NUC029-LGN [NUVOTON]

Arm® Cortex®-M 32-bit Microcontroller;
NUC029-LGN
型号: NUC029-LGN
厂家: NUVOTON    NUVOTON
描述:

Arm® Cortex®-M 32-bit Microcontroller

微控制器
文件: 总70页 (文件大小:1422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NUC029xDE  
Arm® Cortex® -M  
32-bit Microcontroller  
NuMicro® Family  
NUC029xDE Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Dec 18, 2018  
Page 1 of 70  
Rev 1.01  
NUC029xDE  
TABLE OF CONTENTS  
1 GENERAL DESCRIPTION.....................................................................................7  
2 FEATURES ............................................................................................................8  
3 ABBREVIATIONS ................................................................................................11  
4 PARTS INFORMATION LIST AND PIN CONFIGURATION................................12  
4.1 NuMicro® NUC029 Series Selection Code ...................................................12  
4.2 NuMicro® NUC029 Series Selection Guide ..................................................13  
4.3 Pin Configuration .................................................................................14  
4.3.1 NuMicro® NUC029LDE/NUC029SDE Pin Diagram ..............................................14  
4.4 Pin Description....................................................................................16  
4.4.1 NuMicro® NUC029LDE/NUC029SDE Pin Description...........................................16  
5 BLOCK DIAGRAM...............................................................................................21  
5.1 NuMicro® NUC029LDE/NUC029SDE Block Diagram......................................21  
6 FUNCTIONAL DESCRIPTION.............................................................................22  
6.1 ARM® Cortex® -M0 Core .........................................................................22  
6.2 System Manager .................................................................................24  
6.2.1 Overview ................................................................................................24  
6.2.2 System Reset ..........................................................................................24  
6.2.3 System Power Distribution ...........................................................................25  
6.2.4 System Memory Map .................................................................................26  
6.2.5 System Timer (SysTick) ..............................................................................27  
6.2.6 Nested Vectored Interrupt Controller (NVIC)......................................................28  
6.2.7 System Control.........................................................................................32  
6.3 Clock Controller...................................................................................33  
6.3.1 Overview ................................................................................................33  
6.3.2 System Clock and SysTick Clock ...................................................................35  
6.3.3 Power-down Mode Clock.............................................................................36  
6.3.4 Frequency Divider Output ............................................................................37  
6.4 Flash Memory Controller (FMC) ...............................................................38  
6.4.1 Overview ................................................................................................38  
6.4.2 Features.................................................................................................38  
6.5 General Purpose I/O (GPIO) ...................................................................39  
6.5.1 Overview ................................................................................................39  
6.5.2 Features.................................................................................................39  
6.7 Timer Controller (TIMER) .......................................................................40  
Dec 18, 2018  
Page 2 of 70  
Rev 1.01  
NUC029xDE  
6.7.1 Overview ................................................................................................40  
6.7.2 Features.................................................................................................40  
6.8 PWM Generator and Capture Timer (PWM) .................................................41  
6.8.1 Overview ................................................................................................41  
6.8.2 Features.................................................................................................41  
6.9 Watchdog Timer (WDT) .........................................................................43  
6.9.1 Overview ................................................................................................43  
6.9.2 Features.................................................................................................43  
6.10Window Watchdog Timer (WWDT)............................................................44  
6.10.1 Overview ................................................................................................44  
6.10.2 Features.................................................................................................44  
6.11UART Interface Controller (UART) ............................................................45  
6.11.1 Overview ................................................................................................45  
6.11.2 Features.................................................................................................45  
6.12I2C Serial Interface Controller (I2C)............................................................46  
6.12.1 Overview ................................................................................................46  
6.12.2 Features.................................................................................................46  
6.13Serial Peripheral Interface (SPI) ...............................................................47  
6.13.1 Overview ................................................................................................47  
6.13.2 Features.................................................................................................47  
6.14Analog-to-Digital Converter (ADC) ............................................................48  
6.14.1 Overview ................................................................................................48  
6.14.2 Features.................................................................................................48  
7 ELECTRICAL CHARACTERISTICS....................................................................49  
7.1 Absolute Maximum Ratings.....................................................................49  
7.2 DC Electrical Characteristics ...................................................................50  
7.3 AC Electrical Characteristics ...................................................................54  
7.3.1 External 4~24 MHz High Speed Oscillator ........................................................54  
7.3.2 External 4~24 MHz High Speed Crystal ...........................................................54  
7.3.3 Internal 22.1184 MHz High Speed Oscillator .....................................................55  
7.3.4 Internal 10 kHz Low Speed Oscillator ..............................................................55  
7.4 Analog Characteristics...........................................................................57  
7.4.1 12-bit SARADC Specification........................................................................57  
7.4.2 LDO and Power Management Specification ......................................................58  
7.4.3 Low Voltage Reset Specification....................................................................59  
Dec 18, 2018  
Page 3 of 70  
Rev 1.01  
NUC029xDE  
7.4.4 Brown-out Detector Specification ...................................................................59  
7.4.5 Power-on Reset Specification .......................................................................59  
7.5 Flash DC Electrical Characteristics............................................................61  
7.6 I2C Dynamic Characteristics....................................................................62  
7.7 SPI Dynamic Characteristics ...................................................................63  
7.8 I2S Dynamic Characteristics ....................................................................65  
8 APPLICATION CIRCUIT......................................................................................67  
9 PACKAGE DIMENSIONS ....................................................................................68  
9.1 64-pin LQFP (7x7x1.4 mm footprint 2.0 mm) ................................................68  
9.2 48-pin LQFP (7x7x1.4 mm footprint 2.0 mm) ................................................69  
10REVISION HISTORY............................................................................................70  
Dec 18, 2018  
Page 4 of 70  
Rev 1.01  
NUC029xDE  
List of Figures  
Figure 4-1 NuMicro® NUC029 Series Selection Code ................................................................... 12  
Figure 4-2 NuMicro® NUC029SDE LQFP 64-pin Diagram ............................................................ 14  
Figure 4-3 NuMicro® NUC029LDE LQFP 48-pin Diagram............................................................. 15  
Figure 5-1 NuMicro® NUC029LDE/NUC029SDE Block Diagram.................................................. 21  
Figure 6-1 Functional Controller Diagram...................................................................................... 22  
Figure 6-2 NuMicro® NUC029LDE/NUC029SDE Power Distribution Diagram ............................. 25  
Figure 6-3 Clock Generator Block Diagram................................................................................... 33  
Figure 6-4 Clock Generator Global View Diagram......................................................................... 34  
Figure 6-5 System Clock Block Diagram ....................................................................................... 35  
Figure 6-6 SysTick Clock Control Block Diagram.......................................................................... 35  
Figure 6-7 Clock Source of Frequency Divider .............................................................................. 37  
Figure 6-8 Frequency Divider Block Diagram ................................................................................ 37  
Figure 7-1 Typical Crystal Application Circuit ................................................................................ 55  
Figure 7-2 HIRC Accuracy vs. Temperature.................................................................................. 55  
Figure 7-3 Power-up Ramp Condition............................................................................................ 60  
Figure 7-4 I2C Timing Diagram ...................................................................................................... 62  
Figure 7-5 SPI Master Mode Timing Diagram ............................................................................... 63  
Figure 7-6 SPI Slave Mode Timing Diagram ................................................................................. 64  
Figure 7-8 I2S Slave Mode Timing Diagram................................................................................... 66  
Dec 18, 2018  
Page 5 of 70  
Rev 1.01  
NUC029xDE  
List of Tables  
Table 3-1 List of Abbreviations....................................................................................................... 11  
Table 6-1 Address Space Assignments for On-Chip Controllers................................................... 26  
Table 6-2 Exception Model ............................................................................................................ 29  
Table 6-3 System Interrupt Map..................................................................................................... 30  
Table 6-4 Vector Table Format ...................................................................................................... 31  
Dec 18, 2018  
Page 6 of 70  
Rev 1.01  
NUC029xDE  
1
GENERAL DESCRIPTION  
The NuMicro® NUC029LDE/NUC029SDE of NUC029 series is embedded with the Cortex® -M0  
core and offers 68 Kbytes Flash, 4 Kbytes Flash for the ISP, and 8 Kbytes SRAM for industrial  
control and applications which need rich communication interfaces or require high performance,  
high integration.  
Additionally, the NUC029LDE/SDE can run up to 50MHz and operate at standard industrial  
voltage 2.5V ~ 5.5V with -40~ 105. It is also equipped with plenty of peripheral devices, such  
as Timers, Watchdog Timer (WDT), Window Watchdog Timer (WWDT), UART, SPI, I2C, PWM,  
GPIO, LIN, 1000 kSPS high speed 12-bit ADC, Low Voltage Reset Controller and Brown-out  
Detector.  
Dec 18, 2018  
Page 7 of 70  
Rev 1.01  
NUC029xDE  
2
FEATURES  
Arm® Cortex® -M0 core  
Runs up to 50 MHz  
One 24-bit system timer  
Supports low power sleep mode  
Single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Serial Wire Debug supports with 2 watchpoints/4 breakpoints  
Built-in LDO for wide operating voltage ranged from 2.5 V to 5.5 V  
Flash Memory  
68 Kbytes Flash for program code  
Configurable Flash memory for data memory (Data Flash), 4 Kbytes Flash for ISP loader  
Supports In-System-Program (ISP) and In-Application-Program (IAP) application code  
update  
512 byte page erase for Flash  
Supports 2-wired ICP update through SWD/ICE interface  
Supports fast parallel programming mode by external programmer  
SRAM Memory  
8 Kbytes SRAM  
Clock Control  
Flexible selection for different applications  
Built-in 22.1184 MHz high speed oscillator for system operation  
Trimmed to ±1 % at +25 and VDD = 5 V  
Trimmed to ±2 % at -40 ~ +105 and VDD = 2.5 V ~ 5.5 V  
Built-in 10 kHz low speed oscillator for Watchdog Timer and Wake-up operation  
Supports one PLL output frequency up to 200 MHz, PWM clock frequency up to 100 MHz,  
and System operation frequency up to 50 MHz  
External 4~24 MHz high speed crystal input for precise timing operation  
GPIO  
Four I/O modes:  
Quasi-bidirectional  
Push-pull output  
Open-drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable  
I/O pin configured as interrupt source with edge/level setting  
Timer  
Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle and continuous counting operation modes  
Supports event counting function  
Supports input capture function  
Watchdog Timer  
Multiple clock sources  
System clock (HCLK)  
Internal 10 kHz oscillator (LIRC)  
8 selectable time-out period from 1.6 ms ~ 26.0 sec (depending on clock source)  
Wake-up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
Window Watchdog Timer  
6-bit down counter with 11-bit prescale for wide range window selected  
PWM/Capture  
Supports maximum clock frequency up to 100MHz  
Supports up to two PWM modules, each module provides three 16-bit timers and 6 output  
channels  
Dec 18, 2018  
Page 8 of 70  
Rev 1.01  
NUC029xDE  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 3 complementary paired PWM output channel  
Dead-time insertion with 12-bit resolution  
Two compared values during one period  
Supports 12-bit pre-scalar from 1 to 4096  
Supports 16-bit resolution PWM counter  
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Brake source from pin and system safety events (clock failed, Brown-out detection and  
CPU lockup)  
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake interrupt cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM counter match zero, period value or compared value  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM counter match zero, period value or compared value  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising edges, falling edges or both edges capture condition  
Supports input rising edges, falling edges or both edges capture interrupt  
Supports rising edges, falling edges or both edges capture with counter reload option  
UART  
Up to four UART controllers  
UART0 and UART1 ports with flow control (TXD, RXD, nCTS and nRTS)  
UART0, UART1 and UART2 with 16-byte FIFO for standard device  
Supports IrDA (SIR) and LIN function  
Supports RS-485 9-bit mode and direction control  
Supports auto baud-rate generator  
SPI  
One set of SPI controller  
Supports SPI Master/Slave mode  
Full duplex synchronous serial data transfer  
Variable length of transfer data from 8 to 32 bits  
MSB or LSB first data transfer  
Rx and Tx on both rising or falling edge of serial clock independently  
Supports Byte Suspend mode in 32-bit transmission  
Supports three wire, no slave select signal, bi-direction interface  
I2C  
Up to two sets of I2C devices  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data on  
the bus  
Serial clock synchronization allowing devices with different bit rates to communicate via one  
serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and resume serial  
transfer  
Programmable clocks allowing for versatile rate control  
Supports multiple address recognition (four slave address with mask option)  
Supports wake-up function  
ADC  
12-bit SAR ADC with 1000 kSPS  
Up to 8-ch single-end input or 4-ch differential input  
Dec 18, 2018  
Page 9 of 70  
Rev 1.01  
NUC029xDE  
Single scan/single cycle scan/continuous scan  
Each channel with individual result register  
Scan on enabled channels  
Threshold voltage detection  
Conversion started by software programming or external input  
96-bit unique ID (UID)  
128-bit unique customer ID(UCID)  
Brown-out Detector  
With 4 levels: 4.4 V/3.7 V/2.7 V/2.2 V  
Supports Brown-out Interrupt and Reset option  
Low Voltage Reset  
Threshold voltage level: 2.0 V  
Operating Temperature: -40~ +105℃  
Packages:  
All Green package (RoHS)  
LQFP 64-pin / 48-pin (7mm x 7mm)  
Dec 18, 2018  
Page 10 of 70  
Rev 1.01  
NUC029xDE  
3
ABBREVIATIONS  
Acronym  
Description  
ADC  
APB  
AHB  
BOD  
DAP  
FIFO  
FMC  
GPIO  
HCLK  
HIRC  
HXT  
IAP  
Analog-to-Digital Converter  
Advanced Peripheral Bus  
Advanced High-Performance Bus  
Brown-out Detection  
Debug Access Port  
First In, First Out  
Flash Memory Controller  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
22.1184 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
ICP  
ISP  
In System Programming  
LDO  
LIN  
Low Dropout Regulator  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Phase-Locked Loop  
PWM  
SPI  
Pulse Width Modulation  
Serial Peripheral Interface  
Samples per Second  
SPS  
TMR  
UART  
UCID  
WDT  
WWDT  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Watchdog Timer  
Window Watchdog Timer  
Table 3-1 List of Abbreviations  
Dec 18, 2018  
Page 11 of 70  
Rev 1.01  
NUC029xDE  
4
PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® NUC029 Series Selection Code  
- X  
NUC029 X X  
CPU core  
Temperature  
Arm® Cortex M0  
N: - 40 ~ +85℃  
E: - 40 ~ +105℃  
Package Type  
Flash Size  
A: Less than 68 KB  
D: 68 KB  
E: 128 KB  
F: TSSOP 20  
T: QFN 33 (5x5)  
Z: QFN 33 (4x4)  
N: QFN 48 (7x7)  
L: LQFP 48 (7x7)  
S: LQFP 64 (7x7)  
K: LQFP 128 (14x14)  
G: 256 KB  
Figure 4-1 NuMicro® NUC029 Series Selection Code  
Dec 18, 2018  
Page 12 of 70  
Rev 1.01  
 
NUC029xDE  
4.2 NuMicro® NUC029 Series Selection Guide  
Connectivity  
NUC029FAE 16  
NUC029TAN 32  
NUC029ZAN 64  
NUC029LAN 64  
NUC029LDE 68  
NUC029SDE 68  
2
4
4
4
8
8
Conf  
4
-
-
2
4
4
4
4
4
8
8
4
4
4
17  
24  
24  
40  
42  
56  
31  
45  
35  
49  
86  
2
4
4
4
4
4
4
4
4
4
4
1
2
2
2
4
4
2
3
3
3
3
1
1
1
2
1
1
1
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
-
-
-
-
-
-
-
-
3
5
4[1] 2[3]  
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
TSSOP20 -40 to +105  
QFN33(4*4) -40 to +85  
QFN33(5*5) -40 to +85  
5
5
3[2]  
3[2]  
4
-
4
-
-
-
-
-
5
-
-
-
4
-
-
-
-
-
8
8
-
-
-
LQFP48  
LQFP48  
LQFP64  
LQFP48  
LQFP64  
LQFP48  
LQFP64  
LQFP128  
-40 to +85  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
Conf  
Conf  
-
-
-
3
3
2
3
-
-
12  
12  
4
8
-
-
-
-
-
-
8
-
-
-
-
NUC029LEE 128 16 Conf  
NUC029SEE 128 16 Conf  
NUC029LGE 256 20 Conf  
NUC029SGE 256 20 Conf  
NUC029KGE 256 20 Conf  
-
-
1
1
1
1
1
-
10  
12  
9
-
9
9
5
5
5
-
-
-
-
6
-
2
2
2
3
3
3
2
2
2
10  
2
2
2
-
12 15  
12 20  
-
[1] NUC029FAE is 10-bit ADC. All the others are 12-bit ADC.  
[2] For NUC029TAN/NUC029ZAN, ACMP3 only has positive and negative input.  
[3] For NUC029FAE , ACMP0 only has positive and negative input. And ACMP1 only has positive input.  
[4] USCI can be configured to UART, SPI or I2C  
Dec 18, 2018  
Page 13 of 70  
Rev 1.01  
 
NUC029xDE  
4.3 Pin Configuration  
4.3.1 NuMicro® NUC029LDE/NUC029SDE Pin Diagram  
4.3.1.1 NuMicro® NUC029SDE LQFP 64 pin (7 mm * 7mm)  
UART3_RXD/ADC_CH5/PA.5  
UART3_TXD/ADC_CH6/PA.6  
VREF/ADC_CH7/PA.7  
AVDD  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PB.9/TM1  
PB.10/TM2  
PB.11/TM3/PWM0_CH4  
PE.5/TM1_EXT/TM1/PWM0_CH5  
PC.0/SPI0_SS0  
PC.1/SPI0_CLK  
PC.2/SPI0_MISO0  
PC.3/SPI0_MOSI0  
PD.15/UART2_TXD  
PD.14/UART2_RXD  
PD.7  
PWM0_BRAKE1/I2C0_SCL/PC.7  
PWM0_BRAKE0/I2C0_SDA/PC.6  
PC.15  
NUC029SDE  
LQFP 64-pin  
PC.14  
TM0/TM0_EXT/INT1/PB.15  
XT1_OUT/PF.0  
XT1_IN/PF.1  
nRESET  
PD.6  
VSS  
PB.3/UART0_nCTS/TM3_EXT/TM3/PWM1_BRAKE0  
PB.2/UART0_nRTS/TM2_EXT/TM2/PWM1_BRAKE1  
PB.1/UART0_TXD  
VDD  
CLKO/PF.8  
CLKO/TM0/STADC/PB.8  
PB.0/UART0_RXD  
Figure 4-2 NuMicro® NUC029SDE LQFP 64-pin Diagram  
Dec 18, 2018  
Page 14 of 70  
Rev 1.01  
NUC029xDE  
4.3.1.2 NuMicro® NUC029LDE LQFP 48 pin (7 mm * 7mm)  
UART3_RXD/ADC_CH5/PA.5  
UART3_TXD/ADC_CH6/PA.6  
VREF/ADC_CH7/PA.7  
AVDD  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PC.0/SPI0_SS0  
PC.1/SPI0_CLK  
PC.2/SPI0_MISO0  
PC.3/SPI0_MOSI0  
PD.15/UART2_TXD  
PD.14/UART2_RXD  
PD.7  
PWM0_BRAKE1/I2C0_SCL/PC.7  
PWM0_BRAKE0/I2C0_SDA/PC.6  
TM0/TM0_EXT/INT1/PB.15  
XT1_OUT/PF.0  
NUC029LDE  
LQFP 48-pin  
PD.6  
PB.3/UART0_nCTS/TM3_EXT/TM3/PWM1_BRAKE0  
PB.2/UART0_nRTS/TM2_EXT/TM2/PWM1_BRAKE1  
PB.1/UART0_TXD  
XT1_IN/PF.1  
nRESET  
CLKO/PF.8  
CLKO/TM0/STADC/PB.8  
PB.0/UART0_RXD  
Figure 4-3 NuMicro® NUC029LDE LQFP 48-pin Diagram  
Dec 18, 2018  
Page 15 of 70  
Rev 1.01  
NUC029xDE  
4.4 Pin Description  
4.4.1 NuMicro® NUC029LDE/NUC029SDE Pin Description  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
PB.14  
I/O General purpose digital I/O pin.  
External interrupt0 input pin.  
1
2
3
INT0  
I
PB.13  
I/O General purpose digital I/O pin.  
I/O General purpose digital I/O pin.  
PB.12  
1
2
CLKO  
O
Frequency divider clock output pin.  
PF.5  
I/O General purpose digital I/O pin.  
I/O I2C0 clock pin.  
4
5
6
7
8
9
I2C0_SCL  
PWM1_CH5  
PF.4  
I/O PWM1 CH5 output/Capture input.  
I/O General purpose digital I/O pin.  
I/O I2C0 data input/output pin.  
I/O PWM1 CH4 output/Capture input.  
I/O General purpose digital I/O pin.  
I/O I2C1 clock pin.  
3
4
5
6
7
I2C0_SDA  
PWM1_CH4  
PA.11  
I2C1_SCL  
PWM1_CH3  
PA.10  
I/O PWM1 CH3 output/Capture input.  
I/O General purpose digital I/O pin.  
I/O I2C1 data input/output pin.  
I/O PWM1 CH2 output/Capture input.  
I/O General purpose digital I/O pin.  
I/O I2C0 clock pin.  
I2C1_SDA  
PWM1_CH2  
PA.9  
I2C0_SCL  
UART1_nCTS  
PA.8  
I
Clear to Send input pin for UART1.  
I/O General purpose digital I/O pin.  
I/O I2C0 data input/output pin.  
I2C0_SDA  
UART1_nRTS  
PB.4  
O
Request to Send output pin for UART1.  
I/O General purpose digital I/O pin.  
Data receiver input pin for UART1.  
I/O General purpose digital I/O pin.  
Data transmitter output pin for UART1.  
I/O General purpose digital I/O pin.  
Request to Send output pin for UART1.  
10  
11  
8
9
UART1_RXD  
PB.5  
I
UART1_TXD  
PB.6  
O
12  
13  
UART1_nRTS  
PB.7  
O
I/O General purpose digital I/O pin.  
Dec 18, 2018  
Page 16 of 70  
Rev 1.01  
NUC029xDE  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
UART1_nCTS  
LDO_CAP  
VDD  
I
Clear to Send input pin for UART1.  
LDO output pin.  
14  
15  
16  
10  
11  
12  
P
P
P
Power supply for I/O ports and LDO source for internal PLL and digital circuit.  
Ground pin for digital circuit.  
VSS  
PB.0  
I/O General purpose digital I/O pin.  
Data receiver input pin for UART0.  
I/O General purpose digital I/O pin.  
Data transmitter output pin for UART0.  
I/O General purpose digital I/O pin.  
17  
18  
13  
14  
UART0_RXD  
PB.1  
I
UART0_TXD  
PB.2  
O
UART0_nRTS  
TM2_EXT  
TM2  
O
I
Request to Send output pin for UART0.  
Timer2 external capture input pin.  
Timer2 toggle output pin.  
19  
15  
O
I
PWM1_BRAKE1  
PB.3  
PWM1 brake input pin.  
I/O General purpose digital I/O pin.  
UART0_nCTS  
TM3_EXT  
I
I
Clear to Send input pin for UART0.  
Timer3 external capture input pin.  
Timer3 toggle output pin.  
20  
16  
TM3  
O
I
PWM1_BRAKE0  
PD.6  
PWM1 brake input pin.  
21  
22  
17  
18  
I/O General purpose digital I/O pin.  
I/O General purpose digital I/O pin.  
PD.7  
PD.14  
I/O General purpose digital I/O pin.  
23  
19  
UART2_RXD  
I
Data receiver input pin for UART2.  
I/O General purpose digital I/O pin.  
Data transmitter output pin for UART2.  
PD.15  
24  
25  
26  
27  
20  
21  
22  
23  
UART2_TXD  
PC.3  
O
I/O General purpose digital I/O pin.  
I/O SPI0 MOSI (Master Out, Slave In) pin.  
I/O General purpose digital I/O pin.  
I/O SPI0 MISO (Master In, Slave Out) pin.  
I/O General purpose digital I/O pin.  
I/O SPI0 serial clock pin.  
SPI0_MOSI0  
PC.2  
SPI0_MISO0  
PC.1  
SPI0_CLK  
PC.0  
I/O General purpose digital I/O pin.  
28  
24  
SPI0_SS0  
I/O SPI0 slave select pin.  
Dec 18, 2018  
Page 17 of 70  
Rev 1.01  
NUC029xDE  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
PE.5  
I/O General purpose digital I/O pin.  
I/O PWM0 CH5 output/Capture input.  
PWM0_CH5  
TM1_EXT  
TM1  
29  
I
Timer1 external capture input pin.  
Timer1 toggle output pin.  
O
PB.11  
I/O General purpose digital I/O pin.  
30  
TM3  
I/O Timer3 event counter input / toggle output.  
I/O PWM0 CH4 output/Capture input.  
I/O General purpose digital I/O pin.  
PWM0_CH4  
PB.10  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
TM2  
I/O Timer2 event counter input / toggle output.  
I/O General purpose digital I/O pin.  
PB.9  
TM1  
I/O Timer1 event counter input / toggle output.  
I/O General purpose digital I/O pin.  
PC.11  
PWM1_BRAKE1  
PC.10  
I
PWM1 brake input pin.  
I/O General purpose digital I/O pin.  
PWM1 brake input pin.  
I/O General purpose digital I/O pin.  
PWM0 brake input pin.  
I/O General purpose digital I/O pin.  
PWM0 brake input pin.  
PWM1_BRAKE0  
PC.9  
I
PWM0_BRAKE1  
PC.8  
I
PWM0_BRAKE0  
PA.15  
I
I/O General purpose digital I/O pin.  
I/O PWM0 CH3 output/Capture input.  
I/O General purpose digital I/O pin.  
I/O PWM0 CH2 output/Capture input.  
I/O General purpose digital I/O pin.  
I/O PWM0 CH1 output/Capture input.  
I/O General purpose digital I/O pin.  
I/O PWM0 CH0 output/Capture input.  
I/O General purpose digital I/O pin.  
I/O Serial wire debugger data pin.  
I/O General purpose digital I/O pin.  
25  
26  
27  
28  
29  
30  
PWM0_CH3  
PA.14  
PWM0_CH2  
PA.13  
PWM0_CH1  
PA.12  
PWM0_CH0  
PF.7  
ICE_DAT  
PF.6  
ICE_CLK  
AVSS  
I
Serial wire debugger clock pin.  
43  
44  
31  
32  
AP Ground pin for analog circuit.  
I/O General purpose digital I/O pin.  
PA.0  
Dec 18, 2018  
Page 18 of 70  
Rev 1.01  
NUC029xDE  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
ADC_CH0  
PWM0_CH4  
I2C1_SCL  
PA.1  
AI  
ADC_CH0 analog input.  
I/O PWM0 CH4 output/Capture input.  
I/O I2C1 clock pin.  
I/O General purpose digital I/O pin.  
ADC_CH1  
PWM0_CH5  
I2C1_SDA  
PA.2  
AI  
ADC_CH1 analog input.  
45  
46  
47  
33  
34  
35  
I/O PWM0 CH5 output/Capture input.  
I/O I2C1 data input/output pin.  
I/O General purpose digital I/O pin.  
ADC_CH2  
PWM1_CH0  
UART3_TXD  
PA.3  
AI  
I/O PWM1 CH0 output/Capture input.  
Data transmitter output pin for UART3.  
I/O General purpose digital I/O pin.  
AI  
ADC_CH3 analog input.  
I/O PWM1 CH1 output/Capture input.  
Data receiver input pin for UART3.  
I/O General purpose digital I/O pin.  
AI  
ADC_CH4 analog input.  
I/O General purpose digital I/O pin.  
ADC_CH2 analog input.  
O
ADC_CH3  
PWM1_CH1  
UART3_RXD  
PA.4  
I
48  
49  
36  
37  
ADC_CH4  
PA.5  
ADC_CH5  
UART3_RXD  
PA.6  
AI  
I
ADC_CH5 analog input.  
Data receiver input pin for UART3.  
I/O General purpose digital I/O pin.  
50  
38  
ADC_CH6  
UART3_TXD  
PA.7  
AI  
O
ADC_CH6 analog input.  
Data transmitter output pin for UART3.  
I/O General purpose digital I/O pin.  
AI  
ADC_CH7 analog input.  
51  
52  
53  
39  
40  
41  
ADC_CH7  
VREF  
AP Voltage reference input for ADC.  
AP Power supply for internal analog circuit.  
I/O General purpose digital I/O pin.  
I/O I2C0 clock pin.  
AVDD  
PC.7  
I2C0_SCL  
PWM0_BRAKE1  
PC.6  
I
PWM0 brake input pin.  
I/O General purpose digital I/O pin.  
I/O I2C0 data input/output pin.  
54  
42  
I2C0_SDA  
PWM0_BRAKE0  
I
PWM0 brake input pin.  
Dec 18, 2018  
Page 19 of 70  
Rev 1.01  
NUC029xDE  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
55  
56  
PC.15  
PC.14  
PB.15  
INT1  
I/O General purpose digital I/O pin.  
I/O General purpose digital I/O pin.  
I/O General purpose digital I/O pin.  
I
I
External interrupt1 input pin.  
Timer0 external capture input pin.  
Timer0 toggle output pin.  
57  
58  
43  
44  
TM0_EXT  
TM0  
O
PF.0  
I/O General purpose digital I/O pin.  
External 4~24 MHz (high speed) crystal output pin.  
I/O General purpose digital I/O pin.  
XT1_OUT  
PF.1  
O
59  
60  
45  
46  
XT1_IN  
I
I
External 4~24 MHz (high speed) crystal input pin.  
External reset input: active LOW, with an internal pull-up. Set this pin low reset  
chip to initial state.  
nRESET  
61  
62  
VSS  
P
P
Ground pin for digital circuit.  
VDD  
Power supply for I/O ports and LDO source for internal PLL and digital circuit.  
PF.8  
CLKO  
PB.8  
STADC  
TM0  
I/O General purpose digital I/O pin.  
Frequency divider clock output pin.  
I/O General purpose digital I/O pin.  
ADC external trigger input.  
I/O Timer0 event counter input / toggle output.  
Frequency divider clock output pin.  
63  
47  
48  
O
I
64  
CLKO  
O
Note: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power  
Dec 18, 2018  
Page 20 of 70  
Rev 1.01  
NUC029xDE  
5
BLOCK DIAGRAM  
5.1 NuMicro® NUC029LDE/NUC029SDE Block Diagram  
Memory  
Timer/PWM  
Analog Interface  
32-bit Timer x 4  
12-bit ADC  
8 Channels  
With VREF  
LDROM  
4 KB  
APROM  
68 KB  
ARM  
Cortex-M0  
50 MHz  
Watchdog  
Timer X 2  
16-bit PWM  
12 Channels  
SRAM  
8 KB  
DataFlash  
Configurable  
Bridge  
AHB Bus  
APB Bus  
Power Control  
Clock Control  
Connectivity  
UART x 4  
I/O Ports  
General Purpose  
I/O  
LDO  
VREF  
1.8 V  
High Speed  
Oscillator  
22.1184 MHz  
High Speed  
Crystal Osc.  
4 ~ 24 MHz  
Power On Reset  
LVR  
External Interrupt  
SPI x 1  
I2C x 2  
Low Speed  
Oscillator  
10 kHz  
PLL  
Brownout  
Detection  
Figure 5-1 NuMicro® NUC029LDE/NUC029SDE Block Diagram  
Dec 18, 2018  
Page 21 of 70  
Rev 1.01  
NUC029xDE  
6
FUNCTIONAL DESCRIPTION  
6.1 ARM® Cortex® -M0 Core  
The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an  
AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex® -M  
profile processor. The profile supports two modes -Thread mode and Handler mode. Handler  
mode is entered as a result of an exception. An exception return can only be issued in Handler  
mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.  
Figure 6-1 shows the functional controller of processor.  
Cortex® -M0 Components  
Cortex® -M0 processor  
Debug  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Interrupts  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex® -M0  
Processor  
Core  
Debug  
Access  
Port  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debugger  
Interface  
Bus Matrix  
(DAP)  
AHB-Lite  
Interface  
Serial Wire or  
JTAG Debug Port  
Figure 6-1 Functional Controller Diagram  
The implemented device provides the following components and features:  
A low gate count processor:  
-
-
-
-
-
-
-
ARMv6-M Thumb® instruction set  
Thumb-2 technology  
ARMv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and  
restarted to facilitate rapid interrupt handling  
-
-
C Application Binary Interface compliant exception model. This is the ARMv6-M,  
C Application Binary Interface (C-ABI) compliant exception model that enables  
the use of pure C functions as interrupt handlers  
Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event  
Dec 18, 2018  
Page 22 of 70  
Rev 1.01  
 
NUC029xDE  
(WFE) instructions, or the return from interrupt sleep-on-exit feature  
NVIC:  
-
-
-
-
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power  
Sleep mode  
Debug support  
-
-
-
-
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
-
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration  
to all system peripherals and memory  
-
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Dec 18, 2018  
Page 23 of 70  
Rev 1.01  
NUC029xDE  
6.2 System Manager  
6.2.1 Overview  
System management includes the following sections:  
System Resets  
System Memory Map  
System management registers for Part Number ID, chip reset and on-chip controllers  
reset , multi-functional pin control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control registers  
6.2.2 System Reset  
The system reset can be issued by one of the following listed events. For these reset event flags  
can be read by RSTSRC register.  
Power-on Reset  
Low level on the nRESET pin  
Watchdog Time-out Reset  
Low Voltage Reset  
Brown-out Detector Reset  
CPU Reset  
System Reset  
System Reset and Power-on Reset all reset the whole chip including all peripherals. The  
difference between System Reset and Power-on Reset is external crystal circuit and BS  
(ISPCON[1]) bit. System Reset does not reset external crystal circuit and BS (ISPCON[1]) bit, but  
Power-on Reset does.  
Dec 18, 2018  
Page 24 of 70  
Rev 1.01  
NUC029xDE  
6.2.3 System Power Distribution  
In this chip, the power distribution is divided into three segments.  
Analog power from AVDD and AVSS provides the power for analog components  
operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which  
provides a fixed 1.8 V power for digital operation and I/O pins.  
The outputs of internal voltage regulators, LDO, require an external capacitor which should be  
located close to the corresponding pin. Analog power (AVDD) should be the same voltage level  
with the digital power (VDD). Figure 6-2 shows the NuMicro® NUC029LDE/NUC029SDE power  
distribution.  
NUC029LDE/NUC029SDE Power Distribution  
AVDD  
AVSS  
12-bit  
SAR-ADC  
Brown-out  
Detector  
Low Voltage  
Reset  
Internal  
22.1184 MHz & 10 kHz  
Oscillator  
FLASH  
Digital Logic  
LDO_CAP  
1uF  
1.8V  
1.8V  
POR18  
POR50  
ULDO  
PLL  
LDO  
IO cell  
GPIO  
Figure 6-2 NuMicro® NUC029LDE/NUC029SDE Power Distribution Diagram  
Dec 18, 2018  
Page 25 of 70  
Rev 1.01  
 
NUC029xDE  
6.2.4 System Memory Map  
The NuMicro® NUC029LDE/NUC029SDE provides 4G-byte addressing space. The memory locations  
assigned to each on-chip controllers are shown in the following table. The detailed register definition,  
memory space, and programming detailed will be described in the following sections for each on-chip  
peripheral. The NuMicro® NUC029LDE/NUC029SDE only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0001_0FFF  
0x2000_0000 0x2000_3FFF  
FLASH_BA  
SRAM_BA  
Flash Memory Space (68 KB)  
SRAM Memory Space (8 KB)  
AHB Controllers Space (0x5000_0000 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
0x5000_0200 0x5000_02FF  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_C000 0x5000_FFFF  
GCR_BA  
CLK_BA  
INT_BA  
System Global Control Registers  
Clock Control Registers  
Interrupt Multiplexer Control Registers  
GPIO Control Registers  
GPIO_BA  
FMC_BA  
Flash Memory Control Registers  
APB1 Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4000_4000 0x4000_7FFF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4004_0000 0x4004_3FFF  
0x4005_0000 0x4005_3FFF  
0x4005_4000 0x4005_7FFF  
0x400E_0000 0x400E_FFFF  
WDT_BA  
TMR01_BA  
I2C0_BA  
Watchdog Timer Control Registers  
Timer0/Timer1 Control Registers  
I2C0 Interface Control Registers  
SPI0 with master/slave function Control Registers  
PWM0 Control Registers  
SPI0_BA  
PWM0_BA  
UART0_BA  
UART3_BA  
ADC_BA  
UART0 Control Registers  
UART3 Control Registers  
Analog-Digital-Converter (ADC) Control Registers  
APB2 Controllers Space (0x4010_0000 ~ 0x401F_FFFF)  
0x4011_0000 0x4011_3FFF  
0x4012_0000 0x4012_3FFF  
0x4014_0000 0x4014_3FFF  
0x4015_0000 0x4015_3FFF  
0x4015_4000 0x4015_7FFF  
TMR23_BA  
I2C1_BA  
Timer2/Timer3 Control Registers  
I2C1 Interface Control Registers  
PWM1 Control Registers  
PWM1_BA  
UART1_BA  
UART2_BA  
UART1 Control Registers  
UART2 Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 6-1 Address Space Assignments for On-Chip Controllers  
Dec 18, 2018  
Page 26 of 70  
Rev 1.01  
NUC029xDE  
6.2.5 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter  
transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_CVR value is unknown on reset. Software should write to the register to clear it to 0  
before enabling the feature. This ensures the timer will count from the SYST_RVR value rather  
than an arbitrary value when it is enabled.  
If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded  
with this value. This mechanism can be used to disable the feature independently from the timer  
enable bit.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Dec 18, 2018  
Page 27 of 70  
Rev 1.01  
NUC029xDE  
6.2.6 Nested Vectored Interrupt Controller (NVIC)  
The Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named  
as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor core  
and provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched  
from a vector table in memory. There is no need to determine which interrupt is accepted and  
branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Dec 18, 2018  
Page 28 of 70  
Rev 1.01  
NUC029xDE  
6.2.6.1 Exception Model and System Interrupt Map  
The following table lists the exception model supported by NuMicro® NUC029LDE/NUC029SDE.  
Software can set four levels of priority on some of these exceptions as well as on all interrupts.  
The highest user-configurable priority is denoted as “0” and the lowest priority is denoted as “3”.  
The default priority of all the user-configurable interrupts is “0”. Note that priority “0” is treated as  
the fourth priority on the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Name  
Reset  
Vector Number  
Priority  
-3  
1
NMI  
2
-2  
Hard Fault  
Reserved  
3
-1  
4 ~ 10  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
11  
Reserved  
12 ~ 13  
PendSV  
14  
SysTick  
15  
16 ~ 47  
Interrupt (IRQ0 ~ IRQ31)  
Table 6-2 Exception Model  
Interrupt Number  
Vector  
Number  
Source  
Module  
Interrupt Name  
Interrupt Description  
(Bit In Interrupt  
Registers)  
1 ~ 15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
-
0
-
-
System exceptions  
BOD_INT  
WDT_INT  
EINT0  
Brown-out Brown-out low voltage detected interrupt  
1
WDT  
GPIO  
GPIO  
GPIO  
GPIO  
-
Watchdog Timer interrupt  
External signal interrupt from PB.14 pin  
External signal interrupt from PB.15 pin  
External signal interrupt from PA[15:0]/PB[13:0]  
External interrupt from PC[15:0]/PD[15:0]/PE[15:0]/PF[8:0]  
Reserved  
2
3
EINT1  
4
GPAB_INT  
GPCDEF_INT  
-
5
6
7
-
-
Reserved  
8
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART02_INT  
UART1_INT  
SPI0_INT  
TMR0  
TMR1  
TMR2  
TMR3  
UART0/2  
UART1  
SPI0  
Timer 0 interrupt  
9
Timer 1 interrupt  
10  
11  
12  
13  
14  
Timer 2 interrupt  
Timer 3 interrupt  
UART0 and UART2 interrupt  
UART1 interrupt  
SPI0 interrupt  
Dec 18, 2018  
Page 29 of 70  
Rev 1.01  
NUC029xDE  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
UART3_INT  
UART3  
UART3 interrupt  
Reserved  
-
-
-
-
Reserved  
I2C0_INT  
I2C0  
I2C0 interrupt  
I2C1 interrupt  
Reserved  
I2C1_INT  
I2C1  
-
-
-
-
Reserved  
PWM0_INT  
PWM1_INT  
-
PWM0  
PWM1  
-
PWM0 interrupt  
PWM1 interrupt  
Reserved  
-
-
Reserved  
BRAKE0_INT  
BRAKE1_INT  
PWM0  
PWM1  
PWM0 brake interrupt  
PWM1 brake interrupt  
Clock controller interrupt for chip wake-up from Power-  
down state  
44  
28  
PWRWU_INT  
CLKC  
45  
46  
47  
29  
30  
31  
ADC_INT  
CKD_INT  
-
ADC  
CLKC  
-
ADC interrupt  
Clock detection interrupt  
Reserved  
Table 6-3 System Interrupt Map  
Dec 18, 2018  
Page 30 of 70  
Rev 1.01  
NUC029xDE  
6.2.6.2 Vector Table  
When an interrupt is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base  
address is fixed at 0x00000000. The vector table contains the initialization value for the stack  
pointer on reset, and the entry point addresses for all exception handlers. The vector number on  
previous page defines the order of entries in the vector table associated with exception handler  
entry as illustrated in previous section.  
Vector Table Word Offset  
Description  
0
SP_main The Main stack pointer  
Exception Entry Pointer using that Vector Number  
Table 6-4 Vector Table Format  
Vector Number  
6.2.6.3 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-  
Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-  
1-to-clear policy, both registers reading back the current enabled state of the corresponding  
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become  
Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it  
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit  
prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used  
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers  
reading back the current pended state of the corresponding interrupts. The Clear-Pending  
Register has no effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
Dec 18, 2018  
Page 31 of 70  
Rev 1.01  
NUC029xDE  
6.2.7 System Control  
The Cortex® -M0 status and operating mode control are managed by System Control Registers.  
Including CPUID, Cortex® -M0 interrupt priority and Cortex® -M0 power management can be  
controlled through these system control registers.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Dec 18, 2018  
Page 32 of 70  
Rev 1.01  
NUC029xDE  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates the clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and clock divider. The chip enters  
Power-down mode when Cortex® -M0 core executes the WFI instruction only if the  
PWR_DOWN_EN (PWRCON[7]) bit and PD_WAIT_CPU (PWRCON[8]) bit are both set to 1.  
After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave  
Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external  
high speed crystal oscillator and 22.1184 MHz internal high speed RC oscillator to reduce the  
overall system power consumption. The following figures show the clock generator and the  
overview of the clock source control.  
The clock generator consists of 5 clock sources as listed below:  
4~24 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency(PLL FOUT),PLL source can be from  
external 4~24 MHz external high speed crystal oscillator (HXT) or 22.1184 MHz  
internal high speed RC oscillator (HIRC))  
22.1184 MHz internal high speed RC oscillator (HIRC)  
10 kHz internal low speed RC oscillator (LIRC)  
XTL12M_EN (PWRCON[0])  
HXT  
XT1_OUT  
XT1_IN  
4~24 MHz  
HXT  
PLL_SRC (PLLCON[19])  
PLL  
0
1
PLL FOUT  
OSC22M_EN (PWRCON[2])  
22.1184 MHz  
HIRC  
HIRC  
LIRC  
OSC10K_EN (PWRCON[3])  
10 kHz  
LIRC  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Figure 6-3 Clock Generator Block Diagram  
Dec 18, 2018  
Page 33 of 70  
Rev 1.01  
NUC029xDE  
22.1184  
MHz  
22.1184 MHz  
10 kHz  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
ISP  
4~24  
MHz  
PLLFOUT  
Reserved  
4~24 MHz  
1/(HCLK_N+1)  
10 kHz  
PCLK  
I2C 0~1  
CAN 0  
22.1184 MHz  
10 kHz  
111  
101  
011  
010  
001  
000  
CLKSEL0[2:0]  
TMR 3  
TMR 2  
TMR 1  
TMR 0  
External trigger  
HCLK  
22.1184 MHz  
4~24 MHz  
1
PLLFOUT  
Reserved  
4~24 MHz  
0
PLLCON[19]  
22.1184 MHz  
CLKSEL1[22:20]  
CLKSEL1[18:16]  
CLKSEL1[14:12]  
CLKSEL1[10:8]  
FMC  
CPUCLK  
22.1184 MHz  
HCLK  
1
0
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
SysTick  
SYST_CSR[2]  
4~24 MHz  
Reserved  
4~24 MHz  
PWM 0  
PWM 1  
PCLK  
1
PLLFOUT  
0
CLKSEL0[5:3]  
CLKSEL3[16]  
CLKSEL3[17]  
CLKSEL2[17:16]  
10 kHz  
11  
10  
WWDT  
WDT  
HCLK  
1/2048  
10 kHz  
11  
10  
HCLK  
1/2048  
CLKSEL1[1:0]  
22.1184 MHz  
11  
01  
00  
PLLFOUT  
4~24 MHz  
HCLK  
1
0
SPI 0  
PLLFOUT  
CLKSEL1[25:24]  
CLKSEL1[4]  
1/(UART_N+1)  
1/(ADC_N+1)  
UART 0~3  
22.1184 MHz  
HCLK  
11  
10  
01  
00  
ADC  
BOD  
PLLFOUT  
4~24 MHz  
22.1184 MHz  
HCLK  
10 kHz  
11  
10  
01  
00  
FDIV  
Reserved  
4~24 MHz  
CLKSEL1[3:2]  
CLKSEL2[3:2]  
Figure 6-4 Clock Generator Global View Diagram  
Dec 18, 2018  
Page 34 of 70  
Rev 1.01  
NUC029xDE  
6.3.2 System Clock and SysTick Clock  
The system clock has 4 clock sources which were generated from clock generator block. The  
clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is  
shown in Figure 6-5.  
HCLK_S (CLKSEL0[2:0])  
22.1184 MHz  
111  
10 kHz  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
AHB  
APB  
PLLFOUT  
Reserved  
4~24 MHz  
1/(HCLK_N+1)  
PCLK  
HCLK_N (CLKDIV[3:0])  
CPU in Power Down Mode  
Figure 6-5 System Clock Block Diagram  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock  
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The  
clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block  
diagram is shown in Figure 6-6.  
STCLK_S (CLKSEL0[5:3])  
22.1184 MHz  
111  
011  
010  
001  
000  
1/2  
1/2  
1/2  
HCLK  
STCLK  
4~24 MHz  
Reserved  
4~24 MHz  
Figure 6-6 SysTick Clock Control Block Diagram  
Dec 18, 2018  
Page 35 of 70  
Rev 1.01  
 
 
NUC029xDE  
6.3.3 Power-down Mode Clock  
When chip enters Power-down mode, system clocks, some clock sources, and some peripheral  
clocks will be disabled. Some clock sources and peripherals clocks are still active in Power-down  
mode.  
The clocks still kept active are listed below:  
Clock Generator  
-
10 kHz internal low speed RC oscillator (LIRC) clock  
WDT/Timer Peripherals Clock (when 10 kHz intertnal low speed RC oscillator (LIRC)  
is adopted as clock source)  
Dec 18, 2018  
Page 36 of 70  
Rev 1.01  
NUC029xDE  
6.3.4 Frequency Divider Output  
This device is equipped with a power-of-2 frequency divider which is composed by16 chained  
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one  
multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided  
clocks with the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock  
divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock  
divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).  
When writing 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When writing 0  
to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low  
state and stay in low state.  
If DIVIDER1(FRQDIV[5]) is set to 1, the frequency divider clock (FRQDIV_CLK) will bypass  
power-of-2 frequency divider. The frequency divider clock will be output to CLKO pin directly.  
FRQDIV_S (CLKSEL2[3:2])  
FDIV_EN (APBCLK[6])  
22.1184 MHz  
11  
FRQDIV_CLK  
HCLK  
10  
01  
00  
Reserved  
4~24 MHz  
Figure 6-7 Clock Source of Frequency Divider  
DIVIDER_EN  
(FRQDIV[4])  
Enable  
divide-by-2 counter  
FSEL  
(FRQDIV[3:0])  
16 chained  
divide-by-2 counter  
FRQDIV_CLK  
DIVIDER1  
(FRQDIV[5])  
1/2  
1/22 1/23  
... 1/215 1/216  
0000  
0001  
16 to 1  
MUX  
:
:
CLKO  
0
1
1110  
1111  
Figure 6-8 Frequency Divider Block Diagram  
Dec 18, 2018  
Page 37 of 70  
Rev 1.01  
NUC029xDE  
6.4 Flash Memory Controller (FMC)  
6.4.1 Overview  
The NuMicro® NUC029LDE/NUC029SDE has 68 Kbytes on-chip embedded Flash for application  
program memory (APROM) that can be updated through ISP procedure. The In-System-  
Programming (ISP) function enables user to update program memory when chip is soldered on  
PCB. After chip is powered on, Cortex® -M0 CPU fetches code from APROM or LDROM decided  
by boot select (CBS) in CONFIG0. By the way, the NuMicro® NUC029LDE/NUC029SDE also  
provides additional Data Flash for user to store some application dependent data.  
The NuMicro® NUC029LDE/NUC029SDE supports another flexible feature: configurable Data  
Flash size. The Data Flash size is decided by Data Flash variable size enable (DFVSEN), Data  
Flash enable (DFEN) in Config0 and Data Flash base address (DFBADR) in Config1. When  
DFVSEN is set to 1, the Data Flash size is fixed at 4K and the address is started from  
0x0001_f000, and the APROM size is become 64K. When DFVSEN is set to 0 and DFEN is set to  
1, the Data Flash size is zero and the APROM size is 68 Kbytes. When DFVSEN is set to 0 and  
DFEN is set to 0, the APROM and Data Flash share 68 Kbytes continuous address and the start  
address of Data Flash is defined by (DFBADR) in Config1.  
6.4.2 Features  
Runs up to 50 MHz with zero wait cycle for continuous address read access  
All embedded Flash memory supports 512 bytes page erase  
68 KB application program memory (APROM)  
4KB In-System-Programming (ISP) loader program memory (LDROM)  
Configurable Data Flash size  
512 bytes page erase unit  
Supports In-Application-Programming (IAP) to switch code between APROM and  
LDROM without reset  
In-System-Programming (ISP) to update on-chip Flash  
Dec 18, 2018  
Page 38 of 70  
Rev 1.01  
NUC029xDE  
6.5 General Purpose I/O (GPIO)  
6.5.1 Overview  
The NuMicro® NUC029LDE/NUC029SDE series has up to 56 General Purpose I/O pins to be  
shared with other function pins depending on the chip configuration. These 56 pins are arranged  
in 6 ports named as GPIOA, GPIOB, GPIOC, GPIOD, GPIOE and GPIOF. The GPIOA/B port has  
the maximum of 16 pins. The GPIOC port has the maximum of 12 pins. The GPIOD port has the  
maximum of 4 pins. The GPIOE port has the maximum of 1 pin. The GPIOF port has the  
maximum of 7 pins. Each of the 56 pins is independent and has the corresponding register bits to  
control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as input, output, open-  
drain or Quasi-bidirectional mode. After reset, the I/O mode of all pins are depending on  
Config0[10] setting. In Quasi-bidirectional mode, I/O pin has a very weak individual pull-up  
resistor which is about 110~300 Kfor VDD from 5.0 V to 2.5 V.  
6.5.2 Features  
Four I/O modes:  
Quasi-bidirectional  
-
-
-
-
Push-Pull output  
Open-Drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable by GPx_TYPE[15:0] in GPx_MFP[31:16]  
I/O pin configured as interrupt source with edge/level setting  
Configurable default I/O mode of all pins after reset by Config0[10] setting  
-
-
If Config[10] is 0, all GPIO pins in input tri-state mode after chip reset  
If Config[10] is 1, all GPIO pins in Quasi-bidirectional mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the pin wake-up function  
Dec 18, 2018  
Page 39 of 70  
Rev 1.01  
NUC029xDE  
6.7 Timer Controller (TIMER)  
6.7.1 Overview  
The timer controller includes four 32-bit timers, TIMER0 ~ TIMER3, allowing user to easily  
implement a timer control for applications. The timer can perform functions, such as frequency  
measurement, delay timing, clock generation, and event counting by external input pins, and  
interval measurement by external capture pins.  
6.7.2 Features  
Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides four timer counting modes: one-shot, periodic, toggle and continuous  
counting  
Time-out period = (Period of timer clock input) * (8-bit prescale counter + 1) * (24-bit  
TCMP)  
Maximum counting cycle time = (1 / T MHz) * (28) * (224), T is the period of timer clock  
24-bit up counter value is readable through TDR (Timer Data Register)  
Supports event counting function to count the event from external counter pin  
(TM0~TM3)  
Supports external pin capture (TM0_EXT~TM3_EXT) for interval measurement  
Supports external pin capture (TM0_EXT~TM3_EXT) for reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is  
generated  
Dec 18, 2018  
Page 40 of 70  
Rev 1.01  
NUC029xDE  
6.8 PWM Generator and Capture Timer (PWM)  
6.8.1 Overview  
The NUC029LDE/NUC029SDE provides two PWM generators PWM0 and PWM1. Each PWM  
supports 6 channels of PWM output or input capture. There is a 12-bit prescaler to support  
flexible clock to the 16-bit PWM counter with 16-bit comparator. The PWM counter supports up,  
down and up-down counter types. PWM uses the comparator compared with counter to generate  
events. These events are used to generate PWM pulse, interrupt and trigger signal for ADC to  
start conversion.  
The PWM generator supports two standard PWM output modes: Independent mode and  
Complementary mode, which have difference architecture. In Complementary mode, there are  
two comparators to generate various PWM pulse with 12-bit dead-time generator. For PWM  
output control unit, it supports polarity output, independent pin mask, tri-state output enable and  
brake functions.  
The PWM generator also supports input capture function to latch PWM counter value to the  
corresponding register when input channel has a rising transition, falling transition or both  
transition is happened.  
6.8.2 Features  
6.8.2.1 PWM function features  
Supports maximum clock frequency up to100 MHz  
Supports up to two PWM modules, each module provides 6 output channels  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 3 complementary paired PWM output channel  
Dead-time insertion with 12-bit resolution  
Two compared values during one period  
Supports 12-bit pre-scalar from 1 to 4096  
Supports 16-bit resolution PWM counter, each module provides 3 PWM counters  
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Brake source from pin and system safety events (clock failed, Brown-out  
detection and CPU lockup)  
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake interrupt cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM counter match zero, period value or compared value  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM counter match zero, period value or compared value  
Dec 18, 2018  
Page 41 of 70  
Rev 1.01  
NUC029xDE  
6.8.2.2 Capture Function Features  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Dec 18, 2018  
Page 42 of 70  
Rev 1.01  
NUC029xDE  
6.9 Watchdog Timer (WDT)  
6.9.1 Overview  
The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown  
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog  
Timer supports the function to wake-up system from Idle/Power-down mode.  
6.9.2 Features  
18-bit free running up counter for Watchdog Timer time-out interval.  
Selectable time-out interval (24 ~ 218) WDT_CLK cycle and the time-out interval period  
is 104 ms ~ 26.3168 s if WDT_CLK = 10 kHz.  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports Watchdog Timer reset delay period  
-
Selectable it includes (102613018 or 3) * WDT_CLK reset delay period.  
Supports to force Watchdog Timer enabled after chip powered on or reset while  
CWDTEN (CONFIG0[31] Watchdog Enable) bit is set to 0.  
Supports Watchdog Timer time-out wake-up function only if WDT clock source is  
selected as 10 kHz  
Dec 18, 2018  
Page 43 of 70  
Rev 1.01  
NUC029xDE  
6.10 Window Watchdog Timer (WWDT)  
6.10.1 Overview  
The Window Watchdog Timer is used to perform a system reset within a specified window period  
to prevent software run to uncontrollable status by any unpredictable condition.  
6.10.2 Features  
6-bit down counter value (WWDTVAL[5:0]) and 6-bit compare window value  
(WWDTCR[21:16]) to make the WWDT time-out window period flexible  
Supports 4-bit value to programmable maximum 11-bit prescale counter period of  
WWDT counter  
Dec 18, 2018  
Page 44 of 70  
Rev 1.01  
NUC029xDE  
6.11 UART Interface Controller (UART)  
6.11.1 Overview  
The NuMicro® NUC029LDE/NUC029SDE provides up to four channels of Universal  
Asynchronous Receiver/Transmitters (UART). UART0/UART1/UART2 supports 16 bytes entry  
FIFO and UART3 support 1 byte buffer for data payload. Besides, only UART0 and UART1  
support the flow control function. The UART Controller performs a serial-to-parallel conversion on  
data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the  
CPU. The UART controller also supports IrDA SIR Function. UART0/UART1 provides RS-485  
function mode. UART0/UART1/UART2 provides LIN master/slave function.  
6.11.2 Features  
Full duplex, asynchronous communications  
Separates receive / transmit 16/16 bytes (UART0/UART1/UART2 support) entry FIFO  
and 1/1 bytes buffer for data payloads (UART3 support)  
Supports hardware auto-flow control function (CTS, RTS) and programmable RTS  
flow control trigger level (UART0/UART1 support).  
Programmable receiver buffer trigger level  
Supports programmable baud-rate generator for each channel individually  
Supports CTS wake-up function (UART0/UART1 support)  
Supports 7-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit  
by setting DLY (UA_TOR [15:8]) register  
Supports break error, frame error, parity error and receive / transmit buffer overflow  
detect function  
Fully programmable serial-interface characteristics  
-
-
Programmable data bit length, 5-, 6-, 7-, 8-bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
-
Programmable stop bit length, 1, 1.5, or 2 stop bit generation  
IrDA SIR function mode  
Supports 3/16-bit duration for normal mode  
LIN function mode (UART0/UART1/UART2 support)  
-
-
-
-
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detect function for receiver  
RS-485 function mode. (UART0/UART1 support)  
-
-
Supports RS-485 9-bit mode  
Supports hardware or software direct enable control provided by RTS pin.  
Dec 18, 2018  
Page 45 of 70  
Rev 1.01  
NUC029xDE  
6.12 I2C Serial Interface Controller (I2C)  
6.12.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange  
between devices. The I2C standard is a true multi-master bus including collision detection and  
arbitration that prevents data corruption if two or more masters attempt to control the bus  
simultaneously.  
6.12.2 Features  
The I2C bus uses two wires (I2Cn_SDA and I2Cn_SCL) to transfer information between devices  
connected to the bus. The main features of the I2C bus include:  
Supports up to two I2C serial interface controller  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data on  
the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Built-in a 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and  
timer-out counter overflows.  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Power-down wake-up function  
Dec 18, 2018  
Page 46 of 70  
Rev 1.01  
NUC029xDE  
6.13 Serial Peripheral Interface (SPI)  
6.13.1 Overview  
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that  
operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bi-  
direction interface. The NuMicro® NUC029LDE/NUC029SDE contains one set of SPI controllers  
performing a serial-to-parallel conversion on data received from a peripheral device, and a  
parallel-to-serial conversion on data transmitted to a peripheral device. This SPI controller can be  
configured as a master or a slave device.  
The SPI controller supports the variable bus clock function for special applications.  
6.13.2 Features  
One set of SPI controller  
Supports Master or Slave mode operation  
Supports Dual I/O Transfer mode  
Configurable bit length of a transaction word from 8 to 32 bits  
Provides separate 8-layer depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports the Byte Reorder function  
Supports Byte or Word Suspend mode  
Variable output bus clock frequency in Master mode  
Supports 3-wire, no slave select signal, bi-direction interface  
Dec 18, 2018  
Page 47 of 70  
Rev 1.01  
NUC029xDE  
6.14 Analog-to-Digital Converter (ADC)  
6.14.1 Overview  
The NuMicro® NUC029LDE/NUC029SDE contains one 12-bit successive approximation analog-  
to-digital converters (SAR A/D converter) with 8 input channels. The A/D converter supports three  
operation modes: single, single-cycle scan and continuous scan mode. The A/D converter can be  
started by software, PWM trigger and external STADC pin.  
6.14.2 Features  
Analog input voltage range: 0~VREF  
12-bit resolution and 10-bit accuracy is guaranteed  
Up to 8 single-end analog input channels or 4 differential analog input channels  
Up to 1000 kSPS conversion rate (chip working at 5V)  
Three operating modes  
-
-
Single mode: A/D conversion is performed one time on a specified channel  
Single-cycle scan mode: A/D conversion is performed one cycle on all specified  
channels with the sequence from the smallest numbered channel to the largest  
numbered channel  
-
Continuous scan mode: A/D converter continuously performs Single-cycle scan  
mode until software stops A/D conversion  
An A/D conversion can be started by:  
-
-
-
Writing 1 to ADST bit (ADCR[11])through software  
PWM trigger  
External pin STADC  
Conversion results are held in data registers for each channel with valid and overrun  
indicators  
Supports two set digital comparators. The conversion result can be compared with  
specify value and user can select whether to generate an interrupt when conversion  
result matches the compare register setting  
Channel 7 supports 2 input sources: external analog voltage, and internal Band-gap  
voltage  
Dec 18, 2018  
Page 48 of 70  
Rev 1.01  
NUC029xDE  
7
ELECTRICAL CHARACTERISTICS  
7.1 Absolute Maximum Ratings  
Symbol  
Parameter  
VDDVSS  
VIN  
Min.  
-0.3  
VSS-0.3  
4
Max.  
+7.0  
VDD+0.3  
24  
Unit  
V
DC Power Supply  
Input Voltage  
V
Oscillator Frequency  
1/tCLCL  
TA  
MHz  
C  
Operating Temperature  
-40  
+105  
+150  
120  
Storage Temperature  
TST  
-55  
C  
Maximum Current into VDD  
Maximum Current out of VSS  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
-
mA  
mA  
mA  
mA  
mA  
mA  
120  
35  
35  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability  
of the device.  
Dec 18, 2018  
Page 49 of 70  
Rev 1.01  
NUC029xDE  
7.2 DC Electrical Characteristics  
(VDD-VSS=5.5 V, TA = 25C, FOSC = 50 MHz unless otherwise specified.)  
Specification  
Parameter  
Operation Voltage  
Power Ground  
Sym.  
Test Conditions  
Min.  
Typ.  
Max. Unit  
VDD  
2.5  
5.5  
0.3  
V
V
V
VDD = 2.5V ~ 5.5V up to 50 MHz  
VSS  
-0.3  
0
AVSS  
LDO Output Voltage  
Band-gap Voltage  
VLDO  
1.62  
1.8  
1.98  
VDD ≥ 2.5V  
1.20  
1.20  
V
V
VDD = 2.5 V ~ 5.5 V, TA = 25C  
VBG  
1.19  
1.22  
VDD = 2.5 V ~ 5.5 V, TA = -40C~105C  
Analog Operating  
Voltage  
When system used analog function, please refer to TRM  
chapter 6.5 for corresponding analog operating voltage  
AVDD  
VDD  
V
All digital  
module  
VDD  
HXT  
HIRC  
PLL  
Operating Current  
Normal Run Mode  
at 50 MHz  
IDD1  
26  
mA  
5.5V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
V
V
V
V
V
V
V
X
X
X
V
X
V
X
V
X
V
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
12  
24  
11  
10  
4.1  
10  
mA  
mA  
mA  
mA  
mA  
mA  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
while(1){} executed  
from flash  
VLDO =1.8 V  
Operating Current  
Normal Run Mode  
at 22.1184 MHz  
-
-
-
-
-
-
X
X
while(1){} executed  
from flash  
IDD8  
-
4.1  
-
mA  
3.3V  
VLDO =1.8 V  
X
V
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
V
X
V
X
V
X
V
X
Operating Current  
Normal Run Mode  
at 12 MHz  
IDD9  
IDD10  
IDD11  
IDD12  
IDD13  
IDD14  
IDD15  
IDD16  
8.3  
4.3  
6.8  
2.8  
3.9  
2.6  
2.6  
1.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
3.3V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
4 MHz  
4 MHz  
4 MHz  
4 MHz  
while(1){} executed  
from flash  
VLDO =1.8 V  
Operating Current  
Normal Run Mode  
at 4 MHz  
while(1){} executed  
from flash  
VLDO =1.8 V  
All digital  
module  
Operating Current  
Normal Run Mode  
at 10 kHz  
VDD  
HXT/LXT LIRC (kHz)  
10  
PLL  
X
IDD21  
111  
A  
5.5V  
X
V
Dec 18, 2018  
Page 50 of 70  
Rev 1.01  
NUC029xDE  
Specification  
Parameter  
Sym.  
Test Conditions  
Min.  
Typ.  
108  
98  
Max. Unit  
while(1){} executed  
from flash  
IDD22  
IDD23  
IDD24  
5.5V  
3.3V  
3.3V  
A  
A  
A  
X
X
X
10  
10  
10  
X
X
X
X
V
X
VLDO =1.8 V  
96  
All digital  
module  
VDD  
HXT  
HIRC  
PLL  
IIDLE1  
21  
mA  
Operating Current  
Idle Mode  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
V
V
V
V
X
X
V
V
V
V
X
X
X
X
X
X
V
X
V
X
X
X
V
X
V
X
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
IIDLE8  
IIDLE9  
IIDLE10  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
at 50 MHz  
VLDO =1.8 V  
20  
6.7  
7.7  
2.1  
7.7  
2.1  
7.3  
3.2  
-
-
-
-
-
-
-
-
Operating Current  
Idle Mode  
X
at 22.1184 MHz  
VLDO =1.8 V  
X
X
12 MHz  
12 MHz  
Operating Current  
Idle Mode  
at 12 MHz  
IIDLE11  
IIDLE12  
IIDLE13  
IIDLE14  
IIDLE15  
IIDLE16  
5.8  
1.7  
mA  
mA  
3.3V  
3.3V  
12 MHz  
X
X
V
VLDO =1.8 V  
12 MHz  
4 MHz  
4 MHz  
X
X
X
X
X
X
X
V
X
3.6  
2.2  
mA  
mA  
5.5V  
5.5V  
Operating Current  
Idle Mode  
at 4 MHz  
2.3  
mA  
mA  
3.3V  
3.3V  
4 MHz  
4 MHz  
X
X
X
X
V
X
VLDO =1.8 V  
0.96  
All digital  
module  
VDD  
HXT/LXT LIRC (kHz)  
PLL  
X
IIDLE21  
110  
A  
5.5V  
5.5V  
X
X
X
X
10  
10  
10  
10  
V
X
V
X
Operating Current  
Idle Mode  
IIDLE22  
IIDLE23  
IIDLE24  
107  
97  
A  
A  
A  
X
at 10 kHz  
3.3V  
3.3V  
X
95  
X
HXT/HIRC  
PLL  
RAM  
retension  
VDD  
LXT (kHz)  
RTC  
IPWD1  
15  
A  
Standby Current  
Power-down Mode  
(Deep Sleep Mode)  
VLDO =1.6 V  
5.5V  
5.5V  
3.3V  
3.3V  
X
X
X
X
X
X
X
V
V
V
V
V
V
IPWD2  
IPWD3  
IPWD4  
15  
17  
17  
A  
A  
A  
X
32.768  
32.768  
Dec 18, 2018  
Page 51 of 70  
Rev 1.01  
NUC029xDE  
Specification  
Parameter  
Sym.  
Test Conditions  
Min.  
Typ.  
10  
Max. Unit  
IPWD5  
IPWD6  
5.5V  
3.3V  
A  
A  
X
X
X
X
X
X
X
X
9
Input Current PA,  
PB, PC, PD, PE, PF  
(Quasi-bidirectional  
mode)  
IIN1  
-67  
-
-75  
+1  
VDD = 5.5V, VIN = 0V or VIN=VDD  
A  
A  
A  
V
Input Leakage  
Current PA, PB, PC,  
PD, PE, PF  
VDD = 5.5V, 0<VIN<VDD  
ILK  
-1  
Open-drain or input only mode.  
Logic 1 to 0  
Transition Current  
PA~PF (Quasi-  
bidirectional mode)  
[3]  
ITL  
-610  
-650  
VDD = 5.5V, VIN=2.0V  
Input Low Voltage  
PA, PB, PC, PD, PE,  
PF (TTL input)  
-0.3  
-0.3  
-
-
0.8  
0.6  
VDD = 4.5V  
VDD = 2.5V  
VIL1  
VIH1  
VIL3  
VIH3  
VDD  
+0.2  
2.0  
1.5  
-
-
VDD = 5.5V  
VDD =3.0V  
Input High Voltage  
PA, PB, PC, PD, PE,  
PF (TTL input)  
V
VDD  
+0.2  
0
0
-
-
0.8  
0.4  
VDD = 4.5V  
VDD = 3.0V  
Input Low Voltage  
XT1_IN[*2]  
V
V
VDD  
+0.3  
3.5  
2.4  
-
-
VDD = 5.5V  
VDD = 3.0V  
Input High Voltage  
XT1_IN[*2]  
VDD  
+0.3  
Negative going  
threshold  
VILS  
-0.3  
-
-
0.2VDD  
V
V
(Schmitt input),  
nRESET  
Positive going  
threshold  
VDD  
+0.3  
VIHS  
0.7 VDD  
(Schmitt input),  
nRESET  
Internal nRESET pin  
pull up resistor  
RRST  
40  
150  
kΩ  
Negative going  
threshold  
0.3  
VDD  
VILS  
-0.3  
-
-
V
(Schmitt input),  
Positive going  
threshold  
VDD  
+0.3  
VIHS  
0.7 VDD  
V
(Schmitt input),  
ISR11  
ISR12  
ISR12  
-300  
-50  
-400  
-80  
VDD = 4.5V, VS = 2.4V  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
A  
A  
A  
Source Current PA,  
PB, PC, PD, PE, PF  
(Quasi-bidirectional  
Mode)  
-40  
-73  
Dec 18, 2018  
Page 52 of 70  
Rev 1.01  
NUC029xDE  
Specification  
Parameter  
Sym.  
Test Conditions  
Min.  
-20  
-3  
Typ.  
-26  
Max. Unit  
ISR21  
ISR22  
mA VDD = 4.5V, VS = 2.4V  
mA VDD = 2.7V, VS = 2.2V  
mA VDD = 2.5V, VS = 2.0V  
Source Current PA,  
PB, PC, PD, PE, PF  
(Push-pull Mode)  
-5.2  
ISR22  
ISK1  
ISK1  
ISK1  
-2.5  
10  
6
-5  
17  
11  
10  
mA VDD = 4.5V, VS = 0.45V  
mA VDD = 2.7V, VS = 0.45V  
mA VDD = 2.5V, VS = 0.45V  
Sink Current PA, PB,  
PC, PD, PE, PF  
(Quasi-bidirectional  
and Push-pull Mode)  
5
Note:  
1. nRESET pin is a Schmitt trigger input.  
2. Crystal Input is a CMOS input.  
3. Pins of PA, PB, PC, PD, PE and PF can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD = 5.5 V, the transition current reaches its maximum value when VIN approximates to 2 V.  
Dec 18, 2018  
Page 53 of 70  
Rev 1.01  
NUC029xDE  
7.3 AC Electrical Characteristics  
7.3.1 External 4~24 MHz High Speed Oscillator  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
0.7 VDD  
0.3 VDD  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
Symbol  
tCHCX  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
nS  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
10  
10  
2
-
-
-
-
-
tCLCX  
-
nS  
tCLCH  
15  
15  
nS  
tCHCL  
2
nS  
7.3.2 External 4~24 MHz High Speed Crystal  
Symbol  
VHXT  
Parameter  
Operation Voltage VDD  
Temperature  
Condition  
Min.  
2.5  
-40  
-
Typ.  
Max.  
5.5  
105  
-
Unit  
V
-
-
-
-
TA  
12 MHz at VDD = 5V  
12 MHz at VDD = 3V  
External crystal  
2
mA  
mA  
MHz  
IHXT  
Operating Current  
Clock Frequency  
0.8  
fHXT  
4
24  
7.3.2.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R
4 MHz ~ 24 MHz  
10~20pF  
10~20pF  
without  
XT1_OUT  
XT1_IN  
R
C1  
C2  
Dec 18, 2018  
Page 54 of 70  
Rev 1.01  
NUC029xDE  
Figure 7-1 Typical Crystal Application Circuit  
7.3.3 Internal 22.1184 MHz High Speed Oscillator  
Symbol  
VHRC  
Parameter  
Operation Voltage VDD  
Condition  
Min.  
2.5  
-
Typ.  
Max.  
5.5  
-
Unit  
V
-
-
Center Frequency  
-
22.1184  
-
MHz  
%
+25; VDD =5 V  
-1  
+1  
fHRC  
Calibrated Internal Oscillator Frequency  
Operation Current  
-40~+105;  
-2  
-
-
+2  
-
%
VDD=2.5 V~5.5 V  
IHRC  
VDD =5 V  
744  
uA  
HIRC oscillator accuracy vs. temperature  
0.40  
0.20  
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
-1.20  
-1.40  
-1.60  
-1.80  
Min  
Max  
-40 -30 -20 -10 0 10 20 25 30 40 50 60 70 80 85 90 100110  
Temperature()  
Figure 7-2 HIRC Accuracy vs. Temperature  
7.3.4 Internal 10 kHz Low Speed Oscillator  
Symbol  
parameter  
Operation Voltage VDD  
Center Frequency  
Condition  
Min.  
2.5  
-
Typ.  
-
Max.  
Unit  
V
VLRC  
fLRC  
-
-
5.5  
-
10  
kHz  
Dec 18, 2018  
Page 55 of 70  
Rev 1.01  
NUC029xDE  
+25; VDD =5 V  
-10  
-50  
-
-
+10  
+50  
%
%
Calibrated Internal  
Oscillator Frequency  
-
-40~+105;  
VDD=2.5 V~5.5 V  
Dec 18, 2018  
Page 56 of 70  
Rev 1.01  
NUC029xDE  
7.4 Analog Characteristics  
7.4.1 12-bit SARADC Specification  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Bit  
-
Resolution  
-
-
-
-
-
-
-
12  
DNL  
INL  
EO  
Differential nonlinearity error  
Integral nonlinearity error  
Offset error  
-1~2  
-1~4  
LSB  
LSB  
LSB  
-
±2  
±4  
-
3
EG  
Gain error (Transfer gain)  
Absolute Error  
-3  
-
EA  
4
-
LSB  
-
Monotonic  
Guaranteed  
FADC  
FS  
ADC clock frequency (AVDD = 4.5V~5.5V)  
-
-
-
-
21  
MHz  
kSPS  
1/FADC  
1/FADC  
Sample rate (FADC/TCONV  
)
1000  
TACQ  
TCONV  
Acquisition Time (Sample Stage)  
Total Conversion Time  
2~9  
16~23  
VDDA  
Supplt Current  
3
0
-
5.5  
V
IDDA  
VIN  
CIN  
RIN  
Supply current (Avg.)  
Input voltage  
2.9  
-
mA  
V
AVDD  
Input Capacitance  
Input Load  
6
pF  
kΩ  
6.5  
Dec 18, 2018  
Page 57 of 70  
Rev 1.01  
NUC029xDE  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
7.4.2 LDO and Power Management Specification  
Symbol  
Parameter  
Input Voltage VDD  
Output Voltage  
Min.  
2.5  
Typ.  
Max.  
5.5  
Unit  
V
Note  
VDD  
VDD input voltage  
VDD > 2.5 V  
VLDO  
1.62  
-40  
1.8  
25  
1.98  
105  
V
TA  
Operating Temperature  
Note:  
1. It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of the device.  
2. For ensuring power stability, a 1μF Capacitor must be connected between LDO_CAP pin and the closest VSS pin of the  
device..  
Dec 18, 2018  
Page 58 of 70  
Rev 1.01  
NUC029xDE  
7.4.3 Low Voltage Reset Specification  
Symbol  
Parameter  
Operation Voltage  
Quiescent Current  
Operation Temperature  
Condition  
-
Min.  
0
Typ.  
-
Max.  
5.5  
Unit  
V
AVDD  
TA  
AVDD=5.5 V  
-
-
1
5
A  
ILVR  
-40  
2.00  
1.95  
2.04  
25  
105  
2.4  
TA = 25  
TA = -40 ℃  
TA = 105 ℃  
2.0  
1.98  
2.13  
V
V
V
VLVR  
Threshold Voltage  
2.02  
2.25  
7.4.4 Brown-out Detector Specification  
Symbol  
Parameter  
Operation Voltage  
Temperature  
Condition  
-
Min.  
0
Typ.  
-
Max.  
5.5  
Unit  
V
AVDD  
TA  
μA  
V
-
-40  
25  
105  
140  
4.56  
3.84  
2.8  
IBOD  
Quiescent Current  
AVDD=5.5 V  
-
-
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
4.45  
3.74  
2.73  
2.22  
4.34  
3.65  
2.66  
2.16  
4.53  
3.8  
Brown-out Voltage  
(Falling edge)  
V
VBOD  
2.77  
2.25  
4.39  
3.69  
2.69  
2.19  
V
2.28  
4.41  
3.71  
2.7  
V
V
V
Brown-out Voltage  
(Rising edge)  
VBOD  
V
2.2  
V
7.4.5 Power-on Reset Specification  
Symbol  
Parameter  
Operation Temperature  
Reset Voltage  
Condition  
Min.  
-40  
Typ.  
25  
Max.  
105  
2.4  
Unit  
TA  
-
VPOR  
V+  
1.6  
2
V
VDD Start Voltage to  
Ensure Power-on Reset  
VPOR  
-
-
-
-
-
100  
-
mV  
VDD Raising Rate to  
Ensure Power-on Reset  
RRVDD  
0.025  
V/ms  
Minimum Time for VDD  
Stays at VPOR to  
tPOR  
-
0.5  
-
-
ms  
Ensure Power-on Reset  
Dec 18, 2018  
Page 59 of 70  
Rev 1.01  
NUC029xDE  
VDD  
tPOR  
RRVDD  
VPOR  
Time  
Figure 7-3 Power-up Ramp Condition  
Dec 18, 2018  
Page 60 of 70  
Rev 1.01  
NUC029xDE  
7.5 Flash DC Electrical Characteristics  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Min.  
1.62  
20000  
100  
20  
Typ.  
Max.  
Unit  
V[2]  
[2]  
1.8  
1.98  
VFLA  
NENDUR  
TRET  
Endurance  
-
-
-
-
-
-
-
-
-
-
cycles[1]  
year  
ms  
At 25℃  
Data Retention  
Page Erase Time  
Mass Erase Time  
Program Time  
TERASE  
TMER  
40  
ms  
TPROG  
Note:  
40  
μs  
1. Number of program/erase cycles.  
2. VFLA is source from chip LDO output voltage.  
Dec 18, 2018  
Page 61 of 70  
Rev 1.01  
NUC029xDE  
7.6 I2C Dynamic Characteristics  
Standard Mode[1][2]  
Fast Mode[1][2]  
Symbol  
Parameter  
Unit  
Min.  
max.  
Min.  
max.  
tLOW  
SCL low period  
SCL high period  
uS  
uS  
uS  
uS  
uS  
uS  
nS  
uS  
nS  
nS  
pF  
tHIGH  
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
4
-
-
0.6  
-
-
4
4.7[3]  
250  
0[4]  
-
0.6  
-
1.2[3]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
100  
-
Data hold time  
3.45[5]  
1000  
300  
400  
0[4]  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
tf  
SCL/SDA fall time  
-
-
-
Cb  
Capacitive load for each bus line  
-
Note:  
1. Guaranteed by design, not tested in production.  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8 MHz to  
achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of  
the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL  
signal.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 7-4 I2C Timing Diagram  
Dec 18, 2018  
Page 62 of 70  
Rev 1.01  
NUC029xDE  
7.7 SPI Dynamic Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
SPI Master Mode (VDD = 4.5 V ~ 5.5 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
1
2
SPI Master Mode (VDD = 3.0 V ~ 3.6 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
2
4
SPI Slave Mode (VDD = 4.5 V ~ 5.5 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
3.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
16  
22  
SPI Slave Mode (VDD = 3.0 V ~ 3.6 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
18  
24  
CLKP=0  
CLKP=1  
SPICLK  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 7-5 SPI Master Mode Timing Diagram  
Dec 18, 2018  
Page 63 of 70  
Rev 1.01  
NUC029xDE  
CLKP=0  
CLKP=1  
SPICLK  
tDS  
tDH  
Data Valid  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tv  
Data Valid  
tDS  
tDH  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tv  
Data Valid  
Figure 7-6 SPI Slave Mode Timing Diagram  
Dec 18, 2018  
Page 64 of 70  
Rev 1.01  
NUC029xDE  
7.8 I2S Dynamic Characteristics  
Symbol  
tw(CKH)  
tw(CKL)  
tv(WS)  
Parameter  
I2S clock high time  
I2S clock low time  
WS valid time  
Min  
42  
37  
7
Max  
Unit  
Test Conditions  
-
-
-
-
-
-
Master fPCLK = MHz, data: 24 bits, audio  
frequency = 256 kHz  
Master mode  
Master mode  
Slave mode  
Slave mode  
ns  
th(WS)  
WS hold time  
1
tsu(WS)  
th(WS)  
WS setup time  
WS hold time  
34  
0
I2S slave input clock  
duty cycle  
DuCy(SCK)  
25  
75  
%
Slave mode  
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
0
0
0
0
-
-
-
Master receiver  
Data input setup time  
Data input hold time  
Slave receiver  
-
Master receiver  
-
Slave receiver  
ns  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
32  
-
Slave transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Master transmitter (after enable edge)  
16  
-
5
-
0
CPOL = 0  
tw(CKH)  
CPOL = 1  
tw(CKL)  
th(WS)  
tv(WS)  
WS output  
SDtransmit  
tv(SD_ST)  
Bitn transmit  
th(SD_MR)  
Bitn receive  
th(SD_ST)  
LSB transmit(2)  
MSB transmit  
MSB receive  
LSB transmit  
tsu(SD_MR)  
SDreceive  
LSB receive(2)  
LSB receive  
Figure 7-7 I2S Master Mode Timing Diagram  
Dec 18, 2018  
Page 65 of 70  
Rev 1.01  
NUC029xDE  
CPOL = 0  
CPOL = 1  
tw(CKH)  
tw(CKL)  
th(WS)  
WS input  
SDtransmit  
tv(SD_ST)  
Bitn transmit  
th(SD_SR)  
Bitn receive  
tsu(WS)  
th(SD_ST)  
LSB transmit(2)  
MSB transmit  
MSB receive  
LSB transmit  
tsu(SD_SR)  
SDreceive  
LSB receive(2)  
LSB receive  
Figure 7-8 I2S Slave Mode Timing Diagram  
Dec 18, 2018  
Page 66 of 70  
Rev 1.01  
NUC029xDE  
8
APPLICATION CIRCUIT  
AVCC  
AVDD  
DVCC  
[1]  
FB  
DVCC  
VDD  
Power  
SPISS0  
SPICLK0  
MISO_0  
CS  
CLK  
MISO  
MOSI  
VDD  
0.1uF  
0.1uF  
SPI Device  
VSS  
VSS  
MOSI_0  
FB  
AVSS  
DVCC  
4.7K  
DVCC  
DVCC  
4.7K  
100K  
100K  
CLK  
DIO  
VDD  
SCL  
SDA  
VDD  
NUC029LDE /  
NUC029SDE  
I2C Device  
ICE_CLK  
ICE_DAT  
nRST  
VSS  
SWD  
Interface  
VSS  
20p  
XT1_IN  
PC COM Port  
Crystal  
4~24 MHz  
crystal  
20p  
RS232 Transceiver  
ROUT RIN  
XT1_OUT  
RXD  
TXD  
TIN  
TOUT  
UART  
DVCC  
10K  
Reset  
Circuit  
LDO_CAP  
nRESET  
1uF  
LDO  
10uF/25V  
Note: For the SPI device, the chip supply voltage  
must be equal to SPI device working voltage. For  
example, when the SPI Flash working voltage is  
3.3 V, the chip supply voltage must also be 3.3V.  
Dec 18, 2018  
Page 67 of 70  
Rev 1.01  
NUC029xDE  
9
PACKAGE DIMENSIONS  
9.1 64-pin LQFP (7x7x1.4 mm footprint 2.0 mm)  
Dec 18, 2018  
Page 68 of 70  
Rev 1.01  
NUC029xDE  
9.2 48-pin LQFP (7x7x1.4 mm footprint 2.0 mm)  
Dec 18, 2018  
Page 69 of 70  
Rev 1.01  
NUC029xDE  
10 REVISION HISTORY  
Date  
Revision  
Description  
2018.06.19  
1.00  
Initial version.  
1. Added the part number NUC029KGE in section 4.1 and section 4.2.  
2018.12.18  
1.01  
2. Modified the application circuit - ICE added pull up resistor in chapter 8.  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Dec 18, 2018  
Page 70 of 70  
Rev 1.01  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY