4 External 4~24 MHz High Speed Clock Input Signal  
Feb. 25, 2021  
61 of 81  
Rev 1.02  
8.3.4  
10 kHz Internal Low Speed RC Oscillator (LIRC)  
Symbol  
Parameter  
Operating voltage  
Min  
2.4  
-
Typ  
-
Max  
5.5  
-
Unit  
V
Test Conditions  
VDD  
Oscillator frequnecy  
10  
kHz  
TA = 25 °C,  
VDD = 5V  
-10[1]  
-35[2]  
-
-
10[1]  
35[2]  
%
%
FLRC  
Frequency drift over temperarure  
and volatge  
TA=-40~105°C  
Without software calibration  
[3]  
ILRC  
Operating current  
Stable time  
-
-
0.85  
500  
1
-
µA  
VDD = 3.3V  
TS  
μs  
TA=-40~105°C  
Notes:  
1. Guaranteed by characterization, tested in production.  
2. Guaranteed by characterization, not tested in production.  
3. Guaranteed by design.  
Table 8.3-5 10 kHz Internal Low Speed RC Oscillator(LIRC) characteristics  
Feb. 25, 2021  
62 of 81  
Rev 1.02  
8.3.5  
I/O AC Characteristics  
Symbol  
Parameter  
Typ.  
4.6  
2.9  
6.6  
4.3  
8.5  
8.0  
4.0  
2.1  
4.9  
3.0  
9.5  
5.4  
5.6  
3.4  
8.1  
5.1  
15.1  
9.6  
4.8  
2.1  
6.4  
3.0  
12.7  
5.4  
Max[*1]  
.
Unit  
Test Conditions[*2]  
5.1  
3.3  
8
CL = 30 pF, VDD >= 5.5 V  
CL = 10 pF, VDD >= 5.5 V  
CL = 30 pF, VDD >= 3.3 V  
CL = 10 pF, VDD >= 3.3 V  
CL = 30 pF, VDD >= 2.4 V  
CL = 10 pF, VDD >= 2.4 V  
CL = 30 pF, VDD >= 5.5 V  
CL = 10 pF, VDD >= 5.5 V  
CL = 30 pF, VDD >= 3.3 V  
CL = 10 pF, VDD >= 3.3 V  
CL = 30 pF, VDD >= 2.4 V  
CL = 10 pF, VDD >= 2.4 V  
CL = 30 pF, VDD >= 5.5 V  
CL = 10 pF, VDD >= 5.5 V  
CL = 30 pF, VDD >= 3.3 V  
CL = 10 pF, VDD >= 3.3 V  
CL = 30 pF, VDD >= 2.4 V  
CL = 10 pF, VDD >= 2.4 V  
CL = 30 pF, VDD >= 5.5 V  
CL = 10 pF, VDD >= 5.5 V  
CL = 30 pF, VDD >= 3.3 V  
CL = 10 pF, VDD >= 3.3 V  
CL = 30 pF, VDD >= 2.4 V  
CL = 10 pF, VDD >= 2.4 V  
CL = 30 pF, VDD >= 2.4 V  
CL = 10 pF, VDD >= 2.4 V  
Normal mode[4] output high (90%) to low level (10%)  
falling time  
tf(IO)out  
tf(IO)out  
tr(IO)out  
ns  
5
12.5  
10.7  
4.3  
2.5  
5.8  
3.7  
13.8  
7.4  
6.1  
3.7  
9.4  
5.8  
20.3  
12.4  
5.2  
2.5  
7.4  
3.7  
16.9  
7.4  
High slew rate mode [5] output high (90%) to low level  
(10%) falling time  
ns  
Normal mode[4] output low (10%) to high level (90%)  
rising time  
ns  
High slew rate mode [5] output low (10%) to high level  
(90%) rising time  
tr(IO)out  
ns  
[*3]  
fmax(IO)out  
I/O maximum frequency  
24  
24  
MHz  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. CL is a external capacitive load to simulate PCB and device loading.  
2
3. The maximum frequency is defined by 푚푎푥  
=
.
)
3 × (푡 +푡  
4. PxSR.n bit value = 0, Normal output slew rate  
5. PxSR.n bit value = 1, high speed output slew rate  
Table 8.3-6 I/O AC characteristics  
Feb. 25, 2021  
63 of 81  
Rev 1.02  
8.4 Analog Characteristics  
8.4.1  
Reset and Power Control Block Characteristics  
The parameters in below table are derived from tests performed under ambient temperature.  
Symbol  
Parameter  
POR operating current  
LVR operating current  
BOD operating current  
POR reset voltage  
Min  
10  
Typ  
Max  
20  
Unit  
Test Conditions  
AVDD = 5.5V  
[*1]  
IPOR  
µA  
[*1]  
ILVR  
0.5  
-
-
0.5  
1.15  
2.0  
4.4  
3.7  
2.7  
2.2  
-
1
AVDD = 5.5V  
[*1]  
IBOD  
2.9  
1.3  
2.4  
4.55  
3.85  
2.80  
2.35  
80  
AVDD = 5.5V  
VPOR  
VLVR  
VBOD  
1
V
-
LVR reset voltage  
1.7  
4.25  
3.55  
2.60  
2.10  
60  
-
BOD brown-out detect voltage  
BOV[1:0] = [0,0]  
BOV[1:0] = [0,1]  
BOV[1:0] = [1,0]  
BOV[1:0] = [1,1]  
-
[*1]  
TLVR_SU  
LVR startup time  
LVR respond time  
µs  
[1]  
TLVR_RE  
0.4  
180  
180  
2.5  
-
4
Fsys = HIRC@16MHz  
Fsys = LIRC  
-
350  
320  
5
[1]  
TBOD_SU  
BOD startup time  
BOD respond time  
-
Fsys = HIRC@16MHz  
Fsys = HIRC@16MHz  
[1]  
TBOD_RE  
-
Notes:  
1. Guaranteed by characterization, not tested in production.  
2. Design for specified applcaiton.  
Table 8.4-1 Reset and power control unit  
VDD  
RVDDR  
RVDDF  
VBOD  
VLVR  
VPOR  
Time  
Feb. 25, 2021  
64 of 81  
Rev 1.02  
BODFLT  
(BODCON1.1)  
System Clock  
Source  
BOD Operation Mode  
Minimum Brown-out Detect Pulse Width  
0
Normal mode  
(LPBOD[1:0] = [0,0])  
Any clock source  
Any clock source  
Any clock source  
Any clock source  
Typ. 1μs  
Low power mode 1  
(LPBOD[1:0] = [0,1])  
16 (1/FLIRC  
)
)
Low power mode 2  
(LPBOD[1:0] = [1,0])  
64 (1/FLIRC  
Low power mode 3  
(LPBOD[1:0] = [1,1])  
256 (1/ FLIRC  
)
1
Normal operation: 32 (1/FSYS  
Idle mode: 32 (1/FSYS  
Power-down mode: 2 (1/FLIRC  
)
HIRC/ECLK  
)
Normal mode  
(LPBOD[1:0] = [0,0])  
)
LIRC  
2 (1/FLIRC)  
Low power mode 1  
(LPBOD[1:0] = [0,1])  
Any clock source  
18 (1/FLIRC  
)
)
Low power mode 2  
(LPBOD[1:0] = [1,0])  
Any clock source  
Any clock source  
66 (1/FLIRC  
Low power mode 3  
(LPBOD[1:0] = [1,1])  
258 (1/ FLIRC  
)
Table 8.4-2 Minimum Brown-out Detect Pulse Width  
Feb. 25, 2021  
65 of 81  
Rev 1.02  
8.4.2  
12-bit SAR ADC  
Symbol  
TA  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Temperature  
-40  
-
105  
AVDD  
VREF  
VIN  
Analog operating voltage  
Reference voltage  
2.7  
2.7  
0
-
-
-
5.5  
V
V
V
AVDD = VDD  
VREF = AVDD  
AVDD  
VREF  
ADC channel input voltage  
AVDD = VDD =VREF = 5.5 V  
FADC = 500 kHz  
[1]  
IADC  
Operating current (AVDD + VREF current)  
Resolution  
-
-
418  
µA  
TCONV = 17 * TADC  
NR  
12  
Bit  
μs  
μs  
2.375  
2.417  
52.6  
19  
13.3  
421  
413  
17  
FSYS = 16MHz;  
FSYS = 24MHz;  
Conversion Time  
[2]  
TADC  
TADC = TSMP +TADCEC  
kHz FSYS = 16MHz;  
kHz FSYS = 24MHz;  
Conversion Rate  
FADC = 1/TADC  
FADC  
75.2  
0.375  
-
-
μs  
μs  
μs  
FSYS = 16MHz;  
TSMP  
Sampling Time [2]z  
Fsys = 24MHz;  
ADCAQT = 1 by software[3]  
0.417  
11.3  
TADCEC  
Encoding Time  
2
-
-
-
-
-
-
-
-
-
This value is fixed by ADC module  
[1]  
FADCEC  
Encoding Rate  
500  
-
kHz This value is fixed by ADC module  
μs  
TEN  
Enable to ready time  
Integral Non-Linearity Error  
Differential Non-Linearity Error  
Gain error  
20  
-3  
INL[*1]  
DNL[*1]  
+3  
LSB VREF = AVDD =VDD  
LSB VREF = AVDD=VDD  
LSB VREF = AVDD=VDD  
LSB VREF = AVDD=VDD  
LSB VREF = AVDD=VDD  
-2  
+4  
[*1]  
EG  
-3.5  
-2  
+0.4  
+2.8  
+7  
[*1]  
EO  
Offset error  
T
[*1]  
EA  
Absolute Error  
-7  
Notes:  
1. Guaranteed by characterization result, not tested in production.  
2. ADC Convertion time = ADC Sampling Time (TSMP) + ADC Encoding Time (TADCEC).  
4* ADCAQT 6  
3. ADC Sampling Time =.  
FADC base on ADCDIV (ADCCON1[5:4])  
F
ADC  
6
If HIRC = 16MHz, ADC Sampling Time Minimum condition  
(ADCAQT = 0, ADCDIV = 0), ADC Sampling Time  
16MHz  
4*76  
16MHz / 8  
Maximum condition  
(ADCAQT = 7, ADCDIV = 7)  
4*16  
24MHz  
If HIRC = 24MHz, ADC Sampling Time Minimum condition  
(ADCAQT = 1, ADCDIV = 0), Since the minimum  
sampling time must over 370ns that means when FADCAQT = 24MHz, ADCAQT must be set as 1 by software at least.  
4*76  
24MHz / 8  
ADC Sampling Time Maximum condition  
(ADCAQT = 7, ADCDIV = 7)  
Table 8.4-3 ADC characteristics  
Feb. 25, 2021  
66 of 81  
Rev 1.02  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer  
curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and  
gain error from the actual transfer curve.  
Feb. 25, 2021  
67 of 81  
Rev 1.02  
8.5 Flash DC Electrical Characteristics  
The devices are shipped to customers with the Flash memory erased.  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
1.8  
5
Max  
Unit  
V
Test Condition  
[1]  
VFLA  
1.62  
1.98  
TERASE  
TPROG  
IDD1  
Page erase time  
Program time  
Read current  
-
-
-
-
-
-
-
-
-
-
ms  
µs  
10  
4
TA = 25  
mA  
mA  
mA  
IDD2  
Program current  
Erase current  
4
IDD3  
12  
NENDUR  
Endurance  
100,000  
50  
-
-
-
-
cycles[2]  
year  
TJ = -40~125℃  
100 kcycle[3] TA = 55℃  
100 kcycle[3] TA = 85℃  
100 kcycle[3] TA = 105℃  
-
-
-
TRET  
Data retention  
25  
year  
10  
year  
Notes:  
1. VFLA is source from chip internal LDO output voltage.  
2. Number of program/erase cycles.  
3. Guaranteed by design.  
Table 8.5-1 Flash memory characteristics  
Feb. 25, 2021  
68 of 81  
Rev 1.02  
8.6 Absolute Maximum Ratings  
Volrage Stesses above the absolute maximum ratings may cause permanent damage to the device.  
The limiting values are stress ratings only and cannot be used to functional operation of the device.  
Exposure to the absolute maximum ratings may affect device reliability and proper operation is not  
guaranteed.  
8.6.1  
Voltage Characteristics  
Symbol  
Description  
Min  
Max  
6.5  
50  
Unit  
V
[*1]  
VDD-VSS  
DC power supply  
-0.3  
ΔVDD  
|VDD AVDD  
ΔVSS  
Variations between different power pins  
Allowed voltage difference for VDD and AVDD  
Variations between different ground pins  
Allowed voltage difference for VSS and AVSS  
Input voltage on I/O  
-
mV  
mV  
mV  
mV  
V
|
-
50  
-
50  
|VSS - AVSS  
|
-
50  
VIN  
VSS-0.3  
5.5  
Notes:  
1. All main power (VDD, AVDD) and ground (VSS, AVSS) pins must be connected to the external power supply.  
Table 8.6-1 Voltage characteristics  
8.6.2  
Current Characteristics  
Symbol  
Description  
Min  
Max  
200  
200  
22  
Unit  
[*1]  
ΣIDD  
Maximum current into VDD  
Maximum current out of VSS  
-
-
-
-
-
-
ΣISS  
Maximum current sunk by a I/O Pin  
mA  
Maximum current sourced by a I/O Pin  
Maximum current sunk by total I/O Pins[*2]  
Maximum current sourced by total I/O Pins[*2]  
10  
IIO  
100  
100  
Note:  
1.  
Maximum allowable current is a function of device maximum power dissipation.  
2.  
This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not  
be sunk/sourced between two consecutive power supply pins.  
3.  
A positive injection is caused by VIN>AVDD and a negative injection is caused by VIN<VSS. IINJ(PIN) must never be  
exceeded. It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage  
supply pin.  
Table 8.6-2 Current characteristics  
Feb. 25, 2021  
69 of 81  
Rev 1.02  
8.6.3  
Thermal Characteristics  
The average junction temperature can be calculated by using the following equation:  
T
T
+ (P  
x
)
J
=
A
D
θJA  
TA = ambient temperature (°C)  
θJA = thermal resistance junction-ambient (°C/Watt)  
P
D
= sum of internal and I/O power dissipation  
Symbol  
Description  
Min  
Typ  
Max  
105  
125  
150  
Unit  
T
A
-40  
Operating ambient temperature  
Operating junction temperature  
Storage temperature  
-
-
-
T
J
-40  
-65  
-
°C  
T
ST  
Thermal resistance junction-ambient  
20-pin QFN(3x3 mm)  
°C/Watt  
°C/Watt  
/Watt  
/Watt  
/Watt  
68  
38  
30  
62  
28  
-
-
-
-
-
Thermal resistance junction-ambient  
20-pin TSSOP(4.4x6.5 mm)  
-
Thermal resistance junction-ambient  
28-pin TSSOP(4.4x9.7 mm)  
[*1]  
θJA  
Thermal resistance junction-ambient  
32-pin LQFP(7x7 mm)  
Thermal resistance junction-ambient  
33-pin QFN(4x4 mm)  
Note:  
1.  
Determined according to JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions  
Table 8.6-3 Thermal characteristics  
Feb. 25, 2021  
70 of 81  
Rev 1.02  
8.6.4  
EMC Characteristics  
8.6.4.1 Electrostatic discharge (ESD)  
For the Nuvoton MCU products, there are ESD protection circuits which built into chips to avoid any  
damage that can be caused by typical levels of ESD.  
8.6.4.2 Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
8.6.4.3 Electrical fast transients (EFT)  
In some application circuit compoment will produce fast and narrow high-frequency trasnients bursts of  
narrow high-frequency transients on the power distribution system..  
Inductive loads:  
Relays, switch contactors  
Heavy-duty motors when de-energized etc.  
The fast transient immunity requirements for electronic products are defined in IEC 61000-4-4 by  
International ElectrotechnicalCommission (IEC).  
Symbol  
Description  
Electrostatic discharge,human body mode  
Electrostatic discharge,charge device model  
Pin current for latch-up[*3]  
Min  
-8000  
-1000  
-400  
Typ  
Max  
+8000  
+1000  
+400  
Unit  
[*1]  
VHBM  
-
-
-
-
V
[*2]  
VCDM  
LU[*3]  
mA  
kV  
[*4] [*5]  
VEFT  
-4.4  
Fast transient voltage burst  
+4.4  
Notes:  
1. Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human  
Body Model (HBM) Component Level  
2. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing –  
Charged Device Model (CDM) Component Level.  
3. Determined according to JEDEC EIA/JESD78 standard.  
4. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test.  
5. The performace cretia class is 4A.  
Table 8.6-4 EMC characteristics  
Feb. 25, 2021  
71 of 81  
Rev 1.02  
8.6.5  
Package Moisture Sensitivity(MSL)  
The MSL rating of an IC determines its floor life before the board mounting once its dry bag has been  
opened. All Nuvoton surface mount chips have a moisture level classification. The information is also  
displayed on the bag packing.  
Pacakge[1]  
MSL  
20-pin QFN(3x3 mm)  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
MSL 3  
20-pin TSSOP(4.4x6.5 mm)  
28-pin TSSOP (4.4 x 9.7 x 1.0 mm)  
32-pin LQFP (7.0 x 7.0 x 1.4 mm)  
33-pin QFN ( 4.0 x 4.0 x0.8 mm)  
Note:  
1. Determined according to IPC/JEDEC J-STD-020  
Table 8.6-5 Package Moisture Sensitivity(MSL)  
Feb. 25, 2021  
72 of 81  
Rev 1.02  
8.6.6  
Soldering Profile  
Figure 8.6-1 Soldering profile from J-STD-020C  
Porfile Feature  
Pb Free Package  
3°C/sec. max  
Average ramp-up rate (217°C to peak)  
Preheat temperature 150°C ~200°C  
Temperature maintained above 217°C  
Time with 5°C of actual peak temperature  
Peak temperature range  
60 sec. to 120 sec.  
60 sec. to 150 sec.  
> 30 sec.  
260°C  
Ramp-down rate  
6°C/sec ax.  
8 min. max  
Time 25°C to peak temperature  
Note:  
1. Determined according to J-STD-020C  
Table 8.6-6 Soldering Profile  
Feb. 25, 2021  
73 of 81  
Rev 1.02  
9 PACKAGE DIMENSIONS  
9.1 QFN 33-pin (4.0 x 4.0 x 0.8 mm)  
Figure 9.1-1 QFN-33 Package Dimension  
Feb. 25, 2021  
74 of 81  
Rev 1.02  
9.2  
LQFP 32-pin (7.0 x 7.0 x 1.4 mm)  
Figure 9.2-1 LQFP-32 Package Dimension  
Feb. 25, 2021  
75 of 81  
Rev 1.02  
9.3  
TSSOP 28-pin (4.4 x 9.7 x 1.0 mm)  
Figure 9.3-1 TSSOP-28 Package Dimension  
Feb. 25, 2021  
76 of 81  
Rev 1.02  
9.4  
TSSOP 20-pin (4.4 x 6.5 x 0.9 mm)  
Figure 9.4-1 TSSOP-20 Package Dimension  
Feb. 25, 2021  
77 of 81  
Rev 1.02  
9.5  
QFN 20-pin (3.0 x 3.0 x 0.6mm)  
Figure 9.5-1 QFN-20 Package Dimension for MS51XC0BE  
Feb. 25, 2021  
78 of 81  
Rev 1.02  
10 ABBREVIATIONS  
10.1 Abbreviations List  
Acronym  
ADC  
BOD  
GPIO  
Fsys  
HIRC  
IAP  
Description  
Analog-to-Digital Converter  
Brown-out Detection  
General-Purpose Input/Output  
Frequency of system clock  
12 MHz Internal High Speed RC Oscillator  
In Application Programming  
In Circuit Programming  
ICP  
ISP  
In System Programming  
LDO  
Low Dropout Regulator  
LIRC  
LVR  
10 kHz internal low speed RC oscillator (LIRC)  
Low Voltage $eset  
PDMA  
POR  
PWM  
SPI  
Peripheral Direct Memory Access  
Power On Reset  
Pulse Width Modulation  
Serial Peripheral Interface  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
UART  
UCID  
WKT  
WDT  
Wakeup Timer  
Watchdog Timer  
Table 10.1-1 List of Abbreviations  
Feb. 25, 2021  
79 of 81  
Rev 1.02  
11 REVISION HISTORY  
Date  
Revision  
Chapter  
Description  
2019.11.28  
1.00  
Initial release  
Section 3.2  
Modified selection guide table MS51FC0AE/MS51XC0BE ISO  
7816-3 number to 2. Added description for MS51FC0AE.  
Added P3.0 PWM2_CH1 pin define in Pin Description table.  
Modified EFT level to 4.4kV  
2019.12.25  
2021.02.25  
1.01  
1.02  
Section 4.2  
Section 8.6.4  
Section 3.2  
Section 8.4.2  
Section 9.1  
Added description for MS51EB0AE.  
Added ADC sampling timing data of FSYS = 24MHz.  
Modified QFN33 package dimension to add lead length L1  
condition.  
Section 9.5  
Modified QFN20 package dimension to add lead length L1  
condition.  
Feb. 25, 2021  
80 of 81  
Rev 1.02  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types  
of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims  
to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages  
and liabilities thus incurred by Nuvoton.  
Feb. 25, 2021  
81 of 81  
Rev 1.02  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY