NUC126LG4BE [NUVOTON]

ARM CORTEX® -M 32-BIT MICROCONTROLLER;
NUC126LG4BE
型号: NUC126LG4BE
厂家: NUVOTON    NUVOTON
描述:

ARM CORTEX® -M 32-BIT MICROCONTROLLER

文件: 总140页 (文件大小:2721K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NUC126  
ARM CORTEX® -M  
32-BIT MICROCONTROLLER  
NuMicro® Family  
NUC126 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Aug. 08, 2018  
Page 1 of 140  
Rev 1.04  
NUC126  
TABLE OF CONTENTS  
1
2
3
4
GENERAL DESCRIPTION.................................................................................8  
1.1  
Key Feature and Application.........................................................................................9  
FEATURES.......................................................................................................10  
2.1  
NuMicro® NUC126 Features.......................................................................................10  
ABBREVIATIONS ............................................................................................18  
3.1  
Abbreviations ..............................................................................................................18  
PARTS INFORMATION LIST AND PIN CONFIGURATION............................20  
4.1  
NuMicro® NUC126 Selection Guide ...........................................................................20  
4.1.1 NuMicro® NUC126 Naming Rule ................................................................................... 20  
4.1.2 NuMicro® NUC126 USB Series (M452 Compatible) Selection Guide............................ 21  
Pin Configuration ........................................................................................................22  
4.2  
4.2.1 NuMicro® NUC126 USB Series QFN48 Pin Diagram .................................................... 22  
4.2.2 NuMicro® NUC126 USB Series LQFP48 Pin Diagram................................................... 23  
4.2.3 NuMicro® NUC126 USB Series LQFP64 Pin Diagram................................................... 24  
4.2.4 NuMicro® NUC126 USB Series LQFP100 Pin Diagram................................................. 25  
Pin Description............................................................................................................26  
4.3  
4.3.1 NUC126 USB Series Pin Description............................................................................. 26  
4.3.2 GPIO Multi-function Pin Summary ................................................................................. 41  
5
6
BLOCK DIAGRAM ...........................................................................................53  
5.1  
NuMicro® NUC126 Block Diagram .............................................................................53  
FUNCTIONAL DESCRIPTION .........................................................................54  
6.1  
6.2  
ARM® Cortex® -M0 Core..............................................................................................54  
System Manager.........................................................................................................56  
6.2.1 Overview........................................................................................................................ 56  
6.2.2 System Reset................................................................................................................. 56  
6.2.3 Power Modes and Wake-up Sources............................................................................. 63  
6.2.4 System Power Distribution............................................................................................. 66  
6.2.5 System Memory Map ..................................................................................................... 68  
6.2.6 SRAM Memory Orginization........................................................................................... 70  
6.2.7 Register Lock................................................................................................................. 71  
6.2.8 Auto Trim ....................................................................................................................... 71  
6.2.9 UART1_TXD modulation with PWM............................................................................... 72  
6.2.10 Voltage Detector (VDET) ............................................................................................... 73  
6.2.11 System Timer (SysTick)................................................................................................. 74  
6.2.12 Nested Vectored Interrupt Controller (NVIC).................................................................. 75  
Clock Controller ..........................................................................................................78  
6.3  
6.3.1 Overview........................................................................................................................ 78  
6.3.2 System Clock and SysTick Clock................................................................................... 81  
6.3.3 Peripherals Clock........................................................................................................... 82  
6.3.4 Power-down Mode Clock ............................................................................................... 83  
6.3.5 Clock Output .................................................................................................................. 83  
Aug. 08, 2018  
Page 2 of 140  
Rev 1.04  
NUC126  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Flash Memeory Controller (FMC) ...............................................................................85  
6.4.1 Overview........................................................................................................................ 85  
6.4.2 Features......................................................................................................................... 85  
Analog Comparator Controller (ACMP) ......................................................................86  
6.5.1 Overview........................................................................................................................ 86  
6.5.2 Features......................................................................................................................... 86  
Analog-to-Digital Converter (ADC) .............................................................................87  
6.6.1 Overview........................................................................................................................ 87  
6.6.2 Features......................................................................................................................... 87  
CRC Controller (CRC) ................................................................................................88  
6.7.1 Overview........................................................................................................................ 88  
6.7.2 Features......................................................................................................................... 88  
External Bus Interface (EBI) .......................................................................................89  
6.8.1 Overview........................................................................................................................ 89  
6.8.2 Features......................................................................................................................... 89  
General Purpose I/O (GPIO) ......................................................................................90  
6.9.1 Overview........................................................................................................................ 90  
6.9.2 Features......................................................................................................................... 90  
6.10 Hardware Divider (HDIV)............................................................................................91  
6.10.1 Overview........................................................................................................................ 91  
6.10.2 Features......................................................................................................................... 91  
6.10.3 Blcok Diagram................................................................................................................ 91  
6.11 I2C Serial Interface Controller (I2C).............................................................................92  
6.11.1 Overview........................................................................................................................ 92  
6.11.2 Features......................................................................................................................... 92  
6.12 PDMA Controller (PDMA)...........................................................................................93  
6.12.1 Overview........................................................................................................................ 93  
6.12.2 Features......................................................................................................................... 93  
6.13 PWM Generator and Capture Timer (PWM) ..............................................................94  
6.13.1 Overview........................................................................................................................ 94  
6.13.2 Features......................................................................................................................... 94  
6.14 Real Time Clock (RTC)...............................................................................................96  
6.14.1 Overview........................................................................................................................ 96  
6.14.2 Features......................................................................................................................... 96  
6.15 Smart Card Host Interface (SC)..................................................................................97  
6.15.1 Overview........................................................................................................................ 97  
6.15.2 Features......................................................................................................................... 97  
6.16 Serial Peripheral Interface (SPI).................................................................................98  
6.16.1 Overview........................................................................................................................ 98  
6.16.2 Features......................................................................................................................... 98  
6.17 Timer Controller (TMR)...............................................................................................99  
6.17.1 Overview........................................................................................................................ 99  
6.17.2 Features......................................................................................................................... 99  
6.18 USB Device Controller (USBD) ................................................................................101  
Aug. 08, 2018  
Page 3 of 140  
Rev 1.04  
NUC126  
6.18.1 Overview...................................................................................................................... 101  
6.18.2 Features....................................................................................................................... 101  
6.19 USCI Universal Serial Control Interface Controller................................................102  
6.19.1 Overview...................................................................................................................... 102  
6.19.2 Features....................................................................................................................... 102  
6.20 USCI UART Mode .................................................................................................103  
6.20.1 Overview...................................................................................................................... 103  
6.20.2 Features....................................................................................................................... 103  
6.21 USCI SPI Mode .....................................................................................................104  
6.21.1 Overview...................................................................................................................... 104  
6.21.2 Features....................................................................................................................... 104  
6.22 USCI I2C Mode ......................................................................................................106  
6.22.1 Overview...................................................................................................................... 106  
6.22.2 Features....................................................................................................................... 106  
6.23 UART Interface Controller (UART) ...........................................................................107  
6.23.1 Overview...................................................................................................................... 107  
6.23.2 Features....................................................................................................................... 107  
6.24 Watchdog Timer (WDT)............................................................................................108  
6.24.1 Overview...................................................................................................................... 108  
6.24.2 Features....................................................................................................................... 108  
6.24.3 Clock Control ............................................................................................................... 108  
6.25 Window Watchdog Timer (WWDT)...........................................................................109  
6.25.1 Overview...................................................................................................................... 109  
6.25.2 Features....................................................................................................................... 109  
6.25.3 Clock Control ............................................................................................................... 109  
7
8
APPLICATION CIRCUIT ................................................................................110  
ELECTRICAL CHARACTERISTICS ..............................................................111  
8.1  
8.2  
8.3  
Absolute Maximum Ratings......................................................................................111  
DC Electrical Characteristics ....................................................................................112  
AC Electrical Characteristics ....................................................................................120  
8.3.1 External 4~24 MHz High Speed Crystal (HXT) Input Clock ......................................... 120  
8.3.2 External 4~24 MHz High Speed Crystal (HXT) Oscillator ............................................ 120  
8.3.3 External 32.768 kHz Low Speed Crystal (LXT) Input Clock......................................... 121  
8.3.4 External 32.768 kHz Low Speed Crystal (LXT) Input Clock......................................... 122  
8.3.5 Internal 48 MHz High Speed RC Oscillator (HIRC48).................................................. 123  
8.3.6 Internal 22.1184 MHz High Speed RC Oscillator (HIRC)............................................. 123  
8.3.7 Internal 10 kHz Low Speed RC Oscillator (LIRC) ........................................................ 123  
Analog Characteristics..............................................................................................125  
8.4  
8.4.1 LDO.............................................................................................................................. 125  
8.4.2 Temperature Sensor.................................................................................................... 125  
8.4.3 Internal Voltage Reference (Int_VREF).......................................................................... 125  
8.4.4 Power-on Reset ........................................................................................................... 126  
8.4.5 Low-Voltage Reset....................................................................................................... 126  
8.4.6 Brown-out Detector...................................................................................................... 126  
Aug. 08, 2018  
Page 4 of 140  
Rev 1.04  
NUC126  
8.4.7 12-bit ADC ................................................................................................................... 127  
8.4.8 Analog Comparator...................................................................................................... 129  
8.4.9 USB PHY ..................................................................................................................... 130  
Flash DC Electrical Characteris................................................................................131  
8.5  
8.6  
8.7  
I2C Dynamic Characteristics ....................................................................................132  
SPI Dynamic Characteristics ....................................................................................133  
8.7.1 Dynamic Characteristics of Data Input and Output Pin ................................................ 133  
9
PACKAGE DIMENSIONS ..............................................................................135  
9.1  
9.2  
9.3  
9.4  
LQFP 100L (14x14x1.4 mm footprint 2.0 mm) .........................................................135  
LQFP 64L (7x7x1.4 mm footprint 2.0 mm) ...............................................................136  
LQFP 48L (7x7x1.4 mm Footprint 2.0 mm)..............................................................137  
QFN 48L (7x7x0.8 mm) ............................................................................................138  
10 REVISION HISTORY......................................................................................139  
Aug. 08, 2018  
Page 5 of 140  
Rev 1.04  
NUC126  
LIST OF FIGURES  
Figure 4.2-1 NuMicro® NUC126 USB Series QFN 48-pin Diagram ...............................................22  
Figure 4.2-2 NuMicro® NUC126 USB Series LQFP 48-pin Diagram .............................................23  
Figure 4.2-3 NuMicro® NUC126 USB Series LQFP 64-pin Diagram .............................................24  
Figure 4.2-4 NuMicro® NUC126 USB Series LQFP 100-pin Diagram ...........................................25  
Figure 5.1-1 NuMicro® NUC126 Block Diagram.............................................................................53  
Figure 6.1-1 Functional Block Diagram ..........................................................................................54  
Figure 6.2-1 System Reset Sources...............................................................................................57  
Figure 6.2-2 nRESET Reset Waveform .........................................................................................59  
Figure 6.2-3 Power-on Reset (POR) Waveform.............................................................................60  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform .........................................................................61  
Figure 6.2-5 Brown-out Detector (BOD) Waveform .......................................................................62  
Figure 6.2-6 NuMicro® NUC126 Power Mode State Machine........................................................64  
Figure 6.2-7 NuMicro® NUC126 Power Distribution Diagram ........................................................67  
Figure 6.2-8 SRAM Block Diagram ................................................................................................70  
Figure 6.2-9 SRAM Memory Organization .....................................................................................71  
Figure 6.2-10 UART1_TXD Modulated with PWM Channel...........................................................72  
Figure 6.2-11 VDET Block Diagram ...............................................................................................73  
Figure 6.3-1 Clock Generator Block Diagram.................................................................................79  
Figure 6.3-2 Clock Generator Global View Diagram ......................................................................80  
Figure 6.3-3 System Clock Block Diagram.....................................................................................81  
Figure 6.3-4 HXT Stop Protect Procedure......................................................................................82  
Figure 6.3-5 SysTick Clock Control Block Diagram .......................................................................82  
Figure 6.3-6 Clock Source of Clock Output....................................................................................83  
Figure 6.3-7 Clock Output Block Diagram......................................................................................84  
Figure 6.10-1 Hardware Divider Block Diagram.............................................................................91  
Figure 6.21-1 SPI Master Mode Application Block Diagram ........................................................104  
Figure 6.21-2 SPI Slave Mode Application Block Diagram ..........................................................104  
Figure 6.22-1 I2C Bus Timing .......................................................................................................106  
Figure 6.24-1 Watchdog Timer Clock Control ..............................................................................108  
Figure 6.25-1 WWDT Clock Control.............................................................................................109  
Figure 8.3-1 Typical Crystal Application Circuit............................................................................121  
Figure 8.3-2 Typical Crystal Application Circuit............................................................................122  
Figure 8.6-1 I2C Timing Diagram..................................................................................................132  
Figure 8.7-1 SPI Master Mode Timing Diagram...........................................................................133  
Figure 8.7-2 SPI Slave Mode Timing Diagram.............................................................................134  
Aug. 08, 2018  
Page 6 of 140  
Rev 1.04  
NUC126  
List of Tables  
Table 1.1-1 Key Features Support Table .........................................................................................9  
Table 3.1-1 List of Abbreviations ....................................................................................................19  
Table 4.3-1 NUC126 GPIO Multi-function Table ............................................................................52  
Table 6.2-1 Reset Value of Registers.............................................................................................59  
Table 6.2-2 Power Mode Difference Table.....................................................................................63  
Table 6.2-3 Clocks in Power Modes..............................................................................................65  
Table 6.2-4 Condition of Entering Power-down Mode Again .........................................................66  
Table 6.2-5 Address Space Assignments for On-Chip Controllers ................................................69  
Table 6.2-6 Exception Model..........................................................................................................76  
Table 6.2-7 Interrupt Number Table ...............................................................................................77  
Table 6.3-8 Clock Stable Count Value Table .................................................................................79  
Aug. 08, 2018  
Page 7 of 140  
Rev 1.04  
NUC126  
1
GENERAL DESCRIPTION  
The NuMicro® NUC126 series microcontroller based on the ARM® Cortex® -M0 core operates at up  
to 72 MHz. With its crystal-less USB 2.0 FS interface, it is able to generate precise frequency  
required by USB protocol without the need of external crystal. It features adjustable VDDIO pins for  
specific I/O pins with a wide range of voltage from 1.8V to 5.5V for various operating voltages of  
external components, a unique high-speed PWM with clock frequency up to 144 MHz for precision  
control, and an integrated hardware divider to speed up the calculation for the control algorithms.  
Apart from that, the NUC126 also integrates SPROM (Security Protection ROM) which provides a  
secure code execution area to protect the intelligent property of developers. The NUC126 series  
is ideal for industrial control, motor control and metering applications.  
The NUC126 series supports the wide voltage range from 2.5V to 5.5V and temperature ranging  
from -40to 105, up to 256 Kbytes of Flash memory, 20 Kbytes of SRAM, 4 Kbytes of ISP (In-  
System Programming) ROM as well as ICP (In-Circuit Programming) ROM and IAP (In-  
Application Programming) ROM in 48-, 64- or 100-pin packages. It also supports high immunity of  
8KV ESD (HBM)/4KV EFT. It is also equipped with plenty of peripherals such as USB interface,  
Timers, Watchdog Timers, RTC, PDMA, EBI, UART, Smart Card Interface, SPI, I²S, I²C, GPIO, up  
to 12 channels of 16-bit PWM, up to 20 channels of 12-bit ADC, analog comparator, temperature  
sensor, low voltage reset, brown-out detector, 96-bit UID (Unique Identification), and 128-bit UCID  
(Unique Customer Identification).  
Aug. 08, 2018  
Page 8 of 140  
Rev 1.04  
NUC126  
1.1 Key Feature and Application  
ISO  
RTC  
VBAT  
Product Line USB  
USCI UART  
I2C  
SPI/I2S  
PWM  
EBI  
PDMA ADC ACMP  
VDDIO  
7816  
2.0 FS  
NUC126  
3
3
2
2
2
12  
Y
5
20  
2
Y
Y
Device  
Table 1.1-1 Key Features Support Table  
The NuMicro® NUC126 series is suitable for a wide range of applications such as:  
Industrial Automation  
PLCs  
Inverters  
Home Automation  
Security Alarm System  
Power Metering  
Portable Data Collector  
Portable RFID Reader  
System Supervisors  
Smart Card Reader  
Printer  
Bar Code Scanner  
Motor Control  
Digital Power  
Aug. 08, 2018  
Page 9 of 140  
Rev 1.04  
 
NUC126  
2 FEATURES  
2.1 NuMicro® NUC126 Features  
Core  
ARM® Cortex® -M0 core running up to 72 MHz  
One 24-bit system timer  
Supports low power sleep mode  
Single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Supports programmable mask-able interrupts  
Serial Wire Debug supports with 2 watch-points/4 breakpoints  
Built-in LDO for wide operating voltage ranged from 2.5V to 5.5V  
Flash Memory  
Supports 256/128 KB application ROM (APROM)  
Supports 4 KB Flash for loader (LDROM)  
Supports 2 KB Security Protection Rom (SPROM)  
Supports 12 bytes User Configuration block to control system initiation  
Supports Data Flash with configurable memory size  
Supports 2 KB page erase for all embedded flash  
Supports In-System-Programming (ISP), In-Application-Programming (IAP) update  
embedded flash memory  
Supports CRC-32 checksum calculation function  
Supports flash all one verification function  
Hardware external read protection of whole flash memory by Security Lock Bit  
Supports 2-wired ICP update through SWD/ICE interface  
SRAM Memory  
20 KB embedded SRAM  
Supports byte-, half-word- and word-access  
Supports PDMA mode  
Hardware Divider  
Signed (two’s complement) integer calculation  
32-bit dividend with 16-bit divisor calculation capacity  
32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-  
bit)  
Divided by zero warning flag  
6 HCLK clocks taken for one cycle calculation  
Write divisor to trigger calculation  
Waiting for calculation ready automatically when reading quotient and remainder  
PDMA (Peripheral DMA)  
Supports 5 independent configurable channels for automatic data transfer between  
memories and peripherals  
Supports single and burst transfer type  
Supports Normal and Scatter-Gather Transfer modes  
Supports two types of priorities modes: Fixed-priority and Round-robin modes  
Supports byte-, half-word- and word-access  
Supports incrementing mode for the source and destination address for each channel  
Supports time-out function for channel 0 and channel 1  
Supports software and SPI/I2S, UART, USCI, USB, ADC, PWM and TIMER request  
Clock Control  
Aug. 08, 2018  
Page 10 of 140  
Rev 1.04  
 
NUC126  
Built-in 22.1184 MHz high speed RC oscillator for system operation (Frequency  
variation < 2% at -40oC ~ +105oC)  
Built-in 48 MHz internal high speed RC oscillator for USB device operation(Frequency  
variation < 2% at -40oC ~ +105oC)  
Built-in 10 kHz low speed RC oscillator for Watchdog Timer and Wake-up operation  
Built-in 4~24 MHz high speed crystal oscillator for precise timing operation  
Built-in 32.768 kHz low speed crystal oscillator for Real Time Clock  
Supports PLL up to 144 MHz for high resolution PWM operation  
Supports dynamically calibrating the HIRC48 to 48 MHz ±0.25% by external 32.768K  
crystal oscillator (LXT)  
Supports dynamically calibrating the HIRC to 22.1184Mhz by external 32.768K crystal  
oscillator (LXT)  
Supports clock on-the-fly switch  
Supports clock failure detection for system clock  
Supports auto clock switch once clock failure detected  
Supports exception (NMI) generated once a clock failure detected  
Supports divided clock output  
GPIO  
Four I/O modes  
TTL/Schmitt trigger input selectable  
I/O pin configured as interrupt source with edge/level trigger setting  
Supports high driver and high sink current I/O (up to 20 mA at 5V)  
Supports software selectable slew rate control  
Supports up to 81/49/35 GPIOs for LQFP100/64/48 respectively  
Timer/PWM  
Supports 4 sets of Timers/PWM  
Timer Mode  
PWM Mode  
TM_CNT_OUT  
PWM_CH0  
TM_EXT  
PWM_CH1 (Complementary)  
Timer Mode  
Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale  
counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle and continuous counting operation modes  
Supports event counting function to count the event from external pin  
Supports input capture function to capture or reset counter value  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is  
generated  
Support Timer0 ~ Timer3 time-out interrupt signal or capture interrupt signal to  
trigger PWM, EADC and PDMA function  
Supports Inter-Timer trigger mode  
PWM Mode  
Supports maximum clock frequency up to 72MHz  
Supports independent mode for 4 sets of independent PWM output channel  
Supports complementary mode for 4 sets of complementary paired PWM output  
channel with 12-bit Dead-time generator  
Supports 12-bit pre-scalar from 1 to 4096  
Aug. 08, 2018  
Page 11 of 140  
Rev 1.04  
NUC126  
Supports 16-bit resolution PWM counter, each timer provides 1 PWM counter  
Supports up, down and up/down counter operation type  
Supports one-shot or Auto-reload counter operation mode  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Supports interrupt when PWM counter match zero, period value or compared  
value, and brake condition happened  
Supports trigger ADC when PWM counter match zero, period value or compared  
value  
Watchdog Timer  
Supports multiple clock sources from LIRC(default selection), HCLK/2048 and LXT  
8 selectable time-out period from 1.6ms ~ 26.0sec (depending on clock source)  
Able to wake up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
Window Watchdog Timer  
Supports multiple clock sources from HCLK/2048 (default selection) and LIRC  
Window set by 6-bit counter with 11-bit prescale  
Interrupt or reset selectable on time-out  
RTC  
Supports separate battery power pin VBAT  
Supports software compensation by setting frequency compensate register (FCR)  
Supports RTC counter (second, minute, hour) and calendar counter (day, month, year)  
Supports Alarm registers (second, minute, hour, day, month, year)  
Supports Alarm mask registers  
Selectable 12-hour or 24-hour mode  
Automatic leap year recognition  
Supports periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8,  
1/4, 1/2 and 1 second  
Supports wake-up function  
PWM  
Supports maximum clock frequency up to144MHz  
Supports up to two PWM modules, each module provides 6 output channels.  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 2 complementary paired PWM output channel  
Dead-time insertion with 12-bit resolution  
Two compared values during one period  
Supports 12-bit pre-scalar from 1 to 4096  
Supports 16-bit resolution PWM counter  
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Brake source from pin and system safety events: clock failed, Brown-out  
detection and CPU lockup.  
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake interrupt cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM counter match zero, period value or compared value  
Brake condition happened  
Supports trigger ADC on the following events:  
Aug. 08, 2018  
Page 12 of 140  
Rev 1.04  
NUC126  
PWM counter match zero, period value or compared value  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
USCI  
Supports up to 3 sets of USCI  
USCI  
UART Mode  
SPI Mode  
SPI_CLK  
SPI_SS  
-
I2C Mode  
USCI_CLK  
USCI_CTL0  
USCI_CTL1  
USCI_DAT0  
-
SCL  
nCTS  
nRTS  
Rx  
-
-
SPI_MOSI  
SPI_MISO  
SDA  
-
USCI_DAT1  
Tx  
UART Mode  
Supports one transmit buffer and two receive buffer for data payload  
Supports hardware auto flow control function  
Supports programmable baud-rate generator  
Support 9-Bit Data Transfer (Support 9-Bit RS-485)  
Baud rate detection possible by built-in capture event of baud rate generator  
Supports Wake-up function (Data and nCTS Wakeup Only)  
SPI Mode  
Supports Master or Slave mode operation (the maximum frequency -- Master =  
fPCLK / 2, Slave = fPCLK / 5)  
Supports one transmit buffer and two receive buffers for data payload  
Configurable bit length of a transfer word from 4 to 16-bit  
Supports MSB first or LSB first transfer sequence  
Supports Word Suspend function  
Supports 3-wire, no slave select signal, bi-direction interface  
Supports wake-up function by slave select signal in Slave mode  
Supports one data channel half-duplex transfer  
I2C Mode  
Full master and slave device capability  
Supports of 7-bit addressing, as well as 10-bit addressing  
Communication in standard mode (100 kBit/s) or in fast mode (up to 400 kBit/s)  
Supports multi-master bus  
Supports one transmit buffer and two receive buffer for data payload  
Supports 10-bit bus time-out capability  
Supports bus monitor mode.  
Supports Power down wake-up by data toggle or address match  
Supports setup/hold time programmable  
Supports multiple address recognition (two slave address with mask option)  
UART  
Supports up to 3 sets of UART  
Full-duplex asynchronous communications  
Separates receive and transmit 16/16 bytes entry FIFO for data payloads  
Supports hardware auto-flow control (RX, TX, CTS and RTS)  
Programmable receiver buffer trigger level  
Supports programmable baud rate generator for each channel individually  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit  
by setting DLY (UART_TOUT [15:8])  
Aug. 08, 2018  
Page 13 of 140  
Rev 1.04  
NUC126  
Supports Auto-Baud Rate measurement and baud rate compensation function  
Supports break error, frame error, parity error and receive/transmit buffer overflow  
detection function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5-, 6-, 7-, 8- bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode  
Supports for 3/16 bit duration for normal mode  
Supports LIN function mode  
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detection function for receiver  
Supports RS-485 mode  
Supports RS-485 9-bit mode  
Supports hardware or software enables to program nRTS pin to control RS-485  
transmission direction  
Supports nCTS, incoming data, Received Data FIFO reached threshold and RS-485  
Address Match (AAD mode) wake-up function  
Supports PDMA transfer  
Smart Card Host (SC)  
Supports up to two Smart Card Hosts  
SC Mode  
SC_DATA  
SC_CLK  
SC_CD  
UART Mode  
Rx  
Tx  
-
SC_PWR  
SC_RST  
-
-
SC Mode  
Supports up to two ISO-7816-3 ports  
Compliant to ISO-7816-3 T=0, T=1  
Separate receive / transmit 4 bytes entry FIFO for data payloads  
Programmable transmission clock frequency  
Programmable receiver buffer trigger level  
Programmable guard time selection (11 ETU ~ 266 ETU)  
One 24-bit and two 8-bit time-out counters for Answer to Request (ATR) and  
waiting times processing  
Supports auto inverse convention function  
Supports transmitter and receiver error retry and error limit function  
Supports hardware activation sequence process  
Supports hardware warm reset sequence process  
Supports hardware deactivation sequence process  
Supports hardware auto deactivation sequence when detecting the card is  
removal  
UART Mode  
Full duplex, asynchronous communications  
Supports receiving / transmitting 4-bytes FIFO  
Supports programmable baud rate generator for each channel  
Programmable even, odd or no parity bit generation and detection  
Programmable stop bit, 1 or 2 stop bit generation  
SPI/I2S  
Aug. 08, 2018  
Page 14 of 140  
Rev 1.04  
NUC126  
Supports up to two SPI/I2S controllers  
SPI Mode  
SPI_CLK  
SPI_SS  
I2S Mode  
I2S_BCLK  
I2S_LRCLK  
I2S_DO  
SPI_MOSI  
SPI_MISO  
I2S_DI  
-
I2S_MCLK  
SPI Mode  
Supports Master or Slave mode operation  
Configurable bit length of a transfer word from 8 to 32-bit  
Provides separate 4-/8-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports PDMA transfer  
I2S Mode  
Supports Master or Slave mode operation  
Capable of handling 8-, 16-, 24- and 32-bit word sizes in I2S mode  
Provides separate 4-level depth transmit and receive FIFO buffers in I2S mode  
Supports monaural and stereo audio data in I2S mode  
Supports PCM mode A, PCM mode B, I2S and MSB justified data format in I2S  
mode  
Supports PDMA transfer  
I2C  
Supports up to two sets of I2C device  
Supports Master/Slave mode  
Supports bidirectional data transfer between masters and slaves  
Supports multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
Supports 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up  
and timer-out counter overflows  
Programmable clocks allow versatile rate control  
Supports multiple address recognition, four slave address with mask option  
Supports two-level buffer function  
Supports setup/hold time programmable  
Supports wake-up function  
USB 2.0 FS Device Controller  
Crystal-less USB 2.0 FS Device  
Compliant to USB specification version 2.0  
On-chip USB Transceiver  
Supports Control, Bulk In/Out, Interrupt and Isochronous transfers  
Auto suspend function when no bus signaling for 3 ms  
Supports USB 2.0 Link Power Management (LPM)  
Provides 8 programmable endpoints  
Supports 512 Bytes internal SRAM as USB buffer  
Provides remote wake-up capability  
On-chip 5V to 3.3V LDO for USB PHY  
Aug. 08, 2018  
Page 15 of 140  
Rev 1.04  
NUC126  
ADC  
Supports 12-bit SAR ADC  
12-bit resolution and 10-bit accuracy is guaranteed  
Analog input voltage range: 0~ AVDD  
Supports external VREF pin  
Up to 20 single-end analog input channels  
Maximum ADC peripheral clock frequency is 16 MHz  
Conversion rate up to 800K SPS at 5V  
Configurable ADC internal sampling time  
Supports single-scan, single-cycle-scan, and continuous scan and scan on enabled  
channels  
Supports individual conversion result register with valid and overrun indicators for each  
channel  
Supports digital comparator to monitor conversion result and user can select whether  
to generate an interrupt when conversion result matches the compare register setting  
An A/D conversion can be triggered by:  
Software enable  
External pin (STADC)  
Timer 0~3 overflow pulse trigger  
PWM triggers with optional start delay period  
Supports 4 internal channels for  
Operational amplifier output  
Band-gap VBG input  
Temperature sensor input  
VBAT voltage measure  
Supports internal reference voltage: 2.048V, 2.560V, 3.072V and 4.096V  
Supports PDMA transfer  
Analog Comparator  
Supports up to 2 rail-to-rail analog comparators  
Supports 4 multiplexed I/O pins at positive node.  
Supports I/O pin and internal voltages at negative node  
Support selectable internal voltage reference from:  
Band-gap VBG  
Voltage divider source from AVDD and internal reference voltage.  
Supports programmable hysteresis  
Supports programmable speed and power consumption  
Interrupts generated when compare results change, interrupt event condition is  
programmable.  
Supports power-down wake-up  
Supports triggers for break events and cycle-by-cycle control for PWM  
Cyclic Redundancy Calculation Unit  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
Programmable initial value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1s complement setting for input data and CRC checksum.  
Supports 8/16/32-bit of data width  
Interrupt generated once checksum error occurs  
User Configurable VDD1=1.8~5.5V IO Interface  
Supports UART0, SPI0 and I2C0  
Supports 96-bit Unique ID (UID)  
Supports 128-bit Unique Customer ID (UCID)  
One built-in temperature sensor with 1resolution  
Aug. 08, 2018  
Page 16 of 140  
Rev 1.04  
NUC126  
Brown-out detector  
With 8 levels: 4.3 V/ 3.7V/ 2.7V/ 2.2V  
Supports Brown-out Interrupt and Reset option  
Low Voltage Reset  
Threshold voltage levels: 2.0 V  
Power consumption  
Chip power down current < 10 uA with RAM data retention.  
VBAT power domain operating current <1.5 uA  
Operating Temperature: -40~105℃  
Packages  
All Green package (RoHS)  
LQFP 100-pin  
LQFP 64-pin(7mmx7mm)  
LQFP 48-pin  
QFN 48-pin  
Aug. 08, 2018  
Page 17 of 140  
Rev 1.04  
NUC126  
3 ABBREVIATIONS  
3.1 Abbreviations  
Acronym  
ACMP  
ADC  
AES  
APB  
AHB  
BOD  
DAP  
DES  
EBI  
Description  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
Advanced High-Performance Bus  
Brown-out Detection  
Debug Access Port  
Data Encryption Standard  
External Bus Interface  
EPWM  
FIFO  
FMC  
FPU  
GPIO  
HCLK  
HIRC  
HXT  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
22.1184 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
IAP  
ICP  
ISP  
In System Programming  
LDO  
LIN  
Low Dropout Regulator  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
QEI  
Pulse Width Modulation  
Quadrature Encoder Interface  
Secure Digital  
SD  
SPI  
Serial Peripheral Interface  
Aug. 08, 2018  
Page 18 of 140  
Rev 1.04  
NUC126  
SPS  
Samples per Second  
TDES  
TMR  
Triple Data Encryption Standard  
Timer Controller  
UART  
UCID  
USB  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
WDT  
WWDT  
Watchdog Timer  
Window Watchdog Timer  
Table 3.1-1 List of Abbreviations  
Aug. 08, 2018  
Page 19 of 140  
Rev 1.04  
NUC126  
4 PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® NUC126 Selection Guide  
4.1.1 NuMicro® NUC126 Naming Rule  
ARMBased  
32-bit  
Microcontroller  
26X X 4 X E  
NUC1  
®
Corte -M0  
CPU core  
Temperature  
E : -40oC ~ +105oC  
Version  
Product Line Function  
2X : USB Line  
A :  
B :  
SRAM Size  
4 : 20K  
Package type  
N : QFN 48 7x7mm  
L : LQFP 48 7x7mm  
S : LQFP 64 7x7mm  
V : LQFP 100 14x14mm  
Flash ROM  
E : 128K  
G : 256K  
Aug. 08, 2018  
Page 20 of 140  
Rev 1.04  
 
NUC126  
4.1.2 NuMicro® NUC126 USB Series (M452 Compatible) Selection Guide  
Connectivity  
Part Number  
Conf*  
NUC126NE4AE 128  
NUC126LE4AE 128  
NUC126LG4AE 256  
NUC126SE4AE 128  
NUC126SG4AE 256  
20  
20  
20  
20  
20  
20  
2
2
2
2
2
2
4
4
4
4
4
4
35  
35  
35  
49  
49  
81  
4
4
4
4
4
4
10  
10  
10  
12  
12  
12  
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
9-ch  
9-ch  
2
2
2
2
2
2
5
5
5
5
5
5
QFN 48  
LQFP 48  
LQFP 48  
LQFP 64*  
LQFP 64*  
LQFP 100  
Conf*  
Conf*  
Conf*  
Conf*  
Conf*  
9-ch  
15-ch  
15-ch  
20-ch  
NUC126VG4AE 256  
Conf*: Configurable  
USCI*: support UART, SPI or I2C  
LQFP64*: 7x7 mm  
Aug. 08, 2018  
Page 21 of 140  
Rev 1.04  
 
NUC126  
4.2 Pin Configuration  
4.2.1  
NuMicro® NUC126 USB Series QFN48 Pin Diagram  
Corresponding Part Number: NUC126NE4AE  
37  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PA.3  
PE.0  
PC.4  
PC.3  
PC.2  
PC.1  
PC.0  
LDO_CAP  
VSS  
38  
PA.2  
39  
PA.1  
40  
PA.0  
41  
VDD  
42  
AVDD  
QFN 48  
43  
VREF  
44  
PB.0  
45  
PB.1  
PF.4  
46  
PB.2  
PF.3  
47  
PB.3  
PD.7  
PF.2  
VSS  
48  
PB.4  
Top Transparent View  
VDDIO power domain  
VBAT power domain  
Figure 4.2-1 NuMicro® NUC126 USB Series QFN 48-pin Diagram  
Aug. 08, 2018  
Page 22 of 140  
Rev 1.04  
 
NUC126  
4.2.2 NuMicro® NUC126 USB Series LQFP48 Pin Diagram  
Corresponding Part Number: NUC126LE4AE, NUC126LG4AE  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PA.3  
PA.2  
PA.1  
PA.0  
VDD  
PE.0  
PC.4  
PC.3  
PC.2  
PC.1  
PC.0  
LDO_CAP  
VSS  
AVDD  
VREF  
PB.0  
PB.1  
PB.2  
PB.3  
PB.4  
LQFP48  
PF.4  
PF.3  
PD.7  
PF.2  
VDDIO power domain  
VBAT power domain  
Figure 4.2-2 NuMicro® NUC126 USB Series LQFP 48-pin Diagram  
Aug. 08, 2018  
Page 23 of 140  
Rev 1.04  
NUC126  
4.2.3 NuMicro® NUC126 USB Series LQFP64 Pin Diagram  
Corresponding Part Number: NUC126SE4AE, NUC126SG4AE  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
PA.3  
PA.2  
PA.1  
PA.0  
VSS  
PC.5  
PC.4  
PC.3  
PC.2  
PC.1  
PC.0  
LDO_CAP  
VDD  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VDD  
AVDD  
VREF  
PB.0  
PB.1  
PB.2  
PB.3  
PB.4  
PB.8  
PB.11  
PE.2  
LQFP64  
VSS  
PF.4  
PF.3  
PD.7  
PD.15  
PD.14  
PD.13  
PD.12  
VDDIO power domain  
VBAT power domain  
Figure 4.2-3 NuMicro® NUC126 USB Series LQFP 64-pin Diagram  
Aug. 08, 2018  
Page 24 of 140  
Rev 1.04  
NUC126  
4.2.4 NuMicro® NUC126 USB Series LQFP100 Pin Diagram  
Corresponding Part Number: NUC126VG4AE  
76  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
PF.7  
PC.5  
77  
USB_VDD33_CAP  
PE.0  
78  
PB.12  
PC.4  
79  
PA.3  
PC.3  
80  
PA.2  
PC.2  
81  
PA.1  
PC.1  
82  
PA.0  
PC.0  
83  
PA.12  
PC.14  
PC.13  
PC.12  
PC.11  
PC.10  
PC.9  
84  
PA.13  
85  
PA.14  
86  
PA.15  
87  
VSS  
88  
VDD  
LQFP100  
89  
AVDD  
LDO_CAP  
VDD  
90  
VREF  
91  
PB.0  
VSS  
92  
PB.1  
PF.4  
93  
PB.2  
PF.3  
94  
PB.3  
PD.7  
95  
PB.4  
PD.15  
PD.14  
PD.13  
PD.12  
PD.11  
PD.10  
96  
PB.8  
97  
PB.9  
98  
PB.10  
99  
PB.11  
100  
PE.2  
VDDIO power domain  
VBAT power domain  
Figure 4.2-4 NuMicro® NUC126 USB Series LQFP 100-pin Diagram  
Aug. 08, 2018  
Page 25 of 140  
Rev 1.04  
NUC126  
4.3 Pin Description  
4.3.1 NUC126 USB Series Pin Description  
MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)  
PA.0 MFP0 means SYS_GP0_MFPL[3:0]=0x0.  
PA.9 MFP5 means SYS_GP0_MFPH[7:4]=0x5.  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
1
2
3
PB.13  
I/O  
A
MFP0  
MFP1  
MFP0  
MFP1  
MFP0  
MFP1  
MFP5  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP9  
MFP0  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
General purpose digital I/O pin.  
ADC0 channel 10 analog input.  
General purpose digital I/O pin.  
ADC0 channel 11 analog input.  
General purpose digital I/O pin.  
ADC0 channel 12 analog input.  
Analog comparator 0 positive input 3 pin.  
EBI chip select 1 output pin.  
ADC0_CH10  
PB.14  
I/O  
A
ADC0_CH11  
PB.15  
1
2
I/O  
A
ADC0_CH12  
ACMP0_P3  
EBI_nCS1  
PB.5  
A
O
1
4
I/O  
A
General purpose digital I/O pin.  
ADC0 channel 13 analog input.  
SPI0 MOSI (Master Out, Slave In) pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
Analog comparator 0 positive input 2 pin.  
Smart Card 1 reset pin.  
ADC0_CH13  
SPI0_MOSI  
SPI1_MOSI  
ACMP0_P2  
SC1_RST  
EBI_AD6  
I/O  
I/O  
A
O
I/O  
I
EBI address/data bus bit 6.  
UART2_RXD  
PB.6  
UART2 data receiver input pin.  
General purpose digital I/O pin.  
ADC0 channel 14 analog input.  
SPI0 MISO (Master In, Slave Out) pin.  
SPI1 MISO (Master In, Slave Out) pin.  
Analog comparator 0 positive input 1 pin.  
Smart Card 1 power pin.  
2
3
5
I/O  
A
ADC0_CH14  
SPI0_MISO  
SPI1_MISO  
ACMP0_P1  
SC1_PWR  
EBI_AD5  
I/O  
I/O  
A
O
I/O  
I/O  
A
EBI address/data bus bit 5.  
3
4
6
PB.7  
General purpose digital I/O pin.  
ADC0 channel 15 analog input.  
SPI0 serial clock pin.  
ADC0_CH15  
SPI0_CLK  
SPI1_CLK  
USCI2_CTL1  
I/O  
I/O  
I/O  
SPI1 serial clock pin.  
USCI2 control 1 pin.  
Aug. 08, 2018  
Page 26 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
ACMP0_P0  
SC1_DAT  
EBI_AD4  
A
I/O  
I/O  
I
MFP5  
MFP6  
MFP7  
MFP0  
Analog comparator 0 positive input 0 pin.  
Smart Card 1 data pin.  
EBI address/data bus bit 4.  
4
5
5
6
7
8
nRESET  
External reset input: active LOW, with an internal pull-up.  
Set this pin low reset to initial state.  
PD.0  
I/O  
I/O  
I/O  
I
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP8  
MFP0  
MFP0  
General purpose digital I/O pin.  
SPI0 I2S master clock output pin  
SPI1 I2S master clock output pin  
UART0 data receiver input pin.  
USCI2 control 0 pin.  
SPI0_I2SMCLK  
SPI1_I2SMCLK  
UART0_RXD  
USCI2_CTL0  
ACMP1_N  
SC1_CLK  
INT3  
I/O  
A
Analog comparator 1 negative input pin.  
Smart Card 1 clock pin.  
O
I
External interrupt 3 input pin.  
Ground pin for analog circuit.  
6
7
9
AVSS  
P
10 VDD  
P
Power supply for I/O ports and LDO source for internal PLL  
and digital circuit.  
11 VSS  
P
I/O  
A
MFP0  
MFP0  
MFP1  
MFP3  
MFP0  
MFP1  
MFP3  
MFP4  
MFP6  
MFP7  
MFP0  
MFP1  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
Ground pin for digital circuit.  
12 PC.8  
General purpose digital I/O pin.  
ADC0 channel 16 analog input.  
UART0 request to Send output pin.  
General purpose digital I/O pin.  
ADC0 channel 17 analog input.  
UART0 clear to Send input pin.  
USCI2 control 1 pin.  
ADC0_CH16  
UART0_nRTS  
13 PD.8  
O
8
I/O  
A
ADC0_CH17  
UART0_nCTS  
USCI2_CTL1  
TM2  
I
I/O  
I/O  
O
Timer2 event counter input/toggle output pin.  
EBI chip select 0 output pin.  
EBI_nCS0  
9
14 PD.9  
I/O  
A
General purpose digital I/O pin.  
ADC0 channel 18 analog input.  
UART0 data receiver input pin.  
USCI2 control 0 pin.  
ADC0_CH18  
UART0_RXD  
USCI2_CTL0  
ACMP1_P3  
TM3  
I
I/O  
A
Analog comparator 1 positive input 3 pin.  
Timer3 event counter input/toggle output pin.  
EBI address latch enable output pin.  
General purpose digital I/O pin.  
ADC0 channel 19 analog input.  
I/O  
O
EBI_ALE  
7
10 15 PD.1  
ADC0_CH19  
I/O  
A
Aug. 08, 2018  
Page 27 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
PWM0_SYNC_IN  
I
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
PWM0 counter synchronous trigger input pin.  
UART0 data transmitter output pin.  
USCI2 clock pin.  
UART0_TXD  
USCI2_CLK  
ACMP1_P2  
TM0  
O
I/O  
A
Analog comparator 1 positive input 2 pin.  
Timer0 event counter input/toggle output pin.  
EBI read enable output pin.  
I/O  
O
EBI_nRD  
8
11 16 PD.2  
I/O  
I
General purpose digital I/O pin.  
ADC0 external trigger input pin.  
Timer0 external capture input/toggle output pin.  
USCI2 data 0 pin.  
ADC0_ST  
TM0_EXT  
USCI2_DAT0  
ACMP1_P1  
PWM0_BRAKE0  
EBI_nWR  
I/O  
I/O  
A
Analog comparator 1 positive input 1 pin.  
PWM0 Brake 0 input pin.  
I
O
EBI write enable output pin.  
INT0  
I
External interrupt 0 input pin.  
General purpose digital I/O pin.  
Timer2 event counter input/toggle output pin.  
SPI0 I2S master clock output pin  
Timer1 external capture input/toggle output pin.  
USCI2 data 1 pin.  
9
12 17 PD.3  
I/O  
I/O  
I/O  
I/O  
I/O  
A
TM2  
SPI0_I2SMCLK  
TM1_EXT  
USCI2_DAT1  
ACMP1_P0  
PWM0_BRAKE1  
EBI_MCLK  
INT1  
Analog comparator 1 positive input 0 pin.  
PWM0 Brake 1 input pin.  
I
O
EBI external clock output pin.  
External interrupt 1 input pin.  
General purpose digital I/O pin.  
SPI1 serial clock pin.  
I
18 PD.4  
I/O  
I/O  
I/O  
O
SPI1_CLK  
I2C0_SDA  
UART2_nRTS  
PWM0_BRAKE0  
TM0  
I2C0 data input/output pin.  
UART2 request to Send output pin.  
PWM0 Brake 0 input pin.  
I
I/O  
I/O  
O
Timer0 event counter input/toggle output pin.  
General purpose digital I/O pin.  
Clock Out  
19 PD.5  
CLKO  
SPI1_MISO  
I2C0_SCL  
UART2_nCTS  
I/O  
I/O  
I
SPI1 MISO (Master In, Slave Out) pin.  
I2C0 clock pin.  
UART2 clear to Send input pin.  
Aug. 08, 2018  
Page 28 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
PWM0_BRAKE1  
I
MFP5  
MFP6  
MFP0  
MFP2  
MFP4  
MFP6  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP0  
MFP1  
MFP5  
MFP8  
MFP0  
MFP1  
MFP5  
MFP6  
MFP0  
MFP5  
MFP6  
MFP0  
MFP4  
MFP5  
MFP0  
MFP4  
MFP5  
MFP0  
MFP1  
PWM0 Brake 1 input pin.  
TM1  
I/O  
I/O  
I/O  
I
Timer1 event counter input/toggle output pin.  
General purpose digital I/O pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
UART2 data receiver input pin.  
PWM0 channel 3 output/capture input.  
General purpose digital I/O pin.  
Clock Out  
20 PE.3  
SPI1_MOSI  
UART2_RXD  
PWM0_CH3  
I/O  
I/O  
O
21 PD.6  
CLKO  
SPI1_SS  
I/O  
I
SPI1 slave select pin.  
UART0_RXD  
UART2_TXD  
ACMP0_O  
PWM0_CH5  
EBI_nWR  
UART0 data receiver input pin.  
UART2 data transmitter output pin.  
Analog comparator 0 output pin.  
PWM0 channel 5 output/capture input.  
EBI write enable output pin.  
Power supply by batteries for RTC.  
General purpose digital I/O pin.  
External 32.768 kHz crystal output pin.  
USCI2 control 1 pin.  
O
O
I/O  
O
10 13 22 VBAT  
11 14 23 PF.0  
X32_OUT  
P
I/O  
O
USCI2_CTL1  
INT5  
I/O  
I
External interrupt 5 input pin.  
General purpose digital I/O pin.  
External 32.768 kHz crystal input pin.  
USCI2 control 0 pin.  
12 15 24 PF.1  
I/O  
I
X32_IN  
USCI2_CTL0  
PWM1_BRAKE0  
I/O  
I
PWM1 Brake 0 input pin.  
13 16 25 PF.2  
I/O  
I/O  
I
General purpose digital I/O pin.  
USCI2 clock pin.  
USCI2_CLK  
PWM1_BRAKE1  
PWM1 Brake 1 input pin.  
26 PD.10  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General purpose digital I/O pin.  
Timer2 event counter input/toggle output pin.  
USCI2 data 0 pin.  
TM2  
USCI2_DAT0  
27 PD.11  
General purpose digital I/O pin.  
Timer3 event counter input/toggle output pin.  
USCI2 data 1 pin.  
TM3  
USCI2_DAT1  
17 28 PD.12  
USCI1_CTL0  
General purpose digital I/O pin.  
USCI1 control 0 pin.  
Aug. 08, 2018  
Page 29 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
SPI1_SS  
UART0_TXD  
PWM1_CH0  
EBI_ADR16  
I/O  
O
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP3  
MFP0  
SPI1 slave select pin.  
UART0 data transmitter output pin.  
PWM1 channel 0 output/capture input.  
EBI address bus bit 16.  
I/O  
O
18 29 PD.13  
USCI1_DAT1  
SPI1_MOSI  
I/O  
I/O  
I/O  
I
General purpose digital I/O pin.  
USCI1 data 1 pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
UART0 data receiver input pin.  
PWM1 channel 1 output/capture input.  
EBI address bus bit 17.  
UART0_RXD  
PWM1_CH1  
EBI_ADR17  
I/O  
O
19 30 PD.14  
USCI1_DAT0  
SPI1_MISO  
I/O  
I/O  
I/O  
I
General purpose digital I/O pin.  
USCI1 data 0 pin.  
SPI1 MISO (Master In, Slave Out) pin.  
UART0 clear to Send input pin.  
PWM1 channel 2 output/capture input.  
EBI address bus bit 18.  
UART0_nCTS  
PWM1_CH2  
EBI_ADR18  
I/O  
O
20 31 PD.15  
USCI1_CLK  
I/O  
I/O  
I/O  
O
General purpose digital I/O pin.  
USCI1 clock pin.  
SPI1_CLK  
SPI1 serial clock pin.  
UART0_nRTS  
PWM1_CH3  
EBI_ADR19  
UART0 request to Send output pin.  
PWM1 channel 3 output/capture input.  
EBI address bus bit 19.  
I/O  
O
14 21 32 PD.7  
USCI1_CTL1  
SPI0_I2SMCLK  
PWM0_SYNC_IN  
TM1  
I/O  
I/O  
I/O  
I
General purpose digital I/O pin.  
USCI1 control 1 pin.  
SPI0 I2S master clock output pin  
PWM0 counter synchronous trigger input pin.  
Timer1 event counter input/toggle output pin.  
Analog comparator 0 output pin.  
PWM0 channel 5 output/capture input.  
EBI read enable output pin.  
I/O  
O
ACMP0_O  
PWM0_CH5  
EBI_nRD  
I/O  
O
15 22 33 PF.3  
XT1_OUT  
I/O  
O
General purpose digital I/O pin.  
External 4~24 MHz (high speed) crystal output pin.  
I2C1 clock pin.  
I2C1_SCL  
I/O  
I/O  
16 23 34 PF.4  
General purpose digital I/O pin.  
Aug. 08, 2018  
Page 30 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
XT1_IN  
I2C1_SDA  
I
I/O  
P
MFP1  
MFP3  
MFP0  
MFP0  
External 4~24 MHz (high speed) crystal input pin.  
I2C1 data input/output pin.  
17 24 35 VSS  
25 36 VDD  
Ground pin for digital circuit.  
P
Power supply for I/O ports and LDO source for internal PLL  
and digital circuit.  
18 26 37 LDO_CAP  
38 PC.9  
A
MFP0  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP0  
MFP2  
MFP4  
MFP6  
MFP0  
MFP2  
MFP4  
MFP6  
MFP0  
MFP2  
MFP4  
MFP6  
MFP0  
MFP6  
MFP0  
MFP1  
MFP2  
MFP3  
LDO output pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
General purpose digital I/O pin.  
SPI0 I2S master clock output pin  
I2C1 clock pin.  
SPI0_I2SMCLK  
I2C1_SCL  
USCI2_CTL1  
PWM1_CH0  
USCI2 control 1 pin.  
PWM1 channel 0 output/capture input.  
General purpose digital I/O pin.  
SPI0 MOSI (Master Out, Slave In) pin.  
I2C1 data input/output pin.  
USCI2 data 1 pin.  
39 PC.10  
SPI0_MOSI  
I2C1_SDA  
USCI2_DAT1  
PWM1_CH1  
PWM1 channel 1 output/capture input.  
General purpose digital I/O pin.  
SPI0 MISO (Master In, Slave Out) pin.  
USCI2 clock pin.  
40 PC.11  
SPI0_MISO  
USCI2_CLK  
PWM1_CH2  
PWM1 channel 2 output/capture input.  
General purpose digital I/O pin.  
SPI0 serial clock pin.  
41 PC.12  
SPI0_CLK  
USCI2_CTL0  
PWM1_CH3  
USCI2 control 0 pin.  
PWM1 channel 3 output/capture input.  
General purpose digital I/O pin.  
SPI0 slave select pin.  
42 PC.13  
SPI0_SS  
USCI2_DAT0  
PWM1_CH4  
USCI2 data 0 pin.  
PWM1 channel 4 output/capture input.  
General purpose digital I/O pin.  
PWM1 channel 5 output/capture input.  
General purpose digital I/O pin.  
Smart Card 0 data pin.  
43 PC.14  
PWM1_CH5  
19 27 44 PC.0  
SC0_DAT  
SPI0_CLK  
SPI0 serial clock pin.  
UART2_nCTS  
UART2 clear to Send input pin.  
Aug. 08, 2018  
Page 31 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
USCI0_DAT0  
ACMP0_WLAT  
PWM0_CH0  
EBI_AD8  
I/O  
I
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
USCI0 data 0 pin.  
Analog comparator 0 window latch input pin  
PWM0 channel 0 output/capture input.  
EBI address/data bus bit 8.  
External interrupt 2 input pin.  
General purpose digital I/O pin.  
Clock Out  
I/O  
I/O  
I
INT2  
20 28 45 PC.1  
CLKO  
I/O  
O
SC0_CLK  
O
Smart Card 0 clock pin.  
UART2_nRTS  
USCI0_DAT1  
ACMP1_WLAT  
PWM0_CH1  
EBI_AD9  
O
UART2 request to Send output pin.  
USCI0 data 1 pin.  
I/O  
I
Analog comparator 1 window latch input pin  
PWM0 channel 1 output/capture input.  
EBI address/data bus bit 9.  
General purpose digital I/O pin.  
Smart Card 0 reset pin.  
I/O  
I/O  
I/O  
O
21 29 46 PC.2  
SC0_RST  
SPI0_SS  
I/O  
O
SPI0 slave select pin.  
UART2_TXD  
USCI0_CTL1  
ACMP1_O  
UART2 data transmitter output pin.  
USCI0 control 1 pin.  
I/O  
O
Analog comparator 1 output pin.  
PWM0 channel 2 output/capture input.  
EBI address/data bus bit 10.  
General purpose digital I/O pin.  
Smart Card 0 power pin.  
PWM0_CH2  
EBI_AD10  
I/O  
I/O  
I/O  
O
22 30 47 PC.3  
SC0_PWR  
SPI0_MOSI  
UART2_RXD  
USCI0_CTL0  
PWM0_CH3  
EBI_AD11  
I/O  
I
SPI0 MOSI (Master Out, Slave In) pin.  
UART2 data receiver input pin.  
USCI0 control 0 pin.  
I/O  
I/O  
I/O  
I/O  
I
PWM0 channel 3 output/capture input.  
EBI address/data bus bit 11.  
General purpose digital I/O pin.  
Smart Card 0 card detect pin.  
SPI0 MISO (Master In, Slave Out) pin.  
I2C1 clock pin.  
23 31 48 PC.4  
SC0_nCD  
SPI0_MISO  
I2C1_SCL  
I/O  
I/O  
I/O  
I/O  
USCI0_CLK  
PWM0_CH4  
USCI0 clock pin.  
PWM0 channel 4 output/capture input.  
Aug. 08, 2018  
Page 32 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
EBI_AD12  
I/O  
I/O  
I/O  
I/O  
I/O  
I
MFP7  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP0  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP4  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP2  
EBI address/data bus bit 12.  
General purpose digital I/O pin.  
SPI0 serial clock pin.  
24  
49 PE.0  
SPI0_CLK  
I2C1_SDA  
TM2_EXT  
SC0_nCD  
PWM0_CH0  
EBI_nCS1  
INT4  
I2C1 data input/output pin.  
Timer2 external capture input/toggle output pin.  
Smart Card 0 card detect pin.  
PWM0 channel 0 output/capture input.  
EBI chip select 1 output pin.  
External interrupt 4 input pin.  
General purpose digital I/O pin.  
SPI0 I2S master clock output pin  
I2C1 data input/output pin.  
USCI0 data 0 pin.  
I/O  
O
I
32 50 PC.5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI0_I2SMCLK  
I2C1_SDA  
USCI0_DAT0  
PWM0_CH5  
EBI_AD13  
PWM0 channel 5 output/capture input.  
EBI address/data bus bit 13.  
General purpose digital I/O pin.  
USCI0 data 1 pin.  
33 51 PC.6  
USCI0_DAT1  
ACMP1_O  
Analog comparator 1 output pin.  
PWM1 channel 0 output/capture input.  
EBI address/data bus bit 14.  
General purpose digital I/O pin.  
USCI0 control 1 pin.  
PWM1_CH0  
EBI_AD14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
34 52 PC.7  
USCI0_CTL1  
PWM1_CH1  
EBI_AD15  
PWM1 channel 1 output/capture input.  
EBI address/data bus bit 15.  
General purpose digital I/O pin.  
I2C0 clock pin.  
53 PE.4  
I2C0_SCL  
I2C1_SCL  
USCI0_CTL0  
SC0_PWR  
PWM1_BRAKE0  
EBI_nCS0  
INT0  
I2C1 clock pin.  
USCI0 control 0 pin.  
Smart Card 0 power pin.  
I
PWM1 Brake 0 input pin.  
O
EBI chip select 0 output pin.  
External interrupt 0 input pin.  
General purpose digital I/O pin.  
I2C0 data input/output pin.  
I
54 PE.5  
I2C0_SDA  
I/O  
I/O  
Aug. 08, 2018  
Page 33 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
I2C1_SDA  
USCI0_CLK  
SC0_RST  
I/O  
I/O  
O
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP0  
MFP1  
MFP2  
MFP3  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP2  
I2C1 data input/output pin.  
USCI0 clock pin.  
Smart Card 0 reset pin.  
PWM1_BRAKE1  
I
PWM1 Brake 1 input pin.  
EBI_ALE  
INT1  
O
EBI address latch enable output pin.  
External interrupt 1 input pin.  
General purpose digital I/O pin.  
Serial wired debugger clock pin.  
I2C0 clock pin.  
I
25 35 55 PE.6  
I/O  
I
ICE_CLK  
I2C0_SCL  
UART0_RXD  
I/O  
I
UART0 data receiver input pin.  
General purpose digital I/O pin.  
Serial wired debugger data pin.  
I2C0 data input/output pin.  
UART0 data transmitter output pin.  
General purpose digital I/O pin.  
Clock Out  
26 36 56 PE.7  
I/O  
O
ICE_DAT  
I2C0_SDA  
UART0_TXD  
I/O  
O
57 PA.8  
I/O  
O
CLKO  
I2C1_SCL  
UART1_TXD  
SC0_PWR  
SC1_RST  
TM_BRAKE0  
PWM0_BRAKE0  
TM1  
I/O  
O
I2C1 clock pin.  
UART1 data transmitter output pin.  
Smart Card 0 power pin.  
O
O
Smart Card 1 reset pin.  
I
Timer Brake 0 input pin.  
I
PWM0 Brake 0 input pin.  
I/O  
I/O  
I/O  
I/O  
I
Timer1 event counter input/toggle output pin.  
General purpose digital I/O pin.  
SPI1 I2S master clock output pin  
I2C1 data input/output pin.  
UART1 data receiver input pin.  
Smart Card 0 reset pin.  
58 PA.9  
SPI1_I2SMCLK  
I2C1_SDA  
UART1_RXD  
SC0_RST  
O
SC1_PWR  
TM_BRAKE1  
PWM1_BRAKE1  
TM2  
O
Smart Card 1 power pin.  
I
Timer Brake 1 input pin.  
I
PWM1 Brake 1 input pin.  
I/O  
I/O  
I/O  
Timer2 event counter input/toggle output pin.  
General purpose digital I/O pin.  
SPI1 serial clock pin.  
59 PA.7  
SPI1_CLK  
Aug. 08, 2018  
Page 34 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
TM0_EXT  
TM_BRAKE1  
EBI_AD7  
I/O  
I
MFP3  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP6  
MFP7  
MFP0  
MFP2  
MFP3  
MFP7  
MFP0  
MFP0  
Timer0 external capture input/toggle output pin.  
Timer Brake 1 input pin.  
I/O  
I/O  
I/O  
I/O  
I
EBI address/data bus bit 7.  
60 PA.6  
General purpose digital I/O pin.  
SPI1 MISO (Master In, Slave Out) pin.  
Timer1 external capture input/toggle output pin.  
Timer Brake 2 input pin.  
SPI1_MISO  
TM1_EXT  
TM_BRAKE2  
EBI_AD6  
I/O  
I/O  
I/O  
I/O  
I
EBI address/data bus bit 6.  
61 PA.5  
General purpose digital I/O pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
Timer2 external capture input/toggle output pin.  
Timer Brake 3 input pin.  
SPI1_MOSI  
TM2_EXT  
TM_BRAKE3  
EBI_AD5  
I/O  
I/O  
I/O  
I/O  
I/O  
P
EBI address/data bus bit 5.  
62 PA.4  
General purpose digital I/O pin.  
SPI1 slave select pin.  
SPI1_SS  
TM3_EXT  
EBI_AD4  
Timer3 external capture input/toggle output pin.  
EBI address/data bus bit 4.  
63 VSS  
Ground pin for digital circuit.  
64 VDD  
P
Power supply for I/O ports and LDO source for internal PLL  
and digital circuit.  
65 PE.1  
TM3_EXT  
SC0_nCD  
PWM0_CH1  
37 66 PE.8  
UART1_TXD  
TM0  
I/O  
I/O  
I
MFP0  
MFP3  
MFP5  
MFP6  
MFP0  
MFP1  
MFP3  
MFP4  
MFP5  
MFP0  
MFP1  
MFP3  
MFP4  
MFP5  
General purpose digital I/O pin.  
Timer3 external capture input/toggle output pin.  
Smart Card 0 card detect pin.  
PWM0 channel 1 output/capture input.  
General purpose digital I/O pin.  
UART1 data transmitter output pin.  
Timer0 event counter input/toggle output pin.  
I2C1 clock pin.  
I/O  
I/O  
O
I/O  
I/O  
O
I2C1_SCL  
SC0_PWR  
38 67 PE.9  
UART1_RXD  
TM1  
Smart Card 0 power pin.  
I/O  
I
General purpose digital I/O pin.  
UART1 data receiver input pin.  
Timer1 event counter input/toggle output pin.  
I2C1 data input/output pin.  
I/O  
I/O  
O
I2C1_SDA  
SC0_RST  
Smart Card 0 reset pin.  
Aug. 08, 2018  
Page 35 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
27 39 68 PE.10  
SPI1_MISO  
SPI0_MISO  
UART1_nCTS  
SC0_DAT  
I/O  
I/O  
I/O  
I
MFP0  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
MFP0  
MFP0  
General purpose digital I/O pin.  
SPI1 MISO (Master In, Slave Out) pin.  
SPI0 MISO (Master In, Slave Out) pin.  
UART1 clear to Send input pin.  
Smart Card 0 data pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI1_CLK  
SPI1 serial clock pin.  
EBI_AD7  
EBI address/data bus bit 7.  
TM0_EXT  
Timer0 external capture input/toggle output pin.  
General purpose digital I/O pin.  
SPI1 MOSI (Master Out, Slave In) pin.  
SPI0 MOSI (Master Out, Slave In) pin.  
UART1 request to Send output pin.  
Smart Card 0 clock pin.  
28 40 69 PE.11  
SPI1_MOSI  
SPI0_MOSI  
UART1_nRTS  
SC0_CLK  
O
SPI1_MISO  
EBI_AD6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI1 MISO (Master In, Slave Out) pin.  
EBI address/data bus bit 6.  
TM1_EXT  
Timer1 external capture input/toggle output pin.  
General purpose digital I/O pin.  
SPI1 slave select pin.  
29 41 70 PE.12  
SPI1_SS  
SPI0_SS  
SPI0 slave select pin.  
UART1_TXD  
I2C0_SCL  
UART1 data transmitter output pin.  
I2C0 clock pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
SPI1_MOSI  
EBI_AD5  
SPI1 MOSI (Master Out, Slave In) pin.  
EBI address/data bus bit 5.  
TM2_EXT  
Timer2 external capture input/toggle output pin.  
General purpose digital I/O pin.  
SPI1 serial clock pin.  
30 42 71 PE.13  
SPI1_CLK  
SPI0_CLK  
SPI0 serial clock pin.  
UART1_RXD  
I2C0_SDA  
UART1 data receiver input pin.  
I2C0 data input/output pin.  
I/O  
I/O  
I/O  
I/O  
P
SPI1_SS  
SPI1 slave select pin.  
EBI_AD4  
EBI address/data bus bit 4.  
TM3_EXT  
Timer3 external capture input/toggle output pin.  
Power supply for PE.1, PE.8~PE.13.  
Power supply from USB host or HUB.  
31 43 72 VDDIO  
32 44 73 USB_VBUS  
P
Aug. 08, 2018  
Page 36 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
33 45 74 USB_D-  
34 46 75 USB_D+  
35 47 76 PF.7  
36 48 77 USB_VDD33_CAP  
78 PB.12  
A
A
MFP0  
MFP0  
MFP0  
MFP0  
MFP0  
MFP6  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP0  
MFP1  
MFP3  
MFP4  
MFP5  
USB differential signal D+.  
USB differential signal D-.  
I/O  
A
General purpose digital I/O pin.  
Internal power regulator output 3.3V decoupling pin.  
General purpose digital I/O pin.  
PWM1 channel 1 output/capture input.  
General purpose digital I/O pin.  
UART0 data receiver input pin.  
UART0 request to Send output pin.  
I2C0 clock pin.  
I/O  
I/O  
I/O  
I
PWM1_CH1  
37 49 79 PA.3  
UART0_RXD  
UART0_nRTS  
I2C0_SCL  
O
I/O  
O
SC0_PWR  
Smart Card 0 power pin.  
PWM1_CH2  
I/O  
I/O  
I/O  
I/O  
O
PWM1 channel 2 output/capture input.  
EBI address/data bus bit 3.  
USCI1 clock pin.  
EBI_AD3  
USCI1_CLK  
38 50 80 PA.2  
UART0_TXD  
General purpose digital I/O pin.  
UART0 data transmitter output pin.  
UART0 clear to Send input pin.  
I2C0 data input/output pin.  
UART0_nCTS  
I2C0_SDA  
I
I/O  
O
SC0_RST  
Smart Card 0 reset pin.  
PWM1_CH3  
I/O  
I/O  
I/O  
I/O  
O
PWM1 channel 3 output/capture input.  
EBI address/data bus bit 2.  
USCI1 control 0 pin.  
EBI_AD2  
USCI1_CTL0  
39 51 81 PA.1  
UART1_nRTS  
UART1_RXD  
USCI1_CTL1  
SC0_DAT  
General purpose digital I/O pin.  
UART1 request to Send output pin.  
UART1 data receiver input pin.  
USCI1 control 1 pin.  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I
Smart Card 0 data pin.  
PWM1_CH4  
PWM1 channel 4 output/capture input.  
EBI address/data bus bit 1.  
General purpose digital I/O pin.  
UART1 clear to Send input pin.  
UART1 data transmitter output pin.  
USCI1 control 0 pin.  
EBI_AD1  
40 52 82 PA.0  
UART1_nCTS  
UART1_TXD  
O
USCI1_CTL0  
SC0_CLK  
I/O  
O
Smart Card 0 clock pin.  
Aug. 08, 2018  
Page 37 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
PWM1_CH5  
EBI_AD0  
I/O  
I/O  
I
MFP6  
MFP7  
MFP8  
MFP0  
MFP2  
MFP3  
MFP4  
MFP6  
MFP0  
MFP3  
MFP4  
MFP6  
MFP0  
MFP3  
MFP4  
MFP6  
MFP0  
MFP3  
MFP4  
MFP6  
MFP0  
MFP0  
PWM1 channel 5 output/capture input.  
EBI address/data bus bit 0.  
INT0  
External interrupt 0 input pin.  
General purpose digital I/O pin.  
SPI1 I2S master clock output pin  
UART2 data receiver input pin.  
UART1 data receiver input pin.  
Timer Brake 2 input pin.  
83 PA.12  
I/O  
I/O  
I
SPI1_I2SMCLK  
UART2_RXD  
UART1_RXD  
TM_BRAKE2  
84 PA.13  
I
I
I/O  
O
General purpose digital I/O pin.  
UART2 data transmitter output pin.  
UART1 data transmitter output pin.  
Timer Brake 3 input pin.  
UART2_TXD  
UART1_TXD  
TM_BRAKE3  
85 PA.14  
O
I
I/O  
I
General purpose digital I/O pin.  
UART2 clear to Send input pin.  
USCI1 control 1 pin.  
UART2_nCTS  
USCI1_CTL1  
TM2  
I/O  
I/O  
I/O  
O
Timer2 event counter input/toggle output pin.  
General purpose digital I/O pin.  
UART2 request to Send output pin.  
USCI1 clock pin.  
86 PA.15  
UART2_nRTS  
USCI1_CLK  
TM3  
I/O  
I/O  
P
Timer3 event counter input/toggle output pin.  
Ground pin for digital circuit.  
53 87 VSS  
41 54 88 VDD  
P
Power supply for I/O ports and LDO source for internal PLL  
and digital circuit.  
42 55 89 AVDD  
43 56 90 VREF  
P
A
MFP0  
MFP0  
Power supply for internal analog circuit.  
ADC reference voltage input.  
Note: This pin needs to be connected with a 1uF capacitor.  
44 57 91 PB.0  
ADC0_CH0  
VDET_P0  
UART2_RXD  
TM2  
I/O  
A
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
General purpose digital I/O pin.  
ADC0 channel 0 analog input.  
Voltage detector positive input 0 pin.  
UART2 data receiver input pin.  
Timer2 event counter input/toggle output pin.  
USCI1 data 0 pin.  
A
I
I/O  
I/O  
O
USCI1_DAT0  
EBI_nWRL  
INT1  
EBI low byte write enable output pin.  
External interrupt 1 input pin.  
I
TM1_EXT  
I/O  
MFP10 Timer1 external capture input/toggle output pin.  
Aug. 08, 2018  
Page 38 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
45 58 92 PB.1  
ADC0_CH1  
VDET_P1  
I/O  
A
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
MFP8  
General purpose digital I/O pin.  
ADC0 channel 1 analog input.  
Voltage detector positive input 1 pin.  
UART2 data transmitter output pin.  
Timer3 event counter input/toggle output pin.  
Smart Card 0 reset pin.  
A
UART2_TXD  
TM3  
O
I/O  
O
SC0_RST  
PWM0_SYNC_OUT  
O
PWM0 counter synchronous trigger output pin.  
EBI high byte write enable output pin  
USCI1 data 1 pin.  
EBI_nWRH  
O
USCI1_DAT1  
I/O  
I/O  
A
46 59 93 PB.2  
General purpose digital I/O pin.  
ADC0 channel 2 analog input.  
SPI0 serial clock pin.  
ADC0_CH2  
SPI0_CLK  
SPI1_CLK  
UART1_RXD  
SC0_nCD  
I/O  
I/O  
I
SPI1 serial clock pin.  
UART1 data receiver input pin.  
Smart Card 0 card detect pin.  
Timer Brake 0 input pin.  
I
TM_BRAKE0  
EBI_nCS0  
USCI0_DAT0  
TM2_EXT  
I
O
EBI chip select 0 output pin.  
USCI0 data 0 pin.  
I/O  
I/O  
I/O  
A
MFP10 Timer2 external capture input/toggle output pin.  
47 60 94 PB.3  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP6  
MFP7  
MFP8  
General purpose digital I/O pin.  
ADC0 channel 3 analog input.  
SPI0 MISO (Master In, Slave Out) pin.  
SPI1 MISO (Master In, Slave Out) pin.  
UART1 data transmitter output pin.  
Timer Brake 1 input pin.  
ADC0_CH3  
SPI0_MISO  
SPI1_MISO  
UART1_TXD  
TM_BRAKE1  
EBI_ALE  
I/O  
I/O  
O
I
O
EBI address latch enable output pin.  
USCI0 data 1 pin.  
USCI0_DAT1  
TM0_EXT  
I/O  
I/O  
I/O  
A
MFP10 Timer0 external capture input/toggle output pin.  
48 61 95 PB.4  
MFP0  
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
General purpose digital I/O pin.  
ADC0 channel 4 analog input.  
SPI0 slave select pin.  
ADC0_CH4  
SPI0_SS  
I/O  
I/O  
I
SPI1_SS  
SPI1 slave select pin.  
UART1_nCTS  
ACMP0_N  
UART1 clear to Send input pin.  
Analog comparator 0 negative input pin.  
A
Aug. 08, 2018  
Page 39 of 140  
Rev 1.04  
NUC126  
48 64 100 Pin Name  
Pin Pin Pin  
Type  
MFP*  
Description  
SC1_nCD  
EBI_AD7  
I
MFP6  
MFP7  
MFP8  
MFP9  
Smart Card 1 card detect pin.  
EBI address/data bus bit 7.  
USCI0 control 1 pin.  
I/O  
I/O  
I
USCI0_CTL1  
UART2_RXD  
TM1_EXT  
UART2 data receiver input pin.  
I/O  
I/O  
A
MFP10 Timer1 external capture input/toggle output pin.  
62 96 PB.8  
ADC0_CH5  
UART1_nRTS  
TM_BRAKE2  
PWM0_CH2  
USCI0_CTL0  
97 PB.9  
MFP0  
MFP1  
MFP4  
MFP5  
MFP6  
MFP8  
MFP0  
MFP1  
MFP8  
MFP0  
MFP1  
MFP0  
MFP1  
MFP0  
MFP1  
MFP4  
MFP5  
MFP6  
MFP8  
General purpose digital I/O pin.  
ADC0 channel 5 analog input.  
UART1 request to Send output pin.  
Timer Brake 2 input pin.  
O
I
I/O  
I/O  
I/O  
A
PWM0 channel 2 output/capture input.  
USCI0 control 0 pin.  
General purpose digital I/O pin.  
ADC0 channel 6 analog input.  
USCI0 clock pin.  
ADC0_CH6  
USCI0_CLK  
98 PB.10  
I/O  
I/O  
A
General purpose digital I/O pin.  
ADC0 channel 7 analog input.  
General purpose digital I/O pin.  
ADC0 channel 8 analog input.  
General purpose digital I/O pin.  
ADC0 channel 9 analog input.  
UART1 request to Send output pin.  
Timer Brake 3 input pin.  
ADC0_CH7  
63 99 PB.11  
ADC0_CH8  
64 100 PE.2  
ADC0_CH9  
UART1_nRTS  
TM_BRAKE3  
PWM0_CH2  
USCI0_CTL0  
I/O  
A
I/O  
A
O
I
I/O  
I/O  
PWM0 channel 2 output/capture input.  
USCI0 control 0 pin.  
Aug. 08, 2018  
Page 40 of 140  
Rev 1.04  
NUC126  
4.3.2 GPIO Multi-function Pin Summary  
MFP* = Multi-function pin. (Refer to section SYS_GPx_MFPL and SYS_GPx_MFPH)  
PA.0 MFP0 means SYS_GP0_MFPL[3:0]=0x0.  
PA.9 MFP5 means SYS_GP0_MFPH[7:4]=0x5.  
Group  
Pin Name  
GPIO  
PB.4  
PD.6  
PD.7  
PB.7  
PB.6  
PB.5  
PB.15  
PC.0  
PD.0  
PC.2  
PC.6  
PD.3  
PD.2  
PD.1  
PD.9  
PC.1  
PB.0  
PB.1  
PB.2  
PB.3  
PB.4  
PB.8  
PB.9  
PB.10  
PB.11  
PE.2  
PB.13  
PB.14  
PB.15  
PB.5  
PB.6  
MFP*  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP5  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
Type  
A
O
O
A
A
A
A
I
Description  
ACMP0_N  
Analog comparator 0 negative input pin.  
ACMP0_O  
Analog comparator 0 output pin.  
ACMP0_P0  
ACMP0_P1  
ACMP0_P2  
ACMP0_P3  
ACMP0_WLAT  
ACMP1_N  
Analog comparator 0 positive input 0 pin.  
Analog comparator 0 positive input 1 pin.  
Analog comparator 0 positive input 2 pin.  
Analog comparator 0 positive input 3 pin.  
Analog comparator 0 window latch input pin  
Analog comparator 1 negative input pin.  
ACMP0  
A
O
O
A
A
A
A
I
ACMP1_O  
Analog comparator 1 output pin.  
ACMP1_P0  
ACMP1_P1  
ACMP1_P2  
ACMP1_P3  
ACMP1_WLAT  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
ADC0_CH8  
ADC0_CH9  
ADC0_CH10  
ADC0_CH11  
ADC0_CH12  
ADC0_CH13  
ADC0_CH14  
Analog comparator 1 positive input 0 pin.  
Analog comparator 1 positive input 1 pin.  
Analog comparator 1 positive input 2 pin.  
Analog comparator 1 positive input 3 pin.  
Analog comparator 1 window latch input pin  
ADC0 channel 0 analog input.  
ACMP1  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
ADC0 channel 1 analog input.  
ADC0 channel 2 analog input.  
ADC0 channel 3 analog input.  
ADC0 channel 4 analog input.  
ADC0 channel 5 analog input.  
ADC0 channel 6 analog input.  
ADC0  
ADC0 channel 7 analog input.  
ADC0 channel 8 analog input.  
ADC0 channel 9 analog input.  
ADC0 channel 10 analog input.  
ADC0 channel 11 analog input.  
ADC0 channel 12 analog input.  
ADC0 channel 13 analog input.  
ADC0 channel 14 analog input.  
Aug. 08, 2018  
Page 41 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PB.7  
PC.8  
PD.8  
PD.9  
PD.1  
PD.2  
PD.5  
PD.6  
PA.8  
PC.1  
PA.0  
PA.1  
PA.2  
PA.3  
PB.7  
PA.4  
PE.13  
PB.6  
PA.5  
PE.12  
PB.5  
PA.6  
PE.11  
PA.7  
PE.10  
PB.4  
PC.0  
PC.1  
PC.2  
PC.3  
PC.4  
PC.5  
PC.6  
PC.7  
MFP*  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP1  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
Type  
A
Description  
ADC0_CH15  
ADC0_CH16  
ADC0_CH17  
ADC0_CH18  
ADC0_CH19  
ADC0_ST  
ADC0 channel 15 analog input.  
ADC0 channel 16 analog input.  
ADC0 channel 17 analog input.  
ADC0 channel 18 analog input.  
ADC0 channel 19 analog input.  
ADC0 external trigger input pin.  
A
A
A
A
I
O
O
CLKO  
CLKO  
Clock Out  
O
O
EBI_AD0  
EBI_AD1  
EBI_AD2  
EBI_AD3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
EBI address/data bus bit 0.  
EBI address/data bus bit 1.  
EBI address/data bus bit 2.  
EBI address/data bus bit 3.  
EBI_AD4  
EBI_AD5  
EBI_AD6  
EBI_AD7  
EBI address/data bus bit 4.  
EBI address/data bus bit 5.  
EBI address/data bus bit 6.  
EBI address/data bus bit 7.  
EBI  
EBI_AD8  
EBI address/data bus bit 8.  
EBI address/data bus bit 9.  
EBI address/data bus bit 10.  
EBI address/data bus bit 11.  
EBI address/data bus bit 12.  
EBI address/data bus bit 13.  
EBI address/data bus bit 14.  
EBI address/data bus bit 15.  
EBI_AD9  
EBI_AD10  
EBI_AD11  
EBI_AD12  
EBI_AD13  
EBI_AD14  
EBI_AD15  
Aug. 08, 2018  
Page 42 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PD.12  
PD.13  
PD.14  
PD.15  
PD.9  
PE.5  
PB.3  
PD.3  
PD.8  
PE.4  
PB.2  
PB.15  
PE.0  
PD.1  
PD.7  
PD.2  
PD.6  
PB.1  
PB.0  
PD.5  
PE.4  
PE.6  
PE.12  
PA.3  
PD.4  
PE.5  
PE.7  
PE.13  
PA.2  
PF.3  
PC.9  
PC.4  
PE.4  
PA.8  
MFP*  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP7  
MFP3  
MFP2  
MFP2  
MFP4  
MFP4  
MFP3  
MFP2  
MFP2  
MFP4  
MFP4  
MFP3  
MFP3  
MFP3  
MFP3  
MFP2  
Type  
O
Description  
EBI_ADR16  
EBI_ADR17  
EBI_ADR18  
EBI_ADR19  
EBI address bus bit 16.  
EBI address bus bit 17.  
EBI address bus bit 18.  
EBI address bus bit 19.  
O
O
O
O
EBI_ALE  
O
EBI address latch enable output pin.  
EBI external clock output pin.  
EBI chip select 0 output pin.  
O
EBI_MCLK  
EBI_nCS0  
O
O
O
O
O
EBI_nCS1  
EBI_nRD  
EBI_nWR  
EBI chip select 1 output pin.  
EBI read enable output pin.  
EBI write enable output pin.  
O
O
O
O
O
EBI_nWRH  
EBI_nWRL  
O
EBI high byte write enable output pin  
EBI low byte write enable output pin.  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
I2C0 clock pin.  
I2C0  
I2C0 data input/output pin.  
I2C1  
I2C1 clock pin.  
Aug. 08, 2018  
Page 43 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PE.8  
PF.4  
PC.10  
PE.0  
PC.5  
PE.5  
PA.9  
PE.9  
PE.6  
PE.7  
PD.2  
PE.4  
PA.0  
PD.3  
PE.5  
PB.0  
PC.0  
PD.0  
PE.0  
PF.0  
PD.2  
PD.4  
PA.8  
PD.3  
PD.5  
PC.0  
PE.0  
PC.1  
PE.1  
PC.2  
PB.8  
PE.2  
PE.3  
PC.3  
MFP*  
MFP4  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP2  
MFP4  
MFP1  
MFP1  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP8  
MFP6  
MFP5  
MFP7  
MFP6  
MFP5  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
Type  
Description  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I2C1_SDA  
I2C1 data input/output pin.  
ICE_CLK  
ICE_DAT  
Serial wired debugger clock pin.  
Serial wired debugger data pin.  
ICE  
O
I
INT0  
INT0  
INT1  
I
External interrupt 0 input pin.  
External interrupt 1 input pin.  
I
I
INT1  
I
I
INT2  
INT3  
INT4  
INT5  
INT2  
INT3  
INT4  
INT5  
I
External interrupt 2 input pin.  
External interrupt 3 input pin.  
External interrupt 4 input pin.  
External interrupt 5 input pin.  
I
I
I
I
PWM0_BRAKE0  
I
PWM0 Brake 0 input pin.  
I
I
PWM0_BRAKE1  
PWM0_CH0  
PWM0 Brake 1 input pin.  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PWM0 channel 0 output/capture input.  
PWM0 channel 1 output/capture input.  
PWM0  
PWM0_CH1  
PWM0_CH2  
PWM0_CH3  
PWM0 channel 2 output/capture input.  
PWM0 channel 3 output/capture input.  
Aug. 08, 2018  
Page 44 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PC.4  
PD.6  
PD.7  
PC.5  
PD.1  
PD.7  
PB.1  
MFP*  
MFP6  
MFP6  
MFP6  
MFP6  
MFP2  
MFP3  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP7  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP2  
MFP5  
MFP5  
MFP1  
MFP5  
Type  
I/O  
I/O  
I/O  
I/O  
I
Description  
PWM0_CH4  
PWM0 channel 4 output/capture input.  
PWM0_CH5  
PWM0 channel 5 output/capture input.  
PWM0_SYNC_IN  
PWM0_SYNC_OUT  
PWM1_BRAKE0  
PWM0 counter synchronous trigger input pin.  
PWM0 counter synchronous trigger output pin.  
PWM1 Brake 0 input pin.  
I
O
PF.1  
I
PE.4  
I
PF.2  
I
PWM1_BRAKE1  
PWM1_CH0  
PE.5  
I
PWM1 Brake 1 input pin.  
PA.9  
I
PD.12  
PC.9  
PC.6  
PD.13  
PC.10  
PC.7  
PB.12  
PD.14  
PC.11  
PA.3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
PWM1 channel 0 output/capture input.  
PWM1_CH1  
PWM1 channel 1 output/capture input.  
PWM1  
PWM1_CH2  
PWM1_CH3  
PWM1 channel 2 output/capture input.  
PWM1 channel 3 output/capture input.  
PD.15  
PC.12  
PA.2  
PC.13  
PA.1  
PWM1_CH4  
PWM1_CH5  
PWM1 channel 4 output/capture input.  
PWM1 channel 5 output/capture input.  
PC.14  
PA.0  
PC.1  
PE.11  
PA.0  
SC0_CLK  
SC0_DAT  
O
Smart Card 0 clock pin.  
Smart Card 0 data pin.  
SC0  
O
PC.0  
PE.10  
I/O  
I/O  
Aug. 08, 2018  
Page 45 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PA.1  
PC.3  
PE.4  
PE.8  
PA.3  
PA.8  
PC.2  
PE.5  
PE.9  
PA.2  
PB.1  
PA.9  
PC.4  
PE.0  
PE.1  
PB.2  
PD.0  
MFP*  
MFP5  
MFP1  
MFP5  
MFP5  
MFP5  
MFP4  
MFP1  
MFP5  
MFP5  
MFP5  
MFP5  
MFP4  
MFP1  
MFP5  
MFP5  
MFP5  
MFP6  
Type  
I/O  
O
O
O
O
O
O
O
O
O
O
O
I
Description  
SC0_PWR  
Smart Card 0 power pin.  
SC0_RST  
Smart Card 0 reset pin.  
I
SC0_nCD  
Smart Card 0 card detect pin.  
I
I
SC1_CLK  
SC1_DAT  
O
Smart Card 1 clock pin.  
Smart Card 1 data pin.  
PB.7  
MFP6  
I/O  
PB.6  
PA.9  
PB.5  
PA.8  
PB.4  
PB.7  
PC.12  
PC.0  
PE.0  
PE.13  
PB.2  
PD.0  
PD.3  
PD.7  
PC.9  
PC.5  
MFP6  
MFP5  
MFP6  
MFP5  
MFP6  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP1  
MFP2  
MFP2  
MFP2  
MFP2  
O
SC1_PWR  
Smart Card 1 power pin.  
SC1  
O
O
SC1_RST  
SC1_nCD  
Smart Card 1 reset pin.  
O
I
Smart Card 1 card detect pin.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI0_CLK  
SPI0 serial clock pin.  
SPI0  
SPI0_I2SMCLK  
SPI0 I2S master clock output pin  
Aug. 08, 2018  
Page 46 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PB.6  
MFP*  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP2  
MFP3  
MFP2  
MFP2  
MFP2  
MFP6  
MFP1  
MFP3  
MFP2  
MFP1  
MFP2  
MFP3  
MFP2  
MFP2  
MFP2  
MFP1  
MFP6  
MFP3  
MFP3  
MFP2  
MFP2  
MFP2  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Description  
PC.11  
PC.4  
PE.10  
PB.3  
SPI0_MISO  
SPI0 MISO (Master In, Slave Out) pin.  
PB.5  
PC.10  
PC.3  
PE.11  
PC.13  
PC.2  
PE.12  
PB.4  
SPI0_MOSI  
SPI0 MOSI (Master Out, Slave In) pin.  
SPI0_SS  
SPI0 slave select pin.  
PB.7  
PD.4  
PD.15  
PA.7  
SPI1_CLK  
SPI1 serial clock pin.  
PE.10  
PE.13  
PB.2  
PD.0  
PA.9  
SPI1_I2SMCLK  
SPI1 I2S master clock output pin  
PA.12  
PB.6  
SPI1  
PD.5  
PD.14  
PA.6  
SPI1_MISO  
SPI1 MISO (Master In, Slave Out) pin.  
PE.10  
PE.11  
PB.3  
PB.5  
PE.3  
SPI1_MOSI  
SPI1 MOSI (Master Out, Slave In) pin.  
PD.13  
PA.5  
Aug. 08, 2018  
Page 47 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PE.11  
PE.12  
PD.6  
PD.12  
PA.4  
PE.12  
PE.13  
PB.4  
PD.1  
PD.4  
PE.8  
PD.2  
PA.7  
PE.10  
PB.3  
PD.5  
PD.7  
PA.8  
PE.9  
PD.3  
PA.6  
PE.11  
PB.0  
PB.4  
PD.8  
PD.3  
PD.10  
PA.14  
PA.9  
PB.0  
PE.0  
PA.5  
PE.12  
PB.2  
MFP*  
MFP1  
MFP6  
MFP2  
MFP2  
MFP2  
MFP1  
MFP6  
MFP3  
MFP6  
MFP6  
MFP3  
MFP3  
MFP3  
MFP8  
MFP10  
MFP6  
MFP4  
MFP8  
MFP3  
MFP3  
MFP3  
MFP8  
MFP10  
MFP10  
MFP6  
MFP1  
MFP4  
MFP6  
MFP8  
MFP4  
MFP4  
MFP3  
MFP8  
MFP10  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Description  
SPI1_SS  
SPI1 slave select pin.  
TM0  
Timer0 event counter input/toggle output pin.  
TM0  
Timer0 external capture input/toggle output  
pin.  
TM0_EXT  
TM1  
Timer1 event counter input/toggle output pin.  
\TM1  
Timer1 external capture input/toggle output  
pin.  
TM1_EXT  
TM2  
Timer2 event counter input/toggle output pin.  
TM2  
Timer2 external capture input/toggle output  
pin.  
TM2_EXT  
Aug. 08, 2018  
Page 48 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PD.9  
PD.11  
PA.15  
PB.1  
PA.4  
PE.1  
PE.13  
PA.8  
PB.2  
PA.9  
PA.7  
PB.3  
PA.6  
PA.12  
PB.8  
PA.5  
PA.13  
PE.2  
PD.0  
PD.9  
PD.6  
PD.13  
PE.6  
PA.3  
PD.1  
PD.12  
PE.7  
PA.2  
PD.8  
PD.14  
PA.2  
PC.8  
PD.15  
PA.3  
MFP*  
MFP6  
MFP4  
MFP6  
MFP4  
MFP3  
MFP3  
MFP8  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP6  
MFP5  
MFP6  
MFP6  
MFP5  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP2  
MFP3  
MFP3  
MFP3  
MFP2  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
MFP3  
Type  
Description  
I/O  
I/O  
TM3  
Timer3 event counter input/toggle output pin.  
I/O  
I/O  
TM3  
I/O  
Timer3 external capture input/toggle output  
pin.  
TM3_EXT  
I/O  
I/O  
I
TM_BRAKE0  
TM_BRAKE1  
Timer Brake 0 input pin.  
Timer Brake 1 input pin.  
I
I
I
I
TM  
I
TM_BRAKE2  
TM_BRAKE3  
I
Timer Brake 2 input pin.  
Timer Brake 3 input pin.  
I
I
I
I
I
I
I
UART0_RXD  
UART0 data receiver input pin.  
I
I
I
O
O
O
O
I
UART0  
UART0_TXD  
UART0 data transmitter output pin.  
UART0_nCTS  
UART0_nRTS  
I
UART0 clear to Send input pin.  
UART0 request to Send output pin.  
Rev 1.04  
I
O
O
O
Aug. 08, 2018  
Page 49 of 140  
NUC126  
Group  
Pin Name  
GPIO  
PA.9  
PE.9  
PE.13  
PA.1  
PA.12  
PB.2  
PA.8  
PE.8  
PE.12  
PA.0  
PA.13  
PB.3  
PE.10  
PA.0  
PB.4  
MFP*  
MFP3  
MFP1  
MFP3  
MFP3  
MFP4  
MFP4  
MFP3  
MFP1  
MFP3  
MFP3  
MFP4  
MFP4  
MFP3  
MFP1  
MFP4  
Type  
Description  
I
I
I
UART1_RXD  
UART1 data receiver input pin.  
I
I
I
O
O
O
O
O
O
I
UART1_TXD  
UART1 data transmitter output pin.  
UART1  
UART1_nCTS  
UART1_nRTS  
UART1 clear to Send input pin.  
I
I
PE.11  
MFP3  
O
PA.1  
PB.8  
PE.2  
PE.3  
PC.3  
PA.12  
PB.0  
PD.6  
PC.2  
PA.13  
PB.1  
PB.4  
PB.5  
PD.5  
PC.0  
PA.14  
PD.4  
PC.1  
MFP1  
MFP4  
MFP4  
MFP4  
MFP3  
MFP3  
MFP3  
MFP4  
MFP3  
MFP3  
MFP3  
MFP9  
MFP9  
MFP4  
MFP3  
MFP3  
MFP4  
MFP3  
O
O
O
I
UART1 request to Send output pin.  
I
UART2_RXD  
UART2 data receiver input pin.  
I
I
O
O
O
O
O
O
I
UART2_TXD  
UART2 data transmitter output pin.  
UART2  
UART2_nCTS  
UART2_nRTS  
I
UART2 clear to Send input pin.  
I
O
O
UART2 request to Send output pin.  
Aug. 08, 2018  
Page 50 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PA.15  
PC.4  
PE.5  
PB.9  
PC.3  
PE.4  
PB.8  
PE.2  
PC.2  
PC.7  
PB.4  
PC.0  
PC.5  
PB.2  
PC.1  
PC.6  
PB.3  
PD.15  
PA.3  
PA.15  
PD.12  
PA.2  
PA.0  
PD.7  
PA.1  
PA.14  
PD.14  
PB.0  
PD.13  
PB.1  
PD.1  
PF.2  
PC.11  
PD.0  
MFP*  
MFP3  
MFP5  
MFP4  
MFP8  
MFP5  
MFP4  
MFP8  
MFP8  
MFP4  
MFP4  
MFP8  
MFP4  
MFP4  
MFP8  
MFP4  
MFP4  
MFP8  
MFP1  
MFP8  
MFP4  
MFP1  
MFP8  
MFP4  
MFP1  
MFP4  
MFP4  
MFP1  
MFP6  
MFP1  
MFP8  
MFP4  
MFP5  
MFP4  
MFP4  
Type  
O
Description  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
USCI0_CLK  
USCI0 clock pin.  
USCI0_CTL0  
USCI0 control 0 pin.  
USCI0  
USCI0_CTL1  
USCI0_DAT0  
USCI0_DAT1  
USCI1_CLK  
USCI1_CTL0  
USCI1_CTL1  
USCI0 control 1 pin.  
USCI0 data 0 pin.  
USCI0 data 1 pin.  
USCI1 clock pin.  
USCI1 control 0 pin.  
USCI1 control 1 pin.  
USCI1  
USCI1_DAT0  
USCI1_DAT1  
USCI1 data 0 pin.  
USCI1 data 1 pin.  
USCI2_CLK  
USCI2_CTL0  
USCI2 clock pin.  
USCI2  
USCI2 control 0 pin.  
Aug. 08, 2018  
Page 51 of 140  
Rev 1.04  
NUC126  
Group  
Pin Name  
GPIO  
PD.9  
PF.1  
MFP*  
MFP4  
MFP5  
MFP4  
MFP4  
MFP4  
MFP5  
MFP4  
MFP4  
MFP5  
MFP4  
MFP4  
MFP5  
MFP4  
MFP2  
MFP2  
MFP1  
MFP1  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A
Description  
PC.12  
PB.7  
PD.8  
PF.0  
USCI2_CTL1  
USCI2 control 1 pin.  
PC.9  
PD.2  
PD.10  
PC.13  
PD.3  
PD.11  
PC.10  
PB.0  
PB.1  
PF.1  
USCI2_DAT0  
USCI2_DAT1  
USCI2 data 0 pin.  
USCI2 data 1 pin.  
VDET_P0  
VDET_P1  
X32_IN  
Voltage detector positive input 0 pin.  
Voltage detector positive input 1 pin.  
External 32.768 kHz crystal input pin.  
External 32.768 kHz crystal output pin.  
VDET  
X32  
A
I
X32_OUT  
PF.0  
O
External 4~24 MHz (high speed) crystal input  
pin.  
XT1_IN  
PF.4  
PF.3  
MFP1  
MFP1  
I
XT1  
External 4~24 MHz (high speed) crystal output  
pin.  
XT1_OUT  
O
Table 4.3-1 NUC126 GPIO Multi-function Table  
Aug. 08, 2018  
Page 52 of 140  
Rev 1.04  
NUC126  
5 BLOCK DIAGRAM  
5.1 NuMicro® NUC126 Block Diagram  
Analog Interface  
12-bit ADC 20-ch  
RTC / PWM / Timer  
RTC (VBAT  
Speed Up  
Memory  
APROM  
256/128KB  
LDROM  
4 KB  
)
PDMA-5ch  
ARM  
Cortex-M0  
72 MHz  
Watchdog Timer  
DataFlash  
Configurable  
SRAM  
20 KB  
Hard Divider  
CRC  
Analog  
Comparator x 2  
Timer/PWM X4  
PWM 12-ch  
SPROM  
2 KB  
Bridge  
AHB Bus  
APB Bus  
Power Control  
Connectivity  
UART x 3  
SPI/I2S x2  
I2Cx2  
Clock Control  
PLL  
I/O Ports  
General Purpose  
I/O  
LDO 1.8V  
High Speed  
Oscillator  
48 MHz  
High Speed  
Crystal Osc.(HXT)  
4 ~ 24 MHz  
External  
Interrupt  
POR LVR BOR  
High Speed  
Oscillator  
22.1184 MHz  
Low Speed  
Oscillator(LIRC)  
10 kHz  
External Bus  
Interface  
ISO-7816-3 x2  
USCI x3  
VREF  
(2.048V/2.56V/  
3.072V/4.96V)  
Low Speed  
Crystal Osc.(LXT)  
32.768 kHz  
USB 2.0 FS  
Figure 5.1-1 NuMicro® NUC126 Block Diagram  
Aug. 08, 2018  
Page 53 of 140  
Rev 1.04  
NUC126  
6 FUNCTIONAL DESCRIPTION  
6.1 ARM® Cortex® -M0 Core  
The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an  
AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex® -M  
profile processor. The profile supports two modes Thread mode and Handler mode. Handler  
mode is entered as a result of an exception. An exception return can only be issued in Handler  
mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.  
Figure 6.1-1 shows the functional controller of processor.  
Cortex-M0 Components  
Cortex-M0 Processor  
Debug  
Interrupts  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex-M0  
Processor  
Core  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debug  
Access Port  
(DAP)  
Debugger  
interface  
Bus matrix  
Serial Wire or  
JTAG debug port  
AHB-Lite interface  
Figure 6.1-1 Functional Block Diagram  
The implemented device provides:  
A low gate count processor:  
ARMv6-M Thumb® instruction set  
Thumb-2 technology  
ARMv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to  
facilitate rapid interrupt handling  
C Application Binary Interface compliant exception model. This is the ARMv6-M, C  
Application Binary Interface (C-ABI) compliant exception model that enables the use of  
pure C functions as interrupt handlers  
Low Power Sleep mode entry using the Wait For Interrupt (WFI), Wait For Event  
(WFE) instructions, or return from interrupt sleep-on-exit feature  
Aug. 08, 2018  
Page 54 of 140  
Rev 1.04  
 
NUC126  
NVIC:  
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep  
mode  
Debug support:  
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all  
system peripherals and memory  
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Aug. 08, 2018  
Page 55 of 140  
Rev 1.04  
NUC126  
6.2 System Manager  
6.2.1 Overview  
The system manager provides the functions of system control, power modes, wake-up sources,  
reset sources, system memory map, product ID and multi-function pin control. The following  
sections describe the functions for  
System Reset  
Power Modes and Wake-up Sources  
System Power Distribution  
SRAM Memory organization  
System Control Register for Part Number ID, Chip Reset and Multi-function Pin  
Control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control register  
6.2.2 System Reset  
The system reset can be issued by one of the events listed below. These reset event flags can be  
read from SYS_RSTSTS register to determine the reset source. Hardware reset sourcces are  
from peripheral signals. Software reset can trigger reset through setting control registers.  
Hardware Reset Sources  
Power-on Reset (POR)  
Low level on the nRESET pin  
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD Reset)  
CPU Lockup Reset  
Software Reset Sources  
CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])  
MCU Reset to reboot but keeping the booting setting from APROM or LDROM by  
writing 1 to SYSRESETREQ (AIRCR[2])  
CPU Reset for Cortex® -M0 core Only by writing 1 to CPURST (SYS_IPRST0[1])  
Aug. 08, 2018  
Page 56 of 140  
Rev 1.04  
NUC126  
Glitch Filter  
~36 us  
nRESET  
~50k ohm  
@5v  
POROFF(SYS_PORCTL[15:0])  
Power-on  
Reset  
VDD  
LVREN(SYS_BODCTL[7])  
Reset Pulse Width  
~3.2ms  
Low Voltage  
Reset  
AVDD  
BODRSTEN(SYS_BODCTL[3])  
Brown-out  
Reset  
System Reset  
WDT/WWDT  
Reset  
Reset Pulse Width  
64 WDT clocks  
Reset Controller  
CPU Lockup  
Reset  
Reset Pulse Width  
2 system clocks  
CHIP Reset  
CHIPRST(SYS_IPRST0[0])  
MCU Reset  
SYSRSTREQ(AIRCR[2])  
Reset Pulse Width  
2 system clocks  
Software Reset  
CPU Reset  
CPURST(SYS_IPRST0[1])  
Figure 6.2-1 System Reset Sources  
Aug. 08, 2018  
Page 57 of 140  
Rev 1.04  
NUC126  
There are a total of 9 reset sources in the NuMicro® family. In general, CPU reset is used to reset  
Cortex® -M0 only; the other reset sources will reset Cortex® -M0 and all peripherals. However, there  
are small differences between each reset source and they are listed in Table 6.2-1.  
Reset Sources  
Register  
POR  
NRESET WDT  
LVR  
BOD  
Lockup  
CHIP  
MCU  
CPU  
SYS_RSTSTS  
0x01  
0x0  
Bit 1 = 1  
-
Bit 2 = 1 Bit 3 = 1 Bit 4 = 1 Bit 8 = 1 Bit 0 = 1  
Bit 5 = 1 Bit 7 =  
1
CHIPRST  
-
-
-
-
-
-
-
-
(SYS_IPRST0[0])  
BODEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
(SYS_BODCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
CONFIG0 CONFIG0 CONFIG0  
BODVL  
(SYS_BODCTL[2:1])  
BODRSTEN  
(SYS_BODCTL[3])  
HXTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
(CLK_PWRCTL[0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
LXTEN  
0x0  
0x1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_PWRCTL[1])  
WDTCKEN  
0x1  
0x1  
(CLK_APBCLK0[0])  
HCLKSEL  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
(CLK_CLKSEL0[2:0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTSEL  
0x3  
0x0  
0x0  
0x0  
0x0  
0x0  
0x3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(CLK_CLKSEL1[1:0])  
HXTSTB  
-
(CLK_STATUS[0])  
LXTSTB  
-
(CLK_STATUS[1])  
PLLSTB  
-
(CLK_STATUS[2])  
HIRCSTB  
-
(CLK_STATUS[4])  
CLKSFAIL  
0x0  
(CLK_STATUS[7])  
RSTEN  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(WDT_CTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WDTEN  
(WDT_CTL[7])  
WDT_CTL  
0x0700  
0x0700  
0x0700  
0x0700  
0x0700  
-
0x0700  
-
-
except bit 1 and bit 7.  
Aug. 08, 2018  
Page 58 of 140  
Rev 1.04  
NUC126  
WDT_ALTCTL  
WWDT_RLDCNT  
WWDT_CTL  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
-
-
0x0000  
0x0000  
0x3F0800  
0x0000  
0x3F  
-
-
-
-
-
-
-
-
-
-
-
-
0x3F0800 0x3F0800 0x3F0800 0x3F0800 0x3F0800 -  
WWDT_STATUS  
WWDT_CNT  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
-
-
-
BS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPCTL[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
BL  
(FMC_ISPCTL[16])  
FMC_DFBA  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
-
-
Reload  
from  
CONFIG1  
-
-
-
-
CONFIG1 CONFIG1 CONFIG1 CONFIG1 CONFIG1  
CBS  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload  
from  
CONFIG0  
(FMC_ISPSTS[2:1]]  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
VECMAP  
Reload  
base on  
Reload  
base on  
Reload  
base on  
Reload  
base on base on  
Reload  
-
Reload  
base on  
CONFIG0  
-
-
-
(FMC_ISPSTS[23:9])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
Peripheral  
Reset Value  
Other  
Registers  
FMC Registers  
Reset Value  
Note: -‘ means that the value of register keeps original setting.  
Table 6.2-1 Reset Value of Registers  
6.2.2.1 nRESET Reset  
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an  
asynchronous reset input pin and can be used to reset system at any time. When the nRESET  
voltage is lower than 0.2 VDD and the state keeps longer than 36 us (glitch filter), chip will be reset.  
The nRESET reset will control the chip in reset state until the nRESET voltage rises above 0.7  
VDD and the state keeps longer than 36 us (glitch filter). The PINRF(SYS_RSTSTS[1]) will be set  
to 1 if the previous reset source is nRESET reset. Figure 6.2-2 shows the nRESET reset  
waveform.  
nRESET  
0.7 VDD  
36 us  
0.2 VDD  
36 us  
nRESET  
Reset  
Figure 6.2-2 nRESET Reset Waveform  
Aug. 08, 2018  
Page 59 of 140  
Rev 1.04  
 
NUC126  
6.2.2.2 Power-on Reset (POR)  
The Power-on reset (POR) is used to generate a stable system reset signal and forces the system  
to be reset when power-on to avoid unexpected behavior of MCU. When applying the power to  
MCU, the POR module will detect the rising voltage and generate reset signal to system until the  
voltage is ready for MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be set to 1 to  
indicate there is a POR reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by writing 1  
to it. Figure 6.2-3 shows the power-on reset waveform.  
VPOR  
0.1V  
VDD  
Power-on  
Reset  
Figure 6.2-3 Power-on Reset (POR) Waveform  
6.2.2.3 Low Voltage Reset (LVR)  
If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit LVREN  
(SYS_BODCTL[7]) to 1, after 200us delay, LVR detection circuit will be stable and the LVR  
function will be active. Then LVR function will detect AVDD during system operation. When the  
AVDD voltage is lower than VLVR and the state keeps longer than De-glitch time set by LVRDGSEL  
(SYS_BODCTL[14:12]), chip will be reset. The LVR reset will control the chip in reset state until  
the AVDD voltage rises above VLVR and the state keeps longer than De-glitch time set by  
LVRDGSEL (SYS_BODCTL[14:12]). The default setting of Low Voltage Reset is enabled without  
De-glitch function. Figure 6.2-4 shows the Low Voltage Reset waveform.  
Aug. 08, 2018  
Page 60 of 140  
Rev 1.04  
 
NUC126  
AVDD  
VLVR  
T1  
T2  
( < LVRDGSEL)  
( =LVRDGSEL)  
T3  
( =LVRDGSEL)  
Low Voltage Reset  
LVREN  
200 us  
Delay for LVR stable  
Figure 6.2-4 Low Voltage Reset (LVR) Waveform  
6.2.2.4 Brown-out Detector Reset (BOD Reset)  
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit  
BODEN (SYS_BODCTL[0]), Brown-out Detector function will detect AVDD during system  
operation. When the AVDD voltage is lower than VBOD which is decided by BODEN  
(SYS_BODCTL[0]) and BODVL (SYS_BODCTL[2:1]) and the state keeps longer than De-glitch  
time set by BODDGSEL (SYS_BODCTL[10:8]), chip will be reset. The BOD reset will control the  
chip in reset state until the AVDD voltage rises above VBOD and the state keeps longer than De-  
glitch time set by BODDGSEL (SYS_BODCTL[10:8]). The default value of BODEN, BODVL and  
BODRSTEN (SYS_BODCTL[3]) is set by flash controller user configuration register CBODEN  
(CONFIG0 [23]), CBOV (CONFIG0 [22:21]) and CBORST(CONFIG0[20]) respectively. User can  
determine the initial BOD setting by setting the CONFIG0 register. Figure 6.2-5 shows the Brown-  
out Detector waveform.  
Aug. 08, 2018  
Page 61 of 140  
Rev 1.04  
NUC126  
AVDD  
VBODH  
VBODL  
Hysteresis  
T1  
T2  
(< BODDGSEL)  
(= BODDGSEL)  
BODOUT  
T3  
(= BODDGSEL)  
BODRSTEN  
Brown-out  
Reset  
Figure 6.2-5 Brown-out Detector (BOD) Waveform  
6.2.2.5 Watchdog Timer Reset (WDT)  
In most industrial applications, system reliability is very important. To automatically recover the  
MCU from failure status is one way to improve system reliability. The watchdog timer(WDT) is  
widely used to check if the system works fine. If the MCU is crashed or out of control, it may cause  
the watchdog time-out. User may decide to enable system reset during watchdog time-out to  
recover the system and take action for the system crash/out-of-control after reset.  
Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a  
watchdog reset and handle the failure of MCU after watchdog time-out reset by checking  
WDTRF(SYS_RSTSTS[2]).  
6.2.2.6 CPU Lockup Reset  
CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives  
immediate indication of seriously errant kernel software. This is the result of the CPU being locked  
because of an unrecoverable exception following the activation of the processor’s built in system  
state protection hardware. When chip enters debug mode, the CPU lockup reset will be ignored.  
6.2.2.7 CPU Reset, CHIP Reset and MCU Reset  
The CPU Reset means only Cortex® -M0 core is reset and all other peripherals remain the same  
status after CPU reset. User can set the CPURST(SYS_IPRST0[1]) to 1 to assert the CPU Reset  
signal.  
The CHIP Reset is same with Power-on Reset. The CPU and all peripherals are reset and  
BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG0 setting. User can set the  
CHIPRST(SYS_IPRST0[1]) to 1 to assert the CHIP Reset signal.  
Aug. 08, 2018  
Page 62 of 140  
Rev 1.04  
NUC126  
The MCU Reset is similar with CHIP Reset. The difference is that BS(FMC_ISPCTL[1]) will not be  
reloaded from CONFIG0 setting and keep its original software setting for booting from APROM or  
LDROM. User can set the SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.  
6.2.3 Power Modes and Wake-up Sources  
There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-2 lists the  
available clocks for each power mode.  
Power Mode  
Definition  
Normal Mode  
Idle Mode  
Power-Down Mode  
CPU is in active state  
CPU is in sleep state  
CPU is in sleep state and all  
clocks stop except LXT and  
LIRC. SRAM content retended.  
Entry Condition  
Chip is in normal mode after CPU executes WFI instruction. CPU sets sleep mode enable  
system reset released  
and power down enable and  
executes WFI instruction.  
Wake-up Sources  
N/A  
All interrupts  
RTC, WDT, I²C, Timer, UART,  
BOD, GPIO, EINT, USCI,  
USBD, ACMP and VDET.  
Available Clocks  
After Wake-up  
All  
All except CPU clock  
LXT and LIRC  
N/A  
CPU back to normal mode  
CPU back to normal mode  
Table 6.2-2 Power Mode Difference Table  
Aug. 08, 2018  
Page 63 of 140  
Rev 1.04  
 
NUC126  
System reset released  
Normal Mode  
CPU Clock ON  
HXT, HIRC, HIRC48, LXT, LIRC, HCLK, PCLK ON  
Flash ON  
CPU executes WFI  
Interrupts occur  
1. SLEEPDEEP(SCR[2]) = 1  
2. PDEN(CLK_PWRCTL[7]) = 1  
3. CPU executes WFI  
Wake-up events  
occur  
Idle Mode  
Power-down Mode  
CPU Clock OFF  
HXT, HIRC, HIRC48, PCLK OFF  
LXT, LIRC ON  
CPU Clock OFF  
HXT, HIRC, HIRC48, PCLK OFF  
LXT, LIRC ON  
Flash Halt  
Flash Halt  
Figure 6.2-6 NuMicro® NUC126 Power Mode State Machine  
1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in normal mode.  
2. LIRC (10 kHz OSC) ON or OFF depends on S/W setting in normal mode.  
3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.  
4. If WDT clock source is selected as LIRC and LIRC is on.  
5. If RTC clock source is selected as LXT and LXT is on.  
6. If UART clock source is selected as LXT and LXT is on.  
Normal Mode  
ON  
Idle Mode  
Power-Down Mode  
HXT (4~20 MHz XTL)  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
Halt  
HIRC (22.1184 MHz OSC)  
ON  
HIRC48 (48 MHz OSC)  
LXT (32768 Hz XTL)  
LIRC (10 kHz OSC)  
PLL  
ON  
Halt  
ON  
ON/OFF1  
ON/OFF2  
Halt  
ON  
ON  
LDO  
ON  
ON  
CPU  
ON  
Halt  
HCLK/PCLK  
SRAM retention  
FLASH  
ON  
Halt  
ON  
ON  
ON  
Halt  
GPIO  
ON  
Halt  
PDMA  
ON  
Halt  
TIMER  
ON  
ON/OFF3  
Halt  
PWM  
ON  
WDT  
ON  
ON/OFF4  
Aug. 08, 2018  
Page 64 of 140  
Rev 1.04  
NUC126  
WWDT  
RTC  
UART  
SC  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
ON/OFF5  
ON/OFF6  
Halt  
USCI  
I2C  
Halt  
Halt  
SPI  
Halt  
USBD  
ADC  
ACMP  
Halt  
Halt  
Halt  
Table 6.2-3 Clocks in Power Modes  
Wake-up sources in Power-down mode:  
RTC, WDT, I²C, Timer, UART, USCI, BOD, VDET, GPIO, USBD, and ACMP.  
After chip enters power down, the following wake-up sources can wake chip up to normal mode.  
Table 6.2-4 lists the condition about how to enter Power-down mode again for each peripheral.  
*User needs to wait this condition before setting PDEN(CLK_PWRCTL[7]) and execute WFI to  
enter Power-down mode.  
Wake-Up  
Wake-Up Condition  
System Can Enter Power-Down Mode Again Condition*  
Source  
BOD  
Brown-Out Detector Interrupt After software writes 1 to clear BODIF (SYS_BODCTL[4]).  
Voltage Detector Interrupt After software writes 1 to clear VDETIF (SYS_BODCTL[19]).  
VDET  
GPIO  
GPIO Interrupt  
Timer Interrupt  
After software write 1 to clear the Px_INTSRC[n] bit.  
TIMER  
After software writes  
(TIMERx_INTSTS[0]).  
1 to clear TWKF (TIMERx_INTSTS[1]) and TIF  
WDT  
RTC  
WDT Interrupt  
Alarm Interrupt  
After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect).  
After software writes 1 to clear ALMIF (RTC_INTSTS[0]).  
After software writes 1 to clear TICKIF (RTC_INTSTS[1]).  
After software writes 1 to clear CTSWKF (UARTx_WKSTS[0]).  
After software writes 1 to clear DATWKF (UARTx_WKSTS[1]).  
Time Tick Interrupt  
nCTS wake-up  
UART  
RX Data wake-up  
Received FIFO Threshold  
Wake-up  
After software writes 1 to clear RFRTWKF (UARTx_WKSTS[2]).  
RS-485 AAD Mode Wake-up After software writes 1 to clear RS485WKF (UARTx_WKSTS[3]).  
Received FIFO Threshold  
After software writes 1 to clear TOUTWKF (UARTx_WKSTS[4]).  
Time-out Wake-up  
USCI UART  
CTS Toggle  
After software writes 1 to clear WKF (UUART_WKSTS[0]).  
Aug. 08, 2018  
Page 65 of 140  
Rev 1.04  
NUC126  
Data Toggle  
Data toggle  
After software writes 1 to clear WKF (UUART_WKSTS[0]).  
After software writes 1 to clear WKF (UI2C_WKSTS[0]).  
USCI I2C  
After software writes 1 to clear WKAKDONE (UI2C_PROTSTS[16], then writes 1  
to clear WKF (UI2C_WKSTS[0]).  
Address match  
SS Toggle  
USCI SPI  
I2C  
After software writes 1 to clear WKF (USPI_WKSTS[0]).  
After software writes 1 to clear WKAKDONE (I2C_WKSTS[1]). Then software  
writes 1 to clear WKIF(I2C_WKSTS[0]).  
Address match wake-up  
Remote Wake-up  
USBD  
ACMP  
After software writes 1 to clear BUSIF (USBD_INTSTS[0]).  
Comparator Power-Down After software writes 1 to clear WKIF0 (ACMP_STATUS[8]) and WKIF1  
Wake-Up Interrupt (ACMP_STATUS[9]).  
Table 6.2-4 Condition of Entering Power-down Mode Again  
6.2.4 System Power Distribution  
In this chip, power distribution is divided into four segments:  
Analog power from AVDD and AVSS provides the power for analog components  
operation. The VREF should be connected with an external 1uF capacitor that should  
be located close to the VREF pin to avoid power noise for analog applications.  
Digital power from VDD and VSS supplies the power to the internal regulator which  
provides a fixed 1.8 V power for digital operation and I/O pins.  
USB transceiver power from VBUS offers the power for operating the USB transceiver.  
RTC power from VBAT provides the power for RTC.  
A dedicated power from VDDIO supplies the power for PE.8 ~ PE.13.  
The outputs of internal voltage regulators, LDO and VDD33, require an external capacitor which  
should be located close to the corresponding pin. Analog power (AVDD) should be the same  
voltage level of the digital power (VDD). Figure 6.2-7 shows the power distribution of the NUC126  
series.  
Aug. 08, 2018  
Page 66 of 140  
Rev 1.04  
NUC126  
Internal  
Reference  
Voltage  
32.768 kHz  
crystal  
oscillator  
USB_D+  
USB_D-  
USB  
Transceiver  
IO Cell  
12-bit ADC  
USB_VDD33_CAP  
1uF  
3.3V  
AVDD  
AVSS  
Analog  
Comparator  
1.8V  
Brown-  
out  
Detector  
VBAT to 1.8V  
LDO  
5V to 3.3V  
LDO  
Low Voltage Reset  
RTC  
VBUS  
Temperature  
Sensor  
SRAM  
Flash  
Digital Logic  
IO Cell  
PE.8~PE.13  
1.8V  
LDO_CAP  
1uF  
22.1184 MHz  
HIRC  
Oscillator  
48 MHz  
HIRC48  
Oscillator  
10 kHz  
LIRC  
Oscillator  
PLL  
POR18  
VDDIO  
4~24 MHz  
crystal  
oscillator  
XT1_OUT  
XT1_IN  
VDD to 1.8V  
LDO  
Power On  
Control  
POR50  
IO Cell  
Figure 6.2-7 NuMicro® NUC126 Power Distribution Diagram  
Aug. 08, 2018  
Page 67 of 140  
Rev 1.04  
NUC126  
6.2.5 System Memory Map  
The NUC126 series provides 4G-byte addressing space. The memory locations assigned to each on-  
chip controllers are shown in Table 6.2-5. The detailed register definition, memory space, and  
programming will be described in the following sections for each on-chip peripheral. The NUC126  
series only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0001_FFFF  
0x0000_0000 0x0003_FFFF  
0x0004_0000 0x0005_FFFF  
0x0006_0000 0x0007_FFFF  
0x2000_0000 0x2000_4FFF  
0x2000_4000 0x2000_BFFF  
0x2000_C000 0x2000_FFFF  
0x6000_0000 0x601F_FFFF  
FLASH_BA  
FLASH_BA  
Reserved  
FLASH Memory Space (128 KB)  
FLASH Memory Space (256 KB)  
Reserved  
Reserved  
Reserved  
SRAM_BA  
Reserved  
SRAM Memory Space (20 KB)  
Reserved  
Reserved  
Reserved  
EXTMEM_BA  
External Memory Space for EBI Interface (2 MB)  
AHB Controllers Space (0x5000_0000 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
0x5000_0200 0x5000_02FF  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_8000 0x5000_BFFF  
0x5000_C000 0x5000_FFFF  
0x5001_0000 0x5001_03FF  
0x5001_4000 0x5001_7FFF  
0x5001_8000 0x5001_FFFF  
SYS_BA  
CLK_BA  
INT_BA  
System Control Registers  
Clock Control Registers  
Interrupt Multiplexer Control Registers  
GPIO Control Registers  
GPIO_BA  
PDMA_BA  
FMC_BA  
EBI_BA  
Peripheral DMA Control Registers  
Flash Memory Control Registers  
EBI Control Registers  
HDIV_BA  
CRC_BA  
Hardware Divider Registers  
CRC Generator Registers  
Peripheral Controllers Space (0x4000_0000 0x401F_FFFF)  
0x4000_4000 0x4000_7FFF  
0x4000_8000 0x4000_BFFF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4003_4000 0x4003_7FFF  
0x4004_0000 0x4004_3FFF  
0x4004_4000 0x4004_7FFF  
0x4005_0000 0x4005_3FFF  
0x4006_0000 0x4006_3FFF  
0x4007_0000 0x4007_3FFF  
WDT_BA  
RTC_BA  
Watchdog Timer Control Registers  
Real Time Clock (RTC) Control Register  
Timer0/Timer1 Control Registers  
I2C0 Interface Control Registers  
SPI0 with master/slave function Control Registers  
SPI1 with master/slave function Control Registers  
PWM0 Control Registers  
TMR01_BA  
I2C0_BA  
SPI0_BA  
SPI1_BA  
PWM0_BA  
Reserved  
UART0_BA  
USBD_BA  
USCI0_BA  
Reserved  
UART0 Control Registers  
USB 2.0 FS device Controller Registers  
USCI0 Control Registers  
Aug. 08, 2018  
Page 68 of 140  
Rev 1.04  
NUC126  
0x4007_4000 0x4007_7FFF  
0x400D_0000 0x400D_3FFF  
0x400D_4000 0x400D_7FFF  
0x400E_0000 0x400E_FFFF  
0x4010_0000 0x4010_3FFF  
0x4011_0000 0x4011_3FFF  
0x4012_0000 0x4012_3FFF  
0x4014_0000 0x4014_3FFF  
0x4014_4000 0x4014_7FFF  
0x4015_0000 0x4015_3FFF  
0x4015_4000 0x4015_7FFF  
0x4017_0000 0x4017_3FFF  
0x4017_4000 0x4017_7FFF  
0x4019_0000 0x4019_3FFF  
0x4019_4000 0x4019_7FFF  
0x401A_0000 0x401A_3FFF  
USCI2_BA  
ACMP01_BA  
Reserved  
ADC_BA  
USCI2 Control Registers  
Analog Comparator Control Registers  
Reserved  
Analog-Digital-Converter (ADC) Control Registers  
Reserved  
Reserved  
TMR23_BA  
I2C1_BA  
Timer2/Timer3 Control Registers  
I2C1 Interface Control Registers  
PWM1 Control Registers  
Reserved  
PWM1_BA  
Reserved  
UART1_BA  
UART2_BA  
USCI1_BA  
Reserved  
SC0_BA  
UART1 Control Registers  
UART2 Control Registers  
USCI1 Control Registers  
Reserved  
SC0 Control Registers  
SC1 Control Registers  
Reserved  
SC1_BA  
Reserved  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 6.2-5 Address Space Assignments for On-Chip Controllers  
Aug. 08, 2018  
Page 69 of 140  
Rev 1.04  
NUC126  
6.2.6 SRAM Memory Orginization  
The NUC126 supports embedded SRAM with total 20 Kbytes size in one bank.  
Supports total 20 Kbytes SRAM  
Supports byte / half word / word write  
Supports oversize response error  
AHB interface  
controller  
SRAM decoder  
SRAM bank  
Figure 6.2-8 SRAM Block Diagram  
Figure 6.2-9 shows the SRAM organization of NUC126. There is one SRAM bank in the NUC126  
and addressed to 20 Kbytes. The address space is from 0x2000_0000 to 0x2000_4FFF. The  
address between 0x2000_5000 to 0x3FFF_FFFF is illegal memory space and chip will enter  
hardfault if CPU accesses these illegal memory addresses.  
Aug. 08, 2018  
Page 70 of 140  
Rev 1.04  
NUC126  
0x3FFF_FFFF  
Reserved  
0x2000_5000  
0x2000_4FFF  
20K byte  
SRAM bank0  
0x2000_0000  
20K byte device  
Figure 6.2-9 SRAM Memory Organization  
6.2.7 Register Lock  
Some of the system control registers need to be protected to avoid inadvertent write and disturb the  
chip operation. These system control registers are protected after the power-on reset till user to  
disable register protection. For user to program these protected registers, a register protection disable  
sequence needs to be followed by a special programming. The register protection disable sequence is  
writing the data “59h”, “16h” “88h” to the register SYS_REGLCTL address at 0x5000_0100  
continuously. Any different data value, different sequence or any other write to other address during  
these three data writing will abort the whole sequence.  
After the protection is disabled, user can check the protection disable bit at address 0x5000_0100 bit0,  
1 is protection disable, and 0 is protection enable. Then user can update the target protected register  
value and then write any data to the address “0x5000_0100” to enable register protection.  
6.2.8 Auto Trim  
This chip supports auto-trim function: the HIRC trim (48 MHz and 22.1184 MHz RC oscillator),  
Aug. 08, 2018  
Page 71 of 140  
Rev 1.04  
 
NUC126  
according to the accurate external 32.768 kHz crystal oscillator or internal USB synchronous mode,  
automatically gets accurate HIRC output frequency, 0.25 % deviation within all temperature ranges.  
For instance, the system needs an accurate 22.1184 MHz clock. In such case, if users do not want to  
use PLL as the system clock source, they need to solder 32.768 kHz crystal in system, and set  
FREQSEL (SYS_IRCTCTL0[1:0] trim frequency selection) to “01”, set REFCKSEL (SYS_IRCTCTL0[9]  
reference clock selection) to 0”, and the auto-trim function will be enabled. Interrupt status bit  
FREQLOCK (SYS_IRCTISTS[0] HIRC frequency lock status) “1” indicates the HIRC0 output frequency  
is accurate within 0.25% deviation. To get better results, it is recommended to set both LOOPSEL  
(SYS_IRCTCTL[5:4] trim calculation loop) and RETRYCNT (SYS_IRCTCTL[7:6] trim value update  
limitation count) to “11”.  
Another example is that the system needs an accurate 48 MHz clock for USB application. In such  
case, if neither using use PLL as the system clock source nor soldering 32.768 kHz crystal in system,  
user has to set REFCKSEL (SYS_IRCTCTL1[10] reference clock selection) to 1, set FREQSEL  
(SYS_IRCTCTL1[1:0] trim frequency selection) to “10, and the auto-trim function will be enabled.  
Interrupt status bit FREQLOCK1 (SYS_IRCTISTS[8] HIRC frequency lock status) “1” indicates the  
HIRC1 output frequency is accurate within 0.25% deviation.  
6.2.9 UART1_TXD modulation with PWM  
This chip supports UART1_TXD to modulate with PWM channel. User can set  
MODPWMSEL(SYS_MODCTL[6:4]) to choice which PWM0 channel to modulate with UART1_TXD  
and set MODEN(SYS_MODCTL[0]) to enable modulation function. User can set  
TXDINV(UART_LINE[8]) to inverse UART1_TXD before moulating with PWM.  
PWM0_CHx  
UART1_TXD  
TXDINV = 0 & MODH = 0  
TXDINV = 0 & MODH = 1  
TXDINV = 1 & MODH = 0  
TXDINV = 1 & MODH = 1  
Figure 6.2-10 UART1_TXD Modulated with PWM Channel  
Aug. 08, 2018  
Page 72 of 140  
Rev 1.04  
NUC126  
6.2.10 Voltage Detector (VDET)  
This chip supports low power comparator to detect external voltage. User can control Bandgap active  
interval and comparator active interval to achieve low power detection purpose. There is no debounce  
function in Power-down mode since no HCLK available in Power-down mode.  
VDETPINSEL(SYS_BODCTL[17])  
VDET_  
0
P0  
VDET_  
De-glitch  
VDETDGSEL  
(SYS_BODCTL[27:  
VDETOUT(SYS_BODCTL[24  
])  
1
P1  
25])  
1.2V  
Bandgap  
VDETEN(SYS_BODCTL[16])  
VDETEN(SYS_BODCTL[16])  
Figure 6.2-11 VDET Block Diagram  
Aug. 08, 2018  
Page 73 of 140  
Rev 1.04  
NUC126  
6.2.11 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter  
transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0  
before enabling the feature. This ensures the timer will count from the SYST_RVR value rather  
than an arbitrary value when it is enabled.  
If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded with  
this value. This mechanism can be used to disable the feature independently from the timer  
enable bit.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
Aug. 08, 2018  
Page 74 of 140  
Rev 1.04  
NUC126  
6.2.12 Nested Vectored Interrupt Controller (NVIC)  
The Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named  
as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor kernel  
and provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched  
from a vector table in memory. There is no need to determine which interrupt is accepted and  
branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
6.2.12.1 Exception Model and System Interrupt Map  
Table 6.2-6 lists the exception model supported by the NUC126 series. Software can set four  
levels of priority on some of these exceptions as well as on all interrupts. The highest user-  
configurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority  
of all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on  
the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Type  
Reset  
Vector Number  
Vector Address  
0x00000004  
0x00000008  
0x0000000C  
Priority  
-3  
1
NMI  
2
-2  
Hard Fault  
Reserved  
SVCall  
3
-1  
4 ~ 10  
11  
Reserved  
Configurable  
Reserved  
Configurable  
0x0000002C  
0x00000038  
Reserved  
PendSV  
12 ~ 13  
14  
Aug. 08, 2018  
Page 75 of 140  
Rev 1.04  
NUC126  
SysTick  
15  
0x0000003C  
Configurable  
Configurable  
0x00000000 +  
Interrupt (IRQ0 ~ IRQ)  
16 ~ 47  
(Vector Number)*4  
Table 6.2-6 Exception Model  
Interrupt Number  
(Bit In Interrupt  
Registers)  
Vector  
Number  
Interrupt Name  
Interrupt Description  
0 ~ 15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
-
-
System exceptions  
0
BOD_INT  
WDT_INT  
EINT024  
Brown-out low voltage detected interrupt  
Window Watchdog Timer interrupt  
External interrupt from PA.0/PC.0/PD.2/PE.0/PE.4 pin  
External interrupt from PB.0/PC.0/ PD.0/PD.3/PE.5/PF.0 pin  
External signal interrupt from PA[15:0]/PB[13:0]  
External interrupt from PC[15:0]/PD[15:0]/PE[13:0]/PF[7:0]  
PWM0 interrupt  
1
2
3
EINT135  
4
GPAB_INT  
GPCDEF_INT  
PWM0_INT  
PWM1_INT  
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART02_INT  
UART1_INT  
SPI0_INT  
SPI1_INT  
5
6
7
PWM1 interrupt  
8
Timer 0 interrupt  
9
Timer 1 interrupt  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Timer 2 interrupt  
Timer 3 interrupt  
UART0 and UART2 interrupt  
UART1 interrupt  
SPI0 interrupt  
SPI1 interrupt  
Reserved  
Reserved  
I2C0_INT  
I2C1_INT  
I2C0 interrupt  
I2C1 interrupt  
Reserved  
Reserved  
USCI_INT  
USBD_INT  
SC_INT  
USCI0, USCI1 and USCI2 interrupt  
USB Device interrupt  
SC0 and SC1 interrupt  
Analog Comparator interrupt  
ACMP01_INT  
Aug. 08, 2018  
Page 76 of 140  
Rev 1.04  
NUC126  
42  
43  
44  
45  
46  
47  
26  
27  
28  
29  
30  
31  
PDMA_INT  
PDMA interrupt  
Reserved  
PWRWU_INT  
ADC_INT  
Clock controller interrupt for chip wake-up from Power-down state  
ADC interrupt  
CLKDIRC_INT  
RTC_INT  
Clock fail detect and IRC TRIM interrupt  
Real Time Clock interrupt  
Table 6.2-7 Interrupt Number Table  
6.2.12.2 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-  
Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-  
1-to-clear policy, both registers reading back the current enabled state of the corresponding  
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become  
Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it  
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit  
prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used  
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers  
reading back the current pended state of the corresponding interrupts. The Clear-Pending  
Register has no effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
Aug. 08, 2018  
Page 77 of 140  
Rev 1.04  
NUC126  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and a clock divider. The chip will not  
enter Power-down mode until CPU sets the Power-down enable bit PDEN(CLK_PWRCTL[7]) and  
Cortex® -M0 core executes the WFI instruction. After that, chip enters Power-down mode and wait  
for wake-up interrupt source triggered to leave Power-down mode. In Power-down mode, the  
clock controller turns off the 4~24 MHz external high speed crystal (HXT), internal 22.1184 MHz  
internal high speed RC oscillator (HIRC) and 48 MHz internal high speed RC oscillator (HIRC48)  
to reduce the overall system power consumption. Figure 6.3-1 shows the clock generator and the  
overview of the clock source control.  
The clock generator consists of 6 clock sources, which are listed below:  
32.768 kHz external low-speed crystal oscillator (LXT)  
4~24 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency (PLLFOUT), PLL source can be selected  
from external 4~24 MHz external high speed crystal (HXT) or 22.1184 MHz internal  
high speed oscillator (HIRC)  
22.1184 MHz internal high speed RC oscillator (HIRC)  
48 MHz internal high speed RC oscillator (HIRC48)  
10 kHz internal low speed RC oscillator (LIRC)  
Each of these clock sources has certain stable time to wait for clock operating at stable frequency.  
When clock source is enabled, a stable counter start counting and correlated clock stable index  
(HIRCSTB(CLK_STATUS[4]),  
LIRCSTB(CLK_STATUS[3]),  
PLLSTB(CLK_STATUS[2]),  
HXTSTB(CLK_STATUS[0]), LXTSTB(CLK_STATUS[1]) and HIRC48STB(CLK_STATUS[5])) are  
set to 1 after stable counter value reach a define value as shown in Table 6.3-8. System and  
peripheral can use the clock as its operating clock only when correlate clock stable index is set to  
1. The clock stable index will auto clear when user disables the clock source  
(LIRCEN(CLK_PWRCTL[3]),  
HIRCEN(CLK_PWRCTL[2]),  
HXTEN(CLK_PWRCTL[0]),  
PD(CLK_PLLCTL[16]), LXTEN(CLK_PWRCTL[1]) and HIRC48EN(CLK_PWRCTL[13])). Besides,  
the clock stable index of HXT, HIRC and PLL will auto clear when chip enter power-down and  
clock stable counter will re-counting after chip wake-up if correlate clock is enabled.  
Aug. 08, 2018  
Page 78 of 140  
Rev 1.04  
NUC126  
Clock Source  
HXT  
Clock Stable Count Value  
Clock Stable Time  
4096 HXT clock  
341.33 uS for 12 Mhz  
PLL  
It’s based on the value of STBSEL (CLK_PLLCTL[23])  
STBSEL = 0, 512 uS for 512 Mhz  
STBSEL = 1, 1024 uS for 12 Mhz  
STBSEL = 0, stable count is 6144 clocks of PLL clock source.  
STBSEL = 1, stable count is 12288 clocks of PLL clock source.  
(Default)  
HIRC48  
HIRC  
LIRC  
512 HIRC48 clock  
256 HIRC clock  
1 LIRC clock  
10.67 uS for 48 Mhz  
11.574 uS for 22.1184 Mhz  
100 uS for 10 kHz  
LXT  
1 LXT clock  
30.51 uS for 32.768 khz  
Table 6.3-8 Clock Stable Count Value Table  
LXTEN (CLK_PWRCTL[1])  
X32_IN  
External 32.768  
kHz Crystal  
(LXT)  
LXT  
X32_OUT  
HXTEN (CLK_PWRCTL[0])  
HXT  
XT1_IN  
External 4~24  
MHz Crystal  
(HXT)  
PLLSRC (CLK_PLLCTL[19])  
XT1_OUT  
0
1
PLL FOUT  
HIRCEN (CLK_PWRCTL[2])  
PLL  
Internal  
22.1184 MHz  
Oscillator  
(HIRC)  
HIRC  
LIRCEN(CLK_PWRCTL[3])  
Internal10 KHz  
Oscillator  
(LIRC)  
LIRC  
LIRCEN(CLK_PWRCTL[13])  
Internal 48 MHz  
Oscillator  
HIRC48  
(HIRC48)  
Note: Before clock switching, both the pre-selected and newly selected clock source must be turned on and stable.  
Figure 6.3-1 Clock Generator Block Diagram  
Aug. 08, 2018  
Page 79 of 140  
Rev 1.04  
NUC126  
48 MHz  
CPUCLK  
HCLK  
CPU  
48 MHz  
48 MHz  
22.1184 MHz  
22.1184 MHz  
10 kHz  
10 kHz  
PLLFOUT  
PLLFOUT  
32.768 kHz  
32.768 kHz  
4~24 MHz  
4~24 MHz  
100  
100  
22.1184  
MHz  
CRC  
111  
111  
1/(HCLKDIV+1)  
PDMA  
011  
011  
4~24  
MHz  
010  
010  
EBI  
CLK_CLKSEL0[6]  
001  
001  
000  
000  
HDIV  
I2C0  
32.768  
kHz  
1
0
0
1/2  
1
PCLK0  
PCLK1  
ACMP  
CLK_CLKSEL0[2:0]  
USCI0/2  
USCI1  
I2C1  
10 kHz  
1
1/2  
1
0
0
CLK_CLKSEL0[7]  
22.1184 MHz  
22.1184 MHz  
22.1184 MHz  
22.1184 MHz  
10 kHz  
10 kHz  
1
0
0
1
PLL FOUT  
111  
111  
4~24 MHz  
4~24 MHz  
101  
101  
T0~T3  
T0~T3  
PCLK  
PCLK  
CLK_PLLCTL[19]  
CLK_PLLCTL[19]  
TMR 0  
011  
011  
10 kHz  
10 kHz  
TMR 1  
TMR 2  
TMR 3  
010  
010  
BOD  
FMC  
32.768 kHz  
32.768 kHz  
22.1184 MHz  
22.1184 MHz  
001  
001  
4~24 MHz  
4~24 MHz  
000  
000  
48 MHz  
48 MHz  
CLK_CLKSEL1 [10:8]  
CLK_CLKSEL1[14:12]  
CLK_CLKSEL1[18:16]  
CLK_CLKSEL1[22:20]  
0
1
1
0
USB  
PLLFOUT  
PLLFOUT  
1/(USBDIV+1)  
CLK_CLKSEL3[8]  
22.1184 MHz  
22.1184 MHz  
111  
111  
1/2  
1/2  
1/2  
HCLK  
HCLK  
CPUCLK  
CPUCLK  
10 kHz  
10 kHz  
011  
011  
1
0
0
1
1
1
0
4~24 MHz  
4~24 MHz  
SysTick  
RTC  
32.768 kHz  
32.768 kHz  
010  
010  
0
32.768 kHz  
32.768 kHz  
001  
001  
CLK_CLKSEL2[18]  
4~24 MHz  
4~24 MHz  
SYST_CSR  
SYST_CSR  
000  
000  
48 MHz  
48 MHz  
22.1184 MHz  
22.1184 MHz  
CLK_CLKSEL0[5:3]  
101  
101  
011  
011  
HCLK  
HCLK  
Clock Output  
PCLK  
PCLK  
010  
010  
32.768 kHz  
32.768 kHz  
4~24 MHz  
4~24 MHz  
1
0
0
1
001  
001  
000  
000  
PWM 0  
PWM 1  
PLLFOUT  
PLLFOUT  
CLK_CLKSEL1[28]  
CLK_CLKSEL1[29]  
CLK_CLKSEL2[4:2]  
48 MHz  
48 MHz  
11  
11  
10  
SPI0  
SPI1  
PCLK  
PCLK  
PLLFOUT  
PLLFOUT  
10 kHz  
10 kHz  
10  
11  
11  
HCLK  
HCLK  
01  
01  
00  
00  
1/2048  
WDT  
10  
10  
4~24 MHz  
4~24 MHz  
32.768 kHz  
32.768 kHz  
01  
01  
CLK_CLKSEL1[1:0]  
CLK_CLKSEL1[1:0]  
CLK_CLKSEL2[25:24]  
CLK_CLKSEL2[27:26]  
22.1184 MHz  
22.1184 MHz  
10 kHz  
10 kHz  
11  
10  
10  
11  
10  
10  
11  
11  
WWDT  
PCLK  
PCLK  
HCLK  
HCLK  
1/2048  
1/(ADCDIV)+1  
ADC  
PLLFOUT  
PLLFOUT  
01  
01  
CLK_CLKSEL1[31:30]  
CLK_CLKSEL1[31:30]  
4~24 MHz  
4~24 MHz  
00  
00  
22.1184 MHz  
22.1184 MHz  
32.768 KHz  
32.768 KHz  
11  
11  
PCLK  
PCLK  
10  
11  
11  
CLK_CLKSEL1[3:2]  
10  
10  
10  
SMC0  
SMC1  
22.1184 MHz  
22.1184 MHz  
PLLFOUT  
PLLFOUT  
1/(UARTDIV+1)  
UART 0-2  
PLLFOUT  
PLLFOUT  
4~24 MHz  
4~24 MHz  
01  
01  
01  
01  
4~24 MHz  
4~24 MHz  
00  
00  
00  
00  
CLK_CLKSEL1[25:24]  
CLK_CLKSEL3[1:0]  
CLK_CLKSEL3[3:2]  
Note: Before clock switching, both the pre-selected and newly selected clock source must be turned on and stable.  
Figure 6.3-2 Clock Generator Global View Diagram  
Aug. 08, 2018  
Page 80 of 140  
Rev 1.04  
NUC126  
6.3.2 System Clock and SysTick Clock  
The system clock has 6 clock sources, which were generated from clock generator block. The  
clock source switch depends on the register HCLKSEL (CLK_CLKSEL0 [2:0]). The block diagram  
is shown in Figure 6.3-3.  
HCLKSEL (CLK_CLKSEL0[2:0])  
HIRC  
111  
011  
011  
111  
LIRC  
PLLFOUT  
LXT  
CPUCLK  
HCLK  
CPU  
AHB  
010  
010  
1/(HCLKDIV+1)  
001  
001  
HCLKDIV (CLK_CLKDIV0[3:0])  
HXT  
1
0
1/2  
1
000  
000  
APB  
HIRC48  
0
100  
100  
CPU in Power Down Mode  
Note: Before clock switching, both the pre-selected and newly selected clock source must be turned on and stable.  
Figure 6.3-3 System Clock Block Diagram  
There are two clock fail detectors to observe HXT and LXT clock source and they have individual  
enable and interrupt control. When HXT detector is enabled, the HIRC clock is enabled  
automatically. When LXT detector is enabled, the LIRC clock is enabled automatically.  
When HXT clock detector is enabled, the system clock will auto switch to HIRC if HXT clock stop  
being detected on the following condition: system clock source comes from HXT or system clock  
source comes from PLL with HXT as the input of PLL. If HXT clock stop condition is detected, the  
HXTFIF (CLK_CLKDSTS[0]) is set to  
1
and chip will enter interrupt if HXTFIEN  
(CLK_CLKDCTL[5]) is set to 1. User can trying to recover HXT by disable HXT and enable HXT  
again to check if the clock stable bit is set to 1 or not. If HXT clock stable bit is set to 1, it means  
HXT is recover to oscillate after re-enable action and user can switch system clock to HXT again.  
The HXT clock stop detect and system clock switch to HIRC procedure is shown in Figure 6.3-4.  
Aug. 08, 2018  
Page 81 of 140  
Rev 1.04  
 
NUC126  
Set HXTFDEN To enable  
HXT clock detector  
NO  
HXTFIF = 1?  
YES  
System clock source =  
HXTor PLL with  
HXT?  
System clock keep  
original clock  
NO  
YES  
Switch system clock to  
HIRC  
Figure 6.3-4 HXT Stop Protect Procedure  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock  
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The  
clock source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]). The  
block diagram is shown in Figure 6.3-5.  
STCLKSEL  
(CLK_CLKSEL0[5:3])  
HIRC  
111  
011  
1/2  
1/2  
HCLK  
HXT  
STCLK  
010  
001  
000  
1/2  
LXT  
HXT  
Note: Before clock switching, both the pre-selected and newly selected clock source must be turned on and stable.  
Figure 6.3-5 SysTick Clock Control Block Diagram  
6.3.3 Peripherals Clock  
The peripherals clock had different clock source switch setting, which depends on the different  
peripheral. Please refer to the CLK_CLKSEL1, CLK_CLKSEL2 and CLK_CLKSEL3 register  
description in section 6.3.7.  
Aug. 08, 2018  
Page 82 of 140  
Rev 1.04  
 
NUC126  
6.3.4 Power-down Mode Clock  
When entering Power-down mode, system clocks, some clock sources, and some peripheral  
clocks are disabled. Some clock sources and peripherals clock are still active in Power-down  
mode.  
For theses clocks, which still keep active, are listed below:  
Clock Generator  
10 kHz internal low-speed RC oscillator (LIRC) clock  
32.768 kHz external low-speed crystal oscillator (LXT) clock  
Peripherals Clock (When the modules adopt LXT or LIRC as clock source)  
6.3.5 Clock Output  
This device is equipped with a power-of-2 frequency divider which is composed by16 chained  
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one  
multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided  
clocks with the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock  
divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock  
divider output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).  
When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When  
writing 0 to CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock  
reaches low state and stay in low state.  
If DIVI1EN(CLK_CLKOCTL[5]) set to 1, the clock output clock (CLKO_CLK) will bypass power-of-  
2 frequency divider. The clock output clock will be output to CLKO pin directly.  
CLKOSEL (CLK_CLKSEL2[4:2])  
CLKOCKEN (CLK_APBCLK0[6])  
HIRC  
011  
010  
HCLK  
LXT  
CLKO_CLK  
001  
000  
101  
HXT  
HIRC48  
Note: Before clock switching, both the pre-selected and newly selected clock source must be turned on and stable.  
Figure 6.3-6 Clock Source of Clock Output  
Aug. 08, 2018  
Page 83 of 140  
Rev 1.04  
 
NUC126  
CLKOEN  
(CLK_CLKOCTL[4])  
Enable  
FREQSEL  
(CLK_CLKOCTL[3:0])  
divide-by-2 counter  
16 chained  
divide-by-2 counter  
DIV1EN  
(CLK_CLKOCTL[5])  
CLKO_CLK  
1/2  
1/22  
1/23  
...  
1/215 1/216  
CLK1HZEN  
(CLK_CLKOCTL[6])  
0000  
0001  
:
16 to 1  
MUX  
0
1
:
0
1
1110  
CLKO  
1111  
RTCSEL(CLK_CLKSEL2[18])  
LIRC  
LXT  
0
1
1 Hz clock from RTC  
/32768  
Figure 6.3-7 Clock Output Block Diagram  
Aug. 08, 2018  
Page 84 of 140  
Rev 1.04  
NUC126  
6.4 Flash Memeory Controller (FMC)  
6.4.1 Overview  
The NUC126 series is equipped with 128/256 Kbytes on-chip embedded flash for application and  
configurable Data Flash to store some application dependent data. A User Configuration block  
provides for system initiation. A 4 Kbytes loader ROM (LDROM) is used for In-System-  
Programming (ISP) function. A 2 Kbytes security protection ROM (SPROM) can conceal user  
program. A 4KB cache with zero wait cycle is used to improve flash access performance. This  
chip also supports In-Application-Programming (IAP) function, user switches the code executing  
without the chip reset after the embedded flash updated.  
6.4.2 Features  
Supports 128/256 Kbytes application ROM (APROM).  
Supports 4 Kbytes loader ROM (LDROM).  
Supports 2 Kbytes security protection ROM (SPROM) to conceal user program.  
Supports Data Flash with configurable memory size.  
Supports 12 bytes User Configuration block to control system initiation.  
Supports 2 Kbytes page erase for all embedded flash.  
Supports 32-bit/64-bit and multi-word flash programming function.  
Supports CRC-32 checksum calculation function.  
Supports flash all one verification function.  
Supports embedded SRAM remap to system vector memory.  
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded flash memory.  
Supports cache memory to improve flash access performance and reduce power  
consumption.  
Aug. 08, 2018  
Page 85 of 140  
Rev 1.04  
NUC126  
6.5 Analog Comparator Controller (ACMP)  
6.5.1 Overview  
NUC126 contains two analog comparators. The comparator output is logic 1 when positive input is  
greater than negative input; otherwise, the output is 0. Each comparator can be configured to  
generate an interrupt when the comparator output state changes.  
6.5.2 Features  
Analog input voltage range: 0 ~ VDDA (voltage of AVDD pin)  
Supports hysteresis function  
Supports wake-up function  
Selectable input sources of positive input and negative input  
ACMP0 supports  
4 positive sources:  
ACMP0_P0, ACMP0_P1, ACMP0_P2, or ACMP0_P3  
3 negative sources:  
ACMP0_N  
Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
ACMP1 supports  
4 positive sources:  
ACMP1_P0, ACMP1_P1, ACMP1_P2, or ACMP1_P3  
3 negative sources  
ACMP1_N  
Comparator Reference Voltage (CRV)  
Internal band-gap voltage (VBG)  
Shares one ACMP interrupt vector for all comparators  
Supports window Latch mode  
Supports window compare mode  
Aug. 08, 2018  
Page 86 of 140  
Rev 1.04  
NUC126  
6.6 Analog-to-Digital Converter (ADC)  
6.6.1 Overview  
The NUC126 series contains one 12-bit successive approximation analog-to-digital converter  
(SAR A/D converter) with twenty input channels. The A/D converter supports four operation  
modes: Single, Burst, Single-cycle Scan and Continuous Scan mode. The A/D converter can be  
started by software, external pin (STADC/PD.2), timer0~3 overflow pulse trigger and PWM trigger.  
6.6.2 Features  
Analog input voltage range: 0 ~ AVDD.  
12-bit resolution and 10-bit accuracy is guaranteed  
Up to 20 single-end analog input channels or 10 differential analog input channels  
Maximum ADC peripheral clock frequency is 16 MHz  
Up to 800k SPS sampling rate  
Configurable ADC internal sampling time  
Four operation modes:  
Single mode: A/D conversion is performed one time on a specified channel.  
Burst mode: A/D converter samples and converts the specified single channel and  
sequentially stores the result in FIFO.  
Single-cycle Scan mode: A/D conversion is performed only one cycle on all specified  
channels with the sequence from the smallest numbered channel to the largest  
numbered channel.  
Continuous Scan mode: A/D converter continuously performs Single-cycle Scan mode  
until software stops A/D conversion.  
An A/D conversion can be started by:  
Software Write 1 to ADST bit  
External pin (STADC)  
Timer 0~3 overflow pulse trigger  
PWM trigger with optional start delay period  
Each conversion result is held in data register of each channel with valid and overrun  
indicators.  
Conversion result can be compared with specified value and user can select whether to  
generate an interrupt when conversion result matches the compare register setting.  
3 internal channels, they are band-gap voltage (VBG), temperature sensor (VTEMP), and  
Battery power (VBAT  
)
Support PDMA transfer mode.  
Note1: ADC sampling rate = (ADC peripheral clock frequency) / (total ADC conversion cycle)  
Note2: If the internal channel (VTEMP) is selected to convert, the sampling rate needs to be less  
than 300k SPS for accurate result.  
Note3: If the internal channel for band-gap voltage is active, the maximum sampling rate will be  
300k SPS.  
Aug. 08, 2018  
Page 87 of 140  
Rev 1.04  
NUC126  
6.7 CRC Controller (CRC)  
6.7.1 Overview  
The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with four common  
polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32 settings.  
6.7.2 Features  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
CRC-CCITT: X16 + X12 + X5 + 1  
CRC-8: X8 + X2 + X + 1  
CRC-16: X16 + X15 + X2 + 1  
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1  
Programmable seed value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum  
Supports 8/16/32-bit of data width  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports using PDMA to program DATA (CRC_DAT[31:0]) to perform CRC operation  
Aug. 08, 2018  
Page 88 of 140  
Rev 1.04  
NUC126  
6.8 External Bus Interface (EBI)  
6.8.1 Overview  
The NUC126 series is equipped with an external bus interface (EBI) for external device used. To  
save the connections between external device and the NUC126, EBI operating at address bus  
and data bus multiplex mode. The EBI supports two chip selects that can connect two external  
devices with different timing setting requirement.  
6.8.2 Features  
Supports address bus and data bus multiplex mode to save the address pins  
Supports two chip selects with polarity control  
Supports external devices with maximum 1 MB size for each chip select  
Supports variable external bus base clock (MCLK) which based on HCLK  
Supports 8-bit or 16-bit data width for each chip select  
Supports variable address latch enable time (tALE)  
Supports variable data access time (tACC) and data access hold time (tAHD) for each  
chip select  
Supports configurable idle cycle for different access condition: Idle of Write command  
finish (W2X) and Idle of Read-to-Read (R2R)  
Supports continuous data access mode to bypass tASU, tALE and tLHD cycles for  
improving EBI access  
Aug. 08, 2018  
Page 89 of 140  
Rev 1.04  
NUC126  
6.9 General Purpose I/O (GPIO)  
6.9.1 Overview  
The NUC126 series has up to 86 General Purpose I/O pins to be shared with other function pins  
depending on the chip configuration. These 86 pins are arranged in 6 ports named as PA, PB,  
PC, PD, PE and PF. PA, PB, PC, PD has 16 pins on port. PE has 14 pins on port. PF has 8 pins  
on port. Each of the 86 pins is independent and has the corresponding register bits to control the  
pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull  
output, Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all  
pins are depending on CIOIN (CONFIG0[10]). Each I/O pin has a very weakly individual pull-up  
resistor which is about 110 k~ 300 kfor VDD is from 5.0 V to 2.5 V.  
6.9.2 Features  
Four I/O modes:  
Quasi-bidirectional mode  
Push-Pull Output mode  
Open-Drain Output mode  
Input only with high impendence mode  
TTL/Schmitt trigger input selectable  
I/O pin can be configured as interrupt source with edge/level setting  
Supports High Slew Rate I/O mode  
Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting  
CIOIN = 0, all GPIO pins in input tri-state mode after chip reset  
CIOIN = 1, all GPIO pins in Quasi-bidirectional mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the wake-up function  
Aug. 08, 2018  
Page 90 of 140  
Rev 1.04  
NUC126  
6.10  
Hardware Divider (HDIV)  
6.10.1 Overview  
The hardware divider (HDIV) is useful to the high performance application. The hardware divider  
is a signed, integer divider with both quotient and remainder outputs.  
6.10.2 Features  
Signed (two’s complement) integer calculation  
32-bit dividend with 16-bit divisor calculation capacity  
32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-bit)  
Divided by zero warning flag  
6 HCLK clocks taken for one cycle calculation  
Write divisor to trigger calculation  
Waiting for calculation ready automatically when reading quotient and remainder  
6.10.3 Blcok Diagram  
Dividend Source Divisor Source Quotient Result  
Divider Status  
Register  
(DIVSTS)  
Remainder Result  
Register(DIVREM)  
Register  
Register  
Register  
(DIVIDEND)  
(DIVISOR)  
(DIVQUO)  
Sign extension  
Divider Calculation  
Digital Control Logic  
Figure 6.10-1 Hardware Divider Block Diagram  
Aug. 08, 2018  
Page 91 of 140  
Rev 1.04  
NUC126  
6.11  
I2C Serial Interface Controller (I2C)  
6.11.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data  
exchange between devices. The I2C standard is a true multi-master bus including collision  
detection and arbitration that prevents data corruption if two or more masters attempt to control  
the bus simultaneously.  
There are two sets of I2C controllers which support Power-down wake-up function.  
6.11.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to  
the bus. The main features of the I2C bus include:  
Supports up to two I2C ports  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data  
on the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and resume  
serial transfer  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and  
timer-out counter overflows  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Power-down wake-up function  
Supports PDMA with one buffer capability  
Supports two-level buffer function  
Supports setup/hold time programmable  
Aug. 08, 2018  
Page 92 of 140  
Rev 1.04  
NUC126  
6.12  
PDMA Controller (PDMA)  
6.12.1 Overview  
The peripheral direct memory access (PDMA) controller is used to provide high-speed data  
transfer. The PDMA controller can transfer data from one address to another without CPU  
intervention. This has the benefit of reducing the workload of CPU and keeps CPU resources free  
for other applications. The PDMA controller has a total of 5 channels and each channel can  
perform transfer between memory and peripherals or between memory and memory. The PDMA  
supports time-out function for channel 0 and channel 1.  
6.12.2 Features  
Supports 5 independently configurable channels  
Supports selectable 2 level of priority (fixed priority or round-robin priority)  
Supports transfer data width of 8, 16, and 32 bits  
Supports source and destination address increment size can be byte, half-word, word or  
no increment  
Supports software and SPI, UART, I2S, I2C, USB, ADC, PWM and TIMER request  
Supports Scatter-Gather mode to perform sophisticated transfer through the use of the  
descriptor link list table  
Supports single and burst transfer type  
Supports time-out function for channel0 and channel 1  
Aug. 08, 2018  
Page 93 of 140  
Rev 1.04  
NUC126  
6.13  
PWM Generator and Capture Timer (PWM)  
6.13.1 Overview  
The NUC126 provides two PWM generator: PWM0 and PWM1. Each PWM supports 6 channels  
of PWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit  
PWM counter with 16-bit comparator. The PWM counter supports up, down and up-down counter  
types. PWM uses comparator compared with counter to generate events. These events use to  
generate PWM pulse, interrupt and trigger signal for ADC to start conversion.  
The PWM generator supports two standard PWM output modes: Independent mode and  
Complementary mode, they have difference architecture. There are two output functions based on  
standard output modes: Group function and Synchronous function. Group function can be enabled  
under Independent mode or complementary mode. Synchronous function only enabled under  
complementary mode. Complementary mode has two comparators to generate various PWM  
pulse with 12-bit dead-time generator and another free trigger comparator to generate trigger  
signal for ADC. For PWM output control unit, it supports polarity output, independent pin mask  
and brake functions.  
The PWM generator also supports input capture function. It supports latch PWM counter value to  
corresponding register when input channel has a rising transition, falling transition or both  
transition is happened. Capture function also support PDMA to transfer captured data to memory.  
6.13.2 Features  
6.13.2.1 PWM function features  
Supports maximum clock frequency up to144MHz  
Supports up to two PWM modules, each module provides 6 output channels.  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 3 complementary paired PWM output channels:  
Dead-time insertion with 12-bit resolution  
Synchronous function for phase control  
Two compared values during one period  
Supports 12-bit pre-scalar from 1 to 4096  
Supports 16-bit resolution PWM counter  
Up, down and up-down counter operation type  
Supports one-shot or auto-reload counter operation mode  
Supports group function  
Supports synchronous function  
Supports mask function and tri-state enable for each PWM output pin  
Supports brake function  
Brake source from pin, analog comparator, ADC result monitor and system safety  
events (clock failed, Brown-out detection and CPU lockup).  
Noise filter for brake source from pin  
Leading edge blanking (LEB) function for brake source from analog comparator  
Edge detect brake source to control brake state until brake interrupt cleared  
Aug. 08, 2018  
Page 94 of 140  
Rev 1.04  
NUC126  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM zero point, period point, up-count compared or down-count compared point  
events  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM zero point, period point, zero or period point, up-count compared point, down-  
count compared point events  
PWM up-count free trigger compared point, down-count free trigger compared point  
events  
6.13.2.2 Capture Function Features  
Supports up to 6 capture input channels with 16-bit resolution for each PWM module  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Supports PDMA transfer function for PWM all channels  
Aug. 08, 2018  
Page 95 of 140  
Rev 1.04  
NUC126  
6.14  
Real Time Clock (RTC)  
6.14.1 Overview  
The Real Time Clock (RTC) controller provides the real time and calendar message. The RTC  
offers programmable time tick and alarm match interrupts. The data format of time and calendar  
messages are expressed in BCD format. A digital frequency compensation feature is available to  
compensate external crystal oscillator frequency accuracy.  
6.14.2 Features  
Supports real time counter in RTC_TIME (hour, minute, second) and calendar counter in  
RTC_CAL (year, month, day) for RTC time and calendar check  
Supports alarm time (hour, minute, second) and calendar (year, month, day) settings in  
RTC_TALM and RTC_CALM  
Supports alarm time (hour, minute, second) and calendar (year, month, day) mask enable  
in RTC_TAMSK and RTC_CAMSK  
Selectable 12-hour or 24-hour time scale in RTC_CLKFMT register  
Supports Leap Year indication in RTC_LEAPYEAR register  
Supports Day of the Week counter in RTC_WEEKDAY register  
Frequency of RTC clock source compensate by RTC_FREQADJ register  
All time and calendar message expressed in BCD format  
Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32,  
1/16, 1/8, 1/4, 1/2 and 1 second  
Supports RTC Time Tick and Alarm Match interrupt  
Supports chip wake-up from Idle or Power-down mode while an RTC interrupt signal is  
generated  
Supports Daylight Saving Time backup control in RTC_DSTCTL  
Aug. 08, 2018  
Page 96 of 140  
Rev 1.04  
NUC126  
6.15  
Smart Card Host Interface (SC)  
6.15.1 Overview  
The Smart Card Interface controller (SC controller) is based on ISO/IEC 7816-3 standard and fully  
compliant with PC/SC Specifications. It also provides status of card insertion/removal.  
6.15.2 Features  
ISO-7816-3 T = 0, T = 1 compliant  
EMV2000 compliant  
Two ISO-7816-3 ports  
Separates receive/transmit 4 byte entry FIFO for data payloads  
Programmable transmission clock frequency  
Programmable receiver buffer trigger level  
Programmable guard time selection (11 ETU ~ 267 ETU)  
One 24-bit timer and two 8-bit timers for Answer to Request (ATR) and waiting times  
processing  
Supports auto direct / inverse convention function  
Supports transmitter and receiver error retry and error number limiting function  
Supports hardware activation sequence process, and the interval between PWR on and  
CLK start is configurable  
Supports hardware warm reset sequence process  
Supports hardware deactivation sequence process  
Supports hardware auto deactivation sequence when detected the card removal  
Supports UART mode  
Full duplex, asynchronous communications  
Separates receiving/transmitting 4 bytes entry FIFO for data payloads  
Supports programmable baud rate generator  
Supports programmable receiver buffer trigger level  
Programmable transmitting data delay time between the last stop bit leaving the TX-  
FIFO and the de-assertion by setting EGT (SC_EGT[7:0])  
Programmable even, odd or no parity bit generation and detection  
Programmable stop bit, 1- or 2- stop bit generation  
Aug. 08, 2018  
Page 97 of 140  
Rev 1.04  
NUC126  
6.16  
Serial Peripheral Interface (SPI)  
6.16.1 Overview  
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and  
allows full duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction  
interface. The NUC126 series contains up to two sets of SPI controllers performing a serial-to-  
parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion  
on data transmitted to a peripheral device. Each SPI controller can be configured as a master or a  
slave device.  
This controller also supports the PDMA function to access the data buffer. The SPI controller also  
support I2S mode to connect external audio CODEC.  
6.16.2 Features  
SPI Mode  
Up to two sets of SPI controllers  
Supports Master or Slave mode operation  
Configurable bit length of a transaction word from 8 to 32-bit  
Provides separate 4-level depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports Byte Reorder function  
Supports PDMA transfer  
Supports one data channel half-duplex transfer  
Support receive-only mode  
I2S Mode  
Supports Master or Slave  
Capable of handling 8-, 16-, 24- and 32-bit word sizes  
Provides separate 4-level depth transmit and receive FIFO buffers  
Supports monaural and stereo audio data  
Supports PCM mode A, PCM mode B, I2S and MSB justified data format  
Supports PDMA transfer  
Aug. 08, 2018  
Page 98 of 140  
Rev 1.04  
NUC126  
6.17  
Timer Controller (TMR)  
6.17.1 Overview  
The Timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily  
implement a timer control for applications. The timer can perform functions, such as frequency  
measurement, delay timing, clock generation, and event counting by external input pins, and  
interval measurement by external capture pins.  
The Timer controller also provides four PWM generators. Each PWM generator supports two  
PWM output channels in independent mode and complementary mode. The output state of PWM  
output pin can be control by pin mask, polarity and break control, and dead-time generator.  
6.17.2 Features  
6.17.2.1 Timer Function Features  
Four sets of 32-bit timers, each timer equips one 24-bit up counter and one 8-bit prescale  
counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through CNT (TIMERx_CNT[23:0])  
Supports event counting function  
24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])  
Supports external capture pin event for interval measurement  
Supports external capture pin event to reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated  
Support Timer0 ~ Timer3 time-out interrupt signal or capture interrupt signal to trigger  
PWM, ADC and PDMA function  
Supports internal capture triggered while internal ACMP output signal transition  
Supports Inter-Timer trigger mode  
Supports event counting source from internal USB SOF signal  
6.17.2.2 PWM Function Features  
Supports maximum clock frequency up to 72MHz  
Supports independent mode for PWM generator with two output channels  
Supports complementary mode for PWM generator with paired PWM output channel  
12-bit dead-time insertion with 12-bit prescale  
Supports 12-bit prescale from 1 to 4096  
Supports 16-bit PWM counter  
Up, down and up-down count operation type  
One-shot or auto-reload counter operation mode  
Supports mask function and tri-state enable for each PWM output pin  
Aug. 08, 2018  
Page 99 of 140  
Rev 1.04  
NUC126  
Supports brake function  
Brake source from pin, analog comparator and system safety events (clock failed,  
Brown-out detection and CPU lockup)  
Brake pin noise filter control for brake source  
Edge detect brake source to control brake state until brake interrupt cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM zero point, period point, up-count compared or down-count compared point  
events  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM zero point, period, zero or period point, up-count compared or down-count  
compared point events  
Aug. 08, 2018  
Page 100 of 140  
Rev 1.04  
NUC126  
6.18  
6.18.1 Overview  
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is  
USB Device Controller (USBD)  
compliant with USB 2.0 full-speed device specification and supports  
control/bulk/interrupt/isochronous transfer types. It implements a full-speed (12 Mbit/s) function  
interface with added support for USB 2.0 Link Power Management.  
In this device controller, there are two main interfaces: the APB bus and USB bus which comes  
from the USB PHY transceiver. For the APB bus, the CPU can program control registers through  
it. There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is  
necessary to write data to SRAM or read data from SRAM through the APB interface or SIE. User  
needs to set the effective starting address of SRAM for each endpoint buffer through buffer  
segmentation register (USBD_BUFSEGx).  
There are 8 endpoints in this controller. Each of the endpoint can be configured as IN or OUT  
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are  
implemented in this block. The block of Endpoint Control” is also used to manage the data  
sequential synchronization, endpoint states, current start address, transaction status, and data  
buffer status for each endpoint.  
There are four different interrupt events in this controller. They are the wake-up idle event, device  
plug-in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend  
and resume, etc. Any event will cause an interrupt, and users just need to check the related event  
flags in interrupt event status register (USBD_INTSTS) to acknowledge what kind of interrupt  
occurring, and then check the related USB Endpoint Status Register (USBD_EPSTS) to  
acknowledge what kind of event occurring in this endpoint.  
A software-disconnect function is also supported for this USB controller. It is used to simulate the  
disconnection of this device from the host. If user enables SE0 bit (USBD_SE0), the USB  
controller will force the output of USB_D+ and USB_D- to level low. It will casue host detect  
disconnect after user enable SE0 bit for a while. Finally, user can disable the SE0 bit, host will  
enumerate the USB device again.  
For more information on the Universal Serial Bus, please refer to Universal Serial Bus  
Specification Revision 1.1.  
6.18.2 Features  
Compliant with USB 2.0 Full-Speed specification  
Provides 1 interrupt vector with 4 different interrupt events (WKIDLE, VBUSDET, USB  
and BUS)  
Supports Control/Bulk/Interrupt/Isochronous transfer type  
Supports suspend function when no bus activity existing for 3 ms  
Supports 8 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types  
and maximum 512 bytes buffer size  
Provides remote wake-up capability  
Supports Start of Frame (SOF) interrupt and USB frame number monitor.  
Supports USB 2.0 Link Power Management  
Aug. 08, 2018  
Page 101 of 140  
Rev 1.04  
NUC126  
6.19  
USCI Universal Serial Control Interface Controller  
Clock  
Generator  
NVIC  
VBUS  
VBUS  
Detection  
De-bouncing  
Detection  
USB  
control  
and  
Interrupt  
control  
DPLL  
status  
registers  
USB_D+  
USB_D-  
APB Bus  
RXDP  
Endpoint  
Control  
RXDM  
S0  
SRAM  
(512  
Bytes)  
SIE  
Buffer  
Control  
USB_VBUS  
S1  
Transceiver  
6.19.1 Overview  
The Universal Serial Control Interface (USCI) is a flexible interface module covering several serial  
communication protocols. The user can configure this controller as UART, SPI, or I2C functional  
protocol.  
6.19.2 Features  
The controller can be individually configured to match the application needs. The following  
protocols are supported:  
UART  
SPI  
I2C  
Aug. 08, 2018  
Page 102 of 140  
Rev 1.04  
NUC126  
6.20  
USCI UART Mode  
6.20.1 Overview  
The asynchronous serial channel UART covers the reception and the transmission of  
asynchronous data frames. It performs a serial-to-parallel conversion on data received from the  
peripheral, and a parallel-to-serial conversion on data transmitted from the controller. The receiver  
and transmitter being independent, frames can start at different points in time for transmission and  
reception.  
The UART controller also provides auto flow control. There are two conditions to wake up the  
system.  
6.20.2 Features  
Supports one transmit buffer and two receive buffer for data payload  
Supports hardware auto flow control function  
Supports programmable baud-rate generator  
Support 9-Bit Data Transfer (Support 9-Bit RS-485)  
Baud rate detection possible by built-in capture event of baud rate generator  
Supports Wake-up function (Data and nCTS Wakeup Only)  
Aug. 08, 2018  
Page 103 of 140  
Rev 1.04  
NUC126  
6.21  
USCI SPI Mode  
6.21.1 Overview  
The SPI protocol of USCI controller applies to synchronous serial data communication and allows  
full duplex transfer. It supports both master and Slave operation mode with the 4-wire bi-direction  
interface. SPI mode of USCI controller performs a serial-to-parallel conversion on data received  
from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral  
device. The SPI mode is selected by FUNMODE (USPI_CTL[2:0]) = 0x1.  
This SPI protocol can operate as master or Slave mode by setting the SLAVE  
(USPI_PROTCTL[0]) to communicate with the off-chip SPI Slave or master device. The  
application block diagrams in master and Slave mode are shown below.  
USCI SPI Master  
USCI SPI Master  
SPI Slave Device  
SPI_MOSI  
Master Transmit Data  
Master Receive Data  
Serial Bus Clock  
SPI_MOSI  
(USCIx_DAT0)  
SPI_MISO  
(USCIx_DAT1)  
SPI_MISO  
SPI_CLK  
SPI_SS  
SPI_CLK  
(USCIx_CLK)  
Slave Select  
SPI_SS  
(USCIx_CTL)  
Note: x = 0, 1, 2  
Figure 6.21-1 SPI Master Mode Application Block Diagram  
USCI SPI Slave  
USCI SPI Slave  
SPI Master Device  
SPI_MOSI  
Slave Receive Data  
Slave Transmit Data  
Serial Bus Clock  
SPI_MOSI  
(USCIx_DAT0)  
SPI_MISO  
(USCIx_DAT1)  
SPI_MISO  
SPI_CLK  
SPI_CLK  
(USCIx_CLK)  
Slave Select  
SPI_SS  
(USCIx_CTL)  
SPI_SS  
Note: x = 0, 1, 2  
Figure 6.21-2 SPI Slave Mode Application Block Diagram  
6.21.2 Features  
Supports Master or Slave mode operation (the maximum frequency Master = fPCLK / 2,  
Slave < fPCLK / 5)  
Configurable bit length of a transfer word from 4 to 16-bit  
Supports one transmit buffer and two receive buffers for data payload  
Aug. 08, 2018  
Page 104 of 140  
Rev 1.04  
NUC126  
Supports MSB first or LSB first transfer sequence  
Supports Word Suspend function  
Supports 3-wire, no slave select signal, bi-direction interface  
Supports wake-up function by slave select signal in Slave mode  
Supports one data channel half-duplex transfer  
Aug. 08, 2018  
Page 105 of 140  
Rev 1.04  
NUC126  
6.22  
USCI I2C Mode  
6.22.1 Overview  
On I2C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and  
SDA lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit. There is one SCL  
clock pulse for each data bit with the MSB being transmitted first, and an acknowledge bit follows  
each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line  
may be changed only during the low period of SCL and must be held stable during the high period  
of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or  
STOP). Please refer to Figure 6.22-1 for more detailed I2C BUS Timing.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD_STA  
tSU_STA  
tSU_STO  
tSU_DAT  
tHD_DAT  
Figure 6.22-1 I2C Bus Timing  
The device’s on-chip I2C provides the serial interface that meets the I2C bus standard mode  
specification. The I2C port handles byte transfers autonomously. The I2C mode is selected by  
FUNMODE (UI2C_CTL [2:0]) = 100b. When enable this port, the USCI interfaces to the I2C bus  
via two pins: SDA and SCL. When I/O pins are used as I2C ports, user must set the pins function  
to I2C in advance.  
Note: Pull-up resistor is needed for I2C operation because the SDA and SCL are set to open-drain  
pins when USCI is selected to I2C operation mode .  
6.22.2 Features  
Full master and slave device capability  
Supports of 7-bit addressing, as well as 10-bit addressing  
Communication in standard mode (100 kBit/s) or in fast mode (up to 400 kBit/s)  
Supports multi-master bus  
Supports 10-bit bus time-out capability  
Supports bus monitor mode.  
Supports Power down wake-up by data toggle or address match  
Supports setup/hold time programmable  
Supports multiple address recognition (two slave address with mask option)  
Aug. 08, 2018  
Page 106 of 140  
Rev 1.04  
 
NUC126  
6.23  
UART Interface Controller (UART)  
6.23.1 Overview  
The NUC126 series provides three channels of Universal Asynchronous Receiver/Transmitters  
(UART). The UART controller performs Normal Speed UART and supports flow control function.  
The UART controller performs a serial-to-parallel conversion on data received from the peripheral  
and a parallel-to-serial conversion on data transmitted from the CPU. Each UART controller  
channel supports ten types of interrupts. The UART controller also supports IrDA SIR, LIN and  
RS-485 function modes and auto-baud rate measuring function.  
6.23.2 Features  
Full-duplex asynchronous communications  
Separates receive and transmit 16/16 bytes entry FIFO for data payloads  
Supports hardware auto-flow control  
Programmable receiver buffer trigger level  
Supports programmable baud rate generator for each channel individually  
Supports nCTS, incoming data, Received Data FIFO reached threshold and RS-485  
Address Match (AAD mode) wake-up function  
Supports 8-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting DLY (UART_TOUT [15:8])  
Supports Auto-Baud Rate measurement and baud rate compensation function  
Supports break error, frame error, parity error and receive/transmit buffer overflow  
detection function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5-, 6-, 7-, 8- bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode  
Support for 3/16 bit duration for normal mode  
Supports LIN function mode  
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detection function for receiver  
Supports RS-485 function mode  
Supports RS-485 9-bit mode  
Supports hardware or software enables to program nRTS pin to control RS-485  
transmission direction  
Support PDMA transfer function  
Aug. 08, 2018  
Page 107 of 140  
Rev 1.04  
NUC126  
6.24  
Watchdog Timer (WDT)  
6.24.1 Overview  
The Watchdog Timer (WDT) is used to perform a system reset when system runs into an  
unknown state. This prevents system from hanging for an infinite period of time. Besides, the  
Watchdog Timer supports the function to wake up system from Idle/Power-down mode.  
6.24.2 Features  
Supports 18-bit free running up counter  
Selectable time-out interval (24 ~ 218) and the time-out interval is 1.6 ms ~ 26.214s if  
WDT_CLK is 10 kHzSupports selectable WDT reset delay period between WDT time-out  
event to WDT reset system event, and it includes 102613018 or 3 * WDT_CLK delay  
period  
System kept in reset state about 63 * WDT_CLK period time after system reset event  
occurred  
Supports to force WDT function enabled after chip powered on or reset by setting  
CWDTEN[2:0] in Config0 register  
Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC or  
LXT  
6.24.3 Clock Control  
The WDT clock control is shown in Figure 6.24-1.  
WDTSEL (CLK_CLKSEL1[1:0])  
WDTCKEN (CLK_APBCLK0[0])  
WDT_CLK  
32.768 kHz (LXT)  
HCLK/2048  
01  
10  
11  
10 kHz (LIRC)  
Figure 6.24-1 Watchdog Timer Clock Control  
Aug. 08, 2018  
Page 108 of 140  
Rev 1.04  
 
NUC126  
6.25  
Window Watchdog Timer (WWDT)  
6.25.1 Overview  
The Window Watchdog Timer (WWDT) is used to perform a system reset while WWDT counter is  
not reload within a specified window period when application program run to uncontrollable status  
by any unpredictable condition.  
6.25.2 Features  
Supports 6-bit down counter value CNTDAT (WWDT_CNT[5:0]) and maximum 6-bit  
compare value CMPDAT (WWDT_CTL[21:16]) to adjust the WWDT compare time-out  
window period flexible  
Supports PSCSEL (WWDT_CTL[11:8]) to programmable maximum 11-bit prescale  
counter period of WWDT counter  
WWDT counter suspends in Idle/Power-down mode  
WWDT counter only can be reloaded within in valid window period to prevent system  
reset  
6.25.3 Clock Control  
The WWDT clock control and block diagram are shown as follows.  
WWDTSEL (CLK_CLKSEL2[17:16])  
WDTCKEN (CLK_APBCLK0[0])  
HCLK/2048  
WWDT_CLK  
10  
11  
10 kHz (LIRC)  
Figure 6.25-1 WWDT Clock Control  
Aug. 08, 2018  
Page 109 of 140  
Rev 1.04  
NUC126  
7 APPLICATION CIRCUIT  
AVCC  
VREF  
AVDD  
USB_VBUS  
USB_D-  
33R  
33R  
USB_D+  
USB OTG Slot  
FB  
DVCC  
VDD  
USB_VDD33_CAP  
VDDIO  
0.1uF  
1uF  
1uF  
VBAT  
VSS  
DVCC  
Power  
0.1uF  
SPI_SS  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
CS  
CLK  
MISO  
MOSI  
VDD  
VSS  
FB  
SPI Device  
AVSS  
VDD  
ICE_DAT  
ICE_CLK  
nRESET  
VSS  
SWD  
Interface  
DVCC  
4.7K  
DVCC  
NUC126 Series  
20p  
4.7K  
XT1_IN  
CLK  
DIO  
I2C_SCL  
I2C_SDA  
VDD  
VSS  
I2C Device  
4~ 24 MHz  
crystal  
20p  
20p  
XT1_OUT  
X32_IN  
Crystal  
DVCC  
32.768kHz  
crystal  
20p  
X32_OUT  
SC_PWR  
SC_RST  
SC_CLK  
Smart Card Slot  
DVCC  
SC_DAT  
SC_ Detect  
Reset  
Circuit  
10K  
nRST  
10uF/10V  
PC COM Port  
RS 232 Transceiver  
ROUT RIN  
RXD  
TXD  
UART  
LDO CAP  
_
TIN  
TOUT  
LDO  
1uF  
Aug. 08, 2018  
Page 110 of 140  
Rev 1.04  
NUC126  
8 ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
SYMBOL  
PARAMETER  
MIN  
MAX  
+7.0  
VDD + 0.3  
24  
UNIT  
V
DC Power Supply  
Input Voltage  
VDD-VSS  
VIN  
-0.3  
VSS 0.3  
V
Oscillator Frequency  
1/tCLCL  
TA  
4
MHz  
C  
Operating Temperature  
-40  
+105  
+150  
120  
Storage Temperature  
TST  
-55  
C  
Maximum Current into VDD  
IDD  
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
Maximum Current out of VSS  
ISS  
120  
Maximum Current sunk by a I/O Pin  
Maximum Current Sourced by a I/O Pin  
Maximum Current Sunk by Total I/O Pins  
Maximum Current Sourced by Total I/O Pins  
35  
35  
IIO  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affect the lift and reliability of the device.  
Aug. 08, 2018  
Page 111 of 140  
Rev 1.04  
NUC126  
8.2 DC Electrical Characteristics  
(VDD-VSS = 2.5 ~ 5.5V, TA = 25C, FOSC = 72 MHz unless otherwise specified.)  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
VDD  
VSS  
Operation Voltage  
2.5  
1.8  
-
5.5  
5.5  
V
V
V
V
V
VDD = 2.5 ~ 5.5V up to 72 MHz  
Power supply for PE.8 VDDIO  
-
-
~ PE.13  
VSS  
Power  
supply  
for VBAT  
VSS  
2.5  
5.5  
PF.0, PF.1 and PF.2  
VSS  
AVSS  
Power Ground  
-0.05  
1.62  
-
+0.05  
1.98  
MCU operating in Run, Idle or Power-down  
mode  
VLDO  
1.8  
LDO Output Voltage  
Band-gap Voltage  
CLDO  
VBG  
1
uF Connect to LDO_CAP pin  
V
-
1.21  
-
Allowed  
difference for VDD and  
AVDD  
voltage  
VDD  
AVDD  
-0.3  
-
+0.3  
V
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
V
IDD1  
-
-
mA  
57  
Operating Current  
Normal Run Mode  
HCLK =72 MHz  
while(1){}executed  
from flash  
5.5 V 12 MHz  
5.5 V 12 MHz  
3.3 V 12 MHz  
3.3 V 12 MHz  
V
X
V
X
IDD2  
IDD3  
IDD4  
-
-
-
-
-
-
mA  
mA  
mA  
22  
57  
22  
X
X
X
X
X
X
V
V
V
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
HIRC48  
PLL  
IDD5  
-
-
mA  
55  
Operating Current  
Normal Run Mode  
HCLK =72 MHz  
while(1){}executed  
from flash  
5.5 V  
5.5 V  
3.3 V  
3.3 V  
X
X
X
X
X
X
X
X
V
V
V
V
V
V
V
V
V
X
V
X
IDD6  
IDD7  
IDD8  
-
-
-
-
-
-
mA  
mA  
mA  
21  
55  
21  
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
V
IDD9  
-
-
mA  
33  
Operating Current  
Normal Run Mode  
HCLK =48 MHz  
while(1){}executed  
from flash  
5.5 V 12 MHz  
5.5 V 12 MHz  
3.3 V 12 MHz  
3.3 V 12 MHz  
V
X
V
X
IDD10  
IDD11  
IDD12  
-
-
-
-
-
-
mA  
mA  
mA  
14  
33  
14  
X
X
X
X
X
X
V
V
V
VLDO=1.8 V  
Aug. 08, 2018  
Page 112 of 140  
Rev 1.04  
 
NUC126  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
All digital  
module  
VDD  
HXT  
X
HIRC  
X
HIRC48  
V
PLL  
X
IDD13  
-
-
mA  
TBD  
Operating Current  
Normal Run Mode  
HCLK =48 MHz  
while(1){}executed  
from flash  
5.5 V  
V
IDD14  
IDD15  
IDD16  
-
-
-
-
-
-
mA  
mA  
mA  
TBD  
TBD  
TBD  
5.5 V  
3.3 V  
3.3 V  
X
X
X
X
X
X
V
V
V
X
X
X
X
V
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
X
IDD17  
-
-
mA  
15.8  
Operating Current  
Normal Run Mode  
HCLK =24 MHz  
while(1){}executed  
from flash  
5.5 V 24 MHz  
5.5 V 24 MHz  
3.3 V 24 MHz  
3.3 V 24 MHz  
V
X
V
X
IDD18  
IDD19  
IDD20  
-
-
-
-
-
-
mA  
mA  
mA  
6.7  
15.8  
6.7  
X
X
X
X
X
X
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
X
HIRC  
X
HIRC48  
PLL  
X
IDD21  
-
-
mA  
TBD  
Operating Current  
Normal Run Mode  
HCLK =24 MHz  
while(1){}executed  
from flash  
5.5 V  
HIRC48/2  
V
X
V
X
IDD22  
IDD23  
IDD24  
-
-
-
-
-
-
mA  
mA  
mA  
TBD  
TBD  
TBD  
5.5 V  
3.3 V  
3.3 V  
X
X
X
X
X
X
HIRC48/2  
HIRC48/2  
HIRC48/2  
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
X
HIRC  
V
HIRC48  
X
PLL  
X
IDD25  
-
-
mA  
16.6  
Operating Current  
Normal Run Mode  
HCLK =22.1184 MHz  
while(1){}executed  
from flash  
5.5 V  
V
X
V
X
IDD26  
IDD27  
IDD28  
-
-
-
-
-
-
mA  
mA  
mA  
6.2  
16.6  
6.2  
5.5 V  
3.3 V  
3.3 V  
X
X
X
V
V
V
X
X
X
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
X
IDD29  
-
-
mA  
7.8  
Operating Current  
Normal Run Mode  
HCLK =12 MHz  
while(1){}executed  
from flash  
5.5 V 12 MHz  
5.5 V 12 MHz  
3.3 V 12 MHz  
3.3 V 12 MHz  
V
X
V
X
IDD30  
IDD31  
IDD32  
-
-
-
-
-
-
mA  
mA  
mA  
3.1  
7.8  
3.1  
X
X
X
X
X
X
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
X
IDD33  
-
-
mA  
2.74  
Operating Current  
Normal Run Mode  
HCLK =4 MHz  
while(1){}executed  
from flash  
5.5 V 4 MHz  
5.5 V 4 MHz  
3.3 V 4 MHz  
3.3 V 4 MHz  
V
X
V
X
IDD34  
IDD35  
IDD36  
IDD37  
-
-
-
-
-
-
-
-
mA  
mA  
mA  
uA  
1.23  
2.72  
1.20  
136  
X
X
X
X
X
X
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
LXT  
LIRC  
PLL  
Operating Current  
Aug. 08, 2018  
Page 113 of 140  
Rev 1.04  
NUC126  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
Normal Run Mode  
HCLK =32.768 kHz  
while(1){}executed  
from flash  
5.5 V 32.768 kHz  
5.5 V 32.768 kHz  
3.3 V 32.768 kHz  
3.3 V 32.768 kHz  
X
X
X
X
X
X
X
X
V
X
V
X
IDD38  
IDD39  
IDD40  
-
-
-
-
-
-
uA  
uA  
uA  
123  
123  
109  
VLDO=1.8 V  
All digital  
module  
VDD  
LXT  
X
LIRC  
PLL  
X
IDD41  
-
-
uA  
121  
Operating Current  
Normal Run Mode  
HCLK =10 kHz  
while(1){}executed  
from flash  
5.5 V  
10 kHz  
V
X
V
X
IDD42  
IDD43  
IDD44  
-
-
-
-
-
-
uA  
uA  
uA  
117  
107  
102  
5.5 V  
3.3 V  
3.3 V  
X
X
X
10 kHz  
10 kHz  
10 kHz  
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
PLL  
V
IIDLE1  
-
-
mA  
47  
Operating Current  
Idle Mode  
HCLK =72 MHz  
while(1){}executed  
from flash  
5.5 V 12 MHz  
5.5 V 12 MHz  
3.3 V 12 MHz  
3.3 V 12 MHz  
X
X
X
X
V
X
V
X
IIDLE2  
IIDLE3  
IIDLE4  
-
-
-
-
-
-
mA  
mA  
mA  
9
47  
9
X
X
X
V
V
V
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
X
HIRC  
X
HIRC48  
V
PLL  
V
IIDLE5  
-
-
mA  
47  
Operating Current  
Idle Mode  
HCLK =72 MHz  
while(1){}executed  
from flash  
5.5 V  
V
X
V
X
IIDLE6  
IIDLE7  
IIDLE8  
-
-
-
-
-
-
mA  
mA  
mA  
9.5  
47  
5.5 V  
3.3 V  
3.3 V  
X
X
X
X
X
X
V
V
V
V
V
V
VLDO=1.8 V  
9.5  
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
V
IIDLE9  
-
-
mA  
27  
Operating Current  
Idle Mode  
HCLK =48 MHz  
while(1){}executed  
from flash  
5.5 V 12 MHz  
5.5 V 12 MHz  
3.3 V 12 MHz  
3.3 V 12 MHz  
V
X
V
X
IIDLE10  
IIDLE11  
IIDLE12  
-
-
-
-
-
-
mA  
mA  
mA  
5.5  
27  
X
X
X
X
X
X
V
V
V
VLDO=1.8 V  
5.5  
All digital  
module  
VDD  
HXT  
X
HIRC  
X
HIRC48  
V
PLL  
X
IIDLE13  
-
-
mA  
TBD  
Operating Current  
Idle Mode  
HCLK =48 MHz  
while(1){}executed  
from flash  
5.5 V  
V
X
V
X
IIDLE14  
IIDLE15  
IIDLE16  
-
-
-
-
-
-
mA  
mA  
mA  
TBD  
TBD  
TBD  
5.5 V  
3.3 V  
3.3 V  
X
X
X
X
X
X
V
V
V
X
X
X
VLDO=1.8 V  
All digital  
module  
Operating Current  
Idle Mode  
HCLK =24 MHz  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
X
IIDLE17  
-
-
mA  
12.5  
5.5 V 24 MHz  
V
Aug. 08, 2018  
Page 114 of 140  
Rev 1.04  
NUC126  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
while(1){}executed  
from flash  
IIDLE18  
IIDLE19  
IIDLE20  
-
-
-
-
-
-
mA  
mA  
mA  
2.2  
12.5  
2.2  
5.5 V 24 MHz  
3.3 V 24 MHz  
3.3 V 24 MHz  
X
X
X
X
X
X
X
X
X
X
V
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
X
HIRC  
X
HIRC48  
PLL  
X
IIDLE21  
-
-
mA  
TBD  
Operating Current  
Idle Mode  
HCLK =24 MHz  
while(1){}executed  
from flash  
5.5 V  
HIRC48/2  
V
X
V
X
IIDLE22  
IIDLE23  
IIDLE24  
-
-
-
-
-
-
mA  
mA  
mA  
TBD  
TBD  
TBD  
5.5 V  
3.3 V  
3.3 V  
X
X
X
X
X
X
HIRC48/2  
HIRC48/2  
HIRC48/2  
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
X
HIRC  
V
HIRC48  
X
PLL  
X
IIDLE25  
-
-
mA  
12.3  
Operating Current  
Idle Mode  
HCLK =22.1184 MHz  
while(1){}executed  
from flash  
5.5 V  
V
X
V
X
IIDLE26  
IIDLE27  
IIDLE28  
-
-
-
-
-
-
mA  
mA  
mA  
1.9  
12.3  
1.9  
5.5 V  
3.3 V  
3.3 V  
X
X
X
V
V
V
X
X
X
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
X
IIDLE29  
-
-
mA  
6.3  
Operating Current  
Idle Mode  
HCLK =12 MHz  
while(1){}executed  
from flash  
5.5 V 12 MHz  
5.5 V 12 MHz  
3.3 V 12 MHz  
3.3 V 12 MHz  
V
X
V
X
IIDLE30  
IIDLE31  
IIDLE32  
-
-
-
-
-
-
mA  
mA  
mA  
1.2  
6.3  
1.2  
X
X
X
X
X
X
X
X
X
VLDO=1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
X
HIRC48  
X
PLL  
X
IIDLE33  
-
-
mA  
2.2  
Operating Current  
Idle Mode  
HCLK =4 MHz  
while(1){}executed  
from flash  
5.5 V 4 MHz  
5.5 V 4 MHz  
3.3 V 4 MHz  
3.3 V 4 MHz  
V
X
V
X
IIDLE34  
IIDLE35  
IIDLE36  
-
-
-
-
-
-
mA  
mA  
mA  
0.50  
2.2  
X
X
X
X
X
X
X
X
X
VLDO=1.8 V  
0.46  
All digital  
module  
VDD  
LXT  
LIRC  
PLL  
X
IIDLE37  
-
-
uA  
129  
Operating Current  
Idle Mode  
HCLK =32.768 kHz  
while(1){}executed  
from flash  
5.5 V 32.768 kHz  
5.5 V 32.768 kHz  
3.3 V 32.768 kHz  
3.3 V 32.768 kHz  
X
X
X
X
V
X
V
X
IIDLE38  
IIDLE39  
IIDLE40  
-
-
-
-
-
-
uA  
uA  
uA  
115  
115  
101  
X
X
X
VLDO=1.8 V  
All digital  
module  
Operating Current  
Idle Mode  
HCLK =10 kHz  
while(1){}executed  
from flash  
VDD  
LXT  
X
LIRC  
PLL  
X
IIDLE41  
-
-
-
-
uA  
uA  
119  
114  
5.5 V  
10 kHz  
V
IIDLE42  
5.5 V  
X
10 kHz  
X
X
Aug. 08, 2018  
Page 115 of 140  
Rev 1.04  
NUC126  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
VLDO=1.8 V  
IIDLE43  
IIDLE44  
-
-
-
-
uA  
uA  
104  
100  
3.3 V  
3.3 V  
X
X
10 kHz  
10 kHz  
X
X
V
X
RAM  
retention  
VDD HXT/HIRC LXT/LIRC  
PLL  
X
IPWD1  
-
-
uA  
TBD  
5.5 V  
5.5 V  
5.5 V  
5.5 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
X
X
X
X
X
X
X
X
LXT  
LIRC  
V
V
V
V
V
V
V
V
IPWD2  
IPWD3  
IPWD4  
IPWD5  
IPWD6  
IPWD7  
IPWD8  
-
-
-
-
-
-
-
-
-
uA  
uA  
uA  
uA  
uA  
uA  
uA  
TBD  
TBD  
20  
X
X
X
X
X
X
X
LXT & LIRC  
X
Standby Current  
Power-down Mode  
VLDO=1.8 V  
-
-
-
-
13.5  
13.3  
14.3  
12.5  
LXT  
LIRC  
LXT & LIRC  
X
Logic 0 Input Current  
(Quasi-bidirectional  
mode)  
IIL  
-
-
-70  
-
-
uA  
uA  
VDD = VBAT = VDDIO = 5.5V, VIN = 0V  
Logic 1 to 0 Transition  
Current  
(Quasi- ITL  
-620  
VDD = VBAT = VDDIO = 5.5V, VIN = 2.0V  
bidirectional mode) [3]  
-
-
TBD  
TBD  
-
-
KΩ  
KΩ  
VDD = VBAT = VDDIO = 5.5V  
VDD = VBAT = VDDIO = 3.3V  
Input Pull Up Resistor RIN  
Input Leakage Current ILK  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO = 1.8 V  
-
-
TBD  
0
-
-
KΩ  
VDD = VBAT = VDDIO = 5.5V, 0 < VIN < VDD  
Open-drain or input only mode  
A  
-0.3  
-0.3  
-
-
0.8  
0.6  
V
V
VDD = VBAT = VDDIO = 4.5 V  
VDD = VBAT = VDDIO = 2.5 V  
Input Low Voltage  
VIL1  
(TTL input)  
Input Low Voltage  
(TTL input for VDDIO VIL2  
domain)  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO = 1.8 V  
-0.3  
-
TBD  
V
VDD  
0.3  
+
2.0  
1.5  
-
-
V
V
VDD = VBAT = VDDIO = 5.5V  
VDD = VBAT = VDDIO = 2.5V  
Input High Voltage  
VIH1  
(TTL input)  
VDD  
0.3  
+
Input High Voltage  
(TTL input for VDDIO VIH2  
domain)  
VDD = VBAT = 2.5 ~ 5.5 V  
VDDIO = 1.8 V  
VDD  
0.3  
+
TBD  
-0.3  
-
-
V
V
Input Low Voltage  
VIL3  
0.3VDD  
VDD = VBAT = VDDIO = 2.5 ~ 5.5 V  
(Schmitt input)  
Aug. 08, 2018  
Page 116 of 140  
Rev 1.04  
NUC126  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
Input Low Voltage  
VIL4  
for  
-0.3  
-
0.3VDD  
V
V
V
V
VDDIO = 1.8 ~ 5.5V  
VDD = VBAT = VDDIO = 2.5 ~ 5.5V  
VDDIO = 1.8 ~ 5.5V  
(Schmitt  
VDDIO domain)  
input  
Input High Voltage  
(Schmitt input)  
VDD +  
0.3  
VIH3 0.7VDD  
-
Input High Voltage  
0.7VDDI  
VDDIO  
0.3  
+
VIH4  
for  
-
(Schmitt  
VDDIO domain)  
input  
O
Hysteresis voltage of  
PA~PF (Schmitt input)  
VHY  
-
0.2VDD  
-
Negative  
threshold  
going  
VIL5  
-0.3  
-
0.2VDD  
V
(Schmitt  
nRESET  
input),  
Positive  
going  
threshold  
VDD  
0.3  
+
VIH5 0.8VDD  
-
V
(Schmitt  
nRESET  
Input),  
Internal nRESET pin  
pull up resistor  
RRST  
-
16  
-
KΩ  
VDD = 5.5V  
ISR1  
ISR2  
ISR3  
-
-
-
-400  
-80  
-
-
-
uA  
uA  
uA  
VDD = VBAT = VDDIO = 4.5V, VS = 2.4V  
VDD = VBAT = VDDIO = 2.7V, VS = 2.2V  
VDD = VBAT = VDDIO = 2.5V, VS = 2.0V  
Source Current  
(Quasi-bidirectional  
Mode)  
-73  
Source Current  
VDD = VBAT = 2.5 ~ 5.5V  
VDDIO = 1.8V, VS = 1.6V  
(Quasi-bidirectional  
ISR4  
-
-19  
-
uA  
Mode  
for  
VDDIO  
domain)  
ISR5  
ISR6  
ISR7  
-18  
-26  
-5.8  
-5.2  
mA  
mA  
mA  
VDD = VBAT = VDDIO = 4.5V, VS = 2.4V  
VDD = VBAT = VDDIO = 2.7V, VS = 2.2V  
VDD = VBAT = VDDIO = 2.5V, VS = 2.0V  
Source Current  
-
-
-
-
(Push-pull Mode)  
Source Current  
VDD = VBAT = 2.5 ~ 5.5V  
VDDIO = 1.8V, VS = 1.6V  
ISR8  
-
-1.5  
-
mA  
(Push-pull Mode for  
VDDIO domain)  
ISK1  
ISK2  
ISK3  
7
-
15  
10  
9
-
-
-
mA  
mA  
mA  
VDD = VBAT = VDDIO = 4.5V, VS = 0.45V  
VDD = VBAT = VDDIO = 2.7V, VS = 0.45V  
VDD = VBAT = VDDIO = 2.5V, VS = 0.45V  
Sink Current  
(Quasi-bidirectional,  
Open-Drain and Push-  
pull Mode)  
-
Aug. 08, 2018  
Page 117 of 140  
Rev 1.04  
NUC126  
SPECIFICATIONS  
PARAMETER  
Sink Current  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
VDD = VBAT = 2.5 ~ 5.5V  
VDDIO = 1.8V, VS = 1.6V  
(Quasi-bidirectional,  
Open-Drain and Push-  
pull Mode for VDDIO  
domain)  
ISK4  
-
-
-2.2  
-
-
mA  
VDD = VBAT = VDDIO = 5.5V  
, without capacitor  
HIORR1  
HIORR2  
HIORR3  
HIORR4  
2.46  
3.24  
3.12  
4.56  
ns  
ns  
ns  
ns  
VDD = VBAT = VDDIO = 5.5V  
, with 10pF capacitor  
VDD = VBAT = VDDIO = 3.0V  
, without capacitor  
-
-
-
-
VDD = VBAT = VDDIO = 3.0V  
, with 10pF capacitor  
Higher GPIO Rising  
Rate  
VDD = VBAT = 2.5 ~ 5.5V  
, VDDIO = 1.8V, without capacitor  
(for VDDIO domain)  
HIORR5  
HIORR6  
-
-
TBD  
TBD  
-
-
ns  
ns  
VDD = VBAT = 2.5 ~ 5.5V  
, VDDIO = 1.8V, with 10pF capacitor  
(for VDDIO domain)  
VDD = VBAT = VDDIO = 5.5V  
, without capacitor  
BIORR1  
BIORR2  
BIORR3  
BIORR4  
-
-
-
-
3.24  
4.15  
4.75  
6.43  
-
-
-
-
ns  
ns  
ns  
ns  
VDD = VBAT = VDDIO = 5.5V  
, with 10pF capacitor  
VDD = VBAT = VDDIO = 3.0V  
, without capacitor  
VDD = VBAT = VDDIO = 3.0V  
, with 10pF capacitor  
Basic GPIO Rising  
Rate  
VDD = VBAT = 2.5 ~ 5.5V  
, VDDIO = 1.8V, without capacitor  
(for VDDIO domain)  
BIORR5  
-
TBD  
-
ns  
VDD = VBAT = 2.5 ~ 5.5V  
, VDDIO = 1.8V, with 10pF capacitor  
(for VDDIO domain)  
BIORR6  
HIOFR1  
-
-
TBD  
2.10  
-
-
ns  
ns  
VDD = VBAT = VDDIO = 5.5V  
, without capacitor  
Higher GPIO Falling  
Rate  
Aug. 08, 2018  
Page 118 of 140  
Rev 1.04  
NUC126  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN. TYP. MAX. UNIT  
VDD = VBAT = VDDIO = 5.5V  
, with 10pF capacitor  
HIOFR2  
HIOFR3  
HIOFR4  
-
-
-
2.83  
3.12  
4.19  
-
-
-
ns  
ns  
ns  
VDD = VBAT = VDDIO = 3.3V  
, without capacitor  
VDD = VBAT = VDDIO = 3.3V  
, with 10pF capacitor  
VDD = VBAT = 2.5 ~ 5.5V  
, VDDIO = 1.8V, without capacitor  
(for VDDIO domain)  
HIOFR5  
HIOFR6  
-
-
TBD  
TBD  
-
-
ns  
ns  
VDD = VBAT = 2.5 ~ 5.5V  
, VDDIO = 1.8V, with 10pF capacitor  
(for VDDIO domain)  
VDD = VBAT = VDDIO = 5.5V  
, without capacitor  
BIOFR1  
BIOFR2  
BIOFR3  
BIOFR4  
-
-
-
-
3.42  
4.40  
6.14  
7.87  
-
-
-
-
ns  
ns  
ns  
ns  
VDD = VBAT = VDDIO = 5.5V  
, with 10pF capacitor  
VDD = VBAT = VDDIO = 3.3V  
, without capacitor  
VDD = VBAT = VDDIO = 3.3V  
, with 10pF capacitor  
Basic GPIO Falling  
Rate  
VDD = VBAT = 2.5 ~ 5.5V  
, VDDIO = 1.8V, without capacitor  
(for VDDIO domain)  
BIOFR5  
BIOFR6  
-
-
TBD  
TBD  
-
-
ns  
ns  
VDD = VBAT = 2.5 ~ 5.5V  
, VDDIO = 1.8V, with 10pF capacitor  
(for VDDIO domain)  
Aug. 08, 2018  
Page 119 of 140  
Rev 1.04  
NUC126  
8.3 AC Electrical Characteristics  
8.3.1  
External 4~24 MHz High Speed Crystal (HXT) Input Clock  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Clock High Time  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
VIH  
nS  
nS  
nS  
nS  
V
10  
-
-
-
-
-
-
-
-
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
Input High Voltage  
Input Low Voltage  
10  
2
15  
2
0.7VDD  
0
15  
VDD  
0.3VDD  
VIL  
V
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
VIH  
VIL  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
8.3.2  
External 4~24 MHz High Speed Crystal (HXT) Oscillator  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Oscillator frequency  
Temperature  
fHXT  
4
-40  
-
-
-
24  
MHz  
C  
VDD = 2.5 ~ 5.5V  
THXT  
+105  
TBD  
0.4  
-
-
mA  
mA  
VDD = 5.5V @ 12MHz  
VDD = 3.3V @ 12MHz  
Operating current  
IHXT  
-
8.3.2.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
20pF  
R1  
4MHz ~ 24 MHz  
20pF  
without  
Aug. 08, 2018  
Page 120 of 140  
Rev 1.04  
NUC126  
XT_OUT  
XT_IN  
R1  
C1  
C2  
Figure 8.3-1 Typical Crystal Application Circuit  
8.3.3  
External 32.768 kHz Low Speed Crystal (LXT) Input Clock  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Clock High Time  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
nS  
nS  
nS  
nS  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
-
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
-
TBD  
TBD  
LXT Input Pin Input High Xin_VIH  
Voltage  
V
V
0.7VLDO  
0
-
-
VLDO  
LXT Input Pin Input Low Xin_VIL  
Voltage  
0.3VLDO  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
Xin_VIH  
Xin_VIL  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
Aug. 08, 2018  
Page 121 of 140  
Rev 1.04  
 
NUC126  
8.3.4  
External 32.768 kHz Low Speed Crystal (LXT) Input Clock  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN.  
-
TYP. MAX. UNIT  
Oscillator frequency  
Temperature  
fLXT  
TLXT  
ILXT  
32.768  
-
kHz  
VDD = VBAT = 2.5 ~ 5.5V  
-40  
-
+105 C  
A  
Operating current  
0.7  
VDD = VBAT = 2.5 ~ 5.5V  
8.3.4.1 Typical Crystal Application Circuits  
CRYSTAL  
C3  
20pF  
C4  
20pF  
R2  
32.768 kHz  
without  
XT_OUT  
XT_IN  
R2  
C3  
C4  
Figure 8.3-2 Typical Crystal Application Circuit  
Aug. 08, 2018  
Page 122 of 140  
Rev 1.04  
NUC126  
8.3.5  
Internal 48 MHz High Speed RC Oscillator (HIRC48)  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Center Frequency  
-
48  
-
-
MHz  
%
TA = 25C, VDD = 3.3V  
TA = 25C,  
-1  
+1  
VDD = 2.5 ~ 5.5V  
TA = -40C ~ +105 C,  
fHRC  
-2  
-
+2  
%
Calibrated Internal  
Oscillator Frequency  
VDD = 2.5 ~ 5.5V  
TA = -40C ~ +105 C,  
VDD = 2.5 ~ 5.5V  
-0.25  
-
-
+0.25  
-
%
Auto trimmed by LXT  
Operating current  
IHRC  
440  
A  
8.3.6  
Internal 22.1184 MHz High Speed RC Oscillator (HIRC)  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
22.11  
84  
Center Frequency  
-
-
MHz  
%
TA = 25C, VDD = 3.3V  
TA = 25C,  
-1  
-2  
-
+1  
+2  
VDD = 2.5 ~ 5.5V  
fHRC  
-40C ~ +105 C,  
-
%
Calibrated Internal  
Oscillator Frequency  
VDD = 2.5 ~ 5.5V  
-40C ~ +105 C,  
VDD = 2.5 ~ 5.5V  
-0.25  
-
-
+0.25  
-
%
Auto trimmed by LXT  
Operating current  
IHRC  
470  
A  
8.3.7  
Internal 10 kHz Low Speed RC Oscillator (LIRC)  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Center Frequency  
Calibrated  
-
10  
-
-
kHz  
%
TA = 25C, VDD = 3.3V  
FLRC  
TA = 25 C,  
Internal  
-30  
+30  
Oscillator Frequency  
VDD = 2.5 ~ 5.5V  
Aug. 08, 2018  
Page 123 of 140  
Rev 1.04  
NUC126  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
-40C ~+105 C,  
-50  
-
+50  
%
VDD = 2.5 ~ 5.5V  
Operating current  
ILRC  
0.9  
A  
Aug. 08, 2018  
Page 124 of 140  
Rev 1.04  
NUC126  
8.4 Analog Characteristics  
8.4.1  
LDO  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Temperature  
TA  
-40  
2.5  
+105  
5.5  
oC  
-
-
DC Power Supply  
Output Voltage  
VDD  
VLDO  
V
V
1.62  
1.8  
1.98  
Note 1: It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS  
pin of the device.  
Note 2: For ensuring power stability, a 1μF Capacitor must be connected between LDO_CAP pin  
and the closest VSS pin of the device.  
8.4.2  
Temperature Sensor  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Detection Temperature  
Gain  
TDET  
VTG  
-40  
-1.76  
-
+105  
-1.64 mV/ oC  
oC  
-
-1.70  
745  
-
Offset  
VTO  
-
mV Temperature at 0 oC  
A  
Operating current  
ITEMP  
6.4  
10.5  
Note 1: The temperature sensor formula for the output voltage (Vtemp) is as below equation.  
Vtemp (mV) = Gain (mV/) x Temperature () + Offset (mV)  
8.4.3 Internal Voltage Reference (Int_VREF  
)
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
VREF (2.048V)  
VREF1  
VREF2  
1.986  
2.483  
2.98  
3.973  
-
2.151  
2.637  
3.164  
4.219  
2000  
-
V
V
VREFCTL = 3, AVDD≥2.5V  
VREFCTL = 3, AVDD≥2.9V  
VREFCTL = 3, AVDD3.4V  
VREFCTL = 3, AVDD4.5V  
CVREF = 4.7uF  
VREF (2.56V)  
-
-
VREF (3.072V)  
VREF (4.096V)  
Start-up Time  
Operating current  
VREF3  
V
VREF4  
-
V
TVREF_Start  
IVREF  
uS  
A  
700  
100  
Aug. 08, 2018  
Page 125 of 140  
Rev 1.04  
NUC126  
8.4.4  
Power-on Reset  
PARAMETER  
SPECIFICATIONS  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Temperature  
Threshold Voltage  
TA  
-40  
-
+105  
-
oC  
-
VPOR  
V
2
8.4.5  
Low-Voltage Reset  
SPECIFICATIONS  
MIN. TYP. MAX. UNIT  
PARAMETER  
SYM.  
TEST CONDITION  
Temperature  
TA  
-40  
2.0  
1.8  
1.75  
-
+105  
2.45  
2.2  
2.2  
-
oC  
-
TA = +105  
V
2.2  
2.0  
1.95  
130  
1.1  
TA = +25℃  
TA = -40 ℃  
TA = +25℃  
Threshold Voltage  
VLVR  
V
V
Start-up Time  
TLVR_Start  
ILVR  
uS  
uA  
Quiescent Current  
AVDD = 5.5V  
-
-
8.4.6  
Brown-out Detector  
SPECIFICATIONS  
MIN. TYP. MAX. UNIT  
PARAMETER  
SYM.  
TEST CONDITION  
Temperature  
TA  
-40  
4.2  
3.5  
2.55  
2.05  
4.3  
3.6  
2.6  
2.1  
-
+105  
4.6  
3.9  
2.85  
2.35  
4.7  
4.0  
2.9  
2.4  
-
oC  
-
V
BODVL [1:0] = 11  
BODVL [1:0] = 10  
BODVL [1:0] = 01  
BODVL [1:0] = 00  
BODVL [1:0] = 11  
BODVL [1:0] = 10  
BODVL [1:0] = 01  
BODVL [1:0] = 00  
TA = +25℃  
4.4  
V
3.7  
Brown-out Voltage  
(Falling edge)  
VBODF  
V
2.7  
V
2.2  
V
4.5  
V
3.8  
Brown-out Voltage  
(Rising edge)  
VBODR  
V
2.75  
2.25  
1030  
V
Start-up Time  
TBOD_Start  
uS  
TA = +25, AVDD = 5.5V  
Quiescent Current  
IBOD  
uA  
83  
-
BODLPM = 0  
Aug. 08, 2018  
Page 126 of 140  
Rev 1.04  
 
 
NUC126  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
TA = +25, AVDD = 5.5V  
uA  
0.7  
BODLPM = 1  
8.4.7  
12-bit ADC  
SPECIFICATIONS  
PARAMETER  
SYM.  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Temperature  
TA  
AVDD  
VREF  
VIN  
-40  
3.0  
3.0  
0
+105  
5.5  
oC  
-
-
Operating voltage  
Reference voltage  
ADC input voltage  
Resolution  
V
AVDD = VDD  
V
AVDD  
AVREF  
V
-
12  
+1.5  
+1.5  
-2  
RADC  
INL  
Bit  
Integral Non-Linearity Error  
Differential Non-Linearity  
Gain error  
LSB  
LSB  
LSB  
LSB  
LSB  
-
-2  
-1  
-4  
-4  
-4  
+2  
+2  
+4  
+4  
+4  
DNL  
EG  
Offset error  
EOFFSET  
EABS  
-
2
Absolute error  
-
Monotonic  
Guaranteed  
ADC Clock frequency  
FADC  
MHz  
1
2
16  
21  
Acquisition Time (Sample  
Stage)  
TACQ  
1/FADC Default: 7 (1/FADC)  
7
TCONV = TACQ + 13  
1/FADC  
Conversion time  
TCONV  
15  
-
20  
34  
Default: 20 (1/FADC)  
Conversion Rate  
TCONV = 20 clock  
kSPS  
FSPS  
-
800  
FADC = 16 MHz  
(FADC/TCONV  
)
Internal Capacitance[1]  
Input Load[1]  
CIN  
RIN  
pF  
-
-
TBD  
TBD  
-
-
kΩ  
AVDD = VDD = 5V  
mA  
Operating current  
IADC1  
-
4
-
ADC Clock Rate = 16 MHz  
Note 1: Design by guarantee, no test in production.  
Aug. 08, 2018  
Page 127 of 140  
Rev 1.04  
NUC126  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer  
curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and  
gain error from the actual transfer curve.  
Typical connection diagram using the ADC  
VDD  
(1)  
RIN  
12-bit  
Converter  
AINx  
(1)  
CIN  
Note: GND < AINX <VREF < VDD  
Aug. 08, 2018  
Page 128 of 140  
Rev 1.04  
NUC126  
8.4.8 Analog Comparator  
PARAMETER SYM.  
SPECIFICATIONS  
TEST CONDITION  
MIN. TYP. MAX. UNIT  
Temperature  
TA  
-40  
0.1  
+105  
oC  
-
-
AVDD  
-
Input Common Mode Range  
VCOM  
V
0.1  
Input Offset Voltage  
Hysteresis  
VOFF  
VHYS  
-
-
10  
60  
-
-
mV  
mV  
dB  
nS  
uS  
uA  
V
HYSEN = 0  
10  
40  
HYSEN = 1, VCM = AVDD/2  
DC Gain[1005D  
70  
Propagation Delay  
Stable time  
TPGD  
TSTB  
ICMP  
VREF  
VIN  
125  
0.35  
35  
200  
1
VCM = 1.2 V, VDIFF = 0.1 V  
AVDD = 5V  
Operation Current  
Reference voltage  
ADC input voltage  
70  
3.0  
0
AVDD  
AVREF  
V
-
Note1: Guaranteed by design, not tested in production.  
Aug. 08, 2018  
Page 129 of 140  
Rev 1.04  
NUC126  
8.4.9  
USB PHY  
8.4.9.1 Low-full-Speed DC Electrical Specifications  
Symbol  
VIH  
Parameter  
Input High (driven)  
Min.  
2.0  
-
Typ.  
Max.  
Unit  
V
Test Conditions  
-
-
-
-
0.8  
-
-
VIL  
Input Low  
V
-
VDI  
Differential Input Sensitivity  
0.2  
V
|PADP-PADM|  
Differential  
VCM  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Includes VDI range  
-
Common-mode Range  
Single-ended  
Threshold  
Receiver  
VSE  
Receiver Hysteresis  
Output Low (driven)  
Output High (driven)  
Output Signal Cross Voltage  
Pull-up Resistor  
-
200  
-
mV  
V
-
-
-
-
-
VOL  
VOH  
VCRS  
RPU  
RPD  
0
-
-
-
-
-
0.3  
2.8  
3.6  
V
1.3  
2.0  
V
1.425  
14.25  
1.575  
15.75  
kΩ  
kΩ  
Pull-down Resistor  
TERMINATION  
Voltage  
for  
VTRM  
3.0  
-
3.6  
V
Uptream port pull up (RPU)  
Driver Output Resistance  
Transceiver Capacitance  
ZDRV  
CIN  
-
-
10  
-
-
Ω
Steady state drive*  
Pin to GND  
20  
pF  
*Driver output resistance doesn’t include series resistor resistance.  
8.4.9.2 USB Full-Speed Driver Electrical Characteristics  
Symbol  
TFR  
Parameter  
Min.  
4
Typ.  
Max.  
20  
Unit  
ns  
Test Conditions  
CL=50p  
Rise Time  
Fall Time  
-
-
-
TFF  
4
20  
ns  
CL=50p  
TFRFF  
Rise and Fall Time Matching  
90  
111.11  
%
TFRFF=TFR/TFF  
8.4.9.3 USB LDO Specification  
Symbol  
VBUS  
Parameter  
VBUS Pin Input Voltage  
LDO Output Voltage  
Min.  
4.0  
3.0  
-
Typ.  
5.0  
Max.  
5.5  
3.6  
-
Unit  
Test Conditions  
V
V
-
-
-
VDD33  
Cbp  
3.3  
External Bypass Capacitor  
1.0  
uF  
Aug. 08, 2018  
Page 130 of 140  
Rev 1.04  
NUC126  
8.5 Flash DC Electrical Characteris  
Symbol  
Parameter  
Supply Voltage  
Endurance  
Min  
Typ  
Max  
1.98  
-
Unit  
V
Test Condition  
[1]  
VFLA  
1.62  
1.8  
cycles[2]  
year  
mS  
NENDUR  
TRET  
20,000  
-
-
-
-
-
-
-
-
Data Retention  
Page Erase Time  
Mass Erase Time  
Program Time  
Read Current  
100  
20  
20  
20  
-
-
TERASE  
TMER  
TPROG  
IDD1  
40  
mS  
TA = 25℃  
40  
uS  
40  
mA  
TBD  
TBD  
TBD  
IDD2  
Program Current  
Erase Current  
mA  
-
IDD3  
uA  
-
Note 1: VFLA is source from chip LDO output voltage.  
Note 2: Number of program/erase cycles.  
Note 3: This table is guaranteed by design, not test in production.  
Aug. 08, 2018  
Page 131 of 140  
Rev 1.04  
NUC126  
8.6 I2C Dynamic Characteristics  
Standard Mode[1][2]  
Fast Mode[1][2]  
Symbol  
Parameter  
Unit  
Min.  
4.7  
Max.  
-
Min.  
1.2  
Max.  
tLOW  
tHIGH  
SCL low period  
SCL high period  
-
uS  
uS  
uS  
uS  
uS  
uS  
nS  
uS  
nS  
nS  
pF  
4
4.7  
4
-
0.6  
-
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
-
1.2  
-
-
-
-
0.6  
4
0.6  
-
4.7[3]  
250  
0[4]  
-
-
1.2[3]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
100  
-
Data hold time  
3.45[5]  
1000  
300  
400  
0[4]  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
tf  
SCL/SDA fall time  
-
-
-
Cb  
Capacitive load for each bus line  
-
Notes:  
1. Guaranteed by design, not tested in production.  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must  
be higher than 8 MHz to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to  
bridge the undefined region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch  
the low period of SCL signal.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.6-1 I2C Timing Diagram  
Aug. 08, 2018  
Page 132 of 140  
Rev 1.04  
NUC126  
8.7 SPI Dynamic Characteristics  
8.7.1 Dynamic Characteristics of Data Input and Output Pin  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
SPI MASTER MODE (VDD = 4.5 V~5.5V, 30 PF LOADING CAPACITOR)  
tDS  
tDH  
tV  
Data setup time  
4
0
-
2
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
7
11  
SPI MASTER MODE (VDD = 3.0~3.6 V, 30 PF LOADING CAPACITOR)  
tDS  
tDH  
tV  
Data setup time  
5
0
-
3
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
13  
18  
CLKP=0  
CLKP=1  
SPICLK  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8.7-1 SPI Master Mode Timing Diagram  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
SPI SLAVE MODE (VDD = 4.5 V~5.5V, 30 PF LOADING CAPACITOR)  
tDS  
tDH  
tV  
Data setup time  
0
-
-
ns  
ns  
ns  
Data hold time  
2*PCLK+4  
-
-
-
Data output valid time  
2*PCLK+11  
2*PCLK+19  
SPI SLAVE MODE (VDD = 3.0 V ~ 3.6 V, 30 PF LOADING CAPACITOR)  
tDS  
Data setup time  
0
-
-
ns  
Aug. 08, 2018  
Page 133 of 140  
Rev 1.04  
NUC126  
tDH  
tV  
Data hold time  
2*PCLK+6  
-
-
-
ns  
ns  
Data output valid time  
2*PCLK+19  
2*PCLK+25  
CLKP=0  
CLKP=1  
SPICLK  
tDS  
tDH  
Data Valid  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tv  
Data Valid  
tDS  
tDH  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tv  
Data Valid  
Figure 8.7-2 SPI Slave Mode Timing Diagram  
Aug. 08, 2018  
Page 134 of 140  
Rev 1.04  
NUC126  
9 PACKAGE DIMENSIONS  
9.1 LQFP 100L (14x14x1.4 mm footprint 2.0 mm)  
Aug. 08, 2018  
Page 135 of 140  
Rev 1.04  
NUC126  
9.2 LQFP 64L (7x7x1.4 mm footprint 2.0 mm)  
Aug. 08, 2018  
Page 136 of 140  
Rev 1.04  
NUC126  
9.3 LQFP 48L (7x7x1.4 mm Footprint 2.0 mm)  
H
36  
25  
37  
24  
H
13  
48  
12  
1
Controlling dimension  
:
Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
Min Nom Max Min Nom Max  
A
1
0.002 0.004 0.006 0.05  
0.053 0.055 0.057 1.35  
0.10 0.15  
A
2
1.40  
1.45  
0.25  
0.20  
7.10  
7.10  
0.65  
9.10  
A
0.006  
0.004  
0.008 0.010 0.15 0.20  
b
c
D
0.006  
0.10 0.15  
0.008  
7.00  
7.00  
6.90  
6.90  
0.35  
0.272 0.276 0.280  
0.272 0.276 0.280  
E
0.020  
0.354  
0.354  
0.014  
0.350  
0.350  
0.018  
0.026  
0.50  
e
H
D
0.358 8.90 9.00  
0.358 8.90 9.00  
9.10  
0.60 0.75  
1.00  
E
H
0.024 0.030  
0.45  
0
L
L
Y
0.039  
0.004  
7
1
0.10  
7
0
0
Aug. 08, 2018  
Page 137 of 140  
Rev 1.04  
NUC126  
9.4  
QFN 48L (7x7x0.8 mm)  
Aug. 08, 2018  
Page 138 of 140  
Rev 1.04  
 
NUC126  
10 REVISION HISTORY  
Date  
Revision  
Description  
2017.05.05  
1.00  
1. Preliminary version  
1. Revised part number in section 4.1.2  
2017.07.13  
2017.09.14  
2017.12.15  
1.01  
1.02  
1.03  
2. Revised the range of Xin_VIH and Xin_VIL in section 8.3.3  
1. Revised IPWD4, MIN sink current/source current in section 8.2  
2. Revised LVR in section 8.4.5  
3. Revised BOD in section 8.4.6  
1. Revised HIRC trim description in section 6.2.8  
2. Revised Clock Output description in section 6.3.5  
1. Revised VDDIO description in section 1.1 and 4.1.2.  
2. Revised Timer/PWM PWM mode description in section 2.1.  
3. Revised VBAT description in section 4.1.2.  
2018.08.08  
1.04  
4. Added NUC126 QFN48 information in section 2.1, 4.1, 4.2 and 9.4.  
Aug. 08, 2018  
Page 139 of 140  
Rev 1.04  
NUC126  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Aug. 08, 2018  
Page 140 of 140  
Rev 1.04  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY