NUC1311-LD2AE [NUVOTON]

Arm® Cortex®-M 32-bit Microcontroller;
NUC1311-LD2AE
型号: NUC1311-LD2AE
厂家: NUVOTON    NUVOTON
描述:

Arm® Cortex®-M 32-bit Microcontroller

微控制器
文件: 总67页 (文件大小:1368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NUC1311  
Arm® Cortex® -M  
32-bit Microcontroller  
NuMicro® Family  
NUC1311 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Apr. 07, 2020  
Page 1 of 67  
Rev 1.00  
NUC1311  
TABLE OF CONTENTS  
1 GENERAL DESCRIPTION.....................................................................................7  
2 FEATURES ............................................................................................................8  
3 ABBREVIATIONS ................................................................................................11  
4 PARTS INFORMATION LIST AND PIN CONFIGURATION................................12  
4.1 NuMicro® NUC1311 Series Selection Code .................................................12  
4.2 NuMicro® NUC1311 Selection Guide .........................................................13  
4.3 Pin Configuration .................................................................................14  
4.3.1 NuMicro® NUC1311 Pin Diagram ...................................................................14  
4.4 Pin Description....................................................................................15  
4.4.1 NuMicro® NUC1311 Pin Description................................................................15  
5 BLOCK DIAGRAM...............................................................................................19  
5.1 NuMicro® NUC1311 Block Diagram...........................................................19  
6 FUNCTIONAL DESCRIPTION.............................................................................20  
6.1 Arm® Cortex® -M0 Core ..........................................................................20  
6.2 System Manager .................................................................................22  
6.2.1 Overview ................................................................................................22  
6.2.2 System Reset ..........................................................................................22  
6.2.3 System Power Distribution ...........................................................................23  
6.2.4 System Timer (SysTick) ..............................................................................24  
6.2.5 Nested Vectored Interrupt Controller (NVIC)......................................................25  
6.2.6 System Control.........................................................................................29  
6.3 Clock Controller...................................................................................29  
6.3.1 Overview ................................................................................................29  
6.3.2 System Clock and SysTick Clock ...................................................................32  
6.3.3 Power-down Mode Clock.............................................................................33  
6.3.4 Frequency Divider Output ............................................................................33  
6.4 Flash Memory Controller (FMC) ...............................................................35  
6.4.1 Overview ................................................................................................35  
6.4.2 Features.................................................................................................35  
6.5 General Purpose I/O (GPIO) ...................................................................36  
6.5.1 Overview ................................................................................................36  
6.5.2 Features.................................................................................................36  
6.6 Timer Controller (TIMER) .......................................................................37  
Apr. 07, 2020  
Page 2 of 67  
Rev 1.00  
NUC1311  
6.6.1 Overview ................................................................................................37  
6.6.2 Features.................................................................................................37  
6.7 PWM Generator and Capture Timer (PWM).................................................38  
6.7.1 Overview ................................................................................................38  
6.7.2 Features.................................................................................................38  
6.8 Watchdog Timer (WDT) .........................................................................40  
6.8.1 Overview ................................................................................................40  
6.8.2 Features.................................................................................................40  
6.9 Window Watchdog Timer (WWDT)............................................................41  
6.9.1 Overview ................................................................................................41  
6.9.2 Features.................................................................................................41  
6.10UART Interface Controller (UART) ............................................................42  
6.10.1 Overview ................................................................................................42  
6.10.2 Features.................................................................................................42  
6.11I2C Serial Interface Controller (I2C)............................................................43  
6.11.1 Overview ................................................................................................43  
6.11.2 Features.................................................................................................43  
6.12Serial Peripheral Interface (SPI) ...............................................................44  
6.12.1 Overview ................................................................................................44  
6.12.2 Features.................................................................................................44  
6.13Controller Area Network (CAN) ................................................................45  
6.13.1 Overview ................................................................................................45  
6.13.2 Features.................................................................................................45  
6.14Analog-to-Digital Converter (ADC) ............................................................46  
6.14.1 Overview ................................................................................................46  
6.14.2 Features.................................................................................................46  
7 APPLICATION CIRCUIT......................................................................................47  
8 ELECTRICAL CHARACTERISTICS....................................................................48  
8.1 Absolute Maximum Ratings.....................................................................48  
8.2 DC Electrical Characteristics ...................................................................49  
8.3 AC Electrical Characteristics ...................................................................53  
8.3.1 External 4~24 MHz High Speed Clock Input Signal Characteristics ..........................53  
8.3.2 External 4~24 MHz High Speed Crystal ...........................................................54  
8.3.3 Internal 22.1184 MHz High Speed Oscillator .....................................................56  
Apr. 07, 2020  
Page 3 of 67  
Rev 1.00  
NUC1311  
8.3.4 Internal 10 kHz Low Speed Oscillator ..............................................................57  
8.4 Analog Characteristics...........................................................................58  
8.4.1 12-bit SARADC Specification........................................................................58  
8.4.2 LDO and Power Management Specification ......................................................59  
8.4.3 Low Voltage Reset Specification....................................................................60  
8.4.4 Brown-out Detector Specification ...................................................................60  
8.4.5 Power-on Reset Specification .......................................................................60  
8.5 Flash DC Electrical Characteristics............................................................61  
8.6 I2C Dynamic Characteristics....................................................................62  
8.7 SPI Dynamic Characteristics ...................................................................63  
9 PACKAGE DIMENSIONS ....................................................................................65  
9.1 48-pin LQFP (7x7x1.4 mm footprint 2.0 mm) ................................................65  
10REVISION HISTORY............................................................................................66  
Apr. 07, 2020  
Page 4 of 67  
Rev 1.00  
NUC1311  
List of Figures  
Figure 4.1-1 NuMicro® NUC1311 Series Selection Code............................................................. 12  
Figure 4.3-1 NuMicro® NUC1311LxxAE LQFP 48-pin Diagram .................................................... 14  
Figure 5.1-1 NuMicro® NUC1311 Block Diagram .......................................................................... 19  
Figure 6.1-1 Functional Controller Diagram................................................................................... 20  
Figure 6.2-1 NuMicro® NUC1311 Power Distribution Diagram...................................................... 23  
Figure 6.3-1 Clock Generator Block Diagram................................................................................ 30  
Figure 6.3-2 Clock Generator Global View Diagram...................................................................... 31  
Figure 6.3-3 System Clock Block Diagram .................................................................................... 32  
Figure 6.3-4 SysTick Clock Control Block Diagram....................................................................... 32  
Figure 6.3-5 Clock Source of Frequency Divider........................................................................... 33  
Figure 6.3-6 Frequency Divider Block Diagram............................................................................. 34  
Figure 8.3-1 Typical Crystal Application Circuit ............................................................................. 55  
Figure 8.3-2 HIRC Accuracy vs. Temperature............................................................................... 56  
Figure 8.4-3 Power-up Ramp Condition ........................................................................................ 61  
Figure 8.6-1 I2C Timing Diagram ................................................................................................... 62  
Figure 8.7-1 SPI Master Mode Timing Diagram ............................................................................ 63  
Figure 8.7-2 SPI Slave Mode Timing Diagram .............................................................................. 64  
Apr. 07, 2020  
Page 5 of 67  
Rev 1.00  
NUC1311  
List of Tables  
Table 3-1 List of Abbreviations....................................................................................................... 11  
Table 6.2-1 Exception Model ......................................................................................................... 26  
Table 6.2-2 System Interrupt Map ................................................................................................. 27  
Table 6.2-3 Vector Table Format................................................................................................... 28  
Apr. 07, 2020  
Page 6 of 67  
Rev 1.00  
NUC1311  
1
GENERAL DESCRIPTION  
The NuMicro® NUC1311 series is embedded with the Cortex® -M0 core running up to 50 MHz and  
features 36/68 KB Flash, 8 KB SRAM, and 4 KB loader ROM for the ISP. It is also equipped with  
plenty of peripheral devices, such as Timers, Watchdog Timer (WDT), Window Watchdog Timer  
(WWDT), UART, SPI, I2C, PWM, GPIO, built-in Controller Area Network (CAN) 2.0 interface, 760  
kSPS high speed 12-bit ADC, Low Voltage Reset Controller and Brown-out Detector.  
Apr. 07, 2020  
Page 7 of 67  
Rev 1.00  
NUC1311  
2
FEATURES  
Arm® Cortex® -M0 core  
Runs up to 50 MHz  
One 24-bit system timer  
Supports low power sleep mode  
Single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Serial Wire Debug supports with 2 watchpoints/4 breakpoints  
Built-in LDO for wide operating voltage ranged from 2.5 V to 5.5 V  
Flash Memory  
36/68 KB Flash for program code  
Configurable Flash memory for data memory (Data Flash), 4 KB flash for ISP loader  
Supports In-System-Program (ISP) and In-Application-Program (IAP) application code  
update  
512 byte page erase for Flash  
Supports 2-wired ICP update through SWD/ICE interface  
Supports fast parallel programming mode by external programmer  
SRAM Memory  
8 KB SRAM  
Clock Control  
Flexible selection for different applications  
Built-in 22.1184 MHz high speed oscillator for system operation  
Trimmed to ±1 % at +25 C and VDD = 5 V  
Trimmed to ±2 % at -40 C ~ +105C and VDD = 2.5 V ~ 5.5 V  
Built-in 10 kHz low speed oscillator for Watchdog Timer and Wake-up operation  
Supports one PLL, output frequency up to 200 MHz, PWM clock frequency up to 100 MHz,  
and System operation frequency up to 50 MHz  
External 4~24 MHz high speed crystal input for precise timing operation  
GPIO  
Four I/O modes:  
Quasi-bidirectional  
Push-pull output  
Open-drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable  
I/O pin configured as interrupt source with edge/level setting  
Timer  
Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle and continuous counting operation modes  
Supports event counting function  
Supports input capture function  
Watchdog Timer  
Multiple clock sources  
System clock (HCLK)  
Internal 10 kHz oscillator (LIRC)  
8 selectable time-out period from 1.6 ms ~ 26.0 sec (depending on clock source)  
Wake-up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
Window Watchdog Timer  
6-bit down counter with 11-bit prescale for wide range window selected  
PWM/Capture  
Supports maximum clock frequency up to 100 MHz  
Supports up to two PWM modules, each module provides three 16-bit timers and 6 output  
Apr. 07, 2020  
Page 8 of 67  
Rev 1.00  
NUC1311  
channels  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 3 complementary paired PWM output channel  
Dead-time insertion with 12-bit resolution  
Two compared values during one period  
Supports 12-bit pre-scalar from 1 to 4096  
Supports 16-bit resolution PWM counter  
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
Brake source from pin and system safety events (clock failed, Brown-out detection and  
CPU lockup)  
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake interrupt cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
PWM counter match zero, period value or compared value  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM counter match zero, period value or compared value  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising edges, falling edges or both edges capture condition  
Supports input rising edges, falling edges or both edges capture interrupt  
Supports rising edges, falling edges or both edges capture with counter reload option  
UART  
Up to 4 UART controllers  
UART0 and UART1 ports with flow control (TXD, RXD, nCTS and nRTS)  
UART0, UART1 and UART2 with 16-byte FIFO for standard device  
Supports IrDA (SIR) and LIN function  
Supports RS-485 9-bit mode and direction control  
Supports auto baud-rate generator  
SPI  
One set of SPI controller  
Supports SPI Master/Slave mode  
Full duplex synchronous serial data transfer  
Variable length of transfer data from 8 to 32 bits  
MSB or LSB first data transfer  
Rx and Tx on both rising or falling edge of serial clock independently  
Supports Byte Suspend mode in 32-bit transmission  
Supports three wire, no slave select signal, bi-direction interface  
I2C  
One set of I2C devices  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data on  
the bus  
Serial clock synchronization allowing devices with different bit rates to communicate via one  
serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and resume serial  
transfer  
Programmable clocks allowing for versatile rate control  
Supports multiple address recognition (four slave address with mask option)  
Supports wake-up function  
Apr. 07, 2020  
Page 9 of 67  
Rev 1.00  
NUC1311  
CAN 2.0  
One set of CAN device  
Supports CAN protocol version 2.0 part A and B  
Bit rates up to 1M bit/s  
32 Message Objects  
Each Message Object has its own identifier mask  
Programmable FIFO mode (concatenation of Message Object)  
Maskable interrupt  
Disabled Automatic Re-transmission mode for Time Triggered CAN applications  
Support power-down wake-up function  
ADC  
12-bit SAR ADC with 760 kSPS  
Up to 8-ch single-end input or 4-ch differential input  
Single scan/single cycle scan/continuous scan  
Each channel with individual result register  
Scan on enabled channels  
Threshold voltage detection  
Conversion started by software programming or external input  
96-bit unique ID (UID)  
128-bit unique customer ID(UCID)  
Brown-out Detector  
With 4 levels: 4.4 V/3.7 V/2.7 V/2.2 V  
Supports Brown-out Interrupt and Reset option  
Low Voltage Reset  
Threshold voltage level: 2.0 V  
Operating Temperature: -40C ~ +105C  
Packages:  
All Green package (RoHS)  
LQFP 48-pin (7mm x 7mm)  
Apr. 07, 2020  
Page 10 of 67  
Rev 1.00  
NUC1311  
3
ABBREVIATIONS  
Acronym  
Description  
ADC  
APB  
Analog-to-Digital Converter  
Advanced Peripheral Bus  
Advanced High-Performance Bus  
Brown-out Detection  
AHB  
BOD  
BPWM  
CAN  
DAP  
FIFO  
FMC  
GPIO  
HCLK  
HIRC  
HXT  
Basic Pulse Width Modulation  
Controller Area Network  
Debug Access Port  
First In, First Out  
Flash Memory Controller  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
22.1184 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
IAP  
ICP  
ISP  
In System Programming  
LDO  
LIN  
Low Dropout Regulator  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Phase-Locked Loop  
PWM  
SPI  
Pulse Width Modulation  
Serial Peripheral Interface  
Samples per Second  
SPS  
TMR  
UART  
UCID  
WDT  
WWDT  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Watchdog Timer  
Window Watchdog Timer  
Table 3-1 List of Abbreviations  
Apr. 07, 2020  
Page 11 of 67  
Rev 1.00  
NUC1311  
4
PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® NUC1311 Series Selection Code  
NUC1311- X X X X E  
CPU core  
ARM Cortex M0  
Temperature  
E : -40°C ~ +105°C  
Package Type  
Version  
L : LQFP 48 (7x7)  
A : Version  
Flash ROM  
SRAM Size  
D : 68 KB Flash ROM  
C : 32 KB Flash ROM  
2 : 8 KB SRAM  
Figure 4.1-1 NuMicro® NUC1311 Series Selection Code  
Apr. 07, 2020  
Page 12 of 67  
Rev 1.00  
NUC1311  
4.2 NuMicro® NUC1311 Selection Guide  
Connectivity  
NUC1311LC2AE  
NUC1311LD2AE  
36  
68  
8
8
Configurable  
Configurable  
4
4
42  
42  
4
4
4
4
1
1
1
1
1
1
12  
12  
8 ch  
8 ch  
LQFP48  
LQFP48  
Apr. 07, 2020  
Page 13 of 67  
Rev 1.00  
NUC1311  
4.3 Pin Configuration  
4.3.1 NuMicro® NUC1311 Pin Diagram  
4.3.1.1 NuMicro® NUC1311LxxAE LQFP 48 pin  
UART3_RXD/ADC_CH5/PA.5  
UART3_TXD/ADC_CH6/PA.6  
Vref/ADC_CH7/PA.7  
AVDD  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PC.0/SPI0_SS0  
PC.1/SPI0_CLK  
PC.2/SPI0_MISO0  
PC.3/SPI0_MOSI0  
PD.15/UART2_TXD  
PD.14/UART2_RXD  
PD.7/CAN0_TXD  
PD.6/CAN0_RXD  
PWM0_BRAKE1/I2C0_SCL/PC.7  
PWM0_BRAKE0/I2C0_SDA/PC.6  
TM0/TM0_EXT/INT1/PB.15  
XT1_OUT/PF.0  
NUC1311LxxAE  
LQFP 48-pin  
PB.3/UART0_nCTS/TM3_EXT/TM3/PWM1_BRAKE0  
PB.2/UART0_nRTS/TM2_EXT/TM2/PWM1_BRAKE1  
PB.1/UART0_TXD  
XT1_IN/PF.1  
nRESET  
CLKO/PF.8  
CLKO/TM0/STADC/PB.8  
PB.0/UART0_RXD  
Figure 4.3-1 NuMicro® NUC1311LxxAE LQFP 48-pin Diagram  
Apr. 07, 2020  
Page 14 of 67  
Rev 1.00  
NUC1311  
4.4 Pin Description  
4.4.1 NuMicro® NUC1311 Pin Description  
Pin No.  
Pin Name  
Pin Type  
Description  
LQFP  
48-pin  
PB.12  
I/O  
O
General purpose digital I/O pin.  
Frequency divider clock output pin.  
General purpose digital I/O pin.  
I2C0 clock pin.  
1
2
CLKO  
PF.5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I2C0_SCL  
PWM1_CH5  
PF.4  
PWM1 CH5 output/Capture input.  
General purpose digital I/O pin.  
I2C0 data input/output pin.  
3
I2C0_SDA  
PWM1_CH4  
PA.11  
PWM1 CH4 output/Capture input.  
General purpose digital I/O pin.  
PWM1 CH3 output/Capture input.  
General purpose digital I/O pin.  
PWM1 CH2 output/Capture input.  
General purpose digital I/O pin.  
I2C0 clock pin.  
4
5
PWM1_CH3  
PA.10  
PWM1_CH2  
PA.9  
6
7
I2C0_SCL  
UART1_nCTS  
PA.8  
Clear to Send input pin for UART1.  
General purpose digital I/O pin.  
I2C0 data input/output pin.  
I/O  
I/O  
O
I2C0_SDA  
UART1_nRTS  
PB.4  
Request to Send output pin for UART1.  
General purpose digital I/O pin.  
Data receiver input pin for UART1.  
General purpose digital I/O pin.  
Data transmitter output pin for UART1.  
LDO output pin.  
I/O  
I
8
9
UART1_RXD  
PB.5  
I/O  
O
UART1_TXD  
LDO_CAP  
VDD  
10  
11  
12  
P
P
Power supply for I/O ports and LDO source for internal PLL and digital circuit.  
Ground pin for digital circuit.  
VSS  
P
PB.0  
I/O  
I
General purpose digital I/O pin.  
13  
14  
UART0_RXD  
PB.1  
Data receiver input pin for UART0.  
I/O  
O
General purpose digital I/O pin.  
UART0_TXD  
Data transmitter output pin for UART0.  
Apr. 07, 2020  
Page 15 of 67  
Rev 1.00  
NUC1311  
Pin No.  
Pin Name  
Pin Type  
Description  
LQFP  
48-pin  
PB.2  
I/O  
General purpose digital I/O pin.  
Request to Send output pin for UART0.  
Timer2 external capture input pin.  
Timer2 toggle output pin.  
UART0_nRTS  
TM2_EXT  
TM2  
O
I
O
I
15  
PWM1_BRAKE1  
PB.3  
PWM1 brake input pin.  
I/O  
I
General purpose digital I/O pin.  
Clear to Send input pin for UART0.  
Timer3 external capture input pin.  
UART0_nCTS  
TM3_EXT  
I
16  
TM3  
O
Timer3 toggle output pin.  
PWM1_BRAKE0  
PD.6  
I
PWM1 brake input pin.  
I/O  
I
General purpose digital I/O pin.  
Data receiver input pin for CAN0.  
General purpose digital I/O pin.  
Data transmitter output pin for CAN0.  
17  
18  
CAN0_RXD  
PD.7  
I/O  
O
CAN0_TXD  
PD.14  
I/O  
I
General purpose digital I/O pin.  
19  
UART2_RXD  
Data receiver input pin for UART2.  
PD.15  
I/O  
O
General purpose digital I/O pin.  
Data transmitter output pin for UART2.  
General purpose digital I/O pin.  
SPI0 MOSI (Master Out, Slave In) pin.  
General purpose digital I/O pin.  
SPI0 MISO (Master In, Slave Out) pin.  
General purpose digital I/O pin.  
SPI0 serial clock pin.  
20  
21  
22  
23  
UART2_TXD  
PC.3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI0_MOSI0  
PC.2  
SPI0_MISO0  
PC.1  
SPI0_CLK  
PC.0  
General purpose digital I/O pin.  
24  
25  
SPI0_SS0  
I/O  
SPI0 slave select pin.  
PA.15  
I/O  
I/O  
I/O  
I/O  
I/O  
General purpose digital I/O pin.  
PWM0 CH3 output/Capture input.  
General purpose digital I/O pin.  
PWM0 CH2 output/Capture input.  
General purpose digital I/O pin.  
PWM0_CH3  
PA.14  
26  
27  
PWM0_CH2  
PA.13  
Apr. 07, 2020  
Page 16 of 67  
Rev 1.00  
NUC1311  
Pin No.  
Pin Name  
Pin Type  
Description  
LQFP  
48-pin  
PWM0_CH1  
PA.12  
I/O  
I/O  
I/O  
I/O  
PWM0 CH1 output/Capture input.  
General purpose digital I/O pin.  
PWM0 CH0 output/Capture input.  
General purpose digital I/O pin.  
Serial wire debugger data pin.  
28  
29  
PWM0_CH0  
PF.7  
ICE_DAT  
PF.6  
I/O  
I/O  
I
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_DAT pin.  
General purpose digital I/O pin.  
30  
31  
Serial wire debugger clock pin.  
ICE_CLK  
Note: It is recommended to use 100 kΩ pull-up resistor on ICE_CLK pin.  
AVSS  
AP  
I/O  
AI  
Ground pin for analog circuit.  
General purpose digital I/O pin.  
ADC_CH0 analog input.  
PA.0  
32  
33  
ADC_CH0  
PWM0_CH4  
PA.1  
I/O  
I/O  
AI  
PWM0 CH4 output/Capture input.  
General purpose digital I/O pin.  
ADC_CH1 analog input.  
ADC_CH1  
PWM0_CH5  
PA.2  
I/O  
I/O  
AI  
PWM0 CH5 output/Capture input.  
General purpose digital I/O pin.  
ADC_CH2 analog input.  
ADC_CH2  
PWM1_CH0  
UART3_TXD  
PA.3  
34  
35  
I/O  
O
PWM1 CH0 output/Capture input.  
Data transmitter output pin for UART3.  
General purpose digital I/O pin.  
ADC_CH3 analog input.  
I/O  
AI  
ADC_CH3  
PWM1_CH1  
UART3_RXD  
PA.4  
I/O  
I
PWM1 CH1 output/Capture input.  
Data receiver input pin for UART3.  
General purpose digital I/O pin.  
ADC_CH4 analog input.  
I/O  
AI  
36  
37  
ADC_CH4  
PA.5  
I/O  
AI  
General purpose digital I/O pin.  
ADC_CH5 analog input.  
ADC_CH5  
UART3_RXD  
PA.6  
I
Data receiver input pin for UART3.  
General purpose digital I/O pin.  
ADC_CH6 analog input.  
I/O  
AI  
38  
ADC_CH6  
UART3_TXD  
O
Data transmitter output pin for UART3.  
Apr. 07, 2020  
Page 17 of 67  
Rev 1.00  
NUC1311  
Pin No.  
Pin Name  
Pin Type  
Description  
LQFP  
48-pin  
PA.7  
I/O  
AI  
AP  
AP  
I/O  
I/O  
I
General purpose digital I/O pin.  
ADC_CH7 analog input.  
39  
40  
41  
ADC_CH7  
VREF  
Voltage reference input for ADC.  
Power supply for internal analog circuit.  
General purpose digital I/O pin.  
I2C0 clock pin.  
AVDD  
PC.7  
I2C0_SCL  
PWM0_BRAKE1  
PC.6  
PWM0 brake input pin.  
I/O  
I/O  
I
General purpose digital I/O pin.  
I2C0 data input/output pin.  
42  
43  
I2C0_SDA  
PWM0_BRAKE0  
PB.15  
PWM0 brake input pin.  
I/O  
I
General purpose digital I/O pin.  
External interrupt1 input pin.  
Timer0 external capture input pin.  
Timer0 toggle output pin.  
INT1  
TM0_EXT  
TM0  
I
O
PF.0  
I/O  
O
General purpose digital I/O pin.  
External 4~24 MHz (high speed) crystal output pin.  
General purpose digital I/O pin.  
External 4~24 MHz (high speed) crystal input pin.  
44  
45  
XT1_OUT  
PF.1  
I/O  
I
XT1_IN  
External reset input: active LOW, with an internal pull-up. Set this pin low reset  
chip to initial state.  
46  
47  
nRESET  
I
Note: It is recommended to use 10 kΩ pull-up resistor and 10 μF capacitor on  
nRESET pin.  
PF.8  
I/O  
O
General purpose digital I/O pin.  
Frequency divider clock output pin.  
General purpose digital I/O pin.  
ADC external trigger input.  
CLKO  
PB.8  
I/O  
I
STADC  
TM0  
48  
I/O  
O
Timer0 event counter input / toggle output.  
Frequency divider clock output pin.  
CLKO  
Note: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power  
Apr. 07, 2020  
Page 18 of 67  
Rev 1.00  
NUC1311  
5
BLOCK DIAGRAM  
5.1 NuMicro® NUC1311 Block Diagram  
Clock Control  
High Speed  
Timer  
Analog Interface  
12-bit ADC 8-ch  
Watchdog Timer  
PLL  
Oscillator  
ARM  
22.1184 MHz  
Cortex®-M0  
16-bit PWM x 12  
32-bit Timer x 4  
High Speed  
50 MHz  
Low Speed  
Oscillator  
10 kHz  
External  
Crystal  
4~24 MHz  
AHB Bus  
Bridge  
APB Bus  
Memory  
Power Control  
GPIO  
Connectivity  
UART x 4  
APROM 68/36 KB  
LDO  
VREF  
LVR  
General Purpose  
I/O  
1.8 V  
LDROM 4 KB  
SPI x 1  
I2C x 1  
Power On Reset  
Configurable  
Data Flash  
External  
Interrupt  
Brown-out Detection  
SRAM 8 KB  
CAN x 1  
Figure 5.1-1 NuMicro® NUC1311 Block Diagram  
Apr. 07, 2020  
Page 19 of 67  
Rev 1.00  
NUC1311  
6
FUNCTIONAL DESCRIPTION  
6.1 Arm® Cortex® -M0 Core  
The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA  
AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex® -M profile  
processor. The profile supports two modes -Thread mode and Handler mode. Handler mode is  
entered as a result of an exception. An exception return can only be issued in Handler mode. Thread  
mode is entered on Reset, and can be entered as a result of an exception return.  
Figure 6.1-1 shows the functional controller of processor.  
Cortex® -M0 Components  
Cortex® -M0 processor  
Debug  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Interrupts  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex® -M0  
Processor  
Core  
Debug  
Access  
Port  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debugger  
Interface  
Bus Matrix  
(DAP)  
AHB-Lite  
Interface  
Serial Wire or  
JTAG Debug Port  
Figure 6.1-1 Functional Controller Diagram  
The implemented device provides the following components and features:  
A low gate count processor:  
-
-
-
-
-
-
-
Armv6-M Thumb® instruction set  
Thumb-2 technology  
Armv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to  
facilitate rapid interrupt handling  
-
C Application Binary Interface compliant exception model. This is the Armv6-M, C  
Application Binary Interface (C-ABI) compliant exception model that enables the use of  
pure C functions as interrupt handlers  
-
Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event (WFE)  
Apr. 07, 2020  
Page 20 of 67  
Rev 1.00  
 
 
NUC1311  
instructions, or the return from interrupt sleep-on-exit feature  
NVIC:  
-
-
-
-
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep mode  
Debug support  
-
-
-
-
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
-
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all  
system peripherals and memory  
-
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Apr. 07, 2020  
Page 21 of 67  
Rev 1.00  
NUC1311  
6.2 System Manager  
6.2.1 Overview  
System management includes the following sections:  
System Resets  
System Memory Map  
System management registers for Part Number ID, chip reset and on-chip controllers reset ,  
multi-functional pin control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control registers  
6.2.2 System Reset  
The system reset can be issued by one of the following listed events. For these reset event flags can  
be read by RSTSRC register.  
Power-on Reset  
Low level on the nRESET pin  
Watchdog Time-out Reset  
Low Voltage Reset  
Brown-out Detector Reset  
CPU Reset  
System Reset  
System Reset and Power-on Reset all reset the whole chip including all peripherals. The difference  
between System Reset and Power-on Reset is external crystal circuit and BS (ISPCON[1]) bit. System  
Reset does not reset external crystal circuit and BS (ISPCON[1]) bit, but Power-on Reset does.  
Apr. 07, 2020  
Page 22 of 67  
Rev 1.00  
NUC1311  
6.2.3 System Power Distribution  
In this chip, the power distribution is divided into three segments.  
Analog power from AVDD and AVSS provides the power for analog components operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which provides a  
fixed 1.8 V power for digital operation and I/O pins.  
The outputs of internal voltage regulators, LDO, require an external capacitor which should be located  
close to the corresponding pin. Analog power (AVDD) should be the same voltage level with the digital  
power (VDD). Figure 6.2-1 shows the NuMicro® NUC1311 power distribution.  
NUC1311 Power Distribution  
AVDD  
AVSS  
12-bit  
SAR-ADC  
Brown-out  
Detector  
Low Voltage  
Reset  
Internal  
22.1184 MHz & 10 kHz  
Oscillator  
FLASH  
Digital Logic  
LDO_CAP  
1uF  
1.8V  
1.8V  
POR18  
POR50  
ULDO  
PLL  
LDO  
IO cell  
GPIO  
Figure 6.2-1 NuMicro® NUC1311 Power Distribution Diagram  
Apr. 07, 2020  
Page 23 of 67  
Rev 1.00  
 
NUC1311  
6.2.4 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-  
on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be  
used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value Register  
(SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR)  
on the next clock cycle, then decrement on subsequent clocks. When the counter transitions to 0, the  
COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0  
before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than  
an arbitrary value when it is enabled.  
If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded with this  
value. This mechanism can be used to disable the feature independently from the timer enable bit.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference Manual” and  
“Arm® v6-M Architecture Reference Manual”.  
Apr. 07, 2020  
Page 24 of 67  
Rev 1.00  
NUC1311  
6.2.5 Nested Vectored Interrupt Controller (NVIC)  
The Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named as  
“Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor kernel and  
provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of  
the interrupts and most of the system exceptions can be configured to different priority levels. When  
an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one’s  
priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will  
override the current handler.  
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched  
from a vector table in memory. There is no need to determine which interrupt is accepted and branch  
to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC  
will also automatically save processor state including the registers “PC, PSR, LR, R0~R3, R12” to the  
stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the  
normal execution. Thus it will take less and deterministic time to process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to pending  
ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the efficiency of  
concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to  
execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the  
higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference Manual” and  
“Arm® v6-M Architecture Reference Manual”.  
Apr. 07, 2020  
Page 25 of 67  
Rev 1.00  
NUC1311  
6.2.5.1 Exception Model and System Interrupt Map  
Table 6.2-1 lists the exception model supported by NuMicro® NUC1311 series. Software can set four  
levels of priority on some of these exceptions as well as on all interrupts. The highest user-  
configurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority of  
all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on the  
system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Name  
Reset  
Vector Number  
Priority  
-3  
1
NMI  
2
-2  
Hard Fault  
Reserved  
3
-1  
4 ~ 10  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
11  
Reserved  
12 ~ 13  
PendSV  
14  
SysTick  
15  
16 ~ 47  
Interrupt (IRQ0 ~ IRQ31)  
Table 6.2-1 Exception Model  
Interrupt Number  
Vector  
Number  
Source  
Module  
Interrupt Name  
Interrupt Description  
(Bit In Interrupt  
Registers)  
1 ~ 15  
16  
-
0
-
-
System exceptions  
BOD_INT  
WDT_INT  
-
Brown-out Brown-out low voltage detected interrupt  
17  
1
WDT  
-
Watchdog Timer interrupt  
Reserved  
18  
-
19  
3
EINT1  
GPIO  
GPIO  
GPIO  
-
External signal interrupt from PB.15 pin  
External signal interrupt from PA[15:0]/PB[13:0]  
External interrupt from PC[15:0]/PD[15:0]/PF[8:0]  
Reserved  
20  
4
GPAB_INT  
GPCDF_INT  
-
21  
5
22  
6
23  
7
-
-
Reserved  
24  
8
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART02_INT  
UART1_INT  
TMR0  
TMR1  
TMR2  
TMR3  
UART0/2  
UART1  
Timer 0 interrupt  
25  
9
Timer 1 interrupt  
26  
10  
11  
12  
13  
Timer 2 interrupt  
27  
Timer 3 interrupt  
28  
UART0 and UART2 interrupt  
UART1 interrupt  
29  
Apr. 07, 2020  
Page 26 of 67  
Rev 1.00  
 
NUC1311  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
SPI0_INT  
SPI0  
SPI0 interrupt  
UART3 interrupt  
Reserved  
UART3_INT  
UART3  
-
-
-
-
Reserved  
I2C0_INT  
I2C0  
I2C0 interrupt  
Reserved  
-
-
CAN0_INT  
CAN0  
-
CAN0 interrupt  
Reserved  
-
PWM0_INT  
PWM1_INT  
-
PWM0  
PWM1  
-
PWM0 interrupt  
PWM1 interrupt  
Reserved  
-
-
Reserved  
BRAKE0_INT  
BRAKE1_INT  
PWM0  
PWM1  
PWM0 brake interrupt  
PWM1 brake interrupt  
Clock controller interrupt for chip wake-up from Power-  
down state  
44  
28  
PWRWU_INT  
CLKC  
45  
46  
47  
29  
30  
31  
ADC_INT  
CKD_INT  
-
ADC  
CLKC  
-
ADC interrupt  
Clock detection interrupt  
Reserved  
Table 6.2-2 System Interrupt Map  
Apr. 07, 2020  
Page 27 of 67  
Rev 1.00  
NUC1311  
6.2.5.2 Vector Table  
When an interrupt is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For Armv6-M, the vector table base  
address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer  
on reset, and the entry point addresses for all exception handlers. The vector number on previous  
page defines the order of entries in the vector table associated with exception handler entry as  
illustrated in previous section.  
Vector Table Word Offset  
Description  
0
SP_main The Main stack pointer  
Exception Entry Pointer using that Vector Number  
Table 6.2-3 Vector Table Format  
Vector Number  
6.2.5.3 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or  
Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear  
policy, both registers reading back the current enabled state of the corresponding interrupts. When an  
interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the  
interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until  
cleared by reset or an exception return. Clearing the enable bit prevents new activations of the  
associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to  
enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading  
back the current pended state of the corresponding interrupts. The Clear-Pending Register has no  
effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
Apr. 07, 2020  
Page 28 of 67  
Rev 1.00  
NUC1311  
6.2.6 System Control  
The Cortex® -M0 status and operating mode control are managed by System Control Registers.  
Including CPUID, Cortex® -M0 interrupt priority and Cortex® -M0 power management can be controlled  
through these system control registers.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference Manual” and  
“Arm® v6-M Architecture Reference Manual”.  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates the clocks for the whole chip, including system clocks and all peripheral  
clocks. The clock controller also implements the power control function with the individually clock  
ON/OFF control, clock source selection and clock divider. The chip enters Power-down mode when  
Cortex® -M0 core executes the WFI instruction only if the PWR_DOWN_EN (PWRCON[7]) bit and  
PD_WAIT_CPU (PWRCON[8]) bit are both set to 1. After that, chip enters Power-down mode and wait  
for wake-up interrupt source triggered to leave Power-down mode. In the Power-down mode, the clock  
controller turns off the 4~24 MHz external high speed crystal oscillator and 22.1184 MHz internal high  
speed RC oscillator to reduce the overall system power consumption. Figure 6.3-1 and Figure 6.3-2  
show the clock generator and the overview of the clock source control.  
The clock generator consists of 5 clock sources as listed below:  
4~24 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency(PLL FOUT),PLL source can be from 4~24 MHz  
external high speed crystal oscillator (HXT) or 22.1184 MHz internal high speed RC oscillator  
(HIRC))  
22.1184 MHz internal high speed RC oscillator (HIRC)  
10 kHz internal low speed RC oscillator (LIRC)  
Apr. 07, 2020  
Page 29 of 67  
Rev 1.00  
NUC1311  
XTL12M_EN (PWRCON[0])  
HXT  
XT1_OUT  
XT1_IN  
4~24 MHz  
HXT  
PLL_SRC (PLLCON[19])  
PLL  
0
1
PLL FOUT  
OSC22M_EN (PWRCON[2])  
22.1184 MHz  
HIRC  
HIRC  
LIRC  
OSC10K_EN (PWRCON[3])  
10 kHz  
LIRC  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Figure 6.3-1 Clock Generator Block Diagram  
Apr. 07, 2020  
Page 30 of 67  
Rev 1.00  
NUC1311  
22.1184  
MHz  
22.1184 MHz  
10 kHz  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
ISP  
4~24  
MHz  
PLLFOUT  
Reserved  
4~24 MHz  
1/(HCLK_N+1)  
10 kHz  
PCLK  
I2C 0  
22.1184 MHz  
10 kHz  
111  
101  
011  
010  
001  
000  
CAN 0  
CLKSEL0[2:0]  
TMR 3  
TMR 2  
TMR 1  
TMR 0  
External trigger  
HCLK  
22.1184 MHz  
4~24 MHz  
1
PLLFOUT  
Reserved  
4~24 MHz  
0
PLLCON[19]  
22.1184 MHz  
CLKSEL1[22:20]  
CLKSEL1[18:16]  
CLKSEL1[14:12]  
CLKSEL1[10:8]  
FMC  
CPUCLK  
22.1184 MHz  
HCLK  
1
0
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
SysTick  
SYST_CSR[2]  
4~24 MHz  
Reserved  
4~24 MHz  
PWM 0  
PWM 1  
PCLK  
1
PLLFOUT  
0
CLKSEL0[5:3]  
CLKSEL3[16]  
CLKSEL3[17]  
CLKSEL2[17:16]  
10 kHz  
11  
10  
WWDT  
WDT  
HCLK  
1/2048  
10 kHz  
11  
10  
HCLK  
1/2048  
CLKSEL1[1:0]  
22.1184 MHz  
11  
01  
00  
PLLFOUT  
4~24 MHz  
HCLK  
1
0
SPI 0  
PLLFOUT  
CLKSEL1[25:24]  
CLKSEL1[4]  
1/(UART_N+1)  
1/(ADC_N+1)  
UART 0~3  
22.1184 MHz  
HCLK  
11  
10  
01  
00  
ADC  
BOD  
PLLFOUT  
4~24 MHz  
22.1184 MHz  
HCLK  
10 kHz  
11  
10  
01  
00  
FDIV  
Reserved  
4~24 MHz  
CLKSEL1[3:2]  
CLKSEL2[3:2]  
Figure 6.3-2 Clock Generator Global View Diagram  
Apr. 07, 2020  
Page 31 of 67  
Rev 1.00  
NUC1311  
6.3.2 System Clock and SysTick Clock  
The system clock has 4 clock sources which were generated from clock generator block. The clock  
source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is shown in  
Figure 6.3-3.  
HCLK_S (CLKSEL0[2:0])  
22.1184 MHz  
111  
10 kHz  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
AHB  
APB  
PLLFOUT  
Reserved  
4~24 MHz  
1/(HCLK_N+1)  
PCLK  
HCLK_N (CLKDIV[3:0])  
CPU in Power Down Mode  
Figure 6.3-3 System Clock Block Diagram  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock (SYST_CSR[2]).  
If using external clock, the SysTick clock (STCLK) has 4 clock sources. The clock source switch  
depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block diagram is shown in  
Figure 6.3-4.  
STCLK_S (CLKSEL0[5:3])  
22.1184 MHz  
111  
011  
010  
001  
000  
1/2  
1/2  
1/2  
HCLK  
STCLK  
4~24 MHz  
Reserved  
4~24 MHz  
Figure 6.3-4 SysTick Clock Control Block Diagram  
Apr. 07, 2020  
Page 32 of 67  
Rev 1.00  
 
 
NUC1311  
6.3.3 Power-down Mode Clock  
When chip enters Power-down mode, system clocks, some clock sources, and some peripheral clocks  
will be disabled. Some clock sources and peripherals clocks are still active in Power-down mode.  
The clocks still kept active are listed below:  
Clock Generator  
-
10 kHz internal low speed RC oscillator (LIRC) clock  
WDT/Timer Peripherals Clock (when 10 kHz intertnal low speed RC oscillator (LIRC) is adopted  
as clock source)  
6.3.4 Frequency Divider Output  
This device is equipped with a power-of-2 frequency divider which is composed by16 chained divide-  
by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is  
reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with the  
frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock divider  
output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).  
When writing 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When writing 0 to  
DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low state  
and stay in low state.  
If DIVIDER1(FRQDIV[5]) is set to 1, the frequency divider clock (FRQDIV_CLK) will bypass power-of-  
2 frequency divider. The frequency divider clock will be output to CLKO pin directly.  
FRQDIV_S (CLKSEL2[3:2])  
FDIV_EN (APBCLK[6])  
22.1184 MHz  
11  
FRQDIV_CLK  
HCLK  
10  
01  
00  
Reserved  
4~24 MHz  
Figure 6.3-5 Clock Source of Frequency Divider  
Apr. 07, 2020  
Page 33 of 67  
Rev 1.00  
NUC1311  
DIVIDER_EN  
(FRQDIV[4])  
Enable  
divide-by-2 counter  
FSEL  
(FRQDIV[3:0])  
16 chained  
divide-by-2 counter  
FRQDIV_CLK  
DIVIDER1  
(FRQDIV[5])  
1/2  
1/22 1/23  
... 1/215 1/216  
0000  
0001  
16 to 1  
MUX  
:
:
CLKO  
0
1
1110  
1111  
Figure 6.3-6 Frequency Divider Block Diagram  
Apr. 07, 2020  
Page 34 of 67  
Rev 1.00  
NUC1311  
6.4 Flash Memory Controller (FMC)  
6.4.1 Overview  
The NuMicro® NUC1311 series has 68/36 KB on-chip embedded Flash for application program  
memory (APROM) that can be updated through ISP procedure. The In-System-Programming (ISP)  
function enables user to update program memory when chip is soldered on PCB. After chip is  
powered on, Cortex® -M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in  
CONFIG0. By the way, the NuMicro® NUC1311 series also provides additional Data Flash for user to  
store some application dependent data.  
The NuMicro® NUC1311 supports another flexible feature: configurable Data Flash size. The Data  
Flash size is decided by Data Flash variable size enable (DFVSEN), Data Flash enable (DFEN) in  
Config0 and Data Flash base address (DFBADR) in Config1. When DFVSEN is set to 1, the Data  
Flash size is fixed at 4 KB and the address is started from 0x0001_F000, and the APROM size is  
become 68/36 KB. When DFVSEN is set to 0 and DFEN is set to 1, the Data Flash size is zero and  
the APROM size is 68/36 KB. When DFVSEN is set to 0 and DFEN is set to 0, the APROM and Data  
Flash share 68/36 KB continuous address and the start address of Data Flash is defined by  
(DFBADR) in Config1.  
6.4.2 Features  
Runs up to 50 MHz with zero wait cycle for continuous address read access  
All embedded flash memory supports 512 bytes page erase  
68/36 KB application program memory (APROM)  
4 KB In-System-Programming (ISP) loader program memory (LDROM)  
Configurable Data Flash size  
512 bytes page erase unit  
Supports In-Application-Programming (IAP) to switch code between APROM and LDROM  
without reset  
In-System-Programming (ISP) to update on-chip Flash  
Apr. 07, 2020  
Page 35 of 67  
Rev 1.00  
NUC1311  
6.5 General Purpose I/O (GPIO)  
6.5.1 Overview  
The NuMicro® NUC1311 series has up to 42 General Purpose I/O pins to be shared with other  
function pins depending on the chip configuration. These 42 pins are arranged in 5 ports named as  
GPIOA, GPIOB, GPIOC, GPIOD and GPIOF. The GPIOA port has the maximum of 16 pins. The  
GPIOB port has the maximum of 9 pins. The GPIOC port has the maximum of 6 pins. The GPIOD port  
has the maximum of 4 pins. The GPIOF port has the maximum of 7 pins. Each of the 42 pins is  
independent and has the corresponding register bits to control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as input, output, open-drain  
or Quasi-bidirectional mode. After reset, the I/O mode of all pins are depending on Config0[10] setting.  
In Quasi-bidirectional mode, I/O pin has a very weak individual pull-up resistor which is about 110~300  
Kfor VDD from 5.0 V to 2.5 V.  
6.5.2 Features  
Four I/O modes:  
-
-
-
-
Quasi-bidirectional  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable by GPx_TYPE[15:0] in GPx_MFP[31:16]  
I/O pin configured as interrupt source with edge/level setting  
Configurable default I/O mode of all pins after reset by Config0[10] setting  
-
-
If Config[10] is 0, all GPIO pins in input tri-state mode after chip reset  
If Config[10] is 1, all GPIO pins in Quasi-bidirectional mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the pin wake-up function  
Apr. 07, 2020  
Page 36 of 67  
Rev 1.00  
NUC1311  
6.6 Timer Controller (TIMER)  
6.6.1 Overview  
The timer controller includes four 32-bit timers, TIMER0 ~ TIMER3, allowing user to easily implement  
a timer control for applications. The timer can perform functions, such as frequency measurement,  
delay timing, clock generation, and event counting by external input pins, and interval measurement  
by external capture pins.  
6.6.2 Features  
Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides four timer counting modes: one-shot, periodic, toggle and continuous counting  
Time-out period = (Period of timer clock input) * (8-bit prescale counter + 1) * (24-bit TCMP)  
Maximum counting cycle time = (1 / T MHz) * (28) * (224), T is the period of timer clock  
24-bit up counter value is readable through TDR (Timer Data Register)  
Supports event counting function to count the event from external counter pin (TM0~TM3)  
Supports external pin capture (TM0_EXT~TM3_EXT) for interval measurement  
Supports external pin capture (TM0_EXT~TM3_EXT) for reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated  
Apr. 07, 2020  
Page 37 of 67  
Rev 1.00  
NUC1311  
6.7 PWM Generator and Capture Timer (PWM)  
6.7.1 Overview  
The NUC1311 provides two PWM generators PWM0 and PWM. Each PWM supports 6 channels of  
PWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit PWM  
counter with 16-bit comparator. The PWM counter supports up, down and up-down counter types.  
PWM uses the comparator compared with counter to generate events. These events are used to  
generate PWM pulse, interrupt and trigger signal for ADC to start conversion.  
The PWM generator supports two standard PWM output modes: Independent mode and  
Complementary mode, which have difference architecture. In Complementary mode, there are two  
comparators to generate various PWM pulse with 12-bit dead-time generator. For PWM output control  
unit, it supports polarity output, independent pin mask, tri-state output enable and brake functions.  
The PWM generator also supports input capture function to latch PWM counter value to the  
corresponding register when input channel has a rising transition, falling transition or both transition is  
happened.  
6.7.2 Features  
6.7.2.1 PWM function features  
Supports maximum clock frequency up to 100 MHz  
Supports up to two PWM modules, each module provides 6 output channels  
Supports independent mode for PWM output/Capture input channel  
Supports complementary mode for 3 complementary paired PWM output channel  
-
-
Dead-time insertion with 12-bit resolution  
Two compared values during one period  
Supports 12-bit pre-scalar from 1 to 4096  
Supports 16-bit resolution PWM counter, each module provides 3 PWM counters  
-
Up, down and up/down counter operation type  
Supports mask function and tri-state enable for each PWM pin  
Supports brake function  
-
Brake source from pin and system safety events (clock failed, Brown-out detection and  
CPU lockup)  
-
-
-
Noise filter for brake source from pin  
Edge detect brake source to control brake state until brake interrupt cleared  
Level detect brake source to auto recover function after brake condition removed  
Supports interrupt on the following events:  
-
-
PWM counter match zero, period value or compared value  
Brake condition happened  
Supports trigger ADC on the following events:  
PWM counter match zero, period value or compared value  
-
Apr. 07, 2020  
Page 38 of 67  
Rev 1.00  
NUC1311  
6.7.2.2 Capture Function Features  
Supports up to 12 capture input channels with 16-bit resolution  
Supports rising or falling capture condition  
Supports input rising/falling capture interrupt  
Supports rising/falling capture with counter reload option  
Apr. 07, 2020  
Page 39 of 67  
Rev 1.00  
NUC1311  
6.8 Watchdog Timer (WDT)  
6.8.1 Overview  
The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown  
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer  
supports the function to wake-up system from Idle/Power-down mode.  
6.8.2 Features  
18-bit free running up counter for Watchdog Timer time-out interval.  
Selectable time-out interval (24 ~ 218) WDT_CLK cycle and the time-out interval period is 104 ms  
~ 26.3168 s if WDT_CLK = 10 kHz.  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports Watchdog Timer reset delay period  
-
Selectable it includes (1026, 130, 18 or 3) * WDT_CLK reset delay period.  
Supports to force Watchdog Timer enabled after chip powered on or reset while CWDTEN  
(CONFIG0[31] Watchdog Enable) bit is set to 0.  
Supports Watchdog Timer time-out wake-up function only if WDT clock source is selected as 10  
kHz  
Apr. 07, 2020  
Page 40 of 67  
Rev 1.00  
NUC1311  
6.9 Window Watchdog Timer (WWDT)  
6.9.1 Overview  
The Window Watchdog Timer is used to perform a system reset within a specified window period to  
prevent software run to uncontrollable status by any unpredictable condition.  
6.9.2 Features  
6-bit down counter value (WWDTVAL[5:0]) and 6-bit compare window value (WWDTCR[21:16])  
to make the WWDT time-out window period flexible  
Supports 4-bit value to programmable maximum 11-bit prescale counter period of WWDT  
counter  
Apr. 07, 2020  
Page 41 of 67  
Rev 1.00  
NUC1311  
6.10 UART Interface Controller (UART)  
6.10.1 Overview  
The NuMicro® NUC1311 series provides up to  
4
channels of Universal Asynchronous  
Receiver/Transmitters (UART). UART0/UART1/UART2 supports 16 bytes entry FIFO and UART3  
support 1 byte buffer for data payload. Besides, only UART0 and UART1 support the flow control  
function. The UART Controller performs a serial-to-parallel conversion on data received from the  
peripheral, and a parallel-to-serial conversion on data transmitted from the CPU. The UART controller  
also supports IrDA SIR Function. UART0/UART1 provides RS-485 function mode.  
UART0/UART1/UART2 provides LIN master/slave function.  
6.10.2 Features  
Full duplex, asynchronous communications  
Separates receive / transmit 16/16 bytes (UART0/UART1/UART2 support) entry FIFO and 1/1  
bytes buffer for data payloads (UART3 support)  
Supports hardware auto-flow control function (CTS, RTS) and programmable RTS flow control  
trigger level (UART0/UART1 support).  
Programmable receiver buffer trigger level  
Supports programmable baud-rate generator for each channel individually  
Supports CTS wake-up function (UART0/UART1 support)  
Supports 7-bit receiver buffer time-out detection function  
Programmable transmitting data delay time between the last stop and the next start bit by setting  
DLY (UA_TOR [15:8]) register  
Supports break error, frame error, parity error and receive / transmit buffer overflow detect  
function  
Fully programmable serial-interface characteristics  
-
-
-
Programmable data bit length, 5-, 6-, 7-, 8-bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and detection  
Programmable stop bit length, 1, 1.5, or 2 stop bit generation  
IrDA SIR function mode  
Supports 3/16-bit duration for normal mode  
LIN function mode (UART0/UART1/UART2 support)  
-
-
-
-
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detect function for receiver  
RS-485 function mode. (UART0/UART1 support)  
-
-
Supports RS-485 9-bit mode  
Supports hardware or software direct enable control provided by RTS pin  
Apr. 07, 2020  
Page 42 of 67  
Rev 1.00  
NUC1311  
6.11 I2C Serial Interface Controller (I2C)  
6.11.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange  
between devices. The I2C standard is a true multi-master bus including collision detection and  
arbitration that prevents data corruption if two or more masters attempt to control the bus  
simultaneously.  
6.11.2 Features  
The I2C bus uses two wires (I2Cn_SDA and I2Cn_SCL) to transfer information between devices  
connected to the bus. The main features of the I2C bus include:  
Supports one I2C serial interface controller  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data on the  
bus  
Serial clock synchronization allow devices with different bit rates to communicate via one serial  
bus  
Built-in a 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and timer-out  
counter overflows.  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Power-down wake-up function  
Apr. 07, 2020  
Page 43 of 67  
Rev 1.00  
NUC1311  
6.12 Serial Peripheral Interface (SPI)  
6.12.1 Overview  
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that  
operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bi-direction  
interface. The NuMicro® NUC1311 series contains one set of SPI controllers performing a serial-to-  
parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on  
data transmitted to a peripheral device. This SPI controller can be configured as a master or a slave  
device.  
The SPI controller supports the variable bus clock function for special applications.  
6.12.2 Features  
One set of SPI controller  
Supports Master or Slave mode operation  
Supports Dual I/O Transfer mode  
Configurable bit length of a transaction word from 8 to 32 bits  
Provides separate 8-layer depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Supports the Byte Reorder function  
Supports Byte or Word Suspend mode  
Variable output bus clock frequency in Master mode  
Supports 3-wire, no slave select signal, bi-direction interface  
Apr. 07, 2020  
Page 44 of 67  
Rev 1.00  
NUC1311  
6.13 Controller Area Network (CAN)  
6.13.1 Overview  
The C_CAN consists of the CAN Core, Message RAM, Message Handler, Control Registers and  
Module Interface. The CAN Core performs communication according to the CAN protocol version 2.0  
part A and B. The bit rate can be programmed to values up to 1MBit/s. For the connection to the  
physical layer, additional transceiver hardware is required.  
For communication on a CAN network, individual Message Objects are configured. The Message  
Objects and Identifier Masks for acceptance filtering of received messages are stored in the Message  
RAM. All functions concerning the handling of messages are implemented in the Message Handler.  
These functions include acceptance filtering, the transfer of messages between the CAN Core and the  
Message RAM, and the handling of transmission requests as well as the generation of the module  
interrupt.  
The register set of the C_CAN can be accessed directly by the software through the module interface.  
These registers are used to control/configure the CAN Core and the Message Handler and to access  
the Message RAM.  
6.13.2 Features  
Supports CAN protocol version 2.0 part A and B.  
Bit rates up to 1 MBit/s.  
32 Message Objects.  
Each Message Object has its own identifier mask.  
Programmable FIFO mode (concatenation of Message Objects).  
Maskable interrupt.  
Disabled Automatic Re-transmission mode for Time Triggered CAN applications.  
Programmable loop-back mode for self-test operation.  
16-bit module interfaces to the AMBA APB bus.  
Supports wake-up function  
Apr. 07, 2020  
Page 45 of 67  
Rev 1.00  
NUC1311  
6.14 Analog-to-Digital Converter (ADC)  
6.14.1 Overview  
The NuMicro® NUC1311 series contains one 12-bit successive approximation analog-to-digital  
converters (SAR A/D converter) with 8 input channels. The A/D converter supports three operation  
modes: single, single-cycle scan and continuous scan mode. The A/D converter can be started by  
software, PWM, BPWM trigger and external STADC pin.  
6.14.2 Features  
Analog input voltage range: 0~VREF  
12-bit resolution and 10-bit accuracy is guaranteed  
Up to 8 single-end analog input channels or 4 differential analog input channels  
Up to 760 kSPS conversion rate (chip working at 5V)  
Three operating modes  
-
-
Single mode: A/D conversion is performed one time on a specified channel  
Single-cycle scan mode: A/D conversion is performed one cycle on all specified channels  
with the sequence from the smallest numbered channel to the largest numbered channel  
-
Continuous scan mode: A/D converter continuously performs Single-cycle scan mode until  
software stops A/D conversion  
An A/D conversion can be started by:  
-
-
-
Writing 1 to ADST bit (ADCR[11])through software  
PWM trigger  
External pin STADC  
Conversion results are held in data registers for each channel with valid and overrun indicators  
Supports two set digital comparators. The conversion result can be compared with specify value  
and user can select whether to generate an interrupt when conversion result matches the  
compare register setting  
Channel 7 supports 2 input sources: external analog voltage, and internal Band-gap voltage  
Apr. 07, 2020  
Page 46 of 67  
Rev 1.00  
NUC1311  
7
APPLICATION CIRCUIT  
AVCC  
ODB Port  
CAN Transceiver  
AVDD  
FB  
CAN_TX  
CAN_RX  
D
R
CAN_H  
CAN_L  
DVCC  
CAN  
VDD  
Power  
0.1 uF  
0.1 uF  
VSS  
FB  
DVCC  
AVSS  
[3]  
SPISS0  
SPICLK0  
MISO_0  
CS  
CLK  
MISO  
MOSI  
VDD  
SPI Device  
DVCC  
100 k  
VSS  
MOSI_0  
[1]  
100 k  
VDD  
ICE_CLK  
ICE_DAT  
nRST  
VSS  
SWD  
Interface  
DVCC  
4.7 k  
DVCC  
4.7 k  
NUC1311  
Series  
CLK  
DIO  
SCL  
SDA  
VDD  
I2C Device  
20 p  
20 p  
XT1_IN  
VSS  
Crystal  
4~24 MHz  
crystal  
XT1_OUT  
PC COM Port  
RS232 Transceiver  
ROUT RIN  
RXD  
TXD  
UART  
LDO  
DVCC  
TIN  
TOUT  
[2]  
10 k  
Reset Circuit  
nRESET  
LDO_CAP  
10uF/25V  
1 uF  
Note 1: It is recommended to use 100 kΩ pull-up resistor on both ICE_DAT and ICE_CLK pin.  
Note 2: It is recommended to use 10 kΩ pull-up resistor and 10 μF capacitor on nRESET pin.  
Note 3: For the SPI device, the chip supply voltage must be equal to SPI device working voltage. For  
example, when the SPI Flash working voltage is 3.3 V, the NUC1311 chip supply voltage must also be  
3.3 V  
Apr. 07, 2020  
Page 47 of 67  
Rev 1.00  
NUC1311  
8
ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
SYMBOL  
DC Power Supply  
PARAMETER  
MIN.  
-0.3  
VSS-0.3  
4
MAX  
+7.0  
VDD+0.3  
24  
UNIT  
V
VDDVSS  
VIN  
Input Voltage  
V
Oscillator Frequency  
1/tCLCL  
TA  
MHz  
C  
Operating Temperature  
-40  
+105  
+150  
120  
Storage Temperature  
TST  
-55  
C  
Maximum Current into VDD  
Maximum Current out of VSS  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
-
mA  
mA  
mA  
mA  
mA  
mA  
120  
35  
35  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability  
of the device.  
Apr. 07, 2020  
Page 48 of 67  
Rev 1.00  
NUC1311  
8.2 DC Electrical Characteristics  
(VDD-VSS=5.5 V, TA = 25C, FOSC = 50 MHz unless otherwise specified.)  
SPECIFICATION  
PARAMETER  
Operation Voltage  
Power Ground  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VDD  
2.5  
5.5  
0.3  
V
V
V
VDD = 2.5V ~ 5.5V up to 50 MHz  
VSS  
-0.3  
0
AVSS  
LDO Output Voltage  
Band-gap Voltage  
VLDO  
1.62  
1.8  
1.98  
VDD ≥ 2.5V  
1.20  
1.20  
V
V
VDD = 2.5 V ~ 5.5 V, TA = 25C  
VBG  
1.19  
-0.3  
1.22  
+0.3  
VDD = 2.5 V ~ 5.5 V, TA = -40C~105C  
Allowed voltage  
difference for VDD  
and AVDD  
VDD  
-
V
AVDD  
All digital  
PLL  
VDD  
HXT  
HIRC  
module  
Operating Current  
Normal Run Mode  
at 50 MHz  
IDD1  
18.2  
mA  
5.5V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
V
V
V
V
V
V
V
X
X
X
V
X
V
X
V
X
V
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
11.4  
16.6  
9.9  
mA  
mA  
mA  
mA  
mA  
mA  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
while(1){} executed  
from flash  
VLDO =1.8 V  
Operating Current  
Normal Run Mode  
at 22.1184 MHz  
-
-
-
8.0  
-
-
-
3.7  
X
7.9  
X
while(1){} executed  
from flash  
IDD8  
-
3.7  
-
mA  
3.3V  
VLDO =1.8 V  
X
V
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
V
X
V
X
V
X
V
X
Operating Current  
Normal Run Mode  
at 12 MHz  
IDD9  
IDD10  
IDD11  
IDD12  
IDD13  
IDD14  
IDD15  
IDD16  
5.6  
4.0  
4.1  
2.5  
3.0  
2.5  
1.8  
1.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
3.3V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
4 MHz  
4 MHz  
4 MHz  
4 MHz  
while(1){} executed  
from flash  
VLDO =1.8 V  
Operating Current  
Normal Run Mode  
at 4 MHz  
while(1){} executed  
from flash  
VLDO =1.8 V  
All digital  
module  
Operating Current  
IDD21  
115  
VDD  
HXT  
LIRC (kHz)  
PLL  
A  
Apr. 07, 2020  
Page 49 of 67  
Rev 1.00  
NUC1311  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Normal Run Mode  
at 10 kHz  
5.5V  
5.5V  
3.3V  
3.3V  
X
X
X
X
10  
10  
10  
10  
X
X
X
X
V
X
V
X
IDD22  
IDD23  
IDD24  
114  
102  
101  
A  
A  
A  
while(1){} executed  
from flash  
VLDO =1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
PLL  
IIDLE1  
25.9  
mA  
Operating Current  
Idle Mode  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
V
V
V
V
X
X
V
V
V
V
X
X
X
X
X
X
V
X
V
X
X
X
V
X
V
X
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
IIDLE8  
IIDLE9  
IIDLE10  
12.9  
24.4  
11.4  
12.3  
4.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
at 50 MHz  
VLDO =1.8 V  
-
-
-
-
-
-
-
-
Operating Current  
Idle Mode  
X
at 22.1184 MHz  
VLDO =1.8 V  
12.2  
4.3  
X
X
7.5  
12 MHz  
12 MHz  
Operating Current  
Idle Mode  
4.4  
at 12 MHz  
IIDLE11  
IIDLE12  
IIDLE13  
IIDLE14  
IIDLE15  
IIDLE16  
6.0  
2.9  
mA  
mA  
3.3V  
3.3V  
12 MHz  
X
X
V
VLDO =1.8 V  
12 MHz  
4 MHz  
4 MHz  
X
X
X
X
X
X
X
V
X
3.7  
2.7  
mA  
mA  
5.5V  
5.5V  
Operating Current  
Idle Mode  
at 4 MHz  
2.4  
1.4  
mA  
mA  
3.3V  
3.3V  
4 MHz  
X
X
X
V
X
VLDO =1.8 V  
4 MHz  
X
All digital  
module  
VDD  
HXT  
X
LIRC (kHz)  
PLL  
X
IIDLE21  
106  
A  
5.5V  
5.5V  
10  
10  
10  
10  
V
X
V
X
Operating Current  
Idle Mode  
IIDLE22  
IIDLE23  
IIDLE24  
103  
94  
A  
A  
A  
X
X
at 10 kHz  
3.3V  
3.3V  
X
X
92  
X
X
RAM  
retension  
VDD  
HXT/HIRC LIRC (kHz)  
PLL  
Standby Current  
Power-down Mode  
(Deep Sleep Mode)  
VLDO =1.6 V  
IPWD1  
-
-
15  
15  
-
-
A  
A  
5.5V  
3.3V  
X
X
10  
10  
X
X
V
V
IPWD2  
Apr. 07, 2020  
Page 50 of 67  
Rev 1.00  
NUC1311  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Input Current PA,  
PB, PC, PD, PF  
(Quasi-bidirectional  
mode)  
IIN1  
-67  
-75  
+1  
VDD = 5.5V, VIN = 0V or VIN=VDD  
A  
A  
A  
V
Input Leakage  
Current PA, PB, PC,  
PD, PF  
VDD = 5.5V, 0<VIN<VDD  
ILK  
-1  
-
Open-drain or input only mode.  
Logic 1 to 0  
Transition Current  
PA~PF (Quasi-  
bidirectional mode)  
[3]  
ITL  
-610  
-650  
VDD = 5.5V, VIN=2.0V  
Input Low Voltage  
PA, PB, PC, PD, PF  
(TTL input)  
-0.3  
-0.3  
-
-
0.8  
0.6  
VDD = 4.5V  
VDD = 2.5V  
VIL1  
VIH1  
VIL3  
VIH3  
VDD  
+0.2  
2.0  
1.5  
-
-
VDD = 5.5V  
VDD =3.0V  
Input High Voltage  
PA, PB, PC, PD, PF  
(TTL input)  
V
VDD  
+0.2  
0
0
-
-
0.8  
0.4  
VDD = 4.5V  
VDD = 3.0V  
Input Low Voltage  
XT1_IN[*2]  
V
V
VDD  
+0.3  
3.5  
2.4  
-
-
VDD = 5.5V  
VDD = 3.0V  
Input High Voltage  
XT1_IN[*2]  
VDD  
+0.3  
Negative going  
threshold  
VILS  
-0.3  
-
-
0.2VDD  
V
V
(Schmitt input),  
nRESET  
Positive going  
threshold  
VDD  
+0.3  
VIHS  
0.7 VDD  
(Schmitt input),  
nRESET  
Internal nRESET pin  
pull up resistor  
RRST  
40  
150  
kΩ  
Negative going  
threshold  
0.3  
VDD  
VILS  
-0.3  
-
-
V
(Schmitt input),  
Positive going  
threshold  
VDD  
+0.3  
VIHS  
0.7 VDD  
V
(Schmitt input),  
ISR11  
ISR12  
ISR12  
ISR21  
-300  
-50  
-40  
-20  
-400  
-80  
-73  
-26  
VDD = 4.5V, VS = 2.4V  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
A  
A  
A  
Source Current PA,  
PB, PC, PD, PF  
(Quasi-bidirectional  
Mode)  
mA VDD = 4.5V, VS = 2.4V  
Source Current PA,  
Apr. 07, 2020  
Page 51 of 67  
Rev 1.00  
NUC1311  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
-3  
TYP.  
-5.2  
-5  
MAX. UNIT  
PB, PC, PD, PF  
(Push-pull Mode)  
ISR22  
ISR22  
ISK1  
mA VDD = 2.7V, VS = 2.2V  
-2.5  
10  
6
mA VDD = 2.5V, VS = 2.0V  
mA VDD = 4.5V, VS = 0.45V  
mA VDD = 2.7V, VS = 0.45V  
mA VDD = 2.5V, VS = 0.45V  
17  
Sink Current PA, PB,  
PC, PD, PF (Quasi-  
bidirectional and  
ISK1  
11  
Push-pull Mode)  
ISK1  
5
10  
Note:  
1. nRESET pin is a Schmitt trigger input.  
2. Crystal Input is a CMOS input.  
3. Pins of PA, PB, PC, PD and PF can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD = 5.5 V, the transition current reaches its maximum value when VIN approximates to 2 V.  
Apr. 07, 2020  
Page 52 of 67  
Rev 1.00  
NUC1311  
8.3 AC Electrical Characteristics  
8.3.1 External 4~24 MHz High Speed Clock Input Signal Characteristics  
For clock input mode, the HXT oscillator is enabled, XT1_IN is a standard input pin to receive external  
clock and XT1_OUT is output pin to ouput inversed signal of XT1_IN. The external clock signal has to  
respect the below Table. The characteristics result from tests performed using a wavefrom generator.  
External  
clock source  
XT1_IN  
tCLCL  
tCLCH  
90%  
10%  
0.7 VDD  
0.3 VDD  
tCLCX  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
SYMBOL  
tCHCX  
PARAMETER  
CONDITION  
MIN.  
TYP.  
MAX.  
UNIT  
ns  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
10  
10  
2
-
-
-
-
-
tCLCX  
tCLCH  
tCHCL  
-
ns  
15  
15  
ns  
2
ns  
Apr. 07, 2020  
Page 53 of 67  
Rev 1.00  
NUC1311  
8.3.2 External 4~24 MHz High Speed Crystal  
The high-speed external (HXT) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator  
oscillator. All the information given in this secion are based on characterization results obtained with  
typical external components. In the application, the external components have to be placed as close  
as possible to the XT1_IN and XT1_Out pins and must not be connected to any other devices in order  
to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer  
for more details on the resonator characteristics (frequency, package, accuracy).  
SYMBOL  
VHXT  
PARAMETER  
Operation Voltage VDD  
Temperature  
CONDITION  
MIN.  
2.5  
-40  
-
TYP..  
MAX.  
5.5  
105  
-
UNIT  
V
-
-
-
TA  
-
C  
12 MHz at VDD = 5 V  
12 MHz at VDD = 3 V  
External crystal  
2
mA  
mA  
MHz  
IHXT  
Operating Current  
Clock Frequency  
-
0.8  
-
-
fHXT  
4
24  
Notes:  
1. Safety factor (Sf) must be higher than 10 for HXT to determine the oscillator safe operation during the application life.  
If Safety factor isn’t enough, the HXT gain need be changed to higher driving level.  
ꢃꢄ  
ꢐꢂꢄ  
ꢁꢂ  
ꢎꢏꢏꢂ  
    
ꢅꢆꢇꢈꢉꢊꢋꢂꢌꢍꢄ  
RADD: The value of smallest series resistance preventing the oscillator from starting up successfully. This resistance is  
only used to measure Safety factor (Sf) of crystal in engineer stage, not for mass produciton.  
RS: Equivalent series resisotr(ESR) of crystal.  
XT1_OUT  
XT1_IN  
RADD  
C2  
C1  
Apr. 07, 2020  
Page 54 of 67  
Rev 1.00  
NUC1311  
8.3.2.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R
4 MHz ~ 24 MHz  
10~20 pF  
10~20 pF  
without  
XT1_OUT  
XT1_IN  
R
C1  
C2  
Figure 8.3-1 Typical Crystal Application Circuit  
Apr. 07, 2020  
Page 55 of 67  
Rev 1.00  
NUC1311  
8.3.3 Internal 22.1184 MHz High Speed Oscillator  
SYMBOL  
PARAMETER  
Operation Voltage VDD  
CONDITION  
MIN.  
2.5  
-
TYP.  
MAX.  
5.5  
-
UNIT  
V
VHRC  
-
-
Center Frequency  
-
22.1184  
-
MHz  
%
+25°C; VDD = 5 V  
-1  
+1  
fHRC  
Calibrated Internal Oscillator Frequency  
Operation Current  
-40°C ~ +105°C;  
-2  
-
-
+2  
-
%
VDD = 2.5 V ~ 5.5 V  
IHRC  
VDD = 5 V  
744  
μA  
HIRC oscillator accuracy vs. temperature  
0.40  
0.20  
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
-1.20  
-1.40  
-1.60  
-1.80  
Min  
Max  
-40 -30 -20 -10 0 10 20 25 30 40 50 60 70 80 85 90 100110  
Temperature()  
Figure 8.3-2 HIRC Accuracy vs. Temperature  
Apr. 07, 2020  
Page 56 of 67  
Rev 1.00  
NUC1311  
8.3.4 Internal 10 kHz Low Speed Oscillator  
SYMBOL  
PARAMETER  
Operation Voltage VDD  
Center Frequency  
CONDITION  
MIN.  
2.5  
-
TYP.  
MAX.  
5.5  
-
UNIT  
V
VLRC  
fLRC  
-
-
10  
-
-
kHz  
%
+25°C; VDD =5 V  
-10  
+10  
Calibrated Internal  
Oscillator Frequency  
-
-40°C ~ +105°C;  
-50  
-
+50  
%
VDD = 2.5 V ~ 5.5 V  
Apr. 07, 2020  
Page 57 of 67  
Rev 1.00  
NUC1311  
8.4 Analog Characteristics  
8.4.1 12-bit SARADC Specification  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
Bit  
-
Resolution  
-
-
-
-
-
-
-
12  
DNL  
INL  
EO  
Differential nonlinearity error  
Integral nonlinearity error  
Offset error  
-1~2  
-1~4  
LSB  
LSB  
LSB  
-
±2  
±4  
-
3
EG  
Gain error (Transfer gain)  
Absolute Error  
-3  
-
EA  
4
-
LSB  
-
Monotonic  
Guaranteed  
FADC  
FS  
ADC clock frequency (AVDD = 4.5V~5.5V)  
-
-
-
-
16  
MHz  
kSPS  
1/FADC  
1/FADC  
Sample rate (FADC/TCONV  
)
760  
TACQ  
TCONV  
Acquisition Time (Sample Stage)  
Total Conversion Time  
2~9  
16~23  
VDDA  
Supply Current  
3
0
-
5.5  
V
IDDA  
VIN  
CIN  
RIN  
Supply current (Avg.)  
Input voltage  
2.9  
-
mA  
V
AVDD  
Input Capacitance  
Input Load  
6
pF  
kΩ  
6.5  
Apr. 07, 2020  
Page 58 of 67  
Rev 1.00  
NUC1311  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
8.4.2 LDO and Power Management Specification  
SYMBOL  
PARAMETER  
Input Voltage VDD  
Output Voltage  
MIN.  
2.5  
TYP.  
MAX.  
5.5  
UNIT  
V
NOTE  
VDD  
VDD input voltage  
VDD > 2.5 V  
VLDO  
1.62  
-40  
1.8  
25  
1.98  
105  
V
TA  
Operating Temperature  
C  
Note:  
1. It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of the device.  
2. For ensuring power stability, a 1μF Capacitor must be connected between LDO_CAP pin and the closest VSS pin of the  
device..  
Apr. 07, 2020  
Page 59 of 67  
Rev 1.00  
NUC1311  
8.4.3 Low Voltage Reset Specification  
SYMBOL  
PARAMETER  
Operation Voltage  
Quiescent Current  
Operation Temperature  
CONDITION  
-
MIN.  
0
TYP.  
-
MAX.  
5.5  
UNIT  
V
AVDD  
TA  
AVDD=5.5 V  
-
-
1
5
A  
C  
V
ILVR  
-40  
2.00  
1.95  
2.04  
25  
105  
2.4  
2.0  
1.98  
2.13  
TA = 25 C  
TA = -40 C  
TA = 105 C  
VLVR  
Threshold Voltage  
2.02  
2.25  
V
V
8.4.4 Brown-out Detector Specification  
SYMBOL  
PARAMETER  
Operation Voltage  
Temperature  
CONDITION  
-
MIN.  
0
TYP.  
-
MAX.  
5.5  
UNIT  
V
AVDD  
TA  
-
-40  
25  
105  
140  
4.56  
3.84  
2.85  
2.28  
4.41  
3.71  
2.7  
C  
μA  
V
IBOD  
Quiescent Current  
AVDD=5.5 V  
-
-
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
BOD_VL[1:0]=11  
BOD_VL [1:0]=10  
BOD_VL [1:0]=01  
BOD_VL [1:0]=00  
4.45  
3.74  
2.73  
2.22  
4.34  
3.65  
2.66  
2.16  
4.53  
3.8  
Brown-out Voltage  
(Rising edge)  
V
VBOD  
2.77  
2.25  
4.39  
3.69  
2.69  
2.19  
V
V
V
V
Brown-out Voltage  
(Falling edge)  
VBOD  
V
2.2  
V
8.4.5 Power-on Reset Specification  
SYMBOL  
PARAMETER  
Operation Temperature  
Reset Voltage  
CONDITION  
MIN.  
-40  
TYP.  
25  
MAX.  
105  
UNIT  
C  
TA  
-
VPOR  
V+  
1.6  
2
2.4  
V
VDD Start Voltage to  
Ensure Power-on Reset  
VPOR  
-
-
-
-
-
100  
-
mV  
VDD Raising Rate to  
Ensure Power-on Reset  
RRVDD  
0.025  
V/ms  
Minimum Time for VDD  
Stays at VPOR to Ensure  
Power-on Reset  
tPOR  
-
0.5  
-
-
ms  
Apr. 07, 2020  
Page 60 of 67  
Rev 1.00  
NUC1311  
VDD  
tPOR  
RRVDD  
VPOR  
Time  
Figure 8.4-3 Power-up Ramp Condition  
8.5 Flash DC Electrical Characteristics  
SYMBOL  
PARAMETER  
Supply Voltage  
CONDITIONS  
MIN.  
1.62  
20000  
10  
TYP.  
MAX.  
UNIT  
V[2]  
[1]  
1.8  
1.98  
VFLA  
NENDUR  
TRET  
Endurance  
-
-
-
-
-
-
-
-
-
-
cycles[2]  
year  
ms  
Data Retention  
Page Erase Time  
Mass Erase Time  
Program Time  
At 85C  
TERASE  
20  
TMER  
40  
ms  
TPROG  
Note:  
40  
μs  
1. VFLA is source from chip LDO output voltage  
2. Number of program/erase cycles.  
Apr. 07, 2020  
Page 61 of 67  
Rev 1.00  
NUC1311  
8.6 I2C Dynamic Characteristics  
STANDARD MODE[1][2]  
FAST MODE[1][2]  
SYMBOL  
PARAMETER  
UNIT  
MIN.  
MAX.  
MIN.  
MAX.  
tLOW  
SCL low period  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
pF  
tHIGH  
tSU; STA  
tHD; STA  
tSU; STO  
tBUF  
SCL high period  
Repeated START condition setup time  
START condition hold time  
STOP condition setup time  
Bus free time  
4
-
-
0.6  
-
-
4
4.7[3]  
250  
0[4]  
-
0.6  
-
1.2[3]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
100  
-
Data hold time  
3.45[5]  
1000  
300  
400  
0[4]  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
tf  
SCL/SDA fall time  
-
-
-
Cb  
Capacitive load for each bus line  
-
Note:  
1. Guaranteed by design, not tested in production.  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 8 MHz to  
achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of  
the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL  
signal.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8.6-1 I2C Timing Diagram  
Apr. 07, 2020  
Page 62 of 67  
Rev 1.00  
NUC1311  
8.7 SPI Dynamic Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
SPI Master Mode (VDD = 4.5 V ~ 5.5 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
1
2
SPI Master Mode (VDD = 3.0 V ~ 3.6 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
2
4
SPI Slave Mode (VDD = 4.5 V ~ 5.5 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
3.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
16  
22  
SPI Slave Mode (VDD = 3.0 V ~ 3.6 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
18  
24  
CLKP=0  
CLKP=1  
SPICLK  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8.7-1 SPI Master Mode Timing Diagram  
Apr. 07, 2020  
Page 63 of 67  
Rev 1.00  
NUC1311  
CLKP=0  
CLKP=1  
SPICLK  
tDS  
tDH  
Data Valid  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tv  
Data Valid  
tDS  
tDH  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tv  
Data Valid  
Figure 8.7-2 SPI Slave Mode Timing Diagram  
Apr. 07, 2020  
Page 64 of 67  
Rev 1.00  
NUC1311  
9
PACKAGE DIMENSIONS  
9.1 48-pin LQFP (7x7x1.4 mm footprint 2.0 mm)  
Apr. 07, 2020  
Page 65 of 67  
Rev 1.00  
NUC1311  
10 REVISION HISTORY  
Date  
Revision  
Description  
2020.04.07  
1.00  
Initial version  
Apr. 07, 2020  
Page 66 of 67  
Rev 1.00  
NUC1311  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Apr. 07, 2020  
Page 67 of 67  
Rev 1.00  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY