NANO506LA2AN [NUVOTON]

ARM® Cortex®-M 32-bit Microcontroller;
NANO506LA2AN
型号: NANO506LA2AN
厂家: NUVOTON    NUVOTON
描述:

ARM® Cortex®-M 32-bit Microcontroller

微控制器
文件: 总95页 (文件大小:2021K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nano100(A)  
ARM® Cortex® -M  
32-bit Microcontroller  
NuMicroFamily  
Nano100(A) Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Mar 31, 2015  
Page 1 of 95  
Revision V1.00  
Nano100(A)  
Table of Contents  
1
2
GENERAL DESCRIPTION ..................................................................................................... 7  
FEATURES ............................................................................................................................. 9  
2.1  
2.2  
Nano100 Features Base Line ................................................................................... 9  
Nano120 Features USB Connectivity Line.............................................................. 14  
3
PARTS INFORMATION LIST AND PIN CONFIGURATION ................................................ 19  
3.1  
3.2  
NuMicroNano100 Series Selection Code............................................................... 19  
NuMicroNano100 Products Selection Guide.......................................................... 20  
3.2.1 NuMicroNano100 Base Line Selection Guide.............................................................20  
3.2.2 NuMicroNano120 USB Connectivity Line Selection Guide.........................................20  
Pin Configuration........................................................................................................ 21  
3.3  
3.4  
3.3.1 NuMicroNano100 Pin Diagram...................................................................................21  
3.3.2 NuMicroNano120 Pin Diagram...................................................................................25  
Pin Description ........................................................................................................... 29  
3.4.1 NuMicroNano100 Pin Description...............................................................................29  
3.4.2 NuMicroNano120 Pin Description...............................................................................40  
4
5
BLOCK DIAGRAM ................................................................................................................ 51  
4.1  
4.2  
Nano100 Block Diagram ............................................................................................ 51  
Nano120 Block Diagram ............................................................................................ 52  
FUNCTIONAL DESCRIPTION.............................................................................................. 53  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
ARM® Cortex™-M0 Core ........................................................................................... 53  
5.1.1 Overview ........................................................................................................................53  
5.1.2 Features .........................................................................................................................53  
Memory Organization................................................................................................. 55  
5.2.1 Overview ........................................................................................................................55  
5.2.2 Memory Map ..................................................................................................................55  
Nested Vectored Interrupt Controller (NVIC) ............................................................. 57  
5.3.1 Overview ........................................................................................................................57  
5.3.2 Features .........................................................................................................................57  
System Manager ........................................................................................................ 58  
5.4.1 Overview ........................................................................................................................58  
5.4.2 Features .........................................................................................................................58  
Clock Controller.......................................................................................................... 59  
5.5.1 Overview ........................................................................................................................59  
5.5.2 Features .........................................................................................................................59  
FLASH Memory Controller (FMC).............................................................................. 60  
5.6.1 Overview ........................................................................................................................60  
5.6.2 Features .........................................................................................................................60  
External Bus Interface................................................................................................ 61  
5.7.1 Overview ........................................................................................................................61  
5.7.2 Features .........................................................................................................................61  
General Purpose I/O Controller.................................................................................. 61  
Mar 31, 2015  
Page 2 of 95  
Revision V1.00  
Nano100(A)  
5.8.1 Overview ........................................................................................................................61  
5.8.2 Features .........................................................................................................................61  
DMA Controller........................................................................................................... 62  
5.9  
5.9.1 Overview ........................................................................................................................62  
5.9.2 Features .........................................................................................................................62  
5.10 Timer Controller.......................................................................................................... 63  
5.10.1 Overview ......................................................................................................................63  
5.10.2 Features .......................................................................................................................63  
5.11 Pulse Width Modulation (PWM) ................................................................................. 63  
5.11.1 Overview ......................................................................................................................63  
5.11.2 Features .......................................................................................................................64  
5.12 Watchdog Timer Controller ........................................................................................ 66  
5.12.1 Overview ......................................................................................................................66  
5.12.2 Features .......................................................................................................................66  
5.13 RTC ............................................................................................................................ 67  
5.13.1 Overview ......................................................................................................................67  
5.13.2 Features .......................................................................................................................67  
5.14 UART Controller......................................................................................................... 68  
5.14.1 Overview ......................................................................................................................68  
5.14.2 Features .......................................................................................................................68  
5.15 Smart Card Host Interface (SC) ................................................................................. 69  
5.15.1 Overview ......................................................................................................................69  
5.15.2 Features .......................................................................................................................69  
5.16 I2C............................................................................................................................... 69  
5.16.1 Overview ......................................................................................................................69  
5.16.2 Features .......................................................................................................................71  
5.17 SPI.............................................................................................................................. 72  
5.17.1 Overview ......................................................................................................................72  
5.17.2 Features .......................................................................................................................72  
5.18 I2S............................................................................................................................... 73  
5.18.1 Overview ......................................................................................................................73  
5.18.2 Features .......................................................................................................................73  
5.19 USB ............................................................................................................................ 74  
5.19.1 Overview ......................................................................................................................74  
5.19.2 Features .......................................................................................................................74  
5.20 Analog to Digital Converter (ADC) ............................................................................. 75  
5.20.1 Overview ......................................................................................................................75  
5.20.2 Features .......................................................................................................................75  
APPLICATION CIRCUIT....................................................................................................... 76  
ELECTRICAL CHARACTERISTIC ....................................................................................... 77  
6
7
7.1  
7.2  
7.3  
Absolute Maximum Ratings........................................................................................ 77  
DC Electrical Characteristics...................................................................................... 78  
AC Electrical Characteristics...................................................................................... 82  
Mar 31, 2015  
Page 3 of 95  
Revision V1.00  
Nano100(A)  
7.3.1 External Input Clock .......................................................................................................82  
7.3.2 External 4~24 MHz XTAL Oscillator...............................................................................82  
7.3.3 External 32.768 kHz Crystal...........................................................................................83  
7.3.4 Internal 12 MHz Oscillator ..............................................................................................83  
7.3.5 Internal 10 kHz Oscillator ...............................................................................................83  
Analog Characteristics ............................................................................................... 83  
7.4  
7.4.1 12-bit ADC......................................................................................................................83  
7.4.2 Brown-out Detector.........................................................................................................84  
7.4.3 Power-On Reset.............................................................................................................85  
7.4.4 Temperature Sensor.......................................................................................................85  
7.4.5 Internal Voltage Reference.............................................................................................85  
7.4.6 USB PHY Specifications.................................................................................................85  
8
9
PACKAGE DIMENSIONS..................................................................................................... 87  
8.1  
8.2  
8.3  
8.4  
LQFP100 (14x14x1.4 mm footprint 2.0 mm).............................................................. 87  
LQFP64 (7x7x1.4 mm footprint 2.0 mm).................................................................... 88  
LQFP48 (7x7x1.4 mm footprint 2.0 mm).................................................................... 90  
QFN33 (5x5x0.8 mm footprint 0.5 mm)...................................................................... 91  
REVISION HISTORY............................................................................................................ 93  
Mar 31, 2015  
Page 4 of 95  
Revision V1.00  
Nano100(A)  
List of Figures  
Figure 3-1 NuMicroTM Nano100 Series Selection Code................................................................. 19  
Figure 3-2 NuMicroTM Nano100 LQFP 100-pin Assignment.......................................................... 21  
Figure 3-3 NuMicroTM Nano100 LQFP 64-pin Assignment............................................................ 22  
Figure 3-4 NuMicroTM Nano100 LQFP 48-pin Assignment ............................................................ 23  
Figure 3-5 NuMicroTM Nano100 QFN 33-pin Assignment.............................................................. 24  
Figure 3-6 NuMicroTM Nano120 LQFP 100-pin Assignment .......................................................... 25  
Figure 3-7 NuMicroTM Nano120 LQFP 64-pin Assignment ............................................................ 26  
Figure 3-8 NuMicroTM Nano120 LQFP 48-pin Assignment ............................................................ 27  
Figure 3-9 NuMicroTM Nano120 QFN 33-pin Assignment.............................................................. 28  
Figure 4-1 NuMicroTM Nano100 Block Diagram ............................................................................. 51  
Figure 4-2 NuMicroTM Nano120 Block Diagram ............................................................................. 52  
Figure 6-1 M0 Functional Block ..................................................................................................... 53  
Figure 8-1 Typical Crystal Application Circuit ................................................................................ 83  
Mar 31, 2015  
Page 5 of 95  
Revision V1.00  
Nano100(A)  
List of Tables  
Table 1-1 Connectivity Support Table.............................................................................................. 8  
Table 3-1 Nano100 Base Line Selection Table ............................................................................. 20  
Table 3-2 Nano120 USB Connectivity Line Selection Table ......................................................... 20  
Mar 31, 2015  
Page 6 of 95  
Revision V1.00  
Nano100(A)  
1
GENERAL DESCRIPTION  
The Nano100 series ultra-low power 32-bit microcontroller is embedded with ARM® Cortex™-M0  
core operated at a wide voltage range from 1.8V to 3.6V and runs up to 32 MHz frequency with  
32K/64K-byte embedded Flash and 8K/16K-byte embedded SRAM. Integrating USB 2.0 full-  
speed function, RTC, 12-bit SAR ADC, and provides high performance connectivity peripheral  
interfaces such as UART, SPI, I2C, I2S, GPIOs, EBI (External Bus Interface) for external  
memory-mapped device access and ISO-7816-3 for Smart card, the Nano100 series supports  
Brown-Out Detector, Power-down mode with RAM retention and fast wake-up via many  
peripheral interfaces.  
The Nano100 series provides low power voltage, low power consumption, low standby current,  
high integration peripherals, high-efficiency operation, fast wake-up function and lowest cost 32-  
bit microcontrollers. The Nano100 series is suitable for a wide range of battery device applications  
such as:  
Portable Data Collector  
Portable Medical Monitor  
Portable RFID Reader  
Portable Barcode Scanner  
Security Alarm System  
System Supervisors  
Power Metering  
USB Accessories  
Smart Card Reader  
Wireless Game Control Device  
IPTV Remote Smart Keyboard  
Wireless Sensors Node Device (WSN)  
Wireless RF4CE Remote Control  
Wireless Audio  
Wireless Automatic Meter Reader (AMR)  
Electronic Toll Collection(ETC)  
The Nano100 Base line, an ultra-low power 32-bit microcontroller with the embedded ARM®  
Cortex™-M0 core, operates at wide voltage range from 1.8V to 3.6V and runs up to 32 MHz  
frequency with 32K/64K bytes embedded flash and 8K/16K bytes embedded SRAM. It integrates  
RTC, 8- channels 12-bit SAR ADC, and provides high performance connectivity peripheral  
interfaces such as 2xUART, 3xSPI, 2xI2C, I2S, GPIOs, EBI (External Bus Interface) for external  
memory-mapped device access and 2xISO-7816-3 for Smart card. The Nano100 Base line  
supports Brown-Out Detector, Power-down mode with RAM retention and fast wake-up via many  
peripheral interfaces.  
The Nano120 USB Connectivity line, an ultra-low power 32-bit microcontroller with the embedded  
ARM® Cortex™-M0 core, operates at wide voltage range from 1.8V to 3.6V and runs up to 32  
MHz frequency with 32K/64K bytes embedded flash and 8K/16K bytes embedded SRAM. It  
integrates USB 2.0 full-speed device function, RTC, 8-channels 12-bit SAR ADC, and provides  
high performance connectivity peripheral interfaces such as 2xUART, 3xSPI, 2xI2C, I2S, GPIOs,  
EBI (External Bus Interface) for external memory-mapped device access and 2xISO-7816-3 for  
Smart card. The Nano120 USB Connectivity line supports Brown-Out Detector, Power-down  
mode with RAM retention and fast wake-up via many peripheral interfaces.  
Mar 31, 2015  
Page 7 of 95  
Revision V1.00  
Nano100(A)  
Product Line  
Nano100  
UART  
SPI  
I2C  
I2S  
USB  
ADC  
RTC  
EBI  
SC  
Timer  
Nano120  
Table 1-1 Connectivity Support Table  
Mar 31, 2015  
Page 8 of 95  
Revision V1.00  
Nano100(A)  
2
FEATURES  
The equipped features are dependent on the product line and their sub products.  
2.1 Nano100 Features Base Line  
Core  
ARM® Cortex™-M0 core running up to 32 MHz  
One 24-bit system timer  
Supports Low Power Sleep mode  
Single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Serial Wire Debug supports with 2 watchpoints/4 breakpoints  
Brown-out  
Built-in 2.5V/2.0V/1.7V BOD for wide operating voltage range operation  
Flash EPROM Memory  
Runs up to 32 MHz with zero wait state for discontinuous address read access  
64K/32K bytes application program memory (APROM)  
4 KB in system programming (ISP) loader program memory (LDROM)  
Programmable data flash start address and memory size with 512 bytes page  
erase unit  
In System Program (ISP)/In Application Program (IAP) to update on-chip Flash  
EPROM  
SRAM Memory  
16K/8K bytes embedded SRAM  
Supports DMA mode  
DMA: Supports 5 channels: one VDMA channel and 4 PDMA channels  
VDMA  
Memory-to-memory transfer  
Supports block transfer with stride  
Supports word/half-word/byte boundary address  
Supports address direction: increment and decrement  
PDMA  
Peripheral-to-memory, memory-to-peripheral, and memory-to-memory  
transfer  
Supports word boundary address  
Supports word alignment transfer length in memory-to-memory mode  
Supports word/half-word/byte alignment transfer length in peripheral-to-  
memory and memory-to-peripheral mode  
Supports word/half-word/byte transfer data width from/to peripheral  
Supports address direction: increment, fixed, and wrap around  
Mar 31, 2015  
Page 9 of 95  
Revision V1.00  
Nano100(A)  
Clock Control  
Flexible selection for different applications  
Built-in 12 MHz OSC (Trimmed to 1%) for system operation, and low power 10  
kHz OSC for watchdog and wake-up idle operation  
Low power 10 kHz OSC for watchdog and low power system operation  
Supports one PLL, up to 96 MHz, for high performance system operation (32  
MHz) and USB application (48 MHz).  
External 4~24 MHz crystal input for precise timing operation  
External 32.768 kHz crystal input for RTC function and low power system  
operation  
GPIO  
Three I/O modes:  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
All inputs with Schmitt trigger  
I/O pin configured as interrupt source with edge/level setting  
Supports High Driver and High Sink I/O mode  
Supports input 5V tolerance (except ADC shared pins PC.6 and PC.7)  
Timer  
Supports 4 sets of 32-bit timers, each with 24-bit up-counting timer and one 8-bit  
pre-scale counter  
Independent Clock Source for each timer  
Provides one-shot, output toggle and periodic operation modes  
Internal trigger event to ADC module  
Supports PDMA mode  
Timer can wake system up from power down or idle mode  
Watchdog Timer  
Clock Source from LIRC (Internal 10 kHz Low Speed Oscillator Clock)  
Selectable time out period from 1.6 ms ~ 26 sec (depending on clock source)  
Interrupt or reset selectable when watchdog time-out  
Wake system up from Power-down or Idle mode  
RTC  
Supports software compensation by setting frequency compensate register  
(FCR)  
Supports RTC counter (second, minute, hour) and calendar counter (day,  
month, year)  
Supports Alarm registers (second, minute, hour, day, month, year)  
Selectable 12-hour or 24-hour mode  
Mar 31, 2015  
Page 10 of 95  
Revision V1.00  
Nano100(A)  
Automatic leap year recognition  
Supports periodic time tick interrupt with 8 periodic options 1/128, 1/64, 1/32,  
1/16, 1/8, 1/4, 1/2 and 1 second  
Wake system up from Power-down or Idle mode  
Supports 80 bytes spare registers and a snoop pin to clear the content of these  
spare registers  
PWM/Capture  
Supports 2 PWM modules, each has two 16-bit PWM generators  
Provides eight PWM outputs or four complementary paired PWM outputs  
Each PWM generator equipped with one clock divider, one 8-bit prescaler, two  
clock selectors, and one Dead-zone generator for complementary paired PWM  
Up to eight 16-bit digital Capture timers (shared with PWM timers), and provides  
eight capture inputs (rising, falling, or both)  
Supports One-shot and Continuous mode  
Supports Capture interrupt  
UART  
Up to two 16-byte FIFO UART controllers  
SPI  
UART ports with flow control (TX, RX, CTSn and RTSn)  
Supports IrDA (SIR) function  
Supports LIN function  
Supports RS-485 9 bit mode and direction control.  
Programmable baud rate generator  
Supports PDMA mode  
Wake system up from Power-down or Idle mode  
Up to three sets of SPI controller  
Master up to 16 MHz, and Slave up to 6 MHz  
Supports SPI/MICROWIRE Master/Slave mode  
Full duplex synchronous serial data transfer  
Variable length of transfer data from 4 to 32 bits  
MSB or LSB first data transfer  
RX and TX on both rising or falling edge of serial clock independently  
Two slave/device select lines when SPI controller is used as the master, and 1  
slave/device select line when SPI controller is used as the slave  
Supports byte suspend mode in 32-bit transmission  
Supports two channel PDMA requests, one for transmit and another for receive  
Supports three wire mode, no slave select signal, bi-direction interface  
Wake system up from Power-down or Idle mode  
Mar 31, 2015  
Page 11 of 95  
Revision V1.00  
Nano100(A)  
I2C  
Up to two sets of I2C device  
Master/Slave up to 1 Mbit/s  
Bi-directional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of  
serial data on the bus  
Serial clock synchronization allows devices with different bit rates to  
communicate via one serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and  
resume serial transfer  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs  
up and timer-out counter overflows  
I2S  
Programmable clocks allowing for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition (four slave addresses with mask option)  
Interface with external audio CODEC  
Operated as either Master or Slave mode  
Capable of handling 8, 16, 24 and 32 bit word sizes  
Supports Mono and stereo audio data  
Supports I2S and MSB justified data format  
Provides two 8 word FIFO data buffers: one for transmitting and the other for  
receiving  
Generates interrupt requests when buffer levels cross a programmable  
boundary  
Supports two PDMA requests: one for transmitting and the other for receiving  
ADC  
12-bit SAR ADC  
Up to 8-ch single-ended input from external pin  
One internal channel from AVDD, AVSS, Temp sensor, and internal reference  
voltage  
Supports Single Scan, Single Cycle Scan, and Continuous Scan mode  
Each channel with individual result register  
Only scan on enabled channels  
Threshold voltage detection (comparator function)  
Conversion started by software programming or external input  
Supports PDMA mode  
Supports up to four timer time-out events (TRM0_CH0, TMR0_CH1, TMR1_CH0  
Mar 31, 2015  
Page 12 of 95  
Revision V1.00  
Nano100(A)  
and TMR1_CH1) to enable ADC  
SmartCard (SC)  
Compliant to ISO-7816-3 T=0, T=1  
Supports up to two ISO-7816-3 ports  
Separates receive/transmit 4 bytes entry FIFO for data payloads  
Programmable transmission clock frequency  
Programmable receiver buffer trigger level  
Programmable guard time selection (11 ETU ~ 267 ETU)  
A 24-bit and two 8 bit time out counters for Answer to Request (ATR) and  
waiting times processing  
Supports auto inverse convention function  
Supports transmitter and receiver error retry and error limit function  
Supports hardware activation sequence process  
Supports hardware warm reset sequence process  
Supports hardware deactivation sequence process  
Supports hardware auto deactivation sequence when detect the card is removal  
EBI (External bus interface) support  
Accessible space: 64 KB in 8-bit mode or 128 KB in 16-bit mode  
Supports 8bit/16bit data width  
Supports byte write in 16-bit Data Width mode  
One built-in temperature sensor with 1resolution  
96-bit unique ID  
Operating Temperature: -40~85℃  
Packages:  
All Green package (RoHS)  
LQFP 100-pin(14x14) / 64-pin(7x7) / 48-pin(7x7) / QFN 33-pin(5x5)  
Mar 31, 2015  
Page 13 of 95  
Revision V1.00  
Nano100(A)  
2.2 Nano120 Features USB Connectivity Line  
Core  
ARM® Cortex™-M0 core running up to 32 MHz  
One 24-bit system timer  
Supports Low Power Sleep mode  
Single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Serial Wire Debug supports with 2 watchpoints/4 breakpoints  
Brown-out  
Built-in 2.5V/2.0V/1.7V BOD for wide operating voltage range operation  
Flash EPROM Memory  
Runs up to 32 MHz with zero wait state for discontinuous address read access.  
64K/32K bytes application program memory (APROM)  
4KB in system programming (ISP) loader program memory (LDROM)  
Programmable data flash start address and memory size with 512 bytes page  
erase unit  
In System Program (ISP)/In Application Program (IAP) to update on chip Flash  
EPROM  
SRAM Memory  
16K/8K bytes embedded SRAM  
Support PDMA mode  
DMA: Support 5 channels: one VDMA channel and 4 PDMA channels  
VDMA  
Memory-to-memory transfer  
Support block transfer with stride  
Support word/half-word/byte boundary address  
Support address direction: increment and decrement  
PDMA  
Peripheral-to-memory, memory-to-peripheral, and memory-to-memory  
transfer  
Support word boundary address  
Support word alignment transfer length in memory-to-memory mode  
Support word/half-word/byte alignment transfer length in peripheral-to-  
memory and memory-to-peripheral mode  
Support word/half-word/byte transfer data width from/to peripheral  
Support address: increment, fixed, and wrap around  
Clock Control  
Flexible selection for different applications  
Mar 31, 2015  
Page 14 of 95  
Revision V1.00  
Nano100(A)  
Built-in 12MHz OSC (Trimmed to 1%) for system operation, and low power 10  
kHz OSC for watchdog and wake-up operation  
Low power 10 kHz OSC for watchdog and low power system operation  
Support one PLL, up to 96 MHz, for high performance system operation  
(32MHz) and USB application (48MHz).  
External 4~24 MHz crystal input for precise timing operation  
External 32.768 kHz crystal input for RTC function and low power system  
operation  
GPIO  
Three I/O modes:  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
All inputs with Schmitt trigger  
I/O pin can be configured as interrupt source with edge/level setting  
High driver and high sink IO mode support  
Support input 5V tolerance (except ADC shared pins PC.6 and PC.7)  
Timer  
Support 4 sets of 32-bit timers, each with 24-bit up-timer and one 8-bit pre-scale  
counter  
Independent Clock Source for each timer  
Provides one-shot, output toggle and periodic operation modes  
Internal trigger event to ADC module  
Support PDMA mode  
Wake system up from Power-down or Idle mode  
Watchdog Timer  
Clock Source from LIRC. (Internal 10 kHz Low Speed Oscillator Clock)  
Selectable time out period from 1.6 ms ~ 26 sec (depending on clock source)  
Interrupt or reset selectable on watchdog time-out  
Wake system up from Power-down or Idle mode  
RTC  
Supports software compensation by setting frequency compensate register  
(FCR)  
Supports RTC counter (second, minute, hour) and calendar counter (day,  
month, year)  
Supports Alarm registers (second, minute, hour, day, month, year)  
Selectable 12-hour or 24-hour mode  
Automatic leap year recognition  
Supports periodic time tick interrupt with 8 periodic options 1/128, 1/64, 1/32,  
Mar 31, 2015  
Page 15 of 95  
Revision V1.00  
Nano100(A)  
1/16, 1/8, 1/4, 1/2 and 1 second  
Wake system up from Power-down or Idle mode  
Support 80 bytes spare registers and a snoop pin to clear the content of these  
spare registers  
PWM/Capture  
Support 2 PWM module, each has two 16-bit PWM generators  
Provide eight PWM outputs or four complementary paired PWM outputs  
Each PWM generator equipped with one clock divider, one 8-bit prescaler , two  
clock selectors, and one Dead-Zone generator for complementary paired PWM  
Up to eight 16-bit digital Capture timers (shared with PWM timers) provide eight  
rising/falling capture inputs  
Support one shot and continuous mode  
Support Capture interrupt  
UART  
Up to two 16-byte FIFO UART controllers  
SPI  
UART ports with flow control (TX, RX, CTSn and RTSn)  
Supports IrDA (SIR) function  
Supports LIN function  
Supports RS-485 9 bit mode and direction control. (Low Density Only)  
Programmable baud rate generator  
Supports PDMA mode  
Wake system up from Power-down or Idle mode  
Up to three sets of SPI controller  
Master up to 16 MHz, and Slave up to 6 MHz  
Supports SPI/MICROWIRE Master/Slave mode  
Full duplex synchronous serial data transfer  
Variable length of transfer data from 4 to 32 bits  
MSB or LSB first data transfer  
RX and TX on both rising or falling edge of serial clock independently  
Two slave/device select lines when SPI controller is as the master, and 1  
slave/device select line when SPI controller is as the slave  
Supports byte suspend mode in 32-bit transmission  
Supports two channel PDMA requests, one for transmit and another for receive  
Supports three wire, no slave select signal, bi-direction interface  
Wake system up from Power-down or Idle mode  
I2C  
Up to two sets of I2C device  
Mar 31, 2015  
Page 16 of 95  
Revision V1.00  
Nano100(A)  
Master/Slave up to 1Mbit/s  
Bi-directional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption  
of serial data on the bus  
Serial clock synchronization allowing devices with different bit rates to  
communicate via one serial bus  
Serial clock synchronization used as a handshake mechanism to suspend  
and resume serial transfer  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus  
hangs up and timer-out counter overflows  
Programmable clocks allow versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition (four slave addresses with mask  
option)  
I2S  
Interface with external audio CODEC  
Operated as either Master or Slave mode  
Capable of handling 8, 16, 24 and 32 bit word sizes  
Supports Mono and stereo audio data  
Supports I2S and MSB justified data format  
Provides two 8 word FIFO data buffers: one for transmitting and the other for  
receiving  
Generates interrupt requests when buffer levels cross a programmable  
boundary  
Supports two PDMA requests: one for transmitting and the other for receiving  
ADC  
12-bit SAR ADC with 800K SPS  
Up to 8-ch single-end input from external pin.  
One internal channel from AVDD, AVSS, Temp sensor, and internal reference  
voltage.  
Supports single scan, single cycle scan, and continuous scan modes  
Each channel with individual result register  
Only scan on enabled channels  
Threshold voltage detection (comparator function)  
Conversion start by software programming or external input  
Supports PDMA mode  
Supports up to four timer time-out events (TMR0, TMR1, TMR2, TMR3) to  
enable ADC  
SmartCard (SC)  
Mar 31, 2015  
Page 17 of 95  
Revision V1.00  
Nano100(A)  
Compliant to ISO-7816-3 T=0, T=1  
Supports up to two ISO-7816-3 ports  
Separates receive / transmit 4 bytes entry FIFO for data payloads  
Programmable transmission clock frequency  
Programmable receiver buffer trigger level  
Programmable guard time selection (11 ETU ~ 267 ETU)  
A 24-bit and two 8 bit time out counter for Answer to Request (ATR) and waiting  
times processing  
Supports auto inverse convention function  
Supports transmitter and receiver error retry and error limit function  
Supports hardware activation sequence process  
Supports hardware warm reset sequence process  
Supports hardware deactivation sequence process  
Supports hardware auto deactivation sequence when detect the card is removal  
USB 2.0 Full-Speed Device  
One set of USB 2.0 FS Device 12Mbps  
On-chip USB Transceiver  
Provides 1 interrupt source with 4 interrupt events  
Supports Control, Bulk In/Out, Interrupt and Isochronous transfers  
Auto suspend function when no bus signaling for 3 ms  
Provide 6 programmable endpoints  
Include 512 Bytes internal SRAM as USB buffer  
Provide remote wake-up capability  
One built-in temperature sensor with 1resolution  
96-bit unique ID  
Operating Temperature: -40~85℃  
Packages:  
All Green package (RoHS)  
LQFP 100-pin(14x14) / 64-pin(7x7) / 48-pin(7x7) / QFN 33-pin(5x5)  
Mar 31, 2015  
Page 18 of 95  
Revision V1.00  
Nano100(A)  
3
PARTS INFORMATION LIST AND PIN CONFIGURATION  
3.1 NuMicroNano100 Series Selection Code  
Figure 3-1 NuMicroTM Nano100 Series Selection Code  
Mar 31, 2015  
Page 19 of 95  
Revision V1.00  
Nano100(A)  
3.2 NuMicroNano100 Products Selection Guide  
3.2.1 NuMicroNano100 Base Line Selection Guide  
ISP  
ROM  
(Kbytes)  
IRC  
ICP  
ISP  
IAP  
Connectivity  
Flash  
(Kbytes) (Kbytes)  
SRAM  
Timer  
(32-bit)  
12-bit  
ADC  
ISO-  
7816-3  
I2S  
Part No.  
Data Flash  
I/O  
PWM  
RTC  
EBI  
10KHz PDMA  
12MHz  
Package  
I2C  
2
UART SPI  
USB  
NANO100ZC2AN  
NANO100ZD2AN  
NANO100ZD3AN  
NANO100LC2AN  
NANO100LD2AN  
NANO100LD3AN  
NANO100SD2AN  
NANO100SD3AN  
32K  
64K  
64K  
32K  
64K  
64K  
64K  
64K  
8K  
8K  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
up to 26  
up to 26  
up to 26  
up to 37  
up to 37  
up to 37  
up to 51  
up to 51  
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
-
-
-
-
-
-
-
-
-
-
2
2
2
4
4
4
8
8
5
5
5
8
8
8
8
8
V
V
V
V
V
V
V
V
-
-
V
V
V
V
V
V
V
V
4
4
4
4
4
4
4
4
-
-
V
V
V
V
V
V
V
V
QFN33  
QFN33  
2
16K  
8K  
2
-
-
-
QFN33  
2
1
1
1
1
1
-
2
2
2
2
2
LQFP48  
LQFP48  
LQFP48  
LQFP64*  
LQFP64*  
8K  
2
-
16K  
8K  
2
-
2
V
V
16K  
2
QFN33: 5x5mm ; LQFP48: 7x7mm ; LQFP64*: 7x7mm  
Table 3-1 Nano100 Base Line Selection Table  
3.2.2 NuMicroNano120 USB Connectivity Line Selection Guide  
ISP  
ROM  
(Kbytes)  
IRC  
ICP  
ISP  
IAP  
Connectivity  
Flash  
(Kbytes) (Kbytes)  
SRAM  
Timer  
(32-bit)  
12-bit  
ADC  
ISO-  
7816-3  
I2S  
Part No.  
Data Flash  
I/O  
PWM  
RTC  
EBI  
10KHz PDMA  
12MHz  
Package  
I2C  
2
UART SPI  
USB  
NANO120ZC2AN  
NANO120ZD2AN  
NANO120ZD3AN  
NANO120LC2AN  
NANO120LD2AN  
NANO120LD3AN  
NANO120SD2AN  
NANO120SD3AN  
32K  
64K  
64K  
32K  
64K  
64K  
64K  
64K  
8K  
8K  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
Configurable  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
up to 22  
up to 22  
up to 22  
up to 33  
up to 33  
up to 33  
up to 47  
up to 47  
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
1
1
1
1
1
1
1
1
-
-
2
2
2
4
4
4
8
8
5
5
5
8
8
8
8
8
-
-
-
-
V
V
V
V
V
V
V
V
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
V
V
V
V
V
V
V
V
QFN33  
QFN33  
2
16K  
8K  
2
-
-
-
QFN33  
2
1
1
1
1
1
V
V
V
V
V
-
LQFP48  
LQFP48  
LQFP48  
LQFP64*  
LQFP64*  
8K  
2
-
16K  
8K  
2
-
2
V
V
16K  
2
QFN33: 5x5mm ; LQFP48: 7x7mm ; LQFP64*: 7x7mm  
Table 3-2 Nano120 USB Connectivity Line Selection Table  
Mar 31, 2015  
Page 20 of 95  
Revision V1.00  
Nano100(A)  
3.3 Pin Configuration  
3.3.1 NuMicroNano100 Pin Diagram  
3.3.1.1 NuMicroNano100 LQFP 100-pin  
PA.5  
PA.6  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
PB.9  
PB.10  
PB.11  
PE.5  
PE.6  
PC.0  
PC.1  
PC.2  
PC.3  
PC.4  
PC.5  
PD.15  
PD.14  
PD.7  
PD.6  
PB.3  
PB.2  
PB.1  
PB.0  
PE.7  
PE.8  
PE.9  
PE.10  
PE.11  
PE.12  
PA.7  
Vref  
AVDD  
PD.0  
PD.1  
PD.2  
PD.3  
PD.4  
PD.5  
PC.7  
NANO100  
LQFP 100-pin  
PC.6  
PC.15  
PC.14  
PB.15  
XT1_Out  
XT1_In  
/RESET  
VSS  
VDD  
PF.4  
PF.5  
PVSS  
PB.8  
Figure 3-2 NuMicroTM Nano100 LQFP 100-pin Assignment  
Mar 31, 2015  
Page 21 of 95  
Revision V1.00  
Nano100(A)  
3.3.1.2 NuMicroNano100 LQFP 64-pin  
PA.5  
PA.6  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PB.9  
PB.10  
PB.11  
PE.5  
PC.0  
PC.1  
PC.2  
PC.3  
PD.15  
PD.14  
PD.7  
PD.6  
PB.3  
PB.2  
PB.1  
PB.0  
PA.7  
AVDD  
PC.7  
PC.6  
PC.15  
PC.14  
PB.15  
XT1_Out  
XT1_In  
/RESET  
VSS  
NANO100  
LQFP 64-pin  
VDD  
PVSS  
PB.8  
Figure 3-3 NuMicroTM Nano100 LQFP 64-pin Assignment  
Mar 31, 2015  
Page 22 of 95  
Revision V1.00  
Nano100(A)  
3.3.1.3 NuMicroNano100 LQFP 48-pin  
PA.5  
PA.6  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PB.9  
PB.10  
PB.11  
PE.5  
PC.0  
PC.1  
PC.2  
PC.3  
PB.3  
PB.2  
PB.1  
PB.0  
PA.7  
AVDD  
PC.7  
PC.6  
NANO100  
LQFP 48-pin  
PB.15  
XT1_Out  
XT1_In  
/RESET  
PVSS  
PB.8  
Figure 3-4 NuMicroTM Nano100 LQFP 48-pin Assignment  
Mar 31, 2015  
Page 23 of 95  
Revision V1.00  
Nano100(A)  
3.3.1.4 NuMicroNano100 QFN 33-pin  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
PA.5  
AVDD  
PC.0  
PC.1  
PC.2  
PC.3  
PB.3  
PB.2  
PB.1  
PB.0  
PC.6  
NANO100  
QFN 33-pin  
PB.15  
XT1_OUT  
XT1_IN  
/RESET  
X32O  
33 VSS  
9
Figure 3-5 NuMicroTM Nano100 QFN 33-pin Assignment  
Mar 31, 2015  
Page 24 of 95  
Revision V1.00  
Nano100(A)  
3.3.2 NuMicroNano120 Pin Diagram  
3.3.2.1 NuMicroNano120 LQFP 100-pin  
PA.5  
PA.6  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
PB.9  
PB.10  
PB.11  
PE.5  
PA.7  
Vref  
AVDD  
PD.0  
PE.6  
PC.0  
PD.1  
PC.1  
PD.2  
PC.2  
PD.3  
PC.3  
PD.4  
PC.4  
PD.5  
PC.5  
PC.7  
PD.15  
PD.14  
PD.7  
Nano120  
LQFP 100-pin  
PC.6  
PC.15  
PC.14  
PB.15  
XT1_Out  
XT1_In  
/RESET  
VSS  
PD.6  
PB.3  
PB.2  
PB.1  
PB.0  
USB_DP  
USB_DM  
VDD33  
VBUS  
PE.7  
VDD  
PF.4  
PF.5  
PVSS  
PB.8  
PE.8  
Figure 3-6 NuMicroTM Nano120 LQFP 100-pin Assignment  
Mar 31, 2015  
Page 25 of 95  
Revision V1.00  
Nano100(A)  
3.3.2.2 NuMicroNano120 LQFP 64-pin  
PA.5  
PA.6  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PB.9  
PB.10  
PB.11  
PE.5  
PC.0  
PC.1  
PC.2  
PC.3  
PB.3  
PB.2  
PB.1  
PB.0  
D+  
PA.7  
AVDD  
PC.7  
PC.6  
PC.15  
PC.14  
PB.15  
XT1_Out  
XT1_In  
/RESET  
VSS  
NANO120  
LQFP 64-pin  
VDD  
D-  
PVSS  
PB.8  
VDD33  
VBUS  
Figure 3-7 NuMicroTM Nano120 LQFP 64-pin Assignment  
Mar 31, 2015  
Page 26 of 95  
Revision V1.00  
Nano100(A)  
3.3.2.3 NuMicroNano120 LQFP 48-pin  
PC.0  
PC.1  
PC.2  
PC.3  
PB.3  
PB.2  
PB.1  
PB.0  
D+  
PA.5  
PA.6  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PA.7  
AVDD  
PC.7  
PC.6  
NANO120  
LQFP 48-pin  
PB.15  
XT1_Out  
XT1_In  
/RESET  
PVSS  
PB.8  
D-  
VDD33  
VBUS  
Figure 3-8 NuMicroTM Nano120 LQFP 48-pin Assignment  
Mar 31, 2015  
Page 27 of 95  
Revision V1.00  
Nano100(A)  
3.3.2.4 NuMicroNano120 QFN 33-pin  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
PA.5  
AVDD  
PC.0  
PC.1  
PC.2  
PC.3  
D+  
PC.6  
NANO120  
QFN 33-pin  
PB.15  
XT1_OUT  
XT1_IN  
/RESET  
PVSS  
D-  
VDD33  
VBUS  
33 VSS  
9
Figure 3-9 NuMicroTM Nano120 QFN 33-pin Assignment  
Mar 31, 2015  
Page 28 of 95  
Revision V1.00  
Nano100(A)  
3.4 Pin Description  
3.4.1 NuMicroNano100 Pin Description  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
Digital GPIO pin  
1
PE.15  
PE.14  
PE.13  
PB.14  
I/O  
I/O  
I/O  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
2
3
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP48  
package.  
4
1
SPISS21  
nINT0  
O
I
SPI2 2nd slave select pin  
External interrupt0 input pin  
Digital GPIO pin  
PB.13  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
5
6
2
3
AD1  
I/O  
I/O  
I/O  
O
EBI Address/Data bus bit1  
Digital GPIO pin  
PB.12  
AD0  
1
EBI Address/Data bus bit0  
Frequency Divider output pin  
External 32.768 kHz crystal output pin  
External 32.768 kHz crystal input pin  
Digital GPIO pin  
CLKO  
X32O  
7
8
4
5
2
3
32  
1
O
X32I  
I
PA.11  
I2C1SCK  
nRD  
I/O  
I/O  
O
I2C1 clock pin  
9
6
4
2
EBI read enable output pin  
SmartCard0 RST pin  
SC0RST  
MOSI20  
PA.10  
I2C1SDA  
nWR  
O
I/O  
I/O  
I/O  
O
SPI2 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
I2C1 data I/O pin  
10  
11  
7
8
5
6
3
4
EBI write enable output pin  
SmartCard0 Power pin  
SC0PWR  
MISO20  
PA.9  
O
I/O  
I/O  
SPI2 1st MISO (Master In, Slave Out) pin  
Digital GPIO pin  
Mar 31, 2015  
Page 29 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
I2C0SCL  
SC0DAT  
SPICLK2  
PA.8  
I/O  
I/O  
O
I2C0 clock pin  
SmartCard0 DATA pin  
SPI2 serial clock pin  
Digital GPIO pin  
I/O  
I/O  
O
I2C0SDA  
SC0CLK  
SPISS20  
I2C0 data I/O pin  
12  
9
7
5
SmartCard0 clock pin  
SPI2 1st slave select pin  
Digital GPIO pin  
O
13  
14  
15  
16  
17  
PD.8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
PD.9  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
PD.10  
PD.11  
PD.12  
PD.13  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
18  
19  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
PB.4  
I/O  
I
Digital GPIO pin  
10  
8
RX1  
UART1 Data receiver input pin  
SmartCard0 card detect pin  
SPI2 1st slave select pin  
Digital GPIO pin  
SC0CD  
SPISS20  
PB.5  
I
O
I/O  
O
O
20  
21  
11  
12  
9
TX1  
UART1 Data transmitter output pin  
SPI2 serial clock pin  
SPICLK2  
Digital GPIO pin  
PB.6  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
RTSn1  
ALE  
O
O
UART1 Request to Send output pin  
EBI address latch enable output pin  
SPI2 2nd MISO (Master In, Slave Out) pin  
MISO20  
I/O  
Mar 31, 2015  
Page 30 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
Digital GPIO pin  
PB.7  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
22  
13  
CTSn1  
nCS  
I
O
I/O  
P
UART1 Clear to Send input pin  
EBI chip select enable output pin  
SPI2 1st MOSI (Master Out, Slave In) pin  
LDO output pin  
MOSI20  
LDO  
23  
24  
25  
14  
15  
16  
10  
11  
12  
6
7
8
VDD  
P
Power supply for I/O ports and LDO source  
Ground  
VSS  
P
Digital GPIO pin  
26  
27  
28  
29  
30  
31  
PE.12  
PE.11  
PE.10  
PE.9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
PE.8  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Digital GPIO pin  
PE.7  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
PB.0  
I/O  
I
Digital GPIO pin  
32  
33  
17  
18  
13  
14  
9
RX0  
UART0 Data receiver input pin  
SPI1 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
MOSI10  
PB.1  
I/O  
I/O  
O
10  
TX0  
UART0 Data transmitter output pin  
SPI1 1st MISO (Master In, Slave Out) pin  
Digital GPIO pin  
MISO10  
PB.2  
I/O  
I/O  
O
RTSn0  
nWRL  
SPICLK1  
PB.3  
UART0 Request to Send output pin  
EBI low byte write enable output pin  
SPI1 serial clock pin  
34  
35  
19  
20  
15  
16  
11  
12  
O
O
I/O  
Digital GPIO pin  
Mar 31, 2015  
Page 31 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
CTSn0  
nWRH  
I
UART0 Clear to Send input pin  
O
O
EBI high byte write enable output pin  
SPI1 1st slave select pin  
Digital GPIO pin  
SPISS10  
36  
37  
38  
39  
21  
22  
23  
24  
PD.6  
I/O  
I/O  
I/O  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
Digital GPIO pin  
PD.7  
User program must enable pull-up resistor in LQFP48  
package.  
Digital GPIO pin  
PD.14  
PD.15  
User program must enable pull-up resistor in LQFP48  
package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP48  
package.  
Digital GPIO pin  
PC.5  
I/O  
O
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
40  
41  
MOSI01  
PC.4  
SPI0 2nd MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
MISO01  
PC.3  
I
SPI0 2nd MISO (Master In, Slave Out) pin  
Digital GPIO pin  
I/O  
O
MOSI00  
I2SDO  
SPI0 1st MOSI (Master Out, Slave In) pin  
I2S data output  
42  
43  
25  
26  
17  
18  
13  
14  
O
SC1RST  
PC.2  
O
SmartCard1 RST pin  
Digital GPIO pin  
I/O  
I
MISO00  
I2SDI  
SPI0 1st MISO (Master In, Slave Out) pin  
I2S data input  
I
SC1PWR  
PC.1  
O
SmartCard1 PWR pin  
Digital GPIO pin  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPICLK0  
I2SBCLK  
SC1DAT  
PC.0  
SPI0 serial clock pin  
44  
45  
27  
28  
19  
20  
15  
16  
I2S bit clock pin  
SmartCard1 DATA pin  
Digital GPIO pin  
SPISS00  
SPI0 1st slave select pin  
Mar 31, 2015  
Page 32 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
I2SLRCLK  
SC1CLK  
I/O  
O
I2S left right channel clock  
SmartCard1 clock pin  
Digital GPIO pin  
46  
PE.6  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
PE.5  
I/O  
I/O  
I/O  
I/O  
O
Digital GPIO pin  
47  
48  
29  
30  
21  
22  
PWM1CH1  
PB.11  
PWM1 Channel1 output  
Digital GPIO pin  
PWM1CH0  
TMR3  
PWM1 Channel0 output  
Timer3 external counter input  
SPI0 1st MISO (Master In, Slave Out) pin  
Digital GPIO pin  
MISO00  
PB.10  
I/O  
I/O  
I/O  
O
SPISS01  
TMR2  
SPI0 2nd slave select pin  
Timer2 external counter input  
SPI0 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
49  
50  
31  
32  
23  
24  
MOSI00  
PB.9  
I/O  
I/O  
I/O  
O
SPISS11  
TMR1  
SPI1 2nd slave select pin  
Timer1 external counter input  
External interrupt0 input pin  
Digital GPIO pin  
nINT0  
I
PE.4  
I/O  
I/O  
I/O  
I/O  
I/O  
O
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
51  
52  
53  
MOSI00  
PE.3  
SPI0 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
MISO00  
PE.2  
SPI0 1st MISO (Master In, Slave Out) pin  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
SPICLK0  
PE.1  
SPI0 serial clock pin  
Digital GPIO pin  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
54  
PWM1CH3  
SPISS00  
I/O  
O
PWM1 Channel3 output  
SPI0 1st slave select pin  
Mar 31, 2015  
Page 33 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
Digital GPIO pin  
PE.0  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
55  
PWM1CH2  
I2SMCLK  
I/O  
O
PWM1 Channel2 output  
I2S master clock output pin  
Digital GPIO pin  
PC.13  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
MOSI11  
O
O
I
SPI1 2nd MOSI (Master Out, Slave In) pin  
PWM1 Channel1 output  
Snooper pin  
56  
PWM1CH!  
SNOOPER  
nINT0  
I
External interrupt 0  
I2C0SCK  
O
I2C0 clock pin  
Digital GPIO pin  
PC.12  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
MISO11  
PWM1CH0  
nINT0  
I
O
I
SPI1 2nd MISO (Master In, Slave Out) pin  
PWM1 Channel0 output  
External interrupt0 input pin  
I2C0 data I/O pin  
57  
I2C0SDA  
I/O  
Digital GPIO pin  
PC.11  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
58  
59  
33  
34  
MOSI10  
TX1  
O
O
SPI1 1st MOSI (Master Out, Slave In) pin  
UART1 Data transmitter output pin  
Digital GPIO pin  
PC.10  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
MISO10  
RX1  
I
I
SPI1 1st MISO (Master In, Slave Out) pin  
UART1 Data receiver input pin  
Digital GPIO pin  
PC.9  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
60  
61  
35  
36  
SPICLK1  
I2C1SCK  
I/O  
I/O  
SPI1 serial clock pin  
I2C1 clock pin  
Digital GPIO pin  
PC.8  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
Mar 31, 2015  
Page 34 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
SPISS10  
MCLK  
I/O  
O
SPI1 1st slave select pin  
EBI external clock output pin  
I2C1 data I/O pin  
I2C1SDA  
PA.15  
I/O  
I/O  
I/O  
O
Digital GPIO pin  
PWM0CH3  
I2SMCLK  
TC3  
PWM0 Channel3 output  
I2S master clock output pin  
Timer3 capture input  
62  
63  
64  
65  
37  
38  
39  
40  
25  
26  
27  
28  
17  
I
TX0  
O
UART0 Data transmitter output pin  
Digital GPIO pin  
PA.14  
I/O  
I/O  
I/O  
I
PWM0CH2  
AD15  
PWM0 Channel2 output  
EBI Address/Data bus bit15  
Timer 2 capture input  
UART0 Data receiver input pin  
Digital GPIO pin  
18  
TC2  
RX0  
I
PA.13  
I/O  
I/O  
I/O  
I
PWM0CH1  
AD14  
PWM0 Channel1 output  
EBI Address/Data bus bit14  
Timer1 capture input  
TC1  
I2C0SCK  
PA.12  
I/O  
I/O  
I/O  
I/O  
I
I2C0 clock pin  
Digital GPIO pin  
PWM0CH0  
AD13  
PWM0 Channel0 output  
EBI Address/Data bus bit13  
Timer 0 capture input  
I2C0 data I/O pin  
TC0  
I2C0SDA  
ICE_DAT  
PF.0  
I/O  
I/O  
I/O  
I
Serial Wired Debugger Data pin  
Digital GPIO pin  
66  
67  
41  
42  
29  
30  
19  
20  
nINT0  
External interrupt0 input pin  
Serial Wired Debugger Clock pin  
Digital GPIO pin  
ICE_CK  
PF.1  
I
I/O  
O
CLKO  
Frequency Divider output pin  
External interrupt1 input pin  
nINT1  
I
Power supply for I/O ports and LDO source for internal PLL  
and digital circuit  
68  
69  
VDD  
VSS  
P
P
33  
Ground  
Mar 31, 2015  
Page 35 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
70  
71  
43  
44  
31  
32  
AVSS  
PA.0  
AP  
I/O  
AI  
Ground Pin for analog circuit  
Digital GPIO pin  
21  
ADC0  
PA.1  
ADC analog input0  
I/O  
AI  
Digital GPIO pin  
72  
73  
45  
46  
33  
34  
ADC1  
AD12  
PA.2  
ADC analog input1  
I/O  
I/O  
AI  
EBI Address/Data bus bit12  
Digital GPIO pin  
ADC2  
AD11  
RX1  
ADC analog input2  
22  
23  
24  
25  
I/O  
I
EBI Address/Data bus bit11  
UART1 Data receiver input pin  
Digital GPIO pin  
PA.3  
I/O  
AI  
ADC3  
AD10  
TX1  
ADC analog input3  
74  
75  
76  
47  
48  
49  
35  
36  
37  
I/O  
O
EBI Address/Data bus bit10  
UART1 Data transmitter output pin  
Digital GPIO pin  
PA.4  
I/O  
AI  
ADC4  
AD9  
ADC analog input4  
I/O  
I/O  
I/O  
AI  
EBI Address/Data bus bit9  
I2C0 data I/O pin  
I2C0SDA  
PA.5  
Digital GPIO pin  
ADC5  
AD8  
ADC analog input5  
I/O  
I/O  
I/O  
AI  
EBI Address/Data bus bit8  
I2C0 clock pin  
I2C0SCK  
PA.6  
Digital GPIO pin  
ADC6  
AD7  
ADC analog input6  
77  
50  
38  
I/O  
I
EBI Address/Data bus bit7  
Timer3 capture input  
PWM0 Channel3 output  
Digital GPIO pin  
TC3  
PWM0CH3  
PA.7  
O
I/O  
AI  
ADC7  
AD6  
ADC analog input7  
78  
51  
39  
I/O  
I
EBI Address/Data bus bit6  
Timer2 capture input  
PWM0 Channel2 output  
TC2  
PWM0CH2  
O
Mar 31, 2015  
Page 36 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
79  
Vref  
AP  
AP  
Voltage reference input for ADC  
80  
81  
52  
40  
26  
AVDD  
Power supply for internal analog circuit  
Digital GPIO pin  
PD.0  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
RX1  
I
UART1 Data receiver input pin  
SPI2 2nd slave select pin  
SmartCard1 clock pin  
Digital GPIO pin  
SPISS20  
SC1CLK  
I/O  
O
PD.1  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
82  
TX1  
O
UART1 Data transmitter output pin  
SPI2 serial clock pin  
SPICLK2  
SC1DAT  
I/O  
I/O  
SmartCard1 DATA pin.  
Digital GPIO pin  
PD.2  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
RTSn1  
O
I/O  
I
UART1 Request to Send output pin  
I2S left right channel clock  
SPI2 1st MISO (Master In, Slave Out) pin  
SmartCard1 Power pin  
83  
I2SLRCLK  
MISO20  
SC1PWR  
O
Digital GPIO pin  
PD.3  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
CTSn1  
I
UART1 Clear to Send input pin  
I2S bit clock pin  
84  
I2SBCLK  
MOSI20  
SC1RST  
I/O  
O
SPI2 1st MOSI (Master Out, Slave In) pin  
SmartCard1 RST pin  
O
Digital GPIO pin  
PD.4  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
85  
86  
I2SDI  
I
I
I
I2S data input  
MISO21  
SC1CD  
SPI2 2nd MISO (Master In, Slave Out) pin  
SmartCard1 card detect  
Digital GPIO pin  
PD.5  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Mar 31, 2015  
Page 37 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
I2SDO  
MOSI21  
PC.7  
O
O
I2S data output  
SPI2 2nd MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
I/O  
I/O  
I
AD5  
EBI Address/Data bus bit5  
Timer1 capture input  
87  
53  
41  
TC1  
PWM0CH1  
PC.6  
O
PWM1 Channel1 output  
Digital GPIO pin  
I/O  
I/O  
I
AD4  
EBI Address/Data bus bit4  
Timer 0 capture input  
SmartCard1 card detect pin  
PWM0 Channel0 output  
Digital GPIO pin  
88  
54  
42  
27  
TC0  
SC1CD  
PWM0CH0  
I
O
PC.15  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
89  
55  
AD3  
I/O  
I
EBI Address/Data bus bit3  
Timer0 capture input  
PWM1 Channel1 output  
Digital GPIO pin  
TC0  
PWM1CH2  
O
PC.14  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
90  
91  
56  
57  
AD2  
I/O  
I/O  
I/O  
I
EBI Address/Data bus bit2  
PWM1 Channel3 output  
Digital GPIO pin  
PWM1CH3  
PB.15  
43  
28  
nINT1  
External interrupt1 input pin  
Snooper pin  
SNOOPER  
I
92  
93  
58  
59  
44  
45  
29  
30  
XT1_OUT  
XT1_IN  
O
I
External 4~24 MHz crystal output pin  
External 4~24 MHz crystal input pin  
External reset input: Low active, set this pin low reset chip  
to initial state. With internal pull-up.  
94  
95  
96  
60  
61  
62  
46  
31  
nRESET  
VSS  
I
P
P
Ground  
Power supply for I/O ports and LDO source for internal PLL  
and digital circuit  
VDD  
Digital GPIO pin  
97  
PF.4  
I/O  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
Mar 31, 2015  
Page 38 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin Name  
Type Description  
LQFP  
LQFP  
LQFP  
QFN  
100-pin 64-pin  
48-pin  
33-pin  
I2C0SDA  
PF.5  
I/O  
I/O  
I2C0 data I/O pin  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64 and  
LQFP48 package.  
98  
I2C0SCK  
PVSS  
I/O  
I2C0 clock pin  
99  
63  
64  
47  
48  
P
PLL Ground  
PB.8  
I/O  
Digital GPIO pin  
ADCTRG  
TMR0  
I
I
I
ADC external trigger input.  
Timer0 external counter input  
External interrupt0 input pin  
100  
nINT0  
Note: Pin Type: I = Digital Input; O = Digital Output; AI = Analog Input; AO = Analog Output; P = Power Pin; AP = Analog  
Power  
Mar 31, 2015  
Page 39 of 95  
Revision V1.00  
Nano100(A)  
3.4.2 NuMicroNano120 Pin Description  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
Digital GPIO pin  
1
PE.15  
PE.14  
PE.13  
PB.14  
I/O  
I/O  
I/O  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
2
3
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP48  
package.  
4
1
nINT0  
I
External interrupt0 input pin  
SPI2 2nd slave select pin  
Digital GPIO pin  
SPISS21  
O
PB.13  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
5
6
2
3
AD1  
I/O  
I/O  
I/O  
O
EBI Address/Data bus bit1  
Digital GPIO pin  
PB.12  
AD0  
1
EBI Address/Data bus bit0  
Frequency Divider output pin  
External 32.768 kHz crystal output pin  
External 32.768 kHz crystal input pin  
Digital GPIO pin  
CLKO  
X32O  
7
8
4
5
2
3
O
X32I  
I
PA.11  
I2C1SCK  
nRD  
I/O  
I/O  
O
I2C1 clock pin  
9
6
4
1
2
EBI read enable output pin  
SmartCard0 RST pin  
SC0RST  
MOSI20  
PA.10  
I2C1SDA  
nWR  
O
I/O  
I/O  
I/O  
O
SPI2 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
I2C1 data I/O pin  
10  
11  
7
8
5
6
EBI write enable output pin  
SmartCard0 Power pin  
SPI2 1st MISO (Master In, Slave Out) pin  
Digital GPIO pin  
SC0PWR  
MISO20  
PA.9  
O
I/O  
I/O  
I/O  
3
I2C0SCL  
I2C0 clock pin  
Mar 31, 2015  
Page 40 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
SC0DAT  
SPICLK2  
PA.8  
I/O  
O
SmartCard0 DATA pin  
SPI2 serial clock pin  
Digital GPIO pin  
I/O  
I/O  
O
I2C0SDA  
SC0CLK  
SPISS20  
I2C0 data I/O pin  
12  
9
7
4
SmartCard0 clock pin  
SPI2 1st slave select pin  
Digital GPIO pin  
O
13  
14  
15  
16  
17  
18  
PD.8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
PD.9  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
PD.10  
PD.11  
PD.12  
PD.13  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
PB.4  
I/O  
I
Digital GPIO pin  
RX1  
UART1 Data receiver input pin  
SmartCard0 card detect pin  
SPI2 1st slave select pin  
Digital GPIO pin  
19  
20  
10  
11  
8
9
5
SC0CD  
SPISS20  
PB.5  
I
O
I/O  
O
O
TX1  
UART1 Data transmitter output pin  
SPI2 serial clock pin  
SPICLK2  
Digital GPIO pin  
PB.6  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
21  
12  
RTSn1  
ALE  
O
O
UART1 Request to Send output pin  
EBI address latch enable output pin  
SPI2 2nd MISO (Master In, Slave Out) pin  
MISO20  
I/O  
Mar 31, 2015  
Page 41 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
Digital GPIO pin  
PB.7  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
22  
13  
CTSn1  
nCS  
I
O
I/O  
P
UART1 Clear to Send input pin  
EBI chip select enable output pin  
SPI2 1st MOSI (Master Out, Slave In) pin  
LDO output pin  
MOSI20  
LDO  
23  
24  
25  
14  
15  
16  
10  
11  
12  
6
7
8
VDD  
P
Power supply for I/O ports and LDO source  
Ground  
VSS  
P
Digital GPIO pin  
26  
27  
PE.8  
PE.7  
I/O  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
28  
29  
30  
31  
17  
18  
19  
20  
13  
14  
15  
16  
9
VBUS  
VDD33  
D-  
USB POWER SUPPLY: From USB Host or HUB.  
USB Internal Power Regulator Output 3.3V Decoupling Pin  
USB USB Differential Signal D-  
10  
11  
12  
D+  
USB USB Differential Signal D+  
PB.0  
I/O  
I
Digital GPIO pin  
32  
33  
21  
22  
17  
18  
RX0  
UART0 Data receiver input pin  
SPI1 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
MOSI10  
PB.1  
I/O  
I/O  
O
TX0  
UART0 Data transmitter output pin  
SPI1 1st MISO (Master In, Slave Out) pin  
Digital GPIO pin  
MISO10  
PB.2  
I/O  
I/O  
O
RTSn0  
nWRL  
SPICLK1  
PB.3  
UART0 Request to Send output pin  
EBI low byte write enable output pin  
SPI1 serial clock pin  
34  
35  
23  
24  
19  
20  
O
O
I/O  
I
Digital GPIO pin  
CTSn0  
nWRH  
SPISS10  
UART0 Clear to Send input pin  
EBI high byte write enable output pin  
SPI1 1st slave select pin  
O
O
Mar 31, 2015  
Page 42 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
Digital GPIO pin  
36  
PD.6  
I/O  
I/O  
I/O  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
Digital GPIO pin  
37  
38  
39  
PD.7  
User program must enable pull-up resistor in LQFP48  
package.  
Digital GPIO pin  
PD.14  
PD.15  
User program must enable pull-up resistor in LQFP48  
package.  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP48  
package.  
Digital GPIO pin  
PC.5  
I/O  
O
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
40  
41  
MOSI01  
PC.4  
SPI0 2nd MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
MISO01  
PC.3  
I
SPI0 2nd MISO (Master In, Slave Out) pin  
Digital GPIO pin  
I/O  
O
MOSI00  
I2SDO  
SPI0 1st MOSI (Master Out, Slave In) pin  
I2S data output  
42  
43  
44  
45  
25  
26  
27  
28  
21  
22  
23  
24  
13  
14  
O
SC1RST  
PC.2  
O
SmartCard1 RST pin  
I/O  
I
Digital GPIO pin  
MISO00  
I2SDI  
SPI0 1st MISO (Master In, Slave Out) pin  
I2S data input  
I
SC1PWR  
PC.1  
O
SmartCard1 PWR pin  
Digital GPIO pin  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPICLK0  
I2SBCLK  
SC1DAT  
PC.0  
SPI0 serial clock pin  
15  
16  
I2S bit clock pin  
SmartCard1 DATA pin  
Digital GPIO pin  
SPISS00  
I2SLRCLK  
SC1CLK  
SPI0 1st slave select pin  
I2S left right channel clock  
SmartCard1 clock pin  
Mar 31, 2015  
Page 43 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
Digital GPIO pin  
46  
PE.6  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
PE.5  
I/O  
I/O  
I/O  
O
Digital GPIO pin  
47  
48  
29  
30  
PWM1CH1  
PB.11  
PWM1 Channel1 output  
Digital GPIO pin  
TMR3  
Timer3 external counter input  
PWM1 Channel0 output  
SPI0 1st MISO (Master In, Slave Out) pin  
Digital GPIO pin  
PWM1CH0  
MISO00  
PB.10  
I/O  
I/O  
I/O  
I/O  
O
SPISS01  
TMR2  
SPI0 2nd slave select pin  
Timer2 external counter input  
SPI0 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
49  
50  
31  
32  
MOSI00  
PB.9  
I/O  
I/O  
I/O  
O
SPISS11  
TMR1  
SPI1 2nd slave select pin  
Timer1 external counter input  
External interrupt0 input pin  
Digital GPIO pin  
nINT0  
I
PE.4  
I/O  
I/O  
I/O  
I/O  
I/O  
O
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
51  
52  
53  
MOSI00  
PE.3  
SPI0 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
MISO00  
PE.2  
SPI0 1st MISO (Master In, Slave Out) pin  
Digital GPIO pin  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
SPICLK0  
PE.1  
SPI0 serial clock pin  
Digital GPIO pin  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
54  
55  
PWM1CH3  
SPISS00  
I/O  
O
PWM1 Channel3 output  
SPI0 1st slave select pin  
Digital GPIO pin  
PE.0  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
Mar 31, 2015  
Page 44 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
PWM1CH2  
I2SMCLK  
I/O  
O
PWM1 Channel2 output  
I2S master clock output pin  
Digital GPIO pin  
PC.13  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
MOSI11  
O
O
I
SPI1 2nd MOSI (Master Out, Slave In) pin  
PWM1 Channel1 output  
Snooper pin  
56  
PWM1CH!  
SNOOPER  
nINT0  
I
External interrupt 0 input pin  
I2C0 clock pin  
I2C0SCK  
O
Digital GPIO pin  
PC.12  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
MISO11  
PWM1CH0  
nINT0  
I
O
I
SPI1 2nd MISO (Master In, Slave Out) pin  
PWM1 Channel 0 output  
External interrupt 0 input pin  
I2C0 data I/O pin  
57  
I2C0SDA  
I/O  
Digital GPIO pin  
PC.11  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
58  
59  
60  
61  
33  
34  
35  
36  
MOSI10  
TX1  
O
O
SPI1 1st MOSI (Master Out, Slave In) pin  
UART1 Data transmitter output pin  
Digital GPIO pin  
PC.10  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
MISO10  
RX1  
I
I
SPI1 1st MISO (Master In, Slave Out) pin  
UART1 Data receiver input pin  
Digital GPIO pin  
PC.9  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
SPICLK1  
I2C1SCK  
I/O  
I/O  
SPI1 serial clock pin  
I2C1 clock pin  
Digital GPIO pin  
PC.8  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
SPISS10  
MCLK  
I/O  
O
SPI1 1st slave select pin  
EBI external clock output pin  
Mar 31, 2015  
Page 45 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
I2C1SDA  
PA.15  
I/O  
I/O  
I/O  
O
I2C1 data I/O pin  
Digital GPIO pin  
PWM0CH3  
I2SMCLK  
TC3  
PWM0 Channel3 output  
I2S master clock output pin  
Timer3 capture input  
62  
37  
25  
17  
18  
I
TX0  
O
UART0 Data transmitter output pin  
Digital GPIO pin  
PA.14  
I/O  
I/O  
I/O  
I
PWM0CH2  
AD15  
PWM0 Channel2 output  
EBI Address/Data bus bit15  
Timer 2 capture input  
UART0 Data receiver input pin  
Digital GPIO pin  
63  
38  
39  
40  
26  
27  
28  
TC2  
RX0  
I
PA.13  
I/O  
I/O  
I/O  
I
PWM0CH1  
AD14  
PWM0 Channel1 output  
EBI Address/Data bus bit14  
Timer1 capture input  
64  
TC1  
I2C0SCK  
PA.12  
I/O  
I/O  
I/O  
I/O  
I
I2C0 clock pin  
Digital GPIO pin  
PWM0CH0  
AD13  
PWM0 Channel0 output  
EBI Address/Data bus bit13  
Timer 0 capture input  
I2C0 data I/O pin  
65  
66  
TC0  
I2C0SDA  
ICE_DAT  
PF.0  
I/O  
I/O  
I/O  
I
Serial Wired Debugger Data pin  
Digital GPIO pin  
41  
42  
29  
30  
19  
20  
nINT0  
External interrupt0 input pin  
Serial Wired Debugger Clock pin  
Digital GPIO pin  
ICE_CK  
PF.1  
I
I/O  
O
67  
68  
CLKO  
Frequency Divider output pin  
External interrupt1 input pin  
nINT1  
I
Power supply for I/O ports and LDO source for  
internal PLL and digital circuit  
VDD  
P
69  
70  
71  
33  
21  
VSS  
P
Ground  
43  
44  
31  
32  
AVSS  
PA.0  
AP  
I/O  
Ground Pin for analog circuit  
Digital GPIO pin  
Mar 31, 2015  
Page 46 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
ADC0  
PA.1  
AI  
I/O  
AI  
ADC analog input0  
Digital GPIO pin  
72  
45  
33  
ADC1  
AD12  
PA.2  
ADC analog input1  
I/O  
I/O  
AI  
EBI Address/Data bus bit12  
Digital GPIO pin  
ADC2  
AD11  
RX1  
ADC analog input2  
73  
74  
75  
76  
46  
47  
48  
49  
34  
35  
36  
37  
22  
23  
24  
25  
I/O  
I
EBI Address/Data bus bit11  
UART1 Data receiver input pin  
Digital GPIO pin  
PA.3  
I/O  
AI  
ADC3  
AD10  
TX1  
ADC analog input3  
I/O  
O
EBI Address/Data bus bit10  
UART1 Data transmitter output pin  
Digital GPIO pin  
PA.4  
I/O  
AI  
ADC4  
AD9  
ADC analog input4  
I/O  
I/O  
I/O  
AI  
EBI Address/Data bus bit9  
I2C0 data I/O pin  
I2C0SDA  
PA.5  
Digital GPIO pin  
ADC5  
AD8  
ADC analog input5  
I/O  
I/O  
I/O  
AI  
EBI Address/Data bus bit8  
I2C0 clock pin  
I2C0SCK  
PA.6  
Digital GPIO pin  
ADC6  
AD7  
ADC analog input6  
77  
50  
38  
I/O  
I
EBI Address/Data bus bit7  
Timer3 capture input  
PWM0 Channel3 output  
Digital GPIO pin  
TC3  
PWM0CH3  
PA.7  
O
I/O  
AI  
ADC7  
AD6  
ADC analog input7  
78  
51  
52  
39  
40  
I/O  
I
EBI Address/Data bus bit6  
Timer2 capture input  
PWM0 Channel2 output  
Voltage reference input for ADC  
Power supply for internal analog circuit  
TC2  
PWM0CH2  
Vref  
O
79  
80  
AP  
AP  
26  
AVDD  
Mar 31, 2015  
Page 47 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
Digital GPIO pin  
PD.0  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
81  
RX1  
I
UART1 Data receiver input pin  
SPI2 2nd slave select pin  
SmartCard1 clock pin  
Digital GPIO pin  
SPISS20  
SC1CLK  
I/O  
O
PD.1  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
82  
TX1  
O
UART1 Data transmitter output pin  
SPI2 serial clock pin  
SPICLK2  
SC1DAT  
I/O  
I/O  
SmartCard1 DATA pin.  
Digital GPIO pin  
PD.2  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
RTSn1  
O
I/O  
I
UART1 Request to Send output pin  
I2S left right channel clock  
SPI2 1st MISO (Master In, Slave Out) pin  
SmartCard1 Power pin  
83  
I2SLRCLK  
MISO20  
SC1PWR  
O
Digital GPIO pin  
PD.3  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
CTSn1  
I
UART1 Clear to Send input pin  
I2S bit clock pin  
84  
I2SBCLK  
MOSI20  
SC1RST  
I/O  
O
SPI2 1st MOSI (Master Out, Slave In) pin  
SmartCard1 RST pin  
O
Digital GPIO pin  
PD.4  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
85  
I2SDI  
I
I
I
I2S data input  
MISO21  
SC1CD  
SPI2 2nd MISO (Master In, Slave Out) pin  
SmartCard1 card detect  
Digital GPIO pin  
PD.5  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
86  
I2SDO  
O
O
I2S data output  
MOSI21  
SPI2 2nd MOSI (Master Out, Slave In) pin  
Mar 31, 2015  
Page 48 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
PC.7  
I/O  
I/O  
I
Digital GPIO pin  
AD5  
EBI Address/Data bus bit5  
Timer1 capture input  
PWM1 Channel1 output  
Digital GPIO pin  
87  
53  
41  
TC1  
PWM0CH1  
PC.6  
O
I/O  
I/O  
I
AD4  
EBI Address/Data bus bit4  
Timer 0 capture input  
SmartCard1 card detect pin  
PWM0 Channel0 output  
Digital GPIO pin  
88  
54  
42  
27  
TC0  
SC1CD  
PWM0CH0  
O
PC.15  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
89  
55  
AD3  
I/O  
I
EBI Address/Data bus bit3  
Timer0 capture input  
PWM1 Channel1 output  
Digital GPIO pin  
TC0  
PWM1CH2  
O
PC.14  
I/O  
User program must enable pull-up resistor in LQFP48  
package.  
90  
91  
56  
57  
AD2  
I/O  
I/O  
I/O  
I
EBI Address/Data bus bit2  
PWM1 Channel3 output  
Digital GPIO pin  
PWM1CH3  
PB.15  
28  
43  
nINT1  
External interrupt1 input pin  
Snooper pin  
SNOOPER  
XT1_OUT  
I
29  
30  
92  
93  
58  
59  
44  
45  
O
External 4~24 MHz crystal output pin  
XT1_IN  
I
External 4~24 MHz crystal input pin  
External reset input: Low active, set this pin low reset  
chip to initial state. With internal pull-up.  
94  
95  
96  
60  
61  
62  
46  
31  
nRESET  
VSS  
I
P
P
Ground  
Power supply for I/O ports and LDO source for  
internal PLL and digital circuit  
VDD  
Digital GPIO pin  
PF.4  
I/O  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
97  
I2C0SDA  
I2C0 data I/O pin  
Mar 31, 2015  
Page 49 of 95  
Revision V1.00  
Nano100(A)  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP LQFP LQFP  
QFN  
33  
100  
64  
48  
Digital GPIO pin  
PF.5  
I/O  
User program must enable pull-up resistor in LQFP64  
and LQFP48 package.  
98  
I2C0SCK  
PVSS  
I/O  
I2C0 clock pin  
99  
63  
64  
47  
48  
32  
P
PLL Ground  
PB.8  
I/O  
Digital GPIO pin  
ADCTRG  
TMR0  
I
I
I
ADC external trigger input.  
Timer0 external counter input  
External interrupt0 input pin  
100  
nINT0  
Note: Pin Type I=Digital Input, O=Digital Output; AI=Analog Input; AO= Analog Output; P=Power Pin; AP=Analog Power  
Mar 31, 2015  
Page 50 of 95  
Revision V1.00  
Nano100(A)  
4
BLOCK DIAGRAM  
4.1 Nano100 Block Diagram  
LXT  
LIRC  
P
L
L
FLASH  
EBI  
Cortex-M0  
32MHz  
DMA  
CLK_CTL  
HXT  
64/32KB  
HIRC  
1.8V LDO  
(input: 1.8 ~ 3.6V)  
POR(1.8V)  
BOD(1.7/2.0/2.5 V)  
SRAM  
16/8KB  
ISP 4KB  
GPIO  
A,B,C,D,E,F  
10-b ADC  
I2C 1  
PWM 1  
Timer 2/3  
UART 1  
SPI 1  
I2C 0  
PWM 0  
1.5/2.5V REF  
TEMP sensor  
Timer 0/1  
UART 0  
SPI 0  
I2S  
SPI 2  
SC 0  
SC 1  
RTC  
WDT  
Peripherals with PDMA  
Peripherals with wakeup  
NOTE: BOD can wakeup system.  
External interrupts, included in GPIO, can wakeup system, too.  
Figure 4-1 NuMicroTM Nano100 Block Diagram  
Mar 31, 2015  
Page 51 of 95  
Revision V1.00  
Nano100(A)  
4.2 Nano120 Block Diagram  
LXT  
LIRC  
P
L
L
FLASH  
EBI  
Cortex-M0  
32MHz  
DMA  
CLK_CTL  
HXT  
64/32KB  
HIRC  
1.8V LDO  
(input: 1.8 ~ 3.6V)  
POR(1.8V)  
BOD(1.7/2.0/2.5 V)  
ISP 4KB  
GPIO  
SRAM  
A,B,C,D,E,F  
16/8KB  
12-b ADC  
I2C 1  
PWM 1  
Timer 2/3  
UART 1  
SPI 1  
I2C 0  
12-b DAC  
PWM 0  
1.5/2.5V REF  
Timer 0/1  
UART 0  
SPI 0  
Touch key  
USB -512B  
TEMP sensor  
USB PHY  
I2S  
SPI 2  
SC 0  
SC 1  
RTC  
WDT  
Peripherals with PDMA  
Peripherals with wakeup  
NOTE: BOD can wakeup system.  
External interrupts, included in GPIO, can wakeup system, too.  
Figure 4-2 NuMicroTM Nano120 Block Diagram  
Mar 31, 2015  
Page 52 of 95  
Revision V1.00  
Nano100(A)  
5
FUNCTIONAL DESCRIPTION  
5.1 ARM® Cortex™-M0 Core  
5.1.1 Overview  
The Cortex™-M0 processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA  
AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex-M  
profile processor. The profile supports two modes -Thread mode and Handler mode. Handler  
mode is entered as a result of an exception. An exception return can only be issued in Handler  
mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.  
The following figure shows the functional controller of processor.  
Cortex-M0 components  
Cortex-M0 processor  
Debug  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Interrupts  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex-M0  
Processor  
Core  
Debug  
Access  
Port  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debugger  
interface  
BusMatrix  
(DAP)  
AHB- Lite  
interface  
Serial Wire or  
JTAG debug port  
Figure 5-1 M0 Functional Block  
5.1.2 Features  
A low gate count processor:  
ARMv6-M Thumb® instruction set  
Thumb-2 technology  
ARMv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
Supports little-endian data accesses  
Capable of deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multi-cycle-multiplies that can be abandoned and  
restarted to facilitate rapid interrupt handling  
C Application Binary Interface compliant exception model. This is the ARMv6-M,  
C Application Binary Interface (C-ABI) compliant exception model that enables  
the use of pure C functions as interrupt handlers  
Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event  
Mar 31, 2015  
Page 53 of 95  
Revision V1.00  
Nano100(A)  
(WFE) instructions, or return from interrupt sleep-on-exit feature  
NVIC:  
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-Maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Wake-up Interrupt Controller (WIC), providing Ultra-low Power Sleep mode  
support  
Debug support:  
Four hardware breakpoints  
Two watch points  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
Single 32-bit AMBA-3 AHB-Lite system interface providing simple integration to  
all system peripherals and memory  
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Mar 31, 2015  
Page 54 of 95  
Revision V1.00  
Nano100(A)  
5.2 Memory Organization  
5.2.1 Overview  
Nano100 provides 4G-byte addressing space. The memory locations assigned to each on-chip  
modules are shown in following. The detailed register definition, memory space, and  
programming detailed will be described in the following sections for each on-chip module.  
Nano100 series only supports little-endian data format.  
5.2.2 Memory Map  
The memory locations assigned to each on-chip controllers are shown in the following table.  
Address Space  
Token  
Modules  
Flash & SRAM Memory Space  
0x0000_0000 0x0000_FFFF  
0x2000_0000 0x2000_3FFF  
0x6000_0000 --- 0x6001_FFFF  
FLASH_BA  
SRAM_BA  
FLASH Memory Space (64KB)  
SRAM Memory Space (16KB)  
External Memory Space(128KB)  
EXTMEM_BA  
AHB Modules Space (0x5000_0000 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
0x5000_0200 0x5000_02FF  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_8000 0x5000_BFFF  
0x5000_C000 0x5000_FFFF  
0x5001_0000 0x5001_03FF  
GCR_BA  
CLK_BA  
INT_BA  
System Management Control Registers  
Clock Control Registers  
Interrupt Multiplexer Control Registers  
GPIO Control Registers  
GPIO_BA  
DMA_BA  
FMC_BA  
EBI_BA  
DMA Control Registers  
Flash Memory Control Registers  
External Bus Interface Control Registers  
APB1 Modules Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4000_4000 0x4000_7FFF  
0x4000_8000 0x4000_BFFF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4004_0000 0x4004_3FFF  
0x4005_0000 0x4005_3FFF  
0x4006_0000 0x4006_3FFF  
0x400A_0000 0x400A_3FFF  
0x400D_0000 0x400D_3FFF  
0x400E_0000 0x400E_3FFF  
WDT_BA  
RTC_BA  
Watch-Dog Timer Control Registers  
Real Time Clock (RTC) Control Register  
Timer 0 and Timer 1 Control Registers  
I2C 0 Interface Control Registers  
TMR01_BA  
I2C0_BA  
SPI0_BA  
SPI 0 with Master/Slave function Control Registers  
PWM 0 Control Registers  
PWM0_BA  
UART0_BA  
USBD_BA  
Reserved  
SPI2_BA  
UART 0 Control Registers  
USB FS device Controller Registers  
Reserved  
SPI 2 with Master/Slave function Control Registers  
12-bit Analog-Digital-Converter (ADC10) Control Registers  
ADC10_BA  
APB2 Modules Space (0x4010_0000 ~ 0x401F_FFFF)  
0x4011_0000 0x4011_3FFF  
0x4012_0000 0x4012_3FFF  
TMR23_BA  
I2C1_BA  
Timer 2 and Timer 3 Control Registers  
I2C 1 Interface Control Registers  
Mar 31, 2015  
Page 55 of 95  
Revision V1.00  
Nano100(A)  
0x4013_0000 0x4013_3FFF  
0x4014_0000 0x4014_3FFF  
0x4015_0000 0x4015_3FFF  
0x4019_0000 0x4019_3FFF  
0x401A_0000 0x401A_3FFF  
0x401B_0000 0x401B_3FFF  
SPI1_BA  
PWM1_BA  
UART1_BA  
SC0_BA  
I2S_BA  
SPI 1 with Master/Slave function Control Registers  
PWM 1 Control Registers  
UART1 Control Registers  
Smart Card 0 Control Registers  
I2S Control Registers  
SC1_BA  
Smart Card 1 Control Registers  
System Control Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Mar 31, 2015  
Page 56 of 95  
Revision V1.00  
Nano100(A)  
5.3 Nested Vectored Interrupt Controller (NVIC)  
5.3.1 Overview  
Cortex-M0 provides an interrupt controller as an integral part of the exception mode, named as  
“Nested Vectored Interrupt Controller (NVIC)”. It is closely coupled to the processor kernel and  
provides following features:  
5.3.2 Features  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Dynamic priority changing  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When any interrupts is accepted, the starting address of the interrupt service routine (ISR) is  
fetched from a vector table in memory. There is no need to determine which interrupt is accepted  
and branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “ARM® Cortex™-M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Mar 31, 2015  
Page 57 of 95  
Revision V1.00  
Nano100(A)  
5.4 System Manager  
5.4.1 Overview  
System manager mainly controls the power modes, wake-up source, system resets and system  
memory map. It also provides information about product ID, chip reset, IP reset, and multi-function pin  
control.  
5.4.2 Features  
Power modes and wake-up sources  
System resets  
System Memory Map  
System manager registers for :  
Product ID  
Chip and IP reset  
Multi-functional pin control  
Mar 31, 2015  
Page 58 of 95  
Revision V1.00  
Nano100(A)  
5.5 Clock Controller  
5.5.1 Overview  
The clock controller generates clocks for the whole chip, including system clocks (CPU clock,  
HCLKx, and PCLKx) and all peripheral engine clocks. HCLKx means AHB bus clock for  
peripherals on AHB bus. PCLKx means APB bus clock for peripherals on APB bus. The clock  
controller also implements the power control function with the individually clock ON/OFF control,  
clock source selection and a 4-bit clock divider. The chip will not enter power-down mode until  
CPU sets the power down enable bit (PD_EN(PWRCTL[6])) and CPU executes the WFI  
instruction. In the Power-down mode, clock controller turns off the external high frequency crystal,  
internal high frequency oscillator, and system clocks (CPU clock, HCLKx, and PCLKx) to reduce  
the power consumption to minimum.  
5.5.2 Features  
Generates clocks for system clocks and all peripheral engine clocks  
Each peripheral engine clock can be turned on/off.  
High frequency crystal, internal high frequency oscillator, and system clocks will be  
turned off when chip is in Power-down mode.  
Mar 31, 2015  
Page 59 of 95  
Revision V1.00  
Nano100(A)  
5.6 FLASH Memory Controller (FMC)  
5.6.1 Overview  
This chip is equipped with 32KB/64KB on-chip embedded Flash EPROM for application program  
memory (APROM) that can be updated through ISP procedure. In System Programming (ISP)  
function enables user to update program memory when chip is soldered on PCB. After chip power  
on Cortex-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in  
Config0. By the way, this chip also provides DATA Flash Region, the data flash is shared with  
original program memory and its start address is configurable and defined by user in Config1. The  
data flash size is defined by user application request.  
5.6.2 Features  
AHB interface compatible  
Run up to 32 MHz with zero wait state for discontinuous address read access  
32KB/64KB application program memory (APROM)  
4KB in system programming (ISP) loader program memory (LDROM)  
Programmable data flash start address and memory size with 512 bytes page erase  
unit  
In System Program (ISP)/In Application Program (IAP) to update on chip Flash  
EPROM  
Mar 31, 2015  
Page 60 of 95  
Revision V1.00  
Nano100(A)  
5.7 External Bus Interface  
5.7.1 Overview  
This chip is equipped with an external bus interface (EBI) to access external device. To save the  
connections between external device and this chip, EBI support address bus and data bus  
multiplex mode. Also, address latch enable (ALE) signal is used to differentiate the address and  
data cycle.  
5.7.2 Features  
External devices with max. 64 Kbytes size (8-bit data width)/128 Kbytes (16-bit data  
width) supported  
Supports variable external bus base clock (MCLK)  
Supports 8-bit or 16-bit data width  
Supports variable data access time (tACC), address latch enable time (tALE) and  
address hold time (tAHD)  
Address bus and data bus multiplex mode supported to save the address pins  
Configurable idle cycle supported for different access condition: Write command finish  
(W2X), Read-to-Read (R2R), Read-to-Write (R2W)  
Supports PDMA and VDMA transfer  
5.8 General Purpose I/O Controller  
5.8.1 Overview  
The NuMicroTM Nano100 series have up to 51 General Purpose I/O pins to be shared with other  
function pins depending on the chip configuration. These 51 pins are arranged in 6 ports named  
with GPIOA, GPIOB, GPIOC, GPIOD, GPIOE and GPIOF. Each one of the 51 pins is  
independent and has the corresponding register bits to control the pin mode function and data.  
The I/O type of each of I/O pins can be independently software configured as input, output, and  
open-drain mode. Each I/O pin has a very weak individual pull-up resistor which is about 110  
K~300 Kfor VDD from 1.8 V to 3.6 V.  
5.8.2 Features  
Three I/O modes:  
Schmitt trigger Input-only with high impendence  
Push-pull output  
Open-drain output  
I/O pin configured as interrupt source with edge/level setting  
Enabling the pin interrupt function will also enable the pin wake-up function  
Mar 31, 2015  
Page 61 of 95  
Revision V1.00  
Nano100(A)  
5.9 DMA Controller  
5.9.1 Overview  
The DMA controller contains a four-channel peripheral direct memory access (PDMA) controller  
and a one-channel video direct memory access (VDMA) controller that transfers data to and from  
memory or transfer data to and from peripherals.For VDMA channel (DMA CH0), it only supports  
block transfer from memory to memory. For PDMA channel (DMA CH1~CH4), there is one-word  
buffer as transfer buffer between the Peripherals APB devices and Memory. And for VDMA  
channel (DMA CH0), there is a two-word buffer.  
User can stop the PDMA or VDMA operation by disable PDMACEN (PDMA_CSRx[0]) or  
VDMACEN(VDMA_CSR[0]), respectively.  
User can polling TD_IS (PDMA_ISRx[1] or  
VDMA_ISRx[1]) or enable TD_IE (PDMA_IERx[1] or VDMA_IERx[1]) and wait interrupt to check  
DMA transfer complete. The DMA controller can increase source or destination address, fixed or  
wrap around them as well.  
5.9.2 Features  
Five channels: 1 VDMA channel and 4 PDMA channels. Each channel can support a  
unidirectional transfer.  
VDMA  
Supports Memory-to-memory transfer  
Supports block transfer with stride  
Supports word/half-word/byte boundary address  
Supports address direction: increment and decrement  
PDMA  
Supports Peripheral-to-memory, memory-to-peripheral, and memory-to-memory  
transfer  
Supports word boundary address  
Supports word alignment transfer length in memory-to-memory mode  
Supports word/half-word/byte alignment transfer length in peripheral-to-memory  
and memory-to-peripheral mode  
Supports word/half-word/byte transfer data width from/to peripheral  
Supports address direction: increment, fixed, and wrap around  
AMBA AHB Master/Slave interface compatible, for data transfer and register  
read/write.  
Hardware round robin priority scheme.  
Mar 31, 2015  
Page 62 of 95  
Revision V1.00  
Nano100(A)  
5.10 Timer Controller  
5.10.1 Overview  
This chip is equipped with four timer modules including TIMER0, TIMER1, TIMER2 and TIMER3  
(TIMER0/1 is at APB1 and TIMER2/3 is at APB2), which allow user to easily implement a  
counting scheme or timing control for applications. The timer can perform functions like frequency  
measurement, event counting, interval measurement, clock generation, delay timing, and so on.  
The timer can generate an interrupt signal upon timeout, or provide the current value of count  
during operation.  
5.10.2 Features  
Independent Clock Source for each Timer (TMRx_CLK, x= 0, 1,2,3)  
Time out period = (Period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit  
TCMP)  
Maximum counting cycle time = (1 / 25 MHz) * (2^8) * (2^24), if TCLK = 25 MHz  
Internal 8-bit pre-scale counter  
Internal 24-bit up counter is readable through TDR (Timer Data Register)  
Supports One-shot, Periodic and Output Toggle Operation mode  
Supports external pin capture for interval measurement  
Supports external pin capture for timer counter reset  
Supports Inter-Timer trigger  
Supports Internal trigger event to ADC and PDMA  
5.11 Pulse Width Modulation (PWM)  
5.11.1 Overview  
This chip has two PWM controllers, each controller has 4 independent PWM outputs, CH0~CH3,  
or as 2 complementary PWM pairs, (CH0, CH1), (CH2, CH3) with 2 programmable dead-zone  
generators.  
Each of the two PWM outputs, (CH0, CH1), (CH2, CH3), share the same 8-bit prescaler, clock  
divider providing 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16). Each PWM output has independent  
16-bit PWM down-count counter for PWM period control, and 16-bit comparators for PWM duty  
control. Each dead-zone generator has two outputs. The first dead-zone generator output is CH0  
and CH1, and for the second dead-zone generator, the output is CH2 and CH3. The 2 sets of  
PWM controller total provide eight independent PWM interrupt flags which are set by hardware  
when the corresponding PWM period down counter reaches 0. PWM interrupt will be asserted  
when both PWM interrupt source and its corresponding enable bit are active. Each PWM output  
can be configured as one-shot mode to produce only one PWM cycle signal or continuous mode  
to output PWM waveform continuously.  
When DZEN01 (PWMx_CTL[4]) (x=0,1) is set, CH0 and CH1 perform complementary PWM  
paired function; the paired PWM timing, period, duty and dead-time are determined by PWM  
channel 0 timer and Dead-zone generator 0. Similarly, When DZEN23 (PWMx_CTL[5]) is set the  
complementary PWM pair of (CH2, CH3) is controlled by PWM channel 2.  
To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and  
16-bit comparator are implemented with double buffer. When user writes data to  
counter/comparator buffer registers the updated value will be loaded into the 16-bit down counter/  
comparator at the time down counter reaching 0. The double buffering feature avoids glitch at  
Mar 31, 2015  
Page 63 of 95  
Revision V1.00  
Nano100(A)  
PWM outputs.  
When the 16-bit period down counter reaches 0, the interrupt request is generated. If PWM output  
is set as continuous mode, when the down counter reaches 0, it is reloaded with CN of  
PWMx_DUTYy (y=0~3) Register automatically then start decreases, repeatedly. If the PWM  
output is set as one-shot mode, the down counter will stop and generate one interrupt request  
when it reaches 0.  
The value of PWM counter comparator is used for pulse width modulation. The counter control  
logic changes the output level when down-counter value matches the value of compare register.  
The alternate feature of the PWM is digital input capture function. If capture function is enabled  
the PWM output pin is switched as capture input pin. The capture channel 0 and PWM CH0 share  
one timer; and the capture channel 1 and PWM CH1 share one timer, and etc. Therefore user  
must setup the PWM timer before enabling capture feature. After capture feature of channel 0 is  
enabled, the capture always latches PWM CH0 timer value to Capture Rising Latch Register CRL  
(PWMx_CRL0[15:0]) when input channel has a rising transition and latches PWM CH0 timer  
value to Capture Falling Latch Register CFL (PWMx_CFL0[15:0]) when input channel has a  
falling transition. Capture channel  
0 interrupt is programmable by setting CRL_IE0  
(PWMx_CAPINTEN[0]) for rising transition or CFL_IE0 (PWMx_CAPINTEN[1]) for falling  
transition. Whenever Capture rising event latched for channel 0, the PWM CH0 timer will be  
reload at this moment if the corresponding reload enable bit CAPRELOADREN0  
(PWMx_CAPCTL[6]) is set.  
The maximum captured frequency that PWM can capture is dominated by the capture interrupt  
latency. When capture interrupt occurs, software will do at least three steps, they are:  
Read PWMx_INTSTS to get interrupt source and Read PWMx_CRLy/PWMx_CFLy(y=0~3) to get  
capture value and finally write 1 to clear PWMx_INTSTS. If interrupt latency will take time T0 to  
finish, the capture signal mustnt transient during this interval. In this case, the maximum capture  
frequency will be 1/T0.  
5.11.2 Features  
5.11.2.1 PWM function:  
Two PWM controllers, each controller has 4 independent PWM outputs, CH0~CH3, or  
as 2 complementary PWM pairs, (CH0, CH1), (CH2, CH3) with 2 programmable  
dead-zone generators.  
Up to 8 PWM channels or 4 PWM paired channels.  
Up to 16 bits PWM counter width.  
PWM Interrupt request synchronous with PWM period.  
One-shot or Continuous mode.  
Four Dead-Zone generators  
5.11.2.2 Capture Function:  
Timing control logic shared with PWM timer.  
8 Capture input channels shared with 8 PWM output channels.  
Each channel supports one rising latch register CRL (PWMx_CRL0[15:0]), one falling  
latch register CFL (PWMx_CFL0[15:0]) and Capture interrupt flag CAPIF0  
(PWMx_CAPINTSTS[0]) .  
Eight 16-bit counters for eight capture channels or four 32-bit counter for four capture  
channels when cascade is enabled:when CH01CASKEN (PWMx_CAPCTL[13]) is  
set ,the original 16-bit counter of channel 1 will combine with channel 0s 16-bit  
counter for channel 0 input capture counting and so does CH23CASKEN  
Mar 31, 2015  
Page 64 of 95  
Revision V1.00  
Nano100(A)  
(PWMx_CAPCTL[29]) for channel 2,3  
Supports PDMA transfer function for PWMx channel 0, 2  
Mar 31, 2015  
Page 65 of 95  
Revision V1.00  
Nano100(A)  
5.12 Watchdog Timer Controller  
5.12.1 Overview  
The purpose of Watchdog Timer is to perform a system reset after the software running into a  
problem. This prevents system from hanging for an infinite period of time. Besides, this Watchdog  
Timer supports the function to wake-up CPU from power-down mode. The watchdog timer  
includes an 18-bit free running counter with programmable time-out intervals.  
5.12.2 Features  
18-bit free running WDT counter for Watchdog timer time-out interval.  
Selectable time-out interval (2^4 ~ 2^18) and the time-out interval is 104 ms ~ 26.316  
s (if WDT_CLK = 10 kHz).  
Reset period = (1 / 10 kHz) * 63, if WDT_CLK = 10 kHz.  
Mar 31, 2015  
Page 66 of 95  
Revision V1.00  
Nano100(A)  
5.13 RTC  
5.13.1 Overview  
Real Time Clock (RTC) unit provides user the real time and calendar message. The Clock Source  
of RTC is from an external 32.768 kHz crystal connected at pins X32I and X32O (reference to pin  
Description) or from an external 32.768 kHz oscillator output fed at pin X32I. The RTC unit  
provides the time message (second, minute, hour) in Time Loading Register (TLR) as well as  
calendar message (day, month, year) in Calendar Loading Register (CLR). The data message is  
expressed in BCD format. This unit offers alarm function that user can preset the alarm time in  
Time Alarm Register (TAR) and alarm calendar in Calendar Alarm Register (CAR).  
The RTC unit supports periodic Time Tick and Alarm Match interrupts. The periodic interrupt has  
8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second which are selected by TTR  
(TTR[2:0]). When RTC counter in TLR and CLR is equal to alarm setting time registers TAR and  
CAR, the alarm interrupt flag (AIS(RTC_RIIR[0])) is set and the alarm interrupt is requested if the  
alarm interrupt is enabled (AIER(RTC_RIER[0])=1). The RTC Time Tick (if wake-up CPU function  
is enabled, (TWKE(RTC_TTR[3])) high)) and Alarm Match can cause CPU wake-up from idle or  
Power-down mode.  
5.13.2 Features  
There is a time counter (second, minute, hour) and calendar counter (day, month,  
year) for user to check the time.  
Alarm register (second, minute, hour, day, month, year).  
12-hour or 24-hour mode is selectable.  
Leap year compensation automatically.  
Day of week counter.  
Frequency compensate register (FCR).  
All time and calendar message is expressed in BCD code.  
Supports periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8,  
1/4, 1/2 and 1 second.  
Supports RTC Time Tick and Alarm Match interrupt  
Supports wake-up CPU from power-down mode.  
Supports 80 bytes spare registers and a snoop pin to clear the content of these spare  
registers.  
Mar 31, 2015  
Page 67 of 95  
Revision V1.00  
Nano100(A)  
5.14 UART Controller  
5.14.1 Overview  
The UART Controller provides up to two channels of Universal Asynchronous  
Receiver/Transmitter (UART) modules and performs Normal Speed UART, and supports flow  
control function. The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-  
parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on  
data transmitted from the CPU.  
The UART controller also supports IrDA (SIR), LIN Master/Slave and RS-485 function modes.  
5.14.2 Features  
Full duplex, asynchronous communications.  
Separate receiving / transmitting 16 bytes entry FIFO for data payloads.  
Supports hardware auto-flow control function (CTSn, RTSn) and programmable  
(CTSn, RTSn) flow control trigger level.  
Supports programmable baud rate generator for each channel.  
Supports auto-baud rate detect function.  
Supports programmable receiver buffer trigger level.  
Supports incoming data or CTSn to wake-up function.  
Supports 9 bit receiver buffer time-out detection function.  
All UART channels can be served by the PDMA controller.  
Programmable transmitting data delay time between the last stop bit leaving the TX-  
FIFO and the de-assertion by setting DLY(UART_TMCTL[23:16]) register.  
Supports IrDA SIR function mode  
Supports LIN function mode.  
Supports RS-485 function mode.  
Mar 31, 2015  
Page 68 of 95  
Revision V1.00  
Nano100(A)  
5.15 Smart Card Host Interface (SC)  
5.15.1 Overview  
The Smart Card Interface controller (SC controller) is based on ISO/IEC 7816-3 standard and fully  
compliant with PC/SC Specifications. It also provides status of card insertion/removal.  
5.15.2 Features  
ISO-7816-3 T = 0, T = 1 compliant.  
EMV2000 compliant  
Up to two ISO-7816-3 ports  
Separates receive/transmit 4 byte entry FIFO for data payloads.  
Programmable transmission clock frequency.  
Programmable receiver buffer trigger level.  
Programmable guard time selection (11 ETU ~ 267 ETU).  
A 24-bit and two 8 bit timers for Answer to Request (ATR) and waiting times  
processing.  
Supports auto inverse convention function.  
Supports transmitter and receiver error retry and error number limitation function.  
Supports hardware activation sequence process.  
Supports hardware warm reset sequence process.  
Supports hardware deactivation sequence process.  
Supports hardware auto deactivation sequence when detected the card removal.  
Supports UART mode  
Half duplex, asynchronous communications.  
Separates receiving / transmitting 4 bytes entry FIFO for data payloads.  
Supports programmable baud rate generator for each channel.  
Supports programmable receiver buffer trigger level.  
Programmable transmitting data delay time between the last stop bit leaving the  
TX-FIFO and the de-assertion by setting SC_EGTR register.  
Programmable even, odd or no parity bit generation and detection.  
Programmable stop bit, 1 or 2 stop bit generation.  
5.16 I2C  
5.16.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data  
exchange between devices. The I2C standard is a true multi-master bus including collision  
detection and arbitration that prevents data corruption if two or more masters attempt to control  
the bus simultaneously. Serial, 8-bit oriented bi-directional data transfers can be made up to 1  
Mbps.  
Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a  
Mar 31, 2015  
Page 69 of 95  
Revision V1.00  
Nano100(A)  
byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit  
with the MSB being transmitted first. An acknowledge bit follows each transferred byte.  
A transition on the SDA line while SCL is high is interpreted as a command (START or STOP).  
Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only  
during the low period of SCL and must be held stable during the high period of SCL.  
The controller’s on-chip I2C logic provides the serial interface that meets the I2C bus standard  
mode specification. The I2C controller handles byte transfers autonomously. Pull up resistor is  
needed for I2C operation as these are open drain pins.  
The I2C controller is equipped with two slave address registers. The contents of the registers are  
irrelevant when I2C is in Master mode. In the Slave mode, the seven most significant bits must be  
loaded with the user’s own slave address. The I2C hardware will react if the contents of I2CADDR  
are matched with the received slave address.  
This controller supports the “General Call (GC)” function. If the GCALL (I2CSADDR[0]) bit is set  
this controller will respond to General Call address (00H). Clear GC bit to disable general call  
function. When GCALL bit is set and the I2C is in Slave mode, it can receive the general call  
address which is equal to 00H after master sends general call address to the I2C bus, then it will  
follow status of GC mode. If it is in Master mode, the ACK bit must be cleared when it sends  
general call address of 00H to the I2C bus.  
The I2C-bus controller supports multiple address recognition with two address mask register.  
When the bit in the address mask register is set to one, it means the received corresponding  
address bit is don’t-care. If the bit is set to 0, that means the received corresponding register bit  
should be exact the same as address register.  
Mar 31, 2015  
Page 70 of 95  
Revision V1.00  
Nano100(A)  
5.16.2 Features  
Supports two I2C channels and both of them can acts as Master or Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
One built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up  
and timer-out counter overflows.  
Programmable clock divider allows versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( Two slave addresses with mask option)  
Mar 31, 2015  
Page 71 of 95  
Revision V1.00  
Nano100(A)  
5.17 SPI  
5.17.1 Overview  
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol.  
Devices communicate in Master/Slave mode with 4-wire bi-direction interface. It is used to  
perform a serial-to-parallel conversion on data received from a peripheral device, and a parallel-  
to-serial conversion on data transmitted to a peripheral device. The SPI controller can be  
configured as a master or a slave device.  
The SPI controller supports wake-up function. When this chip stays in power-down mode, it can  
be waked up chip by off-chip device.  
This controller supports variable serial clock for special application and 2 data channel transfer  
mode to connect 2 off-chip slave devices. The SPI controller also supports PDMA function to  
access the data buffer.  
5.17.2 Features  
Up to two sets of SPI controllers  
Supports Master (max. 16 MHz) or Slave (max. 6 MHz) mode operation  
Supports 1 bit data channel and 2 bit data channel transfer mode  
Configurable bit length of a transaction from 8 to 32 bits and configurable transaction  
number up to 2 of a transfer in burst mode, so the maximum bit length is 64 bits for  
each data transfer in burst mode  
Supports MSB first or LSB first transfer sequence  
Two slave select lines supported in Master mode  
Configurable byte or word suspend mode  
Supports byte re-ordering function  
Supports variable serial clock in Master mode  
Provide Dual FIFO buffers  
Supports wake-up function  
Supports PDMA transfer  
Supports 3-wires, no slave select signal, bi-direction interface  
Mar 31, 2015  
Page 72 of 95  
Revision V1.00  
Nano100(A)  
5.18 I2S  
5.18.1 Overview  
The audio controller consists of I2S protocol to interface with external audio CODEC. Two 8 word  
deep FIFO for receiving path and transmitting path respectively and is capable of handling 8-, 16-,  
24-, 32-bit word sizes. PDMA controller handles the data movement between FIFO and memory.  
5.18.2 Features  
Support Master mode and Slave mode  
Capable of handling 8-, 16-, 24- or 32-bit word sizes  
Supports monaural and stereo audio data  
Supports I2S and MSB justified data format  
Provides two 8-level FIFO data buffers, one for transmitting and the other for receiving  
Generates interrupt requests when buffer levels cross a programmable boundary  
Support PDMA transfer  
Mar 31, 2015  
Page 73 of 95  
Revision V1.00  
Nano100(A)  
5.19 USB  
5.19.1 Overview  
The USB controller is a USB 2.0 full-speed device controller. It is compliant with USB 2.0 full  
speed device specification and supports control/bulk/interrupt/isochronous transfer types.  
In this device controller, there are two main interfaces: the APB bus and USB bus which comes  
from the USB PHY transceiver. For the APB bus, the CPU can program control registers through  
it. There is an internal 512-byte SRAM as data buffer in this controller. For IN token or OUT token  
transfer, it is necessary to write data to SRAM or read data from SRAM through the APB  
interface. Users need to allocate the effective starting address of SRAM for each endpoint buffer  
through “buffer segmentation register (BUFSEG)”.  
This device controller contains 6 configurable endpoints. Each endpoint can be configured as IN  
or OUT endpoint. The function address of the device and endpoint number in each endpoint shall  
be configured properly in advance for receiving or transmitting a data packet correctly. The  
transmitting/receiving length in each endpoint is defined in maximum payload register (MXPLD)  
and the handshakes between Host and Device are also handled by it.  
There are four different interrupt events in this controller. They are the wake-up function, device  
plug-in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend  
and resume, etc. Any event will cause an interrupt, and users just need to check the related event  
flags in interrupt event status register (USB_INTSTS) to acknowledge what kind of events  
occurring, and then check the related USB Endpoint Status Register (USB_EPSTS) to  
acknowledge what kind of event occurring in this endpoint.  
A software-disable function is also supported for this USB controller. It is used to simulate the  
disconnection of this device from the host. If user enables the DRVSE0 bit (USB_DRVSE0), the  
USB controller will force USB_DP and USB_DM to level low and USB device function is disabled  
(disconnected). After disable the DRVSE0 bit, host will enumerate the USB device again.  
Reference: Universal Serial Bus Specification Revision 2.0  
5.19.2 Features  
This Universal Serial Bus (USB) performs a serial interface with a single connector type for  
attaching all USB peripherals to the host system. Following is the feature listing of this USB.  
Compliant with USB 2.0 Full-Speed specification.  
Provide 1 interrupt vector with 4 different interrupt events (WAKEUP, FLDET, USB  
and BUS).  
Supports Control/Bulk/Interrupt/Isochronous transfer type.  
Supports suspend function when no bus activity existing for 3 ms.  
Provide 6 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types  
512-byte SRAM buffer inside  
Provide remote wake-up capability.  
Mar 31, 2015  
Page 74 of 95  
Revision V1.00  
Nano100(A)  
5.20 Analog to Digital Converter (ADC)  
5.20.1 Overview  
The Nano100 series contains one 12-bit successive approximation analog-to-digital converters (SAR  
A/D converter) with 8 external input channels and 1 internal channel. The A/D converter supports  
three operation modes: single, single-cycle scan and continuous scan mode, and can be started by  
software, external STADC/PB.8 pin, timer event start.  
Note that the I/O pins used as ADC analog input pins must configure the Pin Function (PA_L_MFP) to  
ADC input and off digital function (GPIOA_OFFD) should be turned on before ADC function is  
enabled.  
5.20.2 Features  
Analog input voltage range: 0~Vref (Max to 3.6V).  
12-bit resolution and 8-bits accuracy is guaranteed.  
Up to 8 external analog input channels (channel0 ~ channel7), and 1 internal channel  
(channel10) converting four voltage sources (internal band-gap voltage, internal temperature  
sensor output, AVDD, and AVSS).  
Maximum ADC clock frequency is 16 MHz and each conversion is 21 clocks.  
Three operating modes  
Single mode: A/D conversion is performed one time on a specified channel.  
Single-cycle scan mode: A/D conversion is performed one cycle on all specified channels  
with the sequence from the lowest numbered channel to the highest numbered channel.  
Continuous scan mode: A/D converter continuously performs Single-cycle scan mode until  
software stops A/D conversion.  
An A/D conversion can be started by  
Software write 1 to ADST bit  
External pin STADC  
Selects one from four timer events (TMR0, TMR1, TMR2 and TMR3) that enable ADC and  
transfer AD results by PDMA  
Conversion results are held in data registers for each channel  
Supports data registers to hold conversion results for each channel.  
Supports A/D conversion End interrupt to indicate the end of A/D conversion.  
Supports two digital comparators to compare conversion result with a specified value.  
Supports digital comparator interrupt to indicate that conversion result meets setting condition.  
Mar 31, 2015  
Page 75 of 95  
Revision V1.00  
Nano100(A)  
6
APPLICATION CIRCUIT  
DVCC  
[1]  
CS  
CLK  
MISO  
MOSI  
Power  
SPISS  
SPICLK  
MISO  
AVDD  
VDD  
VSS  
AVCC  
1uF//10nF  
SPI Device  
In Case  
VREF = AVDD  
MOSI  
VREF  
AVSS  
VREF  
1uF//10nF  
DVCC  
4.7K  
DVCC  
AVSS  
VDD  
VSS  
VCC  
4.7K  
CLK  
DIO  
SCL  
SDA  
VDD  
I2C Device  
VDD  
VSS  
ICE_DAT  
ICE_CLK  
SWD  
Interface  
/RESET  
VSS  
20p  
20p  
XT1_IN  
Nano100AN  
Crystal  
4~24 MHz  
crystal  
XT1_OUT  
DVCC  
10K  
Reset  
Circuit  
RS232 Transceiver  
ROUT RIN  
PC COM Port  
nRESET  
RX  
TX  
10uF/25V  
UART  
TIN  
TOUT  
LDO_CAP  
1uF  
LDO  
Mar 31, 2015  
Page 76 of 95  
Revision V1.00  
Nano100(A)  
7
ELECTRICAL CHARACTERISTIC  
7.1 Absolute Maximum Ratings  
SYMBOL  
PARAMETER  
MIN  
-0.3  
MAX  
+3.6  
5.5  
UNIT  
V
DC Power Supply  
VDD  
SS  
Input Voltage on five-volt tolerance pin  
VIN  
VIN  
VSS -0.3  
V
Input Voltage on any other pin without five-volt  
tolerance pin  
VSS -0.3  
VDD +0.3  
V
Oscillator Frequency  
1/tCLCL  
TA  
4
24  
+85  
+150  
150  
150  
25  
MHz  
C  
Operating Temperature  
-40  
Storage Temperature  
TST  
-55  
C  
Maximum Current into VDD  
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
Maximum Current out of VSS  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
25  
100  
100  
Note: GPIO supports input 5V tolerance except ADC shared pins, PC.6 and PC.7.  
Mar 31, 2015  
Page 77 of 95  
Revision V1.00  
Nano100(A)  
7.2 DC Electrical Characteristics  
(VDD-VSS=3.3V, TA = 25C, FOSC = 32 MHz unless otherwise specified.)  
SPECIFICATION  
PARAMETER  
Operation voltage  
Power Ground  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
1.8  
-
3.6  
V
VDD =1.8V up to 32 MHz  
VSS  
-0.3  
-
V
V
V
V
AVSS  
VLDO1  
VLDO2  
AVDD  
1.62  
1.8  
1.66  
VDD  
1.98  
MCU operating in run or Idle mode  
MCU operating in Power-down mode  
LDO Output Voltage  
Analog Operating Voltage  
VDD = 3.6V@32MHz,  
enable all IP and PLL  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
IDD8  
IDD9  
IDD10  
IDD11  
IDD12  
14  
7.5  
12  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = 3.6V@32MHz  
Operating Current  
Run Mode  
disable all IP and enable PLL  
@ XTAL 12MHz,  
HCLK = 32 MHz  
VDD = 1.8V@32MHz  
enable all IP and PLL  
VDD = 1.8V@32MHz  
disable all IP and enable PLL  
VDD = 3.6V@12MHz,  
5
enable all IP and disable PLL  
VDD = 3.6V@12MHz,  
Operating Current  
Run Mode  
2.5  
4
disable all IP and disable PLL  
@ XTAL 12MHz,  
HCLK = 12MHz  
VDD = 1.8V@12MHz,  
enable all IP and disable PLL  
VDD = 1.8V@12MHz,  
2
disable all IP and disable PLL  
VDD = 3.6V@12MHz,  
6
enable all IP and disable PLL  
VDD = 3.6V@12MHz,  
Operating Current  
Run Mode  
2.3  
5.7  
2.2  
disable all IP and disable PLL  
@ IRC 12MHz,  
HCLK = 12MHz  
VDD = 1.8V@12MHz,  
enable all IP and disable PLL  
VDD = 1.8V@12MHz,  
disable all IP and disable PLL  
Mar 31, 2015  
Page 78 of 95  
Revision V1.00  
Nano100(A)  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD = 3.6V@4MHz,  
IDD13  
IDD14  
IDD15  
2.2  
mA  
enable all IP and disable PLL  
VDD = 3.6V@4MHz,  
Operating Current  
Run Mode  
1.1  
2
mA  
mA  
disable all IP and disable PLL  
@ XTAL 4MHz,  
HCLK = 4MHz  
VDD = 1.8V@4MHz,  
enable all IP and disable PLL  
VDD = 1.8V@4MHz,  
IDD16  
1
mA  
disable all IP and disable PLL  
VDD = 3.6V@32.768 kHz  
IDD17  
IDD18  
IDD19  
IDD20  
IDD21  
IDD22  
IDD23  
IDD24  
IIDLE1  
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
90  
80  
75  
72  
80  
75  
67  
65  
10.5  
4.2  
9
uA  
uA  
enable all IP and disable PLL,  
VDD = 3.6V@32.768 kHz  
Operating Current  
Run Mode  
disable all IP and disable PLL  
@ XTAL 32.768 kHz,  
HCLK = 32.768 kHz  
VDD = 1.8V@32.768 kHz  
uA  
enable all IP and disable PLL  
VDD = 1.8V@32.768kHz  
uA  
disable all IP and disable PLL  
VDD = 3.6V@10kHz  
uA  
enable all IP and disable PLL  
VDD = 3.6V@10kHz  
Operating Current  
Run Mode  
uA  
disable all IP and disable PLL  
@ IRC 10kHz,  
HCLK = 10kHz  
VDD = 1.8V@10kHz  
uA  
enable all IP and disable PLL  
VDD = 1.8V@10kHz  
uA  
disable all IP and disable PLL  
VDD= 3.6V@32MHz  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
enable all IP and PLL,  
VDD=3.6V@32MHz  
Operating Current  
Idle Mode  
disable all IP and enable PLL  
@ XTAL 12MHz,  
HCLK = 32MHz  
VDD = 1.8V@32MHz  
enable all IP and PLL  
VDD = 1.8V@32MHz  
4
disable all IP and enable PLL  
VDD = 3.6V@12MHz,  
3.3  
0.7  
3
enable all IP and disable PLL  
Operating Current  
Idle Mode  
VDD = 3.6V@12MHz,  
@ XTAL 12MHz,  
HCLK = 12MHz  
disable all IP and disable PLL  
VDD = 1.8V@12MHz,  
enable all IP and disable PLL  
Mar 31, 2015  
Page 79 of 95  
Revision V1.00  
Nano100(A)  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD = 1.8V@12MHz,  
IIDLE8  
0.7  
mA  
disable all IP and disable PLL  
VDD = 3.6V@12MHz,  
IIDLE9  
IIDLE10  
IIDLE11  
IIDLE12  
IIDLE13  
IIDLE14  
IIDLE15  
4.5  
0.7  
4.2  
0.7  
1.7  
0.6  
1
mA  
mA  
mA  
mA  
mA  
mA  
mA  
enable all IP and disable PLL  
VDD = 3.6V@12MHz,  
Operating Current  
Idle Mode  
disable all IP and disable PLL  
@ IRC 12MHz,  
HCLK = 12MHz  
VDD = 1.8V@12MHz,  
enable all IP and disable PLL  
VDD = 1.8V@12MHz,  
disable all IP and disable PLL  
VDD = 3.6V@4MHz,  
enable all IP and disable PLL  
VDD = 3.6V@4MHz,  
Operating Current  
Idle Mode  
disable all IP and disable PLL  
@ XTAL 4MHz,  
HCLK = 4MHz  
VDD = 1.8V@4MHz,  
enable all IP and disable PLL  
VDD = 1.8V@4MHz,  
IIDLE16  
0.5  
mA  
disable all IP and disable PLL  
VDD = 3.6V@ 32.768kHz  
IIDLE17  
IIDLE18  
IIDLE19  
85  
75  
70  
uA  
uA  
uA  
enable all IP and disable PLL  
VDD = 3.6V@ 32.768kHz  
Operating Current  
Idle Mode  
disable all IP and disable PLL  
@ XTAL 32.768kHz,  
HCLK = 32.768kHz  
VDD = 1.8V@ 32.768kHz  
enable all IP and disable PLL  
VDD = 1.8V@ 32.768kHz  
IIDLE20  
65  
uA  
disable all IP and disable PLL  
VDD = 3.6V@ 10kHz  
IIDLE21  
IIDLE22  
IIDLE23  
IIDLE24  
IPWD1  
80  
75  
65  
63  
1.5  
uA  
uA  
uA  
uA  
A  
enable all IP and disable PLL  
VDD = 3.6V@ 10kHz  
Operating Current  
Idle Mode  
disable all IP and disable PLL  
@ IRC 10kHz,  
HCLK = 10kHz  
VDD = 1.8V@ 10kHz  
enable all IP and disable PLL  
VDD = 1.8V@ 10kHz  
disable all IP and disable PLL  
Standby Current  
VDD = 3.6V, RTC OFF, all clock stop  
With RAM Retenstion, IO no loading  
Power-down Mode  
Mar 31, 2015  
Page 80 of 95  
Revision V1.00  
Nano100(A)  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD = 1.8V, RTC OFF, all clock stop  
With RAM Retenstion, IO no loading  
IPWD2  
1.0  
A  
VDD = 3.6V, RTC ON, all clock stop except  
32.768kHz  
IPWD3  
3
A  
A  
With RAM Retenstion, IO no loading  
VDD = 1.8V, RTC ON, all clock stop except  
32.768kHz  
IPWD4  
2.5  
With RAM Retenstion, IO no loading  
40  
98  
VDD = 3.3V  
VDD = 1.8V  
Input Pull Up Resistor PA,  
PB, PC, PD, PE, PF  
RIN  
Input Leakage Current PA,  
PB, PC, PD, PE, PF  
ILK  
-0.1  
-
-
+0.1  
VDD = 3.3V, 0<VIN<VDD  
A  
Input Low Voltage PA, PB,  
PC, PD, PE, PF  
VIL1  
0.4VDD  
V
(Schmitt input)  
Input High Voltage PA, PB,  
PC, PD, PE, PF  
ADC shared pins, PC.6 and PC.7 without Input  
5V tolerance.  
VIH1  
0.6VDD  
5.5  
V
V
(Schmitt input)  
Hysteresis voltage of  
PA~PF (Schmitt input)  
VHY  
0.2VDD  
Input Low Voltage XT1[*2]  
Input High Voltage XT1[*2]  
Input Low Voltage X32I[*2]  
Input High Voltage X32I[*2]  
VIL2  
VIH2  
VIL4  
VIH4  
0
-
-
-
-
0.4  
VDD +0.2  
0.3  
VDD = 3.3V  
VDD = 3.3V  
2.4  
0
V
V
V
1.5  
1.98  
Negative going threshold  
(Schmitt input), /RESET  
VILS  
VIHS  
ISR21  
ISR22  
ISK1  
1.28  
1.75  
-10  
1.33  
1.98  
-14  
1.37  
V
VDD = 3.3V  
VDD = 3.3V  
Positive going threshold  
(Schmitt input), /RESET  
2.25  
V
VDD = 3.3V,  
-
-
-
-
mA  
mA  
mA  
mA  
Source Current PA, PB,  
PC, PD, PE, PF  
VS = Vdd-0.7V  
VDD = 1.8V,  
(Push-pull Mode)  
-4.06  
16  
-6.5  
19  
VS = Vdd-0.45V  
VDD = 3.3V,  
VS = 0.7V  
Sink Current PA, PB, PC,  
PD, PE, PF  
VDD = 1.8V,  
VS = 0.45V  
(Push-pull Mode)  
ISK1  
4.14  
6.97  
Note:  
1. /RESET pin is a Schmitt trigger input.  
2. Crystal Input is a CMOS input.  
Mar 31, 2015  
Page 81 of 95  
Revision V1.00  
Nano100(A)  
3. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between VDD and  
the closest VSS pin of the device.  
4. For ensuring power stability, a 1uF or higher capacitor must be connected between LDO pin and the closest VSS pin  
of the device. Also a 100nF bypass capacitor between LDO and VSS help suppressing output noise  
7.3 AC Electrical Characteristics  
7.3.1 External Input Clock  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
10  
10  
2
TYP.  
MAX.  
UNIT  
nS  
Clock High Time  
tCHCX  
-
-
-
-
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
tCLCX  
tCLCH  
tCHCL  
nS  
15  
15  
nS  
2
nS  
t
CLCL  
t
t
CLCH  
CLCX  
t
t
CHCL  
CHCX  
7.3.2 External 4~24 MHz XTAL Oscillator  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
4
TYP.  
12  
MAX.  
24  
UNIT  
MHz  
oC  
Oscillator frequency  
fHXTAL  
THXTAL  
IHXTAL  
VDD = 1.8V ~ 3.6V  
Temperature  
-40  
-
+85  
Operating current  
0.3  
mA  
VDD = 3.0V  
7.3.2.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R
4MHz ~ 24 MHz  
Optional(Depend on crystal specification)  
without  
XT1_OUT  
XT1_IN  
R1  
C1  
C2  
Mar 31, 2015  
Page 82 of 95  
Revision V1.00  
Nano100(A)  
Figure 7-1 Typical Crystal Application Circuit  
7.3.3 External 32.768 kHz Crystal  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
32.768  
-
MAX.  
UNIT  
kHz  
oC  
Oscillator frequency  
fLXTAL  
TLXTAL  
IHXTAL  
VDD = 1.8V ~ 3.6V  
Temperature  
-40  
+85  
Operating current  
1.2  
VDD = 3.0V  
A  
7.3.4 Internal 12 MHz Oscillator  
SPECIFICATIONS  
PARAMETER  
Supply voltage[1]  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
1.8  
12  
MAX.  
UNIT  
VHRC  
V
11.88  
10.8  
12.12  
13.2  
MHz 25oC, VDD = 3V  
12  
MHz -40oC~+85 oC, VDD = 1.8V~3.6V  
-40oC~+85 oC, VDD = 1.8V~3.6V  
Calibrated  
Frequency  
Internal  
Oscillator  
FHRC  
11.88  
12  
12.12  
MHz  
Enable 32.768K crystal oscillator and set  
TRIM_SEL[1:0]=”10”  
Operating current  
IHRC  
TBD  
mA  
Note: Internal oscillator operation voltage comes from LDO.  
7.3.5 Internal 10 kHz Oscillator  
SPECIFICATION  
PARAMETER  
Supply voltage[1]  
SYM.  
VLRC  
FLRC  
ILRC  
TEST CONDITIONS  
MIN.  
TYP.  
1.8  
10  
MAX.  
UNIT  
V
7
5
13  
15  
kHz 25oC, VDD = 3V  
Center Frequency  
10  
kHz -40oC~+85 oC, VDD = 1.8V~3.6V  
Operating current  
0.7  
VDD = 3V  
A  
Note: Internal oscillator operation voltage comes from LDO.  
7.4 Analog Characteristics  
7.4.1 12-bit ADC  
SPECIFICATIONS  
TYP. MAX.  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
UNIT  
Mar 31, 2015  
Page 83 of 95  
Revision V1.00  
Nano100(A)  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Operating voltage  
AVDD  
IADC  
2.0  
3.6  
V
AVDD = VDD  
Operating current  
Resolution  
TBD  
mA AVDD = VDD = 3.0V  
RADC  
VREF  
IREF  
12  
Bit  
Reference voltage  
Reference input current (Avg.)  
ADC input voltage  
Conversion time  
Sampling Rate  
1.5  
AVDD  
V
320  
A  
VIN  
0
VREF  
V
TCONV  
FSPS  
INL  
1.25  
S  
800K  
±8  
Hz VDD = 3V  
Integral Non-Linearity Error  
Differential Non-Linearity  
Gain error  
±4  
-1~+4  
±16  
±4  
LSB  
LSB  
LSB  
LSB  
LSB  
MHz  
Cycle  
pF  
DNL  
EG  
-1~+8  
Offset error  
EOFFSET  
EABS  
FADC  
ADCYC  
CIN  
Absolute error  
-
±16  
16  
ADC Clock frequency  
Clock cycle  
0.25  
21  
-
Internal Capacitance  
Internal Resistance  
Monotonic  
3.2  
200  
-
-
Ω
RIN  
-
-
Guaranteed  
-
7.4.2 Brown-out Detector  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
V
Operating voltage  
Quiescent current  
VBOD  
IBOD  
1.8  
3.6  
1
AVDD = 3.0V, BOD enabled  
A  
V
VB17dt1  
VB17dt2  
VB20dt1  
VB20dt2  
VB25dt1  
VB25dt2  
1.6  
1.5  
1.9  
1.8  
2.4  
2.2  
1.7  
1.7  
2.0  
2.0  
2.5  
2.5  
1.8  
1.9  
2.1  
2.2  
2.6  
2.8  
25oC  
BOD17 detection level  
BOD20 detection level  
BOD25 detection level  
V
-40~85oC  
25oC  
V
V
-40~85oC  
25oC  
V
V
-40~85oC  
Mar 31, 2015  
Page 84 of 95  
Revision V1.00  
Nano100(A)  
7.4.3 Power-On Reset  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
1.6  
1
MAX.  
UNIT  
V
Reset voltage  
VPOR  
IPOR  
-
-
-
-
Quiescent current  
nA  
LDO output > Reset voltage  
7.4.4 Temperature Sensor  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
oC  
Detection Temperature  
Operating current  
Gain  
TDET  
ITEMP  
VTG  
-40  
+125  
-
-
-
5
-
-
-
A  
-1.64  
750  
mV/ oC  
Offset  
VTO  
mV Tempeature at 0 oC  
Note: Internal operation voltage comes form LDO.  
7.4.5 Internal Voltage Reference  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
-
MAX.  
UNIT  
Operating voltage  
AVDD  
VREF1  
VREF2  
TREFTAB  
IVREF  
1.8  
3.6  
V
V
1.5V voltage reference  
2.5V voltage reference  
Stable Time  
-
-
-
-
1.5  
2.5  
1
-
-
-
-
AVDD >= 1.8V  
AVDD >= 2.8V  
V
ms  
A  
Operating current  
30  
AVDD = 3V  
7.4.6 USB PHY Specifications  
7.4.6.1 USB PHY DC Electrical Characteristics  
SYMBOL  
VIH  
PARAMETER  
Input high (driven)  
Input low  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
2.0  
-
-
-
V
V
V
VIL  
0.8  
VDI  
Differential input sensitivity  
|PADP-PADM|  
0.2  
0.8  
0.8  
Differential  
VCM  
VSE  
Includes VDI range  
-
2.5  
2.0  
V
common-mode range  
Single-ended receiver threshold  
Receiver hysteresis  
-
V
200  
mV  
Mar 31, 2015  
Page 85 of 95  
Revision V1.00  
Nano100(A)  
VOL  
VOH  
VCRS  
RPU  
RPD  
Output low (driven)  
Output high (driven)  
Output signal cross voltage  
Pull-up resistor  
0
-
-
-
-
-
0.3  
3.6  
V
V
2.8  
1.3  
2.0  
V
1.425  
14.25  
1.575  
15.75  
kΩ  
kΩ  
Pull-down resistor  
Termination Voltage for upstream port  
pull up (RPU)  
VTRM  
3.0  
-
3.6  
V
ZDRV  
CIN  
Driver output resistance  
Transceiver capacitance  
Steady state drive*  
Pin to GND  
10  
-
Ω
20  
pF  
*Driver output resistance doesn’t include series resistor resistance.  
7.4.6.2 USB PHY Full-Speed Driver Elevtrical Characteristics  
SYMBOL  
TFR  
PARAMETER  
Rise Time  
CONDITIONS  
CL=50p  
MIN.  
4
TYP.  
MAX.  
20  
UNIT  
ns  
-
-
-
TFF  
Fall Time  
CL=50p  
4
20  
ns  
TFRFF  
Rise and fall time matching  
TFRFF=TFR/TFF  
90  
111.11  
%
7.4.6.3 USB PHY Power Dissipation  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
IVDDREG  
VDDD and VDDREG Supply Current  
(Steady State)  
Standby  
50  
uA  
(Full Speed)  
7.4.6.4 USB LDO DC Electrical Characteristics  
SYMBOL  
VBUS  
V33  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
5
MAX.  
UNIT  
V
Output voltage  
3.3  
100  
V
Iop  
Operation Current  
uA  
Mar 31, 2015  
Page 86 of 95  
Revision V1.00  
Nano100(A)  
8
PACKAGE DIMENSIONS  
8.1 LQFP100 (14x14x1.4 mm footprint 2.0 mm)  
H
D
D
A
A2  
7
A1  
51  
7
50  
H
E E  
100  
26  
L1  
L
1
25  
c
e
b
Y
Controlling Dimension : Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
A
Min Nom  
Max  
Min Nom  
Max  
1.60  
0.063  
A1  
A
0.002  
0.05  
1.45  
0.27  
0.053 0.055 0.057  
1.35  
0.17  
0.10  
1.40  
0.22  
2
b
0.011  
0.008  
0.009  
0.006  
0.007  
0.004  
0.547  
0.547  
c
0.15  
0.20  
D
E
14.00  
0.551  
0.551  
0.020  
14.10  
13.90  
13.90  
0.556  
0.556  
14.00 14.10  
0.50  
e
H D  
16.00  
16.20  
16.20  
16.00  
15.80  
15.80  
0.45  
0.622  
0.638  
0.638  
0.030  
0.630  
H E  
L
0.622 0.630  
0.60  
1.00  
0.75  
0.024  
0.039  
0.018  
L1  
y
0.10  
7
0.004  
7
0
0
Mar 31, 2015  
Page 87 of 95  
Revision V1.00  
Nano100(A)  
8.2 LQFP64 (7x7x1.4 mm footprint 2.0 mm)  
Mar 31, 2015  
Page 88 of 95  
Revision V1.00  
Nano100(A)  
Mar 31, 2015  
Page 89 of 95  
Revision V1.00  
Nano100(A)  
8.3 LQFP48 (7x7x1.4 mm footprint 2.0 mm)  
Mar 31, 2015  
Page 90 of 95  
Revision V1.00  
Nano100(A)  
8.4 QFN33 (5x5x0.8 mm footprint 0.5 mm)  
Mar 31, 2015  
Page 91 of 95  
Revision V1.00  
Nano100(A)  
Mar 31, 2015  
Page 92 of 95  
Revision V1.00  
Nano100(A)  
9
REVISION HISTORY  
Date  
Revision Description  
2011.05.31  
2011.08.22  
0.001  
0.002  
Initial release  
Modified the Electrical Characteristics section  
1. Changed the max SPI speed to 16 MHz  
2. ADC pin without 5V tolerance  
3. Modified the Electrical Characteristics section  
4. Removed XT1_IN and XT1_OUT GPIO (PF.2/PF.3) shared  
function  
2011.10.31  
0.003  
5. Modified pin diagram and pin description  
6. Removed timer continuous operation mode and UART  
wakeup function  
7. Revised the product selection table  
8. Fixed typos.  
1. Updated pin diagram and pin description  
2011.12.31  
2012.04.09  
0.004  
0.005  
2. Updated the DC Electrical Characteristics section  
1. Removed UART1 shared function from pin-26 to pin-29 in  
NANO100 LQFP100 package  
2. Added detailed description of “I2CINTSTS” register (I2Cx_BA  
+ 0x04)  
1. Removed NANO110/NANO130 series information.  
2. Updated Nano100 series selection code in section 3.1.  
3. Updated Nano100 product selection guide in section 3.2.  
2013.06.27  
2013.07.30  
0.006  
4. Removed GPIOF[2] and GPIOF[3] of Multiple Function Port F  
in section 5.4.5.  
5. Added a note “For GPIOF_PUEN, bits [15:6] and [3:2] are  
reserved” in section 5.8.6.  
1. Updated Nano100 product selection guide in section 3.2.  
0.007  
0.008  
2. Added Nano100 QFN33 pin diagram and description in  
section 3.3.1.4 and 3.4.1.  
1. Updated Nano100 product selection guide in section 3.2.  
2. Changed Timer0/1 Ch0/1 to Timer x (x=0, 1, 2, 3) in the Timer  
2014.12.29  
Mar 31, 2015  
Page 93 of 95  
Revision V1.00  
Nano100(A)  
Controller section.  
1. Updated Electrical Characteristics TBD items in chapter 7.  
2. Added Application Circuit in chapter 6.  
3. Added a noto that “GPIO supports input 5V tolerance except  
ADC shared pins, PC.6 and PC.7” in section 7.1.  
4. Updated the value of capacitor connected with LDO pin to be  
1uF in section 7.2.  
2015.03.31  
1.00  
5. Updated external 4~24 MHz XTAL application circuit in  
section 7.3.4.  
6. Updated 12-bit ADC characteristics in section 7.4.1.  
7. Added Brown-out Detector characteristics in a full operating  
temperature range in section 7.4.2.  
Mar 31, 2015  
Page 94 of 95  
Revision V1.00  
Nano100(A)  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Mar 31, 2015  
Page 95 of 95  
Revision V1.00  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY