NUC029ZXN [NUVOTON]

ARM® Cortex®-M0 32-bit Microcontroller;
NUC029ZXN
型号: NUC029ZXN
厂家: NUVOTON    NUVOTON
描述:

ARM® Cortex®-M0 32-bit Microcontroller

微控制器
文件: 总102页 (文件大小:1983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NUC029  
ARM® Cortex® -M0  
32-bit Microcontroller  
NuMicro® Family  
NUC029 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Apr 3, 2019  
Page 1 of 102  
Rev 1.06  
NUC029  
Table of Contents  
LIST OF FIGURES .....................................................................................................6  
LIST OF TABLES.......................................................................................................7  
1 GENERAL DESCRIPTION.....................................................................................8  
2 FEATURES ............................................................................................................9  
3 ABBREVIATIONS ................................................................................................13  
4 PARTS INFORMATION LIST AND PIN CONFIGURATION................................14  
4.1 NuMicro® NUC029 Series Selection Guide ..................................................14  
4.2 Pin Configuration .................................................................................16  
4.2.1 NuMicro® NUC029 Pin Diagram.....................................................................16  
4.3 Pin Description....................................................................................20  
4.3.1 NuMicro® NUC029 Pin Description .................................................................20  
5 FUNCTIONAL DESCRIPTION.............................................................................27  
5.1 ARM® Cortex® -M0 Core ........................................................................27  
5.2 System Manager .................................................................................29  
5.2.1 Overview ................................................................................................29  
5.2.2 System Reset ..........................................................................................29  
5.2.3 System Power Distribution ...........................................................................30  
5.2.4 System Memory Map .................................................................................31  
5.2.5 Whole System Memory Mapping....................................................................34  
5.2.6 System Timer (SysTick) ..............................................................................36  
5.2.7 Nested Vectored Interrupt Controller (NVIC)......................................................36  
5.3 Clock Controller of NuMicro® NUC029xAN ..................................................41  
5.3.1 Overview ................................................................................................41  
5.3.2 System Clock and SysTick Clock ...................................................................44  
5.3.3 Power-down Mode Clock.............................................................................45  
5.3.4 Frequency Divider Output ............................................................................46  
5.4 Clock Controller of NuMicro® NUC029FAE ..................................................47  
5.4.1 Overview ................................................................................................47  
5.4.2 System Clock and SysTick Clock ...................................................................48  
5.4.3 ISP Clock Source Selection..........................................................................49  
5.4.4 Module Clock Source Selection .....................................................................49  
5.4.5 Power-down Mode Clock.............................................................................50  
5.5 Flash Memory Controller (FMC) ...............................................................51  
5.5.1 Overview ................................................................................................51  
Apr 3, 2019  
Page 2 of 102  
Rev 1.06  
NUC029  
5.5.2 Features.................................................................................................51  
5.6 External Bus Interface (EBI) (NUC029LAN/NUC029NAN Only) .........................52  
5.6.1 Overview ................................................................................................52  
5.6.2 Features.................................................................................................52  
5.7 General Purpose I/O (GPIO) ...................................................................53  
5.7.1 Overview ................................................................................................53  
5.7.2 Features.................................................................................................53  
5.8 Timer Controller (TIMER) .......................................................................54  
5.8.1 Overview ................................................................................................54  
5.8.2 Features.................................................................................................54  
5.9 PWM Generator and Capture Timer (PWM) (NUC029xAN Only) ........................55  
5.9.1 Overview ................................................................................................55  
5.9.2 Features.................................................................................................56  
5.10Enhanced PWM Generator (NUC029FAE Only)............................................57  
5.10.1 Overview ................................................................................................57  
5.10.2 Features.................................................................................................57  
5.11Watchdog Timer (WDT) .........................................................................59  
5.11.1 Overview ................................................................................................59  
5.11.2 Features.................................................................................................59  
5.12Window Watchdog Timer (WWDT) (NUC029xAN Only)...................................60  
5.12.1 Overview ................................................................................................60  
5.12.2 Features.................................................................................................60  
5.13UART Interface Controller (UART) ............................................................61  
5.13.1 Overview ................................................................................................61  
5.13.2 Features.................................................................................................61  
5.14I2C Serial Interface Controller (I2C)............................................................62  
5.14.1 Overview ................................................................................................62  
5.14.2 Features.................................................................................................62  
5.15Serial Peripheral Interface (SPI) ...............................................................63  
5.15.1 Overview ................................................................................................63  
5.15.2 Features.................................................................................................63  
5.16Analog-to-Digital Converter (ADC) ............................................................64  
5.16.1 Overview ................................................................................................64  
5.16.2 Features.................................................................................................64  
5.17Analog Comparator (ACMP)....................................................................66  
Apr 3, 2019  
Page 3 of 102  
Rev 1.06  
NUC029  
5.17.1 Overview ................................................................................................66  
5.17.2 Features.................................................................................................66  
5.18Hardware Divider (HDIV) (NUC029xAN Only)...............................................67  
5.18.1 Overview ................................................................................................67  
5.18.2 Features.................................................................................................67  
6 APPLICATION CIRCUIT......................................................................................68  
7 NUC029XAN ELECTRICAL CHARACTERISTICS..............................................69  
7.1 Absolute Maximum Ratings.....................................................................69  
7.2 DC Electrical Characteristics ...................................................................70  
7.3 AC Electrical Characteristics ...................................................................74  
7.3.1 External Input Clock...................................................................................74  
7.3.2 External 4~24 MHz High Speed Crystal (HXT) ...................................................74  
7.3.3 Internal 22.1184 MHz High Speed RC Oscillator (HIRC) .......................................75  
7.3.4 Internal 10 kHz Low Speed RC Oscillator (LIRC) ................................................75  
7.4 Analog Characteristics...........................................................................76  
7.4.1 12-bit SAR ADC Specification .......................................................................76  
7.4.2 LDO and Power Management Specification ......................................................77  
7.4.3 Low Voltage Reset Specification....................................................................78  
7.4.4 Brown-out Detector Specification ...................................................................78  
7.4.5 Power-on Reset Specification .......................................................................78  
7.4.6 Temperature Sensor Specification..................................................................80  
7.4.7 Comparator Specification ............................................................................80  
7.5 Flash DC Electrical Characteristics............................................................81  
8 NUC029FAE ELECTRICAL CHARACTERISTICS ..............................................82  
8.1 Absolute Maximum Ratings.....................................................................82  
8.2 DC Electrical Characteristics ...................................................................83  
8.3 AC Electrical Characteristics ...................................................................87  
8.3.1 External Input Clock...................................................................................87  
8.3.2 External 4~24 MHz High Speed Crystal (HXT) ...................................................87  
8.3.3 Internal 22.1184 MHz High Speed RC Oscillator (HIRC) .......................................88  
8.3.4 Internal 10 kHz Low Speed RC Oscillator (LIRC) ................................................89  
8.4 Analog Characteristics...........................................................................90  
8.4.1 10-bit SAR ADC Specification .......................................................................90  
8.4.2 LDO and Power Management Specification ......................................................91  
8.4.3 Low Voltage Reset Specification....................................................................92  
Apr 3, 2019  
Page 4 of 102  
Rev 1.06  
NUC029  
8.4.4 Brown-out Detector Specification ...................................................................92  
8.4.5 Power-on Reset Specification .......................................................................92  
8.4.6 Comparator Specification ............................................................................94  
8.5 Flash DC Electrical Characteristics............................................................95  
9 PACKAGE DIMENSIONS ....................................................................................96  
9.1 48-pin LQFP (7x7x1.4 mm).....................................................................96  
9.2 48-pin QFN (7x7x0.8 mm) ......................................................................97  
9.3 33-pin QFN (5x5x0.75 mm).....................................................................98  
9.4 33-pin QFN (4x4x0.75 mm).....................................................................99  
9.5 20-pin TSSOP (6.5x4.4x1.2 mm) ............................................................100  
10REVISION HISTORY..........................................................................................101  
Apr 3, 2019  
Page 5 of 102  
Rev 1.06  
NUC029  
LIST OF FIGURES  
Figure 4-1 NuMicro® NUC029 Series Selection Code ................................................................... 15  
Figure 4-2 NuMicro® NUC029LAN LQFP 48-pin Diagram............................................................. 16  
Figure 4-3 NuMicro® NUC029NAN QFN 48-pin Diagram.............................................................. 17  
Figure 4-4 NuMicro® NUC029ZAN/NUC029TAN QFN 33-pin Diagram ........................................ 18  
Figure 4-5 NuMicro® NUC029FAE TSSOP 20-pin Diagram.......................................................... 19  
Figure 5-1 Functional Controller Diagram...................................................................................... 27  
Figure 5-2 NuMicro® NUC029xAN Power Distribution Diagram.................................................... 30  
Figure 5-3 NuMicro® NUC029FAE Power Distribution Diagram.................................................... 31  
Figure 5-4 NuMicro® NUC029xAN Whole System Memory Mapping............................................ 34  
Figure 5-5 NuMicro® NUC029FAE Whole System Memory Mapping ........................................... 35  
Figure 5-6 NuMicro® NUC029xAN Clock Generator Block Diagram ............................................. 41  
Figure 5-7 NuMicro® NUC029xAN Clock Source Controller Overview (1/2) ................................. 42  
Figure 5-8 NuMicro® NUC029xAN Clock Source Controller Overview (2/2) ................................. 43  
Figure 5-9 NuMicro® NUC029xAN System Clock Block Diagram ................................................. 44  
Figure 5-10 NuMicro® NUC029xAN SysTick Clock Control Block Diagram .................................. 44  
Figure 5-11 NuMicro® NUC029xAN Clock Source of Frequency Divider...................................... 46  
Figure 5-12 NuMicro® NUC029xAN Frequency Divider Block Diagram ........................................ 46  
Figure 5-13 NuMicro® NUC029FAE Clock Generator Block Diagram........................................... 47  
Figure 5-14 NuMicro® NUC029FAE System Clock Block Diagram ............................................... 48  
Figure 5-15 NuMicro® NUC029FAE SysTick Clock Control Block Diagram.................................. 48  
Figure 5-16 NuMicro® NUC029FAE AHB Clock Source for HCLK................................................ 49  
Figure 5-17 NuMicro® NUC029FAE Peripherals Clock Source Selection for PCLK ..................... 50  
Figure 7-1 NUC029xAN Typical Crystal Application Circuit .......................................................... 75  
Figure 7-2 NUC029xAN Power-up Ramp Condition...................................................................... 79  
Figure 8-1 NUC029FAE Typical Crystal Application Circuit .......................................................... 88  
Figure 8-2 NUC029xAN Power-up Ramp Condition...................................................................... 93  
Apr 3, 2019  
Page 6 of 102  
Rev 1.06  
NUC029  
LIST OF TABLES  
Table 1-1 NuMicro® NUC029 Series Difference List........................................................................ 8  
Table 3-1 List of Abbreviations....................................................................................................... 13  
Table 4-1 NuMicro® NUC029 Series Selection Guide ................................................................... 14  
Table 5-1 NuMicro® NUC029xAN Address Space Assignments for On-Chip Controllers............. 32  
Table 5-2 NuMicro® NUC029FAE Address Space Assignments for On-Chip Controllers ............ 33  
Table 5-3 Exception Model ............................................................................................................ 37  
Table 5-4 NuMicro® NUC029xAN System Interrupt Map............................................................... 38  
Table 5-5 NuMicro® NUC029FAE System Interrupt Map .............................................................. 39  
Table 5-6 Vector Table Format ...................................................................................................... 40  
Table 5-7 NuMicro® NUC029FAE Peripheral Clock Source Selection Table................................ 50  
Apr 3, 2019  
Page 7 of 102  
Rev 1.06  
NUC029  
1
GENERAL DESCRIPTION  
The NuMicro® NUC029 series 32-bit microcontroller is embedded with ARM® Cortex® -M0 core for  
industrial control and applications which need rich communication interfaces or require high  
performance, high integration, and low cost. The Cortex® -M0 is the newest ARM® embedded  
processor with 32-bit performance at a cost equivalent to the traditional 8-bit microcontroller. The  
NuMicro® NUC029 series includes four part numbers: NUC029LAN, NUC029NAN, NUC029ZAN,  
NUC029TAN and NUC029FAE.  
The NUC029LAN/NUC029NAN/NUC029ZAN/NUC029TAN can run up to 50 MHz and operate at  
2.5V ~ 5.5V, -40~ 85, and the NUC029FAE can run up to 24 MHz and operate at 2.5V ~  
5.5V, -40~ 105. Therefore, the NUC029 series can afford to support a variety of industrial  
control and applications which need high CPU performance.  
The NUC029LAN/NUC029NAN/NUC029ZAN/NUC029TAN offers 64K/64K/32K bytes flash, 4  
Kbytes Data Flash, 4 Kbytes flash for the ISP, and 4 Kbytes SRAM. The NUC029FAE offers 16  
Kbytes flash, size configurable Data Flash (shared with program flash), 2 Kbytes flash for the ISP,  
and 2K-bytes SRAM.  
Many system level peripheral functions, such as I/O Port, EBI (External Bus Interface), Timer,  
UART, SPI, I2C, PWM, ADC, WDT (Watchdog Timer), WWDT (Window Watchdog Timer), Analog  
Comparator and Brown-out Detector, have been incorporated into the NUC029 series in order to  
reduce component count, board space and system cost. These useful functions make the  
NUC029 series powerful for a wide range of applications.  
Additionally, the NuMicro® NUC029 series is equipped with ISP (In-System Programming) and  
ICP (In-Circuit Programming) functions, and IAP (In-Application Programming), which allow the  
user to update the program memory without removing the chip from the actual end product.  
NUC029LAN/NUC029NAN/  
NUC029ZAN/NUC029TAN  
Item  
NUC029FAE  
Core  
Up to 50 MHz  
Up to 24 MHz  
-40~ +85℃  
-40~ +105℃  
Operating Temp.  
Hardware Divider  
-
-
Supports PLL as clock source  
Clock Control  
Supports external 32.768 kHz crystal  
oscillator as clock source  
-
Window WDT  
PWM  
-
PWM Generator and Capture Timer  
Enhanced PWM Generator  
12-bit SAR ADC with 760 kSPS (Supports Single,  
Burst, Single-Cycle, and Continuous Scan mode)  
10-bit SAR ADC with 300 kSPS (Only  
supports Single mode)  
ADC  
EBI  
-
-
Built-in Temp.Sensor  
Table 1-1 NuMicro® NUC029 Series Difference List  
Apr 3, 2019  
Page 8 of 102  
Rev 1.06  
NUC029  
2
FEATURES  
ARM® Cortex® -M0 core  
Runs up to 50 MHz  
One 24-bit system timer  
Supports Low Power Sleep mode  
A single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Supports Serial Wire Debug (SWD) interface and two watchpoints/four breakpoints  
Provides hardware divider and supports signed 32-bit dividend, 16-bit divisor  
operation(NUC029xAN only)  
Operating voltage ranges from 2.5 V to 5.5 V  
Memory  
16/32/64 KB Flash for program memory (APROM)  
Up to 4 KB Flash for loader (LDROM)  
Up to 4 KB SRAM for internal scratch-pad RAM (SRAM)  
4 KB Flash for data memory (Data Flash) (NUC029xAN only)  
Configurable Data Flash (NUC029FAE only)  
Clock Control  
Programmable system clock source  
22.1184 MHz internal oscillator  
Dynamically calibrating the HIRC OSC to 22.1184 MHz ±3% from -40to 105℃  
by external 32.768 kHz crystal oscillator (LXT) (NUC029FAE only)  
4~24 MHz external crystal input  
10 kHz low-power oscillator for Watchdog Timer and wake-up in Sleep mode  
PLL allows CPU operation up to the maximum 50 MHz (NUC029xAN only)  
32.768 kHz external crystal input (LXT) for Power-down wake-up and system operation  
clock (NUC029FAE only)  
GPIO  
Up to 40 general-purpose I/O (GPIO) pins for LQFP/QFN 48-pin package  
Four I/O modes:  
Quasi-bidirectional  
Push-pull output  
Open-drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable  
I/O pin can be configured as interrupt source with edge/level setting  
Supports high driver and high sink I/O mode  
Configurable I/O mode after POR  
Timer  
Up to four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides up to four timer counting modes: one-shot, periodic, toggle and continuous  
counting  
24-bit up counter value is readable through TDR (Timer Data Register)  
Supports event counting function to count the input event from external counter pin  
24-bit capture value is readable through TCAP (Timer Capture Data Register)  
Supports external capture pin for interval measurement  
Supports external capture pin to reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is  
generated  
Supports internal capture triggered while internal ACMP output signal transition  
Apr 3, 2019  
Page 9 of 102  
Rev 1.06  
NUC029  
(NUC029xAN only)  
Supports Inter-Timer trigger mode (NUC029xAN only)  
Supports internal signal (CPO0, CPO1) for interval measurement (NUC029FAE only)  
WDT (Watchdog Timer)  
Multiple clock sources  
Supports wake-up from Power-down or Sleep mode  
Interrupt or reset selectable on watchdog time-out  
Time-out reset delay period can be selected to 3/18/130/1026 * WDT_CLK  
(NUC029xAN only)  
WWDT (Window Watchdog Timer) (NUC029xAN only)  
6-bit down counter with 11-bit pre-scale for wide range window selected  
PWM Generator and Capture Timer (NUC029xAN only)  
Up to four built-in 16-bit PWM generators, providing eight PWM outputs or four  
complementary paired PWM outputs  
Individual clock source, clock divider, 8-bit pre-scalar and dead-zone generator for  
each PWM generator  
PWM interrupt synchronized to PWM period  
16-bit digital Capture timers with rising/falling capture inputs  
Supports capture interrupt  
Internal 10 kHz to PWM clock source  
Polar inverse function  
Center-aligned type function  
Timer duty interrupt enable function  
Two kinds of PWM interrupt period type selection  
Two kinds of PWM interrupt duty type selection  
Period/duty trigger ADC function  
PWM Timer synchronous start function  
Enhanced PWM Generator (NUC029FAE only)  
Independent 16-bit PWM duty control units with maximum three outputs  
Supports group/synchronous/independent/ complementary modes  
Supports One-shot or Auto-reload mode  
Supports Edge-aligned and Center-aligned type  
Programmable dead-zone insertion between complementary channels  
Each output has independent polarity setting control  
Hardware fault brake protections  
Supports duty, period, and fault break interrupts  
Supports duty/period trigger ADC conversion  
Timer comparing matching event trigger PWM to do phase change  
Supports comparator event trigger PWM to force PWM output low for current period  
Provides interrupt accumulation function  
UART  
Up to two sets of UART devices  
Programmable baud-rate generator  
Buffered receiver and transmitter, each with 16 bytes FIFO  
Optional flow control function (CTS and RTS)  
Supports IrDA(SIR) function  
Supports RS-485 function  
Supports LIN function (NUC029xAN only)  
SPI  
Up to two sets of SPI devices  
Supports Master/Slave mode  
Apr 3, 2019  
Page 10 of 102  
Rev 1.06  
NUC029  
Full-duplex synchronous serial data transfer  
Provides 3 wire function  
Variable length of transfer data from 8 to 32 bits  
MSB or LSB first data transfer  
Rx latching data can be either at rising edge or at falling edge of serial clock  
Tx sending data can be either at rising edge or at falling edge of serial clock  
Supports Byte Suspend mode in 32-bit transmission  
4-level depth FIFO buffer  
PLL clock source (NUC029xAN only)  
I2C  
Up to two sets of I2C modules  
Supports Master/Slave mode  
Bi-directional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
Programmable clocks allow versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition (four slave addresses with mask option)  
Supports Power-down wake-up function  
Supports FIFO function (NUC029FAE only)  
ADC  
12-bit SAR ADC with 760 kSPS for NUC029xAN, and 10-bit SAR ADC with 300 kSPS  
for NUC029FAE  
Up to eight single-end analog input channels  
Or four differential analog input channels (NUC029xAN only)  
Four operation modes (NUC029FAE only support Single mode)  
Single mode: A/D conversion is performed one time on a specified channel  
Burst mode: A/D converter samples and converts the specified single channel  
and sequentially stores the result in FIFO  
Single-cycle Scan mode: A/D conversion is performed only one cycle on all  
specified channels with the sequence from the smallest numbered channel to  
the largest numbered channel  
Continuous Scan mode: A/D converter continuously performs Single-cycle Scan  
mode until software stops A/D conversion  
An A/D conversion can be started by:  
Software Write 1 to ADST bit  
External pin (STADC)  
PWM trigger with optional start delay period  
Each conversion result is held in data register with valid and overrun indicators  
Each channel has individual data register (NUC029xAN only)  
Conversion result can be compared with specified value and user can select whether  
to generate an interrupt when conversion result matches the compare register setting  
Internal temperature sensor output (NUC029xAN only)  
Analog Comparator  
Up to four sets of Comparator analog modules  
External input or internal band-gap voltage selectable at negative node  
Interrupt when compared results change  
Power-down wake-up  
Apr 3, 2019  
Page 11 of 102  
Rev 1.06  
NUC029  
EBI (External Bus Interface) for external memory-mapped device access (NUC029LAN/  
NUC029NAN only)  
Accessible space: 64 KB in 8-bit mode or 128 KB in 16-bit mode  
Supports 8-bit or 16-bit data width  
Supports byte-write in 16-bit data width  
ISP (In-System Programming) and ICP (In-Circuit Programming)  
IAP (In-Application Programming)  
One built-in temperature sensor with 1resolution (NUC029xAN only)  
BOD (Brown-out Detector)  
With 4 levels: 4.4V/3.7V/2.7V/2.2V  
Supports Brown-out interrupt and reset option  
96-bit unique ID (UID)  
LVR (Low Voltage Reset)  
Threshold voltage level: 2.0V  
Operating Temperature:  
NUC029LAN/NUC029NAN/NUC029ZAN/NUC029TAN: -40~85℃  
NUC029FAE:-40~105℃  
Reliability: EFT > ± 4 KV, ESD HBM pass 4 KV  
Packages:  
All Green package (RoHS)  
48-pin LQFP, 48-pin QFN, 33-pin QFN, 20-pin TSSOP  
Apr 3, 2019  
Page 12 of 102  
Rev 1.06  
NUC029  
3
ABBREVIATIONS  
Acronym  
Description  
ACMP  
ADC  
APB  
AHB  
BOD  
EBI  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Peripheral Bus  
Advanced High-Performance Bus  
Brown-out Detection  
External Bus Interface  
FIFO  
FMC  
GPIO  
HCLK  
HIRC  
HXT  
IAP  
First In, First Out  
Flash Memory Controller  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
22.1184 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
ICP  
ISP  
In System Programming  
LDO  
LIN  
Low Dropout Regulator  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
32.768 kHz External Low Speed Crystal Oscillator  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Phase-Locked Loop  
LIRC  
LXT  
NVIC  
PCLK  
PLL  
PWM  
SPI  
Pulse Width Modulation  
Serial Peripheral Interface  
SPS  
TMR  
UART  
UCID  
USB  
WDT  
WWDT  
Samples per Second  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
Watchdog Timer  
Window Watchdog Timer  
Table 3-1 List of Abbreviations  
Apr 3, 2019  
Page 13 of 102  
Rev 1.06  
NUC029  
4
PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® NUC029 Series Selection Guide  
Connectivity  
NUC029LAN  
NUC029NAN  
64  
64  
4
4
4
4
4
4
40  
40  
4
4
2
2
2
2
2
2
8
8
8
8
-
-
4
4
-
-
LQFP48  
QFN48  
-40 to +85  
-40 to +85  
QFN33  
(5x5)  
NUC029ZAN  
64  
4
4
4
24  
4
2
1
2
5
5
-
3*  
-
-
-40 to +85  
QFN33  
(4x4)  
NUC029TAN  
NUC029FAE  
32  
16  
4
2
4
4
2
24  
17  
4
2
2
1
1
1
2
1
5
3
5
-
-
3*  
-
-
-
-40 to +85  
Config.  
4
2**  
-
-
TSSOP20  
-40 to +105  
Table 4-1 NuMicro® NUC029 Series Selection Guide  
Note:  
*: ACMP3 only has positive and negative input.  
**: ACMP0 only has positive and negative input, and ACMP1 only has positive input.  
Apr 3, 2019  
Page 14 of 102  
Rev 1.06  
NUC029  
NUC029 X X X  
CPU core  
ARM Cortex M0  
Part Number  
Temperature  
N: -40 ~ + 85  
E: -40 ~ +105℃  
Reserved  
Package  
L: LQFP 48  
N: QFN 48  
Z: QFN 33 (5x5)  
T: QFN 33 (4x4)  
F: TSSOP 20  
Figure 4-1 NuMicro® NUC029 Series Selection Code  
Apr 3, 2019  
Page 15 of 102  
Rev 1.06  
 
NUC029  
4.2 Pin Configuration  
4.2.1 NuMicro® NUC029 Pin Diagram  
4.2.1.1 NuMicro® NUC029LAN LQFP 48 pin  
P4.1, PWM1, T3EX  
P0.4, AD4, SPISS1  
P0.5, AD5, MOSI_1  
P0.6, AD6, MISO_1  
P0.7, AD7, SPICLK1  
P4.7, ICE_DAT  
ACMP0_P, MOSI_0, AIN5, P1.5  
ACMP2_N, MISO_0, AIN6, P1.6  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
3
ACMP2_P, SPICLK0, AIN7, P1.7  
nRST  
4
5
ACMP1_N, RXD, P3.0  
AVSS  
6
LQFP-48 pin  
P4.6, ICE_CLK  
ACMP1_P, TXD, P3.1  
T0EX, STADC, nINT0, P3.2  
T1EX, MCLK, nINT1, P3.3  
SDA0, T0, P3.4  
7
P4.5, ALE, SDA1  
8
P4.4, nCS, SCL1  
9
P2.7, AD15, PWM7  
P2.6, AD14, PWM6, ACMP1_O  
P2.5, AD13, PWM5, SDA1  
10  
11  
12  
CKO, SCL0, T1, P3.5  
PWM3, P4.3  
Figure 4-2 NuMicro® NUC029LAN LQFP 48-pin Diagram  
Apr 3, 2019  
Page 16 of 102  
Rev 1.06  
NUC029  
4.2.1.2 NuMicro® NUC029NAN QFN 48 pin  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
ACMP0_P, MOSI_0, AIN5, P1.5  
P4.1, PWM1, T3EX  
P0.4, AD4, SPISS1  
P0.6, AD6, MISO_1  
P0.7, AD7, SPICLK1  
P4.7, ICE_DAT  
2
ACMP2_N, MISO_0, AIN6, P1.6  
3
ACMP2_P, SPICLK0, AIN7, P1.7  
4
nRST  
5
ACMP1_N, RXD, P3.0  
6
AVSS  
P4.6, ICE_CLK  
QFN48  
7
ACMP1_P, TXD, P3.1  
LDO_CAP  
8
T0EX, STADC, nINT0, P3.2  
P4.5, ALE, SDA1  
9
T1EX, MCLK, nINT1, P3.3  
P4.4, nCS, SCL1  
10  
SDA0, T0, P3.4  
P2.7, AD15, PWM7  
P2.6, AD14, PWM6, ACMP1_O  
P2.5, AD13, PWM5, SDA1  
11  
CKO, SCL0, T1, P3.5  
49 VSS  
12  
PWM3, P4.3  
Figure 4-3 NuMicro® NUC029NAN QFN 48-pin Diagram  
Apr 3, 2019  
Page 17 of 102  
Rev 1.06  
NUC029  
4.2.1.3 NuMicro® NUC029ZAN/NUC029TAN QFN 33 pin  
32 31 30 29 28 27 26 25  
24  
23  
22  
ACMP0_P, AIN5, P1.5  
P0.4, SPISS1  
P0.5, MOSI_1  
P0.6, MISO_1  
1
2
3
4
5
6
nRST  
ACMP1_N, RXD, P3.0  
AVSS  
ACMP1_P, TXD, P3.1  
T0EX, STADC, nINT0, P3.2  
SDA0, T0, P3.4  
21 P0.7, SPICLK1  
QFN-33 Pin  
P4.7, ICE_DAT  
20  
P4.6, ICE_CLK  
19  
18  
17  
P2.6, PWM6, ACMP1_O  
P2.5, PWM5, SDA1  
7
8
33 VSS  
10 11 12 13 14 15 16  
CKO, SCL0, T1, P3.5  
9
Figure 4-4 NuMicro® NUC029ZAN/NUC029TAN QFN 33-pin Diagram  
Apr 3, 2019  
Page 18 of 102  
Rev 1.06  
NUC029  
4.2.1.4 NuMicro® NUC029FAE TSSOP 20 pin  
ACMP0_P,RXD,AIN2,P1.2  
ACMP0_P,TXD,AIN3,P1.3  
ACMP0_N,AIN4,P1.4  
ACMP0_P,AIN5,P1.5  
1
2
3
4
5
6
7
8
9
20 VDD  
19 P0.4,SPISS0,PWM5  
18 P0.5,MOSI_0  
17 P0.6,MISO_0  
16 P0.7,SPICLK0  
15 P4.7,ICE_DAT  
14 P4.6,ICE_CLK  
13 P2.5,PWM3  
12 P2.4,PWM2  
11 Vss  
TSSOP-20  
Pin  
nRST  
ACMP1_P,T0EX,STADC,nINT0,P3.2  
ACMP1_P,SDA0,T0,P3.4  
ACMP1_P,SCL0,T1,P3.5  
XTAL2,P5.1  
XTAL1,P5.0 10  
Figure 4-5 NuMicro® NUC029FAE TSSOP 20-pin Diagram  
Apr 3, 2019  
Page 19 of 102  
Rev 1.06  
NUC029  
4.3 Pin Description  
4.3.1 NuMicro® NUC029 Pin Description  
Pin No.  
Pin  
Type  
Pin Name  
Description  
LQFP/QFN  
48-pin  
QFN  
33-pin  
P1.5  
I/O  
AI  
General purpose digital I/O pin.  
ADC5 analog input.  
1
AIN5  
1
2
ACMP0_P  
MOSI_0  
P1.6  
AI  
Comparator0 positive input pin.  
SPI0 MISO (Master Out, Slave In) pin.  
General purpose digital I/O pin.  
ADC6 analog input.  
I/O  
I/O  
AI  
AIN6  
MISO_0  
ACMP2_N  
P1.7  
I/O  
AI  
SPI0 MISO (Master In, Slave Out) pin.  
Comparator2 negative input pin.  
General purpose digital I/O pin.  
ADC7 analog input.  
I/O  
AI  
AIN7  
3
4
SPICLK0  
ACMP2_P  
I/O  
AI  
SPI0 serial clock pin.  
Comparator2 positive input pin.  
I
External reset input: active LOW, with an internal pull-up. Set this pin  
low reset chip to initial state.  
2
nRST  
(ST)  
P3.0  
I/O  
I
General purpose digital I/O pin.  
Data receiver input pin for UART0.  
Comparator1 negative input pin.  
Ground pin for analog circuit.  
5
6
7
3
4
5
RXD[2]  
ACMP1_N  
AVSS  
AI  
AP  
I/O  
O
AI  
I/O  
I
P3.1  
General purpose digital I/O pin.  
Data transmitter output pin for UART0.  
Comparator1 positive input pin  
General purpose digital I/O pin.  
External interrupt0 input pin.  
TXD[2]  
ACMP1_P  
P3.2  
nINT0  
STADC  
T0EX  
P3.3  
8
6
I
ADC external trigger input.  
I
Timer0 external capture/reset trigger input pin.  
General purpose digital I/O pin.  
External interrupt1 input pin.  
I/O  
I
nINT1  
MCLK  
TIEX  
9
O
I
EBI external clock output pin.  
Timer1 external capture/reset trigger input pin.  
General purpose digital I/O pin.  
10  
7
P3.4  
I/O  
Apr 3, 2019  
Page 20 of 102  
Rev 1.06  
NUC029  
Pin No.  
LQFP/QFN  
Pin  
Type  
Pin Name  
Description  
QFN  
48-pin  
33-pin  
T0  
I/O  
i/O  
I/O  
I/O  
I/O  
O
Timer0 external event counter input pin  
I2C0 data input/output pin.  
SDA0  
P3.5  
General purpose digital I/O pin.  
Timer1 external event counter input pin.  
I2C0 clock I/O pin.  
T1  
11  
12  
13  
14  
8
SCL0  
CKO[2]  
P4.3  
Frequency divider output pin.  
General purpose digital I/O pin.  
PWM3 output/Capture input.  
I/O  
I/O  
I/O  
O
PWM3[2]  
P3.6  
General purpose digital I/O pin.  
Frequency divider output pin.  
Analog comparator0 output pin.  
EBI write enable output pin.  
CKO[2]  
ACMP0_O  
nWR  
9
O
O
P3.7  
I/O  
O
General purpose digital I/O pin.  
EBI read enable output pin.  
nRD  
15  
16  
10  
11  
XTAL2  
O
External 4~24 MHz (high speed) crystal output pin.  
I
XTAL1  
VSS  
External 4~24 MHz (high speed) crystal input pin.  
Ground pin for digital circuit.  
(ST)  
12  
33  
13  
17  
18  
P
LDO_CAP  
P2.0  
P
LDO output pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General purpose digital I/O pin.  
EBI Address/Data bus bit8  
PWM0 output/Capture input.  
General purpose digital I/O pin.  
EBI Address/Data bus bit9  
PWM1 output/Capture input.  
General purpose digital I/O pin.  
PWM2 output/Capture input.  
EBI Address/Data bus bit10.  
General purpose digital I/O pin.  
PWM3 output/Capture input.  
EBI Address/Data bus bit11.  
General purpose digital I/O pin.  
19  
20  
21  
AD8  
PWM0[2]  
P2.1  
AD9  
PWM1[2]  
P2.2  
14  
15  
PWM2[2]  
AD10  
P2.3  
PWM3[2]  
AD11  
22  
23  
16  
P2.4  
Apr 3, 2019  
Page 21 of 102  
Rev 1.06  
NUC029  
Pin No.  
LQFP/QFN  
Pin  
Type  
Pin Name  
Description  
QFN  
48-pin  
33-pin  
PWM4  
SCL1[2]  
AD12  
I/O  
I/O  
I/O  
I/O  
I/O  
I
PWM4 output/Capture input.  
I2C1 clock I/O pin.  
EBI Address/Data bus bit12.  
General purpose digital I/O pin.  
PWM0 output/Capture input.  
Timer2 external capture/reset trigger input pin.  
General purpose digital I/O pin.  
PWM5 output/Capture input.  
I2C1 data input/output pin.  
P4.0  
24  
25  
PWM0[2]  
T2EX  
P2.5  
I/O  
I/O  
i/O  
I/O  
I/O  
I/O  
O
17  
18  
PWM5  
SDA1[2]  
AD13  
EBI Address/Data bus bit13.  
General purpose digital I/O pin.  
PWM6 output/Capture input.  
Analog comparator1 output pin.  
EBI Address/Data bus bit14.  
General purpose digital I/O pin.  
EBI Address/Data bus bit15.  
PWM7 output/Capture input.  
General purpose digital I/O pin.  
EBI chip select enable output pin.  
I2C1 clock I/O pin.  
P2.6  
PWM6  
ACMP1_O  
AD14  
26  
I/O  
I/O  
I/O  
I/O  
I/O  
O
P2.7  
27  
28  
29  
AD15  
PWM7  
P4.4  
nCS  
SCL1[2]  
P4.5  
I/O  
I/O  
O
General purpose digital I/O pin.  
EBI address latch enable output pin.  
I2C1 data input/output pin.  
ALE  
SDA1[2]  
P4.6  
i/O  
I/O  
I
General purpose digital I/O pin.  
Serial Wired Debugger Clock pin.  
General purpose digital I/O pin.  
Serial Wired Debugger Data pin.  
General purpose digital I/O pin.  
SPI1 serial clock pin.  
30  
31  
19  
20  
ICE_CLK  
P4.7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ICE_DAT  
P0.7  
21  
22  
SPICLK1  
AD7  
32  
33  
EBI Address/Data bus bit7.  
P0.6  
General purpose digital I/O pin.  
SPI1 MISO (Master In, Slave Out) pin.  
MISO_1  
Apr 3, 2019  
Page 22 of 102  
Rev 1.06  
NUC029  
Pin No.  
LQFP/QFN  
Pin  
Type  
Pin Name  
Description  
QFN  
48-pin  
33-pin  
23  
24  
AD6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
EBI Address/Data bus bit6.  
P0.5  
General purpose digital I/O pin.  
SPI1 MISO (Master Out, Slave In) pin.  
EBI Address/Data bus bit5.  
MOSI_1  
AD5  
34  
35  
36  
P0.4  
General purpose digital I/O pin.  
SPI1 slave select pin.  
SPISS1  
AD4  
EBI Address/Data bus bit4.  
P4.1  
General purpose digital I/O pin.  
PWM1 output/Capture input.  
PWM1[2]  
T3EX  
P0.3  
Timer3 external capture/reset trigger input pin.  
General purpose digital I/O pin.  
EBI Address/Data bus bit3.  
I/O  
I/O  
O
AD3  
37  
38  
RTS0  
RXD[2]  
Request to Send output pin for UART0.  
Data receiver input pin for UART0.  
I
P0.2  
I/O  
I/O  
I
General purpose digital I/O pin.  
EBI Address/Data bus bit2.  
AD2  
CTS0  
TXD[2]  
Clear to Send input pin for UART0.  
Data transmitter output pin for UART0.  
O
P0.1  
I/O  
O
General purpose digital I/O pin.  
Request to Send output pin for UART1.  
Data receiver input pin for UART1.  
Comparator3 negative input pin.  
EBI Address/Data bus bit1.  
RTS1  
25  
26  
RXD1[2]  
ACMP3_N  
AD1  
I
39  
AI  
I/O  
I/O  
I
P0.0  
General purpose digital I/O pin.  
Clear to Send input pin for UART1.  
Data transmitter output pin for UART1.  
Comparator3 positive input pin.  
EBI Address/Data bus bit0.  
CTS1  
TXD1[2]  
ACMP3_P  
AD0  
O
40  
41  
AI  
I/O  
Power supply for I/O ports and LDO source for internal PLL and digital  
circuit.  
27  
VDD  
P
42  
43  
28  
29  
AVDD  
P1.0  
AP  
I/O  
Power supply for internal analog circuit.  
General purpose digital I/O pin.  
Apr 3, 2019  
Page 23 of 102  
Rev 1.06  
NUC029  
Pin No.  
LQFP/QFN  
Pin  
Type  
Pin Name  
Description  
QFN  
48-pin  
33-pin  
AIN0  
T2  
AI  
I/O  
O
ADC0 analog input.  
Timer2 external event counter input pin.  
EBI low byte write enable output pin.  
nWRL  
P1.1  
AIN1  
T3  
I/O  
AI  
General purpose digital I/O pin.  
ADC1 analog input.  
44  
I/O  
O
Timer3 external event counter input pin.  
EBI high byte write enable output pin.  
General purpose digital I/O pin.  
nWRH  
P1.2  
I/O  
45  
46  
30  
AIN2  
AI  
ADC2 analog input.  
RXD1[2]  
P1.3  
I
Data receiver input pin for UART1.  
General purpose digital I/O pin.  
ADC3 analog input.  
I/O  
AI  
31  
32  
AIN3  
TXD1[2]  
P1.4  
O
Data transmitter output pin for UART1.  
General purpose digital I/O pin.  
ADC4 analog input.  
I/O  
AI  
AIN4  
47  
48  
ACMP0_N  
SPISS0  
P4.2  
AI  
Comparator0 negative input pin.  
SPI0 slave select pin.  
I/O  
I/O  
I/O  
General purpose digital I/O pin.  
PWM2 output/Capture input.  
PWM2[2]  
Note1: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power; ST = Schmitt trigger  
Note2: The PWM0 ~ PWM3, RXD, TXD, RXD1, TXD1, SCL1, SDA1 and CKO can be assigned to different pins. However, a pin  
function can only be assigned to a pin at the same time, i.e. software cannot assign RXD to P0.3 and P3.0 at the same time.  
Apr 3, 2019  
Page 24 of 102  
Rev 1.06  
NUC029  
Pin No.  
Pin  
Type  
Pin Name  
Description  
TSSOP  
20-pin  
P1.2  
I/O  
AI  
I
General purpose digital I/O pin.  
ADC2 analog input.  
AIN2  
1
2
RXD  
Data receiver input pin for UART0.  
Comparator0 positive input pin.  
General purpose digital I/O pin.  
ADC3 analog input.  
ACMP0_P  
P1.3  
AI  
I/O  
AI  
O
AIN3  
TXD  
Data transmitter output pin for UART0.  
Comparator0 positive input pin.  
General purpose digital I/O pin.  
ADC4 analog input.  
ACMP0_P  
P1.4  
AI  
I/O  
AI  
AI  
I/O  
AI  
AI  
AP  
3
4
AIN4  
ACMP0_N  
P1.5  
Comparator0 negative input pin.  
General purpose digital I/O pin.  
ADC5 analog input.  
AIN5  
ACMP0_P  
AVSS  
Comparator0 positive input pin.  
Ground pin for analog circuit.  
I
External reset input: active LOW, with an internal pull-up. Set this pin low reset  
chip to initial state.  
5
6
nRST  
(ST)  
P3.2  
I/O  
I
General purpose digital I/O pin.  
External interrupt0 input pin.  
nINT0  
STADC  
T0EX  
ACMP1_P  
P3.4  
I
ADC external trigger input.  
I
Timer0 external capture/reset trigger input pin.  
Comparator1 positive input pin  
General purpose digital I/O pin.  
Timer0 external event counter input pin  
I2C0 data input/output pin.  
AI  
I/O  
I/O  
i/O  
AI  
I/O  
I/O  
I/O  
AI  
I/O  
O
T0  
7
8
SDA0  
ACMP1_P  
P3.5  
Comparator1 positive input pin  
General purpose digital I/O pin.  
Timer1 external event counter input pin.  
I2C0 clock I/O pin.  
T1  
SCL0  
ACMP1_P  
P5.1  
Comparator1 positive input pin  
General purpose digital I/O pin.  
External 4~24 MHz (high speed) crystal output pin.  
General purpose digital I/O pin.  
9
XTAL2  
P5.0  
10  
I/O  
Apr 3, 2019  
Page 25 of 102  
Rev 1.06  
NUC029  
Pin No.  
Pin  
Type  
Pin Name  
Description  
TSSOP  
20-pin  
I
XTAL1  
External 4~24 MHz (high speed) crystal input pin.  
(ST)  
11  
12  
VSS  
P
Ground pin for digital circuit.  
General purpose digital I/O pin.  
PWM0 output.  
P2.4  
I/O  
I/O  
I/O  
I/O  
I/O  
I
PWM2  
P2.5  
General purpose digital I/O pin.  
PWM3 output.  
13  
14  
15  
16  
17  
18  
PWM3  
P4.6  
General purpose digital I/O pin.  
Serial Wired Debugger Clock pin.  
General purpose digital I/O pin.  
Serial Wired Debugger Data pin.  
General purpose digital I/O pin.  
SPI0 serial clock pin.  
ICE_CLK  
P4.7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
ICE_DAT  
P0.7  
SPICLK0  
P0.6  
General purpose digital I/O pin.  
SPI0 MISO (Master In, Slave Out) pin.  
General purpose digital I/O pin.  
SPI0 MISO (Master Out, Slave In) pin.  
General purpose digital I/O pin.  
SPI1 slave select pin.  
MISO_0  
P0.5  
MOSI_0  
P0.4  
SPISS0  
PWM5  
VDD  
19  
20  
PWM5 output.  
Power supply for I/O ports and LDO source for internal PLL and digital circuit.  
Note1: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power; ST = Schmitt trigger  
Apr 3, 2019  
Page 26 of 102  
Rev 1.06  
NUC029  
5
FUNCTIONAL DESCRIPTION  
5.1 ARM® Cortex® -M0 Core  
The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an  
AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex® -M  
profile processor. The profile supports two modes -Thread mode and Handler mode. Handler  
mode is entered as a result of an exception. An exception return can only be issued in Handler  
mode. Thread mode is entere d on Reset, and can be entered as a result of an exception return.  
Figure 5-1 shows the functional controller of processor.  
Cortex® -M0 Components  
Cortex®-M0 processor  
Debug  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Interrupts  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex®-M0  
Processor  
Core  
Debug  
Access  
Port  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debugger  
Interface  
Bus Matrix  
(DAP)  
AHB-Lite  
Interface  
Serial Wire or  
JTAG Debug Port  
Figure 5-1 Functional Controller Diagram  
The implemented device provides the following components and features:  
A low gate count processor:  
-
-
-
-
-
-
-
ARMv6-M Thumb® instruction set  
Thumb-2 technology  
ARMv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and  
restarted to facilitate rapid interrupt handling  
-
-
C Application Binary Interface compliant exception model. This is the ARMv6-M,  
C Application Binary Interface (C-ABI) compliant exception model that enables  
the use of pure C functions as interrupt handlers  
Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event  
(WFE) instructions, or the return from interrupt sleep-on-exit feature  
NVIC:  
Apr 3, 2019  
Page 27 of 102  
Rev 1.06  
 
 
NUC029  
-
-
-
-
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power  
Sleep mode  
Debug support  
-
-
-
-
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
-
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration  
to all system peripherals and memory  
-
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Apr 3, 2019  
Page 28 of 102  
Rev 1.06  
NUC029  
5.2 System Manager  
5.2.1 Overview  
System management includes the following sections:  
System Resets  
System Power Architecture  
System Memory Map  
System management registers for Part Number ID, chip reset and on-chip controllers  
reset , multi-functional pin control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control registers  
5.2.2 System Reset  
The system reset can be issued by one of the following listed events. For these reset event flags  
can be read by RSTSRC register.  
Hardware Reset  
Power-on Reset (POR)  
Low level on the RESET pin (nRST)  
Watchdog Time-out Reset (WDT)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD)  
Software Reset  
MCU Reset - SYSRESETREQ(AIRCR[2])  
Cortex® -M0 Core One-shot Reset - CPU_RST(IPRSTC1[1])  
Chip One-shot Reset - Chip_RST(IPRSTC1[0])  
Note: ISPCON.BS keeps the original value after MCUReset and CPU Reset.  
Apr 3, 2019  
Page 29 of 102  
Rev 1.06  
NUC029  
5.2.3 System Power Distribution  
In this chip, the power distribution is divided into three segments.  
Analog power from AVDD and AVSS provides the power for analog components  
operation. AVDD must be equal to VDD to avoid leakage current.  
Digital power from VDD and VSS supplies the power to the I/O pins and internal  
regulator which provides a fixed 1.8 V power for digital operation.  
Build-in a capacitor for internal voltage regulator. (NUC029FAE only)  
The output of internal voltage regulator, LDO_CAP, requires an external capacitor which should  
be located close to the corresponding pin. Analog power (AVDD) should be the same voltage level  
with the digital power (VDD). Figure 5-2 shows the NuMicro® NUC029xAN power distribution and  
Figure 5-3 shows the NuMicro® NUC029FAE power distribution.  
Analog Comparator  
AVDD  
12-bit  
SAR-ADC  
Low  
Voltage  
Reset  
Brown  
Out  
Detector  
AVSS  
Internal  
22.1184 MHz and  
10 kHz Oscillator  
Temperature  
Sensor  
FLASH  
Digital Logic  
LDO_CAP  
1uF  
1.8V  
POR18  
POR50  
5V to 1.8V  
LDO  
PLL  
IO cell  
GPIO Pins  
VDD VSS  
NuMicro® NUC029xAN Power Distribution  
Figure 5-2 NuMicro® NUC029xAN Power Distribution Diagram  
Apr 3, 2019  
Page 30 of 102  
Rev 1.06  
 
NUC029  
Analog Comparator  
10-bit  
SAR-ADC  
Low  
Voltage  
Reset  
Brown  
Out  
Detector  
Internal  
FLASH  
Digital Logic  
22.1184 MHz and  
10 kHz Oscillator  
1.8V  
500pF  
POR18  
5V to 1.8V  
LDO  
IO cell  
GPIO Pins  
VDD VSS  
NuMicro® NUC029FAE Power Distribution  
Figure 5-3 NuMicro® NUC029FAE Power Distribution Diagram  
5.2.4 System Memory Map  
The NuMicro® NUC029 series provides 4G-byte addressing space. The memory locations  
assigned to each on-chip controllers are shown in the following table. The detailed register  
definition, addressing space, and programming detailed will be described in the following sections  
for each on-chip peripheral. The NuMicro® NUC029 series only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0000_FFFF  
0x2000_0000 0x2000_0FFF  
FLASH_BA  
SRAM_BA  
FLASH Memory Space (64 KB)  
SRAM Memory Space (4 KB)  
EBI Space (0x6000_0000 ~ 0x6001_FFFF) (NUC029LAN/NUC029NAN Only)  
0x6000_0000 0x6001_FFFF  
EBI_BA  
External Memory Space (128 KB )  
AHB Controllers Space (0x5000_0000 ~ 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
GCR_BA  
System Global Control Registers  
Apr 3, 2019  
Page 31 of 102  
Rev 1.06  
NUC029  
0x5000_0200 0x5000_02FF  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_C000 0x5000_FFFF  
0x5001_0000 0x5001_03FF  
0x5001_4000 0x5001_7FFF  
CLK_BA  
Clock Control Registers  
INT_BA  
Interrupt Multiplexer Control Registers  
GPIO (P0 ~ P4) Control Registers  
GPIO_BA  
FMC_BA  
EBI_CTL_BA  
HDIV_BA  
Flash Memory Control Registers  
EBI Control Registers (NUC029LAN/NUC029NAN only)  
Hardware Divider Register (NUC029xAN only)  
APB Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4000_4000 0x4000_40FF  
0x4000_4100 0x4000_7FFF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4003_4000 0x4003_7FFF  
0x4004_0000 0x4004_3FFF  
0x4005_0000 0x4005_3FFF  
0x400D_0000 0x400D_3FFF  
0x400E_0000 0x400E_FFFF  
0x4011_0000 0x4011_3FFF  
0x4012_0000 0x4012_3FFF  
0x4014_0000 0x4014_3FFF  
0x4015_0000 0x4015_3FFF  
0x401D_0000 0x401D_3FFF  
WDT_BA  
Watchdog Timer Control Registers  
WWDT_BA  
TMR01_BA  
I2C0_BA  
Window Watchdog Timer Control Registers (NUC029xAN only)  
Timer0/Timer1 Control Registers  
I2C0 Interface Control Registers  
SPI0_BA  
SPI0 with master/slave function Control Registers  
SPI1 with master/slave function Control Registers  
PWM0/1/2/3 Control Registers  
SPI1_BA  
PWMA_BA  
UART0_BA  
ACMP01_BA  
ADC_BA  
UART0 Control Registers  
Analog Comparator0/ Analog Comparator1 Control Registers  
Analog-Digital-Converter (ADC) Control Registers  
Timer2/Timer3 Control Registers  
TMR23_BA  
I2C1_BA  
I2C1 Interface Control Registers (Nuc029xAN only)  
PWM4/5/6/7 Control Registers  
PWMB_BA  
UART1_BA  
ACMP23_BA  
UART1 Control Registers  
Analog Comparator2/ Analog Comparator3 Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SYST_BA  
NVIC_BA  
SCB_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 5-1 NuMicro® NUC029xAN Address Space Assignments for On-Chip Controllers  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0000_3FFF  
0x2000_0000 0x2000_0FFF  
FLASH_BA  
SRAM_BA  
FLASH Memory Space (16 KB)  
SRAM Memory Space (2 KB)  
AHB Controllers Space (0x5000_0000 ~ 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
0x5000_0200 0x5000_02FF  
GCR_BA  
CLK_BA  
System Global Control Registers  
Clock Control Registers  
Apr 3, 2019  
Page 32 of 102  
Rev 1.06  
NUC029  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_C000 0x5000_FFFF  
INT_BA  
GP_BA  
FMC_BA  
Interrupt Multiplexer Control Registers  
GPIO (P0 ~ P5) Control Registers  
Flash Memory Control Registers  
APB Controllers Space (0x4000_0000 ~ 0x401F_FFFF)  
0x4000_4000 0x4000_7FFF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4004_0000 0x4004_3FFF  
0x4005_0000 0x4005_3FFF  
0x400D_0000 0x400D_3FFF  
0x400E_0000 0x400E_3FFF  
WDT_BA  
TMR_BA  
I2C_BA  
Watchdog Timer Control Registers  
Timer0/Timer1 Control Registers  
I2C Interface Control Registers  
SPI_BA  
SPI with master/slave function Control Registers  
PWM Control Registers  
PWMA_BA  
UART_BA  
ACMP_BA  
ADC_BA  
UART Control Registers  
Analog Comparator Control Registers  
Analog-Digital-Converter (ADC) Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCB_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 5-2 NuMicro® NUC029FAE Address Space Assignments for On-Chip Controllers  
Apr 3, 2019  
Page 33 of 102  
Rev 1.06  
NUC029  
5.2.5 Whole System Memory Mapping  
4 GB  
0xFFFF_FFFF  
|
Reserved  
System Control  
Reserved  
EBI  
System Control  
0xE000_F000  
0xE000_EFFF  
0xE000_E000  
0xE000_DFFF  
|
System Control Block  
0xE000_ED00  
SCB_BA  
NVIC_BA  
SYST_BA  
SCS_BA  
External Interrupt Controller 0xE000_E100  
System Timer Control  
System Control Space  
0xE000_E010  
0xE000_E000  
0x6002_0000  
0x6001_FFFF  
0x6000_0000  
0x5FFF_FFFF  
|
Reserved  
0x5020_0000  
AHB peripherals  
Hardware Divider Control  
EBI Control  
0x501F_FFFF  
0x5000_0000  
0x4FFF_FFFF  
0x5001_4000  
0x5001_0000  
0x5000_C000  
0x5000_4000  
HDIV_BA  
EBI_CTL_BA  
FLASH_BA  
GPIO_BA  
INT_BA  
AHB  
FMC  
GPIO Control  
Reserved  
|
Interrupt Multiplexer Control 0x5000_0300  
0x4020_0000  
0x401F_FFFF  
Clock Control  
0x5000_0200  
0x5000_0000  
CLK_BA  
System Global Control  
GCR_BA  
APB  
|
1 GB  
0x4000_0000  
0x3FFF_FFFF  
APB peripherals  
ACMPB Control  
UART1 Control  
PWM4/5/6/7 Control  
I2C1 Control  
0x401D_0000  
0x4015_0000  
0x4014_0000  
0x4012_0000  
0x4011_0000  
0x400E_0000  
0x400D_0000  
0x4005_0000  
0x4004_0000  
0x4003_4000  
0x4003_0000  
0x4002_0000  
ACMP23_BA  
UART1_BA  
PWMB_BA  
I2C1_BA  
Reserved  
|
0x2000_1000  
0x2000_0FFF  
Timer2/Timer3 Control  
ADC Control  
TMR23_BA  
ADC_BA  
4 KB SRAM  
Reserved  
|
ACMPA Control  
UART0 Control  
PWM0/1/2/3 Control  
SPI1 Control  
ACMP01_BA  
UART0_BA  
PWMA_BA  
SPI1_BA  
0.5 GB  
0x2000_0000  
0x1FFF_FFFF  
|
SPI0 Control  
SPI0_BA  
0x0001_0000  
0x0000_FFFF  
I2C Control  
I2C0_BA  
64 KB on-chip Flash  
(NUC029LAN/NUC029NAN)  
Timer0/Timer1 Control  
0x4001_0000  
TMR01_BA  
0x0000_7FFF  
0x0000_0000  
WDT Control  
0x4000_4100  
0x4000_4000  
WWDT_BA  
WDT_BA  
32 KB on-chip Flash  
(NUC029ZAN/NUC029TAN)  
0 GB  
WWDT Control  
Figure 5-4 NuMicro® NUC029xAN Whole System Memory Mapping  
Apr 3, 2019  
Page 34 of 102  
Rev 1.06  
 
NUC029  
System Control  
System Control  
4 GB  
0xFFFF_FFFF  
|
0xE000_ED00 SCS_BA  
0xE000_E100 SCS_BA  
0xE000_E010 SCS_BA  
Reserved  
System Control  
Reserved  
Reserved  
Reserved  
AHB  
External Interrupt Control  
System Timer Control  
0xE000_F000  
0xE000_EFFF  
0xE000_E000  
0xE000_E00F  
|
0x6002_0000  
0x6001_FFFF  
0x6000_0000  
0x5FFF_FFFF  
|
0x5020_0000  
0x501F_FFFF  
0x5000_0000  
0x4FFF_FFFF  
AHB peripherals  
FMC  
0x5000_C000 FMC_BA  
0x5000_4000 GP_BA  
GPIO Control  
Interrupt Multiplexer Control 0x5000_0300 INT_BA  
Clock Control  
0x5000_0200 CLK_BA  
0x5000_0000 GCR_BA  
Reserved  
|
System Global Control  
0x4020_0000  
0x401F_FFFF  
APB  
|
1 GB  
0x4000_0000  
0x3FFF_FFFF  
APB peripherals  
ADC Control  
0x400E_0000 ADC_BA  
0x400D_0000 CMP_BA  
0x4005_0000 UART_BA  
0x4004_0000 PWM_BA  
0x4003_0000 SPI_BA  
0x4002_0000 I2C_BA  
0x4001_0000 TMR_BA  
0x4000_4000 WDT_BA  
Reserved  
|
ACMP Control  
UART Control  
0x2000_0800  
0x2000_07FF  
0x2000_0000  
0x1FFF_FFFF  
PWM Control  
SPI Control  
2 KB SRAM  
Reserved  
0.5 GB  
I2C Control  
Timer0/Timer1 Control  
WDT Control  
|
0x0000_4000  
0x0000_3FFF  
0x0000_0000  
16 KB on-chip Flash  
(NUC029FAE)  
0 GB  
Figure 5-5 NuMicro® NUC029FAE Whole System Memory Mapping  
Apr 3, 2019  
Page 35 of 102  
Rev 1.06  
NUC029  
5.2.6 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter  
transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0  
before enabling the feature. This ensures the timer will count from the SYST_RVR value rather  
than an arbitrary value when it is enabled.  
If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded  
with this value. This mechanism can be used to disable the feature independently from the timer  
enable bit.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
5.2.7 Nested Vectored Interrupt Controller (NVIC)  
The Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named  
as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor core  
and provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched  
from a vector table in memory. There is no need to determine which interrupt is accepted and  
branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Apr 3, 2019  
Page 36 of 102  
Rev 1.06  
NUC029  
5.2.7.1 Exception Model and System Interrupt Map  
The following table lists the exception model supported by NuMicro® NUC029 series. Software  
can set four levels of priority on some of these exceptions as well as on all interrupts. The highest  
user-configurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default  
priority of all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth  
priority on the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Name  
Reset  
Vector Number  
Priority  
-3  
1
NMI  
2
-2  
Hard Fault  
Reserved  
3
-1  
4 ~ 10  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
11  
Reserved  
12 ~ 13  
PendSV  
14  
SysTick  
15  
16 ~ 47  
Interrupt (IRQ0 ~ IRQ31)  
Table 5-3 Exception Model  
Apr 3, 2019  
Page 37 of 102  
Rev 1.06  
NUC029  
Interrupt Number  
Vector  
Number  
Interrupt  
Name  
Source  
Module  
Power-Down  
Wake-Up  
Interrupt Description  
(Bit In Interrupt  
Registers)  
1 ~ 15  
16  
-
-
-
System exceptions  
-
0
1
2
3
4
BOD_INT  
WDT_INT  
EINT0  
Brown-out Brown-out low voltage detected interrupt  
Yes  
Yes  
Yes  
Yes  
Yes  
17  
WDT  
GPIO  
GPIO  
GPIO  
Watchdog Timer interrupt  
18  
External signal interrupt from P3.2 pin  
External signal interrupt from P3.3 pin  
External signal interrupt from P0[7:0]/P1[7:0]  
19  
EINT1  
20  
P0/1_INT  
External signal interrupt from  
P2[7:0]/P3[7:0]/P4[7:0], except P3.2 and P3.3  
21  
5
P2/3/4_INT  
GPIO  
Yes  
22  
23  
6
7
PWMA_INT  
PWMB_INT  
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART0_INT  
UART1_INT  
SPI0_INT  
SPI1_INT  
-
PWM0~3  
PWM4~7  
TMR0  
TMR1  
TMR2  
TMR3  
UART0  
UART1  
SPI0  
PWM0, PWM1, PWM2 and PWM3 interrupt  
PWM4, PWM5, PWM6 and PWM7 interrupt  
Timer0 interrupt  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
-
24  
8
25  
9
Timer1 interrupt  
26  
10  
Timer2interrupt  
27  
11  
Timer3 interrupt  
28  
12  
UART0 interrupt  
29  
13  
UART1 interrupt  
30  
14  
SPI0 interrupt  
31  
15  
SPI1  
SPI1 interrupt  
32 ~ 33  
34  
16 ~ 17  
18  
-
Reserved  
I2C0_INT  
I2C1_INT  
-
I2C0  
I2C0 interrupt  
Yes  
Yes  
-
35  
19  
I2C1  
I2C1 interrupt  
36 ~ 40  
41  
20 ~ 24  
25  
-
Reserved  
ACMP01_INT  
ACMP23_INT  
-
ACMP0/1  
ACMP2/3  
-
Analog Comparator0 or Comparator1 interrupt  
Analog Comparator2 or Comparator3 interrupt  
Reserved  
Yes  
Yes  
-
42  
26  
43  
27  
Clock controller interrupt for chip wake-up from  
Power-down state  
44  
28  
PWRWU_INT  
CLKC  
Yes  
45  
29  
ADC_INT  
-
ADC  
ADC interrupt  
Reserved  
No  
46 ~ 47  
30 ~ 31  
-
-
Table 5-4 NuMicro® NUC029xAN System Interrupt Map  
Apr 3, 2019  
Page 38 of 102  
Rev 1.06  
NUC029  
Interrupt Number  
Vector  
Number  
Interrupt  
Name  
Source  
Module  
Power-Down  
Wake-Up  
Interrupt Description  
(Bit In Interrupt  
Registers)  
1 ~ 15  
16  
-
-
-
System exceptions  
-
0
1
2
3
4
BOD_INT  
WDT_INT  
EINT0  
-
Brown-out Brown-out low voltage detected interrupt  
Yes  
Yes  
Yes  
-
17  
WDT  
GPIO  
-
Watchdog Timer interrupt  
18  
External signal interrupt from P3.2 pin  
Reserved  
19  
20  
P0/1_INT  
GPIO  
External signal interrupt from P0[7:0]/P1[7:0]  
Yes  
External signal interrupt from  
P2[7:0]/P3[7:0]/P4[7:0], except P3.2  
21  
5
P2/3/4_INT  
GPIO  
Yes  
22  
23  
6
7
PWM_INT  
BRAKE_INT  
TMR0_INT  
TMR1_INT  
-
PWM  
PWM  
TMR0  
TMR1  
-
PWM interrupt  
PWM interrupt  
Timer0 interrupt  
Timer1 interrupt  
Reserved  
No  
No  
Yes  
Yes  
-
24  
8
25  
9
26 ~ 27  
28  
10 ~ 11  
12  
UART_INT  
-
UART  
-
UART interrupt  
Reserved  
Yes  
-
29  
13  
30  
14  
SPI_INT  
-
SPI  
SPI interrupt  
No  
-
31  
15  
-
Reserved  
32  
16  
GP5_INT  
GPIO  
External signal interrupt from P5  
Yes  
HIRC_TRIM_  
INT  
33  
17  
HIRC  
HIRC trim interrupt  
NO  
34  
18  
I2C_INT  
I2C  
I2C interrupt  
Yes  
35 ~ 40  
41  
19 ~ 24  
25  
-
-
ACMP  
-
Reserved  
-
Yes  
-
ACMP_INT  
-
Analog Comparator interrupt  
Reserved  
42 ~ 43  
26 ~ 27  
Clock controller interrupt for chip wake-up from  
Power-down state  
44  
28  
PWRWU_INT  
CLKC  
Yes  
45  
29  
ADC_INT  
-
ADC  
ADC interrupt  
No  
46 ~ 47  
30 ~ 31  
-
Reserved  
-
Table 5-5 NuMicro® NUC029FAE System Interrupt Map  
Apr 3, 2019  
Page 39 of 102  
Rev 1.06  
NUC029  
5.2.7.2 Vector Table  
When an interrupt is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base  
address is fixed at 0x00000000. The vector table contains the initialization value for the stack  
pointer on reset, and the entry point addresses for all exception handlers. The vector number on  
previous page defines the order of entries in the vector table associated with exception handler  
entry as illustrated in previous section.  
Vector Table Word Offset  
Description  
0
SP_main The Main stack pointer  
Exception Entry Pointer using that Vector Number  
Table 5-6 Vector Table Format  
Vector Number  
5.2.7.3 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-  
Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-  
1-to-clear policy, both registers reading back the current enabled state of the corresponding  
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become  
Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it  
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit  
prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used  
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers  
reading back the current pended state of the corresponding interrupts. The Clear-Pending  
Register has no effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
Apr 3, 2019  
Page 40 of 102  
Rev 1.06  
NUC029  
5.3 Clock Controller of NuMicro® NUC029xAN  
5.3.1 Overview  
The clock controller generates the clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and clock divider. The chip enters  
Power-down mode when Cortex® -M0 core executes the WFI instruction only if the  
PWR_DOWN_EN (PWRCON[7]) bit and PD_WAIT_CPU (PWRCON[8]) bit are both set to 1.  
After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave  
Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external  
high speed crystal oscillator (HXT) and 22.1184 MHz internal high speed RC oscillator (HIRC)to  
reduce the overall system power consumption. The following figures show the clock generator  
and the overview of the clock source control.  
The clock generator consists of 4 clock sources as listed below:  
4~24 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency (PLL source can be selected from external  
4~24 MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal high  
speed RC oscillator (HIRC)) (PLL FOUT)  
22.1184 MHz internal high speed RC oscillator (HIRC)  
10 kHz internal low speed RC oscillator (LIRC)  
XTL12M_EN (PWRCON[0])  
HXT  
XTAL1  
XTAL2  
PLL_SRC (PLLCON[19])  
4~24 MHz HXT  
0
1
PLL FOUT  
PLL  
OSC22M_EN (PWRCON[2])  
22.1184 MHz  
HIRC  
HIRC  
LIRC  
OSC10K_EN(PWRCON[3])  
10 kHz  
LIRC  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-6 NuMicro® NUC029xAN Clock Generator Block Diagram  
Apr 3, 2019  
Page 41 of 102  
Rev 1.06  
 
NUC029  
HIRC  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
HDIV  
EBI  
LIRC  
PLL FOUT  
Reserved  
HXT  
1/(HCLK_N+1)  
ACMP0  
ACMP1  
ACMP2  
ACMP3  
PCLK  
CLKSEL0[2:0]  
I2C0  
I2C1  
HIRC  
FMC  
HCLK  
1
0
SPI0  
SPI1  
PLL FOUT  
CLKSEL1[4:5]  
HIRC  
11  
10  
01  
00  
HCLK  
1/(ADC_N+1)  
ADC  
PLL FOUT  
HXT  
CLKSEL1[3:2]  
HIRC  
11  
01  
00  
PLL FOUT  
HXT  
1/(UART_N+1)  
UART 0-2  
CLKSEL1[25:24]  
LIRC  
BOD  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-7 NuMicro® NUC029xAN Clock Source Controller Overview (1/2)  
Apr 3, 2019  
Page 42 of 102  
Rev 1.06  
NUC029  
HIRC  
LIRC  
111  
101  
011  
TMR 0  
TMR 1  
TMR 2  
TMR 3  
T0~T3  
HCLK  
HXT  
010  
000  
CLKSEL1[22:20]  
CLKSEL1[18:16]  
CLKSEL1[14:12]  
CLKSEL1[10:8]  
HIRC  
HCLK  
HXT  
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
CPUCLK  
1
0
SysTick  
Reserved  
HXT  
SYST_CSR[2]  
CLKSEL0[5:3]  
HIRC  
11  
10  
01  
00  
FDIV  
HCLK  
Reserved  
HXT  
PWM 6-7  
PWM 4-5  
PWM 2-3  
PWM 0-1  
CLKSEL2[7:2]  
CLKSEL1[31:28]  
LIRC  
11  
10  
WWDT  
WDT  
HCLK/2048  
CLKSEL2[17:16]  
LIRC  
11  
10  
01  
HCLK  
1/2048  
Reserved  
CLKSEL1[1:0]  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-8 NuMicro® NUC029xAN Clock Source Controller Overview (2/2)  
Apr 3, 2019  
Page 43 of 102  
Rev 1.06  
NUC029  
5.3.2 System Clock and SysTick Clock  
The system clock has 4 clock sources which were generated from clock generator block. The  
clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is  
shown in Figure 5-9.  
HCLK_S (CLKSEL0[2:0])  
22.1184 MHz  
HIRC  
111  
10 kHz LIRC  
011  
CPUCLK  
CPU  
PLL FOUT  
010  
HCLK  
1/(HCLK_N+1)  
AHB  
APB  
Reserved  
001  
000  
HCLK_N (CLKDIV[3:0])  
PCLK  
4~24 MHz HXT  
CPU in Power Down Mode  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-9 NuMicro® NUC029xAN System Clock Block Diagram  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock  
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The  
clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block  
diagram is shown in Figure 5-10.  
STCLK_S (CLKSEL0[5:3])  
22.1184 MHz  
111  
011  
010  
001  
000  
1/2  
1/2  
1/2  
HCLK  
STCLK  
4~24 MHz  
32.768 kHz  
4~24 MHz  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-10 NuMicro® NUC029xAN SysTick Clock Control Block Diagram  
Apr 3, 2019  
Page 44 of 102  
Rev 1.06  
 
 
NUC029  
5.3.3 Power-down Mode Clock  
When chip enters Power-down mode, system clocks, some clock sources, and some peripheral  
clocks will be disabled. Some clock sources and peripherals clocks are still active in Power-down  
mode.  
The clocks still kept active are listed below:  
Clock Generator  
-
10 kHz internal low speed RC oscillator clock (LIRC)  
Peripherals Clock (when 10 kHz intertnal low speed RC oscillator is adopted as clock  
source)  
Apr 3, 2019  
Page 45 of 102  
Rev 1.06  
NUC029  
5.3.4 Frequency Divider Output  
This device is equipped with a power-of-2 frequency divider which is composed by16 chained  
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one  
multiplexer is reflected to CKO pin. Therefore there are 16 options of power-of-2 divided clocks  
with the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock  
divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).  
When writing 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When writing 0  
to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low  
state and stay in low state.  
FRQDIV_S (CLKSEL2[3:2])  
FDIV_EN (APBCLK[6])  
22.1184 MHz  
HIRC  
11  
HCLK  
FRQDIV_CLK  
10  
01  
00  
10 kHz LIRC  
4~24 MHz HXT  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-11 NuMicro® NUC029xAN Clock Source of Frequency Divider  
DIVIDER_EN  
(FRQDIV[4])  
Enable  
FSEL  
(FRQDIV[3:0])  
divide-by-2 counter  
16 chained  
divide-by-2 counter  
FRQDIV_CLK  
1/2  
1/22  
1/23  
...  
1/215 1/216  
0000  
0001  
:
CKO  
16 to 1  
MUX  
:
1110  
1111  
Figure 5-12 NuMicro® NUC029xAN Frequency Divider Block Diagram  
Apr 3, 2019  
Page 46 of 102  
Rev 1.06  
 
NUC029  
5.4 Clock Controller of NuMicro® NUC029FAE  
5.4.1 Overview  
The clock controller generates the clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and clock divider. The chip enters  
Power-down mode when Cortex® -M0 core executes the WFI instruction only if the  
PWR_DOWN_EN (PWRCON[7]) bit and PD_WAIT_CPU (PWRCON[8]) bit are both set to 1.  
After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave  
Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external  
high speed crystal oscillator (HXT) and 22.1184 MHz internal high speed RC oscillator (HIRC)to  
reduce the overall system power consumption. The following figures show the clock generator  
and the overview of the clock source control.  
The clock generator consists of 3 clock sources as listed below:  
4~24 MHz external high speed crystal oscillator (HXT) or 32.768 kHz external low  
speed crystal oscillator (LXT)  
22.1184 MHz internal high speed RC oscillator (HIRC)  
10 kHz internal low speed RC oscillator (LIRC)  
XTLCLK_EN (PWRCON[1:0])  
HXT or LXT  
4~24 MHz HXT  
or  
32.768 kHz LXT  
XTAL1  
XTAL2  
OSC22M_EN (PWRCON[2])  
HIRC  
LIRC  
22.1184 MHz  
HIRC  
OSC10K_EN(PWRCON[3])  
10 kHz  
LIRC  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
LXT = 32.768 kHz external low speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-13 NuMicro® NUC029FAE Clock Generator Block Diagram  
Apr 3, 2019  
Page 47 of 102  
Rev 1.06  
 
NUC029  
5.4.2 System Clock and SysTick Clock  
The system clock has 3 clock sources which were generated from clock generator block. The  
clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is  
shown in Figure 5-14.  
HCLK_S (CLKSEL0[2:0])  
22.1184 MHz  
HIRC  
111  
10 kHz LIRC  
011  
CPUCLK  
CPU  
Reserved  
010  
HCLK  
1/(HCLK_N+1)  
AHB  
APB  
Reserved  
001  
000  
HCLK_N (CLKDIV[3:0])  
PCLK  
4~24 MHz HXT or  
32.768 kHz LXT  
CPU in Power Down Mode  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-14 NuMicro® NUC029FAE System Clock Block Diagram  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock  
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The  
clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block  
diagram is shown in Figure 5-15.  
STCLK_S (CLKSEL0[5:3])  
22.1184 MHz  
111  
011  
010  
001  
000  
1/2  
1/2  
1/2  
HCLK  
STCLK  
4~24 MHz  
32.768 kHz  
4~24 MHz  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be  
turned on and stable.  
Figure 5-15 NuMicro® NUC029FAE SysTick Clock Control Block Diagram  
Apr 3, 2019  
Page 48 of 102  
Rev 1.06  
 
 
NUC029  
5.4.3 ISP Clock Source Selection  
The clock source of ISP is from AHB clock (HCLK). Please refer to the register AHBCLK.  
HCLK  
ISP (In System  
Programmer)  
ISP_EN (AHBCLK[2])  
Figure 5-16 NuMicro® NUC029FAE AHB Clock Source for HCLK  
5.4.4 Module Clock Source Selection  
The peripheral clock has different clock source switch settings depending on different peripherals.  
PCLK  
Watch Dog Timer  
WDT_EN (APBCLK[0])  
Timer0  
TMR0_EN (APBCLK[2])  
Timer1  
TMR1_EN (APBCLK[3])  
Frequency Divider  
FDIV_EN (APBCLK[6])  
I2C  
I2C_EN (APBCLK[8])  
SPI  
SPI_EN (APBCLK[12])  
UART  
UART_EN (APBCLK[16])  
PWM01  
PWM01_EN (APBCLK[20])  
PWM23  
PWM23_EN (APBCLK[21])  
PWM45  
PWM45_EN (APBCLK[22])  
ADC  
ADC_EN (APBCLK[28])  
ACMP  
CMP_EN (APBCLK[30])  
Apr 3, 2019  
Page 49 of 102  
Rev 1.06  
NUC029  
Figure 5-17 NuMicro® NUC029FAE Peripherals Clock Source Selection for PCLK  
Ext. CLK (HXT Or  
HIRC  
LIRC  
PCLK  
LXT)  
Yes  
Yes  
Yes  
No  
WDT  
Timer0  
Timer1  
I2C  
No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
SPI  
No  
No  
No  
UART  
PWM  
ADC  
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
No  
ACMP  
No  
Table 5-7 NuMicro® NUC029FAE Peripheral Clock Source Selection Table  
5.4.5 Power-down Mode Clock  
When chip enters Power-down mode, system clocks, some clock sources, and some peripheral  
clocks will be disabled. Some clock sources and peripherals clocks are still active in Power-down  
mode.  
The clocks still kept active are listed below:  
Clock Generator  
-
10 kHz internal low speed RC oscillator clock (LIRC)  
32.768 kHz external low speed crystal oscillator (LXT) clock (If PD_32K = 1 and  
XTLCLK_EN[1:0] = 10)  
Peripherals Clock (When 10 kHz low speed oscillator is adopted as clock source)  
-
-
Watchdog Clock  
Timer 0/1 Clock  
Apr 3, 2019  
Page 50 of 102  
Rev 1.06  
NUC029  
5.5 Flash Memory Controller (FMC)  
5.5.1 Overview  
The NuMicro® NUC029 series has 64/32/16K bytes on-chip embedded Flash for application  
program memory (APROM) that can be updated through ISP procedure. The In-System-  
Programming (ISP) function enables user to update program memory when chip is soldered on  
PCB. After chip is powered on, Cortex® -M0 CPU fetches code from APROM or LDROM decided  
by boot select (CBS) in CONFIG0.  
The NuMicro® NUC029 series also provides additional Data Flash for user to store some  
application dependent data before chip power off. The NUC029xAN provides additional 4 Kbytes  
DATA Flash, and NUC029FAE provides Data Flash that is shared with APROM and its start  
address is configurable and defined by user in CONFIG1.  
5.5.2 Features  
Runs up to 50 MHz with zero wait cycle for continuous address read access  
64/32/16 KB application program memory (APROM)  
Up to 4KB In-System-Programming (ISP) loader program memory (LDROM)  
Fixed 4KB Data Flash for NUC029xAN  
Configurable Data Flash size and Programmable Data Flash start address for  
NUC029FAE  
All embedded flash memory supports 512 bytes page erase  
Supports In-Application-Programming (IAP) to switch code between APROM and  
LDROM without reset  
In-System-Programming (ISP) to update on-chip Flash  
Apr 3, 2019  
Page 51 of 102  
Rev 1.06  
NUC029  
5.6 External Bus Interface (EBI) (NUC029LAN/NUC029NAN Only)  
5.6.1 Overview  
The NuMicro® NUC029LAN/NUC029NAN has an external bus interface (EBI) to access external  
device. To save the connections between external device and this chip, EBI support address bus  
and data bus multiplex mode. Also, address latch enable (ALE) signal is used to differentiate the  
address and data cycle.  
5.6.2 Features  
Supports external devices with maximum 64 KB size (8-bit data width) / 128 KB (16-  
bit data width)  
Supports variable external bus base clock (MCLK) which based on HCLK  
Supports 8-bit or 16-bit data width  
Supports variable data access time (tACC), address latch enable time (tALE) and  
address hold time (tAHD)  
Supports address bus and data bus multiplex mode to save the address pins  
Supports configurable idle cycle for different access condition: Write command finish  
(W2X), Read-to-Read (R2R)  
Supports zero address hold time with read/write operation and write buffer for write  
operation to enhance read/write performance  
Apr 3, 2019  
Page 52 of 102  
Rev 1.06  
NUC029  
5.7 General Purpose I/O (GPIO)  
5.7.1 Overview  
The NuMicro® NUC029 series has up to 40 General Purpose I/O pins to be shared with other  
function pins depending on the chip configuration. These 40 pins are arranged in 6 ports named  
as P0, P1, P2, P3, P4 and P5. Each port has the maximum of 8 pins. Each of the 40 pins is  
independent and has the corresponding register bits to control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull  
output, Open-drain output or Quasi-bidirectional mode. Each I/O pin has a very weak individual  
pull-up resistor which is about 110~300 Kfor VDD is from 5.0 V to 2.5 V.  
5.7.2 Features  
Four I/O modes:  
Quasi-bidirectional  
-
-
-
-
Push-Pull output  
Open-Drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable by Px_TYPE[15:0] in Px_MFP[23:16]  
I/O pin configured as interrupt source with edge/level setting  
Configurable default I/O mode of all pins after reset by CIOINI(CONFIG[10]) setting  
-
For NUC029xAN:  
If CIOINI is 0, all GPIO pins in input tri-state mode after chip reset  
If CIOINI is 1, all GPIO pins in Quasi-bidirectional mode after chip reset  
(Default)  
After reset, the I/O mode of all pins are stay in Quasi-bidirectional mode and  
each port data register Px_DOUT[7:0] resets to 0x000_00FF.  
-
For NUC029FAE:  
If CIOINI is 0, all GPIO pins in Quasi-bidirectional mode after chip reset  
If CIOINI is 1, all GPIO pins in input tri-state mode after chip reset (Default)  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the pin wake-up function.  
Apr 3, 2019  
Page 53 of 102  
Rev 1.06  
NUC029  
5.8 Timer Controller (TIMER)  
5.8.1 Overview  
The timer controller includes up to 4 sets 32-bit timers, TIMER0 ~ TIMER3, allowing user to easily  
implement a timer control for applications. The timer can perform functions, such as frequency  
measurement, delay timing, clock generation, and event counting by external input pins, and  
interval measurement by external capture pins.  
5.8.2 Features  
Up to 4 sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides four timer counting modes: one-shot, periodic, toggle and continuous  
counting  
Time-out period = (Period of timer clock input) * (8-bit prescale counter + 1) * (24-bit  
TCMP)  
Maximum counting cycle time = (1 / T MHz) * (28) * (224), T is the period of timer clock  
24-bit up counter value is readable through TDR (Timer Data Register)  
Supports event counting function to count the event from external counter pin (T0~T3)  
24-bit capture value is readable through TCAP (Timer Capture Data Register)  
Supports external pin capture (T0EX~T3EX) for interval measurement  
Supports external pin capture (T0EX~T3EX) for reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is  
generated  
Supports internal capture triggered while internal ACMP output signal transition  
(NUC029xAN only)  
Supports Inter-Timer trigger mode (NUC029xAN only)  
Supports internal signal (CPO0, CPO1) for interval measurement (NUC029FAE only)  
Apr 3, 2019  
Page 54 of 102  
Rev 1.06  
NUC029  
5.9 PWM Generator and Capture Timer (PWM) (NUC029xAN Only)  
5.9.1 Overview  
The NuMicro® NUC029xAN has 2 sets of PWM group supporting a total of 4 sets of PWM  
generators that can be configured as 8 independent PWM outputs, PWM0~PWM7, or as 4  
complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3), (PWM4, PWM5) and (PWM6,  
PWM7) with 4 programmable Dead-zone generators.  
Each PWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2,  
1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM counters for PWM  
period control, two 16-bit comparators for PWM duty control and one Dead-zone generator. The 4  
sets of PWM generators provide 8 independent PWM interrupt flags set by hardware when the  
corresponding PWM period down counter reaches 0. Each PWM interrupt source with its  
corresponding enable bit can cause CPU to request PWM interrupt. The PWM generators can be  
configured as one-shot mode to produce only one PWM cycle signal or auto-reload mode to  
output PWM waveform continuously.  
When DZEN01 (PCR[4]) is set, PWM0 and PWM1 perform complementary PWM paired function;  
the paired PWM period, duty and Dead-time are determined by PWM0 timer and Dead-zone  
generator 0. Similarly, the complementary PWM pairs of (PWM2, PWM3), (PWM4, PWM5) and  
(PWM6, PWM7) are controlled by PWM2, PWM4 and PWM6 timers and Dead-zone generator 2,  
4 and 6, respectively.  
To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and  
16-bit comparator are implemented with double buffer. When user writes data to  
counter/comparator buffer registers, the updated value will be load into the 16-bit down counter/  
comparator at the time down counter reaching 0. The double buffering feature avoids glitch at  
PWM outputs.  
When the 16-bit period down counter reaches 0, the interrupt request is generated. If PWM-timer  
is set as auto-reload mode, when the down counter reaches 0, it is reloaded with PWM Counter  
Register (CNRx) automatically then starts decreasing, repeatedly. If the PWM-timer is set as one-  
shot mode, the down counter will stop and generate one interrupt request when it reaches 0.  
The value of PWM counter comparator is used for pulse high width modulation. The counter  
control logic changes the output to high level when down-counter value matches the value of  
compare register.  
The alternate feature of the PWM-timer is digital input Capture function. If Capture function is  
enabled the PWM output pin is switched as capture input mode. The Capture0 and PWM0 share  
one timer which is included in PWM0 and the Capture1 and PWM1 share PWM1 timer, and etc.  
Therefore user must setup the PWM-timer before enable Capture feature. After capture feature is  
enabled, the capture always latched PWM-counter to Capture Rising Latch Register (CRLR)  
when input channel has a rising transition and latched PWM-counter to Capture Falling Latch  
Register (CFLR) when input channel has a falling transition. Capture channel 0 interrupt is  
programmable by setting CRL_IE0 (CCR0[1]) (Rising latch Interrupt enable) and CFL_IE0  
(CCR0[2]) (Falling latch Interrupt enable) to decide the condition of interrupt occur. Capture  
channel 1 has the same feature by setting CRL_IE1 (CCR0[17]) and CFL_IE1 (CCR0[18]). And  
capture channel 2 to channel 3 on each group have the same feature by setting the  
corresponding control bits in CCR2. For each group, whenever Capture issues Interrupt 0/1/2/3,  
the PWM counter 0/1/2/3 will be reload at this moment.  
The maximum captured frequency that PWM can capture is confined by the capture interrupt  
latency. When capture interrupt occurred, software will do at least three steps, including: Read  
PIIR to get interrupt source and Read CRLRx/CFLRx(x=0~3) to get capture value and finally write  
1 to clear PIIR to 0. If interrupt latency will take time T0 to finish, the capture signal mustn’t  
transition during this interval (T0). In this case, the maximum capture frequency will be 1/T0.  
Apr 3, 2019  
Page 55 of 102  
Rev 1.06  
NUC029  
5.9.2 Features  
5.9.2.1 PWM Function:  
Up to 2 PWM groups (PWMA/PWMB) to support 8 PWM channels or 4  
complementary PWM paired channels  
Each PWM group has two PWM generators with each PWM generator supporting one  
8-bit prescaler, one clock divider, two PWM-timers, one Dead-zone generator and two  
PWM outputs.  
Up to 16-bit resolution  
One-shot or Auto-reload mode  
Edge-aligned type or Center-aligned type option  
PWM trigger ADC start-to-conversion  
5.9.2.2 Capture Function:  
Timing control logic shared with PWM Generators  
Supports 8 Capture input channels shared with 8 PWM output channels  
Each channel supports one rising latch register (CRLRx), one falling latch register  
(CFLRx) and Capture interrupt flag (CAPIFx)  
Apr 3, 2019  
Page 56 of 102  
Rev 1.06  
NUC029  
5.10 Enhanced PWM Generator (NUC029FAE Only)  
5.10.1 Overview  
The NuMicro® NUC029FAE has built one PWM unit which is specially designed for motor driving  
control applications. The PWM unit supports six PWM generators which can be configured as  
three independent PWM outputs, PWM2, PWM3 and PWM5, or as three complementary PWM  
pairs, (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5) with three programmable dead-  
zone generators.  
Every complementary PWM pairs share one 8-bit prescaler. There are six clock dividers providing  
five divided frequencies (1, 1/2, 1/4, 1/8, 1/16) for each channel. Each PWM output has  
independent 16-bit counter for PWM period control, and 16-bit comparators for PWM duty control.  
The six PWM generators provide twelve independent PWM interrupt flags which are set by  
hardware when the corresponding PWM period counter comparison matched period and duty.  
Each PWM interrupt source with its corresponding enable bit can request PWM interrupt. The  
PWM generators can be configured as One-shot mode to produce only one PWM cycle signal or  
Auto-reload mode to output PWM waveform continuously.  
To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and  
16-bit comparator are implemented with double buffer. When user writes data to  
counter/comparator buffer registers, the updated value will be loaded into the 16-bit down  
counter/ comparator at the end of current period. The double buffering feature avoids glitch at  
PWM outputs.  
Besides PWM, Motor controlling also need Timer, ACMP and ADC to work together. In order to  
control motor more precisely, we provide some registers that not only configure PWM but also  
Timer, ADC and ACMP, by doing so, it can save more CPU time and control motor with ease  
especially in BLDC.  
5.10.2 Features  
The PWM unit supports the following features:  
Independent 16-bit PWM duty control units with maximum six port pins:  
-
-
Three independent PWM outputs PWM2, PWM3 and PWM5  
Three complementary PWM pairs, with each pin in a pair mutually complement  
to each other and capable of programmable dead-zone insertion (PWM0,  
PWM1), (PWM2, PWM3) and (PWM4, PWM5)  
Group control bit PWM2 and PWM4 are synchronized with PWM0, PWM3 and  
PWM5 are synchronized with PWM1  
One-shot (only support edge alignment mode) or Auto-reload mode PWM  
Up to 16-bit resolution  
Supports Edge-aligned and Center-aligned mode  
Programmable dead-zone insertion between complementary paired PWMs  
Each pin of PWM0 to PWM5 has independent polarity setting control  
Hardware fault brake protections  
-
Two Interrupt source types:  
Apr 3, 2019  
Page 57 of 102  
Rev 1.06  
NUC029  
Synchronously requested at PWM frequency when down counter  
comparison matched (edge- and center-aligned mode) or underflow (edge-  
aligned mode)  
Requested when external fault brake asserted  
BKP0: EINT0 or CPO1  
The PWM signals before polarity control stage are defined in the view of positive logic.  
The PWM ports is active high or active low are controlled by polarity control register  
Supports independently rising CMR matching (in Center-aligned mode), CNR  
matching (in Center-aligned mode), falling CMR matching, period matching to trigger  
ADC conversion  
Timer comparing matching event trigger PWM to do phase change in BLDC  
application  
Supports ACMP output event trigger PWM to force PWM output at most one period  
low, this feature is usually for step motor control  
Provides interrupt accumulation function  
Apr 3, 2019  
Page 58 of 102  
Rev 1.06  
NUC029  
5.11 Watchdog Timer (WDT)  
5.11.1 Overview  
The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown  
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog  
Timer supports the function to wake-up system from Idle/Power-down mode.  
5.11.2 Features  
18-bit free running up counter for Watchdog Timer time-out interval.  
Selectable time-out interval (24 ~ 218) WDT_CLK cycle and the time-out interval period  
is 104 ms ~ 26.3168 s if WDT_CLK = 10 kHz.  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports Watchdog Timer reset delay period (NUC029xAN only)  
-
Selectable it includes (102613018 or 3) * WDT_CLK reset delay period  
Supports to force Watchdog Timer enabled after chip powered on or reset while  
CWDTEN (CONFIG0[31] Watchdog Enable) bit is set to 0 (NUC029xAN only)  
Supports Watchdog Timer time-out wake-up function only if WDT clock source is  
selected as 10 kHz  
Apr 3, 2019  
Page 59 of 102  
Rev 1.06  
NUC029  
5.12 Window Watchdog Timer (WWDT) (NUC029xAN Only)  
5.12.1 Overview  
The NuMicro® NUC029xAN supports The Window Watchdog Timer (WWDT). WWDT is used to  
perform a system reset within a specified window period to prevent software run to uncontrollable  
status by any unpredictable condition.  
5.12.2 Features  
6-bit down counter value WWDTCVAL (WWDTVAL[5:0]) and 6-bit compare window  
value WINCMP (WWDTCR[21:16]) to make the WWDT time-out window period  
flexible  
Supports 4-bit value to programmable maximum 11-bit prescale counter period of  
WWDT counter  
Apr 3, 2019  
Page 60 of 102  
Rev 1.06  
NUC029  
5.13 UART Interface Controller (UART)  
5.13.1 Overview  
The NuMicro® NUC029 series provides up to 2 channels of Universal Asynchronous  
Receiver/Transmitters (UART). UART Controller performs Normal Speed UART, and supports  
flow control function. The UART Controller performs a serial-to-parallel conversion on data  
received from the peripheral, and a parallel-to-serial conversion on data transmitted from the  
CPU. The UART controller also supports IrDA SIR Function and RS-485 function mode. The  
NUC029xAN also supports LIN master/slave function mode. Each UART Controller channel  
supports six types of interrupts. NUC029xAN has seventh interrupt, LIN receiver break field  
detected interrupt (LIN_RX_BREAK_INT).  
5.13.2 Features  
Full duplex, asynchronous communications  
Separates receive / transmit 16/16 bytes entry FIFO for data payloads  
Supports hardware auto flow control/flow control function (CTS, RTS) and  
programmable RTS flow control trigger level  
Programmable receiver buffer trigger level  
Supports programmable baud-rate generator for each channel individually  
Supports CTS wake-up function  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit  
by setting DLY (UA_TOR [15:8]) register  
Supports break error, frame error, parity error and receive / transmit buffer overflow  
detect function  
Fully programmable serial-interface characteristics  
-
-
Programmable data bit length, 5-, 6-, 7-, 8-bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
-
Programmable stop bit length, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode  
Supports 3-/16-bit duration for normal mode  
Supports RS-485 function mode.  
-
-
Supports RS-485 9-bit mode  
-
Supports hardware or software enable to control RS-485 transmission direction  
by programming RTS pin  
Supports LIN function mode (NUC029xAN only)  
-
-
-
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detect function for receiver  
Apr 3, 2019  
Page 61 of 102  
Rev 1.06  
NUC029  
5.14 I2C Serial Interface Controller (I2C)  
5.14.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data  
exchange between devices. The I2C standard is a true multi-master bus including collision  
detection and arbitration that prevents data corruption if two or more masters attempt to control  
the bus simultaneously.  
5.14.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to  
the bus. The main features of the I2C bus include:  
Supports up to two I2C serial interface controller  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allow devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and  
resume serial transfer  
Built-in a 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up  
and timer-out counter overflows.  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Power-down wake-up function  
Support FIFO function (NUC029FAE only)  
Apr 3, 2019  
Page 62 of 102  
Rev 1.06  
NUC029  
5.15 Serial Peripheral Interface (SPI)  
5.15.1 Overview  
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that  
operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bi-  
direction interface. The NuMicro® NUC029 series contains up to 2 sets of SPI controllers  
performing a serial-to-parallel conversion on data received from a peripheral device, and a  
parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI controller  
can be configured as a master or a slave device.  
5.15.2 Features  
Up to 2 sets of SPI controllers  
Supports Master or Slave mode operation  
Configurable bit length of a transaction word from 8 to 32 bits  
Provides separate 4-layer depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports the Byte Reorder function  
Supports Byte or Word Suspend mode  
Supports Slave 3-wire mode  
Supports PLL clock source (NUC029xAN only)  
Apr 3, 2019  
Page 63 of 102  
Rev 1.06  
NUC029  
5.16 Analog-to-Digital Converter (ADC)  
5.16.1 Overview  
The NuMicro® NUC029xAN contains one 12-bit successive approximation analog-to-digital  
converters (SAR A/D converter) with 8 input channels, and The NuMicro® NUC029FAE contains  
one 10-bit successive approximation analog-to-digital converters (SAR A/D converter) with 8 input  
channels.  
The A/D converter of NUC029xAN supports four operation modes: Single, Burst, Single-cycle  
Scan and Continuous Scan mode, and the A/D converter of NUC029xAN only supports Single  
mode.  
The A/D converter can be started by software, PWM trigger and external STADC pin.  
5.16.2 Features  
Analog input voltage range: 0~AVDD  
12-bit resolution and 10-bit accuracy is guaranteed (NUC029xAN only)  
10-bit resolution and 8-bit accuracy is guaranteed (NUC029FAE only)  
Up to 8 single-end analog input channels  
-
Or 4 differential analog input channels (NUC029xAN only)  
Up to 760 kSPS sample rate for NUC029xAN  
300 KSPS (VDD 4.5V - 5.5V) and 200 KSPS (VDD 2.5V - 5.5V) conversion rate for  
NUC029FAE  
Four operating modes (NUC029FAE only supports Single mode)  
-
-
Single mode: A/D conversion is performed one time on a specified channel  
Burst mode: A/D converter samples and converts the specified single channel  
and sequentially stores the result in FIFO.  
-
-
Single-cycle Scan mode: A/D conversion is performed one cycle on all specified  
channels with the sequence from the smallest numbered channel to the largest  
numbered channel  
Continuous Scan mode: A/D converter continuously performs Single-cycle scan  
mode until software stops A/D conversion  
An A/D conversion can be started by:  
-
-
-
Writing 1 to ADST bit (ADCR[11]) through software  
PWM trigger with optional start delay period  
External pin STADC  
Each conversion result is held in data register with valid and overrun indicators  
Each channel has individual data regiter (NUC029xAN only)  
The conversion result can be compared with specify value and user can select  
whether to generate an interrupt when conversion result matches the compare  
register setting  
Channel 7 supports 3 input sources:  
-
-
external analog voltage  
internal Band-gap voltage  
Apr 3, 2019  
Page 64 of 102  
Rev 1.06  
NUC029  
-
internal temperature sensor output (NUC029xAN only)  
Apr 3, 2019  
Page 65 of 102  
Rev 1.06  
NUC029  
5.17 Analog Comparator (ACMP)  
5.17.1 Overview  
The NuMicro® NUC029 series contains up to four sets of comparators which can be used in a  
number of different configurations. The comparator output is logic 1 when positive input voltage is  
greater than negative input voltage; otherwise the output is logic 0. Each comparator can be  
configured to generate interrupt request when the comparator output value changes.  
5.17.2 Features  
Up to four sets of Comparator analog modules  
Analog input voltage range: 0~ VDD  
Supports Hysteresis function  
Optional internal reference voltage source for each comparator negative input  
Two interrupt vectors for the four analog comparators  
External input or internal band-gap voltage selectable at negative node  
Interrupt when compared results change  
Power-down wake-up  
Apr 3, 2019  
Page 66 of 102  
Rev 1.06  
NUC029  
5.18 Hardware Divider (HDIV) (NUC029xAN Only)  
5.18.1 Overview  
The NuMicro® NUC029xAN has the hardware divider (HDIV). HDIV is useful to the high  
performance application. The hardware divider is a signed, integer divider with both quotient and  
remainder outputs.  
5.18.2 Features  
Signed (two’s complement) integer calculation  
32-bit dividend with 16-bit divisor calculation capacity  
32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-  
bit)  
Divided by zero warning flag  
6 HCLK clocks taken for one cycle calculation  
Write divisor to trigger calculation  
Waiting for calculation ready automatically when reading quotient and remainder  
Apr 3, 2019  
Page 67 of 102  
Rev 1.06  
NUC029  
6
APPLICATION CIRCUIT  
DVCC  
[1]  
AVCC  
SPISS0  
SPICLK0  
MISO_0  
CS  
CLK  
MISO  
MOSI  
VDD  
AVDD  
SPI Device  
FB  
FB  
DVCC  
VSS  
VDD  
Power  
MOSI_0  
0.1uF  
0.1uF  
VSS  
DVCC  
4.7K  
DVCC  
AVSS  
4.7K  
DVCC  
100 K  
CLK  
DIO  
SCL0  
SDA0  
VDD  
I2C Device  
100 K  
VSS  
VDD  
ICE_DAT  
ICE_CLK  
nRST  
VSS  
SWD  
Interface  
64K x 16-bit  
SRAM  
LATCH  
20p  
20p  
NUC029LAN  
LQFP48  
XTAL1  
XTAL2  
D
Q
Addr[15:0]  
En  
ALE  
Crystal  
4~24 MHz  
crystal  
nCE  
nOE  
nWE  
nLB  
nCS  
nRD  
nWR  
nWRL  
nWRH  
EBI  
nUB  
DVCC  
AD[15:0]  
Data[15:0]  
10K  
Reset  
Circuit  
RS232 Transceiver  
ROUT RIN  
PC COM Port  
nRST  
RXD  
TXD  
10uF/25V  
UART  
TIN  
TOUT  
LDO_CAP  
1uF  
Note: For the SPI device, the NUC029xAN chip  
supply voltage must be equal to SPI device  
working voltage. For example, when the SPI  
Flash working voltage is 3.3 V, the NUC029xAN  
chip supply voltage must also be 3.3V.  
LDO  
Apr 3, 2019  
Page 68 of 102  
Rev 1.06  
 
NUC029  
7
NUC029XAN ELECTRICAL CHARACTERISTICS  
7.1 Absolute Maximum Ratings  
SYMBOL  
PARAMETER  
MIN.  
MAX  
+7.0  
VDD+0.3  
24  
UNIT  
V
DC Power Supply  
-0.3  
VDDVSS  
VIN  
Input Voltage  
VSS-0.3  
V
Oscillator Frequency  
1/tCLCL  
TA  
4
MHz  
C  
Operating Temperature  
-40  
+85  
+150  
120  
Storage Temperature  
TST  
-55  
C  
Maximum Current into VDD  
Maximum Current out of VSS  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
IDD  
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
ISS  
120  
35  
35  
IIO  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability  
of the device.  
Apr 3, 2019  
Page 69 of 102  
Rev 1.06  
NUC029  
7.2 DC Electrical Characteristics  
(VDD-VSS=5.5 V, TA = 25C)  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
VDD = 2.5V ~ 5.5V up to 50 MHz  
-
MIN. TYP. MAX. UNIT  
Operation Voltage  
VDD  
2.5  
-
-
5.5  
-
V
V
VSS  
Power Ground  
-0.3  
AVSS  
LDO Output Voltage  
VLDO  
1.62 1.8 1.98  
1.16 1.20 1.24  
1.14 1.20 1.24  
V
VDD > 2.5V  
V
VDD = 2.5 V ~ 5.5 V, TA = 25C  
Band-gap Voltage  
VBG  
VDD = 2.5 V ~ 5.5 V,  
V
TA = -40C ~ 85C  
Allowed Voltage Difference for VDD  
and AVDD  
VDD-AVDD -0.3  
0
0.3  
-
V
-
All digital  
modules  
VDD  
HXT  
HIRC  
PLL  
IDD1  
-
21  
mA  
Operating Current  
Normal Run Mode  
HCLK = 50 MHz  
while(1){}  
5.5V 12 MHz  
X
X
V
V
V
X
IDD2  
IDD3  
IDD4  
-
-
-
15  
20  
13  
-
-
-
mA 5.5V 12 MHz  
mA 3.3V 12 MHz  
mA 3.3V 12 MHz  
X
X
V
V
V
X
Excuted from Flash  
All digital  
modules  
VDD  
HXT  
HIRC  
PLL  
IDD5  
-
6.6  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 22.184 MHz  
while(1){}  
5.5V  
X
X
V
V
X
X
V
X
IDD6  
IDD7  
IDD8  
-
-
-
3.7  
6.4  
3.6  
-
-
-
mA 5.5V  
mA 3.3V  
mA 3.3V  
X
X
V
V
X
X
V
X
Excuted from Flash  
All digital  
modules  
VDD  
mA  
HXT  
HIRC  
PLL  
IDD9  
-
5.4  
-
Operating Current  
Normal Run Mode  
HCLK = 12 MHz  
while(1){}  
5.5V 12 MHz  
X
X
X
X
V
X
IDD10  
IDD11  
IDD12  
-
-
-
3.6  
4.0  
2.3  
-
-
-
mA 5.5V 12 MHz  
mA 3.3V 12 MHz  
mA 3.3V 12 MHz  
X
X
X
X
V
X
Excuted from Flash  
All digital  
modules  
VDD  
HXT  
HIRC  
PLL  
IDD13  
-
3.3  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 4 MHz  
while(1){}  
5.5V  
4 MHz  
4 MHz  
X
X
X
X
V
X
IDD14  
IDD15  
IDD16  
-
-
-
2.5  
2.0  
1.3  
-
-
-
mA 5.5V  
mA 3.3V  
mA 3.3V  
4 MHz  
4 MHz  
X
X
X
X
V
X
Excuted from Flash  
Apr 3, 2019  
Page 70 of 102  
Rev 1.06  
NUC029  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
All digital  
modules  
VDD HXT HIRC LIRC PLL  
IDD17  
-
110  
-
A  
Operating Current  
5.5V  
5.5V  
X
X
X
X
V
V
X
X
V[4]  
Normal Run Mode  
HCLK = 10 kHz  
while(1){}  
IDD18  
IDD19  
IDD20  
-
-
-
105  
92  
-
-
-
X
A  
A  
A  
3.3V  
3.3V  
X
X
X
X
V
V
X
X
V[4]  
X
Excuted from Flash  
90  
All digital  
modules  
VDD  
HXT  
HIRC  
PLL  
IIDLE1  
-
17  
-
mA  
5.5V 12 MHz  
X
X
V
V
V
X
Operating Current  
Idle Mode  
IIDLE2  
IIDLE3  
IIDLE4  
-
-
-
10  
15  
8
-
-
-
mA 5.5V 12 MHz  
mA 3.3V 12 MHz  
mA 3.3V 12 MHz  
HCLK = 50 MHz  
X
X
V
V
V
X
All digital  
modules  
VDD  
HXT  
HIRC  
PLL  
IIDLE5  
-
4.5  
-
mA  
5.5V  
X
X
V
V
X
X
V
X
Operating Current  
Idle Mode  
IIDLE6  
IIDLE7  
IIDLE8  
-
-
-
1.6  
4.4  
1.6  
-
-
-
mA 5.5V  
mA 3.3V  
mA 3.3V  
HCLK= 22.1184 MHz  
X
X
V
V
X
X
V
X
All digital  
modules  
VDD  
mA  
HXT  
HIRC  
PLL  
IIDLE9  
-
4.1  
-
5.5V 12 MHz  
X
X
X
X
V
X
Operating Current  
Idle Mode  
IIDLE10  
IIDLE11  
IIDLE12  
-
-
2.4  
2.8  
-
-
mA 5.5V 12 MHz  
HCLK = 12 MHz  
mA 3.3V 12 MHz  
mA 3.3V 12 MHz  
X
X
X
X
V
X
-
-
1.2  
2.9  
-
-
All digital  
modules  
VDD  
HXT  
HIRC  
PLL  
IIDLE13  
mA  
5.5V  
4 MHz  
4 MHz  
X
X
X
X
V
X
Operating Current  
Idle Mode  
IIDLE14  
IIDLE15  
IIDLE16  
-
-
2.1  
1.6  
-
-
mA 5.5V  
mA 3.3V  
HCLK = 4 MHz  
4 MHz  
4 MHz  
X
X
X
X
V
X
-
-
0.9  
-
-
mA 3.3V  
All digital  
modules  
VDD HXT HIRC LIRC PLL  
IIDLE17  
106  
A  
5.5V  
5.5V  
X
X
X
X
V
V
X
X
V[4]  
Operating Current  
Idle Mode  
IIDLE18  
IIDLE19  
IIDLE20  
-
-
-
104  
90  
-
-
-
X
A  
A  
A  
HCLK = 10 kHz  
3.3V  
3.3V  
X
X
X
X
V
V
X
X
V[4]  
X
89  
VDD = 5.5V, All oscillators and analog blocks turned  
off  
Standby Current  
IPWD1  
-
10  
-
A  
Apr 3, 2019  
Page 71 of 102  
Rev 1.06  
NUC029  
SPECIFICATION  
PARAMETER  
Power-down Mode  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
VDD = 3.3V, All oscillators and analog blocks turned  
off  
IPWD2  
-
-
8
-
A  
A  
(Deep Sleep Mode)  
Logic 0 Input Current P0/1/2/3/4  
(Quasi-bidirectional mode)  
IIL  
-65  
-75  
VDD = 5.5V, VIN = 0V  
VDD = 5.5V, VIN = 2.0V  
Logic 1 to 0 Transition Current  
P0/1/2/3/4 (Quasi-bidirectional  
mode)  
[3]  
ITL  
-
-690 -750  
A  
A  
V
VDD = 5.5V, 0<VIN<VDD  
Input Leakage Current P0/1/2/3/4  
ILK  
-1  
-
+1  
Open-drain or input only mode  
-0.3  
-0.3  
-
-
0.8  
0.6  
VDD = 4.5V  
VDD = 2.5V  
Input Low Voltage P0/1/2/3/4 (TTL  
input)  
VIL1  
VDD  
+0.3  
2.0  
1.5  
-
-
VDD = 5.5V  
VDD =3.0V  
Input High Voltage P0/1/2/3/4 (TTL  
input)  
VIH1  
V
V
VDD  
+0.3  
0
0
-
-
0.8  
0.4  
VDD = 4.5V  
VDD = 2.5V  
Input Low Voltage XTAL1[*2]  
Input High Voltage XTAL1[*2]  
VIL3  
VDD  
+0.3  
3.5  
2.4  
-
-
VDD = 5.5V  
VDD = 3.0V  
VIH3  
V
V
VDD  
+0.3  
Negative going threshold  
(Schmitt input), nRST  
0.2  
VDD  
VILS  
-0.3  
-
-
-
Positive going threshold  
(Schmitt input), nRST  
0.7  
VDD  
VDD  
+0.3  
VIHS  
RRST  
VILS  
V
kΩ  
V
-
-
-
Internal nRST Pin Pull-up Resistor  
40  
150  
Negative going threshold  
(Schmitt input), P0/1/2/3/4  
0.3  
VDD  
-0.3  
-
-
Positive going threshold  
(Schmitt input), P0/1/2/3/4  
0.7  
VDD  
VDD  
+0.3  
VIHS  
V
-
ISR11  
ISR12  
ISR12  
ISR21  
ISR22  
ISR22  
ISK11  
ISK12  
-300 -420  
-50 -75  
-40 -67  
-20 -26  
-
-
-
-
-
-
-
-
VDD = 4.5V, VS = 2.4V  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
A  
A  
A  
Source Current P0/1/2/3/4 (Quasi-  
bidirectional Mode)  
mA VDD = 4.5V, VS = 2.4V  
mA VDD = 2.7V, VS = 2.2V  
mA VDD = 2.5V, VS = 2.0V  
mA VDD = 4.5V, VS = 0.45V  
mA VDD = 2.7V, VS = 0.45V  
Source Current P0/1/2/3/4 (Push-  
pull Mode)  
-3  
-5  
-2.5 -4.2  
10  
6
16  
9
Sink Current P0/1/2/3/4 (Quasi-  
bidirectional and Push-pull Mode)  
Apr 3, 2019  
Page 72 of 102  
Rev 1.06  
NUC029  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
ISK13  
5
8
-
mA VDD = 2.5V, VS = 0.45V  
Note 1: nRST pin is a Schmitt trigger input.  
Note 2: XTAL1 is a CMOS input.  
Note 3: Pins of P0, P1, P2, P3 and P4 can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD = 5.5 V, the transition current reaches its maximum value when VIN approximates to 2 V.  
Note 4: Only enable modules which support 10 kHz LIRC clock source.  
Apr 3, 2019  
Page 73 of 102  
Rev 1.06  
NUC029  
7.3 AC Electrical Characteristics  
7.3.1 External Input Clock  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
0.7 VDD  
0.3 VDD  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
SYMBOL  
tCHCX  
PARAMETER  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
CONDITION  
MIN.  
10  
10  
2
TYP.  
MAX.  
UNIT  
ns  
-
-
-
-
-
-
-
-
-
tCLCX  
-
ns  
tCLCH  
15  
15  
ns  
tCHCL  
2
ns  
7.3.2 External 4~24 MHz High Speed Crystal (HXT)  
SYMBOL  
VHXT  
PARAMETER  
Operation Voltage VDD  
Temperature  
CONDITION  
MIN.  
2.5  
-40  
-
TYP.  
MAX.  
5.5  
85  
-
UNIT  
V
-
-
-
TA  
-
12 MHz at VDD = 5V  
12 MHz at VDD = 3.3V  
-
2
mA  
mA  
MHz  
IHXT  
Operating Current  
Clock Frequency  
-
0.8  
-
-
fHXT  
4
24  
7.3.2.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
10~20pF  
4 MHz ~ 24 MHz  
10~20pF  
Apr 3, 2019  
Page 74 of 102  
Rev 1.06  
NUC029  
XTAL1  
XTAL2  
4~24 MHz  
Crystal  
C1  
C2  
Vss  
Vss  
Figure 7-1 NUC029xAN Typical Crystal Application Circuit  
7.3.3 Internal 22.1184 MHz High Speed RC Oscillator (HIRC)  
SYMBOL  
PARAMETER  
Operation Voltage VDD  
Center Frequency  
CONDITION  
MIN.  
1.62  
-
TYP.  
1.8  
MAX.  
1.98  
-
UNIT  
V
[1]  
VHRC  
-
-
22.1184  
MHz  
TA = 25 ,  
-1  
-3  
-
-
-
+1  
+3  
-
%
%
fHRC  
VDD = 5 V  
Calibrated Internal Oscillator  
Frequency  
TA = -40 ~ 85 ,  
VDD = 2.5 V ~ 5.5 V  
TA = 25 ,  
IHRC  
Operation Current  
800  
uA  
VDD = 5 V  
Note: Operation voltage comes from internal LDO.  
7.3.4 Internal 10 kHz Low Speed RC Oscillator (LIRC)  
SYMBOL  
PARAMETER  
Operation Voltage VDD  
Center Frequency  
CONDITION  
MIN.  
2.5  
-
TYP.  
-
MAX.  
5.5  
-
UNIT  
V
VLRC  
-
-
10  
kHz  
TA = 25 ,  
-10  
-40  
-
-
+10  
+40  
%
%
fLRC  
VDD = 2.5 V ~ 5.5 V  
Calibrated Internal Oscillator  
Frequency  
TA = -40 ~ 85 ,  
VDD = 2.5 V ~ 5.5 V  
Apr 3, 2019  
Page 75 of 102  
Rev 1.06  
NUC029  
7.4 Analog Characteristics  
7.4.1 12-bit SAR ADC Specification  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
12  
UNIT  
Bit  
-
DNL  
INL  
EO  
EG  
EA  
Resolution  
-
-
-
-
-
-
-
Differential nonlinearity error  
Integral nonlinearity error  
Offset error  
±1  
-1~4  
±4  
LSB  
LSB  
LSB  
LSB  
LSB  
±2  
2
4
Gain error (Transfer gain)  
Absolute Error  
-2  
-4  
3
4
-
Monotonic  
Guaranteed  
ADC clock frequency (AVDD = 4.5V ~ 5.5V)  
ADC clock frequency (AVDD = 2.5V ~ 5.5V)  
Sample rate (FADC/TCONV) (AVDD = 4.5V ~ 5.5V)  
Sample rate (FADC/TCONV) (AVDD = 2.5V ~ 5.5V)  
Acquisition Time (Sample Stage)  
Total Conversion Time  
-
-
-
-
-
-
16  
8
MHz  
MHz  
FADC  
-
800  
400  
kSPS  
kSPS  
1/ FADC  
1/ FADC  
V
FS  
-
TACQ  
TCONV  
AVDD  
IDDA  
7
20  
-
Supply voltage  
2.5  
5.5  
Supply current (Avg.) (AVDD = 5V)  
Analog Input voltage  
-
0
-
2.9  
-
-
mA  
VIN  
AVDD  
V
CIN  
Input Capacitance  
3.2  
6
-
-
pF  
RIN  
Input Load  
-
kΩ  
Apr 3, 2019  
Page 76 of 102  
Rev 1.06  
NUC029  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer curve and the ideal  
transfer curve. A calibrated transfer curve means it has calibrated the offset and gain error from the actual transfer curve.  
7.4.2 LDO and Power Management Specification  
SYMBOL  
VDD  
PARAMETER  
Input Voltage VDD  
Output Voltage  
CONDITION  
MIN.  
2.5  
1.62  
-40  
-
TYP.  
MAX.  
5.5  
1.98  
85  
UNIT  
V
-
VLDO  
-
1.8  
25  
1
V
TA  
Operating Temperature  
Capacitor  
-
CLDO  
RESR = 1 Ω  
-
F  
Note 1: It is recommended that a 0.1 uF bypass capacitor is connected between VDD and the closest VSS pin of the device.  
Note 2: To ensure power stability, a 1 F or higher capacitor must be connected between LDO_CAP pin and the closest VSS  
pin of the device.  
Apr 3, 2019  
Page 77 of 102  
Rev 1.06  
NUC029  
7.4.3 Low Voltage Reset Specification  
SYMBOL  
AVDD  
TA  
PARAMETER  
Input Voltage AVDD  
Operating Temperature  
Capacitor  
CONDITION  
MIN.  
0
TYP.  
-
MAX.  
5.5  
85  
UNIT  
V
-
-
-40  
-
25  
ILVR  
AVDD = 5.5 V  
TA = 25 ℃  
1
5
F  
V
1.90  
2.00  
2.20  
TA = -40 ℃  
TA = 85 ℃  
VLVR  
Threshold Voltage  
2.00  
1.70  
2.10  
1.90  
2.40  
2.10  
V
V
7.4.4 Brown-out Detector Specification  
SYMBOL  
AVDD  
TA  
PARAMETER  
Input Voltage AVDD  
Operating Temperature  
Quiescent Current  
CONDITION  
-
MIN.  
0
TYP.  
-
MAX.  
5.5  
UNIT  
V
μA  
V
-
-40  
-
25  
85  
IBOD  
AVDD = 5.5 V  
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
-
140  
4.2  
3.5  
2.5  
2.0  
4.3  
3.5  
2.5  
2.0  
4.38  
3.68  
2.68  
2.18  
4.52  
3.8  
4.55  
3.85  
2.85  
2.35  
4.75  
4.05  
3.05  
2.55  
V
Brown-out Voltage  
(Falling edge)  
VBOD  
V
V
V
V
Brown-out Voltage  
(Rising edge)  
VBOD  
2.77  
2.25  
V
V
7.4.5 Power-on Reset Specification  
SYMBOL  
TA  
PARAMETER  
Operating Temperature  
Reset Voltage  
CONDITION  
MIN.  
-40  
-
TYP.  
25  
MAX.  
UNIT  
-
85  
-
VPOR  
V+  
2
V
VDD Start Voltage to  
VPOR  
-
-
-
-
-
100  
-
mV  
Ensure Power-on Reset  
VDD Raising Rate to  
RRVDD  
0.025  
V/ms  
ms  
Ensure Power-on Reset  
Minimum Time for VDD  
Stays at VPOR to Ensure  
Power-on Reset  
tPOR  
-
0.5  
-
-
Apr 3, 2019  
Page 78 of 102  
Rev 1.06  
NUC029  
VDD  
tPOR  
RRVDD  
VPOR  
Time  
Figure 7-2 NUC029xAN Power-up Ramp Condition  
Apr 3, 2019  
Page 79 of 102  
Rev 1.06  
NUC029  
7.4.6 Temperature Sensor Specification  
SYMBOL  
PARAMETER  
Operating Voltage  
Operating Temperature  
Current Consumption  
Gain  
CONDITION  
MIN.  
1.62  
-40  
TYP.  
1.8  
MAX.  
1.98  
85  
UNIT  
V
[1]  
VTEMP  
-
TA  
-
25  
ITEMP  
-
-
16  
-
μA  
mV/℃  
-
-
-
-1.65  
714  
-1.75  
724  
-1.85  
734  
TA = 0 ℃  
Offset Voltage  
mV  
Note 1: Operation voltage comes from internal LDO.  
Note 2: The temperature sensor formula for the output voltage (Vtemp) is as below equation.  
Vtemp (mV) = Gain (mV/) x Temperature () + Offset (mV)  
7.4.7 Comparator Specification  
SYMBOL  
VCMP  
TA  
PARAMETER  
Operation Voltage AVDD  
Operation Temperature  
Operation Current  
Input Offset Voltage  
Output Swing  
CONDITION  
MIN.  
2.5  
-40  
-
TYP.  
-
MAX.  
5.5  
UNIT  
V
-
-
25  
50  
10  
-
85  
ICMP  
AVDD = 5 V  
100  
μA  
mV  
V
VOFF  
VSW  
-
-
-
-
-
20  
0.1  
0.1  
40  
AVDD-0.1  
AVDD-0.1  
-
VCOM  
-
Input Common Mode Range  
DC Gain  
-
V
70  
dB  
VCOM = 1.2 V,  
VDIFF = 0.1 V  
TPGD  
Propagation Delay  
-
200  
-
ns  
VHYS  
TSTB  
Hysteresis  
-
-
-
-
±20  
-
±30  
1
mV  
Stable Time  
μs  
Apr 3, 2019  
Page 80 of 102  
Rev 1.06  
NUC029  
7.5 Flash DC Electrical Characteristics  
SYMBOL  
PARAMETER  
Operation Voltage  
Data Retention  
Page Erase Time  
Program Time  
Read Current  
CONDITION  
MIN.  
TYP.  
1.8  
-
MAX.  
UNIT  
V
[1]  
VFLA  
-
1.62  
1.98  
TA = 25℃  
TRET  
TERASE  
TPROG  
IDD1  
10  
-
-
-
-
-
-
-
year  
ms  
-
-
-
-
-
3
-
40  
0.25  
7
μs  
-
mA  
mA  
mA  
IDD2  
Program Current  
Erase Current  
-
IDD3  
-
20  
Note 1: Operation voltage comes from internal LDO.  
Note 2: This table is guaranteed by design, not test in production.  
Apr 3, 2019  
Page 81 of 102  
Rev 1.06  
NUC029  
8
NUC029FAE ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
SYMBOL  
PARAMETER  
MIN.  
MAX  
+7.0  
VDD+0.3  
24  
UNIT  
V
DC Power Supply  
-0.3  
VDDVSS  
VIN  
Input Voltage  
VSS-0.3  
V
Oscillator Frequency  
1/tCLCL  
TA  
4
MHz  
C  
Operating Temperature  
-40  
+105  
+150  
120  
Storage Temperature  
TST  
-55  
C  
Maximum Current into VDD  
Maximum Current out of VSS  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
IDD  
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
ISS  
120  
35  
35  
IIO  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the life and reliability  
of the device.  
Apr 3, 2019  
Page 82 of 102  
Rev 1.06  
NUC029  
8.2 DC Electrical Characteristics  
(VDD-VSS = 5.5 V, TA = 25C)  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
VDD = 2.5V ~ 5.5V up to 24 MHz  
-
MIN.  
TYP.  
MAX. UNIT  
Operation Voltage  
VDD  
2.5  
-
5.5  
-
V
V
VSS  
Power Ground  
-0.3  
1.62  
1.20  
1.18  
-0.3  
-
-
AVSS  
LDO Output Voltage  
VLDO  
1.8  
1.24  
1.24  
0
1.98  
1.28  
1.32  
0.3  
-
V
VDD 2.5V  
V
VDD = 2.5 V ~ 5.5 V, TA = 25C  
Band-gap Voltage  
VBG  
VDD = 2.5 V ~ 5.5 V,  
V
TA = -40C ~ 105C  
Allowed Voltage Difference for VDD  
and AVDD  
VDD  
-
V
-
AVDD  
All digital  
modules  
VDD  
HXT  
HIRC  
IDD1  
9.2  
mA  
Operating Current  
Normal Run Mode  
HCLK = 24 MHz  
while(1){}  
5.5V 24 MHz  
5.5V 24 MHz  
X
X
V
X
IDD2  
IDD3  
IDD4  
-
-
-
7.0  
7.1  
5.0  
-
-
-
mA  
mA  
mA  
3.3V 24 MHz  
3.3V 24 MHz  
X
X
V
X
Excuted from Flash  
All digital  
modules  
VDD  
HXT  
HIRC  
IDD5  
-
6.1  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 22.184 MHz  
while(1){}  
5.5V  
5.5V  
X
X
V
V
V
X
IDD6  
IDD7  
IDD8  
-
-
-
3.9  
6.0  
3.9  
-
-
-
mA  
mA  
mA  
3.3V  
3.3V  
X
X
V
V
V
X
Excuted from Flash  
All digital  
modules  
VDD  
HXT  
HIRC  
IDD9  
-
5.5  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 12 MHz  
while(1){}  
5.5V 12 MHz  
5.5V 12 MHz  
X
X
V
X
IDD10  
IDD11  
IDD12  
-
-
-
4.3  
3.9  
2.8  
-
-
-
mA  
mA  
mA  
3.3V 12 MHz  
3.3V 12 MHz  
X
X
V
X
Excuted from Flash  
All digital  
modules  
VDD  
HXT  
HIRC  
IDD13  
-
3.2  
-
mA  
Operating Current  
Normal Run Mode  
HCLK = 4 MHz  
while(1){}  
5.5V  
5.5V  
4 MHz  
4 MHz  
X
X
V
X
IDD14  
IDD15  
IDD16  
-
-
-
2.8  
1.8  
1.4  
-
-
-
mA  
mA  
mA  
3.3V  
3.3V  
4 MHz  
4 MHz  
X
X
V
X
Excuted from Flash  
Apr 3, 2019  
Page 83 of 102  
Rev 1.06  
 
NUC029  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
All digital  
modules  
VDD  
HXT HIRC LIRC  
IDD17  
-
225  
-
A  
Operating Current  
5.5V  
5.5V  
X
X
X
X
V
V
V[4]  
Normal Run Mode  
HCLK = 10 kHz  
while(1){}  
IDD18  
IDD19  
IDD20  
-
-
-
225  
200  
200  
-
-
-
X
V[4]  
X
A  
A  
A  
3.3V  
3.3V  
X
X
X
X
V
V
Excuted from Flash  
All digital  
modules  
VDD  
HXT  
HIRC  
IIDLE1  
-
7.1  
-
mA  
5.5V 24 MHz  
5.5V 24MHz  
X
X
V
X
Operating Current  
Idle Mode  
IIDLE2  
IIDLE3  
IIDLE4  
-
-
-
4.9  
5.1  
2.9  
-
-
-
mA  
mA  
mA  
HCLK = 24 MHz  
3.3V 24 MHz  
3.3V 24 MHz  
X
X
V
X
All digital  
modules  
VDD  
HXT  
HIRC  
IIDLE5  
-
4.1  
-
mA  
5.5V  
5.5V  
X
X
V
V
V
X
Operating Current  
Idle Mode  
IIDLE6  
IIDLE7  
IIDLE8  
-
-
-
2.0  
4.1  
1.9  
-
-
-
mA  
mA  
mA  
HCLK= 22.1184 MHz  
3.3V  
3.3V  
X
X
V
V
V
X
All digital  
modules  
VDD  
HXT  
HIRC  
IIDLE9  
-
4.4  
-
mA  
5.5V 12 MHz  
5.5V 12 MHz  
X
X
V
X
Operating Current  
Idle Mode  
IIDLE10  
IIDLE11  
IIDLE12  
-
-
3.3  
2.9  
-
-
mA  
mA  
HCLK = 12 MHz  
3.3V 12 MHz  
3.3V 12 MHz  
X
X
V
X
-
-
1.8  
2.9  
-
-
mA  
mA  
All digital  
modules  
VDD  
HXT  
HIRC  
IIDLE13  
5.5V  
5.5V  
4 MHz  
4 MHz  
X
X
V
X
Operating Current  
Idle Mode  
IIDLE14  
IIDLE15  
IIDLE16  
-
-
2.5  
1.5  
-
-
mA  
mA  
HCLK = 4 MHz  
3.3V  
3.3V  
4 MHz  
4 MHz  
X
X
V
X
-
-
1.1  
-
-
mA  
All digital  
modules  
VDD  
5.5V  
5.5V  
HXT HIRC LIRC  
IIDLE17  
225  
A  
X
X
X
X
V
V
V[4]  
Operating Current  
Idle Mode  
IIDLE18  
IIDLE19  
IIDLE20  
-
-
-
225  
200  
200  
-
-
-
X
A  
A  
A  
HCLK = 10 kHz  
3.3V  
3.3V  
X
X
X
X
V
V
V[4]  
X
VDD = 5.5V, All oscillators and analog blocks  
turned off  
Standby Current  
IPWD1  
-
10  
-
A  
Apr 3, 2019  
Page 84 of 102  
Rev 1.06  
NUC029  
SPECIFICATION  
PARAMETER  
Power-down Mode  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VDD = 3.3V, All oscillators and analog blocks  
turned off  
IPWD2  
-
9
-
A  
A  
(Deep Sleep Mode)  
Logic 0 Input Current P0/1/2/3/4  
(Quasi-bidirectional mode)  
IIL  
-
-
-70  
-75  
VDD = 5.5V, VIN = 0V  
VDD = 5.5V, VIN = 2.0V  
Logic 1 to 0 Transition Current  
P0/1/2/3/4 (Quasi-bidirectional  
mode)  
[3]  
ITL  
-690  
-750  
+1  
A  
A  
V
VDD = 5.5V, 0<VIN<VDD  
Input Leakage Current P0/1/2/3/4  
ILK  
-1  
-
Open-drain or input only mode  
-0.3  
-0.3  
2.0  
1.5  
0
-
-
-
-
-
-
-
-
0.8  
0.6  
VDD = 4.5V  
VDD = 2.5V  
VDD = 5.5V  
VDD =3.0V  
VDD = 4.5V  
VDD = 2.5V  
VDD = 5.5V  
VDD = 3.0V  
Input Low Voltage P0/1/2/3/4 (TTL  
input)  
VIL1  
VDD +0.3  
VDD +0.3  
0.8  
Input High Voltage P0/1/2/3/4 (TTL  
input)  
VIH1  
V
V
V
Input Low Voltage XTAL1[*2]  
Input High Voltage XTAL1[*2]  
VIL3  
0
0.4  
3.5  
2.4  
VDD +0.3  
VDD +0.3  
VIH3  
Negative going threshold  
(Schmitt input), nRST  
VILS  
-0.3  
-
-
0.2 VDD  
V
V
-
-
Positive going threshold  
(Schmitt input), nRST  
VIHS  
RRST  
VILS  
0.7 VDD  
40  
VDD +0.3  
150  
Internal nRST Pin Pull-up Resistor  
kΩ VDD = 2.5V ~ 5.5V  
Negative going threshold  
(Schmitt input), P0/1/2/3/4  
-0.3  
-
-
0.3 VDD  
V
-
-
Positive going threshold  
(Schmitt input), P0/1/2/3/4  
VIHS  
0.7 VDD  
VDD +0.3  
V
ISR11  
ISR12  
ISR12  
ISR21  
ISR22  
ISR22  
ISK11  
ISK12  
ISK13  
-300  
-50  
-40  
-20  
-3  
-400  
-80  
-73  
-26  
-5  
-
-
-
-
-
-
-
-
-
VDD = 4.5V, VS = 2.4V  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
A  
A  
A  
Source Current P0/1/2/3/4 (Quasi-  
bidirectional Mode)  
mA VDD = 4.5V, VS = 2.4V  
mA VDD = 2.7V, VS = 2.2V  
mA VDD = 2.5V, VS = 2.0V  
Source Current P0/1/2/3/4 (Push-  
pull Mode)  
-2.5  
10  
-5  
15  
9
mA VDD = 4.5V, VS = 0.45V  
mA VDD = 2.7V, VS = 0.45V  
mA VDD = 2.5V, VS = 0.45V  
Sink Current P0/1/2/3/4 (Quasi-  
bidirectional and Push-pull Mode)  
6
5
8
Note 1: nRST pin is a Schmitt trigger input.  
Note 2: XTAL1 is a CMOS input.  
Apr 3, 2019  
Page 85 of 102  
Rev 1.06  
NUC029  
Note 3: Pins of P0, P1, P2, P3 and P4 can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD = 5.5 V, the transition current reaches its maximum value when VIN approximates to 2 V.  
Note 4: Only enable modules which support 10 kHz LIRC clock source.  
Apr 3, 2019  
Page 86 of 102  
Rev 1.06  
NUC029  
8.3 AC Electrical Characteristics  
8.3.1 External Input Clock  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
0.7 VDD  
0.3 VDD  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
SYMBOL  
tCHCX  
PARAMETER  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
CONDITION  
MIN.  
10  
10  
2
TYP.  
MAX.  
UNIT  
ns  
-
-
-
-
-
-
-
-
-
tCLCX  
-
ns  
tCLCH  
15  
15  
ns  
tCHCL  
2
ns  
8.3.2 External 4~24 MHz High Speed Crystal (HXT)  
SYMBOL  
VHXT  
PARAMETER  
Operation Voltage VDD  
Temperature  
CONDITION  
MIN.  
2.5  
-40  
-
TYP.  
MAX.  
5.5  
105  
-
UNIT  
V
-
-
-
TA  
-
12 MHz at VDD = 5V  
12 MHz at VDD = 3.3V  
-
2.5  
1.0  
-
mA  
mA  
MHz  
IHXT  
Operating Current  
Clock Frequency  
-
-
fHXT  
4
24  
8.3.2.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
10~20pF  
4 MHz ~ 24 MHz  
10~20pF  
Apr 3, 2019  
Page 87 of 102  
Rev 1.06  
NUC029  
XTAL1  
XTAL2  
4~24 MHz  
Crystal  
C1  
C2  
Vss  
Vss  
Figure 8-1 NUC029FAE Typical Crystal Application Circuit  
8.3.3 Internal 22.1184 MHz High Speed RC Oscillator (HIRC)  
SYMBOL  
PARAMETER  
Operation Voltage VDD  
Center Frequency  
CONDITION  
MIN.  
1.62  
-
TYP.  
1.8  
MAX.  
1.98  
-
UNIT  
V
[1]  
VHRC  
-
-
22.1184  
MHz  
TA = 25 ,  
-1  
-2  
-
-
-
+1  
+2  
-
%
%
fHRC  
VDD = 5 V  
Calibrated Internal Oscillator  
Frequency  
TA = -40 ~ 105 ,  
VDD = 2.5 V ~ 5.5 V  
TA = 25 ,  
IHRC  
Operation Current  
700  
uA  
VDD = 5 V  
Note : Operation voltage comes from internal LDO.  
Apr 3, 2019  
Page 88 of 102  
Rev 1.06  
NUC029  
HIRC oscillator accuracy vs. temperature  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
Max  
Min  
TA  
8.3.4 Internal 10 kHz Low Speed RC Oscillator (LIRC)  
SYMBOL  
PARAMETER  
Operation Voltage VDD  
Center Frequency  
CONDITION  
MIN.  
2.5  
-
TYP.  
-
MAX.  
UNIT  
V
VLRC  
-
-
5.5  
-
10  
kHz  
TA = 25 ,  
-10  
-40  
-
-
+10  
+40  
%
%
fLRC  
VDD = 2.5 V ~ 5.5 V  
Calibrated Internal Oscillator  
Frequency  
TA = -40 ~ 105 ,  
VDD = 2.5 V ~ 5.5 V  
Apr 3, 2019  
Page 89 of 102  
Rev 1.06  
NUC029  
8.4 Analog Characteristics  
8.4.1 10-bit SAR ADC Specification  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
10  
UNIT  
Bit  
-
DNL  
INL  
EO  
EG  
EA  
Resolution  
-
-
-
-
-
-
-
Differential nonlinearity error  
Integral nonlinearity error  
Offset error  
-1~1.5  
-1~2.5  
±2  
LSB  
LSB  
LSB  
LSB  
LSB  
±1  
1
2
Gain error (Transfer gain)  
Absolute Error  
-1  
-3  
3
4
-
Monotonic  
Guaranteed  
ADC clock frequency (AVDD = 4.5V ~ 5.5V)  
ADC clock frequency (AVDD = 2.5V ~ 5.5V)  
Sample rate (FADC/TCONV) (AVDD = 4.5V ~ 5.5V)  
Sample rate (FADC/TCONV) (AVDD = 2.5V ~ 5.5V)  
Acquisition Time (Sample Stage)  
Total Conversion Time  
-
-
-
-
-
4.2  
2.8  
MHz  
MHz  
FADC  
-
-
300  
200  
kSPS  
kSPS  
1/ FADC  
1/ FADC  
V
FS  
-
TACQ  
TCONV  
AVDD  
IDDA  
N+1[2]  
N+14[2]  
Supply voltage  
2.5  
-
600  
-
5.5  
Supply current (Avg.) (AVDD = 5.5V)  
Analog Input voltage  
-
0
-
-
μA  
VIN  
AVDD  
V
CIN  
Input Capacitance  
3.2  
6
-
-
pF  
RIN  
Input Load  
-
kΩ  
Note 1: ADC voltage reference is same with AVDD  
.
Note 2: N is sampling counter, N=0, 1, 2, 4, 8, 16, 32, 4, 128, 256, 1024.  
Apr 3, 2019  
Page 90 of 102  
Rev 1.06  
NUC029  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
1023  
1022  
1021  
1020  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
1023  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer curve and the ideal  
transfer curve. A calibrated transfer curve means it has calibrated the offset and gain error from the actual transfer curve.  
8.4.2 LDO and Power Management Specification  
SYMBOL  
VDD  
PARAMETER  
Input Voltage VDD  
Output Voltage  
CONDITION  
MIN.  
2.5  
TYP.  
MAX.  
5.5  
UNIT  
V
-
-
-
VLDO  
1.62  
-40  
1.8  
25  
1.98  
105  
V
TA  
Operating Temperature  
Note: It is recommended that a 0.1 uF bypass capacitor is connected between VDD and the closest VSS pin of the device.  
Apr 3, 2019  
Page 91 of 102  
Rev 1.06  
NUC029  
8.4.3 Low Voltage Reset Specification  
SYMBOL  
AVDD  
TA  
PARAMETER  
Input Voltage AVDD  
Operating Temperature  
Capacitor  
CONDITION  
MIN.  
2.5  
-40  
-
TYP.  
-
MAX.  
5.5  
UNIT  
V
-
-
25  
105  
5
ILVR  
AVDD = 5.5 V  
TA = 25 ℃  
1
F  
V
1.90  
2.00  
2.10  
TA = -40 ℃  
TA = 105 ℃  
VLVR  
Threshold Voltage  
1.70  
2.00  
1.90  
2.20  
2.05  
2.45  
V
V
8.4.4 Brown-out Detector Specification  
SYMBOL  
AVDD  
TA  
PARAMETER  
Input Voltage AVDD  
Operating Temperature  
Quiescent Current  
CONDITION  
-
MIN.  
2.5  
-40  
-
TYP.  
-
MAX.  
5.5  
UNIT  
V
μA  
V
-
25  
105  
IBOD  
AVDD = 5.5 V  
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
-
140  
4.2  
3.5  
2.5  
2.0  
4.3  
3.5  
2.5  
2.0  
4.38  
3.68  
2.68  
2.18  
4.52  
3.8  
4.55  
3.85  
2.85  
2.35  
4.75  
4.05  
3.05  
2.55  
V
Brown-out Voltage  
(Falling edge)  
VBOD  
V
V
V
V
Brown-out Voltage  
(Rising edge)  
VBOD  
2.77  
2.25  
V
V
8.4.5 Power-on Reset Specification  
SYMBOL  
TA  
PARAMETER  
Operating Temperature  
Reset Voltage  
CONDITION  
MIN.  
-40  
TYP.  
25  
MAX.  
85  
UNIT  
-
VPOR  
V+  
1.6  
2
2.4  
V
VDD Start Voltage to  
VPOR  
-
-
-
-
-
100  
-
mV  
Ensure Power-on Reset  
VDD Raising Rate to  
RRVDD  
0.025  
V/ms  
ms  
Ensure Power-on Reset  
Minimum Time for VDD  
Stays at VPOR to Ensure  
Power-on Reset  
tPOR  
-
0.5  
-
-
Apr 3, 2019  
Page 92 of 102  
Rev 1.06  
NUC029  
VDD  
tPOR  
RRVDD  
VPOR  
Time  
Figure 8-2 NUC029xAN Power-up Ramp Condition  
Apr 3, 2019  
Page 93 of 102  
Rev 1.06  
NUC029  
8.4.6 Comparator Specification  
SYMBOL  
VCMP  
TA  
PARAMETER  
Operation Voltage AVDD  
Operation Temperature  
Operation Current  
Input Offset Voltage  
Output Swing  
CONDITION  
MIN.  
2.5  
-40  
-
TYP.  
-
MAX.  
5.5  
UNIT  
V
-
-
25  
40  
10  
-
105  
ICMP  
AVDD = 5 V  
80  
μA  
mV  
V
VOFF  
VSW  
-
-
-
-
-
20  
0.1  
0.1  
40  
AVDD-0.1  
AVDD-0.1  
-
VCOM  
-
Input Common Mode Range  
DC Gain  
-
V
70  
dB  
VCOM = 1.2 V,  
VDIFF = 0.1 V  
TPGD  
Propagation Delay  
-
200  
-
ns  
VHYS  
TSTB  
Hysteresis  
VCOM = 1.2 V  
-
-
-
±30  
-
±60  
1
mV  
Stable Time  
μs  
Apr 3, 2019  
Page 94 of 102  
Rev 1.06  
NUC029  
8.5 Flash DC Electrical Characteristics  
SYMBOL  
PARAMETER  
Operation Voltage  
Endurance  
CONDITION  
MIN.  
TYP.  
1.8  
-
MAX.  
UNIT  
[1]  
VFLA  
-
1.62  
1.98  
V
NENDUR  
TRET  
-
20,000  
-
-
-
-
-
-
-
cycles[2]  
year  
ms  
TA = 25℃  
Data Retention  
Page Erase Time  
Program Time  
Read Current  
10  
-
-
TERASE  
TPROG  
IDD1  
-
-
-
-
-
20  
60  
6
-
μs  
-
mA  
IDD2  
Program Current  
Erase Current  
-
8
mA  
IDD3  
-
12  
mA  
Note 1: Operation voltage comes from internal LDO.  
Note 2: Number of program/erase cycles.  
Note 3: This table is guaranteed by design, not test in production.  
Apr 3, 2019  
Page 95 of 102  
Rev 1.06  
 
NUC029  
9
PACKAGE DIMENSIONS  
9.1 48-pin LQFP (7x7x1.4 mm)  
H
36  
25  
37  
24  
H
13  
48  
12  
1
Controlling dimension  
:
Millimeters  
Dimension in inch  
Symbol  
Dimension in mm  
Min Nom Max Min Nom Max  
A
1
0.002 0.004 0.006 0.05  
0.053 0.055 0.057 1.35  
0.10 0.15  
A
2
1.40  
1.45  
0.25  
0.20  
7.10  
7.10  
0.65  
9.10  
A
0.006  
0.004  
0.008 0.010 0.15 0.20  
b
c
D
0.006  
0.10 0.15  
0.008  
7.00  
7.00  
6.90  
6.90  
0.35  
0.272 0.276 0.280  
0.272 0.276 0.280  
E
0.020  
0.354  
0.354  
0.014  
0.350  
0.350  
0.018  
0.026  
0.50  
e
H
D
0.358 8.90 9.00  
0.358 8.90 9.00  
9.10  
0.60 0.75  
1.00  
E
H
L
0.024 0.030  
0.45  
0
0.039  
0.004  
7
1
L
Y
0.10  
7
0
0
Apr 3, 2019  
Page 96 of 102  
Rev 1.06  
NUC029  
9.2 48-pin QFN (7x7x0.8 mm)  
Apr 3, 2019  
Page 97 of 102  
Rev 1.06  
 
NUC029  
9.3 33-pin QFN (5x5x0.75 mm)  
Apr 3, 2019  
Page 98 of 102  
Rev 1.06  
NUC029  
9.4 33-pin QFN (4x4x0.75 mm)  
Apr 3, 2019  
Page 99 of 102  
Rev 1.06  
 
NUC029  
9.5 20-pin TSSOP (6.5x4.4x1.2 mm)  
Apr 3, 2019  
Page 100 of 102  
Rev 1.06  
NUC029  
10 REVISION HISTORY  
Date  
Revision  
Description  
2014.05.19  
1.00  
1.01  
1.  
1.  
Preliminary version.  
Modified Figure 4-1 NuMicro® NUC029 Series Selection  
2014.08.26  
Code.  
1.  
Changed the order of Chapter 5 FUNCTIONAL  
DESCRIPTION.  
2.  
3.  
4.  
Fixed typos and obscure description.  
Added Chapter 5.2.5 Whole System Memory Mapping.  
Fixed the description about Frequency Divider Output of  
NUC029xAN series in Chapter 5.3.4.  
2015.05.18  
1.02  
5.  
6.  
Added clock switching note in Chapter 5.3 and 5.4.  
Removed description about ACMP output inverse function  
available on NUC029xAN series.  
7.  
8.  
Modified NUC029xDN LVR and BOD specification.  
Updated 33-pin QFN (4x4) package dimension in Chapter  
9.4.  
2017.06.23  
2017.12.11  
1.03  
1.04  
1.  
1.  
1.  
Added new part number NUC029ZAN.  
Added new part number NUC029NAN.  
Modified the figure in section 9.2 48-pin QFN (7x7x0.8  
mm).  
2019.01.09  
1.05  
1.  
2.  
Modified the band-gap characteristic in section 8.2 and the  
Flash characteristic in section 8.5.  
2019.04.03  
1.06  
Added the pull-up resistor on SWD interface in the  
application circuit schematic in Chapter 6.  
Apr 3, 2019  
Page 101 of 102  
Rev 1.06  
NUC029  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Apr 3, 2019  
Page 102 of 102  
Rev 1.06  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY