N682387MG [NUVOTON]

Dual Programmable Extended Codec/SLCC SLFC;
N682387MG
型号: N682387MG
厂家: NUVOTON    NUVOTON
描述:

Dual Programmable Extended Codec/SLCC SLFC

电信 电信集成电路
文件: 总160页 (文件大小:2020K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
1. DESCRIPTION  
The N682386/87, implements a dual channel FXS telephone line interface optimized for short loop applications. It  
integrates SLCC (Subscriber Line Control Circuit) functionality with a dual programmable CODEC and a dual DC/DC  
controller. The SLCC supports internal ringing up to 90 VPK (5 REN at 4k ft) ideal for Customer Premise Equipment  
(CPE). The CODEC can be configured for μ-law, A-law or 16-bit linear PCM encoding. It also supports a  
comprehensive set of signaling capabilities required to supervise and control the telephone lines. These include tone  
generation, ring tones, DTMF detection/ generation as well as FSK generation. An on-chip Pulse Width Modulation  
(PWM) driver allows control of an inductor based DC/DC converter. Programmable impedance and trans-hybrid  
balancing allow for worldwide deployment.  
¡
¡
Wideband and Narrowband codec (N682387)  
2. FEATURES  
Optional integrated (N681622) or discrete  
Subscriber Line Feed Circuit  
¡
¡
Complete BORSCHT functions  
APPLICATIONS  
Internal balanced and unbalanced ringing up to 90  
VPK (5 REN up to 4k ft)  
¡
¡
Integrated Power Management Options  
¡
¡
¡
¡
¡
¡
¡
¡
Residential VoIP Gateways / Routers/ IP-PBX  
ƒ
Integrated DC/DC controller regulates battery  
voltage to minimize power dissipation in all  
operating modes  
Fiber to the Premise/Home (FTTP/H)  
Wireless Local Loop  
Optical Network Terminals (ONT)  
Analog Telephone Adapter (ATA)  
Voice enabled DSL/Cable Modems  
Integrated Access Devices  
Set Top Boxes  
ƒ
Programmable external battery switching  
Programmable linefeed characteristics  
ƒ
ƒ
ƒ
Ringing Frequency, Amplitude, and Cadence  
Trapezoidal and Sinusoidal waveforms  
Two wire AC impedance, and trans-hybrid  
balance  
Ordering Information  
ƒ
ƒ
ƒ
Constant Current feed (20 to 41) mA  
Ring Trip and Loop Closure Thresholds  
Ground Key Detection  
Temp  
Part Number  
Package  
Material  
Package  
64-TQFP  
Range (oC)  
¡
¡
Programmable signal generation and detection  
N682386MG  
-40 to 85  
Pb-Free  
ƒ
DTMF generation/ detection and Tone  
generation  
N682387MG  
N682386YG  
-40 to 85  
ƒ
Frequency Shift Keying (FSK) Enhanced Caller  
ID generation (Type I and Type II)  
64-QFN..  
20-QFN  
Pb-Free  
Pb-Free  
N682387YG  
Loop test and diagnostics support  
N681622YG  
-40 to 85  
ƒ
ƒ
ƒ
ƒ
Integrated loopback modes  
Real-time linefeed monitoring  
On-chip temperature sensor  
Line Card Diagnostics Support  
U.S. Patent # 7260212 B1  
! WARNING !  
HIGH VOLTAGE WARNING USE EXTREME CAUTION  
¡
Digital interfaces  
ƒ
ƒ
ƒ
PCM: G.711 μ-Law, A-Law and 16-bit linear  
GCI and SPI bus  
High voltage sources could cause serious injury or  
death if not used in accordance with design and/or user  
specifications, if they are used by untrained or  
unqualified personnel. Before testing Nuvoton’s products  
read and understand all instructions, and safety  
procedures as in industry standard safe practices.  
Programmable audio path gains  
¡
¡
Both PCM Master and Slave modes supported  
On-chip PLL for flexible clocking options including  
1.0 MHz and 2.0 MHz BCLK operation  
¡
¡
Operating voltage: 3.3V  
Narrowband Codec (N682386)  
Revision 1.3  
Page 1 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
3. PIN CONFIGURATION  
Figure 1: Pin Configuration  
Figure 2: N6816Subscriber Lie Feed Circut (SLFC) Pin Configuration  
*Note: Heat sink metal paddle under device soulbe connected to VBAT plane on PCB for heat dissipation  
as it is internally connected to Vbat pin.  
Revision 1.3  
Page 2 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
4. PIN DESCRIPTION  
4.1. N682386/87 Pin Description  
Pin  
Type  
Pin Name Pin No.  
Functionality  
A/D  
VDD2  
RIP2  
1
2
Line-driver 3.3 V supply  
A
A
A
A
A
A
A
A
A
A
A
D
A
P2  
I/O2  
O2  
O2  
G2  
O2  
I2  
Positive RING Driver current source & Voltage sense  
Negative RING Driver current source  
Positive TIP Driver Base Voltage Control  
Line-driver ground supply  
RIN2  
TVB2  
GND2  
RVB2  
RAC2  
TAC2  
CR2  
3
4
5
6
Positive RING Driver Base Voltage Control  
RING Voice Band Input  
7
8
TIP Voice Band Input  
I2  
9
External Capacitor RING  
I/O2  
I/O2  
G4  
P4  
CT2  
10  
11  
12  
External Capacitor TIP  
GND4  
VDD4  
Line-driver ground supply  
Line-driver 3.3 V supply  
I/O2  
VREF2  
13  
Precision Reference Voltage  
IREF  
DCL2  
DCH2  
14  
15  
16  
17  
Current Reference  
A
A
A
D
I/O  
I2  
DC/DC Converter Current Sense LOWER input Voltage  
DC/DC Converter Current Sense HIGHER input Voltage  
Interrupt. Mask able interrupt. Open drain output for wired-or operation  
I2  
O
INT  
CS  
Chip Select. When inactive, SCLK and SDI are ignored and SDO is high  
impedance. When active, serial port is operational  
18  
D
I
SCLK  
SDI  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Serial port bit clock. Controls serial data on SDO and latches data on SDI  
Serial port data in. Serial port control data  
Serial port data out. Serial port control data  
DC/DC converter Control for external NPN BJT  
DC/DC Converter Control for external PNP BJT  
Logic I/O ground supply  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
I
I
SDO  
O
DCN2  
DCP2  
GND5  
VDD5  
DCN1  
DCP1  
PCMT  
FS  
O2  
O2  
G5  
P5  
O1  
O1  
O
3.3 V Logic I/O supply  
DC/DC converter Control for external NPN BJT  
DC/DC Converter Control for external PNP BJT  
Serial PCM Transmit data  
8 or 16 kHz Frame Sync  
I/O  
I
BCLK  
PCMR  
DSY  
PCM Bit Clock. Also used as internal PLL reference clock  
Serial PCM Receive data  
I
SPI Daisy Chain Enable  
I
Reset. Active Low. Hardware reset used to place all control registers in  
default state.  
33  
D
I
RESET  
DCH1  
DCL1  
34  
35  
36  
DC/DC Converter Current Sense Higher input Voltage  
DC/DC Converter Current Sense Lower input Voltage  
Half Supply Reference Voltage to VDD  
A
A
A
I1  
I1  
P
VREF1  
Revision 1.3  
Page 3 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Pin  
Type  
Pin Name Pin No.  
Functionality  
A/D  
A
3.3 V Analog AC path and reference Supply Voltage  
VDD3  
37  
P3  
GND3  
CT1  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Analog AC path and reference Supply ground  
External Capacitor TIP  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
G3  
I/O  
I/O  
I1  
CR1  
External Capacitor RING  
TAC1  
RAC1  
RVB1  
GND1  
TVB1  
RIN1  
RIP1  
TIP Voice Band Input  
RING Voice Band Input  
I1  
Positive RING Driver Base Voltage Control  
Line-driver ground supply  
O1  
G1  
O1  
O1  
I/O1  
P1  
I/O1  
O1  
I1  
Positive TIP Driver Base Voltage Control  
Negative RING Driver current source  
Positive RING Driver current source & Voltage sense  
Line-driver 3.3 V supply  
VDD1  
TPP1  
TIN1  
Positive TIP Driver current source & Voltage sense  
Negative TIP Driver current source  
RVE1  
BAT1  
TVE1  
SDB1  
SCM1  
SDA1  
SDA2  
SCM2  
SDB2  
TVE2  
BAT2  
RVE2  
TIN2  
RING line-driver emitter voltage sense  
Battery voltage monitoring  
I1  
TIP line-driver emitter voltage sense  
I1  
Subscriber Loop Differential sense signal B from linefeed circuit  
Subscriber Common Mode sense signal from linefeed circuit  
Subscriber Loop Differential sense signal A from linefeed circuit  
Subscriber Loop Differential sense signal A from linefeed circuit  
Subscriber Common Mode sense signal from linefeed circuit  
Subscriber Loop Differential sense signal B from linefeed circuit  
TIP line-driver emitter voltage sense  
I1  
I1  
I1  
I2  
I2  
I2  
I2  
Battery voltage monitoring  
I2  
RING line-driver emitter voltage sense  
Negative TIP Driver current source  
I2  
O2  
I/O3  
TPP2  
Positive TIP Driver current source & Voltage sense  
Table 1: Pin Description  
A
D
G
Analog  
Digital  
O
I
Output  
Input  
Ground  
P
Power  
Revision 1.3  
Page 4 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
4.2. N681622 Pin Description  
Pin Name  
Pin No.  
1
Functionality  
Ring Driver Pull up Current from 34.8 Ohm resistor  
Tip Pull-Up Driver control voltage  
Tip Driver Pull up Current from 34.8 Ohm resistor  
Ring Pull-Up Driver control voltage  
Supply ground (0V)  
Type  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
LV  
HV  
Pin Type  
RIP  
TVB  
TPP  
RVB  
GND  
VDD  
SDB  
SDA  
TIN  
I/O  
I
2
3
I/O  
I
4
5
G
P
6
3.3V Supply  
7
Subscriber differential signal B  
Subscriber differential signal A  
Tip DC Pull-Down current  
Ring DC Pull-Down current  
Subscriber differential Ring input  
Not connected  
O
O
I
8
9
RIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
I
SDR  
NC  
I/O  
NC  
Not connected  
NC  
Not connected  
VBAT  
RING  
NC  
Battery Supply Voltage  
HV  
HV  
P
Ring terminal  
O
Not connected  
TIP  
Tip terminal  
HV  
HV  
O
NC  
Not connected  
SDT  
Subscriber differential Tip input  
I/O  
*Note: Heat sink metal paddle under device should be connected to VBAT plane for heat dissipation as it is internally  
connected to Vbat as shown in Figure 2.  
Table 2: N681622 Pin Description  
LV  
HV  
G
Low Voltage  
High Voltage  
Ground  
O
I
Output  
Input  
P
Power  
Revision 1.3  
Page 5 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
5. BLOCK DIAGRAM  
Figure 3: Block Diagram  
Revision 1.3  
Page 6 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
6. TABLE OF CONTENTS  
1.  
DESCRIPTION...........................................................................................................................................1  
FEATURES ................................................................................................................................................1  
PIN CONFIGURATION ..............................................................................................................................2  
PIN DESCRIPTION....................................................................................................................................3  
N682386/87 PIN DESCRIPTION ...............................................................................................................3  
N681622 PIN DESCRIPTION ....................................................................................................................5  
BLOCK DIAGRAM......................................................................................................................................6  
TABLE OF CONTENTS .............................................................................................................................7  
LIST OF FIGURES...................................................................................................................................14  
LIST OF TABLES .....................................................................................................................................16  
ABSOLUTE MAXIMUM RATINGS ...........................................................................................................17  
DUAL PROGRAMMABLE EXTENDED CODEC/SLCC (N682386/87).....................................................17  
N681622 SUBSCRIBER LINE FEED CIRCUIT (SLFC) ...........................................................................17  
OPERATING CONDITIONS.....................................................................................................................18  
SINGLE PROGRAMMABLE EXTENDED CODEC/SLCC (N682386/87).................................................18  
SUBSCRIBER LINE FEED CIRCUIT (N681622) .....................................................................................18  
ELECTRICAL CHARACTERISTICS.........................................................................................................19  
GENERAL PARAMETERS (N682386/87)................................................................................................19  
SUPPLY PARAMETERS DISCRETE SOLUTION (N682386/87 AND DISCRETE LINE DRIVER) .........19  
SUPPLY PARAMETERS SLFC SOLUTION (N682386/87 AND N681622) .............................................20  
MONITORING A/D PARAMETERS..........................................................................................................21  
ANALOG SIGNAL LEVEL AND GAIN PARAMETERS ............................................................................21  
2-WIRE TO 4-WIRE CONVERSION PARAMETERS...............................................................................22  
2-WIRE PARAMETERS ...........................................................................................................................22  
LINEFEED CHARACTERISTICS .............................................................................................................22  
ANALOG DISTORTION AND NOISE PARAMETERS .............................................................................23  
FUNCTIONAL DESCRIPTION.................................................................................................................24  
BORSCHT FUNCTIONALITY ..................................................................................................................25  
BATTERY FEED ......................................................................................................................................25  
LINEFEED STATES OF OPERATION.....................................................................................................27  
2.  
3.  
4.  
4.1.  
4.2.  
5.  
6.  
7.  
8.  
9.  
9.1.  
9.2.  
10.  
10.1.  
10.2.  
11.  
11.1.  
11.2.  
11.3.  
11.4.  
11.5.  
11.6.  
11.7.  
11.8.  
11.9.  
12.  
12.1.  
12.1.1.  
12.1.1.1.  
12.1.1.1.1. OPEN STATE...........................................................................................................................................27  
12.1.1.1.2. ACTIVE, IDLE AND ON-HOOK TRANSMISSION STATES.....................................................................27  
12.1.1.1.3. TIP OPEN STATE ....................................................................................................................................27  
12.1.1.1.4. RING OPEN STATE.................................................................................................................................28  
12.1.1.1.5. RINGING STATE......................................................................................................................................28  
12.1.1.1.6. CALIBRATION STATE.............................................................................................................................28  
Revision 1.3  
Page 7 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.1.2.  
12.1.1.3.  
OPERATION MODES ..............................................................................................................................28  
AUTOMATIC TRANSITIONS ...................................................................................................................28  
12.1.1.3.1. POWER ALARM AUTOMATIC REACT ...................................................................................................28  
12.1.1.3.2. SETTING RING AUTOMATIC..................................................................................................................28  
12.1.1.3.3. SETTING LOOP CLOSURE DETECT AUTOMATIC REACT ..................................................................29  
12.1.1.4.  
POLARITY REVERSAL............................................................................................................................31  
12.1.1.4.1. HARD POLARITY REVERSAL ................................................................................................................31  
12.1.1.4.2. SOFT POLARITY REVERSAL.................................................................................................................31  
12.1.1.5.  
12.1.2.  
WINK FUNCTION POLARITY REVERSAL..............................................................................................32  
OVER-VOLTAGE PROTECTION.............................................................................................................32  
THERMAL OVERLOAD ...........................................................................................................................33  
TEMPERATURE MONITOR ....................................................................................................................34  
RINGING..................................................................................................................................................35  
TONE GENERATION...............................................................................................................................35  
RING SIGNAL GENERATION..................................................................................................................38  
12.1.2.1.  
12.1.2.2.  
12.1.3.  
12.1.3.1.  
12.1.3.2.  
12.1.3.2.1. SINUSOIDAL RINGING ...........................................................................................................................40  
12.1.3.2.2. TRAPEZOIDAL RINGING ........................................................................................................................41  
12.1.3.2.3. RINGING DC OFFSET AND COMMON MODE BIAS..............................................................................42  
12.1.3.2.4. LINEFEED CONSIDERATIONS DURING RINGING ...............................................................................43  
12.1.3.3.  
12.1.3.4.  
12.1.4.  
INTERNAL UNBALANCED RINGING......................................................................................................43  
RING TRIP DETECTION..........................................................................................................................44  
SUPERVISION (SIGNALING)..................................................................................................................46  
LOOP CLOSURE DETECTION................................................................................................................46  
GROUND KEY DETECTION....................................................................................................................48  
CALLER ID AND FSK GENERATION......................................................................................................49  
DTMF GENERATOR................................................................................................................................50  
DTMF DETECTION..................................................................................................................................52  
CODEC ....................................................................................................................................................53  
HYBRID....................................................................................................................................................53  
AC PATH..................................................................................................................................................53  
12.1.4.1.  
12.1.4.2.  
12.1.4.3.  
12.1.4.4.  
12.1.4.5.  
12.1.5.  
12.1.6.  
12.1.6.1.  
12.1.6.1.1. NARROWBAND TRANSMIT PATH .........................................................................................................53  
12.1.6.1.2. NARROWBAND RECEIVE PATH............................................................................................................53  
12.1.6.1.3. ANALOG TRANSHYBRID BALANCING ..................................................................................................54  
12.1.6.1.4. IMPEDANCE MATCHING........................................................................................................................55  
12.1.6.1.1. DAC/ADC AUTOMUTE ............................................................................................................................56  
12.1.7.  
TESTING..................................................................................................................................................57  
LOOP BACK TESTS ................................................................................................................................57  
DIAGNOSTICS SUPPORT ......................................................................................................................58  
12.1.7.1.  
12.1.7.2.  
Revision 1.3  
Page 8 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.8.  
POWER INTERFACE...............................................................................................................................58  
DC/DC CONVERSION (INDUCTOR).......................................................................................................59  
EXTERNAL BATTERY SWITCHING........................................................................................................61  
DIGITAL INTERFACE ..............................................................................................................................62  
CLOCK GENERATION ............................................................................................................................62  
PCM INTERFACE ....................................................................................................................................63  
WIDEBAND AND NARROWBAND OPERATION ....................................................................................64  
TOGGLING BETWEEN WIDEBAND AND NARROWBAND....................................................................65  
PCM INTERFACE IN WIDEBAND OPERATION .....................................................................................65  
12.1.8.1.  
12.1.8.2.  
12.2.  
12.2.1.  
12.2.2.  
12.2.2.1.  
12.2.2.2.  
12.2.2.3.  
12.2.2.3.1. PCM INTERFACE 8KHZ FRAME SYNC..................................................................................................65  
12.2.2.3.2. PCM INTERFACE 16KHZ FRAME SYNC................................................................................................66  
12.2.2.4.  
12.2.3.  
12.2.4.  
12.2.5.  
12.2.6.  
12.2.7.  
12.2.7.1.  
12.3.  
PLL & PRESCALER IN WIDEBAND OPERATION..................................................................................66  
SERIAL PERIPHERAL INTERFACE (SPI)...............................................................................................67  
READ/WRITE SEQUENCE (8-BIT OR 16-BIT)........................................................................................68  
SPI DAISY CHAIN....................................................................................................................................70  
SPI BURST MODE...................................................................................................................................71  
SPECIAL READ SEQUENCE FOR 12-BIT WIDE REGISTER ................................................................72  
12-BIT READ SEQUENCE.......................................................................................................................72  
POWER-ON RESET ................................................................................................................................73  
INTERRUPT HANDLING .........................................................................................................................74  
GENERAL DESCRIPTION FOR N681622 SUBSCRIBER LINE FEED CIRCUIT (SLFC) .......................75  
FUNCTIONAL DESCRIPTION FOR N681622 SUBSCRIBER LINE FEED CIRCUIT (SLFC) .................75  
REGISTER DESCRIPTION......................................................................................................................76  
PCM CONTROL REGISTERS .................................................................................................................81  
PCM CONTROL REGISTER....................................................................................................................81  
RECEIVE/TRANSMIT TIMESLOT (WIDEBAND AND NARROWBAND) .................................................81  
PLL STATUS REGISTER.........................................................................................................................82  
PCM FREQUENCY SETTING REGISTER ..............................................................................................83  
SILICON REVISION ID REGISTER (READ ONLY) .................................................................................84  
DEVICE VERSION ID REGISTER (READ ONLY)...................................................................................84  
TIMESLOT (WIDEBAND).........................................................................................................................84  
FSK REGISTERS.....................................................................................................................................85  
FSK CONTROL REGISTER.....................................................................................................................85  
FSK TRANSMIT REGISTER....................................................................................................................85  
FSK STATUS REGISTER (READ ONLY)................................................................................................86  
FSK LCR REGISTER...............................................................................................................................86  
FSK TCR REGISTER...............................................................................................................................87  
DIAGNOSTIC REGISTERS .....................................................................................................................88  
12.4.  
13.  
13.1.  
14.  
14.1.  
14.1.1.  
14.1.2.  
14.1.3.  
14.1.4.  
14.1.5.  
14.1.6.  
14.1.7.  
14.2.  
14.2.1.  
14.2.2.  
14.2.3.  
14.2.4.  
14.2.5.  
14.3.  
Revision 1.3  
Page 9 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.3.1.  
14.3.2.  
14.3.3.  
14.3.4.  
14.3.5.  
14.3.6.  
14.4.  
DIAGNOSTIC CONTROL 0......................................................................................................................88  
DIAGNOSTIC CONTROL 1......................................................................................................................88  
DIAGNOSTIC CONTROL 2, 3, 4, AND 5 .................................................................................................89  
DIAGNOSTIC CONTROL 6 AND 7 (READ ONLY) ..................................................................................90  
DIAGNOSTIC CONTROL 8 (READ ONLY)..............................................................................................91  
DIAGNOSTIC FIFO 0 AND FIFO1 (READ ONLY) ...................................................................................91  
SYSTEM REGISTERS.............................................................................................................................92  
PCM HPF (HIGH PASS FILTER) .............................................................................................................92  
LOOP BACK CONTROL REGISTER.......................................................................................................92  
POWER ON .............................................................................................................................................93  
LINEFEED TRIM ......................................................................................................................................94  
INTERRUPT REGISTERS .......................................................................................................................95  
INTERRUPT VECTOR LOW (READ ONLY)............................................................................................95  
INTERRUPT STATUS REGISTER 1........................................................................................................95  
INTERRUPT ENABLE REGISTER 1........................................................................................................96  
INTERRUPT STATUS REGISTER 2........................................................................................................96  
INTERRUPT ENABLE REGISTER 2........................................................................................................97  
INTERRUPT STATUS REGISTER 3........................................................................................................97  
INTERRUPT ENABLE REGISTER 3........................................................................................................98  
DTMF DETECTION REGISTER...............................................................................................................99  
DTMF CONTROL 1..................................................................................................................................99  
DTMF CONTROL 2................................................................................................................................100  
DTMF STATUS (READ ONLY) ..............................................................................................................101  
DTMF THRESHOLD ..............................................................................................................................101  
DTMF PRESENT DETECT TIME...........................................................................................................101  
DTMF ABSENT DETECT TIME .............................................................................................................102  
DTMF ACCEPT TIME ............................................................................................................................102  
DTMF RECEIVE DATA STATUS ...........................................................................................................103  
DTMF ROW FREQUENCY ....................................................................................................................103  
14/15 DTMF COLUMN FREQUENCY....................................................................................................104  
LINE REGISTERS..................................................................................................................................105  
AC PATH GAIN......................................................................................................................................105  
HYBRID BALANCE ................................................................................................................................105  
COMMON RINGING BIAS ADJUST DURING RINGING......................................................................106  
LINE AUTOMATIC MANUAL CONTROL...............................................................................................106  
LINEFEED STATUS...............................................................................................................................107  
LOOP CURRENT LIMIT.........................................................................................................................107  
RING TRIP DETECT STATUS/ LOOP CLOSURE STATUS..................................................................108  
14.4.1.  
14.4.2.  
14.4.3.  
14.4.4.  
14.5.  
14.5.1.  
14.5.2.  
14.5.3.  
14.5.4.  
14.5.5.  
14.5.6.  
14.5.7.  
14.6.  
14.6.1.  
14.6.2.  
14.6.3.  
14.6.4.  
14.6.5.  
14.6.6.  
14.6.7.  
14.6.8.  
14.6.9.  
14.6.10.  
14.7.  
14.7.1.  
14.7.2.  
14.7.3.  
14.7.4.  
14.7.5.  
14.7.6.  
14.7.7.  
Revision 1.3  
Page 10 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.8.  
14.7.9.  
14.7.10.  
14.7.11.  
14.7.12.  
14.7.13.  
14.7.14.  
14.7.15.  
14.7.16.  
14.7.17.  
14.7.18.  
14.7.19.  
14.7.20.  
14.7.21.  
14.8.  
LOOP CLOSURE DEBOUNCE..............................................................................................................109  
RING TRIP DEBOUNCE INTERVAL......................................................................................................109  
PWM PERIOD........................................................................................................................................109  
DC/DC CONTROLLER CONTROL........................................................................................................110  
ON-HOOK VOLTAGE ............................................................................................................................110  
GROUND MARGIN VOLTAGE ..............................................................................................................111  
HIGH BATTERY VOLTAGE...................................................................................................................111  
LOW BATTERY VOLTAGE....................................................................................................................111  
LOOP CLOSURE DETECT/RING TRIP DETECT COEFFICIENT.........................................................112  
LOOP CLOSURE DETECT THRESHOLD WITHOUT / WITH HYSTERESIS .......................................112  
RING TRIP DETECT THRESHOLD.......................................................................................................113  
OFFSET VOLTAGE ...............................................................................................................................113  
DC/DC TIME ON ....................................................................................................................................113  
AUTOMUTE FUNCTION........................................................................................................................114  
GROUND KEY DETECTION..................................................................................................................115  
LINEFEED CONTROL ...........................................................................................................................115  
GROUND KEY DETECT HIGH/LOW THRESHOLD..............................................................................115  
GROUND KEY DETECT DEBOUNCE TIME .........................................................................................116  
GROUND KEY DETECT FILTER COEFFICIENT LOW/ HIGH..............................................................116  
DC RING TRIP DEBOUNCE FILTER COEFFICIENT LOW...................................................................116  
DC RING TRIP CURRENT THRESHOLD..............................................................................................117  
DC RING TRIP DEBOUNCE TIME ........................................................................................................117  
EXTERNAL BATTERY SWITCH OUTPUT CONFIGURATION 1 ..........................................................117  
DC/DC HEAVY CURRENT CONVERTER.............................................................................................118  
DC/DC TARGET VOLTAGE...................................................................................................................118  
MONITORING REGISTERS ..................................................................................................................119  
MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE...........................................................119  
MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE...........................................................119  
LINE CONTROL REGISTERS ...............................................................................................................120  
VOLTAGE REGISTERS.........................................................................................................................120  
14.8.1.  
14.8.2.  
14.8.3.  
14.8.4.  
14.8.5.  
14.8.6.  
14.8.7.  
14.8.8.  
14.8.9.  
14.8.10.  
14.9.  
14.9.1.  
14.9.2.  
14.10.  
14.10.1.  
14.10.1.1. BATTERY VOLTAGE SENSE (READ ONLY)........................................................................................120  
14.10.1.2. TIP/RING TRANSISTOR 3 EMITTER VOLTAGE SENSE (READ ONLY) .............................................120  
14.10.1.3. TIP/RING TRANSISTOR 3 EMITTER VOLTAGE SENSE (READ ONLY) .............................................120  
14.11.  
TRANSISTOR CURRENT REGISTERS ................................................................................................121  
TIP/RING TRANSISTOR 1/2/3 CURRENT SENSE (READ ONLY) .......................................................121  
LOOP SUPERVISION............................................................................................................................122  
LONGITUDINAL CURRENT (READ ONLY) ..........................................................................................122  
LOOP VOLTAGE SENSE (READ ONLY) ..............................................................................................122  
14.11.1.  
14.12.  
14.12.1.  
14.12.2.  
Revision 1.3  
Page 11 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.12.3.  
14.12.4.  
14.12.5.  
14.12.6.  
14.12.7.  
14.12.8.  
14.12.9.  
TIP, RING, AND LOOP CURRENT (READ ONLY)................................................................................123  
POLARITY..............................................................................................................................................123  
COMMON MODE VOLTAGE.................................................................................................................124  
TIP EMITTER VOLTAGE FOR TRANSISTORS QT1 SENSE (READ ONLY) .......................................124  
TIP VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) ..........................................................124  
RING EMITTER VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY) ......................................125  
RING VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY).......................................................125  
14.12.10. TEMPERATURE SENSE (READ ONLY) ...............................................................................................125  
14.12.11. BAND GAP VOLTAGES.........................................................................................................................125  
14.12.12. PEAK TO PEAK LOOP VOLTAGE.........................................................................................................126  
14.12.13. PEAK TO PEAK LOOP CURRENT (READ ONLY)................................................................................126  
14.13.  
POWER ALARM LPF POLE REGISTERS.............................................................................................127  
POWER ALARM COUNTER (READ ONLY)..........................................................................................127  
POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3 ............................................127  
POWER ALARM THRESHOLD FOR TRANSISTOR 1-3.......................................................................128  
IMPEDANCE MATCHING 1/2................................................................................................................128  
TEMPERATURE ALARM THRESHOLD................................................................................................129  
LOOP CLOSURE MASK COUNT ..........................................................................................................129  
COARSE CALIBRATION INTERNAL RESISTOR .................................................................................129  
OSCILLATOR 2 RINGING PHASE DELAY............................................................................................129  
CALIBRATION .......................................................................................................................................130  
DC OFFSET REGISTERS .....................................................................................................................131  
DC OFFSET (RING, TIP, AND VBAT) ...................................................................................................131  
PWM COUNT.........................................................................................................................................131  
TONE GENERATION REGISTERS .......................................................................................................132  
OSCILLATOR CONTROL ......................................................................................................................132  
RING CONTROL....................................................................................................................................132  
OSCILLATOR 1 AND 2 INITIAL CONDITION LOW/HIGH.....................................................................132  
OSCILLATOR 1 AND 2 COEFFICIENT LOW/HIGH ..............................................................................133  
OSCILLATOR 1 AND 2 ACTIVE/ INACTIVE TIME LOW/HIGH .............................................................133  
GENERAL TONE GENERATION...........................................................................................................134  
RING OFFSET .......................................................................................................................................134  
ADC/DAC DIGITAL GAIN.......................................................................................................................134  
PWM DC/DC FINE TUNING ..................................................................................................................135  
PWM DC/DC FINE TUNING SKIP PERIOD...........................................................................................135  
PWM DC/DC FINE TUNING ..................................................................................................................136  
IMPEDANCE MATCH REGISTER.........................................................................................................137  
14.13.1.  
14.13.2.  
14.13.3.  
14.14.  
14.14.1.  
14.14.2.  
14.14.3.  
14.14.4.  
14.15.  
14.16.  
14.16.1.  
14.16.2.  
14.17.  
14.17.1.  
14.17.2.  
14.17.3.  
14.17.4.  
14.18.  
14.19.  
14.19.1.  
14.19.2.  
14.19.3.  
14.19.4.  
14.19.5.  
14.19.6.  
14.19.6.1. IMPEDENCE MATCHING COEFFICIENT RAM ....................................................................................137  
Revision 1.3  
Page 12 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.19.6.2. IMPEDANCE MATCHING DELAY COUNT............................................................................................137  
14.19.6.3. IMPEDANCE MATCHING COEFFICIENT RAM CONTROL..................................................................137  
14.19.6.4. RESERVED REGISTERS......................................................................................................................138  
14.19.6.5. FILTER BYPASS....................................................................................................................................138  
15.  
TIMING DIAGRAM .................................................................................................................................139  
PCM TIMING DIAGRAM FOR NON-GCI ...............................................................................................139  
PCM TIMING DIAGRAM FOR GCI ........................................................................................................140  
SPI TIMING DIAGRAM ..........................................................................................................................142  
DIGITAL I/O............................................................................................................................................148  
µ-LAW ENCODE DECODE CHARACTERISTICS.................................................................................148  
A-LAW ENCODE DECODE CHARACTERISTICS.................................................................................149  
µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE......................................................................149  
µ-LAW / A-LAW CODES FOR 0DBM0 OUTPUT (DIGITAL MILLIWATT)..............................................150  
16-BIT LINEAR PCM CODES FOR ZERO AND FULL SCALE..............................................................150  
16-BIT LINEAR PCM CODES FOR 1 KHZ DIGITAL MILLIWATT..........................................................150  
TYPICAL APPLICATION CIRCUITS......................................................................................................151  
N682386/7..............................................................................................................................................151  
LINE DRIVER.........................................................................................................................................152  
N681622 SUBSCRIBER LINE FEED CIRCUIT (SLFC) FOR CHANNEL 1............................................152  
DISCRETE LINE FEED CIRCUIT FOR CHANNEL 1.............................................................................153  
CHANNEL 1 DC-DC...............................................................................................................................154  
TRIPLE BATTERY SWITCH APPLICATION..........................................................................................155  
PACKAGE SPECIFICATION..................................................................................................................156  
TQFP64L (10X10X1.4MM FOOTPRINT 2.0MM) ...................................................................................156  
QFN 64L 9X9 MM^2, THICKNESS :1.0 MM (PUNCH TYPE) ................................................................157  
QFN 20L 4X4 MM2, PITCH:0.50 MM......................................................................................................158  
ORDERING INFORMATION..................................................................................................................159  
VERSION HISTORY ..............................................................................................................................160  
15.1.  
15.2.  
15.3.  
16.  
16.1.1.  
16.2.  
16.3.  
16.3.1.  
16.4.  
16.5.  
17.  
17.1.  
17.2.  
17.2.1.  
17.2.2.  
17.3.  
17.4.  
18.  
18.1.  
18.2.  
18.3.  
19.  
20.  
Revision 1.3  
Page 13 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
7. LIST OF FIGURES  
Figure 1: Pin Configuration ............................................................................................................................................2  
Figure 2: N681622 Subscriber Line Feed Circuit (SLFC) Pin Configuration ..................................................................2  
Figure 3: Block Diagram.................................................................................................................................................6  
Figure 4: AC signal Path ..............................................................................................................................................24  
Figure 5: DC Feed Regions .........................................................................................................................................25  
Figure 6: Line Loop Control..........................................................................................................................................26  
Figure 7: Example State Diagram ................................................................................................................................29  
Figure 8: Block Diagram Oscillator 1............................................................................................................................37  
Figure 9: Zero Crossing for Tone Generation ..............................................................................................................38  
Figure 10: Trapezoidal Ringing ....................................................................................................................................41  
Figure 11: Positive DC offset for Trapezoidal Ringing..................................................................................................42  
Figure 12: Programming VCMR voltage for Trapezoidal Ringing ...................................................................................42  
Figure 13: Unbalanced Ringing on TIP ........................................................................................................................43  
Figure 14: RING Trip Detection Mechanism ................................................................................................................44  
Figure 15: Loop Closure Detector Block Diagram........................................................................................................46  
Figure 16: Ground Key Detection Circuitry...................................................................................................................48  
Figure 17: The Architecture of Linear FSK Waveform Generator.................................................................................49  
Figure 18: DTMF Detector - Functional Block Diagram................................................................................................52  
Figure 19: Characteristic Line Impedance....................................................................................................................55  
Figure 20: Diagnostics Support Block Diagram............................................................................................................58  
Figure 21: Voltage Tracking in Forward Active State ...................................................................................................60  
Figure 22: Dynamic Battery Target ..............................................................................................................................60  
Figure 23: Three Voltage External Battery switching ...................................................................................................61  
Figure 24: Two Battery Supply Control Circuit .............................................................................................................61  
Figure 25: Wideband 8kHz Frame Sync PCM interface...............................................................................................65  
Figure 26: Wideband 16kHz Frame Sync PCM interface.............................................................................................66  
Figure 27: Register write operation through a 8-bit SPI port ........................................................................................69  
Figure 28: Register read operation through a 8-bit SPI port.........................................................................................69  
Figure 29: Register write operation through a 16-bit SPI port ......................................................................................69  
Figure 30: Register read operation through a 16-bit SPI port.......................................................................................69  
Figure 31: Three Chip Daisy Chain connection............................................................................................................70  
Figure 32: Device/Register Address for Three Device Daisy Chain application...........................................................70  
Figure 33: DATA for Three Device Daisy Chain application.........................................................................................71  
Figure 34: Burst mode operation (BST=1) ...................................................................................................................71  
Figure 35: SPI 12-bits Read sequence ........................................................................................................................73  
Figure 36: N681622 Equivalent Internal diagram.........................................................................................................75  
Revision 1.3  
Page 14 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 37: PCM Timing for Non-GCI..........................................................................................................................139  
Figure 38: GCI PCM Timing.......................................................................................................................................140  
Figure 39: SPI Timing (Non-Daisy Chain Mode) ........................................................................................................142  
Figure 40: In-band Transmit Frequency Response....................................................................................................143  
Figure 41: In-band Receive Frequency Response.....................................................................................................143  
Figure 42: Transmit Group Delay Distortion...............................................................................................................144  
Figure 43: Receive Group Delay Distortion................................................................................................................144  
Figure 44: 2-Wire to PCM Signal to Distortion Mask (A-Law) ...................................................................................145  
Figure 45: 2-Wire to PCM Signal to Distortion Mask (µ-Law)....................................................................................145  
Figure 46: Wideband In-band Transmit Frequency Response...................................................................................146  
Figure 47: Wideband Transmit Group Delay Distortion..............................................................................................146  
Figure 48: Wideband Receive Group Delay Distortion...............................................................................................147  
Figure 49: Typical Application Circuit for N682386/7 ................................................................................................151  
Figure 50: N681622 Subscriber Line Feed Circuit (SLFC) for Channel 1 ..................................................................152  
Figure 51: Line-driver circuit for Channel1 ................................................................................................................153  
Figure 52: Inductor based circuit for Channel 1.........................................................................................................154  
Figure 53: Triple Battery based Switch 1 ..................................................................................................................155  
Revision 1.3  
Page 15 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
8. LIST OF TABLES  
Table 1: Pin Description.................................................................................................................................................4  
Table 2: N681622 Pin Description..................................................................................................................................5  
Table 3: Programmable Ranges for DC Line Feed ......................................................................................................25  
Table 4: Linefeed States ..............................................................................................................................................27  
Table 5: Operation Modes............................................................................................................................................28  
Table 6: Associated Registers for Linefeed Control .....................................................................................................29  
Table 7: TIP and RING Voltage Targets ......................................................................................................................30  
Table 8: Registers Associated with Line Monitoring – Measured.................................................................................30  
Table 9: Registers Associated with Line Monitoring – Calculated................................................................................30  
Table 10: Registers for Polarity Reversal.....................................................................................................................32  
Table 11: PWM DC/DC Power Alarm Counter.............................................................................................................33  
Table 12: Registers Associated with Thermal Overload...............................................................................................33  
Table 13: Associated Registers for Oscillator Control (Oscillator 1 Example)..............................................................35  
Table 14: Example Register settings for Oscillator m...................................................................................................36  
Table 15: Registers for RING Generation ....................................................................................................................39  
Table 16: Example Ringer Register settings................................................................................................................40  
Table 17: Registers for RING Trip Detection................................................................................................................45  
Table 18: Recommended RING Trip Values for Ringing..............................................................................................45  
Table 19: Loop Closure Detection Registers................................................................................................................47  
Table 20: Ground Key Detection Registers..................................................................................................................49  
Table 21: Registers for FSK Generation ......................................................................................................................50  
Table 22: DTMF frequency mapping............................................................................................................................50  
Table 23: Digital Gain Adjust Coefficients and Attenuation weightings ........................................................................54  
Table 24: Examples of Resistive Impedance Matching................................................................................................55  
Table 25: Example of Impedance Matching Programming...........................................................................................55  
Table 26: Registers for Automute.................................................................................................................................56  
Table 27: Registers associated with DC/DC Conversion .............................................................................................59  
Table 28: Example Standard Interface modes.............................................................................................................63  
Table 29: Wideband or Narrowband Hardware Selection ............................................................................................64  
Table 30: PLL and Prescaler in Wideband...................................................................................................................66  
Table 31: Device Address Bit pattern...........................................................................................................................67  
Table 32: 12-bit byte Selection.....................................................................................................................................68  
Table 33: Interrupt Registers.......................................................................................................................................74  
Revision 1.3  
Page 16 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
9. ABSOLUTE MAXIMUM RATINGS  
9.1. Dual Programmable Extended Codec/SLCC (N682386/87)  
SYMBOL  
PARAMETER  
Junction temperature  
VALUE  
UNITS  
0C  
150  
Storage temperature range  
TQFP-64 Thermal Resistance, typical  
QFN-64 Thermal Resistance, typical  
Voltage applied to any pin  
Input current applied to any digital input pin  
ESD (Human Body Model)  
VDD - VSS  
-65 to +150  
0C  
oC/W  
oC/W  
V
θJA  
θJA  
76  
17  
(VSS - 0.3V) to (VDD + 0.3V)  
+/- 10  
2000  
mA  
V
-0.5 to +3.63  
0.7  
V
Power Dissipation  
W
CAUTION: Stresses above those listed may cause permanent damage to the device. Exposure to the absolute  
maximum ratings may affect device reliability. Functional operation is not implied at these conditions.  
9.2. N681622 Subscriber Line Feed Circuit (SLFC)  
SYMBOL  
PARAMETER  
VDD Supply Voltage  
VALUE  
UNIT  
VDD  
VBAT  
VINHV  
VINLV  
-0.5 to +5.0  
-104  
V
V
VBAT Supply Voltage  
Input Voltage HV IO  
Input Voltage LV IO  
ESD, HBM  
(VBAT - 0.3) to (VDD + 0.3)  
-0.3 to (VDD+0.3)  
JESD22 Class 1C  
-40 to +100  
-40 to +150  
45  
V
V
V
TA  
TS  
Operating Temperature **  
Storage Temperature  
Thermal Resistance QFN20  
Power Dissipation  
C
C
θJA  
C/W  
W
PMAX  
0.9  
** If the dice temperature reaches over 130C, the device reliability may be adversely affected.  
Revision 1.3  
Page 17 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
10. OPERATING CONDITIONS  
10.1. Single Programmable Extended Codec/SLCC (N682386/87)  
SYMBOL  
PARAMETER  
Industrial operating temperature  
Supply voltage  
MIN  
-40  
TYP  
MAX UNIT  
TA  
+85  
C
V
V
VDD  
VSS  
3.13  
3.47  
Ground voltage  
0
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and  
reliability of the device.  
10.2. Subscriber Line Feed Circuit (N681622)  
SYMBOL  
TA  
PARAMETER  
MIN  
-40  
TYP  
MAX  
85  
UNIT  
Industrial operating temperature  
C
V
V
VDD  
Supply voltage (VDD  
)
3.13  
-100  
3.3  
-
3.47  
-9  
VBAT  
VBAT Supply Voltage  
Revision 1.3  
Page 18 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
11. ELECTRICAL CHARACTERISTICS  
11.1. GENERAL PARAMETERS (N682386/87)  
V
DD=3.13 V to 3.47 V; VSS=0 V; TA = -400C to +850C;  
SYMBOL  
VIL  
PARAMETERS  
Logic Input LOW Voltage  
Logic Input HIGH Voltage  
Threshold point  
CONDITIONS  
MIN  
-0.3  
2
TYP1 MAX2 UNIT  
--  
--  
0.8  
3.6  
V
V
V
V
VIH  
VT  
1.41  
--  
INTB,FS,PCMT,SDO: IOL = 4 mA  
DCP, DCN: IOL = 16 mA (24mA)  
VOL  
Logic Output LOW Voltage  
--  
2.4  
--  
0.4  
FS,PCMT,SDO: IOH = 4mA  
VOH  
IIL  
Logic Output HIGH Voltage  
--  
--  
--  
V
DCP, DCN: IOH = 16 mA (24mA)  
V
SS<VIN<VDD  
No pull-up or pull-down  
SS<VO<VDD  
Input HIGH & LOW Leakage  
Current  
uA  
uA  
+/-10  
+/-10  
V
IOZ  
Tri-state Leakage Current  
--  
High Z State  
CIN  
Digital Input Capacitance  
Digital Output Capacitance  
--  
--  
3
3
--  
--  
pF  
pF  
COUT  
VO High Z  
1. Typical values: TA = 25°C , VDD = 3.3 V  
2. All min/max limits are guaranteed by Nuvoton via electrical testing or characterization. Not all specifications are  
100 percent tested.  
11.2. SUPPLY PARAMETERS DISCRETE SOLUTION (N682386/87 AND DISCRETE LINE DRIVER)  
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C;  
SYMBOL  
IPD  
PARAMETERS  
CONDITIONS  
MIN  
TYP1 MAX2 UNIT  
RESETb = 0V, VDD1, VDD2,  
VDD3, VDD4, and VDD5  
FS=BCLK=0V  
Total Power Down Supply  
Current  
100  
25  
12.5  
8
uA  
RESETb = VDD, VDD1, VDD2,  
VDD3, VDD4, and VDD5  
Total Standby Supply  
Current  
ISB  
mA  
FS=BCLK=0V, Line state Open  
42  
62  
40  
18  
48  
Open (ADC and DAC disabled)  
mA  
mA  
mA  
mA  
mA  
Forward/Reverse Active ILIM=20  
mA  
Total Supply Current for all  
supplies @3.3V  
Forward/Reverse ON-HOOK  
Transmission  
IVDD  
Forward/Reverse Idle (ADC and  
DAC disabled)  
TIP/RING Open  
Revision 1.3  
Page 19 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
SYMBOL  
PARAMETERS  
CONDITIONS  
MIN  
TYP1 MAX2 UNIT  
Ringing, Sine wave, REN=1,  
VPK=56 V  
30  
0.007  
31  
mA  
mA  
mA  
Open, VBAT = 72V  
Forward/Reverse Active ILIM=20  
mA,  
Forward/Reverse ON-HOOK  
Transmission, XBTA:XTBOT=0,  
VBAT = 54V  
14  
mA  
IVBAT  
Total Battery Supply Current  
1.5  
0.007  
8
Forward/Reverse Idle, VBAT = 54V  
mA  
mA  
mA  
TIP/RING Open, VBAT = 54V  
Ringing, Sine wave, REN=1,  
VPK=71V  
1. Typical values: TA = 25°C , VDD = 3.3 V  
2. All min/max limits are guaranteed by Nuvoton via electrical testing or characterization. Not all specifications are  
n00 percent tested.  
3. The supply current for the DC/DC converter can be calculated by : IDC/DC=IVBAT*VBAT/(efficiency*VDC/DC)  
4. Ch1 and Ch2 have identical configuration for all the above current measurement. IVDD and IVBAT are per channel  
current measurement  
11.3. SUPPLY PARAMETERS SLFC SOLUTION (N682386/87 AND N681622)  
SYMBOL  
IDDO  
PARAMETER  
CONDITION  
MIN  
TYP  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
MAX  
UNIT  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Open State  
IDDI  
Low Power Idle State, VBAT=-50V  
Active State  
IDDA  
VDD Supply Current  
IDDR  
Ringing, 1REN, 40Vrms  
On-Hook Transmit  
Tip/Ring Open  
IDDOT  
IDDTRO  
IBATO  
IBATI  
Open State  
Low Power Idle State, VBAT=-50V  
Active State  
-
1.2  
IBATA  
VBAT Supply Current  
IBATR  
IBATOT  
IBATTRO  
Ringing, 1REN, 40Vrms  
On-Hook Transmit  
Tip/Ring Open  
Revision 1.3  
Page 20 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
11.4. MONITORING A/D PARAMETERS  
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C  
SYMBOL  
INL  
PARAMETER  
CONDITION  
UNIT  
LSB  
LSB  
MIN.  
--  
TYP  
+/-0.5  
+/-0.5  
MAX.  
Integral Nonlinearity (8-bit resolution)  
Differential Nonlinearity (8-bit  
resolution)  
DNL  
--  
Gain Error (Current)  
Gain Error (Voltage)  
Sample Rate per channel  
Number of channels  
--  
--  
--  
--  
20  
10  
800  
--  
%
%
--  
Hz  
32  
Typically at 12-bit the INL and DNL is 2 LSB.  
11.5. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS  
V
DD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600 Ω  
TRANSMIT (A/D)  
RECEIVE (D/A)  
TYP  
SYMB  
OL  
PARAMETER  
CONDITION  
UNIT  
VPK  
MIN  
TYP  
MAX  
MIN  
---  
MAX  
---  
0 dBm0 = 0 dBm @  
LABS  
Absolute Level  
---  
1.0954  
---  
1.0954  
600Ω  
3.17 dBm0 for u-Law  
3.14 dBm0 for A-Law(1)  
---  
---  
1.5779  
1.5725  
---  
---  
---  
---  
1.5779  
1.5725  
---  
---  
VPK  
VPK  
TXMAX  
Max. Transmit Level  
0 dBm0 @ 1020 Hz, VDD  
=3.3V; TA=+25°C;  
assuming ideal line  
impedance matching  
Absolute Gain (0 dBm0  
@ 1020 Hz; TA=+25°C)  
GABS  
-0.40  
0
+0.40  
-0.40  
0
+0.40  
dB  
TA= 0°C to+70°C  
TA=-40°C to+85°C  
-0.10  
-0.20  
+0.10  
+0.20  
-0.10  
-0.20  
+0.10  
+0.20  
Absolute Gain variation  
with Temperature  
GABST  
0
0
0
0
dB  
dB  
VDD=3.13 V – 3.47 V;  
Absolute Gain variation  
with Supply Voltage  
GABSS  
GRTV  
0dBm0 @ 1020 Hz;  
TA=+25°C  
-0.10  
+0.10  
-0.10  
+0.10  
Frequency Response  
See Figures 40, 41, and 46  
Gain Variation vs. Level  
Tone  
(1020 Hz relative to –10  
dBm0)  
+3 to –40 dBm0  
-40 to –50 dBm0  
-50 to –60 dBm0  
-0.3  
-0.6  
-1.6  
---  
---  
---  
+0.3  
+0.6  
+1.6  
-0.3  
-0.6  
-1.6  
---  
---  
---  
+0.3  
+0.6  
+1.6  
GLT  
dB  
+/-  
0.025  
+/-  
0.025  
GST  
Gain Step Variation  
-6 dB to 6 dB  
1200 Hz  
-
-
dB  
TABS  
Absolute Group Delay  
---  
540  
---  
---  
280  
---  
usec  
Group Delay Distortion  
(relative to group delay  
@ 1200 Hz)  
TD  
See Figures 42, 43, 47, and 48  
1. at Default Gain Setting  
Revision 1.3  
Page 21 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
11.6. 2-WIRE TO 4-WIRE CONVERSION PARAMETERS  
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600 Ω  
SYMBOL  
PARAMETER  
Return Loss  
Trans hybrid Balance  
CONDITION  
MIN.  
26  
TYP.  
40  
MAX.  
---  
UNIT  
dB  
RL  
200 Hz to 3.4 kHz, 600 Ohm  
HB  
200 Hz to 3.4 kHz, 600 Ohm  
40  
50  
---  
dB  
11.7. 2-WIRE PARAMETERS  
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600 Ω  
SYMBOL  
LCL  
PARAMETER  
CONDITION  
300 Hz to 3.4 kHz  
MIN  
46  
TYP  
MAX  
---  
UNIT  
dB  
Longitudinal Conversion Loss  
LML  
300 Hz to 600 Hz  
600 Hz to 3.4 kHz,  
300 Hz to 3.4 kHz  
40  
52  
55  
18  
---  
dB  
Longitudinal to Metallic or  
PCM Balance  
LMH  
46  
---  
dB  
LZ  
Longitudinal Impedance  
Longitudinal Current  
---  
---  
Ohms  
Active OFF-HOOK; 300 Hz to  
3.4 kHz  
LI  
---  
6.5  
---  
mA  
11.8. LINEFEED CHARACTERISTICS  
VDD=3.13 V to 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600 Ω  
SYMBOL  
PARAMETER  
CONDITION  
MIN  
44  
TYP  
45  
MAX  
---  
UNIT  
VRMS  
5 REN load; sine wave;  
LOOP =160 Ohm;  
RING amplitude  
VTR  
R
VBAT = –75 V  
Loop closure / Ground start  
threshold accuracy  
ILt  
IIT = 11.43 mA  
IRT = 40.64 mA  
---  
---  
---  
---  
+/-20  
+/-20  
%
%
RING trip threshold accuracy  
IRT  
Trapezoidal RING crest factor  
accuracy  
+/-  
0.05  
Crest factor = 1.3  
---  
1.35  
---  
---  
---  
---  
Sinusoidal RING crest factor  
Ringing frequency accuracy  
RCF  
1.45  
+/-3  
F = 20 Hz  
%
ms  
%
V
Ringing cadence accuracy  
DC Loop Current Accuracy  
Accuracy of on/off time  
ILIM = 18 mA  
---  
---  
---  
---  
---  
+/-50  
+/-10  
+/-4  
DC Open Circuit Voltage  
Accuracy  
Power alarm threshold  
accuracy  
Active Mode; VOH = 48 V, VTIP  
– VRING  
Power Threshold = 300 mW  
---  
+/-25  
%
Revision 1.3  
Page 22 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
11.9. ANALOG DISTORTION AND NOISE PARAMETERS  
VDD=3.13 V – 3.47 V; VSS=0 V; TA=-400C to +850C; Loading 600 Ω  
TRANSMIT (A/D)  
MIN TYP MAX  
RECEIVE (D/A)  
MIN TYP MAX  
SYMBOL  
PARAMETER  
CONDITION  
UNIT  
dB  
Total Distortion vs. Level  
Tone u-Law  
1020 Hz, C-Message  
Weighted  
DLTU  
See Figure 45  
See Figure 44  
Total Distortion vs. Level  
Tone, A-Law  
1020 Hz, Psophometric  
Weighting  
dB  
dB  
DLTA  
0 dBm0, Active OFF-  
HOOK and OHT, ideal  
impedance matching  
Audio Tone Generator  
Signal-to-Distortion Ratio  
DLTT  
45  
---  
---  
45  
---  
---  
4600 Hz to 7600 Hz  
7600 Hz to 8400 Hz  
8400 Hz to 100000 Hz  
---  
---  
---  
-70  
-70  
-65  
-30  
-40  
-30  
Spurious Out-Of-Band  
(300 Hz to 3400 Hz @  
0dBm0)  
DSPO  
NA  
---  
NA  
---  
NA  
-47  
dB  
dB  
-47  
Spurious In-Band (700 Hz  
to 1100 Hz @ 0dBm0)  
DSPI  
300 to 3200 Hz  
Two tones  
---  
---  
Intermodulation Distortion  
(300 Hz to 3400 Hz  
–4 to –21 dBm0)  
DIM  
---  
---  
-45  
---  
---  
-45  
dB  
u-Law; C-message  
A-Law; Psophometric  
16-bit Linear  
---  
---  
---  
---  
---  
---  
13  
18  
1
14  
dBrnc0  
dBm0p  
NIDL  
Idle Channel Noise  
-74  
-69  
-90  
-76  
PSRRA  
PSRRB  
Power Supply Rejection  
Power Supply Rejection  
VDDA; DC to 3.4 kHz  
VBAT; DC to 3.4 kHz  
40  
40  
---  
---  
---  
---  
40  
40  
---  
---  
---  
---  
dB  
dB  
Revision 1.3  
Page 23 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12. FUNCTIONAL DESCRIPTION  
x T F I M P C  
R x a f c r e t e n M C I P  
Figure 4: AC signal Path  
Revision 1.3  
Page 24 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1. BORSCHT FUNCTIONALITY  
The N682386/87 connects to the TIP and RING (POTS - Plain Old Telephone Service) interface and performs the so-  
called BORSCHT and AC transmission functions. Following are the BORSCHT functions:  
¡
¡
¡
¡
¡
¡
¡
Battery Feed  
Over-Voltage Protection  
Ringing (Balanced / Unbalanced)  
Supervision (Signaling)  
Coding  
Hybrid (2 / 4-wire conversion)  
Testing  
12.1.1. BATTERY FEED  
The N682386/87, has two DC feed regions; a constant voltage region and a constant current region. As illustrated in  
Figure 4 the current limit ILIM determines the constant current region. The ON-HOOK voltage, VOH, determines the  
constant voltage region. The device has an inherent output resistance of typically 50in non-ringing states. The  
Ground Margin Voltage, VGM, determines the offset of the most positive terminal (TIP in Forward polarity state and  
RING in Reverse polarity state) with respect to ground ILIM, VOH, and VGM are programmable as shown in Table 2.  
|VTIP-VRING  
|
ΔV  
ΔI  
=50typical  
(Volt)  
VOH  
ΔV  
ΔI  
>10ktypical  
ILIM  
ILOOP (mA)  
DCFeed  
Figure 5: DC Feed Regions  
Register  
LCL  
Address  
0x45  
Parameter  
ILIM  
Programmable Range  
20 – 41  
Step Size  
3
Default Value  
20  
Unit  
mA  
V
OHV  
0x4C  
VOH  
0 to –93.5  
1.484  
1.484  
-47.488  
-2.968  
GMV  
0x4D  
VGM  
0 to –93.5  
V
Table 3: Programmable Ranges for DC Line Feed  
Revision 1.3  
Page 25 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
The control circuit for TIP or RING is illustrated in Figure below. N682386/87 utilizes a three transistor discrete  
Linefeed circuit. Transistors Q1 and Q2 drive the voltages on the subscriber loop while transistor Q3 provides  
additional isolation. The Line Driver DC feedback loop is completed via DC isolation resistors RVBAT and RVE to the  
chip. TIP and RING signals are derived from the common mode and differential mode signal block. This information  
is, in turn, used to exercise control over the external transistors. Voice band signals are passed over a decoupling  
capacitor in the AC feedback loop.  
TIP or RING  
VDD  
Discrete  
Linefeed  
Sigma/Delta  
DAC  
Q1  
-
Sigma/Delta  
ADC  
+
Q3  
+
IOUT  
OTA  
Q2  
+
RQE  
RB3  
AC Loop  
DC Loop  
VBAT  
LineFeed  
ADC  
RVBAT  
RVE  
Common Mode  
LineFeed  
DAC  
Differential Mode  
Signals  
Mux
On-chip  
LLC-v1  
Figure 6: Line Loop Control  
Control and monitoring of these transistors is done both individually and in groups. For example, TIP and RING  
Linefeed circuits each have a Q1 transistor. Both share the same register to set their Power Alarm Threshold values.  
But each TIP and RING transistor has a separate Power Alarm Interrupt bit in the interrupt register. The control  
circuit for TIP and RING when N681622 is utilized follows the same general principles.  
Revision 1.3  
Page 26 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.1.1.  
LINEFEED STATES OF OPERATION  
The N682386/87 can operate in eleven states, as shown below. .  
LS Settings  
State  
Description  
MSB  
0
LSB  
0
Open  
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
TIP and RING tri-state  
VTIP > VRING  
Forward Active  
Forward ON-HOOK Transmission  
TIP Open  
0
0
0
0
0
0
0
1
1
1
1
0
1
0
1
0
1
1
1
0
VTIP > VRING; audio signal paths powered on  
TIP tri-stated, RING active; used for ground start  
Ringing waveform applied to TIP and RING  
VRING > VTIP  
Ringing  
Reverse Active  
Reverse ON-HOOK Transmission  
RING Open  
VRING > VTIP; audio signal paths powered on  
RING tri-stated, TIP active  
Forward Idle  
VTIP > VRING  
Reverse Idle  
VRING > VTIP  
Calibration  
VTIP = VRING~Vbat+2  
Table 4: Linefeed States  
12.1.1.1.1.  
OPEN STATE  
Current to the external linefeed circuitry is shut off, effectively making TIP and RING tri-stated and it can also be used  
for fault condition detection. DC output impedance is 150K ohm.  
12.1.1.1.2.  
ACTIVE, IDLE AND ON-HOOK TRANSMISSION STATES  
¡
¡
¡
¡
¡
¡
Active, Idle and ON-HOOK Transmission states all have both Forward and Reverse incarnations  
In Forward state TIP is the more positive lead  
In Reverse state RING is the more positive lead  
In Idle states the external linefeed circuitry is ON but the audio signal paths are not powered up.  
In both Active states the external linefeed circuitry is ON and the audio signal paths are powered up.  
In both ON-HOOK Transmission states audio signal paths are powered up to allow ON-HOOK transmission.  
The Forward and Reverse incarnations of the Active, Idle and ON-HOOK Transmission states are determined solely  
by setting the LS register. For automatic transitions Forward and Reverse incarnations are determined by the VOH  
polarity in OHV:SBCn[6] address location (0x4C).  
12.1.1.1.3.  
TIP OPEN STATE  
¡
¡
All control currents to the external circuitry associated with TIP are shut off.  
Linefeed is provided to RING.  
Revision 1.3  
Page 27 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.1.1.4.  
All control currents to the external circuitry associated with RING are shut off and keeps TIP active.  
12.1.1.1.5. RINGING STATE  
Drives the ringing waveforms onto the loop  
12.1.1.1.6. CALIBRATION STATE  
RING OPEN STATE  
¡
¡
Calibration state is used to compensate or correct for external component imperfections. It should be performed  
following the system power up. This state is enabled by setting LS:LSCn[3:0] address (0x44) to ‘1110’. The line  
should be on-hook during calibration. RING or TIP must not be connected to ground during the calibration. All  
automatic linefeed transitions should be disabled when performing calibration. After calibration is completed, the  
Linefeed state should be reset to a normal operating state and the automatic Linefeed transitions can be enabled  
again. For a more detailed explanation, please refer to the Calibration Application note.  
Please note that Calibration state is not applicable to Subscriber Line Feed Circuit (SLFC).  
12.1.1.2.  
OPERATION MODES  
The N682386/87 can operate under two battery supply operation modes. The modes are selected as illustrated  
below.  
Per Channel  
DC/DC  
VBAT Switch [DCN/DCP Line  
state dependent Control]  
Operation Mode  
Condition  
Figure 52: Inductor based  
circuit for Channel 1  
On-Chip DC/DC Controller  
External Battery Supplies  
On  
Off  
Off  
On  
DCL1 & DCL2 to VDD  
DCH1 & DCH2 to VSS  
Table 5: Operation Modes  
12.1.1.3.  
AUTOMATIC TRANSITIONS  
In addition, some automatic state transitions may also be enabled:  
12.1.1.3.1. POWER ALARM AUTOMATIC REACT  
¡
Setting LAMC:PAACn[2] address (0x43) bit will make the channel automatically enter the Open state upon the  
occurrence of a power alarm.  
12.1.1.3.2.  
SETTING RING AUTOMATIC  
¡
Setting LAMC:RGACn[1] address (0x43) bit makes the channel automatically enter the Active state from the  
Ringing State upon RING Trip Detect  
Revision 1.3  
Page 28 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.1.3.3.  
SETTING LOOP CLOSURE DETECT AUTOMATIC REACT  
Setting LAMC:LCDACn[0] address (0x43) bit makes the channel automatically enter the Active state from the ON-  
HOOK Transmission, Idle, TIP Open, and RING Open states upon Loop Closure Detect. Furthermore, the channel  
will transition from Active to Idle state if the Loop Closure Detect circuitry indicates a loop closure is no longer  
present, and back to Active state upon a reoccurrence of Loop Closure Detect.  
When the above automatic transitions do occur, LS:LSCn[3:0] address (0x44) will be updated automatically to reflect  
the newly entered state. In all cases the shadow linefeed status bits, LS:SLSCn[3:0] address (0x44) reflect the actual  
linefeed status. This includes switching between ‘Ringing’ during the ring burst and ‘ON-HOOK Transmission’ during  
the cadence. This RING/cadence transition is not considered an automatic transition and LS:LSCn[3:0] address  
(0x44) will continue to reflect Ringing state. The following example state diagram illustrates LS:SLSCn[3:0] address  
(0x44) states including automatic transitions, RING/Cadence transition and several possible transitions solely  
governed by software.  
PA_Auto  
SW  
Open  
Open  
Any State  
Any State  
Any State  
SW  
Idle  
SW  
SW  
LC_Auto  
! LC_Auto  
(F/R)  
LC_Auto  
On Hook  
Transmission  
(F/R)  
Active  
(F/R)  
SW  
SW  
LC_Auto  
TIP Open  
Ring Cadence  
&
SW  
LC_Auto  
LS[3:0] = Ringing  
Ring Burst  
&
LS[3:0] = Ringing  
SW  
RT_Auto  
SW  
SW  
RING Open  
Calibration  
Any State  
Any State  
Ringing  
LC_Auto = RTLC:LCD = 1 & LAMC:LCDA= 1  
!
LC_Auto = RTLC:LCD= 0 & LAMC:LCDA= 1  
RT_Auto = RTLC:RTD = 1 & LAMC:RGA= 1  
PA_Auto = Power Alarm Event& LAMC:PAA = 1  
F/R = Forward / Reverse  
n = 1, 2  
LFSDS  
Figure 7: Example State Diagram  
Register  
LS  
Bit(s)  
Address  
0x44  
Parameter  
Description / Range  
LSCn[3:0]  
SLSCn[7:4]  
PAACn[2]  
RGACn[1]  
LCDACn[0]  
Programmed Linefeed Status  
Shadow Linefeed Status  
Eleven states  
0x44  
0x43  
0x43  
0x43  
Reflects actual state  
Enable/Disable  
Enable/Disable  
Enable/Disable  
Power Alarm Automatic React  
RING Automatic  
LAMC  
Loop Closure Detect Automatic React  
Table 6: Associated Registers for Linefeed Control  
The device continuously monitors voltages on the line driver, driving them to target voltages appropriate to the actual  
linefeed state as summarized below.  
Revision 1.3  
Page 29 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Linefeed State  
TIP Target  
High Z  
RING Target  
High Z  
Open  
Forward Active  
VTIP > VRING  
VTIP > VRING  
Forward ON-HOOK Transmission  
TIP Open  
High Z  
Active  
Ringing  
RING Signal  
RING Signal  
Reverse Active  
VTIP < VRING  
Reverse ON-HOOK Transmission  
RING Open  
VTIP < VRING  
Active  
High Z  
Forward Idle  
VTIP > VRING  
VTIP < VRING  
Reverse Idle  
Table 7: TIP and RING Voltage Targets  
The device monitors the currents in the external transistors and makes these values available in registers. These  
registers and the internal A/D are updated at a rate of 800 Hz or every 1.25 msec. Other useful voltages and currents  
are calculated internally and made available in registers  
Register  
BATV  
SCM  
Bits(s)  
Address  
0x80  
0x92  
0x83  
0x84  
0x85  
0x86  
Parameter  
Battery Voltage  
Description / Range  
0V to -94.6 in 371 mV steps  
VBCn[7:0]  
SCMCn[7:0]  
QT3VCn[7:0]  
QR3VCn[7:0]  
QT3ICn[7:0]  
QR3ICn[7:0]  
Common Mode Voltage  
+95.88V to -95.88V in 23.4uV steps  
0V to -94.6V in 371 mV steps  
0V to -94.6V in 371 mV steps  
0A to 78.54 mA in 19.2 µA steps  
0A to 78.54 mA in 19.2 μA steps  
QT3V  
QR3V  
QT3I  
Transistor QT3 Emitter Voltage  
Transistor QR3 Emitter Voltage  
Transistor QT3 Current  
QR3I  
Transistor QR3 Current  
Table 8: Registers Associated with Line Monitoring – Measured  
Register  
LPV  
Bit(s)  
Address  
0x8D  
0x87  
0x88  
0x89  
0x8A  
0x8C  
0x8E  
0x8F  
0x90  
Parameter  
Loop Voltage  
Description / Range  
+93.5V to -93.5V in 23 mV steps  
0A to 78.54 mA in 19.2 μA steps  
0A to 9.95 mA in 2.5 μA steps  
0A to 78.54 mA in 19.2 μA steps  
0A to 9.95 mA in 2.5 μA steps  
+77.62 mA to –77.62 mA in 19uA  
+77.62 mA to –77.62 mA in 19uA  
+77.62 mA to –77.62 mA in 19uA  
+77.62 mA to –77.62 mA in 19uA  
VLPCn[11:0]  
QT1ICn[11:0]  
QT2ICn[11:0]  
QR1ICn[11:0]  
QR2ICn[11:0]  
ILGCn[11:0]  
ITLPCn[11:0]  
IRLPCn[11:0]  
ILPCn[11:0]  
QT1I  
QT2I  
QR1I  
QR2I  
LGI  
Transistor QT1 Current  
Transistor QT2 Current  
Transistor QR1 Current  
Transistor QR2 Current  
Longitudinal Current  
TIP Current  
TIPI  
RINGI  
LPI  
RING Current  
Loop Current  
Table 9: Registers Associated with Line Monitoring – Calculated  
In addition the following loop voltages and currents are derived from the above measurements and reported  
separately.  
Revision 1.3  
Page 30 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.1.4.  
POLARITY REVERSAL  
The Linefeed states which have Forward or Reverse incarnation (Active, Idle and ON-HOOK Transmission states)  
can have the polarity reversed two different ways. In addition, the line (TIP or RING) which is at VOH can be  
collapsed towards ground by using the wink function.  
¡
¡
Hard polarity reversal  
Soft polarity reversal  
12.1.1.4.1.  
HARD POLARITY REVERSAL  
Hard polarity is achieved by abruptly reversing the voltage between TIP and RING without any ramp-rate control. This  
is achieved by simply changing the linefeed register from Forward to Reverse incarnation or vice versa. A Hard  
polarity reversal will be performed provided that soft polarity reversal is not enabled APG:PRENCn[6] address (0x40)  
bit to 0. The sign bit (OHV:SBCn[6]) is used to determine the polarity of the line when going from Idle to Active  
States. If the new polarity is to be retained in future Idle to Active transitions, it is recommended that this bit be also  
changed appropriately when polarity is reversed.  
12.1.1.4.2.  
SOFT POLARITY REVERSAL  
Soft polarity is achieved by reversing the voltage between TIP and RING with ramp-rate control. Soft polarity reversal  
is enabled by setting APG:PRENCn[6] = “1” address (0x40). The ramp rate at which the reversal will occur is  
selected in APG:RAMPCn[8] address (0x40). The Ramp is triggered by toggling WINK bit APG:PRENCn[6] = “1”  
address (0x40). Soft polarity reversal is typically used in idle states and can be used in active states. The table  
below illustrates the sequence of events for a Forward to Reverse soft polarity reversal. For Reverse to Forward  
Polarity Reversal step 2 would involve TIP and step 4 would involve RING.  
Step(s) Register Name Bit(s)  
Bit State  
Step Description  
1
2
3
4
5
APG  
APG  
PRECn[6]  
1
1
Enables soft polarity reversal  
Wink line (RING towards 0V)  
VOHZCn[5]  
Use Line state register to reverse the line from Forward to Reverse  
APG  
APG  
VOHZCn[5]  
PRECn[6]  
0
0
Un-wink line (TIP side towards VOH)  
Disable soft polarity reversal  
Note that the negative going ramp rate can be limited by the settling speed of the DCDC converter. Setting the  
minimum on time (0x57) to 0x0B before the ramp and back to the initialization value after the ramp will prevent this  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x40  
APG  
RAMPCn PRENCn VOHZCn  
RES  
ARXCn  
ATXCn  
The sign bit OHV:SBCn[6] is used to determine the polarity of the line during an automatic transition into idle, Active,  
and On-Hook transition states. If the new polarity is to be retained in future automatic transitions, it is recommended  
Revision 1.3  
Page 31 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
that OHV:SBCn[6] be also changed appropriately when polarity is reversed. The ramp rate for steps 2 and 4 above is  
determined by the Ramp Rate bit APG:RAMPCn[7].  
12.1.1.5.  
WINK FUNCTION POLARITY REVERSAL  
A Wink function is used for the ‘message waiting’ lamp in telephone sets. For this function to take place no Linefeed  
state change is necessary. The Wink function is a variation of Soft Polarity Reversal but without any Linefeed state  
change. In this case Soft Polarity reversal is enabled as before APG:PRENCn[6] address (0x40) bit to “1”, with  
APG:RAMPCn[7] address (0x40) selecting the ramp rate. Now the OHV:VOHZCn[5] address (0x4C) bit can be used  
to directly ramp the RING line towards 0V or back to VRING. For example, in Forward Idle mode VTIP is at VGM and  
VRING is VGM+VOH. If VOHZCn bit is set to “1” the Ring Voltage will ramp towards 0V. If the bit is toggled it will  
eventually return to the nominal VRING setting. The user has full control of the Wink function cadence.  
Register  
APG  
Bit(s)  
Address  
0x40  
Parameter  
Programmable Range  
0 = Return to previous VOH  
1 = Ramp to 0V  
VOHZCn[5]  
Wink Function (Smooth transition to VOH=0V)  
0 = Disabled  
1 = Enabled  
0 = 1.5 V/125 µs  
1 = 3.0 V/125 µs  
APG  
APG  
LS  
PRECn[6]  
RAMPCn[7]  
LSCn[3:0]  
SBCn[6]  
0x40  
0x40  
0x44  
0x4C  
Soft Polarity Reversal Enable  
Soft Polarity Reversal Ramp Rate  
Linefeed Status  
0 = Forward  
1 = Reverse  
OHV  
Polarity Reversal Status (Sign)  
Table 10: Registers for Polarity Reversal  
12.1.2. OVER-VOLTAGE PROTECTION  
It is a common requirement for electronic circuits to have to withstand some degree of over-voltage and/or reverse  
voltage on the power-supply lines. Integrated circuits are designed to operate from a nominal 3.3V power supply.  
Some kind of protection circuit is therefore needed to prevent voltages greater than the maximum allowable from  
being applied to the IC pins. The N682386/87 device needs to be protected from surges and AC power shorts. This  
should be implemented using external components and a variety of commercial approaches are typically employed.  
However, N682386/87 device has on-chip voltage and line monitoring capabilities which allow the system to report  
line faults, crossovers, and other line conditions in order to facilitate remote service. It also has sense inputs can be  
configured such that blown fuse can be detected. The on-chip DC/DC controller is equipped with three protection  
shutdown mechanisms. It detects  
a) DCDC output voltage (VBAT) 10% above full scale or  
b) DCDC supply voltage (VDDC) too low or  
c) DCDC supply current (IVDDC) too high;  
Revision 1.3  
Page 32 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
A counter is tracking the three cases of DC/DC power alarm. The counter will automatically reset upon being read,  
allowing the user to monitor the number of power alarms within a specific time period. This register is a read ONLY  
register resets upon a read command.  
Register  
APG  
Bit(s)  
Address  
0x9F  
Parameter  
Programmable Range  
Increment on every rising edge of LOW  
VDC or HIGH IDC; clip at 255;  
PALCNTCn[7:0]  
Power Alarm Counter  
Table 11: PWM DC/DC Power Alarm Counter  
12.1.2.1.  
THERMAL OVERLOAD  
In addition to voltage and current monitoring described in the “Linefeed States of Operation” section, N682386/87  
continuously monitors the power dissipation of each external transistor in the Linefeed circuitry. After Low Pass  
Filtering, the power dissipation is compared against thresholds which are listed in Table 10. The threshold and the  
Low Pass Filter pole are both programmable and should be set according to the characteristics of the individual  
transistor as follows. The Low Pass Filter pole for QT1 and QR1 is given by the equation:  
1
Q1C[12: 0]  
=
1 −  
×213  
800 × TTC  
Where TTC is the thermal time constant of the external transistor. The threshold should be programmed according to  
the maximum power dissipation of the external transistor. If the threshold is exceeded a power alarm event is  
deemed to have occurred. An associated interrupt may be enabled. An automatic state transition into Open state  
may be enabled by setting Power Alarm Automatic React (LAMC:PAACn[2]) address (0x43)).  
Register  
PALPQ1  
PALPQH1  
PALPQH2  
PALPQ2  
PALPQH1  
PALPQH2  
PALPQ3  
PALPQH2  
PALPQH2  
Bit(s)  
Address  
Parameter  
Description / Range  
Q1C[7:0]  
Q1C[11:8]  
Q1C[12]  
Q2C[7:0]  
Q2C[11:8]  
Q2C[12]  
Q2C[7:0]  
Q3C[11:8]  
Q3C[12]  
0xA1  
0xA3  
0xA4  
0xA0  
0xA3  
0xA4  
0xA2  
0xA3  
0xA4  
PA Low Pass Filter Pole for  
QT1 and QR1  
See Register Description  
PA Low Pass Filter Pole for QT2  
and QR2  
See Register Description  
See Register Description  
PA Low Pass Filter Pole for QT3  
and QR3  
PATHQ1  
PATHQ2  
PATHQ3  
INT1  
Q1TH[7:0]  
Q2TH[7:0]  
Q3TH[7:0]  
0xA6  
0xA5  
0xA7  
0x26  
PA Threshold for QT1 and QR1  
PA Threshold for QT2 and QR2  
PA Threshold for QT3 and QR3  
Power Alarm Interrupt  
0 to 7.7 W in 30.4 mW steps  
0 to 0.97 W in 3.8 mW steps  
0 to 7.7 W in 30.4 mW steps  
No INT / INT  
IE1  
LAMC  
0x27  
0x43  
Power Alarm Interrupt Enable  
Power Alarm Automatic React  
Masked / Enabled  
Enable/Disable  
PAACn[2]  
Table 12: Registers Associated with Thermal Overload  
Revision 1.3  
Page 33 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.2.2.  
TEMPERATURE MONITOR  
The device contains an on-chip temperature sensor that senses the temperature of the die. This temperature is read  
through the TEMP:TS[7:0] register (0x99). TEMP:TS[7:0] address (0x99) is READ ONLY register. The die  
temperature is given in °C (degree Celsius) as follows  
Die Temperature = TS [7 : 0] 67  
(Decimal)  
Example1: If register TEMP:TS[7:0] reads 0x23 (35 decimal) then the die temperature is -32°C.  
Example2: If register TEMP:TS[7:0] reads 0xCD (205 decimal) then the die temperature is 138°C.  
The die temperature alarm threshold is set using the register THAT:THAT[7:0] address (0xAA). The die temperature  
alarm threshold (TTH) is given in °C (degree Celsius) as follows  
TTH = THAT  
[
7 : 0  
]
67  
(Decimal )  
If the die temperature reaches the threshold temperature than an interrupt will be generated if this interrupt is  
enabled. The interrupt is enabled by setting IE3:TMPE[0] address (0x2B). This facilitates control of the temperature  
should the device get close to the junction temperature. Note that there is no filtering associated with this  
temperature alarm since the package has an intrinsic thermal time constant. It is recommended that the temperature  
alarm threshold be set to 125°C. The die temperature can be estimated by the following equation.  
Die temperature = T  
+
R
× P  
J
A
TA – Ambient Temperature  
RJ – Thermal Resistance  
P – Power Dissipation  
For example, the maximum power dissipation for the QFN device is 0.7 W. The thermal resistance of the 64-pin QFN  
package is 17°C/W. So at TA=85°C, the estimated internal temperature would be:  
ο
Die Temperature = 85 + 17 * 0.7 = 96.9 C  
Revision 1.3  
Page 34 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.3. RINGING  
N682386/87 has a built-in Ring generator that can generate both balanced sinusoidal or trapezoidal Ringing without  
the need for external components. The choice of sinusoidal or trapezoidal will depend on requirements of the end  
user; sinusoids are required in many parts of the world to minimize cross talk between the many tip/ring pairs in a  
typical wiring bundle from the central office, whereas a trapezoid will deliver more power to the phone due to its low  
crest factor. The Frequency, Amplitude, DC offset and Ringing cadence of the ringing signal are programmable. In  
the case of trapezoidal waveforms, the crest factor is also programmable. As Ringing utilizes the Tone Generation  
block, we will first examine this function.  
12.1.3.1.  
TONE GENERATION  
N682386/87 has two-tone generators Oscillator1 (OS1), and Oscillator2 (OS2). These can be used to generate  
signals such as dial tone, busy tone, and various test tones which can be sent either on the transmit or receive paths.  
Each tone generator has a similar architecture and contains a two-pole oscillator circuit with a sample rate of 16 kHz.  
Register  
OS1ICL  
Bit(s)  
Address  
Parameter  
Description / Range  
Sets Amplitude  
Sets Frequency  
0 to 8 sec  
0xC2  
0xC3  
0xC6  
0xC7  
0xCA  
0xCB  
0xCE  
0xCF  
O1ICCn[15:0]  
O1CCn[15:0]  
O1ONCn[15:0]  
Oscillator 1 Amplitude Coefficient  
Oscillator 1 Frequency Coefficient  
Oscillator 1 Active Timer  
OS1ICH  
OS1CL  
OS1CH  
OS1ATL  
OS1ATH  
OS1ITL  
OS1ITH  
O1OFF[15:0]  
TORCn[3]  
Oscillator 1 Inactive Timer  
Tone Route  
0 to 8 sec  
RMPC  
OSN  
0xC1  
Towards D/A or A/D  
O1ECn[0]  
O2ECn[1]  
0xC0  
0xC0  
0x29  
Oscillator Control  
O1AECn[0]  
0x29  
O1IECn[1]  
O2AECn[2]  
O2IECn[3]  
IE2  
Interrupt Mask / Enable  
Control  
Status  
0x29  
0x29  
INTV  
IINT2  
0x24  
0x28  
Interrupt Vector Low Register  
Interrupt Status  
Table 13: Associated Registers for Oscillator Control (Oscillator 1 Example)  
For a desired frequency, ft, the oscillator coefficient for oscillator m, OmCCn[15:0], can be calculated with the  
following equations for both Narrowband and Wideband. The resulting hexadecimal coefficients are inputs to  
registers OSmCH and OSmCL.  
Revision 1.3  
Page 35 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
2 * π * f  
2 * π * f  
t
t
O1CCn [15: 0] = COS  
* 215  
O2CCn [17 : 0] = COS  
* 217  
16 kHz  
16 kHz  
The initial condition for Oscillator m, OSmICL[15:0], can be calculated using the following equation for both  
Narrowband and Wideband.  
2 * π * f  
t
OmICCn [15:0] = A * sin  
* 215  
(m: 1 , 2  
n: 1, 2)  
16 kHz  
“A” is calculated as the ratio of desired peak amplitude, APK, with a peak D/A output of 1.5779 VPK. APK cannot  
exceed 1.2 VPK. The resulting hexadecimal coefficient is input to registers OSmICH and OSmICL.  
APK  
A =  
1.5779  
Frequency  
(Hz)  
APK  
(Volts)  
Frequency  
(Hz)  
APK  
(Volts)  
O1CCn[15:0]  
O1ICCn[15:0]  
O2CCn[17:0]  
O2ICCn[15:0]  
697  
770  
0x7B3C  
0x7A37  
0x78E7  
0x775C  
0x71D8  
0x6EC9  
0x6B11  
0x6692  
0.31  
0.31  
0.31  
0.31  
0.55  
0.55  
0.55  
0.55  
0x06C5  
0x0775  
0x0839  
0x090B  
0x145B  
0x164E  
0x1868  
0x1AA4  
697  
770  
0.31  
0.31  
0.31  
0.31  
0.55  
0.55  
0.55  
0.55  
0x06C5  
0x0775  
0x0839  
0x090B  
0x145B  
0x164E  
0x1868  
0x1AA4  
1ECF0  
1E8C5  
1E39B  
1DD70  
1C75E  
1BB22  
1AC43  
19A48  
852  
852  
941  
941  
1209  
1336  
1477  
1633  
1209  
1336  
1477  
1633  
Table 14: Example Register settings for Oscillator m  
Revision 1.3  
Page 36 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 8: Block Diagram Oscillator 1  
Each tone generator contains two timers, one for setting the active period and the other for the inactive period. Each  
period can be programmed between 0 seconds (timer disabled) to 8 seconds in 125µs increments. In addition,  
interrupts can be enabled on the expiration of either timer. The device has programmable cadence where the signal  
is generated during the active period and suspended during the inactive period.  
One-shot control of the oscillation can be achieved by controlling OSN:O1ECn[0] and OSN:O2ECn[1] address (0xC0)  
together with the active timer and the interrupt for durations up to 8 seconds. For longer durations or for direct  
software control of the oscillation, enabling the active timer by setting it to any non-zero value while simultaneously  
disabling the inactive timer completely will put the oscillator under direct control of the OSN:O1ECn[2] and  
OSN:O2ECn[3] bits. Zero crossing detect can be enabled by setting the OSN:OmZCCn bit for the corresponding  
tone generator. Setting this bit will ensure that each oscillator pulse will end without a DC component as illustrated  
below.  
Revision 1.3  
Page 37 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
cadence  
cadence  
tone  
tone  
Figure 9: Zero Crossing for Tone Generation  
Oscillator 2 is also specifically used to generate the Ringing signal and is unavailable for other functions during  
ringing. FSK generation does not utilize either one of the tone generation oscillators.  
12.1.3.2.  
RING SIGNAL GENERATION  
The N682386/87 supports balanced and unbalanced Ringing up to 90 VPK (typically 5 REN up to 4 kft). Oscillator 2  
from the Tone Generation block is used to generate the Ringing waveform. However, programming the waveform,  
sinusoidal or trapezoidal, involves some slight modifications to the procedures described for Tone Generation. The  
active and inactive timers of oscillator 2 can be programmed between 0 seconds (timer disabled) and 8secs in 125us  
increments. A Ring phase delay can also be programmed in the OS2RPD:O2RPDCn[7:0] address (0xAD).  
All other oscillator operations are standard and follow the description in the tone generation section. Interrupts can  
be enabled on the expiration of either timer, so that, for instance, Caller ID can be inserted between tones. Cadence  
is activated when a non-zero value is programmed into both the active and inactive timers. In this case, these timers  
effectively govern the transitions in and out of the Ringing state as described in Linefeed States of Operation Section.  
When the Ring Automatic bit LAMC:RGACn[1] address (0x43) is set, the oscillator is automatically enabled when the  
Ringing state is entered and disabled when exited. If the Ring Automatic bit is enabled the transition from Ringing to  
Active state (Forward or Reverse) occurs automatically upon Ring Trip Detect. The oscillator enable and ring enable  
bits are automatically updated accordingly OSN:O2ECn[1] address (0xC0) and RMPC:R1ENCn[5] address (0xC1).  
One-shot control of the oscillation can be achieved by controlling OSN:O2ECn[1] address (0xC0) together with the  
active timer and the active timer interrupt for durations up to 8 seconds. For longer durations or for direct software  
control of the oscillation, enabling the active timer by setting it to any non-zero value, while simultaneously disabling  
the inactive timer completely, will put the oscillator under complete direct control of the OSN:O2ECn[1] address  
(0xC0) bit. Zero crossing detect can be enabled by setting the OSN:O2ZCCn[3] address (0xC0). Setting this bit will  
ensure that the RING signal will end without a DC component. It is recommended that settings be reprogrammed  
only when the oscillator is disabled.  
Revision 1.3  
Page 38 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Register Name  
RMPC  
Register Name  
TRAP[7]  
Address  
0xC1  
Parameter  
Ringing Waveform  
Description / Range  
Sine/Trapezoid  
0xC8  
0xC9  
0xDC  
0xC4  
0xC5  
OS2CL  
OS2CH  
15 to 100 Hz for Sine Trapezoid  
Ramp Slope  
O2CCn[17:0]  
Ringing Frequency  
OS2ICL  
OS2ICH  
O2ICCn[15:0]  
OS2RPDCn[7:0]  
O2ECn[1]  
Ringing Amplitude  
0 to 93.5 V Trapezoid tRISE / tPEAK  
0 to 31.8 ms @ 125us  
Enable/Disable  
OS2RPD  
OSN  
0xAD  
0xC0  
Ringing Phase Delay  
Ringing Oscillator Enable  
Ringing Oscillator Active Timer  
OS2ATL  
OS2ATH  
OS2ITL  
OS2ITH  
0xCC  
0xCD  
0xD0  
0xD1  
O2ON[15:0]  
O2OFF[15:0]  
O2ZCCn[3]  
0V to 8 seconds  
Ringing Oscillator Inactive Timer 0V to 8 seconds  
Ringing Oscillator Zero Cross  
Enable/Disable  
OSN  
LS  
0xC0  
0x44  
0x4E  
0x42  
0xDC  
0x29  
Enable  
Linefeed Status Control (Initiates  
Ringing State)  
LSCn[3:0]  
Ringing State = 0100b  
VBHV  
VCMR  
ROFFS  
IE2  
VBATHCn[5:0]  
VCMRCn[5:0]  
ROSCn[5:0]  
VBATH High Battery Voltage /2  
0V to -93.5V in 1.484V steps  
0V to -93.5V in 1.484V steps  
0V to +47.488 V in 1.484V steps  
Controls  
VCMR Common Ringing Bias  
Adjust During Ringing  
Ringing DC voltage offset  
Interrupt Enable  
INTV  
INT2  
0x24  
0x28  
Interrupt  
Status  
Table 15: Registers for RING Generation  
Revision 1.3  
Page 39 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.3.2.1.  
SINUSOIDAL RINGING  
Sinusoidal Ringing is selected by setting RMPC:TRAP[7] address (0xC1) to LOW. For a desired frequency fR is  
calculated and programmed as before (see section Tone Generation). The oscillator initial condition for oscillator 2 is  
set in register O2ICn[17:0] address (0xC4 – 0xC5) according to the following equation.  
Description  
Desired frequency ft  
Equation  
2 * π * f  
17  
t
O2CCn[17 : 0] = cos  
* 2  
(n: 1, 2)  
(n: 1, 2)  
The resulting hexadecimal coefficient is input to registers  
OS2CH and OS2C and ROFFS  
8 kHz  
Oscillator initial condition for oscillator 2  
2* π * f  
15  
* 2  
R
O2ICCn[15 : 0] = A * sin  
The resulting hexadecimal coefficient is input to registers  
OS2ICH and OS2ICL  
8 kHz  
A
A is calculated from the desired peak amplitude,  
APK, in volts  
PK  
A
=
96  
Note that A is calculated differently for Tone Generation. Finally the precise phase position where the sinusoidal  
ringing signal begins transmitting can be controlled by programming a transmission or phase delay of up to 31.8 ms  
into OS2RPD:O2RPDCn[7:0] address (0xAD). If the zero-crossing feature is enabled signal transmission will end at  
the equivalent phase position.  
Target  
Frequency  
(Hz)  
Frequency with  
Dual Pro–X (Hz)  
O2CCn[17:0]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
25  
50  
11.12  
11.12  
12.18  
13.15  
14.07  
15.73  
16.49  
17.22  
18.60  
19.27  
20.51  
25.37  
50.26  
1FFFB  
1FFFB  
1FFFA  
1FFF9  
1FFF8  
1FFF6  
1FFF5  
1FFF4  
1FFF2  
1FFF1  
1FFEF  
1FFE6  
1FF9A  
Table 16: Example Ringer Register settings  
Revision 1.3  
Page 40 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.3.2.2.  
TRAPEZOIDAL RINGING  
Trapezoidal Ringing is selected by writing RMPC:TRAP[7] = 1 address (0xC1). Three parameters are required to  
specify a Trapezoidal RING Signal and they as follows:  
Desired frequency ft (period T)  
Desired amplitude APK  
Crest factor, CF  
Three values are programmed across O2CCn[17:0] and O2ICn[15:0] to describe the waveform.  
V
TIP-RING  
tPK  
APK  
Time  
tRISE  
T = 1/fT  
TR_v1  
Figure 10: Trapezoidal Ringing  
Description  
Equation  
1
t
= 0.375 * T * 1−  
Calculated rise time (tRISE  
)
RISE  
2
CF  
The rise time, expressed as an integer number of periods of 8 kHz,  
OS2ICL  
O2ICCn[7: 0] = t  
* 8 kHz  
RISE  
The resulting hexadecimal coefficient is input to registers OS2ICL  
t
=
(
0.5 * T  
)
(
2 * t  
)
Calculated peak time (tPK  
)
PK  
RISE  
The peak time, expressed as an integer number of periods of 8  
kHz, OS2ICH  
O2ICCn[15: 8] = t  
* 8 kHz  
(n: 1, 2)  
(n: 1, 2)  
PK  
The resulting hexadecimal coefficient is input to registers OS2ICH  
A  
Calculated ramp rate is specified in O2CCn[15:0]  
15  
PK  
*2  
96  
O2CCn[15:0]=  
Oscillator 2 has 18-bit register. The resulting hexadecimal coefficient is  
written to registers ROFFS:O2C[7:6], OS2CL and OS2CH  
t
*8 kHz  
RISE  
Precise position where the trapezoidal signal begins transmitting. If  
the zero-crossing feature is enabled signal transmission will end at  
the equivalent phase position.  
OS2RPD = transmission or phase delay of up  
to 32 ms  
Revision 1.3  
Page 41 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.3.2.3.  
RINGING DC OFFSET AND COMMON MODE BIAS  
A Ringing DC offset voltage VROFF can be defined by setting ROFFS:ROS[5:0]  
V
6
ROFF  
96  
ROS[5 : 0] =  
* 2  
Ringing DC Offset is enabled when ROFFS:ROS[5:0] contains a non-zero value. VROFF is added to, or subtracted  
from, the AC ringing signal depending on the setting.  
time  
0V  
V
TIP  
V
TIP  
APEAK  
APEAK  
VROFF  
VBATH/2  
VROFF  
APEAK  
V
V
RING  
RING  
VBATH  
Volts  
VROFF = 0  
RG  
VROFF > 0  
Figure 11: Positive DC offset for Trapezoidal Ringing  
Similarly a Common Ringing Bias voltage VCMR can be defined by setting the VCMR Register.  
0V  
time  
V
TIP  
V
TIP  
APEAK  
VBATH/2  
VCMR  
APEAK  
V
V
RING  
RING  
VBATH  
Volts  
CMR  
VCMR = 0  
VCMR > 0  
Figure 12: Programming VCMR voltage for Trapezoidal Ringing  
Revision 1.3  
Page 42 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.3.2.4.  
LINEFEED CONSIDERATIONS DURING RINGING  
To maintain proper biasing of the external bipolar transistors the generated Ringing signal should stay between the  
Ringing voltage rails (GNDA and VBATH). If the ringing signal approaches the rails the signal will distort. Furthermore  
excessive power dissipation in the external transistors will also occur. This can be prevented if VBATH is programmed  
such that:  
V
> 2 ×  
+
+ V  
CMR  
A
V
ROFF  
PEAK  
BATH  
12.1.3.3.  
INTERNAL UNBALANCED RINGING  
An unbalanced ringing waveform can be generated by the N682386/87. This feature is enabled by setting  
GMV:UBRCn[7] address (0x4D) to “1”. The Ringing signal is only applied to the RING lead and the TIP lead remains  
at the programmed VGM voltage. The Ringing signal is programmed as described in Ring Signal Generator section.  
A DC offset can be used to provide DC current for Ring Trip Detection. Positive VROFF values will cause the DC offset  
point to move closer to ground. The internal unbalanced Ringing waveform is shown below.  
Figure 13: Unbalanced Ringing on TIP  
The DC offset value should be set to less than half the ringing amplitude or the ringing signal will be clipped. Reverse  
unbalanced Ringing waveform can be achieved by setting the GMV:UBRCn[7] address (0x4D) bit to 1 (the TIP lead  
oscillates while the RING lead stays constant). In this mode, the polarity of VROFF must also be reversed.  
Revision 1.3  
Page 43 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.3.4.  
RING TRIP DETECTION  
The Ring Trip Detection mechanism is used to recognize an off-hook event during Ringing. The N682386/87  
monitors the Loop current through the Loop current circuitry (available at LPI:ILPCn[11:0] address (0x90)). If the  
shadow Linefeed state LS:SLSCn[7:4] address (0x44)indicates a Ringing state the loop current can used to evaluate  
whether a Ring Trip event has occurred under two alternative methods - AC path or DC path.  
Figure 14: RING Trip Detection Mechanism  
For the AC path the AC component of the loop current is determined by passing it first through a full-wave rectifier to  
remove the DC component and then through a Low Pass Filter for smoothing. The resulting value is compared to the  
AC path Ring Trip Threshold in register RTTA:ARTT[5:0] address (0x55). A subsequent debounce filter is  
programmed with an AC Path debounce interval from register RTDBA:ARTDI[7:0] address (0x48). If this interval is  
satisfied, a valid Ring Trip is judged to have occurred. However, RTLC:RTDUACn[3] address (0x46) bit records the  
unfiltered status of the AC path Ring Trip Detect without regard to the debounce interval.  
For the DC path the DC component of the loop current is determined by passing it first through a Low Pass Filter to  
remove the AC component and then though a rectifier to ensure a positive value. The resulting value then compared  
against the DC path Ring Trip Threshold in register RTTD:DRTT[5:0] address (0x67) and tested against the DC path  
debounce interval from register RTDBD:DRTDI[7:0] address (0x68). If this interval is satisfied, a valid Ring Trip is  
judged to have occurred. However, RTLC:RTDUDCn[4] address (0x46) bit records the unfiltered status of the DC  
path Ring Trip Detect without regard to the debounce interval.  
If a RingTrip is judged to have occurred either on the AC path or on the DC path RTLC:RTDCn[1] address (0x46) bit  
is set. If enabled, a Ring Trip Interrupt will occur. If LAMC:RGACn[1] address (0x43) is set the channel will  
automatically transition into the Active state (Forward or Reverse) upon a valid Ring Trip Detect.  
Revision 1.3  
Page 44 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
In general, only one detection path should be utilized at one time by maximizing the Ring Trip Threshold value of the  
unwanted path.  
Register  
Bit(s)  
ARTT[5:0]  
DRTT[5:0]  
ARTDI[7:0]  
DRTDI[7:0]  
Address  
Parameter  
Description / Range  
RTTA  
RTTD  
0x55  
0x67  
0x48  
0x68  
0x51  
0x52  
0x65  
0x66  
RING Trip Threshold AC & DC  
0 to 80 mA in 1.27 mA steps  
RTDBA  
RTDBD  
RING Trip Detect Debounce Interval  
RING Trip Filter Coefficient  
0 to 159 milliseconds  
For Digital LPF  
RTDFCLD ARTDFC[7:0]  
DCHA  
RTDFCLD  
DCHD  
ARTDFC[11:8]  
DRTDFC[7:0]  
DRTDFC[11:8]  
INT1  
IE1  
RTCn[0]  
0x26  
0x27  
0x46  
0x44  
0x43  
RING Trip Interrupt Pending  
RING Trip Interrupt Enable  
Status  
RTECn[0]  
RTDCn[1]  
SLSCn[3:0]  
RGACn[1]  
Enable/Mask  
RTLC  
LS  
RING Trip Loop Closure Detect Status Status  
Linefeed Status Control  
Ringing Shadow Status  
Control  
Enable Oscillators and Transitions  
automatically  
LAMC  
Table 17: Registers for RING Trip Detection  
The cutoff frequency, fLP, of the Digital LPF is programmed in the Ring Trip Filter coefficient RTDFCA[11:0] and  
RTDFCD[11:0]:  
f
f
12  
12  
LP  
800Hz  
LP  
800Hz  
RTDFCD[11 : 0] = 1 - 2 * π *  
* 2  
RTDFCA[11 : 0] = 1 - 2 * π *  
* 2  
Values for RTDFCA, RTDFCD, RTTA, RTTD, RTDBD and RTDBA vary according to the programmed ringing  
frequency. The following table can be used for reference.  
Ringing  
Frequency  
RTDFCD[11:0]  
RTDFCA[11:0]  
RTTA  
RTTD  
RTDBD  
RTDBA  
Hz  
Decimal  
Hex  
Decimal  
Hex  
Decimal  
Hex  
16.667  
20  
3561  
3453  
3132  
0x0DE9  
0x0D7D  
0x0C3C  
34 mA  
34 mA  
34 mA  
3600  
3600  
3600  
15 ms  
12.5 ms  
8.75 ms  
0x0C  
0x0A  
0x07  
30  
40  
50  
60  
2810  
2489  
2167  
0x0AFA  
0x09B9  
0x0877  
34 mA  
34 mA  
34 mA  
3600  
3600  
3600  
7.5 ms  
5 ms  
0x06  
0x04  
0x04  
5 ms  
Table 18: Recommended RING Trip Values for Ringing  
Revision 1.3  
Page 45 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.4. SUPERVISION (SIGNALING)  
12.1.4.1. LOOP CLOSURE DETECTION  
The recognition of an off-hook event outside Ringing is controlled by the Loop Closure Detect mechanism. Figure  
below shows the functional block.  
Figure 15: Lp Closure Detector Block Diagram  
Loop current monitoring circuitry provides a Loop Current value which can be read at LPI:ILPCn[11:0] address (0x90)  
register. If the shadow linefeed state LS:SLSCn[7:4] address (0x44) indicates any state other than Open or Ringing  
state, the Loop Current value is fed to a digital Low Pass Filter to remove unwanted AC components. The cutoff  
frequency, fLP, of the Digital LPF is programmed in the Loop Closure Detect Filter coefficient LCDCL:LCDC[11:0]  
address (0x50).  
f
12  
LP  
800Hz  
LCDC[11 : 0] = 1- 2 * π *  
* 2  
The resulting value is compared to a Loop Current Detect Threshold value in register LCT[5:0] address (0x53).  
However if the transition is an off-hook to an on-hook transition with hysteresis is enabled LCTHY:LCHYEN[6]=1  
address (0x54), the threshold value in LCTHY:LCTOFF[5:0] address (0x54) is used in the comparison. A subsequent  
debounce filter is programmed with a debounce interval from register LCDB:LCDI[7:0] address (0x47). In addition, a  
special mask counter LCMCNT:LCMCNT[7:0] address (0xAB) can be enabled using RTLC:LCMCn[6] address (0x46)  
to guard against detects due to transients on the line, which can occur with reactive ringers. The RTLC:LCDU[2]  
address (0x46) bit records the unfiltered status of Loop Closure Detect without regard to the debounce interval or the  
Mask count. If the interval is satisfied a valid Loop Closure is judged to have occurred and the RTLC:LCDCn[0]  
address (0x46) bit is set. An interrupt can be enabled when the Loop Closure Interrupt occurred.  
Revision 1.3  
Page 46 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Register  
LCT  
Bit(s)  
Address  
0x53  
Parameter  
Description / Range  
Current Based: 0-80 mA @ 1.27 mA  
Voltage based: 0-93.5V @ 1.484V  
Current Based: 0-78.74 mA @ 1.25  
mA  
LCT[5:0]  
Loop Closure Threshold  
Loop Closure  
LPI  
ILPCn[11:0]  
LCHYEN[6]  
0x90  
0x54  
LCTHY  
Enable Hysteresis  
When hysteresis enabled only  
Loop Closure Threshold Off-Hook to  
ON-HOOK state Enable Hysteresis  
opposite transition governed by LCT.  
Current Based: 0-80 mA @ 1.27 mA  
Voltage based: 0-93.5V @ 1.484V  
LCTHY  
LCDB  
LCTOFF[5:0]  
LCDI[7:0]  
0x54  
0x47  
Loop Closure Detect Debounce  
Interval  
0 to 159 milliseconds  
For Digital LPF  
Status  
LCDCL  
DCH  
LCDC[7:0]  
LCDC[11:8]  
0x50  
0x52  
Loop Closure Filter Coefficient  
Loop Closure Interrupt Pending  
Loop Closure Interrupt Enable  
Loop Closure Detect Status  
INT1  
IE1  
LCCn[1]  
0x26  
0x27  
0x46  
0xAB  
0x43  
LCECn[1]  
LCD[0]  
Enable/Mask  
Status / Enable Voltage-based  
Loop Closure  
RTLC  
LCMC  
LAMC  
LCMCNT[7:0]  
LCDACn[0]  
Loop Closure Detect Mask Counter  
Enable Automatic Transitions  
0 to 319 ms in 1.25 ms steps  
Control  
Table 19: Loop Closure Detection Registers  
If LAMC:LCDACn[1] address (0x43) is set the channel will automatically transition from the Idle (Forward or Reverse),  
ON-HOOK Transmission (Forward or Reverse) as well as TIP Open or RING Open into the Active (Forward or  
Reverse) state upon a valid Loop Closure Detect.  
Voltage based Loop Closure Detect can also be enabled by setting bit RTLC:VBLCCn[5] address (0x46). In this case  
the input signal is the Loop Voltage and the thresholds are interpreted as voltages. All other functionality is the same.  
Revision 1.3  
Page 47 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.4.2.  
GROUND KEY DETECTION  
Ground Key Detect (GKD) senses a DC current imbalance between the TIP and RING terminals when the RING  
terminal is connected to ground. This feature is commonly associated with PBX signaling. The feature is enabled in  
all states except Ringing. Figure below shows the functional blocks for ground key detector.  
Figure 16: Ground Key Detection Circuitry  
Ground Key Detection is enabled by setting the GKDFCH:GKDEN[7] address (0x64). The input to the GKD circuitry  
is the longitudinal current, which is available in register LGI:ILGCn[11:0] address (0x8C). If the shadow linefeed state  
LS:SLSCn[7:4] address (0x44) indicates a non-Ringing state, the longitudinal current is fed to a programmable Digital  
Low Pass Filter to remove any unwanted AC components. If fLP is the desired cutoff frequency LPF the Low Pass  
Filter Coefficient GFDFC:FCGKD[11:0] address (0x63) is calculated using the following equation:  
f
12  
LP  
800Hz  
GKDFC : FCGKD[11 : 0]  
=
1
2 *  
π
*
*
2
⎟  
A typical value of 10 (GKDFC:FCGKD[11:0] = 00A) is sufficient to filter out any unwanted ac artifacts while allowing  
the dc information to pass through the filter.  
Register  
Bit(s)  
Addr  
Parameter  
Range  
Increment Resolution  
INT3  
IE3  
GKDECn[3]  
GKDIECn[3]  
0x2A Ground Key Interrupt Pending  
0x2B Ground Key Interrupt Enable  
Yes/No  
Yes/No  
N/A  
N/A  
N/A  
N/A  
Ground Key Detect Debounce  
Interval  
GKDDT  
DTGKD[7:0]  
0x62  
0 to 320ms  
1.25ms  
1.25ms  
8-bits  
12-bits  
77.62 mA  
77.62 mA  
0 to 80 mA  
303 uA  
18.95 uA  
1.27mA  
Longitudinal  
Current  
LGI  
ILGCn[11:0]  
HGKD[5:0]  
0x8C  
0x60  
GKDH  
Ground Key Threshold (enabled)  
1.27mA  
Revision 1.3  
Page 48 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Register  
Bit(s)  
Addr  
Parameter  
Range  
Increment Resolution  
GKDL  
LGKD[5:0]  
0x61 Ground Key Threshold (released)  
0x63 Ground Key Filter Coefficient  
0 to 80 mA  
0 to 4000h  
1.27mA  
N/A  
1.27mA  
N/A  
GKDFC  
FCGKD[11:0]  
Table 20: Ground Key Detection Registers  
The resulting value from the Low Pass Filter is compared to a Ground Key Detect High Threshold GKDH:HGKD[7:0]  
address (0x60) value. Hysteresis is enabled automatically by programming a second threshold GKDL:LGKD[7:0]  
address (0x61) to detect when the Ground Key is released. The output of the comparator is connected to a  
programmable debounce filter. It can be programmed with a debounce interval GKDDT address (0x62).  
12.1.4.3.  
CALLER ID AND FSK GENERATION  
The N682386/87 provides an optimized Frequency-shift keying (FSK) generator for sending Caller ID information.  
Both Bell 202 and ITU-T V.23 standard FSK are supported. The FSK generation supports both Type I and Type II  
Caller ID with ability to generate CPE Alerting Signals (CAS tones) of 2130 Hz and 2750 Hz. The linear FSK  
waveform generator provides a mechanism to generate the linear code of FSK with continuous phase.  
Figure 17: The Architecture of Linear FSK Waveform Generator  
Revision 1.3  
Page 49 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
As Figure above illustrates, an 8-byte FIFO substantially reduces CPU intervention in generating FSK. Transmitted  
FSK data is placed in the FIFO by writing to the FSKTD:FSK[7:0] address (0x11) register. The writing process can  
be controlled by the status bits in the FSKS address (0x12) register which inform on the FIFO’s current status.  
FSK transmission is initiated by asserting FSKC:TX[3] address (0x10). The FSK transmit data is clocked out of the  
FIFO one byte at a time beginning with the LSB. If package mode is enabled a ‘start bit’ (Space) will automatically be  
amended to the head of the FSK transmit data. Furthermore, one or two ‘stop bits’ (Mark) are added to the end of the  
FSK transmit data, depending on the setting of FSKC:STOP[2] address (0x10). If package mode is not enabled the  
FSK transmit data is transmitted as it appears in the FSK FIFO.  
There is one FSK generation engine available inside the N682386/87. An FSK interrupt is generated if the FIFO is  
empty. The gain of the FSK signal can also be adjusted using FSKLCR:GAIN[3:0] address (0x13) register.  
Register  
FSKC  
Bit(s)  
Address  
0x10  
Parameter  
FSK Control Register  
FSK Transmit Data  
Description / Range  
Control  
FSKTD  
FSK[7:0]  
0x11  
Binary signal to be transmitted  
FIFO and Shift Register Status  
FF[2]  
FEP[0]  
FSKS  
0x12  
FSK Status Register  
FSKLCR  
FSKTCR  
INT2  
GAIN[3:0]  
FSKR[3]  
0x13  
0x14  
0x28  
0x29  
FSK Gain  
See Register Description  
Route FSK Data  
Status  
FSK Route  
FSKICn[7]  
FSKIECn[7]  
Interrupt Status Registers  
Interrupt Enable Register  
IE2  
Enable/Mask  
Table 21: Registers for FSK Generation  
12.1.4.4.  
DTMF GENERATOR  
In Dual Tone Multi Frequency (DTMF) two tones are used to generate a DTMF digit. One tone is chosen from four  
possible row tones, and one tone is chosen from four possible column tones. The sum of these two tones constitutes  
one of 16 possible DTMF digits.  
Column frequency  
Hz  
1209  
1336  
1477  
1633  
A
B
C
D
697  
770  
852  
941  
1
4
7
*
2
5
8
0
3
6
9
#
Table 22: DTMF frequency mapping  
DTMF tone generation can be achieved by using both oscillator 1 and oscillator 2. The table below illustrates the  
oscillator coefficient and initial condition which are required for the standard DTMF tone frequencies. For timing  
Revision 1.3  
Page 50 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
integrity both oscillators should be enabled simultaneously. Tones can be directed either towards the line or the PCM  
interface by programming the RMPC:TRAP[7] bit address (0xC1).  
O1CCn[15:0] or O2CCn[17:2]  
OmIC[15:0]  
Frequency  
(Hz)  
APK (Volts)  
Decimal  
Hex  
Decimal  
Hex  
697  
770  
0.31  
0.31  
0.31  
0.31  
0.55  
0.55  
0.55  
0.55  
31548  
31281  
30951  
30556  
29144  
28361  
27409  
26258  
7B3C  
7A31  
78E7  
775C  
71D8  
6EC9  
6B11  
6692  
1733  
1909  
2105  
2315  
2930  
3211  
3513  
3834  
06C5  
0775  
0839  
090B  
0B72  
0C8B  
0DB9  
0EFA  
852  
941  
1209  
1336  
1477  
1633  
Table 22: DTMF frequency settings (APK values for line impedance =600 )  
For a desired frequency fD the oscillator coefficient for Oscillator m, O1CCn[15:0] or O2CCn[17:2], can be calculated  
with the following equation. The following equations can be used for both Narrowband and Wideband. The resulting  
hexadecimal coefficients are register data of OSmCH and OSmCL.  
2*π*f  
2*π*f  
D
17  
*2  
D
15  
*2  
O2CCn[17 : 0] = cos  
O1CCn[15 : 0] = cos  
16kHz  
16kHz  
The initial condition for Oscillator m, OSmICL[15:0], can be calculated using the following equation. The following  
equations can be used for both Narrowband and Wideband.  
(m: 1 , 2)  
2*π*f  
D
15  
*2  
OmICCn[15 : 0] = A *sin  
16 kHz  
Where A is calculated from the desired peak amplitude, APK, in volts in the following equation  
APK  
A
=
1.5779  
The resulting hexadecimal coefficient is input to registers OS2ICH and OS2ICL.  
Revision 1.3  
Page 51 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.4.5.  
DTMF DETECTION  
Dual Tone Multi Frequency (DTMF) tones consist of a low tone of 697Hz, 770Hz, 852Hz or 941Hz and high tone of  
1209Hz, 1336Hz, 1477Hz or 1633Hz. The incoming signal is separated into high-group and low-group tones, and  
detected by high-group and low-group tone detectors respectively. When valid data is detected the result is pushed  
onto a FIFO which can be read by the host through the SPI interface.  
When DTMF detection is enabled channel data is scanned for DTMF tones. Three critical time periods associated  
with detection can be programmed. A signal must be present for a minimum of PDT (Present Detect Time) before  
tone detection is triggered. Once valid tone is triggered, the tone must be present for ACCT seconds. Once this is  
true, DTMF_RDY is active and the received data is pushed onto the FIFO. When the tone is removed, no detection  
is triggered for ADT (Absent Detect Time) seconds. DTMFRDT:DTMFRDT[3:0] address (0x3A) is decoded from the  
row and column frequency according to Table below. The sensitivity and precision of detection can also be  
programmed.  
When a DTMF tone is detected the N682386/87 can be configured to generate an interrupt to the host processor for  
service.  
Figure 18: DTMF Detector - Functional Block Diagram  
Column frequency  
1209 Hz  
1336 Hz  
1477 Hz  
3
1633 Hz  
A
1
2
697 Hz  
770 Hz  
852 Hz  
941 Hz  
0x01 hex  
0x02 hex  
0x03 hex 0x0D hex  
4
5
6
B
0x04 hex  
0x05 hex  
0x06 hex 0x0E hex  
7
8
0x08 hex  
0
9
0x09 hex  
#
C
0x0F hex  
D
0x07 hex  
*
0x0B hex 0x0A hex 0x0C hex 0x00 hex  
Table 22b: DTMF Tone Decoding  
Revision 1.3  
Page 52 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.5. CODEC  
The N682386/87 converts the analog transmit signal into a PCM code, either by using µ-Law, A-Law or linear PCM,  
and vice versa. A-Law, µ-Law and PCM encoding and decoding is performed according to the recommendations in  
the ITU-T G.711 specification. In the linear PCM mode a 16-bit 2s complement data format is used. Details of the  
Decode and Encode Characteristics are to be found in Section 11.  
12.1.6. HYBRID  
12.1.6.1.  
AC PATH  
The N682386/87 is used for digitizing and reconstructing the human voice. To digitize intelligible voice requires a  
signal to distortion ratio (S/D) of about 30 dB over a dynamic range of about 40 dB. N682386/87 meets this  
requirement by a large margin. The complete AC signal path block diagram is shown in Figure 3.  
12.1.6.1.1.  
NARROWBAND TRANSMIT PATH  
The gain of this amplifier can be set by programming in APG:ATX[1:0] so that the signal takes advantage of the full  
range of the A/D. An anti-aliasing filter also precedes the A/D. The A/D produces a 16-bit linear PCM data stream  
sampled at 8 kHz. The A/D not only exceeds ITU G.712 and G.711 but also expands the voice-band cut-off  
frequency from a standard 3.4 kHz to 3.6 kHz for enhanced voice quality. High pass filter HXP implements the high-  
pass attenuation requirements for signals below 65 Hz. The linear PCM data stream is then amplified by the A/D  
digital gain amplifier, programmable from –inf dB to 6 dB and allowing fine gain adjustments down to a resolution of  
0.1 dB. When enabled, the DTMF decoder can access this data stream at this point. Finally, if companding is  
selected, A-law or μ-law compression reduces the data stream to 8 bits wide. The timeslot on the PCM interface can  
be configured with either 8-bit compressed or 16-bit uncompressed data in mind.  
12.1.6.1.2.  
NARROWBAND RECEIVE PATH  
In the receive path, data taken from the PCM highway can be 16-bit uncompressed or A-law / μ-law 8-bit  
compressed. In the latter case it is first expanded to 16-bit data. The linear PCM data stream is then amplified by the  
D/A digital gain amplifier, programmable from –dB to 6 dB and allowing fine gain adjustments down to a resolution  
of 0.1 dB. The data stream is then put through an optional high pass filter to filter out signals below 65 Hz and a low-  
pass interpolation filter again with 3.6 KHz cutoff frequency for enhanced voice quality before being passed to the  
D/A. Finally, the analog signal is amplified by the Analog Receive Amplifier. The gain of this amplifier can be set by  
programming in APG:ARX[1:0] before the signal is output from the chip.  
The 12-bit digital gain blocks in both the transmit and receive paths provide 11 bits (1024 steps) for fine tuning the  
audio signals while the MSB can be used to invert the signal. To calculate the gain setting Y based on the desired dB  
setting X, the equation is:  
XdB  
(
)
20  
Y = 1024 × 10  
Revision 1.3  
Page 53 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Conversely, to calculate the dB value of the gain based on known gain step values, the equation is:  
X dB = 20 × log 10 Y  
(
)
1024  
The table below contains a sample of possible gain settings.  
dB  
-∞  
-24  
-12  
-6  
Gain  
Off  
Gain Setting (Y)  
0x000  
1 / 8  
1 / 4  
1 / 2  
1
0x040  
0x100  
0x200  
0
0x400  
6
2
0x7FF  
Table 23: Digital Gain Adjust Coefficients and Attenuation weightings  
The device exceeds the maximum ITU requirements for frequency response, group delay distortion and signal to  
distortion as can be verified from the diagrams in Section 11. Audio signals larger than 0dBm0 can be processed  
without clipping in either compression scheme. The maximum PCM code generated for a sine wave is 3.17 dBm0 (μ-  
law) or 3.14 dBm0 (A-law).  
The N682386/87 overload clipping limits are driven by the PCM encoding process. The presence of a high-pass filter  
transfer function ensures at least 30 dB of attenuation for signals below 65 Hz. The Low Pass Filter transfer function  
which attenuates signals above 3.6 kHz has to exceed the requirements specified by ITU G.714 and it is  
implemented as part of the A/D. The receive path transfer function requirement is very similar to the transmit path  
transfer function. We have added the high-pass filter portion as a user controlled option. Pass-band has been defined  
between 300 Hz to 3600 Hz. As the PCM data rate is 8 kHz, no frequencies greater than 4 kHz can be digitally  
encoded in the data stream.  
12.1.6.1.3.  
ANALOG TRANSHYBRID BALANCING  
The N682386/87 provides fully programmable hybrid balancing to cancel transmit and receive signal echo on the full-  
duplex 2-wire pair. The hybrid balancing is performed at the internal 4-wire port. It is measured as the ratio of the  
un-cancelled return signal to the reference signal (digital-to-digital gain). Although the ITU standard recommends a  
hybrid balance below –18 dB within the voice band, care has been taken to reduce this further in order to avoid  
unacceptable voice quality for packet based networks.  
The Tran hybrid Balance is internally set to subtract a –6 dB level from the transmit path signal, corresponding to the  
ideal case when the impedance matching perfectly matches the subscriber loop. This level can be adjusted from -  
2.77 dB to +4.08 dB around this ideal setting by programming HB address (0x41). This register can also be used to  
disable the Tran hybrid balancing completely. It should also be noted that Tran hybrid Balance adjustments are  
independent of any other gain adjustment stages as the level shift occurs on the transmit path before any gain  
stages, as can be seen on Figure 3.  
Revision 1.3  
Page 54 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.6.1.4.  
IMPEDANCE MATCHING  
The device provides on-chip programmable two-wire impedance settings to meet a wide variety of worldwide two-wire  
return loss requirements.  
R2  
C
R1  
Zline  
Figure 19: Characteristic Line Impedance  
Figure above illustrates the characteristic line impedance model implemented on-chip. Examples of the standard  
impedances which the N682386/87 supports are shown below.  
Requirement Impedance Element  
(Unit)  
R2(Ohm)  
Open  
Country  
R1(Ohm)  
600  
C(Farad)  
Short  
US PBX, Korea, Taiwan  
Standard  
900  
Open  
Short  
Table 24: Examples of Resistive Impedance Matching  
Pure Resistive Impedance Settings (for example 600 Ohm and 900 Ohm) can be selected in IM1:ZR1[3:0]. Register  
ILIM:ZCPEN[6] address (0x23) allows magnitude of the AC signal to be increased to compensate for the additional  
loss at the high end of the audio frequency range. ILIM:ZCPEN[6] should be enabled for Pure Resistive Impedance  
Matching cases.  
Requirement Impedance Element  
(Unit)  
R2(Ohm)  
Open  
Country  
R1(Ohm)  
600  
C(Farad)  
1u  
US PBX, Korea, Taiwan  
Standard  
2.2u  
150n  
100n  
100n  
100n  
310n  
115n  
230n  
120n  
900  
600  
900  
270  
200  
200  
100  
370  
220  
Open  
Open  
Open  
750  
Japan CO  
Bellcore  
CTR21  
China CO  
680  
China PBX  
560  
Japan PBX  
1000  
620  
India, New Zealand  
Germany (Legacy)  
820  
Table 25: Example of Impedance Matching Programming  
Revision 1.3  
Page 55 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
For some of Complex Impedance cases where degraded subscriber loop conditions involving excessive line  
capacitance leakage are present, this ILIM:ZCPEN[6] bit can also be used as a means for compensation.  
12.1.6.1.1.  
DAC/ADC AUTOMUTE  
When the selected input data source is equal to zero for 1024 consecutive sample cycles, a mute signal is asserted  
to the analog front end to mute the line output signal. The control output is de-asserted on the first non-zero sample.  
Automute is enabled by setting AMT:AMTENCn[7] address (0x5E). Automute has the capability of selecting two  
different options such as either DAC and ADC data or only DAC data by AMTSELCn[6] address (0x5E).  
Register  
AMT  
Bit(s)  
Address  
0x5E  
Parameter  
Description / Range  
0 = Automute disabled (default)  
1 = Automute enabled  
AMTENCn[7]  
Automute Enable  
0 = DAC data+ADC data (default)  
1 = DAC data only  
AMT  
AMTSELCn[6]  
0x5E  
Automute Select  
Table 26: Registers for Automute  
Revision 1.3  
Page 56 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.7. TESTING  
The N682386/87 includes extensive test and diagnostics features. Real-time DC linefeed measurements are  
available through the several voltages and current registers. GR-909 line test capabilities can also be supported. In  
addition five loop back test options, three digital loop backs (DLP1, DLP2 and DLP3) and two analog loop backs  
(ALP1, ALP2) are available. Figure 3, details the AC path architecture and also indicates the precise locations of the  
test loop backs.  
12.1.7.1.  
LOOP BACK TESTS  
The full analog loop back LB:ALP2Cn[4] address (0x21) allows the testing of almost all the circuitry of both transmit  
and receive paths. The compressed 8-bit/16-bit linear transmit data stream is fed back serially to the input of the  
receive path expander. The signal path starts with the analog signal at the input of the transmit path and ends with  
an analog signal at the output of the receive path. LB:ALP1Cn[3] address (0x21) takes the digital stream at the  
output of the A/D in the transmit path and feeds it back to the input of the D/A in the receive path. As with  
LB:ALP2Cn[4] address (0x21) the signal path starts with the analog signal at the input of the transmit path and ends  
with an analog signal at the output of the receive path.  
Full digital loop back LB:DLP1Cn[0] address (0x21) tests practically all transmit and receive path circuitry. The  
analog signal at the output of the receive path is fed back to the input of the transmit path by way of the Transhybrid  
filter path. The Transhybrid balance may be set to unity gain so that the return signal is not attenuated. A switch in  
the receive path is opened when this loop is selected so that no signal appears on the line during this loop back. The  
signal path starts with 8-bit/16-bit PCM data input to the receive path and ends with 8-bit/16-bit PCM data at the  
output of the transmit path. The user can bypass the companding process and interface directly to the 16-bit data.  
LB:DLP2Cn[1] address (0x21) takes the digital stream at the input of the D/A in the receive path and feeds it back to  
the output of the A/D in the transmit path. The signal path starts with 8-bit/16-bit PCM data input to the receive path  
and ends with 8-bit/16-bit PCM data at the output of the transmit path. This loop back option allows the testing of the  
digital signal processing circuitry of the N682386/87 independent of any analog signal processing activity. DLP3  
loops the digital data stream just beyond the PCM interface, taking the 8-bit/16-bit output of the PCM receive  
interface and looping directly to the input of the PCM transmit interface.  
Revision 1.3  
Page 57 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.7.2.  
DIAGNOSTICS SUPPORT  
The N682386/87 provides a variety of registers which proved both voltages and current values from the line which  
are either measured or calculated (see tables 7 and 8). These registers are updated at a rate of 800 Hz or every 1.25  
msec. Furthermore, the N682386/87 provides several mathematical and sampling resources to derive additional data  
useful in diagnostics (see illustration below). For example, peak to peak measurement results of the loop current  
and loop voltage is available in registers ILPP2P:LPIP2PCn[11:0] address (0x9C) and VLPP2P:LPVP2PCn[11:0]  
address (0x9B). These measured calculated and derived register values can be used to do GR-909 diagnostic tests.  
DCREN  
Figure 20: Diagnostics Support Block Diagram  
12.1.8. POWER INTERFACE  
The N682386/87 utilizes low-cost external components for to perform the DC/DC conversion to the high voltages  
required for the subscriber line interface (SLIC). The external discrete circuitry is controlled by on on-chip pulse width  
modulation (PWM) driver.  
The battery voltage circuit and PWM driver provide a closed loop system for battery voltage regulation. Battery  
voltage, VBAT, is monitored and compared to an internal target and adjustments are made accordingly. The target  
voltage will change, depending on different architectures and such factors as the linefeed state. As illustrated in  
Revision 1.3  
Page 58 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure below for example, if the device is operating in the constant voltage region the VBAT target is a combination of  
VOV, VOH and VGM. A combination of coarse and fine adjustments ensures rapid convergence on the target voltage.  
Two different DC/DC conversion architectures are supported and described in the following sections. Two different  
internal PLL master clocks (13.824 MHz, or 27.648 MHz) can be selected depending on the settings of  
PON:CDCC[7] address (0x22) and PLLS:PLLCM address (0x04). The width of the pulse generated by the PWM is  
programmed in PWMT:PT[7:0] address (0x49). A minimum off-time is programmable in the DDCC:DCOFF[7:0]  
address (0x4A) to allow sufficient time for stored energy to be transferred to the output capacitor. For reference  
monitoring the actual PWM pulse width can be checked in the read only PWCT:PWCTCn[7:0] address (0xB5)  
register. For example, if the PWCT indicates a maximum pulse width consistently, this might indicate an overload  
condition or a short circuit. The values for PWMT, DDCC and PWCT are based on multiples of the internal PLL  
master clock period.  
Register  
PON  
Bit(s)  
CDCC[7]  
Address  
0x22  
Parameter  
Description / Range  
Inductor Architecture  
Sets PWM Pulse Width for  
DC/DC converter  
Sets PWM minimum Off time  
for DC/DC convertor  
Step size and initial value dependant on  
internal PLL clock selection  
Step size and initial value dependant on  
internal PLL clock selection  
PWMT  
DDCC  
PT[7:0]  
0x49  
0x4A  
DCOFF[7:0]  
PWCT  
DCTR  
OHV  
PWCTCn[7:0]  
VTR[7:0]  
0xB5  
0x77  
0x4C  
0x4D  
PWM Count Register  
DC/DC Target Voltage  
VOH On-Hook Voltage  
For Reference (Read only)  
0V to -93.5V in 1.484V increments  
0V to -93.5V in 1.484V increments  
0V to -93.5V in 1.484V increments  
VOHCn[5:0]  
VMVCn[5:0]  
GMV  
VGM Ground Margin Voltage  
VBATH High Battery Voltage  
VBHV  
VBLV  
VBATHCn[5:0]  
VBATLCn[5:0]  
0x4E  
0x4F  
0V to -93.5V in 1.484V increments  
VBATH Low Battery Voltage  
VOV  
VOVCn[3:0]  
VBCn[7:0]  
0x56  
0x80  
VOV Offset Voltage  
0V to 24 V in 1.484 V increments  
0V to –94.6V in 0.371 V increments  
BATV  
VBAT Battery Voltage  
Table 27: Registers associated with DC/DC Conversion  
12.1.8.1.  
DC/DC CONVERSION (INDUCTOR)  
A current sensing input for the DC/DC converter provided. The PWM pulse will be muted during each PWM cycle if  
the current exceeds a predetermined threshold level. This prevents the external discrete transistors from damage  
due to overload conditions. Similarly, the supply voltage is also monitored. The PWM pulse will be muted during  
each PWM cycle if the supply voltage falls below a predetermined level. The PWM pulse will also be muted if the  
battery voltage exceeds 10% of the maximum value. If this threshold is too high, an external clamp can be added in  
the application. See application diagram.  
The Figure below illustrates how voltage regulation occurs in the Forward Active state.  
Revision 1.3  
Page 59 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
VOH  
ILIM  
RLOOP  
0V  
VGM  
VTIP  
Constant V  
Region  
VOH  
Constant I  
Region  
VBATL  
|VTIP– VRING  
|
VOV  
VOV:TR=0  
VRING  
VBAT  
VOV  
V
CIVR-v4  
Figure 21: Voltage Tracking in Forward Active State  
The values for VGM, VOH and VOV are set in VCMR, OHV, and VOV registers respectively. When operating in the  
constant voltage region the VBAT is simply the sum of these three settings (VGM + VOH + VOV). If the Loop current  
attempts to exceed ILIM the constant current region is entered. In this case the values for VOV and VGM are maintained  
but the VOH is adjusted to track the RLOOP, which adjusts VBAT accordingly. If tracking is enabled, VOV:TR=1, tracking  
will continue below VBATL. Otherwise, tracking will stop and VBAT will not go lower than VBATL. A similar mechanism is  
implemented in the Reverse Active state.  
During the Ringing state, the VBAT must be increased to accommodate the ring signal. Conventionally VBAT is set to a  
fixed value of VBATH. However, the discrete linefeed circuit dissipates significant power particularly when a large REN  
load is applied. As an alternative the N682386/87 allows a dynamic battery target to be selected by setting the  
LCTHY:DBTR[7] address (0x54) bit. In this case, VBAT will dynamically track the actual ring signal, minimizing the  
power dissipation and improving efficiency during Ringing. Dynamic Battery Target is available only for DC/DC  
conversion architecture.  
time  
0V  
V
V
V
TIP  
TIP  
VBATH /2  
V
RING  
RING  
VBATH  
VBATH  
Ring  
DC  
Volts  
Figure 22: Dynamic Battery Target  
Revision 1.3  
Page 60 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.1.8.2.  
EXTERNAL BATTERY SWITCHING  
The N682386/87 device can also operate from two or three external battery supplies. The external battery supply  
architecture can be enabled by connecting DCL1 & DCL2 to Vdd and DCH1 & DCH2 to Vss. This will also power  
down the on-chip PWM controllers. In this case the N682386/87 utilizes the DCPn and the DCNn pins to control the  
selection of externally supplied VBATR, VBATH and VBATL for VBAT by means of a external circuit such as the  
one illustrated below.  
V BAT  
VBATL  
VBATH  
DCP  
DC-to-DC  
VBATR  
Control  
DCN  
Figure 23: Three Voltage External Battery switching  
The VBAT voltage selection is dependent on the linefeed state and the relationship is programmable. The mapping of  
the DCNn pins output to the linefeed state can be uniquely programmed in the XBSDCN address (0x6A) register as  
illustrated in the table shown under 0x6A and 0x6B register description page. The XBSDCP address (0x6B) register  
serves the same purpose for the DCPn pins. The combination of DCNn, DCPn outputs and the external selection  
circuitry allows either VBATR, VBATH or VBATL to be selected in any state.  
When two external battery supplies are used (VBATH and VBATL) VBAT selection can be controlled by the one pin  
alone. Therefore, DCNn should be used to control the external battery switching.  
Figure 24: Two Battery Supply Control Circuit  
Revision 1.3  
Page 61 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.2. DIGITAL INTERFACE  
12.2.1. CLOCK GENERATION  
The N682386/87 will generate the necessary internal clock frequencies from the BCLK input. BCLK must be  
synchronous to the 8 kHz frame sync clock and run at one of the following rates:  
Binary Clock  
256 kHz  
Decimal Clock  
1.000 MHz  
2.000 MHz  
4.000 MHz  
8.000 MHz  
512 kHz  
768 kHz  
1.024 MHz  
1.152 MHz  
1.536 MHz  
1.544 MHz  
2.048 MHz  
4.096 MHz  
8.192 MHz.  
The frame sync can either be supplied externally or it can be generated internally by the N682386/87, by setting the  
PCMFS:FSS[2] address (0x05) bit to “1”. If frame sync is supplied externally (PCMFS:FSS=0), the ratio of the BCLK  
rate to the frame sync rate is determined via a counter clocked by BCLK which can be read at the PLLS:BCFS[4:1]  
address (0x04). This value is used to control the internal PLL, which multiplies BCLK appropriately to generate the  
internal clock frequency required to run the internal circuitry.  
If the frame sync is supplied internally (PCMFS:FSS=1), the user must set PCMFS:BF[3:0] to indicate BCLK so that  
an appropriate multiple is calculated to generate the required internal frequency. If the frame sync is generated  
internally its width can be selected by programming PCMFS:IFST[3] address (0x05).  
¡
¡
1-bit clock long (for Short Frame Sync, GCI and IDL modes)  
8-bit clocks long (for 8-bit Long Frame Sync mode)  
Revision 1.3  
Page 62 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.2.2. PCM INTERFACE  
N682386/87 supports a flexible PCM interface structure which can be configured to perform multiple industry  
standard PCM modes. Data is received serially through the PCMR pin and transmitted serially through the PCMT  
pin.  
Timeslots for data transmission and reception are independently configured using registers. Two registers, one for  
each direction combination, control the selection of the start point for the data timeslot:  
¡
¡
¡
TTS[9:0]: Transmit Timeslot Start  
RTS[9:0]: Receive Timeslot Start  
The start point is defined in terms of a particular the BCLK period within the frame. Once the start of the timeslot  
is assigned the transfer will continue sequentially.  
¡
¡
For an 8-bit transfer the timeslot will run from the start point to the start point + 7 BCLK cycles.  
For a 16-bit transfer the timeslot will run from the start point to the start point + 15 BCLK cycles.  
By setting the specific timeslot start points, the N682386/87 can be programmed to support many industry standard  
PCM interfaces including many Long Frame Sync and Short Frame Sync variants, IDL2 8-bit, 10-bit, B1 and B2  
channel timeslots. The table below illustrates this by showing how some standard interface modes may be  
programmed.  
TTS [7:0]  
RTS [7:0]  
BCLK PERIODS  
PER DATA BIT  
Clocking mode  
Long Frame Mode  
Short Frame Mode  
GCI Mode  
1
1
2
1
0x00000 (slot 1)  
0x00001 (slot 1)  
0x00000  
IDL Mode  
0x00001  
Table 28: Example Standard Interface modes  
However N682386/87 allows even more flexibility. It can support BCLK up to 8192 kHz, or up to 1024 BCLK periods  
per 125usec frame. Therefore 10-bit timeslot assignment registers have sufficient flexibility to assign any timeslot  
start point within the frame. Care should also be taken when dealing with a BCLK lower than 8192 kHz to ensure that  
the timeslot start point is within the boundary of the frame, including sufficient headroom for the complete timeslot.  
For example, if BCLK is 512 kHz there are 64 BCLK cycles within the frame. However, for all modes except Short  
Frame Sync the highest valid start position for 8-bit PCM data would be 56, sufficient for the full byte to be  
accommodated within the frame. For 16-bit data the highest start position would be 48. In Short Frame mode the  
LSB can be located up to the first BCLK of the next frame so the highest valid position is 56 for 8-bit or 48 for 16-bit.  
Revision 1.3  
Page 63 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
The PCMT pin is high impedance except for the duration of the PCM transmit. PCMT will return to high impedance  
either on the negative edge of BCLK during the LSB, or on the positive edge of BCLK following the LSB depending  
on the setting of PCMC:TRICn[2] address (0x00). Tri-stating on the negative edge allows the transmission of data by  
multiple sources in adjacent timeslots without the risk of driver contention.  
12.2.2.1.  
WIDEBAND AND NARROWBAND OPERATION  
Nuvoton’s newest design in the Pro-X product line is a Narrowband and Wideband audio codec. The N682386 is  
limited to Narrowband audio codec communication, meaning 8kHz sampling and 8kHz frame sync with frame sync  
master mode capability. The Narrowband audio codec communication is compatible with the W681388, N681386, &  
W684386. The user could write to a reserved register that is used for Wideband operation on N682386 without  
effect.  
The N682387 is capable of both Narrowband and Wideband audio communication by simply setting bits on the  
register selected by PCMFS:WBENCn[1] address (0x05). Each channel has a unique wideband enable register,  
such that the wideband & narrowband operation can be controlled independently for each channel. The Narrowband  
mode is be limited to 8kHz sampling and 8kHz or 16kHz frame sync. The Wideband mode of operation is limited to  
16kHz sampling and 8kHz or 16kHz frame sync.  
The two different frame sync is selected by PLLS:FSRATE[5] address (0x04). 8kHz frame sync is selected by setting  
PLLS:FSRATE[5]=0 and 16kHz is selected by setting PLLS:FSRATE[5] =1. There is no frame sync master mode  
supported in wideband operation. The table below shows the modes of operation.  
PCMFS:WBENCn[1]  
Band of Operation  
(0x05)  
WBENC1  
WBENC2  
Channel 1 Channel 2  
0
0
1
1
0
1
0
1
Narrow  
Narrow  
Wide  
Narrow  
Wide  
Narrow  
Wide  
Wide  
Table 29: Wideband or Narrowband Hardware Selection  
Revision 1.3  
Page 64 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.2.2.2.  
TOGGLING BETWEEN WIDEBAND AND NARROWBAND  
It is not recommended to toggle between Wideband and Narrowband when 16kHz frame sync is used, since it could  
unlock the PLL. However, the architecture may allow it when the pin is toggled at the right time.  
For Wideband, using 8kHz frame sync, the user can toggle PCMFS:WBENCn[1] address (0x05) register, while  
keeping the frame sync and bit clock running as is. The internal filter and PCM interface of the N682387 will switch to  
adjust to the Narrowband /Wideband mode of operation. This could lead to temporary glitches on the output while  
switching the filter. One could briefly mute the DAC and ADC path through the firmware code to prevent the glitches  
from being audible.  
12.2.2.3.  
PCM INTERFACE IN WIDEBAND OPERATION  
PCM INTERFACE 8KHZ FRAME SYNC  
12.2.2.3.1.  
During Wideband operation and 8kHz frame sync the PCM data will be transmitted and received as two samples per  
frame sync. The location of the MSB of each sample on the PCM bus with respect to the frame sync pulse is  
programmable through two independent time slot registers. The time slots need to be programmed such that they  
are 62.5usec apart. An internal data ready signal will be generated to synchronize with the filters to indicate the data  
is ready and to synchronize the sample rate. The approximate timing diagram is shown below.  
125usec  
FS  
BCLK  
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
PCMT  
PCMR  
62.5usec  
62.5usec  
L
S
B
L
S
B
M
S
B
M
S
B
M
S
B
Data  
Ready  
TS1  
TS2  
approximate  
Figure 25: Wideband 8kHz Frame Sync PCM interface  
Revision 1.3  
Page 65 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.2.2.3.2.  
PCM INTERFACE 16KHZ FRAME SYNC  
During Wideband operation and 16 kHz frame sync the PCM data will be transmitted and received as one sample per  
frame sync. The location of the MSB of each sample on the PCM bus with respect to the frame sync pulse is  
programmable through one time slot register. The second timeslot register is not used in this case. Below is shown  
the approximate timing diagram for this case.  
62.5usec  
62.5usec  
FS  
BCLK  
PCMT  
PCMR  
M
S
B
L
S
B
M
S
B
L
S
B
M
S
B
L
S
B
L
S
B
M
S
B
M
S
B
M
S
B
Data  
Ready  
TS1  
TS1  
approximate  
Figure 26: Wideband 16kHz Frame Sync PCM interface  
12.2.2.4.  
PLL & PRESCALER IN WIDEBAND OPERATION  
The prescaler determines the external bit clock frequency based on the ratio of the frame sync and bit clock  
frequency. When the frame sync switches to 16kHz (Wideband) it needs a signal to indicate this change in order to  
determine the correct bit clock frequency. In wideband and narrowband mode using 8kHz frame sync it doesn’t need  
to adjust. Therefore, the PLL & prescaler operation can be summarized by the following truth table:  
PLLWBANDEN  
(switches prescaler)  
WBENCn[1]  
FSRATE[5]  
‘0’  
‘0’  
‘1’  
‘1’  
‘0’  
‘0’  
‘1’  
‘1’  
‘0’  
‘1’  
‘0’  
‘1’  
‘0’  
‘1’  
‘0’  
‘1’  
0
0
0
0
0
0
0
1
Table 30: PLL and Prescaler in Wideband  
Revision 1.3  
Page 66 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.2.3. SERIAL PERIPHERAL INTERFACE (SPI)  
The Serial Peripheral Interface (SPI) is one of the widely accepted communication interfaces implemented in  
Nuvoton’s Pro-X portfolio. SPI is a software protocol allowing operation on a simple 4-wire bus where the data is  
transferred MSB first. The SPI interface consists of a clock (SCLK), chip select (CSb), serial data input (SDI), and  
serial data output (SDO) to configure all the internal register contents. SCLK is static, allowing the user to stop the  
clock and then start it again to resume operations where it left off. The SCLK can run any speed up to internal PLL  
master clock (13.824 MHz, 24 MHz, or 27.648 MHz depending on selected architecture). In the case of a write,  
DATA is sent by the micro-controller. In the case of a read, DATA is read by the micro-controller. To write data to  
the chip the controller must follow the following sequence  
There are two different Read/Write architecture  
„
8-bits Data Read/Write  
ƒ
ƒ
The 8-bits data Write consists of 8-bits of Device Address, 8-bits of Register Address, and 8-bits of DATA.  
The 8-bits data Read consists of 8-bits of Device Address, 8-bits of Register Address, and 8-bits of DATA.  
„
16-bits Data Read/Write  
ƒ
ƒ
The 16-bits data Write consists of 8-bits of Device Address, 8-bits of Register Address, and 16-bits of DATA.  
The 16-bits data Read consists of 8-bits of Device Address, 8-bits of Register Address, and 16-bits of DATA.  
The first byte, Device Address, sent to the N682386/87 from the host controller, following a CSb going HIGH to LOW,  
contains read/write bit, the Device type Identifier bits (wideband and narrowband selection information), and the burst  
mode. The 8-bits of the Device Address are explained below.  
Name  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
Device Address  
RW  
0
0
0
0
CH  
XP  
BST  
Table 31: Device Address Bit pattern  
Bit Value  
Bit  
Location  
Bit  
Name  
Bit Description  
0
1
Burst mode allows multiple consecutive registers to be written to or  
0
1
read using in a single sequence. The complete register address BST  
space (256 locations) can be read and written to using burst mode.  
Disable  
Enable  
Control bit to select 12-Bits monitoring  
XP  
Bits[11-4]  
Bits[3-0]  
Revision 1.3  
Page 67 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Bit Value  
Bit  
Location  
Bit  
Name  
Bit Description  
This is a channel selection bit.  
0
1
2
3 - 6  
7
CH  
-
0
1
These bits must be set to “0”  
Read/Write control bit  
-
-
RW  
Write  
Read  
The CH[1:0] bits in the control byte is the selection of the 12-Bits monitoring extension.  
CH1  
XP  
Channel  
Command  
0
0
1
1
0
1
0
1
1
1
2
2
Register Address (8-bits)  
2nd byte of 12-Bits monitoring  
Register Address (8-bits)  
2nd byte of 12-Bits monitoring  
Table 32: 12-bit byte Selection  
12.2.4. READ/WRITE SEQUENCE (8-BIT OR 16-BIT)  
The device is accessed via the SDI input with data clocked in on the rising edge of SCLK. DATA transfer is  
synchronized to the SCLK input. DATA is clocked out onto SDO on the falling edges of SCLK. SCLK is the only  
reference of SDI and SDO pins. The SDO pin will go tri-state when goes CSb HIGH.  
The first two pictures below illustrate the Read/Write Sequence for an 8-bit architecture. Both Read/Write sequences  
consist of three 8-bit transmissions of Device address, Register Address and DATA. Each 8-bit transmission starts  
with the falling edge of the CSb line. At the end of every 8-bit transmission is complete the CSb transitions from LOW  
back to HIGH. After a valid Device Address and Register Address for Read, 8-bit Data is shifted out on the SDO line.  
The last two pictures below illustrate the Read/Write Sequence for a 16-bit architecture. Both Read/Write sequences  
consist of two 16-bit transmissions, the first 16-bit transmission consisting of Device address and Register Address  
bytes and the second 16-bit transmission consists of Data. Each 16-bit transmission starts with the falling edge of the  
CSb line. At the end of every 16-bit transmission CSb transitions from LOW back to HIGH. After a valid Device  
address and Register Address for Read, 16-bits of Data is shifted out on the SDO line. Since all the registers are 8-  
bits long, the least significant byte of the 16-bit Data word should be ignored. If additional clocks are sent by the  
master the device will provide the same data when BST is LOW.  
The SPI state machine soft resets whenever CSb asserts during an operation on an SCLK cycle that is not a multiple  
of eight, including burst mode. This is a mechanism for the controller to force the state machine to a known state  
when the controller and the device are out of synchronization.  
Revision 1.3  
Page 68 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
CSb  
DATA [7:0]  
DEVICE ADDRESS  
ADDRESS  
SCLK  
1
1
1
SDI  
2
3
4
5
6
7
8
2
3
4
5
6
7
8
2
3
4
5
6
7
8
SDO  
Hi-Z  
Figure 27: Register write operation through a 8-bit SPI port  
ADDRESS  
CSb  
DATA [7:0]  
DEVICE ADDRESS  
SCLK  
1
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
SDI  
1
2
3
4
5
6
7
8
SDO  
Figure 28: Register read operation through a 8-bit SPI port  
Figure 29: Register write operation through a 16-bit SPI port  
Figure 30: Register read operation through a 16-bit SPI port  
Revision 1.3  
Page 69 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.2.5. SPI DAISY CHAIN  
When using multiple N682386/87 devices, SPI programming can be accomplished using a daisy chain architecture  
which allows all chips to share one CSb and one SCLK. To enable the daisy chain configuration, the DSY pin should  
be set HIGH. In this configuration the SDO pin will no longer tri-state in order to pass the serial data to the next  
device in the chain. The daisy chain is facilitated by an internal 16-bit shift register in each device. After CSb goes  
LOW, SDI is clocked into this shift register at each rising edge of SCLK. At each falling edge of SCLK the contents of  
the shift register are shifted to SDO. SDO can then be connected to the SDI of the next chip in the daisy chain  
sequence. Each device evaluates the data in the internal shift register at the rising edge of CSb. Figure 35 illustrates  
a three-device daisy chain arrangement.  
SDO  
CSb  
Micro-  
Controller  
SDI  
SDO Chip1  
SDI  
SDO Chip2  
SDI  
SDO Chip3  
SDI  
SCLK  
Figure 31: Three Chip Daisy Chain connection  
For daisy chain operation, the length for Device address, Register Address and CSb should be 16xD bits, where D is  
the total number of devices in the daisy chain. Figure below illustrates the Device address, and Register Address  
structure for three-device daisy chain architecture. Three 16-bit Device address and Register Address words are  
sent sequentially, the first word for the first device in the daisy chain, the second word for the second device, etc.  
Device addressing is still enabled during daisy chain mode. Therefore, if a command needs to be ignored an  
unmatched device address can be sent with the command. If a command needs to be ignored a NOP can be sent  
with the command by sending a ‘1’ for any bit of C6 to C3.  
CSb  
SCLK  
0
8
16  
32  
48  
Chip 1  
Device/Register Address  
Chip 2  
Device/Register Address  
Chip 3  
Device/Register Address  
SDI  
Figure 32: Device/Register Address for Three Device Daisy Chain application  
Figure below illustrates the DATA structure for three-device daisy chain architecture. Three 8-bit DATA bytes are  
sent sequentially, the first byte for the first device in the daisy chain, the second byte for the second device, etc.  
Revision 1.3  
Page 70 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 33: DATA for Three Device Daisy Chain application  
12.2.6. SPI BURST MODE  
The N682386/87 also supports a burst mode which allows multiple consecutive registers for the same channel to be  
written to or read using a single Device address and Register address with BST=1. The complete channel register  
address space (256 locations) can be read/ written to using burst mode.  
16Bit  
(8 Bit CMD+ 8 Bit Address)  
CSb  
8Bit  
8Bit  
8Bit  
8Bit  
8Bit  
8Bit  
BST=1  
Figure 34: Burst mode operation (BST=1)  
The data stored in memory at the next address can be read sequentially by continuing to provide clock pulses. The  
address is automatically incremented to the next higher address after each byte of data is shifted out. When the  
highest address is reached, the address counter rolls over to address (0x00) on the same channel allowing the read  
cycle to be continued indefinitely.  
When the BST bit in Device address is set during a write operation the N682386/87 will accept multiple 8-bit DATA  
blocks which will be written to sequential address locations beginning with the address specified in Register address.  
The length of the burst is determined by the Chip Select (CSb). Note that if there is a location within the sequence  
without a register assignment a dummy byte should be sent at the corresponding location in the DATA sequence.  
Similarly during a burst read operation the device will output Data as long as CSb is LOW. The device will output a  
dummy byte (0x00) when locations without register assignments are within the sequence. Register bits  
PCMC:BDAEN[3] address (0x00) and PCMC:BCEN[1] address (0x00) is be used to determine the broadcasting  
preferences. By default, after a reset, the device will accept all burst write commands without decoding bits C3 to C6  
or channel. If this is not desired, the user can send a single command and data cycle to enable either or both the  
channel and C3 to C6 decoding. Once the PCMC:BCEN[1] address (0x00) bit is set, the device will only accept burst  
write data for the selected channel. Once the PCMC:BDAEN[3] address (0x00) bit is set, the device will only accept  
burst write data when C3 to C6 are ‘0’. During burst mode read operation, the channel specific data registers will be  
output for only the selected channel and with C3 to C6 all ‘0’.  
Revision 1.3  
Page 71 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.2.7. SPECIAL READ SEQUENCE FOR 12-BIT WIDE REGISTER  
Although N682386/87 has 8-bit wide register map, it includes some special registers for ADC Monitoring for accurate  
monitoring. N682386/87 includes a special SPI Read feature. This read feature allows the user to read the 12-bits  
wide registers. It can be used in the 8-bits or 16-bits wide register data read mode. One important thing to remember  
is that BURST Mode cannot be use for 12-bit register read.  
12.2.7.1.  
12-BIT READ SEQUENCE  
Two separate read sequences are required to successfully read 12-bit register. Whether it is 8-bits or 16-bits wide  
register data N682386/87 still requires two bye read sequence. Selection of the channel and the second byte read is  
shown on the above table.  
8-bits or 16-bits Data Read sequence for 12-bts ADC monitoring data  
„
Sequence for Channel 1  
ƒ
ƒ
1st byte Read  
ƒ
ƒ
ƒ
Device Address bits[2:1] – 00 binary  
Register Address any of the ADC monitoring registers  
The 8 bits[7:0] of the first read data are the bits[11:4] of the 12-bits register  
2nd byte Read  
ƒ
ƒ
ƒ
Device Address bits[2:1] – 01 binary  
Register Address any of the ADC monitoring registers  
The 4 MSB bits[7:4] of the second read data are the bits[3:0] of the 12-bits register  
„
Sequence for Channel 2  
ƒ
1st byte Read  
ƒ
ƒ
ƒ
Device Address bits[2:1] – 10 binary  
Register Address any of the ADC monitoring registers  
The 8 bits[7:0] of the first read data are the bits[11:4] of the 12-bits register  
ƒ
2nd byte Read  
ƒ
ƒ
ƒ
Device Address bits[2:1] – 11 binary  
Register Address any of the ADC monitoring registers  
The 4 MSB bits[7:4] of the second read data are the bits[3:0] of the 12-bits register  
Revision 1.3  
Page 72 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 35: SPI 12-bits Read sequence  
12.3. POWER-ON RESET  
The following Power-on Reset procedure is recommended for the N682386/87.  
¡
The Reset pin (RESETb) should be held LOW as power is applied.  
This allows logic levels to rise so that all output pins and all registers reach their default values while the system  
is in reset mode. This process should take less than 100 μs if the external supply is settled.  
¡
¡
¡
¡
Clocking should be applied (BCLK and, if necessary, FS)  
Ensure CSb and SCLK are set HIGH before setting RESETb HIGH  
Wait at least 400μs to ensure the PLL is locked. The status can be read in register PLLS:PL[0] address (0x04)  
Initialize all appropriate country specific registers and mode registers according to specific operating mode  
Revision 1.3  
Page 73 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
12.4. INTERRUPT HANDLING  
A number of events are capable of generating an interrupt. However, an interrupt signal is generated only if the bit  
corresponding to that particular interrupt event is enabled in the Interrupt Enable Register. In that case the  
corresponding bit is set in the Interrupt Status Register. An umbrella Interrupt Vector Register, INTV, indicates which  
Interrupt Status Registers have bits currently set. This vectoring allows an interrupt service routine to quickly  
determine which interrupt event has just occurred.  
Once the interrupt has been serviced the Interrupt Status Register can be cleared by writing a one to that respective  
bit. The Interrupt Vector Register INTV bits will be cleared when there are no pending interrupts in the corresponding  
Interrupt Status Registers  
Register  
Name  
Address  
Parameter  
Description / Range  
Vectors the interrupt location  
INTV  
0x24  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
Interrupt Vector Register  
Interrupt Status Register 1  
Interrupt Enable Register 1  
Interrupt Status Register 2  
INT1  
IE1  
Power Alarms, RING Trip and Loop Closure Interrupts  
Enables for Register 1 interrupts  
INT2  
IE2  
FSK, DTMF, RING and Oscillator Interrupts  
Interrupt Enable Register 2 for Enables for Register 2 interrupts  
INT3  
IE3  
Interrupt Status Register 3  
Interrupt Enable Register 3  
Temperature Interrupts  
Enables for Register 3 interrupts  
Table 33: Interrupt Registers  
Revision 1.3  
Page 74 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
13. GENERAL DESCRIPTION FOR N681622 SUBSCRIBER LINE FEED CIRCUIT (SLFC)  
The N681622 is the first supporting chip of its kind in the Nuvoton’s Pro-X line of products. It integrated the high  
voltage linefeed circuit. It can be used with N681386, N681387, N682386 and N682387. N681622 is designed to  
reduce substantial board space compared to the existing discrete implementation of the linefeed circuit. The  
N681622 operates from a 3.3V supply voltages. A small QFN20 package with exposed pad for thermal  
considerations allows for easy assembly and PCB design.  
13.1. FUNCTIONAL DESCRIPTION FOR N681622 SUBSCRIBER LINE FEED CIRCUIT (SLFC)  
The N681622 integrates the following six transistors of the discrete line driver: QT1, QT2, QT3, QR1, QR2, and QR3.  
In the following register description there are some references to currents or voltages for these individual transistors.  
For the N681622 the important transistors are QT1, QT3, QR1, QR3. The following diagram shows a virtual circuit  
showing the equivalent positions of the these transistors inside the N681622.  
Figure 36: N681622 Eqivalent Internal diagram  
Revision 1.3  
Page 75 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14. REGISTER DESCRIPTION  
There are 2 distinct register sets, one for each channel in the N682386/87. Some of the registers are shared  
between the two channels, some are specific to each channel, and address 0x00 (PCMC) of channel1 register set is  
partially shared. Register set 2 is for channel 2 which consists of channel specific registers only. There are three  
different types of registers in register set 1.  
¡
¡
¡
Type 1, address 0x01 (TTLNB) exists in all two register sets because it is channel specific register.  
Type 2, registers that are shared or common to both channels does not require channel information.  
Type 3, is a partially shared register in channel1 register set.  
For the purpose of this document all registers and register bits will be stated with The letters “Cn” where “n” can be  
channel 1 or 2 and also follow the same register address definition. Please refer to the SPI command description on  
how to address the various channels. For maximal forward compatibility, it is recommended that “0” be written to  
reserved bits.  
RES” in the register map means Reserved.  
ASYNC means the device does not require a clock to be able to read or write  
12-Bits – specific register has 12-bits  
Addr  
(Dec)  
Addr  
(Hex)  
Default  
(Hex)  
ASYNC  
/12Bit  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
PCM CONTROL REGISTERS  
GCLK BDAEN  
TTSNBCn[7:0]  
ASYNC  
(D5-D0)  
0
1
2
3
4
5
6
7
8
9
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
PCMC  
TTLNB  
RTLNB  
TCH  
CMS[1:0]  
BM  
TRICn  
BCEN  
ENCn  
00  
00  
00  
50  
D9  
00  
00  
C0  
00  
00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
ASYNC  
ASYNC  
ASYNC  
RTSNBCn[7:0]  
RTSWBCn[9:8]  
TTSWBCn[9:8]  
RTSNBCn[9:8]  
TTSNBCn[9:8]  
ASYNC  
(D7,D5)  
ASYNC  
(D7-D1)  
PLLS  
PLLCM  
CLK1544EN  
FSRATE  
BCFS[3:0] (RO)  
IFST  
PL (RO)  
SRES  
PCMFS  
SIREV  
DVID  
BCF[3:0]  
FSS  
WBENCn  
SIREV[7:0]  
VER[7:0]  
R
TTLWB  
RTLWB  
TTSWBCn[7:0]  
RTSWBCn[7:0]  
FSK REGISTERS  
POL  
R/W  
R/W  
ASYNC  
ASYNC  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
FSKC  
FSKTD  
FSKS  
PE  
PEN  
PTYP  
RES  
TX  
STOP  
FF  
SPEC  
EN  
FEP  
00  
00  
03  
00  
00  
R/W  
R/W  
R
FSK[7:0]  
RES  
FSKLCR  
FSKTCR  
RES  
RES  
GAIN[3:0]  
R/W  
R/W  
FSKR  
RES  
FMT  
RES  
Diagnostics  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
DIAGCTRL0  
DIAGCTRL1  
DIAGCTRL2  
DIAGCTRL3  
DIAGCTRL4  
DIAGCTRL5  
DIAGCTRL6  
DIAGCTRL7  
DIAGCTRL8  
DIAGFIFO0  
FIFOIP  
DCREN  
DCRAC  
ACLPFEN  
DCLPFEN  
FIFOEN  
SIGNED  
DIAGCH  
DIAGEN  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
TRACNEG  
ACSEL[2:0]  
TRDCNEG  
DCSEL[2:0]  
VHI[7:0]  
RES  
SELT[2:0]  
DCRRC  
VHI[11:8]  
VLO[7:0]  
DCRDC  
TMREN  
RES  
TIMER[7:0] (RO)  
VOL[11:8]  
RES  
TIMER[12:8] (RO)  
ACDP[11:0] (RO)  
DCDP[11:0] (RO)  
RO  
RO  
FIFO0[31:0] (RO)  
Revision 1.3  
Page 76 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Addr  
(Dec)  
Addr  
(Hex)  
Default  
(Hex)  
ASYNC  
/12Bit  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
31  
1F  
DIAGFIFO1  
FIFO1[31:0] (RO)  
00  
RO  
SYSTEM REGISTERS  
DACFFCn[1:0]  
32  
33  
34  
35  
20  
21  
22  
23  
PHF  
LB  
RES  
DACPOLCn  
CDCC  
DACSRCn  
ADCFFCn[1:0]  
ADCHPCn  
DLP2Cn  
DACHPCn  
DLP1Cn  
DCCCn  
00  
00  
01  
00  
R/W  
R/W  
R/W  
R/W  
ADCPOLCn  
RES  
ALP2Cn  
ALP1Cn  
DLP3Cn  
DACPPCn  
ILMGAIN  
PON  
ILIM  
RES  
ADCPPCn  
CALTR1  
ZCPINV  
ZCPEN  
RNGGAIN  
RIPS  
TINS  
CALTR0  
INTERUPT REGISTERS  
36  
38  
39  
40  
41  
42  
43  
24  
26  
27  
28  
29  
2A  
2B  
INTV  
INT1  
IE1  
RES  
IR3C2  
IR2C2  
PAT1Cn  
PAT1ECn  
RICn  
IR1C2  
PAR1Cn  
PAR1ECn  
RACn  
RES  
IR3C1  
PAT2Cn  
PAT2ECn  
O2ACn  
IR2C1  
LCCn  
IR1C1  
RTCn  
00  
00  
00  
00  
00  
00  
00  
R/W  
R/W  
RO  
PAT3Cn  
PAT3ECn  
FSKICn  
FSKIECn  
PAR3Cn  
PAR2Cn  
PAR2ECn  
O2ICCn  
PAR3ECn  
DTMFICn  
DTMFIECn  
LCECn  
O1ICCn  
O1IECn  
RTECn  
O1ACn  
O1AECn  
TMP  
INT2  
IE2  
R/W  
R/W  
R/W  
R/W  
RIECn  
RAECn  
O2IECn  
O2AECn  
INT3  
IE3  
RES  
RES  
GKDICn  
GKDIECn  
RES  
RES  
TMPE  
DTMF REGISTERS  
DTMFFDEV[1:0]  
RES  
RES  
DTMFTHR[15:8]  
48  
49  
51  
52  
53  
54  
55  
56  
58  
59  
60  
61  
62  
30  
31  
33  
34  
35  
36  
37  
38  
3A  
3B  
3C  
3D  
3E  
DTMFCTRL1  
DTMFCTRL2  
DTMFST  
DTMFENCn  
ADCOSELCn  
DTMFTC[3:0]  
00  
00  
01  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
R/W  
R/W  
RO  
DTMFCLRCn  
DTMFEMTCn  
DTMFTHRH  
DTMFTHRL  
DTMFPDT  
DTMFADT  
DTMFACT  
DTMFRDT  
DTMFRFH  
DTMFRFL  
DTMFCFH  
DTMFCFL  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
DTMFTHR[7:0]  
DTMFPDT[7:0]  
DTMFADT[7:0]  
DTMFACT[7:0]  
DTMFRDYCn  
DTMFSTCn  
RES  
DTMFRDTCn[3:0]  
DTMFRF[15:8]  
DTMFRF[7:0]  
DTMFCF[15:8]  
DTMFCF[7:0]  
LINE REGISTERS  
RES  
RO  
RO  
RO  
RO  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
94  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
5E  
APG  
HB  
RAMPCn  
DACG  
PRECn  
ADCG  
RES  
VOHZCn  
ARXCn[1:0]  
ATXCn[1:0]  
AHYBCn[2:0]  
00  
1B  
00  
07  
00  
00  
00  
00  
00  
FF  
76  
20  
02  
32  
10  
00  
00  
00  
00  
00  
00  
00  
00  
00  
R/W  
R/W  
R/W  
R/W  
RO  
RES  
VCMR  
LAMC  
LS  
VCMRCn[5:0]  
PAACn  
LSCn[3:0]  
RES  
RGACn  
LCDACn  
LCDCn  
SLSCn[3:0]  
LCL  
LGCRTCn  
LGCRRCn  
LGCMCn[1:0]  
VBLCCn  
LGCRTCn  
RTDUDCn  
LCDI[7:0]  
RES  
RTDUACn  
ILMCn[2:0]  
RTDCn  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
RTLC  
LCDB  
RTDBA  
PWMT  
DDCC  
OHV  
RES  
LCMCn  
LCDUCn  
ARTDI[7:0]  
PT[7:0]  
DCOFF[7:0]  
RES  
SBCn  
RES  
RES  
VOHCn[5:0]  
GMV  
UBRCn  
VGMCn[5:0]  
VBATHCn[5:0]  
VBATLCn[5:0]  
VBHV  
VBLV  
LCDCL  
RTDFCLD  
DCHD  
LCT  
XBATRCn  
RES  
LCDC[7:0]  
ARTDFC[7:0]  
ARTDFC[11:8]  
LCDC[11:8]  
RW  
RES  
RES  
LCT[5:0]  
LCTOFF[5:0]  
ARTT5:0]  
RO  
LCTHY  
RTTA  
VOV  
DBTR  
LCHYEN  
R/W  
R/W  
R/W  
R/W  
R/W  
RES  
RES  
TRCn  
VOVCn[3:0]  
TONDC[4:0]  
AMTTHRCn[5:0]  
DCTON  
AMT  
AMTENCn  
AMTSELCn  
GROUND KEY DETECTION REGISTERS  
Revision 1.3  
Page 77 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Addr  
(Dec)  
Addr  
(Hex)  
Default  
(Hex)  
ASYNC  
/12Bit  
Name  
D7  
D6  
D5  
D4  
D3  
XTBOTCn[1:0]  
D2  
D1  
D0  
XTBATCn[1:0]  
R/W  
95  
96  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
6A  
6B  
6E  
77  
XBTC  
GKDH  
RES  
ASQHCn  
CBPCn  
XTBEN  
00  
R/W  
RO  
RES  
RES  
HGKD[5:0]  
LGKD[5:0]  
00  
00  
20  
02  
32  
10  
00  
00  
00  
00  
00  
00  
C8  
97  
GKDL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
98  
GKDDT  
GKDFCL  
GKDFCH  
RTDFCLD  
DCHD  
DTGKD[7:0]  
99  
FCGKD[7:0]  
100  
101  
102  
103  
104  
106  
107  
110  
119  
GKDEN  
RES  
FCGKD[11:8]  
DRTDFC[7:0]  
RES  
DRTDFC[11:0]  
RTTD  
RES  
XRTR  
DRTT5:0]  
RTDBD  
XBSDCN  
XBSDCP  
LOAD  
DRTDI[7:0]  
DCNXB[7:0]  
DCPXB[7:0]  
RES  
LOAD  
DCTR  
VTR[7:0]  
MONITOR  
120  
121  
122  
123  
124  
125  
126  
127  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RTMNT  
LCMNT  
MNT5  
MNTRTCn[7:0]  
MNTLCCn[7:0]  
00  
00  
00  
00  
00  
00  
00  
00  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
MNTQ1Cn[7:0]  
(QT1)  
MNT7  
MNTQ2Cn[7:0]  
MNTQ3Cn[7:0]  
MNTQ4Cn[7:0]  
MNTQ5Cn[7:0]  
MNTQ6Cn[7:0]  
(QR1)  
(QR2)  
(QT2)  
(QR3)  
(QT3)  
MNT9  
MNT11  
MNT13  
MNT15  
LINE CONTROL REGISTERS  
VOLTAGE REGISTERS  
VBCn[7:0]  
128  
129  
130  
131  
132  
80  
81  
82  
83  
84  
BATV  
VTIP  
02  
000  
000  
02  
RO  
RO  
RO  
RO  
RO  
VTIP[11:0]  
12-Bits  
12-Bits  
VRING  
QT3V  
QR3V  
VRING[11:0]  
QT3VCn[7:0] (VTVE) (VQT2)  
QR3VCn[7:0] (VRVE) (VQR2)  
TRANSISTOR CURRENT REGISTERS  
QT3ICn[11:0]  
02  
133  
134  
135  
136  
137  
138  
85  
86  
87  
88  
89  
8A  
QT3I  
QR3I  
QT1I  
QT2I  
QR1I  
QR2I  
005  
003  
003  
003  
003  
003  
RO  
RO  
RO  
RO  
RO  
RO  
12-Bits  
12-Bits  
12-Bits  
12-Bits  
12-Bits  
12-Bits  
QR3ICn[11:0]  
QT1ICn[11:0]  
QT2ICn[11:0]  
QR1ICn[11:0]  
QR2ICn[11:0]  
LOOP SUPERVISION  
ILGCn[11:0]  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
153  
154  
155  
156  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
99  
9A  
9B  
9C  
LGI  
LPV  
001  
001  
002  
000  
001  
1A  
RO  
RO  
RO  
RO  
RO  
R/W  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
12-Bits  
12-Bits  
12-Bits  
12-Bits  
12-Bits  
VLPCn[11:0]  
TIPI  
ITLPCn[11:0]  
RINGI  
LPI  
IRLPCn[11:0]  
ILPCn[11:0]  
POL  
RES  
P2PENCn  
ILGPCn  
SCMCn[11:0]  
ILPPCn  
IRLPPCn  
ITLPPCn  
VLPPCn  
SCM  
02  
12-Bits  
VEQT1  
VQT1  
VEQR1  
VQR1  
TEMP  
VBGAP  
VLPP2P  
ILPP2P  
VEQT1Cn[7:0]  
VQT1Cn[7:0]  
VEQR1Cn[7:0]  
VQR1Cn[7:0]  
TS[7:0] (Vtemp)  
VBG[7:0]  
00  
00  
00  
00  
00  
4A  
LPVP2PCn[11:0]  
LPIP2PCn[11:0]  
000  
000  
12-Bits  
12-Bits  
POWER ALARM LPF POLE REGISTERS  
Revision 1.3  
Page 78 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Addr  
(Dec)  
Addr  
(Hex)  
Default  
(Hex)  
ASYNC  
/12Bit  
Name  
D7  
D6  
D5  
D4  
PALCNTCn[7:0]  
D3  
D2  
D1  
D0  
R/W  
159  
160  
161  
162  
163  
164  
165  
166  
167  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
PALCNT  
PALPQ2  
PALPQn  
PALPQ3  
PALPQHn  
PALPQH2  
PATHQ2  
PATHQn  
PATHQ3  
00  
RO  
Q2C[7:0]  
Q1C[7:0]  
Q3C[7:0]  
00  
00  
00  
00  
00  
00  
00  
00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Q1C[11:8]  
Q2C[11:8]  
Q3C[11:8]  
RES  
Q3C12  
Q1C12  
Q2C12  
Q2TH[7:0]  
Q1TH[7:0]  
Q3TH[7:0]  
IMPEDENCE MATCHING REGISTERS  
168  
169  
170  
171  
172  
173  
A8  
A9  
AA  
AB  
AC  
AD  
IM1  
IM2  
ZCCn[3:0]  
ZRnCn[3:0]  
00  
00  
00  
00  
00  
00  
R/W  
R/W  
R/W  
RO  
RES  
ZSWCn  
ZCPCn[1:0]  
ZR2CCn[3:0]  
THAT  
LCMCNT  
CC  
THAT[7:0]  
LCMCNT[7:0]  
CBGSW  
RES  
CTRIM[2:0]  
RO  
OS2RPD  
O2RPDCn[7:0]  
CALIBRATION REGISTERS  
RO  
175  
176  
177  
AF  
B0  
B1  
CAL1  
CAL2  
CAL3  
SDATCn[3:0]  
TVTE1Cn[3:0]  
SCMTCn[3:0]  
VBATTCn[3:0]  
79  
97  
79  
RO  
RO  
RO  
SDBTCn[3:0]  
RVTE1Cn[3:0]  
DC OFFSET REGISTERS  
DACSFC  
180  
181  
B4  
B5  
IQTROS  
PWCT  
HISENSECn  
BTVR  
ILFDB  
RES  
00  
00  
R/W  
RO  
PWCTCn[7:0]  
TONE GENERATION REGISTERS  
O2ZCCn  
192  
193  
C0  
C1  
OSN  
RES  
O1ZCCn  
O2ECn  
RES  
O1ECn  
08  
00  
R/W  
R/W  
RMPC  
TRAP  
LBACCn  
R1ENCn  
RES  
TORCn  
OSCILLATOR INITIAL CONDITION & COEFFICIENT REGISTERS  
194  
195  
196  
197  
198  
199  
200  
201  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
OS1ICL  
OS1ICH  
OS2ICL  
OS2ICH  
OS1CL  
OS1CH  
OS2CL  
OS2CH  
O1ICCn[7:0]  
00  
00  
00  
00  
00  
00  
00  
00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
O1ICCn[15:8]  
O2ICCn[7:0]  
O2ICCn[15:8]  
O1CCn[7:0]  
O1CCn[15:8]  
O2CCn[9:2]  
O2CCn[17:10]  
OSCILLATOR ACTIVE & INACTIVE TIME REGISTERS  
202  
203  
204  
205  
206  
207  
208  
209  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
OS1ATL  
OS1ATH  
OS2ATL  
OS2ATH  
OS1ITL  
OS1ITH  
OS2ITL  
OS2ITH  
O1ONCn[7:0]  
O1ONCn[15:8]  
00  
00  
00  
00  
00  
00  
00  
00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
O2ONCn[7:0]  
O2ONCn[15:8]  
O1OFF[7:0]  
O1OFF[15:8]  
O2OFF[7:0]  
O2OFF[15:8]  
GENERAL TONE GENERATION REGISTERS  
ROSCn[5:0]  
220  
221  
222  
223  
DC  
DD  
DE  
DF  
ROFFS  
ADCL  
DACL  
DGH  
O2CCn[1:0]  
00  
00  
00  
44  
R/W  
R/W  
R/W  
R/W  
ADCCn[7:0]  
DACCn[7:0]  
DACCn[11:8]  
ADCCn[11:8]  
DC-DC CONFIGURATION  
224  
225  
226  
227  
E0  
E1  
E2  
E3  
ST0L0  
ST1L0  
ST2L0  
ST0L1  
RES  
RES  
ST0L0[3:0]  
ST1L0[4:0]  
ST2L0[4:0]  
ST0L1[3:0]  
02  
04  
06  
08  
R/W  
R/W  
R/W  
R/W  
RES  
RES  
Revision 1.3  
Page 79 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Addr  
(Dec)  
Addr  
(Hex)  
Default  
(Hex)  
ASYNC  
/12Bit  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
243  
244  
245  
248  
249  
250  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F3  
F4  
F5  
F8  
F9  
FA  
ST1L1  
ST2L1  
SK0L0  
SK1L0  
SK2L0  
SK0L1  
SK1L1  
SK2L1  
WM0  
RES  
RES  
ST1L1[4:0]  
ST2L1[4:0]  
10  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
19  
1F  
04  
02  
1F  
04  
02  
08  
10  
18  
53  
00  
00  
10  
00  
00  
00  
SK0L0[7:0]  
SK0L1[7:0]  
RES  
RES  
SK1L0[5:0]  
SK2L0[4:0]  
RES  
SK1L1[5:0]  
RES  
RES  
RES  
RES  
SK2L1[4:0]  
WM0[4:0]  
WM1[4:0]  
WM2[4:0]  
WM1  
WM2  
XSTEP  
IMRAM  
IMDEL  
IMEN  
PWMTC  
XS[3:0]  
IMDATA  
IMHYBDCCn[3:0]  
RES  
IMB3PDCCn[3:0]  
IMENCn IMR1MCn  
IMRW  
RES  
IMPM  
RES  
RES  
RES  
W
W
ADCLPFBYP  
Cn  
HBLPFBYPC  
n
251  
FB  
IMEN  
RES  
00  
R/W  
Decimal to Hex Conversion  
To convert decimal value to hex value divide the decimal number by 16, and write the remainder on the side as the  
least significant digit. This process is continued by dividing the quotient by 16 and writing the remainder until the  
quotient is 0. When performing the division, the remainders which will represent the hex equivalent of the decimal  
number are written beginning at the least significant digit (right) and each new digit is written to the next more  
significant digit (the left) of the previous digit. Consider the number 175 decimal.  
Division  
175 / 16  
Quotient  
10 = A  
Remainder  
15 = F  
Hex Number  
AF  
N682386/87 includes some bits that can be written without the PLL running while some bits requires the PLL running  
for the write to be effective. Any register that states the ASYNC bits means that specific DO NOT require the PLL  
running for the write to be effective.  
Revision 1.3  
Page 80 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.1. PCM CONTROL REGISTERS  
14.1.1. PCM CONTROL REGISTER  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
Shared (D0, D2)  
Async (D0 - D5)  
0x00  
PCMC  
CMS[1:0]  
BM  
GCLK  
BDAEN  
TRICn  
BCEN  
ENCn  
The letters “Cn” stands for channel number 1 or 2. The following table explains the PCM control register bits.  
Bit Value  
Bit  
Location  
Bit  
Name  
Bit Description  
0
1
0
1
PCM path including digital receive path  
Burst Channel decode enable  
ENCn  
Disable  
Enable  
Single Channel  
Both Channels In  
Parallel  
BCEN  
2
3
4
5
Tri-state PCMT LSB  
TRICn  
BDAEN  
GCLK  
BM  
Positive edge of BCLK Negative edge of BCLK  
Burst Device Address decode enable  
GCI Clock Format (per data bit)  
Must be set appropriate to PCMC:CMS selection  
All Devices in Parallel  
1 BCLK  
Single Device  
2 BCLK  
8-bit mode  
16-bit mode  
There are three different CODEC Modes to choose from and they are as follows:  
CODEC MODE SELECTION  
CMS1  
CMS0  
Mode  
A-Law  
0
0
1
1
0
1
0
1
u-Law  
Linear  
Reserved  
14.1.2. RECEIVE/TRANSMIT TIMESLOT (WIDEBAND AND NARROWBAND)  
Addr.  
0x01  
0x02  
0x03  
Name  
TTLNB  
RTLNB  
TCH  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
TTSNBCn[7:0]  
RTSNBCn[7:0]  
Async  
0x00  
RTSWBCn[9:8]  
TTSWBCn[9:8]  
RTSNBCn[9:8]  
TTSNBCn[9:8]  
0x00  
The letters “Cn” stands for channel number 1 or 2. Transmit and receive timeslot are expressed in number of BCLK  
cycles in a 10-bit word. For Narrowband, Transmit Timeslot Start, TTSNBCn[9:0], determines the start point for the  
timeslot on the PCM interface for data in the transmit direction and the Receive Timeslot Start, RTSNBCn[9:0],  
determines the start point for the timeslot on the PCM interface for data in the receive direction. Timeslot Channel  
High, TCH address (0x03) bits are the two most significant bits of the 10-bit word for both transmit and receive  
timeslot, TCH:RTSWBCn[9:8] and TCH:TTSWBCn[9:8] for Wideband and TCH:RTSNB[9:8] and TCH:TTSNB[9:8] for  
Narrowband.  
Revision 1.3  
Page 81 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.1.3. PLL STATUS REGISTER  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xD9  
Shared  
Async (D7, D5)  
0x04  
PLLS  
PLLCM  
CLK1544EN FSRATE  
BCFS[3:0] (RO)  
PL (RO)  
PL[0] and BCFS[4:1] are status bits which means they are READ ONLY bits in this register. Any write to these bits  
will be ignored. FSRATE[5], CLK1544EN[6], and PLLM[7] are READ/WRITE bits.  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
0
5
6
PLL Lock Status (RO)  
Frame Sync Rate  
PL  
FSRATE  
CLK1544EN Disabled  
Not Locked Locked  
8kHz  
16kHz  
Enable clock 1.544MHz  
Enabled  
With an external 8 kHz Frame Sync set (PCMFS:FSS=0), PLL Bit Clock Frequency Status, BCFS[3:0] bits will show  
the value of BCLK according to the following table. Not all clocks are supported by 16KHz frame sync [ * ].  
Bit Clock Frequency  
DC/DC CLK Mode  
DC-DC Clock  
Type  
PON:CDCC[7]  
BCFS[3]  
BCFS[2]  
BCFS[1]  
BCFS[0]  
BCLK(Hz)  
PLLCM[7]  
(Addr – 0x22)  
1
0
0
0
0
256  
0
0
13.824MHz  
0
0
0
0
0
1
1
0
512  
768  
0
1
1
0
1
27.648MHz  
0
0
1
1
1
1
1000*  
1024  
1152  
1536  
0
0
0
1
1
1
0
0
1
0
1
0
0
1
1
1
1544*  
2000  
2048  
4000  
4096  
8000  
8192  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
NA  
Revision 1.3  
Page 82 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.1.4. PCM FREQUENCY SETTING REGISTER  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
Shared  
Async (D7- D1)  
0x05  
PCMFS  
BCF[3:0]  
IFST  
FSS  
WBENCn  
SRES  
The following table explains the PCM Frequency Setting register bits.  
Bit Value  
Bit  
Location  
Bit Description  
Soft Reset  
Bit Name  
0
1
0
SRES  
WBENCn  
FSS  
Disable  
Enable  
FS = 8kHz  
(Narrowband)  
FS = 16kHz  
(Wideband)  
1
2
3
Band Select  
Frame Sync Source  
Internal Frame Sync Type  
External  
Internal  
Short (fixed width Long (fixed width  
1 BCLK) 8 BCLK)  
IFST  
When an internal 8 kHz Frame Sync is used (PCMFS:FSS=1) these bits should be programmed with the value of  
BCLK Frequency, BCFS[3:0], according to the following table.  
Bit Clock Frequency  
BCF  
[4]  
BCF  
[3]  
BCF  
[2]  
BCF  
[1]  
BCLK  
(Hz)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
256  
512  
768  
1000  
1024  
1152  
1536  
1544  
2000  
2048  
4000  
4096  
8000  
8192  
NA  
Revision 1.3  
Page 83 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.1.5. SILICON REVISION ID REGISTER (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xEF  
Shared  
0x06  
SIREV  
SIREV[7:0]  
Silicon revision ID Register is a READ ONLY register.  
14.1.6. DEVICE VERSION ID REGISTER (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
NA  
Shared  
0x07  
DVID  
VER[7:0] (RO)  
Device Version ID Register is a READ ONLY register.  
Device  
N682386  
N682387  
VER[7:0]  
0x41  
0x49  
14.1.7. TIMESLOT (WIDEBAND)  
Addr.  
0x08  
0x09  
Name  
TTLWB  
RTLWB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xC0  
Shared  
Async  
TTSWBCn[7:0]  
RTSWBCn[7:0]  
0xC0  
The letters “Cn” stands for channel number 1 or 2.  
Transmit and receive timeslot are expressed in number of BCLK cycles in a 10-bit word. For Wideband, Transmit  
Timeslot Start, TTSWBCn[9:0], determines the start point for the timeslot on the PCM interface for data in the  
transmit direction and the Receive Timeslot Start, RTSWBCn[9:0], determines the start point for the timeslot on the  
PCM interface for data in the receive direction. The two most significant bits of the 10-bit word are located on register  
TCH address (0x03).  
Revision 1.3  
Page 84 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.2. FSK REGISTERS  
14.2.1. FSK CONTROL REGISTER  
Addr.  
Name  
D7  
PE  
D6  
D5  
D4  
D3  
TX  
D2  
D1  
D0  
EN  
Default  
0x00  
Shared  
PEN  
PTYP  
POL  
0x10  
FSKC  
STOP  
SPEC  
The following table explains the FSK Control Register bits.  
Bit  
Location  
Bit Value  
Bit  
Name  
Bit Description  
FSK Encoder  
0
1
0
1
2
EN  
Disable  
Bell 202  
1 Stop bit  
Stop  
Enable  
FSK Specification  
SPEC  
STOP  
ITU-T V.23  
2 Stop bits  
Start  
Number of STOP bits  
FSK Encoder start to transmit  
data from FSK FIFO  
3
TX  
Transmission Transmission  
4
5
6
7
FSK bit stream polarity  
Parity Bit Type  
POL  
PTYP  
PEN  
PE  
Non-inverted  
Even parity  
Disable  
Inverted  
Odd parity  
Enable  
Parity Bit Enable  
FSK Package Format  
Disable  
Enable  
FSK Package Format automatically amends a ‘start bit’ (Space) to the head of the FSK transmit data and one or two  
‘stop bits’ (Mark) to the end, depending on programming of FSKC:STOP. “Res” in the register map means Reserved.  
Bell 202  
1200 Hz  
2200 Hz  
ITU-T V.23  
1300 Hz  
Mark ‘1’  
Space ‘0’  
2100 Hz  
14.2.2. FSK TRANSMIT REGISTER  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
Shared  
0x11  
FSKTD  
FSK[7:0]  
FSK Transmit Register, FSK[7:0], is a WRITE ONLY register. Data written to this register will be placed into the  
Internal FIFO for transmission. Note: Reading this register will always give 0x00 as data.  
Revision 1.3  
Page 85 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.2.3. FSK STATUS REGISTER (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x03  
Shared  
FF  
(RO)  
FEP  
(RO)  
0x12  
FSKS  
RES  
RES  
RES” in the register map means reserved bit(s).  
FSK Status Register is a READ ONLY register. The following table explains the FSK Status Register bits.  
Bit  
Location  
Bit Value  
Bit  
Name  
Bit Description  
0
1
FSK FIFO not empty (Last set of  
bit stream finished transmitting)  
0
2
FSK FIFO Empty Pending  
FSK FIFO Full  
FEP  
FF  
FSK FIFO is empty  
FIFO Full  
FSK FIFO not Full  
14.2.4. FSK LCR REGISTER  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
Shared  
0x00  
0x13  
FSKLCR  
RES  
GAIN[3:0]  
RES” in the register map means reserved bit(s).  
The gain level is specified in linear values and referenced to the maximum linear PCM level (+3.14 dBm0). The  
following table contains the adjusted levels and the attenuated value of the correspondent maximum PCM level.  
FSK Encoder output signal level  
Attenuation to max  
PCM level  
GAIN3  
GAIN2  
GAIN1  
GAIN0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
-∞  
-23.512  
-17.499  
-13.978  
-11.48  
-9.542  
-7.956  
-6.617  
-5.458  
-4.434  
-3.52  
-2.692  
-1.937  
-1.242  
-0.599  
0
Revision 1.3  
Page 86 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.2.5. FSK TCR REGISTER  
Addr.  
0x14  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
Shared  
FSKTCR  
RES  
FSKR  
RES  
FMT  
RES  
RES” in the register map means reserved bit(s).  
The following table explains the FSK TCR Register bits.  
Bit Value  
Bit  
Bit  
Name  
Bit Description  
Location  
0
1
1
3
Fast Mode  
FSK Route  
FMT  
FSKR  
Disabled  
Enabled  
Route  
Channel1  
Route  
Channel2  
Revision 1.3  
Page 87 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.3. DIAGNOSTIC REGISTERS  
14.3.1. DIAGNOSTIC CONTROL 0  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
Shared  
0x15  
DIAGCTRL0  
FIFOIP DCREN ACLPFEN DCLPFEN FIFOEN SIGNED DIAGCH DIAGEN  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
0
1
Enable Diagnostic Function  
DIAGEN  
DIAGCH  
Disabled  
Enabled  
Enable  
Channel1  
Enable  
Channel2  
Enabled diagnostics  
2
3
Converts unsigned Source Register data to signed data  
Enable DIAGFIFO0 / DIAGFIFO1 FIFO Structure.  
Enable Low pass filter in the DC path.  
SIGNED  
FIFOEN  
Disabled  
Disabled  
Enabled  
Enabled  
4
The DC Path LPF utilizes the Loop Closure Detect LPF and is DCLPFEN  
Disabled  
Enabled  
programmed in LCDCL: LCDC[11:0].  
Enable Low pass filter in the AC path.  
5
6
The AC Path LPF utilizes the AC Ring Trip Detect LPF and is ACLPFEN  
programmed in RTDFCLD:ARTDFC[11:0].  
Disabled  
Disabled  
Enabled  
Enabled  
Enable DC Removal function in the AC path  
DCREN  
Determines Data routed to DIAGFIFO0 / DIAGFIFO1 FIFO  
Structure  
DIAGCTRL0:DIAGEN must be set.  
NOTE: DIAGCTRL0:FIFOEN will be turned on automatically if ADC  
PCM Data is selected.  
DC/AC  
Diagnostics  
Output  
ADC PCM  
data  
7
FIFOIP  
14.3.2. DIAGNOSTIC CONTROL 1  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
Shared  
0x16  
DIAGCTRL1  
TRACNEG  
ACSEL[2:0]  
TRDCNEG  
DCSEL[2:0]  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
VTIP, VRING and SCM are forced to negative values when selected  
on the DC diagnostics path.  
VTIP, VRING and SCM are forced to negative values when selected  
on the AC diagnostics path.  
3
7
TRDCNEG  
TRACNEG  
Disabled  
Disabled  
Enabled  
Enabled  
NOTE: Some diagnostic operations required signed operation, for example: DC removal.  
ACSEL[6:4]: Select source register for the AC path diagnostics  
DCSEL[2:0]: Select source register for the DC path diagnostics  
Revision 1.3  
Page 88 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Select AC/DC source for Diagnostics  
ACSEL2  
DCSEL2  
ACSEL1  
DCSEL1  
ACSEL0  
DCSEL0  
Source  
Register  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VTIP  
VRING  
LPV  
SCM  
TIPI  
RINGI  
LPI  
LGI  
14.3.3. DIAGNOSTIC CONTROL 2, 3, 4, AND 5  
Addr.  
0x17  
0x18  
0x19  
0x1A  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
VHI[11:8]  
VLO[11:8]  
D0  
Default  
0x00  
DIAGCTRL2  
DIAGCTRL3  
DIAGCTRL4  
DIAGCTRL5  
VHI[7:0]  
Shared  
Shared  
Shared  
Shared  
0x00  
RES  
SELT[2:0]  
DCRRC  
0x00  
VLO[7:0]  
0x00  
DCRDC  
DCRAC  
RES  
Select source for timing measurement.  
Source  
Register  
SELT2  
SELT1  
SELT0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VTIP  
VRING  
LPV  
SCM  
TIPI  
RINGI  
LPI  
LGI  
VHI[11:0]: Determines VHI for DIACNTRL:TIMER[12:0] measurement.  
Range, Step Size and number of valid bits same as Source Register determined by SELT.  
VLO[11:0]: Determines VLO for DIACNTRL:TIMER[12:0] measurement.  
Range, Step Size and number of valid bits same as Source Register determined by SELT.  
Revision 1.3  
Page 89 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Bit Value  
Bit Name  
Bit  
Location  
Bit Description  
0
1
5
6
DC Removal RC Time Constant  
DCRRC  
DCRAC  
1.25/64ms 1.25/32ms  
DC Removal Accelerated Convergence.  
Disable  
Disable  
Enable  
Enable  
Enable DC Removal output to DC Path LPF in addition to the  
normal connection to the AC Path LPF  
7
DCRDC  
DIACNTRL0:DCREN must be set.  
Notes:  
-
When enabled DC Removal is able to estimate the DC level of a selected source data and pass an AC only  
signal to the AC Path LPF.  
-
When DC Removal is enabled both DIAGCTRL5:TRDCNEG and DIAGCTRL5:TRACNEG need to be turned  
on if VTIP or VRING or SCM are selected as the source register.  
14.3.4. DIAGNOSTIC CONTROL 6 AND 7 (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x1B  
DIAGCTRL6  
TIMER[7:0] (RO)  
Shared  
Shared  
0x1C  
DIAGCTRL7  
TMREN  
RES  
TIMER[12:8] (RO)  
TIMER[12:0] are status bits which means they are READ ONLY bits in this register. Any write to these bits will be  
ignored. TMREN[5] is READ/WRITE bit.  
Bit Value  
Bit(s)  
Location  
Bit  
Name  
Bit Description  
0
1
Reset Timer - It will increase  
by at the rate of 800hz when  
the monitored source is  
The timer will accumulate the  
time when the voltage of the  
selected source (by SELT) falls  
between VLO and VHI.  
7
Capacitor Charging Timer  
TMREN  
between VLO and VHI.  
Capacitor Charging Timer  
TMREN[7] (0x1C)  
Minimum  
0 ms  
Maximum  
10.24 s  
Increment  
1.25 ms  
Range  
Revision 1.3  
Page 90 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.3.5. DIAGNOSTIC CONTROL 8 (READ ONLY)  
Name D7 D6 D5 D4  
Addr.  
D3  
D2  
D1  
D0  
Default  
00  
DCDP[7:0] (RO)  
Shared  
Shared  
RES  
RES  
DCDP[11:8] (RO)  
ACDP[11:8] (RO)  
0x1D DIAGCTRL8  
ACDP[7:0] (RO)  
00  
DCDP[11:0]: DC Diagnostic Path Output  
ACDP[11:0]: AC Diagnostic Path Output  
NOTE: This register is structured to be read in 4 byte burst  
14.3.6. DIAGNOSTIC FIFO 0 AND FIFO1 (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
00  
FIFO0[7:0] (RO)  
FIFO0[15:8] (RO)  
FIFO0[23:16] (RO)  
FIFO0[31:24] (RO)  
FIFO1[7:0] (RO)  
Shared  
Shared  
Shared  
Shared  
0x1E DIAGFIFO0  
0x1F DIAGFIFO1  
00  
00  
00  
FIFO1[15:8] (RO)  
FIFO1[23:16] (RO)  
FIFO1[31:24] (RO)  
DIAGFIFO0 and DIAGFIFO1 are structured as Dual FIFO Structures. Each FIFO has 16 entries, each entry  
structured as a 4 byte structure illustrated above. When one FIFO is full an interrupt is generated and diagnostic data  
is collected in the alternative FIFO. In Diagnostic Mode (DIAGCTRL0:DIAGEN) DIAGFIFO0 uses the Ring Trip  
Detect Interrupt mechanism and DIAGFIFO1 uses the Loop Closure Detect Interrupt mechanism.  
When DIAGCTRL0:FOFIP[7] is set to 0, DIAGFIFO0 and DIAGFIFO1 are used to store DC Diagnostic Path and AC  
Path Output Data  
-
FIFOn[15:0], n=0,1 contains DCDP[11:0]: DC Diagnostic Path Output in the lower 12 bits  
FIFOn[31:16], n=0,1 contains ACDP[11:0]: AC Diagnostic Path Output in the lower 12 bits  
NOTE: DC Diagnostic Path and AC Path Data is input to each FIFO at 800 Hz.  
-
When DIAGCTRL0:FOFIP[7] is enabled DIAGFIFO0 and DIAGFIFO1 are used to store ADC PCM Data  
-
FIFOn[15:0], n=0,1 contains 16-bit ADC PCM data  
FIFOn[31:16], n=0,1 is not output  
In this case the Maximum burst read is 32 bytes per FIFO.  
NOTE: PCM Data is input to each FIFO at the sampling frequency (Wideband or Narrowband).  
-
Revision 1.3  
Page 91 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.4. SYSTEM REGISTERS  
14.4.1. PCM HPF (HIGH PASS FILTER)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x20  
PHF  
RES  
DACSRCn  
DACFFCn  
ADCFFCn  
ADCHPCn DACHPCn  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
DACHPCn  
0
1
0
1
6
PCM Transmit HPF (DAC)  
PCM Receive HPF (ADC)  
LPF for Wideband (DAC)  
Enable  
Enable  
Enable  
Disable  
ADCHPCn  
DACSRCn  
Disable  
Disable  
High Pass Filter Select DAC  
High Pass Filter Select ADC  
ADC HPF  
DAC HPF  
DACFFCn[5] DACFFCn[4]  
ADCFFCn[3] ADCFFCn[2]  
Select (Hz)  
Select (Hz)  
0
0
1
1
0
1
0
1
20  
40  
80  
0
0
1
1
0
1
0
1
20  
40  
80  
160  
160  
High pass filter cutoff is only programmable in the Wideband mode. Bit-6 should only be used in Wideband mode but  
disabled (set to 1) for Narrowband.  
14.4.2. LOOP BACK CONTROL REGISTER  
Addr. Name  
0x21 LB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
DACPOLCn ADCPOLCn RES ALP2Cn ALP1Cn DLP3Cn DLP2Cn DLP1Cn  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
The following table explains the Loop Back Control Register bits.  
Bit Value  
Bit  
Location  
Bit Description  
Digital loop back (D/A to A/D)  
Bit Name  
0
1
0
1
DLP1Cn  
DLP2Cn  
Disable  
Enable  
Digital loop back (LP interpolation filter to LP decimation  
filter)  
Disable  
Enable  
2
3
4
6
7
Digital loop back (A/u law expander to A/u law compander)  
Analog Loop back 1  
DLP3Cn  
ALP1Cn  
ALP2Cn  
Disable  
Disable  
Disable  
Enable  
Enable  
Enable  
Enable  
Enable  
Analog Loop back 2  
Invert ADC input Polarity  
ADCPOLCn Disable  
DACPOLCn Disable  
Invert DAC Output Polarity  
Revision 1.3  
Page 92 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.4.3. POWER ON  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x01  
0x22  
PON  
CDCC  
RES  
DACPPCn ADCPPCn DCCCn  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s). The following  
table explains the Loop Back Control Register bits.  
Bit  
Location  
Bit Value  
Bit Description  
Bit Name  
0
1
0
1
2
DC/DC Power Control Circuitry DCCCn  
DCDC On  
ADCPPCn Disable  
DACPPCn Disable  
DCDC OFF  
Enable  
A/D Power Path  
DAC Power Path  
Enable  
DC/DC CLK Mode  
DC-DC Clock Type  
PLLS:PLLCM[7]  
(Addr: 0x04)  
CDCC[7]  
1
0
0
13.824MHz  
0
1
1
1
0
1
1
27.648MHz  
This table gives the PLL Period.  
Revision 1.3  
Page 93 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.4.4. LINEFEED TRIM  
Addr  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x23  
ILIM  
ZCPINV  
ZCPEN  
RNGGAIN  
RIPS  
TINS  
ILMGAIN  
CALTR1  
CALTR0  
CALIBRATION STATE  
CURRENT ADJUST  
CALTR1  
CALTR0  
Current  
0
0
1
1
0
1
0
1
20mA  
19.6mA  
19.4mA  
20.4mA  
Bit  
Location  
Bit Value  
Bit Description  
Bit Name  
0
1
Ring Limiting Gain Adjust strength of Ring  
limiting Impacts noise  
2
3
ILIMGAIN  
TINS  
Default  
2 x default  
Idle State Battery Current Stops TIN in idle  
for lower power  
Default current  
Low current  
Idle State Battery Current Stops RIP in idle  
for lower power  
4
5
RIPS  
Default current  
Default  
Low current  
High gain  
Increase Ring feedback gain in idle and  
Ring state for more accuracy  
RNGGAIN  
6
7
Line Capacitor Compensation  
Line Capacitor Compensation  
ZCPEN  
ZCPINV  
Disabled  
Subtract  
Enabled  
Add  
Revision 1.3  
Page 94 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.5. INTERRUPT REGISTERS  
14.5.1. INTERRUPT VECTOR LOW (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x24  
INTV  
RES  
IR3C2  
IR2C2  
IR1C2  
RES  
IR3C1 IR2C1  
IR1C1  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
Interrupt Vector Register is a READ ONLY register. Each bit in this register will be cleared when there are no  
pending interrupts reported in the corresponding interrupt status registers.  
Bit Value  
Bit  
Location  
Bit  
Name  
Bit Description  
0
No INT  
No INT  
No INT  
No INT  
No INT  
No INT  
1
0
1
2
4
5
6
Interrupt Vector 1 Low channel 1  
Interrupt Vector 2 Low channel 1  
Interrupt Vector 3 Low channel 1  
Interrupt Vector 1 Low channel 2  
Interrupt Vector 2 Low channel 2  
Interrupt Vector 3 Low channel 2  
IR1C1  
IR2C1  
IR3C1  
IR1C2  
IR2C2  
IR3C2  
INT1  
INT2  
INT3  
INT1  
INT2  
INT3  
14.5.2. INTERRUPT STATUS REGISTER 1  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x26  
INT1  
PAT3Cn PAR3Cn PAT1Cn PAR1Cn PAR2Cn PAT2Cn  
LCCn  
RTCn  
The letters “Cn” stands for channel number 1 or 2. This register displays all the Power Alarm and the Loop Closure  
interrupt of the device. A pending interrupt is represented by a HIGH “1” in the respective bit. Writing 1 to that  
respective bit clears the pending interrupt.  
Bit  
Location  
Bit Value  
Bit  
Name  
Bit Description  
RING Trip  
0
No INT  
No INT  
No INT  
1
0
1
2
3
4
5
6
7
RTCn  
INT  
Loop Closure  
LCCn  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
Power Alarm QR2  
Power Alarm QT2  
Power Alarm QT1  
Power Alarm QR1  
Power Alarm QR3  
Power Alarm QT3  
PAT2Cn  
PAR2Cn No INT  
PAR1Cn No INT  
PAT1Cn  
PAR3Cn No INT  
PAT3Cn  
No INT  
No INT  
Revision 1.3  
Page 95 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.5.3. INTERRUPT ENABLE REGISTER 1  
Addr Name  
0x27 IE1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
PAT3ECn PAR3ECn PAT1ECn PAR1ECn PAR2ECn  
PAT2ECn  
LCECn  
RTECn  
The letters “Cn” stands for channel number 1 or 2. This register enables all the Power Alarm and the Loop Closure  
interrupt of the device. An interrupt can be enabled by writing a HIGH “1” in the respective interrupt bit.  
Bit  
Location  
Bit Value  
Bit Description  
RING Trip  
Bit Name  
0
Masked  
Masked  
1
0
1
2
3
4
5
6
7
RTECn  
LCECn  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Loop Closure  
Power Alarm QR2  
Power Alarm QT2  
Power Alarm QT1  
Power Alarm QR1  
Power Alarm QR3  
Power Alarm QT3  
PAT2ECn Masked  
PAR2ECn Masked  
PAR1ECn Masked  
PAT1ECn  
Masked  
PAR3ECn Masked  
PAT3ECn Masked  
14.5.4. INTERRUPT STATUS REGISTER 2  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x28  
INT2  
FSKICn DTMFICn  
RICn  
RACn  
O2ICn  
O2ACn  
O1ICn  
O1ACn  
The letters “Cn” stands for channel number 1 or 2.  
Bit  
Location  
Bit Value  
Bit Description  
Bit Name  
0
1
0
1
2
3
4
5
6
Oscillator 1 Active Timer  
Oscillator 1 Inactive Timer  
Oscillator 2 Active Timer  
Oscillator 2 Inactive Timer  
Ringing Active Timer  
Ringing Inactive Timer  
DTMF Initialize  
O1ACn  
O1ICn  
O2ACn  
O2ICn  
RACn  
RICn  
No INT  
INT Pending  
INT Pending  
INT Pending  
INT Pending  
INT Pending  
INT Pending  
INT Pending  
No INT  
No INT  
No INT  
No INT  
No INT  
DTMFICn No INT  
FSK Interrupt occurs when the  
FSK FIFO is empty  
7
FSKICn  
No INT  
INT Pending  
Revision 1.3  
Page 96 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.5.5. INTERRUPT ENABLE REGISTER 2  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x29  
IE2  
FSKIECn  
DTMFIECn RIECn RAECn O2IECn O2AECn O1IECn O1AECn  
The letters “Cn” stands for channel number 1 or 2.  
Bit Value  
Bit  
Bit Description  
Location  
Bit Name  
0
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
1
0
1
2
3
4
5
6
7
Oscillator 1 Active Timer  
Oscillator 1 Inactive Timer  
Oscillator 2 Active Timer  
Oscillator 2 Inactive Timer  
Ringing Active Timer  
Ringing Inactive Timer  
DTMF Inactive Timer  
FSK Enable  
O1AECn  
O1IECn  
O2AECn  
O2IECn  
RAECn  
RIECn  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
DTMFIECn Masked  
FSKIECn  
Masked  
14.5.6. INTERRUPT STATUS REGISTER 3  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x2A  
INT3  
RES  
GKDICn  
RES  
TMP  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
This register displays the status of the dice Temperature interrupt of the device. A pending interrupt is represented  
by a HIGH “1” in the respective bit. Writing 1 to that respective bit clears the pending interrupt.  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
0
3
Die Temperature Interrupt  
TMP  
No INT  
INT Pending  
Ground Key Detection  
Interrupt  
GKDICn  
No INT  
INT Pending  
Revision 1.3  
Page 97 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.5.7. INTERRUPT ENABLE REGISTER 3  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x2B  
IE3Cn  
RES  
GKDIECn  
RES  
TMPE  
0x00  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
This register enables the dice Temperature interrupt of the device. An interrupt can be enabled by writing a HIGH “1”  
in the respective interrupt bit. The following table explains the Interrupt Enable Register 1 bits.  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
0
3
Temperature Interrupt Enable  
TMPE  
Masked  
Enabled  
Ground Key Detection  
Interrupt Enable  
GKDIECn  
Masked  
Enabled  
Revision 1.3  
Page 98 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.6. DTMF DETECTION REGISTER  
14.6.1. DTMF CONTROL 1  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x30  
DTMFC1  
DTMFENCn ADCOSELCn  
DTMFFDEV  
DTMFTC  
0x00  
The letters “Cn” stands for channel number 1 or 2. ADC output is the signal from ADC coming to DTMF decode.  
Therefore, the ADC Select bit select either the ADC or PCM input to the DTMF decode. When DTMFTC[3:0] bits are  
set to larger values, DTMF detector needs more time to decode the DTMF signal but the numerical precision is  
greater.  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
ADC output comes from PCM.  
(Transmit path)  
ADC output comes from ADC.  
(Receive path)  
6
7
ADC Output Select  
DTMF Enable  
ADCOSELCn  
DTMFENCn  
Disabled  
Enabled  
DTMF Frequency Deviation  
Deviation  
(%)  
DTMFFDEV[5]  
DTMFFDEV[4]  
0
0
1
1
0
1
0
1
1.5  
2.5  
3.0  
3.5  
Time constant used for DTMF frequency estimation  
Time  
Constant  
DTMFTC3  
DTMFTC2  
DTMFTC1  
DTMFTC0  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
2
3
4
5
6
7
8
Revision 1.3  
Page 99 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Time constant used for DTMF frequency estimation  
Time  
Constant  
DTMFTC3  
DTMFTC2  
DTMFTC1  
DTMFTC0  
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
9
10  
11  
12  
13  
14  
15  
14.6.2. DTMF CONTROL 2  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x31  
DTMFCTRL2  
RES  
DTMFCLRCn  
0x00  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
DTMF Clear previous  
received data.  
DTMFCLRCn  
0
Default  
Clear  
Revision 1.3  
Page 100 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.6.3. DTMF STATUS (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
Shared  
0x33 DTMFST  
RES  
DTMFEMTCn  
0x01  
RES” in the register map means reserved bit(s). It is a Read ONLY bit  
Bit Value  
1
Bit  
Location  
Bit Description  
Bit Name  
0
0
DTMF buffer is empty DTMFEMTCn Pending Data Buffer is Empty  
14.6.4. DTMF THRESHOLD  
Name D7 D6  
Addr.  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x34 DTMFTHRH  
0x35 DTMFTHRL  
DTMFTHR[15:8]  
DTMFTHR[7:0]  
0x01  
0x00  
This is the signal level threshold which must be present to detect a DTMF tone.  
14.6.5. DTMF PRESENT DETECT TIME  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x36 DTMFPDT  
DTMFPDT[7:0]  
0x00  
DTMF PRESENT DETECT TIME  
The time for which a tone must be present to be  
qualified as a valid DTMF tone.  
Minimum  
0 ms  
Maximum  
127 ms  
Increment  
0.5 ms  
Range  
Revision 1.3  
Page 101 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.6.6. DTMF ABSENT DETECT TIME  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x37 DTMFADT  
DTMFADT[7:0]  
0x00  
DTMF ABSENT DETECT TIME  
The time for which a tone must be absent before a  
signal is considered a new DTMF tone  
Minimum  
0 ms  
Maximum  
127 ms  
Increment  
0.5 ms  
Range  
14.6.7. DTMF ACCEPT TIME  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x38 DTMFACT  
DTMFACT[7:0]  
0x00  
DTMF ACCEPT TIME  
The time for which a tone must be stable to be qualified as a  
correct tone. This guard time improves detection performance  
by rejecting detected signals with insufficient duration and by  
masking momentary detection dropout.  
Minimum  
Maximum  
Increment  
Range  
0 ms  
127 ms  
0.5 ms  
Revision 1.3  
Page 102 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.6.8. DTMF RECEIVE DATA STATUS  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x3A  
DTMFRDT DTMFRDYCn  
DTMFSTCn  
RES  
DTMFRDTCn[3:0]  
0x00  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
DTMF Detector received data, DTMFRDT[3:0]. This data is valid when DTMF Ready, DTMFRDYCn[7], is active.  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
DTMF State (indicates whether a valid DTMF tone  
is currently being detected and DTMF Present  
Time DTMFPDTCn[7:0], is qualified.)  
Data Not Data  
Valid Valid  
6
7
DTMFSTCn  
DTMF Ready (indicates that a valid DTMF tone  
has been present for required DTMF Hold Time  
(ACCT).)  
Data Not Data  
Ready Ready  
DTMFRDYCn  
Column frequency  
1209 Hz  
1336 Hz  
1477 Hz  
3
1633 Hz  
1
2
A
697 Hz  
770 Hz  
852 Hz  
941 Hz  
0x01 hex  
0x02 hex  
0x03 hex 0x0D hex  
4
5
6
B
0x04 hex  
0x05 hex  
0x06 hex 0x0E hex  
7
8
0x08 hex  
0
9
0x09 hex  
#
C
0x0F hex  
D
0x07 hex  
*
0x0B hex 0x0A hex 0x0C hex 0x00 hex  
14.6.9. DTMF ROW FREQUENCY  
Name D7 D6  
Addr.  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x3B DTMFRFH  
0x3C DTMFRFL  
DTMFRFCn[15:8]  
DTMFRFCn[7:0]  
0x00  
0x00  
The letters “Cn” stands for channel number 1 or 2. These two bytes are for debug mode, and display the DTMF Row  
frequency directly.  
DTMFRFCn[15:3] is the integer part of the DTMF Row frequency,  
DTMFRFCn[2:0] is the decimal fraction part of the DTMF Row frequency (13.3 format).  
Revision 1.3  
Page 103 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.6.10. 14/15 DTMF COLUMN FREQUENCY  
Name D7 D6 D5  
Addr.  
D4  
D3  
D2  
D1  
D0  
Default  
0x3D DTMFCFH  
0x3E DTMFCFL  
DTMFCF[15:8]  
DTMFCF[7:0]  
0x00  
0x00  
These two bytes are for debug mode, and display the DTMF Column frequency directly.  
DTMFCF[15:3] is the integer part of the DTMF Column frequency,  
DTMFCF[2:0] is the decimal fraction part of the DTMF Column frequency (13.3 format).  
Revision 1.3  
Page 104 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7. LINE REGISTERS  
14.7.1. AC PATH GAIN  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x40  
APG  
RAMPCn PRENCn VOHZCn  
RES  
ARXCn[1:0]  
ATXCn[1:0]  
Analog Receive Gain  
Analog Transmit Gain  
ARX1Cn  
ARX0Cn  
Gain (dB)  
0
ATX1Cn  
ATX0Cn  
Gain (dB)  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
0
- 3.5  
- 3.5  
+ 3.5  
Mute  
+ 3.5  
Mute  
Bit Value  
Bit  
Location  
Bit Description  
Wink function  
Bit Name  
0
1
5
6
7
VOHZCn  
PRENCn  
RAMPCn  
Return to nominal VRING Ramp towards 0 VRING  
Soft Polarity Reversal  
Disable  
Enable  
Soft Polarity Reversal ramp  
1.484 V/125 µs  
2.968 V/125 µs  
14.7.2. HYBRID BALANCE  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x1B  
0x41  
HB  
DACG  
ADCG  
RES  
AHYBCn[2:0]  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
6
7
Analog ADC Path Gain  
Analog DAC Path Gain  
ADCG  
DACG  
-6 dB  
0 dB  
0 dB  
6 dB  
Audio Hybrid Balance Adjustment  
AHYB2Cn AHYB1Cn AHYB0Cn Trans hybrid Gain  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+4.08  
+2.50  
+1.16  
0
- 1.02  
- 1.94  
- 2.77  
Disable  
Revision 1.3  
Page 105 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.3. COMMON RINGING BIAS ADJUST DURING RINGING  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x42  
VCMR  
RES  
VCMRCn[5:0]  
The letters “Cn” stands for channel number 1 or 2. “RES” in the register map means reserved bit(s).  
The above register sets Common Ringing Bias Adjustment voltage during Ringing. To convert decimal value to hex  
value please refer to the beginning of this section (Register Description).  
COMMON RINGING BIAS ADJUST VOLTAGE  
DURING RINGING  
Minimum  
Maximum  
Increment  
Range  
0 V  
–93.5 V  
1.484 V  
14.7.4. LINE AUTOMATIC MANUAL CONTROL  
Addr.  
Name  
D7  
D6  
D5  
RES  
D4  
D3  
D2  
D1  
D0  
Default  
0x07  
0x43  
LAMC  
PAACn RGACn LCDACn  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
LCDACn  
0
1
0
1
2
Loop Closure Detect Automatic  
Manual Mode  
Automatic Control  
Automatic RING  
Control  
RING Automatic  
RGACn  
PAACn  
Manual Mode  
Manual Mode  
Power Alarm Automatic React  
(Enters Open state automatically upon power  
alarm regardless of current state)  
Automatic Control  
In RING Automatic, LAMC:RGACn[1] address (0x43), when entering Ringing state the RING Oscillator is  
automatically enabled. Both OSN:O2ECn[1] address (0xC0) and RMPC:R1ENCn[5] address (0xC1) are set  
automatically. Enter Active state from ringing state automatically upon RING Trip Detect. The RING Oscillators are  
automatically disabled. Forward or Reverse states determined primarily by OHV:SBCn[6] address (0x4C) Upon  
entering Loop Closure Detect Automatic LAMC:LCDACn[0] address (0x43) the device will enter the Active state from  
Idle, TIP Open, RING Open and ON-HOOK Transmission states automatically upon Loop Closure Detect. Forward  
or Reverse states determined primarily by OHV:SBCn[6] address (0x4C).  
Revision 1.3  
Page 106 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.5. LINEFEED STATUS  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x44  
LS  
SLSCn[3:0]  
LSCn[3:0]  
LineFeed Status  
LS3Cn  
LS2Cn LS1Cn LS0Cn  
State  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
1
1
0
Open  
Forward Active  
Forward ON-HOOK Transmission  
TIP Open  
Ringing  
Reverse Active  
Reverse ON-HOOK Transmission  
RING Open  
Forward Idle  
Reverse Idle  
Calibration Mode  
LS[3:0] is the Linefeed Status Register bits which reflects the programmed linefeed state, not necessarily the actual  
linefeed state. See LS:SLSCn[3:0] definition. When automatic transitions occur LS[3:0] will also update accordingly.  
SLS[3:0] is the Shadow Linefeed Status Register bits which reflects the actual real-time linefeed state. Automatic  
operations may cause actual linefeed state to deviate from the state defined in LS:LS[3:0]. For example when  
LS:LS[3:0] is programmed for ‘Ringing’ state, LS:SLSCn[3:0] will only indicate ‘Ringing’ during the actual RING burst.  
During the RING cadence LS:SLSCn[3:0] will indicate ‘ON-HOOK Transmission’. This register has the same setting  
as the Linefeed Status Register bits.  
14.7.6. LOOP CURRENT LIMIT  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x45  
LGCRTCn LGCRRCn  
LGCMCn[1:0]  
LCL  
RES  
ILMCn[2:0]  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
To convert Current Limit decimal value to hex value please refer to the beginning of this section (Register  
Description).  
CURRENT LIMIT [ILMCn[2:0]]  
Minimum  
Maximum  
Increment  
3 mA  
Range  
20 mA [0x00]  
41 mA [0x07]  
Revision 1.3  
Page 107 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Common Mode  
Correction  
LGCM1Cn  
LGCM0Cn  
0
0
1
0
1
0
Open (none)  
Small (one)  
Medium (two)  
1
1
Large (three)  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
6
7
Series Resistor with CRn  
Series Resistor with CTn  
LGCRR  
LGCRT  
OFF  
OFF  
ON  
ON  
14.7.7. RING TRIP DETECT STATUS/ LOOP CLOSURE STATUS  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x46  
RTLC  
RES  
LCMCn VBLCCn RTDUDCn RTDUACn LCDUCn RTDCn LCDCn  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
RING Trip Detect Unfiltered Indicator (RTDUDCn) bit reflects the real-time output of RING trip detects circuit before  
debounce. Loop Closure Detect Unfiltered Indicator (LCDUCn) bit reflects the real-time output of Loop Closure  
Detect circuit before debounce. Bits of register RTLC[6:5] are READ/WRITE but the bits RTLC[4:0] are READ  
ONLY  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
0
1
2
3
4
Loop Closure Detect (filtered output)  
RING Trip Detect (filtered output)  
Loop Closure Detect Unfiltered  
RING Trip Detect Unfiltered AC  
RING Trip Detect Unfiltered DC  
LCDCn  
LCD has not occurred  
RTD has not occurred  
Threshold not exceeded  
Threshold not exceeded  
Threshold not exceeded  
LCD has occurred  
RTD has occurred  
Threshold exceeded  
Threshold exceeded  
Threshold exceeded  
RTDCn  
LCDUCn  
RTDUACn  
RTDUDCn  
LC determined by loop  
current  
LC determined by Tip to  
RING voltage  
5
6
Voltage-Based Loop Closure  
Loop Closure Mask Counter  
VBLCCn  
LCMCn  
Disabled  
Enabled  
Revision 1.3  
Page 108 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.8. LOOP CLOSURE DEBOUNCE  
Addr.  
0x47  
Name  
LCDB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
LCDI[7:0]  
Loop Closure Detect Debounce Interval LCDI[7:0] is an 8-bit register which sets time interval (decimal value) in digital  
format. To convert decimal value to hex value please refer to the beginning of this section (Register Description).  
LOOP CLOSURE DEBOUNCE INTERVAL  
Minimum  
0 msec  
Maximum  
159 msec  
Increment  
1.25 msec  
Range  
14.7.9. RING TRIP DEBOUNCE INTERVAL  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x48  
RTDBA  
ARTDI[7:0]  
RING Trip Detect Debounce Interval ARTDI[6:0] is an 8-bit register which sets time interval (decimal value) in digital  
format. To convert decimal value to hex value please refer to the beginning of this section (Register Description).  
RING TRIP DEBOUNCE  
Minimum  
0 msec  
Maximum  
159 msec  
Increment  
1.25 msec  
Range  
14.7.10. PWM PERIOD  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xFF  
Shared  
0x49  
PWMT  
PT[7:0]  
This register sets PWM period for the DC/DC converter. Use the following equation to calculate the period.  
PWM Period = (PT[7:0] + 1) x PLL Period  
The PWM period should be set to a value greater than the DC/DC Converter Minimum OFF Time  
PWMT:PT[7:0] > DDCC:DCOFF[4:0]  
The PLL Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and  
PLLS:PLLCM[7] address (0x04).  
Revision 1.3  
Page 109 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.11. DC/DC CONTROLLER CONTROL  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x76  
0x4A  
DDCC  
DCOFF[7:0]  
This register sets DC/DC Converter Minimum OFF Time. Use the following equation to calculate the period.  
DCOFF[7:0] should be programmed to values 04 hex  
TOFF = DCOFF[7:0] x PLL Period  
The PLL Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and  
PLLS:PLLCM[7] address (0x04).  
14.7.12. ON-HOOK VOLTAGE  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x20  
0x4C  
OHV  
RES  
SBCn  
VOHCn[5:0]  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
ON-HOOK VOLTAGE (VTIP – VRING) [VOH]  
Minimum Maximum  
0 V - 93.5 V  
Increment  
1.484 V  
Default  
Range  
- 47.488 V  
Bit Value  
Bit  
Location  
Bit  
Name  
Bit Description  
0
1
Determines polarity of Idle, Active, and On-hook  
transition states after automatic transitions  
6
SBCn  
Forward  
Reverse  
Revision 1.3  
Page 110 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.13. GROUND MARGIN VOLTAGE  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x02  
0x4D  
GMV  
UBRCn  
RES  
VGMCn[5:0]  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
GROUND MARGIN VOLTAGE [VGM]  
Minimum Maximum  
0 V - 93.5 V  
Increment  
1.484 V  
Default  
Range  
-2.968 V  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
UBRCn  
0
1
7
Unbalanced Ringing  
Balanced Ringing  
Unbalanced Ringing  
14.7.14. HIGH BATTERY VOLTAGE  
Addr.  
0x4E  
Name  
D7  
XBATRCn  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x32  
VBHV  
RES  
VBATHCn[5:0]  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
HIGH BATTERY VOLTAGE [VBATHCn]  
Minimum Maximum  
Increment  
1.484 V  
Default  
Range  
0 V  
- 93.5 V  
- 74.2 V  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
7
External Battery Enable  
XBATRCn  
Disabled  
Enabled  
14.7.15. LOW BATTERY VOLTAGE  
Addr.  
0x4F  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x10  
VBLV  
RES  
VBATLCn[5:0]  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
LOW BATTERY VOLTAGE [VBATLCn]  
Minimum Maximum  
Increment  
1.484 V  
Default  
Range  
0 V  
- 93.5 V  
- 23.744 V  
Revision 1.3  
Page 111 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.16. LOOP CLOSURE DETECT/RING TRIP DETECT COEFFICIENT  
Addr.  
0x50  
0x51  
0x52  
Name  
LCDCL  
RTDFCLD  
DCHD  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
LCDC[7:0]  
ARTDFC[7:0]  
0x00  
ARTDFC[11:8]  
LCDC[11:8]  
0x00  
Loop Closure Detect Coefficient LCDC[11:0] is governed by the cutoff frequency fLP  
f
LP  
800Hz  
12  
LCDC[11 :0] = 1 - 2 * π *  
* 2  
AC Ring Trip Detect Filter Coefficient ARTDFC[11:0] is governed by the cutoff frequency fLP  
f
LP  
800Hz  
12  
*2  
ARTDFC[11 :0] = 1 - 2* π *  
14.7.17. LOOP CLOSURE DETECT THRESHOLD WITHOUT / WITH HYSTERESIS  
Addr.  
0x53  
0x54  
Name  
LCT  
D7  
D6  
D5  
D4  
D3  
LCT[5:0]  
LCTOFF[5:0]  
D2  
D1  
D0  
Default  
0x00  
RES  
LCTHY  
DBTR  
LCHYEN  
0x00  
RES” in the register map means reserved bit(s).  
Bit  
Location  
Bit Description  
Condition  
Bit Name  
LCT  
Range  
Increment  
Current Based  
(RTLC:VBLC=0,)  
0 to 80  
mA  
If hysteresis enabled  
(LCTHY:LCHYEN=1) LCT[5:0] only  
1.27 mA  
1.484 V  
1.27 mA  
(0x53)  
D0 - D5  
Loop Closure  
Detect Threshold used to determine transitions from  
Voltage Based  
(RTLC:VBLC=1,)  
0 to 93.5  
V
ON-HOOK to OFF-HOOK state  
0 to 80  
mA  
Current Based  
Only valid if hysteresis enabled  
Loop Closure  
(0x54)  
D0 - D5  
(LCTHY:LCHYEN=1) LCTOFF[5:0]  
Detect Threshold  
LCTOFF  
only used to determine transitions  
with hysteresis  
Voltage Based  
(LCDB:VBLC=1)  
0 to 93.5  
V
1.484 V  
from OFF-HOOK to ON-HOOK state  
Bit Value  
Bit  
Bit  
Name  
Bit Description  
Location  
0
1
6
7
Loop Closure Hysteresis  
Dynamic Battery Target  
LCHYEN Disable  
DBTR Disable  
Enable  
Enable  
Revision 1.3  
Page 112 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.18. RING TRIP DETECT THRESHOLD  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x55  
RTTA  
RES  
ARTT[5:0]  
0x00  
RING TRIP DETECT THRESHOLD [ARTT]  
Minimum  
Maximum  
80 mA  
Increment  
1.27 mA  
Range  
0 A  
14.7.19. OFFSET VOLTAGE  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x56  
VOV  
RES  
TRCn  
VOVCn[3:0]  
0x00  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
The Tracking Mode is enabled by set TR bit HIGH and disabled by setting it LOW.  
Offset Voltage between TIP and RING [VOVCn]  
Minimum Maximum  
0 V 24 V  
Increment  
1.484 V  
Default  
3.0 V  
Range  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
TRCn  
0
1
|VBAT| will not go  
below VBATL  
VBAT tracks VRING in  
4
Tracking Mode  
constant current region  
14.7.20. DC/DC TIME ON  
Addr.  
Name  
D7  
D6  
RES  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x57  
DCTON  
TONDC[5:0]  
0x00  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
Minimum time ON for DC/DC  
Revision 1.3  
Page 113 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.7.21. AUTOMUTE FUNCTION  
Name D7 D6  
Addr.  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x5E  
AMTTHRCn  
AUTOMT AMTENCn AMTSELCn  
0x00  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
6
7
Automute Select  
Automute Enable  
AMTSELCn DAC data + ADC data  
AMTENCn Disabled  
DAC data only  
Enabled  
Automute Threshold  
AMTTHRCn  
Value (dBFS)  
5
0
0
4
0
0
3
0
0
2
0
0
1
0
1
0
1
0
-90.3  
-84.3  
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  
: : : : : : : : : : : : : :  
-60.8  
0
1
1
1
1
0
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  
: : : : : : : : : : : : : :  
-54.5  
1
1
1
1
1
1
1
1
1
1
0
1
-54.3  
Revision 1.3  
Page 114 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.8. GROUND KEY DETECTION  
14.8.1. LINEFEED CONTROL  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x5F  
XBTC  
RES  
ASQHCn  
CBPCn  
XBEN  
XTBOT1Cn XTBOT0Cn  
XTBATCn[1:0]  
0x00  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
2
3
4
DC Bias Current OFF-Hook  
DC Bias Current On-Hook TR  
Ringer Bias Enable  
XTBOT0Cn 8 mA  
XTBOT1Cn 4 mA  
4 mA  
8 mA  
XBEN  
Disable  
Enable  
capacitors CP and  
CM(C2) in circuit  
Capacitors CT and CR  
bypassed  
5
6
Capacitor Bypass  
Audio Mute  
CBPCn  
STIPAC and SRINGAC  
pins are not muted  
STIPAC and SRINGAC  
pins are muted  
ASQHCn  
The DC bias current flows through external BJTs in the both On-Hook Transmission and in Active Off-Hook State.  
Increasing this value (External Transistor Bias Levels) increases the TIP to RING peak of the differential AC current.  
XTBAT1Cn XTBAT0Cn DC Bias Current  
0
0
1
1
0
1
0
1
Nominal ILIM  
+1 mA  
+2 mA  
-1 mA  
14.8.2. GROUND KEY DETECT HIGH/LOW THRESHOLD  
Addr.  
0x60  
0x61  
Name  
GKDH  
GKDL  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
RES  
RES  
HGKD[5:0]  
LGKD[5:0]  
0x00  
GKD HIGH/LOW THRESHOLD  
Minimum  
0 A  
Maximum  
80 mA  
Increment  
1.27 mA  
Range  
Revision 1.3  
Page 115 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.8.3. GROUND KEY DETECT DEBOUNCE TIME  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x62  
GKDDT  
DTGKD[7:0]  
GKD DEBOUNCE TIME  
Minimum  
0 msec  
Maximum  
320 msec  
Increment  
1.25 msec  
Range  
14.8.4. GROUND KEY DETECT FILTER COEFFICIENT LOW/ HIGH  
Addr.  
0x63  
0x64  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
GKDFCL  
GKDFCH  
FCGKD[7:0]  
0x00  
0x00  
GKDEN  
RES  
FCGKD[11:8]  
Ground Key Detection Filter Coefficient governs the Ground Key Detect LPF cutoff frequency fLP  
f
LP  
800Hz  
12  
* 2  
FCGKD[11 :0] = 1 - 2 * π *  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
GKDEN  
0
1
7
Enable Ground Key detection  
Disable  
Enable  
14.8.5. DC RING TRIP DEBOUNCE FILTER COEFFICIENT LOW  
Addr.  
0x65  
0x66  
Name  
RTDCDL  
DCHD  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
DRTDFC[7:0]  
RES  
DRTDFC[11:8]  
0x00  
DC Ring Trip Coefficient is governed by the cutoff frequency fLP  
1 ( 2 * π * f  
)
DRTFC[11: 0]  
=
x
212  
LP  
800  
Revision 1.3  
Page 116 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.8.6. DC RING TRIP CURRENT THRESHOLD  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x67  
RTTD  
RES  
XRTR  
DRTT[5:0]  
DC Ring Trip current Threshold in Internal Ringing Mode  
RING TRIP DETECT THRESHOLD [DRTT]  
Minimum  
0 A  
Maximum  
80 mA  
Increment  
1.27 mA  
Range  
14.8.7. DC RING TRIP DEBOUNCE TIME  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x68  
RTDBD  
DRTD[7:0]  
DC RING TRIP DEBOUNCE TIME  
Minimum  
0 msec  
Maximum  
159 msec  
Increment  
1.25 msec  
Range  
14.8.8. EXTERNAL BATTERY SWITCH OUTPUT CONFIGURATION 1  
Addr.  
0x6A  
0x6B  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
XBSDCN  
XBSDCP  
DCNXB[7:0]  
DCPXB[7:0]  
0x00  
0x00  
External battery switch DCN pin and DCP output configuration for different line states  
XBSDCN Register  
XBSDCP Register  
DCN output  
DCP output  
Linefeed State  
Open  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
x
x
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
Open  
Forward/Reverse Active  
Forward/Reverse Active  
Forward/Reverse ON-HOOK Transmission  
Forward/Reverse ON-HOOK Transmission  
TIP/RING Open  
TIP/RING Open  
Ringing  
Ringing  
Forward/Reverse Idle  
Revision 1.3  
Page 117 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
XBSDCN Register  
XBSDCP Register  
DCN output  
DCP output  
Linefeed State  
Forward/Reverse Idle  
x
x
x
x
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
HIGH  
LOW  
HIGH  
Calibration Mode  
Calibration Mode  
14.8.9. DC/DC HEAVY CURRENT CONVERTER  
Addr.  
Name  
D7  
D6  
D5  
D4  
RES  
D3  
D2  
D1  
D0  
Default  
0x00  
0x6E  
LOAD  
LOAD  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
LOAD  
0
1
Heavy Current Load such as  
Ringing for DC/DC converter  
0
DC/DC Heavy Current Load  
Light load  
14.8.10. DC/DC TARGET VOLTAGE  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
VTR[7:0]  
D2  
D1  
D0  
Default  
0x77  
DCTR  
0XC8  
In Inductor mode the Target Voltage for DC/DC Converter is a READ ONLY register.  
DC/DC TARGET VOLTAGE [VTR]  
Minimum Maximum  
Increment  
1.484 V  
Default  
3.0 V  
Range  
0 V  
- 93.5 V  
Revision 1.3  
Page 118 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.9. MONITORING REGISTERS  
14.9.1. MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE  
Addr  
(Hex)  
Default  
(Hex)  
Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
R/W  
78  
79  
RTMNT  
LCMNT  
MNTRTCn[7:0]  
MNTLCCn[7:0]  
00  
00  
RO  
RO  
The letters “Cn” stands for channel number 1 or 2.  
RING TRIP CURRENT MONITOR  
LOOP CLOSURE CURRENT MONITOR  
Minimum  
0 A  
Maximum  
80 mA  
Increment  
0.317 mA  
Range  
14.9.2. MONITOR CURRENT FOR RING TRIP AND LOOP CLOSURE  
Addr  
(Hex)  
Default  
(Hex)  
Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
R/W  
7A  
7B  
7C  
7D  
7E  
7F  
MNT5  
MNT7  
MNTQ1Cn[7:0]  
MNTQ2Cn[7:0]  
MNTQ3Cn[7:0]  
MNTQ4Cn[7:0]  
MNTQ5Cn[7:0]  
MNTQ6Cn[7:0]  
00  
00  
00  
00  
00  
00  
RO  
RO  
RO  
RO  
RO  
RO  
MNT9  
MNT11  
MNT13  
MNT15  
The letters “Cn” stands for channel number 1 or 2.  
TRANSISTOR POWER DESSIPATION  
TIP, RING, and LOOP CURRENT SENSE  
DESCRIPTION  
CONDITION  
QT1 and QR1  
QT2 and QR2  
QT3 and QR3  
Range  
Minimum  
0 W  
Maximum  
7.70 W  
Stepsize  
30.4 mW  
3.80 mW  
30.4 mW  
PATHQ2  
PATHQ1  
PATHQ3  
Dependent on the maximum  
power dissipation rating of the  
external transistors  
0 W  
0.97 W  
0 W  
7.70 W  
Revision 1.3  
Page 119 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.10. LINE CONTROL REGISTERS  
14.10.1. VOLTAGE REGISTERS  
14.10.1.1.  
BATTERY VOLTAGE SENSE (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x80  
BATV  
VBCn[7:0] (RO)  
0x02  
The letters “Cn” stands for channel number 1 or 2. Battery Voltage VB[7:0] is a READ ONLY register.  
BATTERY VOLTAGE SENSE [VBCn]  
Minimum  
0 V  
Maximum  
- 94.6V  
Increment  
0.371 V  
Range  
14.10.1.2.  
TIP/RING TRANSISTOR 3 EMITTER VOLTAGE SENSE (READ ONLY)  
D7 D6 D5 D4 D3 D2 D1  
Addr.  
Name  
D0  
Default  
VTIP  
VTIP[11:4] (RO)  
0x81  
0x00  
VTRIP (XP)  
VRING  
VTIP[3:0] (RO)  
RES  
RES  
VRING[11:4] (RO)  
0x82  
0x00  
VRING (XP)  
VRING[3:0] (RO)  
“XP” stands for extra precision register. TIP and RING voltage is a READ ONLY register. The range value depends  
on calibration. The values provided for range is without any calibration. Please refer to the SPI Peripheral Interface  
section for details.  
TIP AND RING VOLTAGE SENSE [VTIP, VRING]  
Precision  
Bits  
Minimum  
0 V  
Maximum  
-94.6 V  
Increment  
371 mV  
8
Range  
0 V  
-94.6 V  
23 mV  
12  
14.10.1.3.  
TIP/RING TRANSISTOR 3 EMITTER VOLTAGE SENSE (READ ONLY)  
D7 D6 D5 D4 D3 D2 D1  
Addr.  
0x83  
0x84  
Name  
D0  
Default  
0x02  
QT3VCn[7:0] (VTVE) (VQT2) (RO)  
QR3VCn[7:0] (VRVE) (VQR2) (RO)  
QT3V  
QR3V  
0x02  
The letters “Cn” stands for channel number 1 or 2. Transistors QT3 / QR3 Emitter Voltage (QT3V, QR3V) is a READ  
ONLY register. The range value depends on calibration. The values provided for range is without any calibration.  
TRANSISTORS QT3VCn / QR3VCn  
EMITTER VOLTAGE  
Minimum  
0 V  
Maximum  
- 94.6 V  
Increment  
371 mV  
Range  
Revision 1.3  
Page 120 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.11.  
TRANSISTOR CURRENT REGISTERS  
14.11.1. TIP/RING TRANSISTOR 1/2/3 CURRENT SENSE (READ ONLY)  
Addr.  
0x85  
Name  
QT3I  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x05  
QT3ICn[11:4] (RO)  
QR3ICn[11:4] (RO)  
QT1ICn[11:4] (RO)  
QT2ICn[11:4] (RO)  
QR1ICn[11:4] (RO)  
QR2ICn[11:4] (RO)  
QT3I (XP)  
QR3I  
QT3ICn[3:0] (RO)  
QR3ICn[3:0] (RO)  
QT1ICn[3:0] (RO)  
QT2ICn[3:0] (RO)  
QR1ICn[3:0] (RO)  
QR2ICn[3:0] (RO)  
RES  
RES  
RES  
RES  
RES  
RES  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x03  
0x03  
0x03  
0x03  
0x03  
QR3I (XP)  
QT1I  
QT1I (XP)  
QT2I  
QT2I (XP)  
QR1I  
QR1I (XP)  
QR2I  
QR2I (XP)  
“XP” stands for extra precision register. The letters “Cn” stands for channel number 1 or 2. TIP/RING Transistor  
1/2/3 Current register is a READ ONLY. The range value depends on calibration. The values provided for Range is  
without any calibration. Please refer to the SPI Peripheral Interface section for details.  
REAL TIME CURRENT  
Precision  
Range  
Bits  
Minimum  
0 A  
Maximum  
78.54 mA  
Increment  
308 μA  
8
12  
8
QT3ICn  
QR3ICn  
QT1ICn  
QT2ICn  
QR1ICn  
QR2ICn  
0 A  
0 A  
0 A  
0 A  
0 A  
0 A  
0 A  
0 A  
0 A  
0 A  
0 A  
78.54 mA  
78.54 mA  
78.54 mA  
78.54 mA  
78.54 mA  
9.95 mA  
9.95 mA  
78.54 mA  
78.54 mA  
9.95 mA  
9.95 mA  
19.18 μA  
308 μA  
19.18 μA  
308 μA  
19.18 μA  
39 μA  
12  
8
12  
8
2.5 μA  
12  
8
308 μA  
19.18 μA  
39 μA  
12  
8
2.5 μA  
12  
Revision 1.3  
Page 121 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.12.  
LOOP SUPERVISION  
14.12.1. LONGITUDINAL CURRENT (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
LGI  
ILGCn[11:4] (RO)  
0x8C  
0x00  
LGI (XP)  
ILGCn[3:0] (RO)  
RES  
“XP” stands for extra precision register. The letters “Cn” stands for channel number 1 or 2. The range value depends  
on calibration. The values provided for Range is without any calibration. Please refer to the SPI Peripheral Interface  
section for details.  
(
IQT1- IQT3 IQR3 + IQR1  
)
ILG =  
2
LONGITUDINAL CURRENT  
Precision  
Bits  
Minimum  
Maximum  
77.62 mA  
77.62 mA  
Increment  
0 mA  
0 mA  
303 uA  
8
Range  
18.95 uA  
12  
14.12.2. LOOP VOLTAGE SENSE (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
LPV  
VLPCn[11:4] (RO)  
0x8D  
00  
LPV (XP)  
VLPCn[3:0] (RO)  
RES  
“XP” stands for extra precision register. The letters “Cn” stands for channel number 1 or 2. Loop Voltage is a READ  
ONLY register. The range value depends on calibration. The values provided for Range is without any calibration.  
This is a 12-bit register. Please refer to the SPI Peripheral Interface section for details.  
LOOP VOLTAGE  
Precision  
(VTIP – VRING  
Maximum  
)
Bits  
Minimum  
0 V  
Increment  
365 mV  
- 93.5 V  
- 93.5 V  
8
Range  
0 V  
22.8 mV  
12  
Revision 1.3  
Page 122 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.12.3. TIP, RING, AND LOOP CURRENT (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
NA  
TIPI  
TIPI (XP)  
RINGI  
ITLPCn[11:4] (RO)  
IRLPCn[11:4] (RO)  
ILPCn[11:4] (RO)  
0x8E  
ITLPCn[3:0] (RO)  
IRLPCn[3:0] (RO)  
ILPCn[3:0] (RO)  
RES  
RES  
RES  
0x8F  
0x90  
NA  
NA  
RINGI (XP)  
LPI  
LPI (XP)  
“XP” stands for extra precision register. The letters “Cn” stands for channel number 1 or 2. The above registers are  
READ ONLY. The range value depends on calibration. The values provided for Range is without any calibration.  
Please refer to the SPI Peripheral Interface section for details.  
TIP, RING, and LOOP CURRENT  
Precision  
Bits  
Minimum  
Maximum  
77.62 mA  
Increment  
0 mA  
0 mA  
303 uA  
8
Range  
77.62 mA  
18.95 uA  
12  
14.12.4. POLARITY  
Addr.  
Name  
D7  
RES  
D6  
D5  
P2PENCn  
D4  
D3  
D2  
D1  
D0  
Default  
0x91  
POL  
ILGPCn ILPPCn IRLPCn ITLPCn  
VLPCn  
NA  
The letters “Cn” stands for channel number 1 or 2. Loop voltage, TIP Current, RING Current, Loop Current, and  
Longitudinal Current all have Sign Bit associated with it. The Polarity register contains all the Sign or Polarity bits.  
For these registers mentioned the range can also extend in the negative direction by setting the Sign or Polarity bit.  
Bit Value  
Bit  
Location  
Bit Description  
Loop Voltage  
Bit Name  
0
1
0
1
2
Positive  
Positive  
Positive  
Negative  
Negative  
Negative  
VLPCn  
ITLPCn  
TIP Current  
RING Current  
IRLPCn  
ILPPCn  
ILGPCn  
3
4
5
Loop Current  
Positive  
Positive  
Negative  
Negative  
Longitudinal Current  
Loop current PK-2-PK clear  
Continuously updates  
new peak values  
P2PENCn  
Clear value  
When P2PENCn[5] is set from 0 to 1 the peak detector circuit register value is cleared. If P2PENCn[5] is set to HIGH  
and it remain at HIGH than the peak detector circuit register value is continuously updated with new peak values.  
Revision 1.3  
Page 123 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.12.5. COMMON MODE VOLTAGE  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
SCM  
SCMCn[11:4]  
0x92  
NA  
SCM (XP)  
SCMCn[3:0]  
RES  
“XP” stands for extra precision register. The letters “Cn” stands for channel number 1 or 2.  
The Common Mode Voltage is calculated using the equation below. Please refer to the SPI Peripheral Interface  
section for details.  
(
VTIP + VRING  
)
2
14.12.6. TIP EMITTER VOLTAGE FOR TRANSISTORS QT1 SENSE (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x93  
VEQT1  
VEQT1Cn[7:0] (RO)  
NA  
The letters “Cn” stands for channel number 1 or 2. This is the emitter sense of the transistor QT1 which is used for  
the power alarm computation. This register is a READ ONLY register. The range value depends on calibration. The  
values provided for range is without any calibration.  
TIP - TRANSISTOR QT1 EMITTER  
VOLTAGE SENSE  
Minimum  
Maximum  
Increment  
Range  
0 V  
- 94.6 V  
0.371 V  
14.12.7. TIP VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x94  
VQT1  
VQT1Cn[7:0] (RO)  
NA  
The letters “Cn” stands for channel number 1 or 2. The value in this register is derived from TIP voltage and TIP  
emitter voltage of the transistor. This is the emitter sense of the transistor QT1 which is used for the power alarm  
computation. This register is a READ ONLY register. The range value depends on calibration. The values provided  
for range is without any calibration.  
TIP - TRANSISTOR QT1  
VOLTAGE SENSE  
Minimum  
0 V  
Maximum  
Increment  
Range  
- 94.6 V  
0.371V  
Revision 1.3  
Page 124 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.12.8. RING EMITTER VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x95  
VEQR1  
VEQR1Cn[7:0] (RO)  
NA  
The letters “Cn” stands for channel number 1 or 2.  
This is the emitter sense of the transistor QR1 which is used for the power alarm computation. This register is a  
READ ONLY register. The range value depends on calibration. The values provided for range is without any  
calibration.  
RING - TRANSISTOR QR1 EMITTER  
VOLTAGE SENSE  
Minimum  
Maximum  
Increment  
Range  
0 V  
- 94.6 V  
0.371V  
14.12.9. RING VOLTAGE FOR TRANSISTOR QT1 SENSE (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x96  
VQR1  
VQR1Cn[7:0] (RO)  
NA  
The letters “Cn” stands for channel number 1 or 2.  
The value in this register is derived from RING voltage and RING emitter voltage of the transistor. This is the emitter  
sense of the transistor QR1 which is used for the power alarm computation. This register is a READ ONLY register.  
The range value depends on calibration. The values provided for range is without any calibration.  
RING - TRANSISTOR QR1  
VOLTAGE SENSE  
Minimum  
Maximum  
Increment  
Range  
0 V  
- 94.6 V  
0.371V  
14.12.10.  
TEMPERATURE SENSE (READ ONLY)  
Addr.  
Name  
TEMP  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
Shared  
0x99  
TS[7:0]  
NA  
Die Temperature Sense TS[7:0] is a READ ONLY register. The actual temperature T is given by:  
T = TS[7:0] – 67  
@ 1°C Increment  
14.12.11.  
BAND GAP VOLTAGES  
Addr.  
Name  
VBGAP  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
Shared  
0x9A  
VBG[7:0]  
0x00  
Bandgap Voltage Trim VBG[7:0] is a trim parameters which can be used during the calibration sequence.  
Revision 1.3  
Page 125 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.12.12.  
Name  
PEAK TO PEAK LOOP VOLTAGE  
Addr.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
VLPP2P  
LPVP2PCn[11:4]  
0x9B  
0x00  
VLPP2P (XP)  
LPVP2PCn[3:0]  
RES  
“XP” stands for extra precision register. The letters “Cn” stands for channel number 1 or 2. This read only register  
captures the peak-to-peak loop voltage. The peak detector circuit clears this register value when POL:P2PEN[5]  
address (0X91)is set from 0 to 1 and continuously updates new peak values when P2PEN[5] is HIGH. The final peak  
value is held in VLPP2P:LPVP2P address (0X91) when P2PEN[5] is cleared to LOW until P2PEN[5] is set again.  
The peak-to-peak loop voltage is measured as (max positive peak + max negative peak) / 2.  
PEAK TO PEAK LOOP VOLTAGE  
Precision  
Bits  
Minimum  
0 V  
Maximum  
- 94.6 V  
Increment  
374 mV  
8
Range  
0 V  
- 94.6 V  
23mV  
12  
14.12.13.  
Name  
PEAK TO PEAK LOOP CURRENT (READ ONLY)  
Addr.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
NA  
ILPP2P  
LPIP2P[11:4] (RO)  
0x9C  
ILPP2P (XP)  
LPIP2P[3:0] (RO)  
RES  
“XP” stands for extra precision register. The letters “Cn” stands for channel number 1 or 2. This READ ONLY  
register captures the peak-to-peak loop current. The peak detector circuit clears this register value when  
POL:P2PEN[5] address (0X91)is set from 0 to 1 and continuously updates new peak values when P2PEN[5] is HIGH.  
The final peak value is held in ILPP2P:LPIP2P address (0X91) when P2PEN[5] is cleared to LOW until P2PEN[5] is  
set again. The peak-to-peak loop current is measured as (max positive peak + max negative peak) / 2.  
PEAK TO PEAK LOOP CURRENT  
Precision Bits  
Minimum  
Maximum  
Increment  
0 mA  
-77.62 mA  
303 uA  
8
Range  
0 mA  
-77.62 mA  
18.95 uA  
12  
Revision 1.3  
Page 126 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.13.  
POWER ALARM LPF POLE REGISTERS  
14.13.1. POWER ALARM COUNTER (READ ONLY)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x9F  
PALCNT  
PALCNTCn[7:0] (RO)  
0x00  
The letters “Cn” stands for channel number 1 or 2.  
The Power Alarm Counter indicates the number of rising edges of the LOWVDC or HIGHIDC flags. The value of this  
register clips at 255. This counter is reset after every read command.  
a) DCDC output voltage (VBAT) 10% above full scale or  
b) DCDC supply voltage (VDDC) too low or  
c) DCDC supply current (IVDDC) too high;  
14.13.2. POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3  
Addr.  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
Name  
D7  
D6  
D5  
D4  
Q2C[7:0]  
Q1C[7:0]  
Q3C[7:0]  
D3  
D2  
D1  
D0  
Default  
0x00  
0x00  
0x00  
0x00  
0x00  
PALPQ2  
PALPQ1  
PALPQ3  
PALPQHn  
PALPQH2  
Q1C[11:8]  
Q2C[11:8]  
Q3C[11:8]  
LPFEN  
Q3C12  
Q1C12  
Q2C12  
The Power Alarm register are 13 bit registers. For example Q2 Power Alarm bits are located at address 0xA0, (D0 –  
D7, Q2C[7:0]) first 8-bits. The next 4-bits are located at address 0xA3 (D0 – D3 bits, Q2C[11:8]) and the last bit out  
of 13-bits is located at address 0xA4 (D4 – Q2C[12]). The other two transistor bits can be located the same way.  
LPFEN enables the Low Pass Filter when set to 1.  
POWER ALARM LOW PASS FILTER POLE FOR TRANSISTORS 1/2/3  
Dependent on the thermal time constant of the external transistors  
QT2 and QR2  
PALPQ2  
QT1 and QR1  
PALPQ1  
QT3 and QR3  
PALPQ3  
1
13  
1
1
13  
13  
Q2C[12 : 0] = 1−  
*2  
Q1C[12 : 0] = 1−  
*2  
Q3C[12 : 0] = 1−  
*2  
800*TTC  
800*TTC  
800*TTC  
Revision 1.3  
Page 127 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.13.3. POWER ALARM THRESHOLD FOR TRANSISTOR 1-3  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0xA5  
PATHQ2  
PATHQ1  
PATHQ3  
Q2TH[7:0]  
0xA6  
0xA7  
Q1TH[7:0]  
Q3TH[7:0]  
0x00  
0x00  
TIP, RING, and LOOP CURRENT  
DESCRIPTION  
CONDITION  
QT1 and QR1  
QT2 and QR2  
QT3 and QR3  
Range  
Minimum Maximum  
Increment  
30.4 mW  
3.8 mW  
Dependent on the  
maximum power  
dissipation rating  
of the external  
transistors  
PATHQ2  
PATHQ1  
PATHQ3  
0 W  
0 W  
0 W  
7.7 W  
0.97 W  
7.7 W  
30.4 mW  
14.14.  
Addr.  
IMPEDANCE MATCHING 1/2  
Name  
D7  
D6  
RES  
ZSWCn  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xA8  
0xA9  
IM1  
IM2  
ZR1Cn[3:0]  
0x00  
0x00  
RES  
RES  
RES” in the register map means reserved bit(s).  
Impedance Matching/ R1 Element  
ZR13Cn ZR12Cn ZR11Cn ZR10Cn R1 (Ohm)  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
x
0
1
0
1
0
1
0
1
0
1
0
1
x
600 ꢀ  
900 ꢀ  
600 ꢀ  
900 ꢀ  
270 ꢀ  
200 ꢀ  
200 ꢀ  
100 ꢀ  
370 ꢀ  
220 ꢀ  
320 ꢀ  
220 ꢀ  
Not Used  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
ZSWCn  
0
1
Disables impedance  
matching feedback loop for  
diagnostics testing  
Impedance matching  
Feedback loop Disable  
6
Default, enabled  
Revision 1.3  
Page 128 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.14.1. TEMPERATURE ALARM THRESHOLD  
Addr  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xAA  
THAT  
TATH[7:0]  
0x00  
TTH = TATH[7:0] – 67  
@ Increment of 1°C  
14.14.2. LOOP CLOSURE MASK COUNT  
Addr  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xAB  
LCMCNT  
LCMCNT[7:0]  
0x00  
LOOP CLOSURE MASK COUNT  
Minimum  
0 ms  
Maximum  
319 ms  
Increment  
1.25 ms  
Range  
14.14.3. COARSE CALIBRATION INTERNAL RESISTOR  
Addr  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xAC  
CC  
RES  
CBGSW  
CTRIM[2:0]  
0x00  
“RES” in the register map means reserved bit(s).Coarse Calibration CTRIM[2:0] and Internal Resistor CBGSW are a  
trim parameters which can be used during the calibration sequence.  
14.14.4. OSCILLATOR 2 RINGING PHASE DELAY  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0xAD  
OS2RPD  
O2RPDCn[7:0]  
The letters “Cn” stands for channel number 1 or 2.  
When Oscillator 2 is used for Tone Generation it is recommended this register be set to 0x00. If the ringing phase  
delay in oscillator 2 (0xAD) is used , zero crossing function must be enabled OSN:O2ZCCn[3] address 0xC0.  
OSCILLATOR 2 RINGING PHASE DELAY  
Minimum  
0 ms  
Maximum  
31.8 ms  
Increment  
125 us  
Range  
Revision 1.3  
Page 129 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.15.  
Addr  
CALIBRATION  
Name D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0X77  
0xAF  
0xB0  
0xB1  
CAL1  
CAL2  
CAL3  
SDATCn[3:0]  
TVTE1Cn[3:0]  
SCMTCn[3:0]  
VBATTCn[3:0]  
SDBTCn[3:0]  
RVTECn[3:0]  
0X97  
0X79  
The letters “Cn” stands for channel number 1 or 2.  
All values are trim parameters which can be used during the calibration sequence.  
Bits  
Trim  
VBATTCn[3:0]  
VBAT Trim  
SDATCn[3:0]  
SDBTCn[3:0]  
TVTE1Cn[3:0]  
RVTECn[3:0]  
SCMTCn[3:0]  
SDA Trim  
SDB Trim  
TVE1 Trim  
RVE1 Trim  
SCM Trim  
Revision 1.3  
Page 130 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.16.  
DC OFFSET REGISTERS  
14.16.1. DC OFFSET (RING, TIP, AND VBAT)  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xB4  
IQTROS  
HISENSECn  
BTVR  
ILFDB  
DACSFC  
RES  
0x00  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s). Where ‘n’  
stands for channel 1, 2. All values are trim parameters which can be used during the calibration sequence.  
Bit Value  
Bit  
Location  
Bit Description  
Smoothing Filter  
Bit Name  
DACSFC  
ILFDB  
0
1
4
5
Cutoff at 1xfc  
Cutoff 2xfc  
Bias varies with  
coarse calibration  
Line driver bias  
Fixed Bias  
Normal  
6
7
DC/DC Range  
BTVR  
Low VBAT  
Monitor DC Range  
HISENSECn Normal line  
Extended line  
14.16.2. PWM COUNT  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
NA  
0xB5  
PWCT  
PWCTCn[7:0]  
The letters “Cn” stands for channel number 1 or 2.  
This register is a READ ONLY. PWM Count Register can calculate DC/DC Converter Pulse Width TON with the  
following equation.  
TON = PWCTCn[7:0] * PLL Period  
The TON Range is 0 ns to (PWM Period-TOFF) see PWMT and DDCC with a stepsize of PLL period. The PLL  
Period (expressed in nsec) which is selected based on the setting of PON:CDCC[7] address (0x22) and  
PLLS:PLLCM[7] address (0x04).  
Revision 1.3  
Page 131 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.17.  
TONE GENERATION REGISTERS  
14.17.1. OSCILLATOR CONTROL  
Addr.  
Name  
D7  
D6  
RES  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0xC0  
OSN  
O2ZCCn  
O1ZCCn  
O2ECn  
O1ECn  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
Bit Value  
Bit  
Location  
Bit Description  
Oscillator 1  
Bit Name  
0
1
0
1
2
3
O1ECn  
O2ECn  
Disable  
Disable  
Disable  
Disable  
Enable  
Enable  
Enable  
Enable  
Oscillator 2  
Oscillator n Zero-Crossing  
Oscillator 2 Zero-Crossing  
O1ZCCn  
O2ZCCn  
14.17.2. RING CONTROL  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0xC1  
RMPC TRAP LBACCn R1ENCn  
RES  
TORCn  
RES  
The letters “Cn” stands for channel number 1 or 2. RES” in the register map means reserved bit(s).  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
Transmit direction  
(towards DAC)  
Receive direction  
(towards ADC)  
3
5
6
7
Tone Route  
TORCn  
R1ENCn  
LBACCn  
TRAP  
Ringer 1  
Disable  
Enable  
Sinusoidal RING  
Waveform  
Trapezoidal RING  
Waveform  
Ringing Waveform  
Ringing Waveform Select  
Disable  
Enable  
14.17.3. OSCILLATOR 1 AND 2 INITIAL CONDITION LOW/HIGH  
Addr.  
0xC2  
0xC3  
0xC4  
0xC5  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x00  
0x00  
0x00  
OS1ICL  
OS1ICH  
OS2ICL  
OS2ICH  
O1ICCn[7:0]  
O1ICCn[15:8]  
O2ICCn[7:0]  
O2ICCn[15:8]  
The letters “Cn” stands for channel number 1 or 2. Initial Condition for Oscillator m OmIC[15:0] m=1,and 2 can be  
determined by formula. Refer to Tone Generation see Section for the formula.  
Revision 1.3  
Page 132 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.17.4. OSCILLATOR 1 AND 2 COEFFICIENT LOW/HIGH  
Addr.  
0xC6  
0xC7  
0xC8  
0xC9  
Name  
OS1CL  
OS1CH  
OS2CL  
OS2CH  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x00  
0x00  
0x00  
O1CCn[7:0]  
O1CCn[15:8]  
O2CCn[9:2]  
O2CCn[17:10]  
The letters “Cn” stands for channel number 1 or 2.  
Coefficient for Oscillator m (OmC[15:0] m=1, and 2, refer to Tone Generation see section for the formula. OS2CL is  
18-bits long word. First 16-bits are on address 0xC8 and 0xC9. The 2 most significant bits are located in register  
address 0xDC (D6 –D7).  
14.18.  
Addr.  
OSCILLATOR 1 AND 2 ACTIVE/ INACTIVE TIME LOW/HIGH  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
OS1ATL  
OS1ATH  
OS2ATL  
OS2ATH  
OS1ITL  
OS1ITH  
OS2ITL  
OS2ITH  
O1ONCn[7:0]  
O1ONCn[15:8]  
O2ONCn[7:0]  
O2ONCn[15:8]  
O1OFF[7:0]  
O1OFF[15:8]  
O2OFF[7:0]  
O2OFF[15:8]  
The letters “Cn” stands for channel number 1 or 2.  
OSCILLATOR 1/2 ACTIVE/  
INACTIVE TIME  
Minimum  
Maximum  
Increment  
O1ONCn  
O2ONCn  
O1OFF  
Active/Inactive  
Timer Oscillator m  
Tone  
Generation  
Timer is disabled by  
programming zero  
0 s  
0 s  
8 s  
125 us  
125 us  
O2OFF  
Active/Inactive  
Timer Oscillator 2  
Timer is disabled by  
programming zero  
O2ONCn  
O2OFF  
Ringing only  
8 s  
Revision 1.3  
Page 133 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.19.  
GENERAL TONE GENERATION  
14.19.1. RING OFFSET  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0xDC  
ROFFS  
O2CCn[1:0]  
ROSCn[5:0]  
0x00  
“RES” in the register map means reserved bit(s).  
TIP to RING Offset for Ringing, Sets DC Offset component to the Ringing Waveform  
RING OFFSET [ROSCn]  
Minimum  
0 V  
Maximum  
47.488 V  
Increment  
1.484 V  
Range  
14.19.2. ADC/DAC DIGITAL GAIN  
Addr.  
0xDD  
0xDE  
0xDF  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
ADCL  
DACL  
DGH  
ADCCn[7:0]  
DACCn[7:0]  
0x00  
0x00  
0x44  
DACCn[11:8]  
ADCCn[11:8]  
DIGITAL GAIN  
Minimum  
Maximum  
ADC = 1024x10 (XdB/20)  
DAC = 1024x10 (XdB/20)  
ADCCn  
DACCn  
Digital Gain  
dB  
6 dB  
ADCCn  
DACCn  
Gain  
dB  
0x000  
0x040  
Off  
-∞  
1 / 8  
-24  
0x100  
0x200  
0x400  
0x7FF  
1 / 4  
1 / 2  
1
-12  
-6  
0
2
6
Revision 1.3  
Page 134 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.19.3. PWM DC/DC FINE TUNING  
Addr.  
0xE0  
Name  
D7  
D6  
RES  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x02  
ST0L0  
ST1L0  
ST2L0  
ST0L1  
ST1L1  
ST2L1  
ST0L0[3:0]  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0x04  
0x06  
0x08  
0x10  
0x19  
RES  
RES  
ST1L0[4:0]  
ST2L0[4:0]  
RES  
ST0L1[3:0]  
RES  
RES  
ST1L1[4:0]  
ST2L1[4:0]  
RES” in the register map means reserved bit(s).  
Name  
Addr.  
Symbol  
STx  
Description  
Unit  
Proportional to master clock period  
x = 0, 1, 2  
L0 - Non-RINGING  
L1 - RINGING  
Stepsize  
Region  
State  
0xE0 – 0xE5  
Ly  
Addr.  
Name  
Recommendation  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0x02  
0x02  
0x02  
0x08  
0x08  
0x08  
ST0L0  
ST1L0  
ST2L0  
ST0L1  
ST1L1  
ST2L1  
14.19.4. PWM DC/DC FINE TUNING SKIP PERIOD  
Addr.  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
Name  
SK0L0  
SK1L0  
SK2L0  
SK0L1  
SK1L1  
SK2L1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x1F  
0x04  
0x02  
0x1F  
0x04  
0x02  
SK0L0[7:0]  
RES  
RES  
SK1L0[5:0]  
RES  
RES  
ST2L0[4:0]  
SK0L1[7:0]  
SK1L1[5:0]  
SK2L1[4:0]  
RES” in the register map means reserved bit(s).  
Addr.  
Name  
Recommendation  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
SK0L0  
SK1L0  
SK2L0  
SK0L1  
SK1L1  
SK2L1  
0x06  
0x06  
0x06  
0x06  
0x06  
0x06  
Addr.  
Name  
Name  
SKx  
Description  
x = 0, 1, 2  
Unit  
# of PWM duty cycle  
Skip Region  
State  
0xE6 – 0xEB  
L0 - Non-RINGING  
L1 - RINGING  
Ly  
Revision 1.3  
Page 135 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.19.5. PWM DC/DC FINE TUNING  
Addr.  
0xEC  
0xED  
0xEE  
0xEF  
Name  
WM0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x08  
0x10  
0x18  
0x53  
WM0[4:0]  
WM1[4:0]  
WM2[4:0]  
RES  
RES  
RES  
WM1  
WM2  
XSTEP  
PWMTC  
XS[3:0]  
RES” in the register map means reserved bit(s). “n” is the number written to the register in decimal  
Name  
Watermark  
Addr.  
Symbol  
WMx  
Description  
x = 0, 1, 2  
Unit  
0xEC – 0xEE  
n x 1.484V  
n x 1.484V  
0xEF  
0xEF  
Fine Adjust Region  
XS  
Time constant of VLoop  
sensing filter for PWM  
PWMTC  
Addr.  
Name  
Recommendation  
0xEC  
0xED  
0xEE  
0xEF  
WM0  
WM1  
WM2  
0x01  
0x02  
0x02  
0x60  
XSTEP  
Revision 1.3  
Page 136 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.19.6. IMPEDANCE MATCH REGISTER  
14.19.6.1.  
IMPEDENCE MATCHING COEFFICIENT RAM  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0xF3  
IMRAM  
IMDATA  
Read and Write location for the Impedance Matching Coefficient RAM. Used in conjunction with Write Sequence  
described in IMCTRL 0xF5.  
14.19.6.2.  
IMPEDANCE MATCHING DELAY COUNT  
Addr.  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0xF4  
IMDEL  
IMHYBDCCn[3:0]  
IMB3PDCCn[3:0]  
Programmed in conjunction with Impedance Matching Coefficient RAM.  
Bit  
Impedance Matching Delay Count  
IMB3PDCCn[3:0]  
Delay count of B3Parallel path - Default no delay  
Delay count of Hybrid2 path - Default no delay  
IMHYBDCCn[7:4]  
14.19.6.3.  
IMPEDANCE MATCHING COEFFICIENT RAM CONTROL  
Addr.  
Name  
IMCTRL  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x10  
0xF5  
RES  
IMRW  
RES  
IMEN  
RES  
IMPM  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
0
2
4
Program Impedance Matching Coefficient RAM  
Complex Impedance Matching enable  
IMPM  
IMEN  
IMRW  
Disable  
Enable  
Enable  
Write  
Disable  
Read  
Read/Write Impedance Matching Coefficient RAM  
Bits 3, 5, 6, and 7 must be set to “0”. For Complex Impedance Matching Cases the appropriate set (288 Bytes)  
should be loaded into the following sequence into the Coefficient RAM.  
Write Step Sequence:  
1. Set IMCTRL:IMRW[4] to 1  
2. Set IMCTRL:IMPM[0] to 1  
3. WRITE all 288 Bytes of Impedance Matching Coefficient set to Register IMRAM (Address 0xF3) in sequence  
4. Set IMCTRL:IMPM[0] to 0  
Read Step Sequence:  
1. Set IMCTRL:IMRW[4] to 0  
2. Set IMCTRL:IMPM[0] to 1  
3. READ all 288 Bytes of Impedance Matching Coefficient set from Register IMRAM (Address 0xF3) in sequence  
4. Set IMCTRL:IMRW[4] to 1 (to Restore Default Value)  
5. Set IMCTRL:IMPM[0] to 0  
Once the of Impedance Matching coefficients are loaded into the RAM, the Complex Impedance is enabled by setting  
IMCTRL:IMEN[2]  
Revision 1.3  
Page 137 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
14.19.6.4.  
Addr. Name D7  
RESERVED REGISTERS  
D6 D5 D4  
D3  
D2  
D1  
D0  
Default  
0x00  
0xF8  
0xF9  
0xFA  
RES  
RES  
RES  
0x00  
0x00  
These three register must be set to 0x00 during a write operation  
14.19.6.5.  
FILTER BYPASS  
D6 D5  
Addr. Name  
0xFB IMEN  
D7  
D4  
D3  
D2  
D1  
D0  
Default  
0x00  
RES  
ADCLPFBYPCn HBLPFBYPCn  
Bit  
HBLPFBYPCn[0]  
PCM Scaling  
Bypass the HB LPF. Default: 0(not bypass)  
ADCLPFBYPCn[1] Bypass the ADC LPF. Default: 0(not bypass)  
Revision 1.3  
Page 138 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
15. TIMING DIAGRAM  
15.1. PCM TIMING DIAGRAM FOR NON-GCI  
TBCK  
TRISE  
TFALL  
BCLK  
TFRS  
TBCKH  
TBCKL  
TFFH  
TFRH  
TFS  
TFSL  
FS  
TFDTD  
TBDTD  
THID  
TBDTD  
TFDTD  
THID  
PCMT  
MSB  
MSB  
LSB  
(MSB not starting at the  
1st BCLK of a Frame)  
(MSB starting at the 1st  
BCLK of a Frame)  
TDRS  
PCMR  
TDRH  
MSB  
LSB  
Figure 37: PCM Timing for Non-GCI  
SYMBOL  
1/TFS  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
FS Frequency  
---  
8
---  
kHz  
sec  
kHz  
ns  
TFSL  
FS Minimum LOW Width  
TBCK  
256  
50  
1/TBCK  
TBCKH  
TBCKL  
TFRH  
BCLK, BCLK Frequency  
---  
---  
---  
---  
---  
---  
8192  
---  
BCLK HIGH Pulse Width  
ns  
BCLK LOW Pulse Width  
50  
---  
ns  
BCLK Falling Edge to FS Rising Edge Hold Time  
FS Rising Edge to BCLK Falling edge Setup Time  
BCLK Falling Edge to FS Falling Edge Hold Time  
20  
---  
TFRS  
ns  
25  
---  
TFFH  
ns  
20  
---  
The later of BCLK Rising Edge or FS Rising Edge to valid  
PCMT Delay Time if MSB Starts from the 1st BCLK of a  
Frame  
TFDTD  
TBDTD  
THID  
ns  
ns  
ns  
---  
---  
10  
---  
---  
---  
20  
20  
50  
BCLK Rising Edge to Valid PCMT Delay Time  
Delay Time from BCLK Falling edge of the LSB or BCLK  
Rising edge following the LSB (Depending on Register TRI)  
to PCMT Output High Impedance  
TDRS  
TDRH  
ns  
ns  
Valid PCMR to BCLK Falling Edge Setup Time  
PCMR Hold Time from BCLK Falling Edge  
25  
20  
---  
---  
---  
---  
Table 8.1: PCM Timing Parameters for Non-GCI  
Revision 1.3  
Page 139 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
15.2. PCM TIMING DIAGRAM FOR GCI  
TBCK  
TRISE  
TFALL  
BCLK  
TFRS  
TFRH  
TBCKH  
TBCKL  
TFFH  
TFS  
TFSL  
FS  
TFDTD  
THID  
TBDTD  
TBDTD  
TFDTD  
THID  
PCMT  
MSB  
MSB  
LSB  
(MSB not starting from  
the 1st BCLK of a Frame)  
(MSB starting from the  
1st BCLK of a Frame)  
TDRS  
PCMR  
TDRH  
Figure 38: GCI PCM Timing  
MSB  
LSB  
SYMBOL  
1/TFS  
1/TBCK  
TBCKH  
TBCKL  
TFRH  
DESCRIPTION  
MIN  
---  
TYP  
8
MAX  
---  
UNIT  
kHz  
kHz  
ns  
FS Frequency  
BCLK Frequency  
512  
50  
---  
---  
---  
---  
---  
---  
8192  
---  
BCLK HIGH Pulse Width  
BCLK LOW Pulse Width  
50  
---  
ns  
BCLK Falling Edge to FS Rising Edge Hold Time  
FS Rising Edge to BCLK Falling edge Setup Time  
BCLK Falling Edge to FS Falling Edge Hold Time  
20  
---  
ns  
TFRS  
50  
---  
ns  
TFFH  
20  
---  
ns  
The later of BCLK or FS Rising Edge to Valid PCMT Delay  
Time if MSB Starts from the 1st BCLK of a Frame  
TFDTD  
TBDTD  
10  
10  
---  
---  
50  
50  
ns  
ns  
BCLK Rising Edge to Valid PCMT Delay Time  
Delay Time from the Second BCLK Falling Edge of the LSB  
or the BCLK Rising Edge following LSB (Depending on  
Register TRI setting) to the PCMT Output High Impedance  
THID  
10  
---  
50  
ns  
TDRS  
TDRH  
Valid PCMR to BCLK Rising Edge Setup Time  
PCMR Hold Time from BCLK Rising Edge  
20  
50  
---  
---  
---  
---  
ns  
ns  
Table 8.2: GCI Timing Parameters  
Revision 1.3  
Page 140 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
SYMBOL  
1/TBCK  
Tjitter  
DESCRIPTION  
MIN  
TYP  
0.256  
0.512  
0.768  
1.000  
1.024  
1.152  
1.536  
1.544(2)  
2.000  
2.048  
4.000  
4.096  
8.000  
8.192  
---  
MAX  
UNIT  
MHz  
ns  
BLCK Clock Frequency  
---  
---  
BLCK Period Jitter Tolerance(1)  
-120  
40%  
120  
TBCKH / TBCK BCLK Duty Cycle for 256 kHz Operation  
50%  
60%  
Minimum Pulse Width HIGH for BCLK(512 kHz or  
Higher)  
TBCKH  
50  
50  
---  
---  
---  
---  
ns  
ns  
Minimum Pulse Width LOW for BCLK (512 kHz or  
Higher)  
TBCKL  
TFRH  
TFRS  
TRISE  
TFALL  
BCLK falling Edge to FS Rising Edge Hold Time  
FS Rising Edge to BCLK Falling edge Setup Time  
Rise Time for All Digital Signals  
50  
50  
---  
---  
---  
---  
---  
---  
---  
---  
25  
25  
ns  
ns  
ns  
ns  
Fall Time for All Digital Signals  
Table 8.3: General PCM Timing Parameters  
1
At 512 kHz BCLK  
2. This clock is not a multiple of 256kHz or 1.000MHz. Therefore, it uses a non-integer divider.  
Revision 1.3  
Page 141 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
15.3. SPI TIMING DIAGRAM  
\CS  
TCSHI  
TCSS  
TCSH  
TSCK  
TRISE  
TFALL  
SCLK  
SDI  
TSCKH  
TSDIH  
TSCKL  
TSDIS  
TSDOD  
TSDOT  
SDO  
TSDOA  
Figure 39: SPI Timing (Non-Daisy Chain Mode)  
SYMBOL  
TSCK  
DESCRIPTION  
MIN  
90  
TYP  
---  
MAX  
---  
UNIT  
ns  
SCLK Cycle Time  
TSCKH  
TSCKL  
TRISE  
TFALL  
TCSS  
SCLK High Pulse Width  
SCLK Low Pulse Width  
45  
45  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
25  
25  
---  
---  
---  
---  
---  
20  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Rise Time for All Digital Signals  
Fall Time for All Digital Signals  
---  
CSb Falling Edge to 1st SCLK Falling Edge Setup Time  
Last SCLK Rising Edge to \CS Rising Edge Hold Time  
CSb High, Delay Time between Chip Selects  
SDI to SCLK Rising Edge Setup Time  
45  
45  
200  
20  
20  
---  
TCSH  
TCSHI  
TSDIS  
TSDIH  
TSDOD  
TSDOT  
TSDOA  
SCLK Rising Edge to SDI Hold Time  
Delay Time from SCLK Falling Edge to SDO Data  
Delay Time from CSb Rising Edge to SDO Tri-State  
Delay Time from CSb Falling Edge to SDO Active  
---  
---  
Table 8.4: General SPI Timing Parameters  
Revision 1.3  
Page 142 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 40: In-band Transmit Frequency Response  
Figure 41: In-band Receive Frequency Response  
Revision 1.3  
Page 143 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 42: Transmit Group Delay Distortion  
Figure 43: Receive Group Delay Distortion  
Revision 1.3  
Page 144 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 44: 2-Wire to PCM Signal to Distortion Mask (A-Law)  
Figure 45: 2-Wire to PCM Signal to Distortion Mask (µ-Law)  
Revision 1.3  
Page 145 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 46: Wideband In-band Transmit Frequency Response  
Figure 47: Wideband Transmit Group Delay Distortion  
Revision 1.3  
Page 146 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
Figure 48: Wideband Receive Group Delay Distortion  
Revision 1.3  
Page 147 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
16. DIGITAL I/O  
16.1.1. µ-LAW ENCODE DECODE CHARACTERISTICS  
Digital Code  
D4  
Normalized Encode  
Decision Levels  
Normalized  
Decode Levels  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Sign  
Chord  
Chord  
Chord  
Step  
Step Step Step  
8159  
7903  
:
4319  
4063  
:
1
1
0
0
0
0
0
0
0
1
0
1
0
1
0
1
8031  
:
4191  
:
2143  
2015  
:
1055  
991  
:
1
1
1
0
0
0
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
2079  
:
1023  
:
495  
:
231  
:
511  
479  
:
239  
223  
:
1
1
0
0
1
1
1
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
99  
:
103  
95  
33  
:
:
35  
31  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
3
1
0
Notes:  
Sign bit = 0 for negative values, sign bit = 1 for positive values  
Revision 1.3  
Page 148 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
16.2. A-LAW ENCODE DECODE CHARACTERISTICS  
Normalized  
Digital Code  
Normalized  
Decode  
Levels  
Encode  
Decision  
Levels  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Sign  
Chord  
Chord  
Chord  
Step  
Step  
Step  
Step  
4096  
3968  
:
1
0
1
0
1
0
1
0
4032  
:
2176  
2048  
:
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
1
2112  
:
1056  
1088  
1024  
:
544  
512  
:
272  
256  
:
136  
128  
:
:
528  
:
1
0
0
0
0
1
0
1
1
1
1
0
1
1
0
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
1
264  
:
132  
:
66  
:
68  
64  
1
1
0
1
0
1
0
1
1
:
2
0
Notes:  
1. Sign bit = 0 for negative values, sign bit = 1 for positive values  
2. Digital code includes inversion of all even number bits  
16.3. µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE  
µ-Law  
A-Law  
Level  
Sign bit  
(D7)  
Chord bits  
(D6,D5,D4)  
Step bits  
(D3,D2,D1,D0)  
Sign bit  
(D7)  
Chord bits  
(D6,D5,D4)  
Step bits  
(D3,D2,D1,D0)  
+ Full Scale  
+ Zero  
1
1
0
0
000  
111  
111  
000  
0000  
1111  
1111  
0000  
1
1
0
0
010  
101  
101  
010  
1010  
0101  
0101  
1010  
- Zero  
- Full Scale  
Revision 1.3  
Page 149 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
16.3.1. µ-LAW / A-LAW CODES FOR 0DBM0 OUTPUT (DIGITAL MILLIWATT)  
µ-Law  
A-Law  
Chord bits  
Sample  
Sign bit  
(D7)  
Chord bits  
(D6,D5,D4)  
Step bits  
(D3,D2,D1,D0)  
Sign bit  
(D7)  
Step bits  
(D3,D2,D1,D0)  
(D6,D5,D4)  
1
2
3
4
5
6
7
8
0
0
0
0
1
1
1
1
001  
000  
000  
001  
001  
000  
000  
001  
1110  
1011  
1011  
1110  
1110  
1011  
1011  
1110  
0
0
0
0
1
1
1
1
011  
0100  
0001  
0001  
0100  
0100  
0001  
0001  
0100  
010  
010  
011  
011  
010  
010  
011  
16.4. 16-BIT LINEAR PCM CODES FOR ZERO AND FULL SCALE  
Level  
Sign bit  
Magnitude Bits  
+ Full Scale  
+ One Step  
Zero  
0
0
0
1
1
111.1111 1111 1111  
000 0000 0000 0001  
000 0000 0000 0000  
111 1111 1111 1111  
000 0000 0000 0000  
- One Step  
- Full Scale  
16.5. 16-BIT LINEAR PCM CODES FOR 1 KHZ DIGITAL MILLIWATT  
Phase  
Sign bit  
Magnitude Bits  
π / 8  
0
0
0
0
1
1
1
1
010 0001 1110 0011  
101 0001 1101 0000  
101 0001 1101 0000  
010 0001 1110 0011  
101 1110 0001 1100  
010 1110 0010 1111  
010 1110 0010 1111  
101 1110 0001 1100  
3 π / 8  
5 π / 8  
7 π / 8  
9 π / 8  
11 π / 8  
13 π / 8  
15 π / 8  
Revision 1.3  
Page 150 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
17. TYPICAL APPLICATION CIRCUITS  
17.1. N682386/7  
Figure 49: Typical Application Circuit for N682386/7  
Note: Please contact local sales/FAEs for latest reference design package  
Revision 1.3  
Page 151 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
17.2. LINE DRIVER  
17.2.1. N681622 SUBSCRIBER LINE FEED CIRCUIT (SLFC) FOR CHANNEL 1  
Figure 50: N681622 Subscriber Line Feed Circuit (SLFC) for Channel 1  
Note: Please contact local sales/FAEs for latest reference design package  
Revision 1.3  
Page 152 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
17.2.2. DISCRETE LINE FEED CIRCUIT FOR CHANNEL 1  
Figure 51: Line-driver circuit for Channel1  
Note: Please contact local sales/FAEs for latest reference design package  
Revision 1.3  
Page 153 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
17.3. CHANNEL 1 DC-DC  
Figure 52: Inductor based circuit for Channel 1  
Note: Please contact local sales/FAEs for latest reference design package  
Revision 1.3  
Page 154 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
17.4. TRIPLE BATTERY SWITCH APPLICATION  
2
3
2
4
3
2
1
4
2
3
2
3
Figure 53: Triple Battery based Switch 1  
Note: Please contact local sales/FAEs for latest reference design package  
Revision 1.3  
Page 155 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
18. PACKAGE SPECIFICATION  
18.1. TQFP64L (10X10X1.4MM FOOTPRINT 2.0MM)  
Revision 1.3  
Page 156 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
18.2. QFN 64L 9X9 MM^2, THICKNESS :1.0 MM (PUNCH TYPE)  
Revision 1.3  
Page 157 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
18.3. QFN 20L 4X4 mm2, PITCH:0.50 mm  
Revision 1.3  
Page 158 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
19. ORDERING INFORMATION  
Nuvoton Part Number Description  
N682386/87_ _  
Product Family  
Package Material:  
Pb-free Package  
G
=
Package Type:  
M
Y
=
=
TQFP-64  
QFN-64  
When ordering N682386/87 series devices, please refer to the following part numbers:  
Temp  
Package  
Material  
Part Number  
Package  
64-TQFP  
Range (oC)  
N682386MG  
N682387MG  
-40 to 85  
-40 to 85  
Pb-Free  
Pb-Free  
N682386YG  
N682387YG  
64-QFN  
N681622_ _  
Package Material:  
Product Family  
G
=
Pb-free Package  
Package Type:  
QFN-20  
Y
=
When ordering N681622 series devices, please refer to the following part numbers:  
Temp  
Package  
Material  
Part Number  
N681622YG  
Package  
20-QFN  
Range (oC)  
-40 to 85  
Pb-Free  
Revision 1.3  
Page 159 of 160  
Sep 2010  
N682386/87 + N681622  
Dual Programmable Extended Codec/SLCC + SLFC  
20. VERSION HISTORY  
VERSION  
1.0  
DATE  
PAGE  
NA  
DESCRIPTION  
March 2010  
151-154  
2, 5, 152  
77, 108  
84  
Reference schematic updates  
1.1  
March 25, 2010  
April 6, 2010  
N681622 pin diagram, description, and Reference Schematic updates for  
pin 13 and pin 14 – not connected on Rev. BB  
Updated Register RTLC(0X46):[7] as RESERVED BIT  
1.2  
Device ID is added to DVID register (0x07) for N682387 (WB) and  
N682386 (NB)  
April 14, 2010  
April 22, 2010  
159  
Package type change: DG to MG (TQFP) on N682386/7  
Update ILIM(0x23):TINS[3] description - Idle State Battery Current Stops  
TIN in idle for lower power  
94  
April 27, 2010  
June 3, 2010  
July 12, 2010  
3, 7, 67, 80 Description changes from N681386 to N682386  
61  
Description updates for 0x6A and 0x6B table location  
1.3  
Sampling rate for tone generation changed to 16KHz for two-pole oscillator  
circuit. Block diagram is updated on Figure 8.  
35, 37  
Sep. 1, 2010  
Sep. 8, 2010  
Description improvement regarding ringing distance over REN (12.1.3.2)  
and Hybrid Balance performance (12.1.6.1.3)  
38, 54  
Important Notice  
Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or  
equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship  
instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for  
other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for  
applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury,  
death or severe property or environmental damage could occur.  
Nuvoton customers using or selling these products for use in such applications do so at their own risk and  
agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.  
Revision 1.3  
Page 160 of 160  
Sep 2010  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY