NUC150-SC4E0 [NUVOTON]

ARM® Cortex®-M0 32-bit Microcontroller;
NUC150-SC4E0
型号: NUC150-SC4E0
厂家: NUVOTON    NUVOTON
描述:

ARM® Cortex®-M0 32-bit Microcontroller

微控制器
文件: 总99页 (文件大小:1904K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NUC123  
ARM® Cortex® -M0  
32-bit Microcontroller  
NuMicro® Family  
NUC123 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
May 3, 2017  
Page 1 of 99  
Rev.2.04  
NUC123  
TABLE OF CONTENTS  
List of Figures..............................................................................................6  
List of Tables...............................................................................................7  
1
2
GENERAL DESCRIPTION .......................................................................8  
FEATURES .........................................................................................9  
NuMicro® NUC123 Series Features ................................................................ 9  
Abbreviations .....................................................................................12  
PARTS INFORMATION LIST AND PIN CONFIGURATION ..............................14  
NuMicro® NUC123 Series Naming Rule ..........................................................14  
NuMicro® NUC123 Series Selection Guide.......................................................15  
2.1  
3
4
4.1  
4.2  
4.2.1  
4.2.2  
NuMicro® NUC123xxxANx Selection Guide ..............................................................15  
NuMicro® NUC123xxxAEx Selection Guide ..............................................................15  
NuMicro® NUC123 Series Pin Configuration .....................................................16  
NuMicro® NUC123xxxANx Pin Diagram ..................................................................16  
NuMicro® NUC123xxxAEx Pin Diagram ..................................................................19  
Pin Description ........................................................................................22  
NuMicro® NUC123 Pin Description ........................................................................22  
4.3  
4.3.1  
4.3.2  
4.4  
4.4.1  
5
6
BLOCK DIAGRAM ...............................................................................27  
NuMicro® NUC123 Block Diagram.................................................................27  
FUNCTIONAL DESCRIPTION.................................................................28  
ARM® Cortex® -M0 Core..............................................................................28  
System Manager......................................................................................30  
5.1  
6.1  
6.2  
6.2.1  
6.2.2  
Overview .......................................................................................................30  
System Reset..................................................................................................30  
Power modes and Wake-up sources ......................................................................36  
System Power Distribution ..................................................................................39  
System Memory Map.........................................................................................40  
System Timer (SysTick) .....................................................................................42  
Nested Vectored Interrupt Controller (NVIC) .............................................................43  
Clock Controller .......................................................................................47  
Overview .......................................................................................................47  
System Clock and SysTick Clock ..........................................................................50  
Peripherals Clock .............................................................................................50  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.3  
6.3.1  
6.3.2  
6.3.3  
May 3, 2017  
Page 2 of 99  
Rev.2.04  
NUC123  
6.3.4  
6.3.5  
Power-down Mode Clock ....................................................................................50  
Frequency Divider Output ...................................................................................51  
Flash Memory Controller (FMC)....................................................................52  
Overview .......................................................................................................52  
Features........................................................................................................52  
General Purpose I/O (GPIO)........................................................................53  
Overview .......................................................................................................53  
Features........................................................................................................53  
PDMA Controller (PDMA) ...........................................................................54  
Overview .......................................................................................................54  
Features........................................................................................................54  
Timer Controller (TMR) ..............................................................................55  
Overview .......................................................................................................55  
Features........................................................................................................55  
PWM Generator and Capture Timer (PWM) .....................................................56  
Overview .......................................................................................................56  
Features........................................................................................................56  
Watchdog Timer (WDT)..............................................................................57  
Overview .......................................................................................................57  
Features........................................................................................................57  
Window Watchdog Timer (WWDT) ................................................................58  
6.4  
6.4.1  
6.4.2  
6.5  
6.5.1  
6.5.2  
6.6  
6.6.1  
6.6.2  
6.7  
6.7.1  
6.7.2  
6.8  
6.8.1  
6.8.2  
6.9  
6.9.1  
6.9.2  
6.10  
6.10.1 Overview .......................................................................................................58  
6.10.2 Features........................................................................................................58  
6.11  
UART Interface Controller (UART).................................................................59  
6.11.1 Overview .......................................................................................................59  
6.11.2 Features........................................................................................................59  
6.12  
PS/2 Device Controller (PS2D).....................................................................60  
6.12.1 Overview .......................................................................................................60  
6.12.2 Features........................................................................................................60  
6.13  
I2C Serial Interface Controller (Master/Slave) (I2C)..............................................61  
6.13.1 Overview .......................................................................................................61  
6.13.2 Features........................................................................................................61  
6.14  
Serial Peripheral Interface (SPI)....................................................................62  
6.14.1 Overview .......................................................................................................62  
6.14.2 Features........................................................................................................62  
May 3, 2017  
Page 3 of 99  
Rev.2.04  
NUC123  
6.15  
I2S Controller (I2S) ....................................................................................63  
6.15.1 Overview .......................................................................................................63  
6.15.2 Features........................................................................................................63  
6.16  
USB Device Controller (USB).......................................................................64  
6.16.1 Overview .......................................................................................................64  
6.16.2 Features........................................................................................................64  
6.17  
Analog-to-Digital Converter (ADC).................................................................65  
6.17.1 Overview .......................................................................................................65  
6.17.2 Features........................................................................................................65  
7
ELECTRICAL CHARACTERISTICS (NUC123xxxANx) ...................................66  
7.1  
Absolute Maximum Ratings .........................................................................66  
DC Electrical Characteristics........................................................................67  
AC Electrical Characteristics........................................................................71  
External 4~24 MHz High Speed Oscillator ...............................................................71  
External 4~24 MHz High Speed Crystal ..................................................................71  
Internal 22.1184 MHz High Speed Oscillator.............................................................72  
Internal 10 kHz Low Speed Oscillator .....................................................................72  
Analog Characteristics ...............................................................................73  
10-bit SARADC Specifications..............................................................................73  
LDO and Power Management Specifications ............................................................74  
Low Voltage Reset Specifications..........................................................................74  
Brown-out Detector Specifications .........................................................................75  
Power-On Reset (5V) Specifications ......................................................................75  
USB PHY Specifications.....................................................................................76  
Flash DC Electrical Characteristics ................................................................77  
SPI Dynamic Characteristics........................................................................78  
7.2  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.4  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.5  
7.6  
8
ELECTRICAL CHARACTERISTICS (NUC123xxxAEx)....................................80  
Absolute Maximum Ratings .........................................................................80  
DC Electrical Characteristics........................................................................81  
AC Electrical Characteristics........................................................................85  
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
External 4~24 MHz High Speed Oscillator ...............................................................85  
External 4~24 MHz High Speed Crystal ..................................................................85  
Internal 22.1184 MHz High Speed Oscillator.............................................................86  
Internal 10 kHz Low Speed Oscillator .....................................................................86  
Analog Characteristics ...............................................................................87  
8.3.3  
8.3.4  
8.4  
May 3, 2017  
Page 4 of 99  
Rev.2.04  
NUC123  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
10-bit SARADC Specifications..............................................................................87  
LDO and Power Management Specifications ............................................................88  
Low Voltage Reset Specifications..........................................................................88  
Brown-out Detector Specifications .........................................................................89  
Power-On Reset (5V) Specifications ......................................................................89  
USB PHY Specifications.....................................................................................90  
Flash DC Electrical Characteristics ................................................................92  
SPI Dynamic Characteristics........................................................................93  
8.5  
8.6  
9
PACKAGE DIMENSIONS ......................................................................95  
64L LQFP (7x7x1.4 mm footprint 2.0 mm)........................................................95  
48L LQFP (7x7x1.4 mm footprint 2.0 mm)........................................................96  
33L QFN (5x5x0.8 mm)..............................................................................97  
9.1  
9.2  
9.3  
10 REVISION HISTORY............................................................................98  
May 3, 2017  
Page 5 of 99  
Rev.2.04  
NUC123  
List of Figures  
Figure 4-1 NuMicro® NUC123 Series Selection Code ................................................................... 14  
Figure 4-2 NuMicro® NUC123SxxANx LQFP 64-pin Diagram....................................................... 16  
Figure 4-3 NuMicro® NUC123LxxANx LQFP 48-pin Diagram ....................................................... 17  
Figure 4-4 NuMicro® NUC123ZxxANx QFN 33-pin Diagram......................................................... 18  
Figure 4-5 NuMicro® NUC123SxxAEx LQFP 64-pin Diagram....................................................... 19  
Figure 4-6 NuMicro® NUC123LxxAEx LQFP 48-pin Diagram ....................................................... 20  
Figure 4-7 NuMicro® NUC123ZxxAEx QFN 33-pin Diagram......................................................... 21  
Figure 5-1 NuMicro® NUC123 Block Diagram ............................................................................... 27  
Figure 6-1 Functional Controller Diagram...................................................................................... 28  
Figure 6-2 System Reset Resources ............................................................................................. 31  
Figure 6-3 nRESET Reset Waveform............................................................................................ 33  
Figure 6-4 Power-on Reset (POR) Waveform ............................................................................... 34  
Figure 6-5 Low Voltage Reset Waveform ...................................................................................... 34  
Figure 6-6 Brown-Out Detector Waveform .................................................................................... 35  
Figure 6-7 Power Mode State Machine ......................................................................................... 36  
Figure 6-8 NuMicro® NUC123 Power Distribution Diagram........................................................... 39  
Figure 6-9 Clock Generator Global View Diagram......................................................................... 48  
Figure 6-10 Clock Generator Global View Diagram....................................................................... 49  
Figure 6-11 System Clock Block Diagram ..................................................................................... 50  
Figure 6-12 SysTick Clock Control Block Diagram........................................................................ 50  
Figure 6-13 Clock Source of Frequency Divider............................................................................ 51  
Figure 6-14 Block Diagram of Frequency Divider .......................................................................... 51  
Figure 7-1 Typical Crystal Application Circuit ................................................................................ 71  
Figure 7-2 SPI Master Dynamic Characteristics Timing ................................................................ 78  
Figure 7-3 SPI Slave Dynamic Characteristics Timing .................................................................. 79  
Figure 8-1 Typical Crystal Application Circuit ................................................................................ 85  
Figure 8-2 SPI Master Dynamic Characteristics timing ................................................................. 93  
Figure 8-3 SPI Slave Dynamic Characteristics Timing .................................................................. 94  
May 3, 2017  
Page 6 of 99  
Rev.2.04  
NUC123  
List of Tables  
Table 1-1 Key Features Support Table............................................................................................ 8  
Table 3-1 List of Abbreviations....................................................................................................... 13  
Table 6-1 Reset Value of Registers ............................................................................................... 32  
Table 6-2 Power Mode Difference Table ....................................................................................... 36  
Table 6-3 Clocks in Power Modes ................................................................................................. 37  
Table 6-4 Condition of Entering Power-down Mode Again............................................................ 38  
Table 6-5 Address Space Assignments for On-Chip Controllers................................................... 41  
Table 6-6 Exception Model ............................................................................................................ 44  
Table 6-7 System Interrupt Map..................................................................................................... 45  
Table 6-8 Vector Table Format ...................................................................................................... 46  
Table 6-9 Clock Stable Count Value Table.................................................................................... 47  
May 3, 2017  
Page 7 of 99  
Rev.2.04  
NUC123  
1
GENERAL DESCRIPTION  
The NuMicro® NUC123 series is a new 32-bit Cortex® -M0 microcontroller with USB 2.0 Full-speed  
devices and a 10-bit ADC. The NUC123 series provides the high 72 MHz operating speed, large  
20 Kbytes SRAM, 8 USB endpoints and three sets of SPI controllers, which make it powerful in  
USB communication and data processing. The NUC123 series is ideal for industrial control,  
consumer electronics, and communication system applications such as printers, touch panel,  
gaming keyboard, gaming joystick, USB audio, PC peripherals, and alarm systems.  
The NUC123 series runs up to 72 MHz and supports 32-bit multiplier, structure NVIC (Nested  
Vector Interrupt Control), dual-channel APB and PDMA (Peripheral Direct Memory Access) with  
CRC function. Besides, the NUC123 series is equipped with 36/68 Kbytes Flash memory, 12/20  
Kbytes SRAM, and 4 Kbytes loader ROM for the ISP. It operates at a wide voltage range of 2.5V  
~ 5.5V and temperature range of -40~ +105and -40~ +85. It is also equipped with  
plenty of peripheral devices, such as 8-channel 10-bit ADC, UART, SPI, I2C, I2S, USB 2.0 FS  
devices, and offers low-voltage reset and Brown-out detection, PWM (Pulse-width Modulation),  
capture and compare features, four sets of 32-bit timers, Watchdog Timer, and internal RC  
oscillator. All these peripherals have been incorporated into the NUC123 series to reduce  
component count, board space and system cost.  
Additionally, the NUC123 series is equipped with ISP (In-System Programming), IAP (In-  
Application-Programming) and ICP (In-Circuit Programming) functions, which allows the user to  
update the program under software control through the on-chip connectivity interface, such as  
SWD, UART and USB.  
Product Line  
UART  
SPI  
I2C  
USB  
PS/2  
I2S  
PWM  
ADC  
NUC123  
2
3
2
1
1
1
4
8
Table 1-1 Key Features Support Table  
May 3, 2017  
Page 8 of 99  
Rev.2.04  
NUC123  
2
FEATURES  
2.1 NuMicro® NUC123 Series Features  
Core  
ARM® Cortex® -M0 core runs up to 72 MHz  
One 24-bit system timer  
Supports low power sleep mode  
Single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Supports Serial Wire Debug with 2 watchpoints/4 breakpoints  
Built-in LDO for wide operating voltage ranges from 2.5 V to 5.5 V  
Flash Memory  
36/68 KB Flash for program code  
4 KB flash for ISP loader  
Supports In-System Program (ISP) application code update  
512 byte page erase for flash  
Configurable Data Flash address and size for both 36KB and 68KB system  
Supports 2-wire ICP update through SWD/ICE interface  
Supports fast parallel programming mode by external programmer  
SRAM Memory  
12/20 KB embedded SRAM  
Supports PDMA mode  
PDMA (Peripheral DMA)  
Supports 6 channels PDMA for automatic data transfer between SRAM and  
peripherals such as SPI, UART, I2S, USB 2.0 FS device, PWM and ADC  
Supports CRC calculation with four common polynomials, CRC-CCITT, CRC-8, CRC-  
16 and CRC-32  
Clock Control  
Flexible selection for different applications  
Built-in 22.1184 MHz high speed oscillator (Trimmed to 1%) for system operation, and  
low power 10 kHz low speed oscillator for watchdog and wake-up operation  
Supports one PLL, up to 144 MHz, for high performance system operation  
External 4~24 MHz high speed crystal input for precise timing operation  
GPIO  
Four I/O modes:  
Quasi bi-direction  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable  
I/O pin configured as interrupt source with edge/level setting  
Supports High Driver and High Sink I/O mode  
Timer  
Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle and continuous counting operation modes  
Supports event counting function  
Watchdog/Windowed-Watchdog Timer  
Multiple clock sources  
May 3, 2017  
Page 9 of 99  
Rev.2.04  
NUC123  
8 selectable time-out period from 1.6ms ~ 26.0sec (depending on clock source)  
Wake-up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog timer time-out  
Interrupt on windowed-watchdog timer time-out  
Reset on windowed-watchdog timer time-out or reload in an unexpected time window  
PWM/Capture  
Up to two built-in 16-bit PWM generators provided with four PWM outputs or two  
complementary paired PWM outputs  
Each PWM generator equipped with one clock source selector, one clock divider, one  
8-bit prescaler and one Dead-zone generator for complementary paired PWM  
Up to four 16-bit digital Capture timers (shared with PWM timers) provided with four  
rising/falling capture inputs  
Supports Capture interrupt  
UART  
Up to two UART controllers  
UART ports with flow control (TXD, RXD, CTS and RTS)  
UART0/1 with 16-byte FIFO for standard device  
Support IrDA (SIR) function  
Supports RS-485 9-bit mode and direction control.  
Programmable baud-rate generator up to 1/16 system clock  
Supports PDMA mode  
SPI  
Up to three sets of SPI controllers  
Supports SPI master/Slave mode  
Full duplex synchronous serial data transfer  
Variable length of transfer data from 8 to 32 bits  
MSB or LSB first data transfer  
Up to two slave/device select lines in Master mode  
Supports Byte Suspend mode in 16/24/32-bit transmission  
Supports PDMA transfer  
I2C  
Up to two sets of I2C devices  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and resume  
serial transfer  
I2S  
Programmable clocks allowing versatile rate control  
Supports multiple address recognition (four slave address with mask option)  
Supports wake-up by address recognition (for 1st slave address only)  
Interface with external audio CODEC  
Operated as either master or Slave mode  
Capable of handling 8-, 16-, 24- and 32-bit word sizes  
Supports Mono and stereo audio data  
Supports I2S and MSB justified data format  
Two 8 word FIFO data buffers are provided, one for transmitting and the other for  
receiving  
May 3, 2017  
Page 10 of 99  
Rev.2.04  
NUC123  
Generates interrupt requests when buffer levels cross a programmable boundary  
Supports two DMA requests, one for transmitting and the other for receiving  
PS/2 Device Controller  
Host communication inhibit and request to send detection  
Reception frame error detection  
Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention  
Double buffer for data reception  
S/W override bus  
USB 2.0 Full-Speed Device  
One set of USB 2.0 FS Device 12 Mbps  
On-chip USB transceiver  
Provides 1 interrupt source with 4 interrupt events  
Supports Control, Bulk In/Out, Interrupt and Isochronous transfers  
Auto suspend function when no bus signaling for 3 ms  
Provides 8 programmable endpoints  
Includes 512 bytes internal SRAM as USB buffer  
Provides remote wake-up capability  
ADC  
10-bit SAR ADC with 150K SPS (for NUC123xxxANx)  
10-bit SAR ADC with 200K SPS (for NUC123xxxAEx)  
Up to 8-ch single-end input  
Single scan/single cycle scan/continuous scan  
Each channel with individual result register  
Scan on enabled channels  
Threshold voltage detection  
Conversion start by software programming or external input  
Supports PDMA mode  
Brown-out detector  
With 4 levels: 4.4 V/3.7 V/2.7 V/2.2 V  
Supports Brown-out Interrupt and Reset option  
Low Voltage Reset  
Threshold voltage levels: 2.0 V  
One built-in LDO  
Operating Temperature: -40~85(for NUC123xxxANx)  
Operating Temperature: -40~105(for NUC123xxxAEx)  
Packages:  
All Green package (RoHS)  
LQFP 64-pin  
LQFP 48-pin  
QFN 33-pin  
May 3, 2017  
Page 11 of 99  
Rev.2.04  
NUC123  
3
ABBREVIATIONS  
Acronym  
Description  
ACMP  
ADC  
AES  
APB  
AHB  
BOD  
CAN  
DAP  
DES  
EBI  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
Advanced High-Performance Bus  
Brown-out Detection  
Controller Area Network  
Debug Access Port  
Data Encryption Standard  
External Bus Interface  
EPWM  
FIFO  
FMC  
FPU  
GPIO  
HCLK  
HIRC  
HXT  
IAP  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
22.1184 MHz Internal High Speed RC Oscillator  
4~20 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
ICP  
ISP  
In System Programming  
LDO  
LIN  
Low Dropout Regulator  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
QEI  
Pulse Width Modulation  
Quadrature Encoder Interface  
Secure Digital  
SD  
SPI  
Serial Peripheral Interface  
May 3, 2017  
Page 12 of 99  
Rev.2.04  
NUC123  
SPS  
Samples per Second  
TDES  
TK  
Triple Data Encryption Standard  
Touch Key  
TMR  
UART  
UCID  
USB  
Timer Controller  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
WDT  
WWDT  
Watchdog Timer  
Window Watchdog Timer  
Table 3-1 List of Abbreviations  
May 3, 2017  
Page 13 of 99  
Rev.2.04  
NUC123  
4
PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® NUC123 Series Naming Rule  
ARMBased  
32-bit Microcontroller  
NUC 1 2 3 - XXXXXX  
CPU Core  
Option  
1: Cortex® -M0  
5/7: ARM7  
9: ARM9  
0: SRAM 20 KB  
1: SRAM 12 KB  
Temperature  
N: -40oC ~ +85oC  
E: -40oC ~ +105oC  
Product Line Function  
0: Advance Line  
2: USB Line  
3: Automotive Line  
4: Connectivity Line  
5: High Density  
Reserved  
SRAM Size  
Reserved  
2: 12 KB  
4: 20 KB  
0~9: Sub Product Line  
Package Type  
Flash ROM  
Z: QFN 33 5x5mm  
L: LQFP 48 7x7mm  
S: LQFP 64 7x7mm  
C: 36 KB  
D: 68 KB  
Figure 4-1 NuMicro® NUC123 Series Selection Code  
May 3, 2017  
Page 14 of 99  
Rev.2.04  
NUC123  
4.2 NuMicro® NUC123 Series Selection Guide  
4.2.1 NuMicro® NUC123xxxANx Selection Guide  
Connectivity  
-
-
-
-
-
-
NUC123ZD4AN0  
NUC123ZC2AN1  
NUC123LD4AN0  
NUC123LC2AN1  
NUC123SD4AN0  
NUC123SC2AN1  
68  
36  
68  
36  
68  
36  
20  
12  
20  
12  
20  
12  
4
4
4
4
4
4
Up to 20 4x32-bit  
up to 20 4x32-bit  
up to 36 4x32-bit  
up to 36 4x32-bit  
up to 47 4x32-bit  
up to 47 4x32-bit  
1
1
2
2
2
2
3
3
3
3
3
3
1
1
2
2
2
2
1
1
1
1
1
1
-
-
-
-
-
-
-
1
1
1
1
1
1
-
-
-
-
-
-
2
2
4
4
4
4
3x10-bit  
3x10-bit  
8x10-bit  
8x10-bit  
8x10-bit  
8x10-bit  
-
-
-
-
-
-
-
-
-
-
-
-
v
v
v
v
v
v
QFN33  
-
QFN33  
LQFP48  
LQFP48  
LQFP64  
LQFP64  
1
1
1
1
4.2.2 NuMicro® NUC123xxxAEx Selection Guide  
Connectivity  
-
-
-
-
-
-
NUC123ZD4AE0  
NUC123ZC2AE1  
NUC123LD4AE0  
NUC123LC2AE1  
NUC123SD4AE0  
NUC123SC2AE1  
68  
36  
68  
36  
68  
36  
20  
12  
20  
12  
20  
12  
4
4
4
4
4
4
Up to 20 4x32-bit  
up to 20 4x32-bit  
up to 36 4x32-bit  
up to 36 4x32-bit  
up to 47 4x32-bit  
up to 47 4x32-bit  
1
1
2
2
2
2
3
3
3
3
3
3
1
1
2
2
2
2
1
1
1
1
1
1
-
-
-
-
-
-
-
1
1
1
1
1
1
-
-
-
-
-
-
3
3
4
4
4
4
3x10-bit  
3x10-bit  
8x10-bit  
8x10-bit  
8x10-bit  
8x10-bit  
-
-
-
-
-
-
-
-
-
-
-
-
v
v
v
v
v
v
QFN33  
QFN33  
-
1
1
1
1
LQFP48  
LQFP48  
LQFP64  
LQFP64  
May 3, 2017  
Page 15 of 99  
Rev.2.04  
NUC123  
4.3 NuMicro® NUC123 Series Pin Configuration  
4.3.1 NuMicro® NUC123xxxANx Pin Diagram  
4.3.1.1  
NuMicro® NUC123SxxANx LQFP 64 pin  
SPI2_SS0/ADC0/PD.0  
SPI0_SS1/SPI2_CLK/ADC1/PD.1  
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2  
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3  
SPI2_MISO1/ADC4/PD.4  
SPI2_MOSI1/ADC5/PD.5  
TM0_EXT/INT1/PB.15  
XT1_OUT/PF.0  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PB.9/SPI1_SS1/TM1  
PB.10/SPI0_SS1/TM2  
PC.0/SPI0_SS0/I2S_LRCLK  
PC.1/SPI0_CLK/I2S_BCLK  
PC.2/SPI0_MISO0/I2S_DI  
PC.3/SPI0_MOSI0/I2S_DO  
PC.4/SPI0_MISO1/UART0_RXD  
PC.5/SPI0_MOSI1/UART0_TXD  
PB.3/UART0_nCTS/TM3_EXT  
PB.2/UART0_nRTS/TM2_EXT  
PB.1/UART0_TXD  
NUC123SxxANx  
LQFP 64-pin  
XT1_IN/PF.1  
nRESET  
VSS  
VDD  
PB.0/UART0_RXD  
PS2_DAT/I2C0_SDA/ADC6/PF.2  
PS2_CLK/I2C0_SCL/ADC7/PF.3  
PVSS  
USB_D+  
USB_D-  
USB_VDD33_CAP  
TM0/PB.8  
USB_VBUS  
Figure 4-2 NuMicro® NUC123SxxANx LQFP 64-pin Diagram  
May 3, 2017  
Page 16 of 99  
Rev.2.04  
NUC123  
4.3.1.2  
NuMicro® NUC123LxxANx LQFP 48 pin  
AVDD  
SPI2_SS0/ADC0/PD.0  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PB.9/SPI1_SS1/TM1  
PB.10/SPI0_SS1/TM2  
PC.0/SPI0_SS0/I2S_LRCLK  
PC.1/SPI0_CLK/I2S_BCLK  
PC.2/SPI0_MISO0/I2S_DI  
PC.3/SPI0_MOSI0/I2S_DO  
PC.4/SPI0_MISO1/UART0_RXD  
PC.5/SPI0_MOSI1/UART0_TXD  
USB_D+  
SPI0_SS1/SPI2_CLK/ADC1/PD.1  
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2  
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3  
SPI2_MISO1/ADC4/PD.4  
SPI2_MOSI1/ADC5/PD.5  
XT1_OUT/PF.0  
NUC123LxxANx  
LQFP 48-pin  
XT1_IN/PF.1  
nRESET  
USB_D-  
PS2_DAT/I2C0_SDA/ADC6/PF.2  
PS2_CLK/I2C0_SCL/ADC7/PF.3  
USB_VDD33_CAP  
USB_VBUS  
Figure 4-3 NuMicro® NUC123LxxANx LQFP 48-pin Diagram  
May 3, 2017  
Page 17 of 99  
Rev.2.04  
NUC123  
4.3.1.3  
NuMicro® NUC123ZxxANx QFN 33 pin  
AVDD 25  
SPI0_SS1/SPI2_CLK/ADC1/PD.1 26  
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2 27  
16 PC.0/SPI0_SS0/I2S_LRCLK  
15 PC.1/SPI0_CLK/I2S_BCLK  
14 PC.2/SPI0_MISO0/I2S_DI  
13 PC.3/SPI0_MOSI0/I2S_DO  
12 USB_D+  
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3 28  
XT1_OUT/PF.0 29  
XT1_IN/PF.1 30  
NUC123ZxxANx  
QFN 33-pin  
11 USB_D-  
33 VSS  
nRESET 31  
10 USB_VDD33_CAP  
PVSS 32  
9
USB_VBUS  
Figure 4-4 NuMicro® NUC123ZxxANx QFN 33-pin Diagram  
May 3, 2017  
Page 18 of 99  
Rev.2.04  
 
NUC123  
4.3.2 NuMicro® NUC123xxxAEx Pin Diagram  
4.3.2.1  
NuMicro® NUC123SxxAEx LQFP 64 pin  
SPI2_SS0/ADC0/PD.0  
SPI0_SS1/SPI2_CLK/ADC1/PD.1  
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2  
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3  
SPI2_MISO1/ADC4/PD.4  
SPI2_MOSI1/ADC5/PD.5  
TM0_EXT/INT1/PB.15  
XT1_OUT/PF.0  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PB.9/SPI1_SS1/TM1/PWM1  
PB.10/SPI0_SS1/TM2  
PC.0/SPI0_SS0/I2S_LRCLK  
PC.1/SPI0_CLK/I2S_BCLK  
PC.2/SPI0_MISO0/I2S_DI  
PC.3/SPI0_MOSI0/I2S_DO  
PC.4/SPI0_MISO1/UART0_RXD  
PC.5/SPI0_MOSI1/UART0_TXD  
PB.3/UART0_nCTS/TM3_EXT  
PB.2/UART0_nRTS/TM2_EXT  
PB.1/UART0_TXD  
NUC123SxxAEx  
LQFP 64-pin  
XT1_IN/PF.1  
nRESET  
VSS  
VDD  
PB.0/UART0_RXD  
PS2_DAT/I2C0_SDA/ADC6/PF.2  
PS2_CLK/I2C0_SCL/ADC7/PF.3  
PVSS  
USB_D+  
USB_D-  
USB_VDD33_CAP  
TM0/PB.8  
USB_VBUS  
Figure 4-5 NuMicro® NUC123SxxAEx LQFP 64-pin Diagram  
May 3, 2017  
Page 19 of 99  
Rev.2.04  
NUC123  
4.3.2.2  
NuMicro® NUC123LxxAEx LQFP 48 pin  
AVDD  
SPI2_SS0/ADC0/PD.0  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PB.9/SPI1_SS1/TM1/PWM1  
PB.10/SPI0_SS1/TM2  
PC.0/SPI0_SS0/I2S_LRCLK  
PC.1/SPI0_CLK/I2S_BCLK  
PC.2/SPI0_MISO0/I2S_DI  
PC.3/SPI0_MOSI0/I2S_DO  
PC.4/SPI0_MISO1/UART0_RXD  
PC.5/SPI0_MOSI1/UART0_TXD  
USB_D+  
SPI0_SS1/SPI2_CLK/ADC1/PD.1  
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2  
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3  
SPI2_MISO1/ADC4/PD.4  
SPI2_MOSI1/ADC5/PD.5  
XT1_OUT/PF.0  
NUC123LxxAEx  
LQFP 48-pin  
XT1_IN/PF.1  
nRESET  
USB_D-  
PS2_DAT/I2C0_SDA/ADC6/PF.2  
PS2_CLK/I2C0_SCL/ADC7/PF.3  
USB_VDD33_CAP  
USB_VBUS  
Figure 4-6 NuMicro® NUC123LxxAEx LQFP 48-pin Diagram  
May 3, 2017  
Page 20 of 99  
Rev.2.04  
NUC123  
4.3.2.3  
NuMicro® NUC123ZxxAEx QFN 33 pin  
AVDD 25  
SPI0_SS1/SPI2_CLK/ADC1/PD.1 26  
SPI0_MISO1/SPI2_MISO0/ADC2/PD.2 27  
16 PC.0/SPI0_SS0/I2S_LRCLK  
15 PC.1/SPI0_CLK/I2S_BCLK  
14 PC.2/SPI0_MISO0/I2S_DI  
13 PC.3/SPI0_MOSI0/I2S_DO  
12 USB_D+  
SPI0_MOSI1/SPI2_MOSI0/ADC3/PD.3 28  
XT1_OUT/PF.0 29  
XT1_IN/PF.1 30  
NUC123ZxxAEx  
QFN 33-pin  
11 USB_D-  
33 VSS  
nRESET 31  
10 USB_VDD33_CAP  
PVSS 32  
9
USB_VBUS  
Figure 4-7 NuMicro® NUC123ZxxAEx QFN 33-pin Diagram  
May 3, 2017  
Page 21 of 99  
Rev.2.04  
 
NUC123  
4.4 Pin Description  
4.4.1 NuMicro® NUC123 Pin Description  
Pin No  
Pin Name  
Type  
Description  
LQFP 64- LQFP 48- QFN 33-  
pin  
pin  
pin  
PB.14  
I/O  
I
Digital GPIO pin  
1
3
1
INT0  
External interrupt 0 input pin  
Digital GPIO pin  
2
PB.13  
I/O  
I/O  
I/O  
O
PB.12  
Digital GPIO pin  
3
4
SPI1_SS0  
CLKO  
SPI1 1st slave select pin  
Frequency Divider output pin  
Digital GPIO pin  
PA.11  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI1_CLK  
SPI2_MOSI0  
I2C1_SCL  
PA.10  
SPI1 serial clock pin  
4
2
SPI2 1st MOSI (Master Out, Slave In) pin  
I2C1 clock pin  
Digital GPIO pin  
SPI1_MISO0  
SPI2_MISO0  
I2C1_SDA  
PD.8  
SPI1 1st MISO (Master In, Slave Out) pin  
SPI2 1st MISO (Master In, Slave Out) pin  
I2C1 data input/output pin  
Digital GPIO pin  
5*  
5*  
3*  
6
7
8
SPI1_MOSI0  
PD.9  
SPI1 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
PD.10  
Digital GPIO pin  
CLKO  
Frequency Divider output pin  
Digital GPIO pin  
PD.11  
I/O  
I
9
INT1  
External interrupt 1 input pin  
Digital GPIO pin  
PB.4  
I/O  
I
UART1_RXD  
SPI2_SS0  
SPI1_SS1  
PB.5  
UART1 data receiver input pin  
SPI2 1st slave select pin  
SPI1 2nd slave select pin  
Digital GPIO pin  
10  
6
4
5
I/O  
I/O  
I/O  
O
11  
12  
7
8
UART1_TXD  
SPI2_CLK  
PB.6  
UART1 data transmitter output pin  
SPI2 serial clock pin  
I/O  
I/O  
O
Digital GPIO pin  
UART1_nRTS  
UART1 request to send output pin  
May 3, 2017  
Page 22 of 99  
Rev.2.04  
 
NUC123  
SPI2_MOSI0  
PB.7  
I/O  
I/O  
I
SPI2 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
13  
9
UART1_nCTS  
SPI2_MISO0  
LDO_CAP  
VDD  
UART1 clear to send input pin  
SPI2 1st MISO (Master In, Slave Out) pin  
LDO output pin  
I/O  
P
14  
15  
10  
11  
6
7
P
Power supply for I/O ports and LDO source for internal PLL  
and digital function. Voltage range is 2.5V ~ 5V.  
16  
17  
18  
19  
20  
12  
13  
14  
15  
16  
8
VSS  
P
USB  
USB  
USB  
USB  
I/O  
I
Ground  
9
USB_VBUS  
USB_VDD33_CAP  
USB_D-  
Power supply from USB host or hub  
Internal power regulator output 3.3V decoupling pin  
USB differential signal D-  
USB differential signal D+  
Digital GPIO pin  
10  
11  
12  
USB_D+  
PB.0  
21  
22  
UART0_RXD  
PB.1  
UART0 data receiver input pin  
Digital GPIO pin  
I/O  
O
UART0_TXD  
PB.2  
UART0 data transmitter output pin  
Digital GPIO pin  
I/O  
O
23  
24  
25  
26  
27  
UART0_nRTS  
TM2_EXT  
PB.3  
UART0 request to send output pin  
Timer2 external capture input pin  
Digital GPIO pin  
I
I/O  
I
UART0_nCTS  
TM3_EXT  
PC.5  
UART0 clear to send input pin  
Timer3 external capture input pin  
Digital GPIO pin  
I
I/O  
I/O  
O
17  
18  
19  
SPI0_MOSI1  
UART0_TXD  
PC.4  
SPI0 2nd MOSI (Master Out, Slave In) pin  
UART0 data transmitter output pin  
Digital GPIO pin  
I/O  
I/O  
I
SPI0_MISO1  
UART0_RXD  
PC.3  
SPI0 2nd MISO (Master In, Slave Out) pin  
UART0 data receiver input pin  
Digital GPIO pin  
I/O  
I/O  
O
13  
SPI0_MOSI0  
I2S_DO  
SPI0 1st MOSI (Master Out, Slave In) pin  
I2S data output pin  
PC.2  
I/O  
I/O  
I
Digital GPIO pin  
28  
29  
20  
21  
14  
15  
SPI0_MISO0  
I2S_DI  
SPI0 1st MISO (Master In, Slave Out) pin  
I2S data input pin  
PC.1  
I/O  
I/O  
Digital GPIO pin  
SPI0_CLK  
SPI0 serial clock pin  
May 3, 2017  
Page 23 of 99  
Rev.2.04  
NUC123  
I2S_BCLK  
PC.0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I2S bit clock pin  
Digital GPIO pin  
30  
31  
22  
23  
16  
SPI0_SS0  
I2S_LRCLK  
PB.10  
SPI0 1st slave select pin  
I2S left/right channel clock pin  
Digital GPIO pin  
SPI0_SS1  
TM2  
SPI0 2nd slave select pin  
Timer2 event counter input / toggle output pin  
Digital GPIO pin  
PB.9  
SPI1_SS1  
TM1  
SPI1 2nd slave select pin  
Timer1 event counter input / toggle output pin  
32  
24  
PWM1  
PWM1 PWM output / capture input pin (NUC123xxxAEx  
Only)  
33  
34  
VSS  
P
Ground  
PC.13  
I/O  
I/O  
I/O  
O
Digital GPIO pin  
SPI1_MOSI1  
PWM3  
SPI1 2nd MOSI (Master Out, Slave In) pin  
PWM3 PWM output / capture input pin  
Frequency Divider output pin  
Digital GPIO pin  
25  
26  
17  
18  
CLKO  
PC.12  
I/O  
I/O  
I/O  
O
SPI1_MISO1  
PWM2  
SPI1 2nd MISO (Master In, Slave Out) pin  
PWM2 PWM output / capture input pin  
I2S master clock output pin  
Digital GPIO pin  
35  
36  
I2S_MCLK  
PC.11  
I/O  
I/O  
I/O  
I/O  
27  
28  
19  
20  
SPI1_MOSI0  
PC.10  
SPI1 1st MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
37  
38  
39  
SPI1_MISO0  
SPI1 1st MISO (Master In, Slave Out) pin  
Power supply for I/O ports and LDO source for internal PLL  
and digital function. Voltage range is 2.5V ~ 5V.  
VDD  
P
PC.9  
I/O  
I/O  
I/O  
I/O  
I/O  
Digital GPIO pin  
29  
30  
21  
22  
SPI1_CLK  
PC.8  
SPI1 serial clock pin  
Digital GPIO pin  
SPI1_SS0  
PWM0  
SPI1 1st slave select pin  
40  
41  
PWM0 PWM output / capture input pin (NUC123xxxAEx  
Only)  
PA.15  
I/O  
I/O  
O
Digital GPIO pin  
PWM3  
PWM3 PWM output / capture input pin  
I2S master clock output pin  
Frequency Divider output pin  
31  
I2S_MCLK  
CLKO  
O
May 3, 2017  
Page 24 of 99  
Rev.2.04  
NUC123  
42  
43  
VSS  
P
Ground  
PA.14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Digital GPIO pin  
32  
33  
34  
PWM2  
PWM2 PWM output / capture input pin  
Digital GPIO pin  
PA.13  
44  
45  
PWM1  
PWM1 PWM output / capture input pin  
Digital GPIO pin  
PA.12  
PWM0  
PWM0 PWM output / capture input pin  
Serial wired debugger data pin  
Serial wired debugger clock input pin  
Power supply for internal analog circuit  
Digital GPIO pin  
46  
47  
48  
35  
36  
37  
23  
24  
25  
ICE_DAT  
ICE_CLK  
AVDD  
AP  
I/O  
AI  
PD.0  
49  
50  
38  
39  
ADC0  
ADC channel 0 analog input pin  
SPI2 1st slave select pin  
SPI2_SS0  
PD.1  
I/O  
I/O  
I/O  
I/O  
AI  
Digital GPIO pin  
SPI2_CLK  
SPI0_SS1  
ADC1  
SPI2 serial clock pin  
26  
27  
28  
SPI0 2nd slave select pin  
ADC channel 1 analog input pin  
Digital GPIO pin  
PD.2  
I/O  
I/O  
I/O  
AI  
SPI2_MISO0  
SPI0_MISO1  
ADC2  
SPI2 1st MISO (Master In, Slave Out) pin  
SPI0 2nd MISO (Master In, Slave Out) pin  
ADC channel 2 analog input pin  
Digital GPIO pin  
51  
52  
40  
41  
PD.3  
I/O  
I/O  
I/O  
AI  
SPI2_MOSI0  
SPI0_MOSI1  
ADC3  
SPI2 1st MOSI (Master Out, Slave In) pin  
SPI0 2nd MOSI (Master Out, Slave In) pin  
ADC channel 3 analog input pin  
Digital GPIO pin  
PD.4  
I/O  
AI  
53  
54  
42  
43  
ADC4  
ADC channel 4 analog input pin  
SPI2 2nd MISO (Master In, Slave Out) pin  
Digital GPIO pin  
SPI2_MISO1  
PD.5  
I/O  
I/O  
AI  
ADC5  
ADC channel 5 analog input pin  
SPI2 2nd MOSI (Master Out, Slave In) pin  
Digital GPIO pin  
SPI2_MOSI1  
PB.15  
I/O  
I/O  
I
55  
56  
INT1  
External interrupt 1 input pin  
Timer0 external capture input pin  
Digital GPIO pin  
TM0_EXT  
PF.0  
I
44  
29  
I/O  
May 3, 2017  
Page 25 of 99  
Rev.2.04  
NUC123  
XT1_OUT  
PF.1  
O
I/O  
I
External 4~24 MHz high speed crystal output pin  
Digital GPIO pin  
57  
45  
46  
30  
31  
XT1_IN  
nRESET  
External 4~24 MHz high speed crystal input pin  
I
External reset input: Low active, set this pin low reset chip to  
initial state. With internal pull-up.  
58  
59  
60  
VSS  
VDD  
P
P
Ground  
Power supply for I/O ports and LDO source for internal PLL  
and digital circuit. Voltage range is 2.5 V ~ 5V.  
PF.2  
I/O  
AI  
Digital GPIO pin  
ADC6  
ADC channel 6 analog input pin  
I2C0 data input/output pin  
PS/2 data pin  
61  
62  
47  
48  
I2C0_SDA  
PS2_DAT  
PF.3  
I/O  
I/O  
I/O  
AI  
Digital GPIO pin  
ADC7  
ADC channel 7 analog input pin  
I2C0 clock pin  
I2C0_SCL  
PS2_CLK  
PVSS  
I/O  
I/O  
P
PS/2 clock pin  
63  
64  
1
2
32  
PLL ground  
PB.8  
I/O  
I/O  
Digital GPIO pin  
TM0  
Timer0 event counter input / toggle output pin  
Note: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power  
May 3, 2017  
Page 26 of 99  
Rev.2.04  
NUC123  
5
BLOCK DIAGRAM  
5.1 NuMicro® NUC123 Block Diagram  
Memory  
Timer/PWM  
Analog Interface  
10-bit ADC x 8  
32-bit Timer x 4  
APROM & DataFlash  
Watchdog Timer  
36/68 KB  
ARM  
Cortex-M0  
72MHz  
PDMA  
Windowed  
Watchdog Timer  
LDROM  
4 KB  
SRAM  
12/20 KB  
PWM/Capture  
Timer x 4  
AHB/APB Bus  
Clock Control  
Connectivity  
UART x 2  
I/O Ports  
LDO  
General Purpose  
I/O  
High Speed  
Oscillator  
High Speed  
SPI x 3  
I2C x 2  
I2S  
Power On Reset  
LVR  
Crystal  
22.1184 MHz  
4 ~ 24 MHz  
Reset Pin  
Low Speed  
Oscillator  
10 KHz  
PS/2  
USB  
PLL  
Brownout  
Detection  
External Interrupt  
Figure 5-1 NuMicro® NUC123 Block Diagram  
May 3, 2017  
Page 27 of 99  
Rev.2.04  
NUC123  
6
FUNCTIONAL DESCRIPTION  
6.1 ARM® Cortex® -M0 Core  
The Cortex® -M0 processor, a configurable, multistage, 32-bit RISC processor, has an AMBA  
AHB-Lite interface and includes an NVIC component. The processor has optional hardware  
debug functionality, can execute Thumb code, and is compatible with other Cortex® -M profile  
processors. The profile supports two modes -Thread mode and Handler mode. Handler mode is  
entered as a result of an exception. An exception return can only be issued in Handler mode.  
Thread mode is entered on Reset, and can be entered as a result of an exception return. Figure  
6-1 shows the functional controller of processor.  
Cortex-M0 components  
Cortex-M0 processor  
Debug  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Interrupts  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex-M0  
Processor  
Core  
Debug  
Access  
Port  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debugger  
interface  
Bus Matrix  
(DAP)  
AHB-Lite  
interface  
Serial Wire or  
JTAG debug port  
Figure 6-1 Functional Controller Diagram  
The implemented device provides:  
A low gate count processor:  
ARMv6-M Thumb® instruction set  
Thumb-2 technology  
ARMv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supporting little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies abandoned and restarted to  
facilitate rapid interrupt handling  
C Application Binary Interface compliant exception model, which is the ARMv6-  
M, C Application Binary Interface (C-ABI) compliant exception model that  
enables the use of pure C functions as interrupt handlers  
Low power sleep mode entry using Wait For Interrupt (WFI), Wait For Event  
(WFE) instructions, or the return from interrupt sleep-on-exit feature  
NVIC :  
May 3, 2017  
Page 28 of 99  
Rev.2.04  
 
NUC123  
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-Maskable Interrupt (NMI) input  
Supports both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) with ultra-low power sleep mode  
Debug support  
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
Single 32-bit AMBA-3 AHB-Lite system interface providing simple integration to  
all system peripherals and memory  
Single 32-bit slave port supporting the DAP (Debug Access Port)  
May 3, 2017  
Page 29 of 99  
Rev.2.04  
NUC123  
6.2 System Manager  
6.2.1 Overview  
The system manager provides the functions of system control, power modes, wake-up sources,  
reset sources, system memory map, product ID and multi-function pin control. The following  
sections describe the functions for  
System Reset  
System Power Architecture  
System Memory Map  
System management registers for Part Number ID, chip reset and on-chip controllers  
reset, and multi-functional pin control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control registers  
6.2.2 System Reset  
The system reset can be issued by one of the events listed below. These reset event flags can be  
read from RSTSRC register to determine the reset source. Hardware reset can reset chip through  
peripheral reset signals. Software reset can trigger reset through control registers.  
Hardware Reset Sources  
Power-on Reset (POR)  
Low level on the nRESET pin  
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)  
Low Voltage Reset (LVR)  
Brown-out Detector Reset (BOD Reset)  
Software Reset Sources  
CHIP Reset will reset whole chip by writing 1 to CHIPRST (IPRSTC1[0])  
MCU Reset to reboot but keeping the booting setting from APROM or LDROM  
by writing 1 to SYSRESETREQ (AIRCR[2])  
CPU Reset for Cortex® -M0 core Only by writing 1 to CPURST (IPRSTC1[1])  
Power-on Reset or CHIP_RST (IPRST1[0]) resets the whole chip including all peripherals,  
external crystal circuit and BS (ISPCON[1]) bit.  
SYSRESETREQ (AIRCR[2]) resets the whole chip including all peripherals, but does not reset  
external crystal circuit and BS (ISPCON[1]) bit.  
May 3, 2017  
Page 30 of 99  
Rev.2.04  
NUC123  
Glitch Filter  
36 us  
nRESET  
~50k ohm  
@5v  
POR_DIS_CODE(PORCR[15:0])  
Power-on  
Reset  
VDD  
LVR_EN(BODCR[7])  
Reset Pulse Width  
3.2ms  
Low Voltage  
Reset  
AVDD  
BOD_RSTEN(BODCR[3])  
Brown-out  
Reset  
System Reset  
WDT/WWDT  
Reset  
Reset Pulse Width  
64 WDT clocks  
CHIP Reset  
CHIP_RST(IPRSTC1[0])  
MCU Reset  
SYSRESETREQ(AIRCR[2])  
Reset Pulse Width  
2 system clocks  
Software Reset  
CPU Reset  
CPU_RST(IPRSTC1[1])  
Figure 6-2 System Reset Resources  
There are a total of 8 reset sources in the NuMicro® family. In general, CPU reset is used to reset  
Cortex® -M0 only; the other reset sources will reset Cortex® -M0 and all peripherals. However,  
there are small differences between each reset source and they are listed in Table 6-1.  
Reset Sources  
POR  
NRESET  
WDT  
LVR  
BOD  
CHIP  
MCU  
CPU  
Register  
RSTSRC  
Bit 0 = 1  
0x0  
Bit 1 = 1  
-
Bit 2 = 1  
-
Bit 3 = 1  
-
Bit 4 = 1  
-
Bit 0 = 1  
-
Bit 5 = 1  
-
Bit 7 = 1  
-
CHIP_RST  
(IPRSTC1[0])  
BOD_EN  
Reload from Reload  
CONFIG0 from  
Reload  
from  
Reload  
from  
-
Reload from Reload  
-
CONFIG0  
from  
(BODCR[0])  
CONFIG0 CONFIG0 CONFIG0  
CONFIG0  
BOD_VL  
(BODCR[2:1])  
BOD_RSTEN  
(BODCR[3])  
XTL12M_EN  
Reload from Reload  
CONFIG0 from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload from Reload  
-
CONFIG0  
from  
(PWRCON [0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
CONFIG0  
WDT_EN  
0x1  
-
0x1  
-
-
0x1  
-
-
-
(APBCLK[0])  
HCLK_S  
Reload from Reload  
CONFIG0 from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload from Reload  
CONFIG0  
from  
CONFIG0  
(CLKSEL0[2:0])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
May 3, 2017  
Page 31 of 99  
Rev.2.04  
NUC123  
WDT_S  
0x3  
0x0  
0x0  
0x0  
0x0  
0x0  
0x3  
-
-
-
-
-
-
-
-
-
-
-
(CLKSEL1[1:0])  
XTL12M_STB  
-
-
-
-
-
-
(CLKSTATUS[0])  
PLL_STB  
-
-
-
-
-
-
(CLKSTATUS[2])  
OSC10K_STB  
-
-
-
-
-
-
(CLKSTATUS[3])  
OSC22M_STB  
-
-
-
-
-
-
(CLKSTATUS[4])  
CLK_SW_FAIL  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
(CLKSTATUS[7])  
WTE  
Reload from Reload  
CONFIG0 from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload from  
CONFIG0  
(WTCR[7])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
WTCR  
0x0700  
0x0000  
0x0000  
0x0700  
0x0000  
0x0000  
0x0700  
0x0000  
0x0000  
0x0700  
0x0000  
0x0000  
0x0700  
0x0000  
0x0000  
0x0700  
0x0000  
0x0000  
-
-
-
-
-
-
-
-
-
-
-
-
-
WTCRALT  
WWDTRLD  
WWDTCR  
WWDTSR  
WWDTCVR  
0x3F0800 0x3F0800 0x3F0800 0x3F0800 0x3F0800 0x3F0800  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
0x0000  
0x3F  
BS  
Reload from Reload  
CONFIG0 from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload from -  
CONFIG0  
(ISPCON[1])  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
DFBADR  
Reload from Reload  
CONFIG1 from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload from -  
CONFIG1  
-
-
-
CONFIG1 CONFIG1 CONFIG1 CONFIG1  
CBS  
Reload from Reload  
CONFIG0 from  
Reload  
from  
Reload  
from  
Reload  
from  
Reload from -  
CONFIG0  
(ISPSTA[2:1))  
CONFIG0 CONFIG0 CONFIG0 CONFIG0  
VECMAP  
Reload  
Reload  
Reload  
base on  
Reload  
base on  
Reload  
base on  
Reload base -  
on  
base on  
base on  
(ISPSTA[20:9])  
(NUC123xxxAEx Only)  
CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0 CONFIG0  
Other Peripheral  
Registers  
Reset Value  
-
FMC Registers  
Reset Value  
Note: -‘ means that the value of register keeps original setting.  
Table 6-1 Reset Value of Registers  
6.2.2.1 nRESET Reset  
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an  
asynchronous reset input pin and can be used to reset system at any time. When the nRESET  
voltage is lower than 0.2 VDD and the state keeps longer than 36 us (glitch filter), chip will be  
May 3, 2017  
Page 32 of 99  
Rev.2.04  
NUC123  
reset. The nRESET reset will control the chip in reset state until the nRESET voltage rises above  
0.7 VDD and the state keeps longer than 36 us (glitch filter). The RSTS_RESET (RSTSRC[1]) will  
be set to 1 if the previous reset source is nRESET reset.  
nRESET  
0.7 VDD  
0.2 VDD  
36 us  
SS  
36 us  
nRESET Reset  
SS  
Figure 6-3 shows the nRESET reset waveform.  
nRESET  
0.7 VDD  
0.2 VDD  
36 us  
SS  
36 us  
nRESET Reset  
SS  
Figure 6-3 nRESET Reset Waveform  
6.2.2.2 Power-On Reset (POR)  
The Power-on reset (POR) is used to generate a stable system reset signal and forces the  
system to be reset when power-on to avoid unexpected behavior of MCU. When applying the  
power to MCU, the POR module will detect the rising voltage and generate reset signal to system  
until the voltage is ready for MCU operation. At POR reset, the RSTS_POR (RSTSRC[0]) will be  
set to 1 to indicate there is a POR reset event. The RSTS_POR (RSTSRC[0]) bit can be cleared  
by writing 1 to it. Figure 6-4 shows the waveform of Power-On reset.  
VPOR  
0.1V  
VDD  
Power On  
Reset  
May 3, 2017  
Page 33 of 99  
Rev.2.04  
 
NUC123  
Figure 6-4 Power-on Reset (POR) Waveform  
6.2.2.3 Low Voltage Reset (LVR)  
If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit  
LVR_EN (BODCR[7]) to 1, after 100us delay, LVR detection circuit will be stable and the LVR  
function will be active. Then LVR function will detect AVDD during system operation. When the  
AVDD voltage is lower than VLVR and the state keeps longer than De-glitch time (16*HCLK cycles),  
chip will be reset. The LVR reset will control the chip in reset state until the AVDD voltage rises  
above VLVR and the state keeps longer than De-glitch time. The RSTS_RESET (RSTSRC[1]) will  
be set to 1 if the previous reset source is nRESET reset. Figure 6-5 shows the Low Voltage Reset  
waveform.  
AVDD  
VLVR  
T1  
T2  
(<De-glitch time)  
(=De-glitch time)  
T3  
(=De-glitch time)  
Low Voltage Reset  
LVR_EN  
100 us  
Delay for LVR stable  
Figure 6-5 Low Voltage Reset Waveform  
6.2.2.4 Brown-out Detector Reset (BOD Reset)  
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit  
BOD_EN (BODCR[0]), Brown-Out Detector function will detect AVDD during system operation.  
When the AVDD voltage is lower than VBOD which is decided by BOD_EN (BODCR[0]) and  
BOD_VL (BODCR[2:1]) and the state keeps longer than De-glitch time (Max(20*HCLK cycles,  
1*LIRC cycle)), chip will be reset. The BOD reset will control the chip in reset state until the AVDD  
voltage rises above VBOD and the state keeps longer than De-glitch time. The default value of  
BOD_EN, BOD_VL and BOD_RSTEN is set by flash controller user configuration register  
CBODEN (CONFIG0[23]), CBOV1-0 (CONFIG0[22:21]) and CBORST (CONFIG0[20])  
respectively. User can determine the initial BOD setting by setting the CONFIG0 register. Figure  
6-6 shows the Brown-Out Detector waveform.  
May 3, 2017  
Page 34 of 99  
Rev.2.04  
 
NUC123  
AVDD  
VBODH  
VBODL  
Hysteresis  
T1  
T2  
(< de-glitch time) (= de-glitch time)  
BODOUT  
T3  
(= de-glitch time)  
BODRSTEN  
Brown-out  
Reset  
Figure 6-6 Brown-Out Detector Waveform  
6.2.2.5 Watch Dog Timer Reset  
In most industrial applications, system reliability is very important. To automatically recover the  
MCU from failure status is one way to improve system reliability. The watch dog timer (WDT) is  
widely used to check if the system works fine. If the MCU is crashed or out of control, it may  
cause the watch dog time-out. User may decide to enable system reset during watch dog time-out  
to recover the system and take action for the system crash/out-of-control after reset.  
Software can check if the reset is caused by watch dog time-out to indicate the previous reset is a  
watch dog reset and handle the failure of MCU after watch dog time-out reset by checking  
RSTS_WDT (RSTSRC[2]).  
6.2.2.6 CPU Reset, CHIP Reset and MCU Reset  
The CPU Reset means only Cortex® -M0 core is reset and all other peripherals remain the same  
status after CPU reset. User can set the CPU Reset CPU_RST (IPRSTC1[1]) to 1 to assert the  
CPU Reset signal.  
The CHIP Reset is same with Power-On Reset. The CPU and all peripherals are reset and BS  
(ISPCON[1]) bit is automatically reloaded from CONFIG0 setting. User can set the CHIP Reset  
CHIP_RST (IPRSTC1[0]) to 1 to assert the CHIP Reset signal.  
The MCU Reset is similar with CHIP Reset. The difference is that BS (ISPCON[1]) will not be  
reloaded from CONFIG0 setting and keep its original software setting for booting from APROM or  
LDROM. User can set the MCU Reset SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.  
May 3, 2017  
Page 35 of 99  
Rev.2.04  
NUC123  
6.2.3 Power modes and Wake-up sources  
There are several wake-up sources in Idle mode and Power-down mode. Table 6-2 lists the  
available clocks for each power mode.  
Power Mode  
Definition  
Normal Mode  
Idle Mode  
Power-Down Mode  
CPU is in active state  
CPU is in sleep state  
CPU is in sleep state and all  
clocks stop except LIRC.  
SRAM content retended.  
Entry Condition  
Chip is in normal mode after  
system reset released  
CPU executes WFI instruction. CPU sets sleep mode enable  
and power down enable and  
executes WFI instruction.  
Wake-up Sources  
N/A  
All interrupts  
WDT, I²C, Timer, UART, BOD  
and GPIO  
Available Clocks  
After Wake-up  
All  
All except CPU clock  
LIRC  
N/A  
CPU back to normal mode  
CPU back to normal mode  
Table 6-2 Power Mode Difference Table  
System reset released  
Normal Mode  
CPU Clock ON  
HXT, HIRC, LIRC, HCLK, PCLK ON  
Flash ON  
CPU executes WFI  
Interrupts occur  
1. SLEEPDEEP(SCR[2]) = 1  
2. PWR_DOWN_EN (PWRCON[7]) = 1  
PD_WAIT_CPU (PWRCON[8]) = 1  
3. CPU executes WFI  
Wake-up events  
occur  
Idle Mode  
Power-down Mode  
CPU Clock OFF  
CPU Clock OFF  
HXT, HIRC, HCLK, PCLK OFF  
LIRC ON  
HXT, HIRC, LIRC, HCLK, PCLK ON  
Flash Halt  
Flash Halt  
Figure 6-7 Power Mode State Machine  
May 3, 2017  
Page 36 of 99  
Rev.2.04  
 
NUC123  
1. LIRC (10 kHz OSC) ON or OFF depends on Software setting in run mode.  
2. If TIMER clock source is selected as LIRC and LIRC is on.  
3. If WDT clock source is selected as LIRC and LIRC is on.  
Normal Mode  
ON  
Idle Mode  
Power-Down Mode  
HXT (4~20 MHz XTL)  
ON  
ON  
ON  
ON  
ON  
Halt  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Halt  
Halt  
HIRC (12/16 MHz OSC)  
ON  
LIRC (10 kHz OSC)  
PLL  
ON  
ON/OFF1  
Halt  
ON  
LDO  
ON  
ON  
CPU  
ON  
Halt  
HCLK/PCLK  
SRAM retention  
FLASH  
GPIO  
ON  
Halt  
ON  
ON  
ON  
Halt  
ON  
Halt  
PDMA  
TIMER  
PWM  
ON  
Halt  
ON  
ON/OFF2  
Halt  
ON  
WDT  
ON  
ON/OFF3  
Halt  
WWDT  
UART  
ON  
ON  
Halt  
PS/2  
ON  
Halt  
I2C  
ON  
Halt  
SPI  
ON  
Halt  
I2S  
ON  
Halt  
USB  
ON  
Halt  
ADC  
ON  
Halt  
Table 6-3 Clocks in Power Modes  
Wake-up sources in Power-down mode:  
WDT, I²C, Timer, UART, BOD, GPIO and USB  
After chip enters power down, the following wake-up sources can wake chip up to normal mode.  
Wake-Up  
Source  
Wake-Up Condition  
System Can Enter Power-Down Mode Again Condition*  
BOD  
GPIO  
TIMER  
Brown-Out Detector Interrupt After software writes 1 to clear BOD_INTF (BODCR[4]).  
GPIO Interrupt  
Timer Interrupt  
After software write 1 to clear the ISRC[n] bit.  
After software writes 1 to clear TWF (TISRx[1]) and TIF (TISRx[0]).  
May 3, 2017  
Page 37 of 99  
Rev.2.04  
NUC123  
WDT  
UART  
I2C  
WDT Interrupt  
nCTS wake-up  
After software writes 1 to clear WTWKF (WTCR[5]) (Write Protect).  
After software writes 1 to clear DCTSF (UA_MSR[0]).  
Addressing I2C device  
Remote Wake-up  
After software writes 1 to clear WKUPIF (I2CWKUPSTS[0]).  
After software writes 1 to clear BUS_STS (USBD_INTSTS[0]).  
USB  
Table 6-4Table 6-4 lists the condition about how to enter Power-down mode again for each  
peripheral.  
*User needs to wait this condition before setting PWR_DOWN_EN (PWRCON[7]) and execute WFI to  
enter Power-down mode.  
Wake-Up  
Wake-Up Condition  
System Can Enter Power-Down Mode Again Condition*  
Source  
BOD  
Brown-Out Detector Interrupt After software writes 1 to clear BOD_INTF (BODCR[4]).  
GPIO  
TIMER  
WDT  
UART  
I2C  
GPIO Interrupt  
Timer Interrupt  
After software write 1 to clear the ISRC[n] bit.  
After software writes 1 to clear TWF (TISRx[1]) and TIF (TISRx[0]).  
After software writes 1 to clear WTWKF (WTCR[5]) (Write Protect).  
After software writes 1 to clear DCTSF (UA_MSR[0]).  
WDT Interrupt  
nCTS wake-up  
Addressing I2C device  
Remote Wake-up  
After software writes 1 to clear WKUPIF (I2CWKUPSTS[0]).  
After software writes 1 to clear BUS_STS (USBD_INTSTS[0]).  
USB  
Table 6-4 Condition of Entering Power-down Mode Again  
May 3, 2017  
Page 38 of 99  
Rev.2.04  
 
NUC123  
6.2.4 System Power Distribution  
In this chip, power distribution is divided into three segments:  
Analog power from AVDD and AVSS provides the power for analog components  
operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which  
provides a fixed 1.8 V power for digital operation and I/O pins.  
USB transceiver power from VBUS offers the power for operating the USB  
transceiver.  
The outputs of internal voltage regulators, LDO and USB_VDD33_CAP, require an external  
capacitor which should be located close to the corresponding pin. Analog power (AVDD) should be  
the same voltage level of the digital power (VDD). Figure 6-8 shows the power distribution of the  
NuMicro® NUC123 series.  
USB_D+  
USB_D-  
USB  
Transceiver  
10-bit  
ADC  
AVDD  
NUC123  
Power  
Distribution  
USB_VDD33_CAP  
1uF  
3.3V  
Low  
Brown-  
out  
Voltage  
Reset  
5V to 3.3V LDO  
Detector  
USB_VBUS  
22.1184 MHz  
HIRC  
Oscillator  
10 kHz  
LIRC  
Oscillator  
Digital  
Logic  
SRAM  
FLASH  
LDO_CAP  
1uF  
1.8V  
VDD to 1.8V  
LDO  
PLL  
POR18  
POR50  
IO cell  
GPIO  
Figure 6-8 NuMicro® NUC123 Power Distribution Diagram  
May 3, 2017  
Page 39 of 99  
Rev.2.04  
 
NUC123  
6.2.5 System Memory Map  
The NuMicro® NUC123 series provides 4G-byte addressing space. The memory locations  
assigned to each on-chip controllers are shown in the Table 6-5. The detailed register definition,  
memory space, and programming detailed will be described in the following sections for each on-  
chip peripherals. The NuMicro® NUC123 Series only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0000_FFFF  
0x2000_0000 0x2000_4FFF  
FLASH_BA  
SRAM_BA  
FLASH Memory Space (64KB)  
SRAM Memory Space (20KB)  
AHB Controllers Space (0x5000_0000 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
0x5000_0200 0x5000_02FF  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_8000 0x5000_BFFF  
0x5000_C000 0x5000_FFFF  
GCR_BA  
CLK_BA  
INT_BA  
System Global Control Registers  
Clock Control Registers  
Interrupt Multiplexer Control Registers  
GPIO Control Registers  
GPIO_BA  
PDMA_BA  
FMC_BA  
Peripheral DMA Control Registers  
Flash Memory Control Registers  
APB1 Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4000_4000 0x4000_7FFF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4003_4000 0x4003_7FFF  
0x4004_0000 0x4004_3FFF  
0x4005_0000 0x4005_3FFF  
0x4006_0000 0x4006_3FFF  
0x400E_0000 0x400E_FFFF  
WDT_BA  
TMR01_BA  
I2C0_BA  
Watchdog/Window Watchdog Timer Control Registers  
Timer0/Timer1 Control Registers  
I2C0 Interface Control Registers  
SPI0_BA  
SPI0 with master/slave function Control Registers  
SPI1 with master/slave function Control Registers  
PWM0/1/2/3 Control Registers  
SPI1_BA  
PWMA_BA  
UART0_BA  
USBD_BA  
ADC_BA  
UART0 Control Registers  
USB 2.0 FS device Controller Registers  
Analog-Digital-Converter (ADC) Control Registers  
APB2 Controllers Space (0x4010_0000 ~ 0x401F_FFFF)  
0x4010_0000 0x4010_3FFF  
0x4011_0000 0x4011_3FFF  
0x4012_0000 0x4012_3FFF  
0x4013_0000 0x4013_3FFF  
0x4015_0000 0x4015_3FFF  
0x401A_0000 0x401A_3FFF  
PS2_BA  
PS/2 Interface Control Registers  
Timer2/Timer3 Control Registers  
I2C1 Interface Control Registers  
SPI2 with master/slave function Control Registers  
UART1 Control Registers  
TMR23_BA  
I2C1_BA  
SPI2_BA  
UART1_BA  
I2S_BA  
I2S Interface Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
SCS_BA  
System Timer Control Registers  
May 3, 2017  
Page 40 of 99  
Rev.2.04  
NUC123  
0xE000_E100 0xE000_ECFF  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
SCS_BA  
External Interrupt Controller Control Registers  
System Control Registers  
Table 6-5 Address Space Assignments for On-Chip Controllers  
May 3, 2017  
Page 41 of 99  
Rev.2.04  
NUC123  
6.2.6 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value  
Register (SYST_RVR) on the next clock cycle, and then decrement on subsequent clocks. When  
the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on  
reads.  
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to  
zero before enabling the feature. This ensures the timer will count from the SYST_RVR value  
rather than an arbitrary value when it is enabled.  
If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is  
reloaded with this value. This mechanism can be used to disable the feature independently from  
the timer enable bit.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
May 3, 2017  
Page 42 of 99  
Rev.2.04  
NUC123  
6.2.7 Nested Vectored Interrupt Controller (NVIC)  
Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named as  
“Nested Vectored Interrupt Controller (NVIC)”. It is closely coupled to the processor kernel and  
provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Dynamic priority changing  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in Handler  
mode. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When any interrupts is accepted, the starting address of the interrupt service routine (ISR) is  
fetched from a vector table in memory. There is no need to determine which interrupt is accepted  
and branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference  
Manual” and “ARM® v6-M Architecture Reference Manual”.  
May 3, 2017  
Page 43 of 99  
Rev.2.04  
NUC123  
6.2.7.1  
Exception Model and System Interrupt Map  
Table 6-6 lists the exception model supported by the NuMicro® NUC123 Series. Software can set  
four levels of priority on some of these exceptions as well as on all interrupts. The highest user-  
configurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority  
of all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on  
the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Name  
Reset  
Vector Number  
Priority  
-3  
1
NMI  
2
-2  
Hard Fault  
Reserved  
3
-1  
4 ~ 10  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
11  
Reserved  
12 ~ 13  
PendSV  
14  
SysTick  
15  
Interrupt (IRQ0 ~ IRQ31)  
16 ~ 47  
Table 6-6 Exception Model  
Interrupt Number  
Vector  
Number  
Interrupt Name Source IP Interrupt Description  
(Bit In Interrupt  
Registers)  
0 ~ 15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
-
0
-
-
System exceptions  
BOD_OUT  
WDT_INT  
EINT0  
Brown-out Brown-out low voltage detected interrupt  
1
WDT  
GPIO  
Watchdog/Window Watchdog Timer interrupt  
External signal interrupt from PB.14 pin  
2
3
EINT1  
GPIO  
External signal interrupt from PB.15 or PD.11 pin  
External signal interrupt from PA[15:0]/PB[13:0]  
External interrupt from PC[15:0]/PD[15:0]/PF[3:0]  
PWM0, PWM1, PWM2 and PWM3 interrupt  
4
GPAB_INT  
GPCDF_INT  
PWMA_INT  
Reserved  
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART0_INT  
UART1_INT  
SPI0_INT  
GPIO  
5
GPIO  
6
PWM0~3  
7
Reserved Reserved  
8
TMR0  
TMR1  
TMR2  
TMR3  
UART0  
UART1  
SPI0  
Timer 0 interrupt  
9
Timer 1 interrupt  
Timer 2 interrupt  
Timer 3 interrupt  
UART0 interrupt  
UART1 interrupt  
SPI0 interrupt  
10  
11  
12  
13  
14  
May 3, 2017  
Page 44 of 99  
Rev.2.04  
 
NUC123  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
SPI1_INT  
SPI2_INT  
Reserved  
I2C0_INT  
I2C1_INT  
Reserved  
Reserved  
Reserved  
USB_INT  
PS2_INT  
Reserved  
PDMA_INT  
I2S_INT  
SPI1  
SPI2  
SPI1 interrupt  
SPI2 interrupt  
Reserved Reserved  
I2C0  
I2C1  
I2C0 interrupt  
I2C1 interrupt  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
USBD  
PS/2  
USB 2.0 FS Device interrupt  
PS/2 interrupt  
Reserved Reserved  
PDMA  
I2S  
PDMA interrupt  
I2S interrupt  
Clock controller interrupt for chip wake-up from Power-  
down state  
44  
28  
PWRWU_INT  
CLKC  
ADC  
45  
46  
47  
29  
30  
31  
ADC_INT  
Reserved  
Reserved  
ADC interrupt  
Reserved Reserved  
Reserved Reserved  
Table 6-7 System Interrupt Map  
May 3, 2017  
Page 45 of 99  
Rev.2.04  
NUC123  
6.2.7.2  
Vector Table  
When any interrupts is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base  
address is fixed at 0x00000000. The vector table contains the initialization value for the stack  
pointer on reset, and the entry point addresses for all exception handlers. The vector number on  
previous page defines the order of entries in the vector table associated with exception handler  
entry as illustrated in previous section.  
Vector Table Word Offset  
Description  
0
SP_main The Main stack pointer  
Exception Entry Pointer using that Vector Number  
Vector Number  
Table 6-8 Vector Table Format  
6.2.7.3  
Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-  
Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-  
1-to-clear policy, both registers reading back the current enabled state of the corresponding  
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become  
Pending; however, the interrupt will not activate. If an interrupt is Active when it is disabled, it  
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit  
prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used  
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers  
reading back the current pended state of the corresponding interrupts. The Clear-Pending  
Register has no effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
May 3, 2017  
Page 46 of 99  
Rev.2.04  
NUC123  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates the clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and clock divider. The chip enters  
Power-down mode when Cortex® -M0 core executes the WFI instruction only if the  
PWR_DOWN_EN (PWRCON[7]) bit and PD_WAIT_CPU (PWRCON[8]) bit are both set to 1.  
After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave  
Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external  
high speed crystal oscillator and 22.1184 MHz internal high speed RC oscillator to reduce the  
overall system power consumption. The Figure 6-9 and Figure 6-10 show the clock generator and  
the overview of the clock source control.  
The clock generator consists of 4 clock sources as listed below:  
4~24 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency(PLL FOUT), PLL source can be from 4~24  
MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal high speed  
RC oscillator (HIRC))  
22.1184 MHz internal high speed RC oscillator (HIRC)  
10 kHz internal low speed RC oscillator (LIRC)  
Each of these clock sources has certain stable time to wait for clock operating at stable  
frequency. When clock source is enabled, a stable counter start counting and correlated clock  
stable index (OSC22M_STB(CLKSTATUS[4]), OSC10K_STB(CLKSTATUS[3]),  
PLL_STB(CLKSTATUS[2]) and XTL12M_STB(CLKSTATUS[0])) are set to 1 after stable counter  
value reach a define value asshown in Table 6-9. System and peripheral can use the clock as its  
operating clock only when correlate clock stable index is set to 1. The clock stable index will auto  
clear when user disables the clock source (OSC10K_EN(PWRCON[3]),  
OSC22M_EN(PWRCON[2]), XTL12M_EN(PWRCON[0]) and PD(PLLCON[16])). Besides, the  
clock stable index of HXT, HIRC and PLL will auto clear when chip enter power-down and clock  
stable counter will re-counting after chip wake-up if correlate clock is enabled.  
Clock Source  
Clock Stable Count Value  
HXT  
PLL  
4096 HXT clock  
6144 PLL source  
(PLL source is HXT if PLL_SRC(PLLCON[19]) = 0, or HIRC if PLL_SRC(PLLCON[19]) = 1)  
HIRC  
LIRC  
256 HIRC clock  
1 LIRC  
Table 6-9 Clock Stable Count Value Table  
May 3, 2017  
Page 47 of 99  
Rev.2.04  
 
NUC123  
XTL12M_EN (PWRCON[0])  
HXT  
XT1_OUT  
XT1_IN  
4~24 MHz  
HXT  
PLL_SRC (PLLCON[19])  
PLL  
0
1
PLL FOUT  
OSC22M_EN (PWRCON[2])  
22.1184 MHz  
HIRC  
HIRC  
LIRC  
OSC10K_EN (PWRCON[3])  
10 kHz  
LIRC  
Legend:  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on  
and stable.  
Figure 6-9 Clock Generator Global View Diagram  
May 3, 2017  
Page 48 of 99  
Rev.2.04  
NUC123  
LIRC  
(10 kHz)  
HIRC  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
LIRC  
PLLFOUT  
HIRC  
(22.1184 MHz)  
1/(HCLK_N+1)  
1/(APBDIV+1)  
AHB  
1/2  
PDMA  
HXT  
PCLK  
APB  
HXT  
(4~12 MHz)  
I2C 0-1  
CLKSEL0[2:0]  
HIRC  
LIRC  
111  
100  
011  
010  
000  
HIRC  
HXT  
1
0
TMR 0  
TMR 1  
TMR 2  
TMR 3  
PLLFOUT  
PLL  
TMx, x = 0, 1, 2  
HCLK  
PLLCON[19]  
HXT  
LIRC  
CLKSEL1[22:20]  
CLKSEL1[18:16]  
CLKSEL1[14:12]  
CLKSEL1[10: 8]  
BOD  
HIRC  
1/2  
1/2  
1/2  
111  
011  
010  
000  
HCLK  
SysTick  
HXT  
LIRC  
HIRC  
HCLK  
HXT  
111  
011  
010  
000  
PWM 2-3  
PWM 0-1  
CLKSEL0[5:3]  
PS2  
{CLKSEL2[9], CLKSEL1[31:30]}  
{CLKSEL2[8], CLKSEL1[29:28]}  
HIRC  
FMC  
HIRC  
HCLK  
HXT  
11  
10  
00  
FDIV  
HIRC  
11  
10  
01  
00  
HCLK  
CLKSEL2[3:2]  
I2S  
PLLFOUT  
HXT  
1/(ADC_N+1)  
1/(USB_N+1)  
ADC  
CLKSEL2[1:0]  
CLKSEL1[3:2]  
USB  
PLLFOUT  
LIRC  
11  
10  
WDT  
HCLK  
1/2048  
LIRC  
CLKSEL1[1:0]  
11  
10  
WWDT  
HCLK  
1/2048  
HIRC  
11  
01  
00  
CLKSEL2[17:16]  
PLLFOUT  
HXT  
1/(UART_N+1)  
UART0/1  
HCLK  
1
0
SPI0  
SPI1  
SPI2  
PLLFOUT  
CLKSEL1[25:24]  
CLKSEL1[4]  
CLKSEL1[5]  
CLKSEL1[6]  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and  
stable.  
Figure 6-10 Clock Generator Global View Diagram  
May 3, 2017  
Page 49 of 99  
Rev.2.04  
NUC123  
6.3.2 System Clock and SysTick Clock  
The system clock has 5 clock sources which were generated from clock generator block. The  
clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is  
shown in Figure 6-11.  
HIRC (22.1184 MHz)  
111  
LIRC (10 KHz)  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
AHB  
PLLFOUT  
1/(HCLK_N+1)  
1/(APBDIV+1)  
1/2  
HXT (4~24 MHz)  
PCLK  
APB  
CPU in Power Down Mode  
HCLK_S (CLKSEL0[2:0])  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.  
Figure 6-11 System Clock Block Diagram  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock  
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The  
clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block  
diagram is shown in Figure 6-12.  
HIRC (22.1184 MHz)  
1/2  
1/2  
1/2  
111  
011  
010  
000  
HCLK  
STCLK  
HXT (4~24 MHz)  
STCLK_S (CLKSEL0[5:3])  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on  
and stable.  
Figure 6-12 SysTick Clock Control Block Diagram  
6.3.3 Peripherals Clock  
The peripherals clock had different clock source switch setting depending on different peripherals.  
Please refer to the CLKSEL1 and CLKSEL2 register description in TRM.  
6.3.4 Power-down Mode Clock  
When chip enters into Power-down mode, system clocks, some clock sources, and some  
peripheral clocks will be disabled. Some clock sources and peripherals clock are still active in  
Power-down mode.  
The clocks kept active are listed below:  
Clock Generator  
Internal 10 kHz low speed oscillator clock  
May 3, 2017  
Page 50 of 99  
Rev.2.04  
 
 
NUC123  
WDT/Timer/PWM Peripherals Clock (when 10 kHz intertnal low speed RC oscillator  
(LIRC) is adopted as clock source)  
6.3.5 Frequency Divider Output  
This device is equipped with a power-of-2 frequency divider which is composed by16 chained  
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one  
multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided  
clocks with the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock  
divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock  
divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).  
When writing 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When writing 0  
to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low  
state and stay in low state.  
HIRC (22.1184 MHz)  
11  
HCLK  
10  
00  
FRQDIV_CLK  
HXT (4~24 MHz)  
FDIV_EN (APBCLK[6])  
FRQDIV_S (CLKSEL2[3:2])  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on  
and stable.  
Figure 6-13 Clock Source of Frequency Divider  
DIVIDER_EN  
(FRQDIV[4])  
Enable  
divide-by-2 counter  
16 chained  
divide-by-2 counter  
FRQDIV_CLK  
1/22 1/23  
1/215 1/216  
...  
1/2  
0000  
0001  
CLKO  
16 to 1  
MUX  
:
:
1110  
1111  
FSEL  
(FRQDIV[3:0])  
Figure 6-14 Block Diagram of Frequency Divider  
May 3, 2017  
Page 51 of 99  
Rev.2.04  
NUC123  
6.4 Flash Memory Controller (FMC)  
6.4.1 Overview  
The NuMicro® NUC123 series is equipped with 68/36 Kbytes on-chip embedded flash for  
application program memory (APROM) and Data Flash, and 4 Kbytes for ISP loader program  
memory (LDROM) that could be programmed boot loader to update APROM and Data Flash  
through In-System-Programming (ISP) procedure. The ISP function enables user to update  
embedded flash when chip is soldered on PCB. After chip is powered on, Cortex® -M0 CPU  
fetches code from APROM or LDROM decided by boot select (CBS (Config0[7:6]). User can also  
select to enable or disable In-Application-Programming (IAP) function through boot select (CBS  
(Config0[7:6]). Also, the NUC123 provides Data Flash for user, to store some application  
dependent data before chip is powered off.  
6.4.2 Features  
Runs up to 72 MHz and optional up to 50MHz with zero wait state for continuous address  
read access  
Supports 68/36 KB application program ROM (APROM)  
Supports 4KB loader ROM (LDROM)  
Supports Data Flash with configurable memory size  
Supports 8 bytes User Configuration block to control system initiation  
Supports 512 bytes page erase for all embedded flash  
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update  
embedded flash memory  
May 3, 2017  
Page 52 of 99  
Rev.2.04  
NUC123  
6.5 General Purpose I/O (GPIO)  
6.5.1 Overview  
The NuMicro® NUC123 series has up to 47 General Purpose I/O pins shared with other function  
pins depending on the chip configuration. These 47 pins are arranged in 5 ports named GPIOA,  
GPIOB, GPIOC, GPIOD and GPIOF. GPIOA has 6 pins on PA[15:10]. GPIOB has 15 pins on  
PB[15:12] and PB[10:0]. GPIOC has 12 pins on PC[13:8] and PC[5:0]. GPIOD has 10 pins on  
PD[11:8] and PD[5:0]. GPIOF has 4 pins on PF[3:0]. Each one of the 47 pins is independent and  
has the corresponding register bits to control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as input, output, open-  
drain or quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are depending  
on CIOINI (Config0[10]) (NUC123xxxAEx Only). Each I/O pin has a very weakly individual pull-up  
resistor which is about 110 K~300 Kfor VDD is from 5.0 V to 2.5 V.  
6.5.2 Features  
Four I/O modes:  
Quasi bi-direction  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable by GPx_TYPE[15:0] in GPx_MFP[31:16]  
I/O pin can be configured as interrupt source with edge/level setting  
Supports High Driver and High Sink I/O mode  
Configurable default I/O mode of all pins after reset by CIOINI (Config0[10]) setting  
(NUC123xxxAEx Only)  
If CIOINI (Config[10]) is 0, all GPIO pins in input tri-state mode after chip reset  
If CIOINI (Config[10]) is 1, all GPIO pins in Quasi-bidirectional mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the wake-up function  
May 3, 2017  
Page 53 of 99  
Rev.2.04  
NUC123  
6.6 PDMA Controller (PDMA)  
6.6.1 Overview  
The NuMicro® NUC123 contains a six-channel peripheral direct memory access (PDMA)  
controller and a cyclic redundancy check (CRC) generator.  
The PDMA can transfer data to and from memory or transfer data to and from APB devices. For  
PDMA channel (PDMA CH0~CH5), there is one-word buffer as transfer buffer between the  
Peripherals APB devices and Memory. The CPU can recognize the completion of a PDMA  
operation by software polling or when it receives an internal PDMA interrupt. The PDMA controller  
can increase source or destination address or fixed them as well.  
The PDMA controller contains a cyclic redundancy check (CRC) generator that can perform CRC  
calculation with programmable polynomial settings. The CRC engine supports CPU PIO mode  
and PDMA transfer mode.  
6.6.2 Features  
Supports six PDMA channels and one CRC channel; each PDMA channel can support a  
unidirectional transfer  
AMBA AHB master/slave interface compatible, for data transfer and register read/write  
Hardware round robin priority scheme. PDMA channel 0 has the highest priority  
PDMA  
Peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfer  
Supports word/half-word/byte transfer data width from/to peripheral  
Supports address direction: increment, fixed  
Supports software, SPI, UART, ADC, PWM and I2S request  
Cyclic Redundancy Check (CRC)  
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
CRC-CCITT: X16 + X12 + X5 + 1  
CRC-8: X8 + X2 + X + 1  
CRC-16: X16 + X15 + X2 + 1  
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1  
Programmable seed value  
Supports programmable order reverse setting for input data and CRC checksum  
Supports programmable 1’s complement setting for input data and CRC checksum.  
Supports CPU PIO mode or PDMA transfer mode  
Supports 8/16/32-bit of data width in CPU PIO mode  
8-bit write mode: 1-AHB clock cycle operation  
16-bit write mode: 2-AHB clock cycle operation  
32-bit write mode: 4-AHB clock cycle operation  
Supports byte alignment transfer length in CRC PDMA mode  
May 3, 2017  
Page 54 of 99  
Rev.2.04  
NUC123  
6.7 Timer Controller (TMR)  
6.7.1 Overview  
The Timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily  
implement a timer control for applications. The timer can perform functions, such as frequency  
measurement, delay timing, clock generation, and event counting by external input pins, and  
interval measurement by external capture pins.  
6.7.2 Features  
Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle-output and continuous counting operation modes  
24-bit up counter value is readable through TDR (TDR[23:0])  
Supports event counting function  
24-bit capture value is readable through TCAP (TCAP[23:0])  
Supports external capture pin event for interval measurement  
Supports external capture pin event to reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated  
May 3, 2017  
Page 55 of 99  
Rev.2.04  
NUC123  
6.8 PWM Generator and Capture Timer (PWM)  
6.8.1 Overview  
The NuMicro® NUC123 series has 1 set of PWM group supporting 1 set of PWM generators  
which can be configured as 4 independent PWM outputs, PWM0~PWM3, or as 2 complementary  
PWM pairs, (PWM0, PWM1), (PWM2, PWM3) with two programmable dead-zone generators.  
PWM output function can be alternated to capture function.  
Each PWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2,  
1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM down-counters for  
PWM period control, two 16-bit comparators for PWM duty control and one dead-zone generator.  
The PWM generators provide four independent PWM interrupt flags which are set by hardware  
when the corresponding PWM period down counter reaches zero.  
Each PWM interrupt source with its corresponding enable bit can cause CPU to request PWM  
interrupt. The PWM generators can be configured as one-shot mode to produce only one PWM  
cycle signal or auto-reload mode to output PWM waveform continuously. PWM can be used to  
trigger ADC when operation in center-aligned mode.  
6.8.2 Features  
PWM function:  
Up to 1 PWM group (PWMA) to support 4 PWM channels or 2 PWM paired channels  
Supports 8-bit prescaler from 1 to 255  
Up to 16-bit resolution PWM timer  
PWM timer supports down and up-down operation type  
One-shot or Auto-reload mode PWM  
PWM Interrupt request synchronized with PWM period or duty  
Supports dead-zone generator with 8-bit resolution for 2 PWM paired channels  
Supports trigger ADC on center point in center-aligned mode  
Capture function:  
Supports 4 Capture input channels shared with 4 PWM output channels  
Supports rising or falling capture condition  
Supports rising or falling capture interrupt  
Supports PDMA transfer function for each channel  
May 3, 2017  
Page 56 of 99  
Rev.2.04  
NUC123  
6.9 Watchdog Timer (WDT)  
6.9.1 Overview  
The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an  
unknown state. This prevents system from hanging for an infinite period of time. Besides, this  
Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.  
6.9.2 Features  
18-bit free running up counter for WDT time-out interval  
Selectable time-out interval (24 ~ 218) and the time-out interval is 1.6 ms ~ 26.214 s if  
WDT_CLK = 10 kHz.  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports selectable WDT reset delay period, including 102613018 or 3 WDT_CLK reset  
delay period  
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN in  
Config0 register  
Supports WDT time-out wake-up function only if WDT clock source is selected as 10 kHz.  
May 3, 2017  
Page 57 of 99  
Rev.2.04  
NUC123  
6.10 Window Watchdog Timer (WWDT)  
6.10.1 Overview  
The Window Watchdog Timer is used to perform a system reset within a specified window period to  
prevent software run to uncontrollable status by any unpredictable condition. The 6-bit down counter  
value will stop to update when chip is in Idle or Power-down mode.  
6.10.2 Features  
6-bit down counter value WWDTCVAL (WWDTCVR[5:0]) and 6-bit compare value WINCMP  
(WWDTCR[21:16]) to make the WWDT time-out window period flexible  
Supports 4-bit value PERIODSEL (WWDTCR[11:8]) to programmable maximum 11-bit  
prescale counter period of WWDT counter  
May 3, 2017  
Page 58 of 99  
Rev.2.04  
NUC123  
6.11 UART Interface Controller (UART)  
6.11.1 Overview  
The NuMicro® NUC123 series provides two channels of Universal Asynchronous Receiver/  
Transmitters (UART). UART Controller performs Normal Speed UART and supports flow control  
function. The UART Controller performs a serial-to-parallel conversion on data received from the  
peripheral and a parallel-to-serial conversion on data transmitted from the CPU. Each UART  
Controller channel supports six types of interrupts. The UART controller also supports IrDA SIR  
and RS-485.  
6.11.2 Features  
Full duplex, asynchronous communications  
Separates receive / transmit 16/16 bytes entry FIFO for data payloads  
Supports hardware auto flow control/flow control  
Programmable receiver buffer trigger level  
Supports programmable baud-rate generator for each channel individually  
Supports nCTS wake-up function  
Supports 8-bit receiver buffer time-out detection function  
UART0/UART1 served by the DMA controller  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting DLY (UA_TOR [15:8])  
Supports break error, frame error, parity error and receive/transmit buffer overflow detect  
function  
Fully programmable serial-interface characteristics  
Programmable number of data bit, 5-, 6-, 7-, 8-bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
Supports IrDA SIR function mode  
Supports for 3/16-bit duration for normal mode  
Supports RS-485 function mode.  
Supports RS-485 9-bit mode  
Supports hardware or software direct enable to program nRTS pin to control RS-485  
transmission direction  
May 3, 2017  
Page 59 of 99  
Rev.2.04  
NUC123  
6.12 PS/2 Device Controller (PS2D)  
6.12.1 Overview  
PS/2 device controller provides basic timing control for PS/2 communication. All communication  
between the device and the host is managed through the CLK and DATA pins. Unlike PS/2  
keyboard or mouse device controller, the received/transmit code needs to be translated as  
meaningful code by firmware. The device controller generates the CLK signal after receiving a  
request to send, but host has ultimate control over communication. DATA sent from the host to  
the device is read on the rising edge and DATA sent from device to the host is change after rising  
edge. A 16 bytes FIFO is used to reduce CPU intervention. Software can select 1 to 16 bytes for  
a continuous transmission.  
6.12.2 Features  
Host communication inhibit and request to send detection  
Reception frame error detection  
Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention  
Double buffer for data reception  
S/W override bus  
May 3, 2017  
Page 60 of 99  
Rev.2.04  
NUC123  
6.13 I2C Serial Interface Controller (Master/Slave) (I2C)  
6.13.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data  
exchange between devices. The I2C standard is a true multi-master bus including collision  
detection and arbitration that prevents data corruption if two or more masters attempt to control  
the bus simultaneously.  
There are two sets of I2C controllers which support Power-down wake-up function.  
6.13.2 Features  
Supports up to two I2C ports  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data on  
the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and timer-  
out counter overflows.  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Power-down wake-up function  
May 3, 2017  
Page 61 of 99  
Rev.2.04  
NUC123  
6.14 Serial Peripheral Interface (SPI)  
6.14.1 Overview  
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and  
allows full duplex transfer. Devices communicate in Master/Slave mode with 4-wire bi-direction  
interface. This NuMicro® NUC123 series contains up to three sets of SPI controllers performing a  
serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial  
conversion on data transmitted to a peripheral device. Each set of SPI controller can be  
configured as a Master or a Slave device.  
This controller supports variable serial clock function for special application and it also supports 2-  
bit Transfer mode. The controller also supports PDMA function to access the data buffer and also  
supports Dual I/O transfer mode.  
6.14.2 Features  
Up to three sets of SPI controllers  
Supports Master or Slave mode operation  
Supports 2-bit Transfer mode  
Supports Dual I/O transfer mode  
Configurable bit length of a transfer word from 8 to 32-bit  
Provide separate 8-layer depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Up to two slave select lines in Master mode  
Supports Byte Reorder function  
Supports configurable suspend interval in Master mode  
Variable output serial clock frequency in Master mode  
Supports PDMA transfer  
Supports 3-Wire, no slave select signal, bi-direction interface  
May 3, 2017  
Page 62 of 99  
Rev.2.04  
NUC123  
6.15 I2S Controller (I2S)  
6.15.1 Overview  
The I2S controller consists of IIS protocol to interface with external audio CODEC. Two 8 word  
depth FIFO buffers for read path and write path respectively and is capable of handling  
8/16/24/32 bits word sizes. PDMA controller handles the data movement between FIFO and  
memory.  
6.15.2 Features  
Operated as either Master or Slave  
Capable of handling 8, 16, 24 and 32 bits word  
Supports monaural and stereo audio data  
Supports four data format:  
I2S data format  
MSB justified data format  
PCM mode A  
PCM mode B  
Provides two 8 word depth FIFO buffers, one for transmitting and the other for receiving  
Generates interrupt requests when buffer levels cross a programmable boundary  
Supports PDMA transfer  
May 3, 2017  
Page 63 of 99  
Rev.2.04  
NUC123  
6.16 USB Device Controller (USB)  
6.16.1 Overview  
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is  
compliant with USB 2.0 full-speed device specification and supports Control/Bulk/Interrupt/  
Isochronous transfer types.  
In this device controller, there are two main interfaces: APB bus and USB bus which comes from  
the USB PHY transceiver. For the APB bus, the CPU can program control registers through it.  
There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is  
necessary to write data to SRAM or read data from SRAM through the APB interface or SIE. User  
needs to set the effective starting address of SRAM for each endpoint buffer through buffer  
segmentation register (BUFSEGx).  
There are 8 endpoints in this controller. Each of the endpoint can be configured as IN or OUT  
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are  
implemented in this block. The block of ENDPOINT CONTROL is also used to manage the data  
sequential synchronization, endpoint state control, current start address, transaction status, and  
data buffer status for each endpoint.  
There are four different interrupt events in this controller. They are the wake-up event, device  
plug-in or plug-out event, USB events, such as IN ACK, OUT ACK, and BUS events, such as  
suspend and resume, etc. Any event will cause an interrupt, and user just needs to check the  
related event flags in interrupt event status register (USB_INTSTS) to acknowledge what kind of  
interrupt occurring, and then check the related USB Endpoint Status Register (USB_EPSTS) to  
acknowledge what kind of event occurring in this endpoint.  
A software-disable function is also supported for this USB controller. It is used to simulate the  
disconnection of this device from the host. If user enables DRVSE0 bit (USB_DRVSE0), the USB  
controller will force the output of USB_D+ and USB_D- to level low and its function is disabled.  
After disable the DRVSE0 bit, host will enumerate this USB device again.  
For more information on the Universal Serial Bus, please refer to Universal Serial Bus  
Specification Revision 1.1.  
6.16.2 Features  
Compliant with USB 2.0 Full-Speed specification  
Provides 1 interrupt vector with 4 different interrupt events (WAKEUP, FLDET, USB and  
BUS)  
Supports Control/Bulk/Interrupt/Isochronous transfer types  
Supports suspend function when no bus activity existing for 3 ms  
Provides 8 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types and  
maximum 512 bytes buffer size  
Provides remote wake-up capability  
May 3, 2017  
Page 64 of 99  
Rev.2.04  
NUC123  
6.17 Analog-to-Digital Converter (ADC)  
6.17.1 Overview  
NuMicro® NUC123 Series contains one 10-bit successive approximation analog-to-digital  
converters (SAR A/D converter) with 8 input channels. The A/D converter supports three  
operation modes: single, single-cycle scan and continuous scan mode. The A/D converters can  
be started by software, PWM center-aligned trigger and external STADC pin.  
6.17.2 Features  
Conversion range : 0 to AVDD  
10-bit resolution and 8-bit accuracy is guaranteed  
Up to 8 single-end analog input channels  
Maximum ADC clock frequency as 6 MHz (NUC123xxxANx Only)  
Maximum ADC clock frequency as 3 MHz (NUC123xxxAEx Only)  
Up to 166 kSPS (Samples Per Second) conversion rate (NUC123xxxANx Only)  
Up to 200 kSPS (Samples Per Second) conversion rate (NUC123xxxAEx Only)  
Three operating modes  
Single mode: A/D conversion is performed one time on a specified channel  
Single-cycle Scan mode: A/D conversion is performed one cycle on all specified  
channels with the sequence from the lowest numbered channel to the highest  
numbered channel  
Continuous Scan mode: A/D converter continuously performs Single-cycle scan mode  
until software stops A/D conversion  
A/D conversion started by:  
Software writes 1 to ADST bit  
External pin STADC (PB.8)  
PWM center-aligned trigger  
Supports 8 data registers to stored conversion result with valid and overrun indicators  
Supports 2 sets of digital comparators to monitor conversion result of specified channel and  
to generate an interrupt when conversion result matches comparison condition  
Channel 7 supports 2 input sources: external analog voltage and internal band-gap voltage  
Supports PDMA transfer  
May 3, 2017  
Page 65 of 99  
Rev.2.04  
NUC123  
7
ELECTRICAL CHARACTERISTICS (NUC123XXXANX)  
7.1 Absolute Maximum Ratings  
Symbol  
VDD VSS  
VIN  
Parameter  
Min  
-0.3  
VSS - 0.3  
4
Max  
+7.0  
VDD + 0.3  
24  
Unit  
V
DC Power Supply  
Input Voltage  
V
1/tCLCL  
TA  
Oscillator Frequency  
MHz  
 
Operating Temperature  
-40  
+85  
TST  
Storage Temperature  
-55  
+150  
120  
IDD  
Maximum Current into VDD  
-
mA  
mA  
mA  
mA  
mA  
mA  
ISS  
Maximum Current out of VSS  
120  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
35  
35  
IIO  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affect the lift and reliability of  
the device.  
May 3, 2017  
Page 66 of 99  
Rev.2.04  
NUC123  
7.2 DC Electrical Characteristics  
(VDD -VSS = 5.5 V, TA = 25C)  
SPECIFICATIONS  
PARAMETER  
SYM  
VDD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Operation voltage  
2.5  
5.5  
V
VDD = 2.5V ~ 5.5V up to 72 MHz  
VDD rise rate to ensure internal  
operation correctly  
VRISE  
0.05  
-0.3  
1.62  
0
V/ms  
VSS  
Power ground  
V
V
V
AVSS  
LDO output voltage  
Analog operating voltage  
VLDO  
1.8  
1.98  
VDD > 2.5V  
When system uses analog function,  
please refer to chapter 7.4 for  
corresponding analog operating voltage  
AVDD  
VDD  
VDD = 5.5V at 72 MHz,  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
36  
21  
35  
20  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All IP and PLL Enabled,  
XTAL = 12 MHz  
VDD = 5.5V at 72 MHz,  
All IP Disabled and PLL Enabled, XTAL =  
12 MHz  
Operating current  
Normal Run mode  
at 72 MHz  
VDD = 3V at 72 MHz,  
All IP and PLL enabled,  
XTAL = 12 MHz  
VDD = 3V at 72 MHz,  
All IP Disabled and PLL Enabled, XTAL =  
12 MHz  
VDD = 5.5V at 12 MHz,  
All IP Enabled and PLL Disabled, XTAL =  
12 MHz  
VDD = 5.5V at 12 MHz,  
4
All IP and PLL Disabled,  
XTAL = 12 MHz  
Operating current  
Normal Run mode  
at 12 MHz  
VDD = 3V at 12 MHz,  
6
All IP Enabled and PLL Disabled, XTAL =  
12 MHz  
VDD = 3V at 12 MHz,  
All IP and PLL Disabled,  
XTAL = 12 MHz  
IDD8  
3
4
mA  
mA  
VDD = 5V at 4 MHz,  
Operating current  
Normal Run mode  
IDD9  
All IP Enabled and PLL Disabled, XTAL =  
4 MHz  
May 3, 2017  
Page 67 of 99  
Rev.2.04  
NUC123  
SPECIFICATIONS  
PARAMETER  
SYM  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
at 4 MHz  
VDD = 5V at 4 MHz,  
IDD10  
3
mA  
All IP and PLL Disabled,  
XTAL = 4 MHz  
VDD = 3V at 4 MHz,  
IDD11  
4
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All IP Enabled and PLL Disabled, XTAL =  
4 MHz  
VDD = 3V at 4 MHz,  
IDD12  
All IP and PLL Disabled,  
XTAL = 4 MHz  
VDD = 5.5V at 72 MHz,  
IIDLE1  
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
IIDLE8  
IIDLE9  
IIDLE10  
IIDLE11  
IIDLE12  
29  
14  
28  
13  
6
All IP and PLL Enabled,  
XTAL = 12 MHz  
VDD = 5.5V at 72 MHz,  
All IP Disabled and PLL Enabled, XTAL =  
12 MHz  
Operating current  
Idle mode  
VDD = 3V at 72 MHz,  
at 72 MHz  
All IP and PLL Enabled,  
XTAL = 12 MHz  
VDD = 3V at 72 MHz,  
All IP Disabled and PLL Enabled,  
XTAL=12 MHz  
VDD = 5.5V at 12 MHz,  
All IP Enabled and PLL Disabled, XTAL =  
12 MHz  
VDD = 5.5V at 12 MHz,  
3
All IP and PLL Disabled,  
XTAL = 12 MHz  
Operating current  
Idle mode  
VDD = 3V at 12 MHz,  
at 12 MHz  
5
All IP Enabled and PLL Disabled, XTAL =  
12 MHz  
VDD = 3 V at 12 MHz,  
2
All IP and PLL Disabled,  
XTAL = 12 MHz  
VDD = 5V at 4 MHz,  
3
All IP Enabled and PLL Disabled, XTAL =  
4 MHz  
VDD = 5V at 4 MHz,  
2
All IP and PLL Disabled,  
XTAL = 4 MHz  
Operating current  
Idle mode  
VDD = 3V at 4 MHz,  
at 4 MHz  
2
All IP Enabled and PLL Disabled, XTAL =  
4 MHz  
VDD = 3V at 4 MHz,  
1
All IP and PLL Disabled,  
XTAL = 4 MHz  
May 3, 2017  
Page 68 of 99  
Rev.2.04  
NUC123  
SPECIFICATIONS  
PARAMETER  
SYM  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 5.5V at 10 kHz,  
IIDLE5  
131  
uA  
All IP Enabled and PLL Disabled, LIRC  
10 kHz Enabled  
VDD = 5.5V at 10 kHz,  
IIDLE6  
IIDLE7  
IIDLE8  
129  
125  
124  
uA  
uA  
uA  
All IP and PLL Disabled,  
LIRC 10 kHz Enabled  
Operating current  
Idle mode  
VDD = 3V at 10 kHz,  
at 10 kHz  
All IP Enabled and PLL Disabled, LIRC  
10 kHz Enabled  
VDD = 3 V at 10 kHz,  
All IP and PLL Disabled,  
LIRC 10 kHz Enabled  
VDD = 5.5V, No load  
IPWD1  
12  
9
A  
A  
when BOV function Disabled  
Standby current  
Power-down mode  
VDD = 3.3V, No load  
IPWD2  
when BOV function Disabled  
Input Current PA, PB, PC, PD, PE,  
PF (Quasi-bidirectional mode)  
IIN1  
IIN2  
ILK  
-64  
-45  
-
VDD = 5.5V, VIN = 0V or VIN = VDD  
VDD = 3.3V, VIN = 0.45V  
A  
A  
A  
Input Current at /RESET[1]  
-55  
-2  
-30  
+2  
Input Leakage Current PA, PB, PC,  
PD, PE, PF  
VDD = 5.5V, 0 < VIN < VDD  
Logic 1 to 0 Transition Current  
PA~PF (Quasi-bidirectional mode)  
[3]  
ITL  
-650  
-
-200  
VDD = 5.5V, VIN < 2.0V  
A  
-0.3  
-0.3  
2.0  
-
-
-
-
0.8  
VDD = 4.5V  
VDD = 2.5V  
VDD = 5.5V  
VDD = 3.0V  
Input Low Voltage PA, PB, PC, PD,  
PE, PF (TTL input)  
VIL1  
V
0.6  
VDD +0.2  
VDD +0.2  
Input High Voltage PA, PB, PC,  
PD, PE, PF (TTL input)  
VIH1  
V
1.5  
Input Low Voltage PA, PB, PC, PD,  
PE, PF (Schmitt input)  
VIL2  
VIH2  
VHY  
-0.5  
-
-
0.35 VDD  
VDD+0.5  
V
V
V
Input High Voltage PA, PB, PC,  
PD, PE, PF (Schmitt input)  
0.65 VDD  
Hysteresis voltage of PA~PE  
(Schmitt input)  
0.2 VDD  
0
-
-
-
-
0.8  
VDD = 4.5V  
VDD = 3.0V  
VDD = 5.5V  
VDD = 3.0V  
Input Low Voltage XT1[*2]  
Input High Voltage XT1[*2]  
VIL3  
V
V
0
0.4  
3.5  
2.4  
VDD +0.2  
VDD +0.2  
VIH3  
Negative going threshold  
(Schmitt input), /RESET  
VILS  
-0.5  
-
-
0.2 VDD  
VDD+0.5  
V
V
Positive going threshold  
(Schmitt input), /RESET  
VIHS  
0.6 VDD  
May 3, 2017  
Page 69 of 99  
Rev.2.04  
NUC123  
SPECIFICATIONS  
PARAMETER  
SYM  
TEST CONDITIONS  
MIN  
-300  
-50  
-40  
-20  
-4  
TYP  
-370  
-70  
-60  
-24  
-6  
MAX  
-450  
-90  
-80  
-28  
-8  
UNIT  
A  
ISR11  
ISR12  
ISR12  
ISR21  
ISR22  
ISR22  
ISK1  
VDD = 4.5V, VS = 2.4V  
Source Current PA, PB, PC, PD,  
PE, PF (Quasi-bidirectional Mode)  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
VDD = 4.5V, VS = 2.4V  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
VDD = 4.5V, VS = 0.45V  
VDD = 2.7V, VS = 0.45V  
VDD = 2.5V, VS = 0.45V  
A  
A  
mA  
mA  
mA  
mA  
mA  
mA  
Source Current PA, PB, PC, PD,  
PE, PF (Push-pull Mode)  
-3  
-5  
-7  
10  
16  
20  
Sink Current PA, PB, PC, PD, PE,  
PF (Quasi-bidirectional and Push-  
pull Mode)  
ISK1  
7
10  
13  
ISK1  
6
9
12  
Brown-out voltage with  
BOV_VL [1:0] =00b  
VBO2.2  
VBO2.7  
VBO3.8  
2.1  
2.6  
3.7  
2.2  
2.7  
3.8  
2.3  
2.8  
3.9  
V
V
V
Brown-out voltage with  
BOV_VL [1:0] =01b  
Brown-out voltage with  
BOV_VL [1:0] =10b  
Brown-out voltage with  
BOV_VL [1:0] =11b  
VBO4.5  
VBH  
4.4  
30  
4.5  
-
4.6  
V
Hysteresis range of BOD voltage  
150  
mV  
VDD = 2.5V - 5.5V  
Notes:  
1. nRESET pin is a Schmitt trigger input.  
2. Crystal Input is a CMOS input.  
3. Pins of PA, PB, PC, PD and PE can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD=5.5 V, 5he transition current reaches its maximum value when VIN approximates to 2V.  
May 3, 2017  
Page 70 of 99  
Rev.2.04  
NUC123  
7.3 AC Electrical Characteristics  
7.3.1 External 4~24 MHz High Speed Oscillator  
tCLCL  
tCLCH  
90%  
10%  
0.7 VDD  
tCLCX  
0.3 VDD  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
10  
10  
2
TYP  
MAX  
UNIT  
nS  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
-
-
-
-
-
-
nS  
15  
15  
nS  
2
nS  
7.3.2 External 4~24 MHz High Speed Crystal  
PARAMETER  
Input clock frequency  
CONDITIONS  
MIN  
4
TYP  
12  
-
MAX  
24  
UNIT  
MHz  
External crystal  
Temperature  
VDD  
-
-
-40  
2.5  
85  
5
5.5  
V
7.3.2.1  
Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R
4 MHz ~ 24 MHz  
10~20pF  
10~20pF  
without  
XT1_OUT  
XT1_IN  
R
C1  
C2  
Figure 7-1 Typical Crystal Application Circuit  
May 3, 2017  
Page 71 of 99  
Rev.2.04  
 
NUC123  
7.3.3 Internal 22.1184 MHz High Speed Oscillator  
PARAMETER  
CONDITIONS  
MIN  
2.5  
-
TYP  
MAX  
5.5  
-
UNIT  
V
Supply voltage[1]  
Center Frequency  
-
-
-
22.1184  
-
MHz  
%
+25; VDD =5 V  
-1  
+1  
Calibrated Internal Oscillator Frequency  
Operation Current  
-40~+85;  
-3  
-
-
+3  
-
%
VDD =2.5 V~5.5 V  
VDD =5 V  
500  
uA  
7.3.4 Internal 10 kHz Low Speed Oscillator  
PARAMETER  
CONDITIONS  
MIN  
2.5  
-
TYP  
MAX  
5.5  
-
UNIT  
V
Supply voltage[1]  
Center Frequency  
-
-
-
10  
-
kHz  
%
+25; VDD =5 V  
-30  
+30  
Calibrated Internal Oscillator Frequency  
-40~+85;  
-50  
-
+50  
%
VDD=2.5 V~5.5 V  
Note: Internal operation voltage comes from LDO.  
May 3, 2017  
Page 72 of 99  
Rev.2.04  
NUC123  
7.4 Analog Characteristics  
7.4.1 10-bit SARADC Specifications  
SPECIFICATIONS  
PARAMETER  
SYM  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.5  
1.5  
10  
UNIT  
V
Operating Voltage  
Operating Current  
Resolution  
AVDD  
IADC  
2.7  
AVDD = VDD  
mA  
bit  
V
AVDD = VDD = 5V, FSPS = 150K  
RADC  
VREF  
VIN  
Reference Voltage  
ADC input Voltage  
AVDD  
VREF Connected to AVDD in Chip  
0
AVDD  
V
VDD = 5V, ADC Clock = 6MHz  
Free Running Conversion  
Sampling Rate  
FSPS  
150K  
Hz  
±1  
±1  
±2  
Integral Non-linearity Error (INL)  
INL  
LSB  
LSB  
Differential Non-linearity Error  
(DNL)  
DNL  
Gain Error  
Offset Error  
EG  
LSB  
LSB  
LSB  
Hz  
EOFFSET  
EABS  
3
4
Absolute Error  
ADC Clock Frequency  
Clock Cycle  
FADC  
100K  
36  
6M  
VDD = 5V  
ADCYC  
Cycle  
May 3, 2017  
Page 73 of 99  
Rev.2.04  
NUC123  
7.4.2 LDO and Power Management Specifications  
PARAMETER  
Input Voltage  
Output Voltage  
MIN  
2.5  
TYP  
5
MAX  
5.5  
UNIT  
V
NOTE  
VDD input voltage  
VDD > 2.5V  
1.62  
1.8  
1.98  
V
Temperature  
Cbp  
-40  
-
25  
1
85  
-
uF  
Resr = 1Ω  
Notes:  
1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between VDD and the  
closest VSS pin of the device.  
2. To ensure power stability, a 1uF (Cbp) or higher capacitor must be connected between LDO pin and the closest VSS  
pin of the device.  
7.4.3 Low Voltage Reset Specifications  
PARAMETER  
Operation voltage  
Quiescent current  
Temperature  
CONDITIONS  
MIN  
1.7  
-
TYP  
MAX  
5.5  
5
UNIT  
V
-
-
-
VDD = 5.5 V  
-
uA  
-40  
25  
85  
Temperature = 25℃  
Temperature = -40℃  
1.7  
-
2.0  
2.4  
2.3  
-
V
V
Threshold voltage  
Hysteresis  
Temperature = 85℃  
-
1.6  
0
-
V
V
-
0
0
May 3, 2017  
Page 74 of 99  
Rev.2.04  
NUC123  
7.4.4 Brown-out Detector Specifications  
PARAMETER  
Operation voltage  
Quiescent current  
Temperature  
CONDITIONS  
MIN  
2.5  
-
TYP  
-
MAX  
5.5  
125  
85  
UNIT  
V
-
AVDD = 5.5 V  
-
-
μA  
V
-40  
4.4  
3.7  
2.6  
2.1  
30  
25  
4.5  
3.8  
2.7  
2.2  
-
BOV_VL[1:0] = 11  
BOV_VL [1:0] = 10  
BOV_VL [1:0] = 01  
BOV_VL [1:0] = 00  
-
4.6  
3.9  
2.8  
2.3  
150  
V
Brown-out voltage  
V
V
Hysteresis  
mV  
7.4.5 Power-On Reset (5V) Specifications  
PARAMETER  
Temperature  
CONDITIONS  
MIN  
TYP  
25  
2
MAX  
UNIT  
-
V+  
-40  
85  
-
Reset voltage  
Quiescent current  
-
-
V
Vin>reset voltage  
1
-
nA  
May 3, 2017  
Page 75 of 99  
Rev.2.04  
NUC123  
7.4.6 USB PHY Specifications  
7.4.6.1  
USB DC Electrical Characteristics  
SYMBOL  
PARAMETER  
Input high (driven)  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
VIL  
VDI  
2.0  
V
V
V
Input low  
0.8  
Differential input sensitivity  
|PADP-PADM|  
0.2  
0.8  
0.8  
Differential  
VCM  
VSE  
Includes VDI range  
2.5  
2.0  
V
common-mode range  
Single-ended receiver threshold  
Receiver hysteresis  
Output low (driven)  
V
mV  
V
200  
VOL  
VOH  
VCRS  
RPU  
RPD  
0
0.3  
3.6  
Output high (driven)  
Output signal cross voltage  
Pull-up resistor  
2.8  
V
1.3  
2.0  
V
1.425  
14.25  
1.575  
15.75  
kΩ  
kΩ  
Pull-down resistor  
Termination Voltage for upstream port  
pull up (RPU)  
VTRM  
3.0  
3.6  
V
ZDRV  
CIN  
Driver output resistance  
Transceiver capacitance  
Steady state drive*  
Pin to GND  
10  
Ω
20  
pF  
Note: Driver output resistance doesn’t include series resistor resistance.  
7.4.6.2  
USB Full-Speed Driver Electrical Characteristics  
SYMBOL  
TFR  
PARAMETER  
CONDITIONS  
CL = 50p  
MIN  
4
TYP  
MAX  
20  
UNIT  
ns  
Rising time  
Falling time  
TFF  
CL = 50p  
4
20  
ns  
TFRFF  
Rising and falling time matching  
TFRFF = TFR/TFF  
90  
111.11  
%
7.4.6.3  
USB Power Dissipation  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBUS current  
(steady state)  
IVBUS  
Standby  
50  
uA  
7.4.6.4  
USB LDO Specification  
SYMBOL  
VBUS  
PARAMETER  
VBUS Pin Input Voltage  
LDO Output Voltage  
CONDITIONS  
MIN.  
4.0  
TYP.  
5.0  
MAX.  
5.5  
UNIT  
V
VDD33  
3.0  
3.3  
3.6  
V
May 3, 2017  
Page 76 of 99  
Rev.2.04  
NUC123  
Cbp  
External Bypass Capacitor  
1.0  
-
uF  
7.5 Flash DC Electrical Characteristics  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
1.62  
10  
TYP.  
MAX.  
UNIT  
V[1]  
VDD  
Supply voltage  
1.8  
1.98  
Temp=85 ℃  
TRET  
TERASE  
TMER  
TPROG  
IDD1  
Data Retention  
year  
ms  
Page Erase Time  
Mass Erase Time  
Program Time  
20  
40  
40  
ms  
us  
Read Current  
0.25  
7
mA  
mA  
uA  
IDD2  
Program/Erase Current  
Power Down Current  
IPD  
1
20  
Note: VDD is source from chip LDO output voltage.  
May 3, 2017  
Page 77 of 99  
Rev.2.04  
NUC123  
7.6 SPI Dynamic Characteristics  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
SPI Master mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
TBD  
TBD  
-
TBD  
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
TBD  
TBD  
SPI Master mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
TBD  
TBD  
-
TBD  
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
TBD  
TBD  
SPI Slave mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
TBD  
TBD  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
TBD  
TBD  
SPI Slave mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
TBD  
TBD  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
TBD  
TBD  
TBD: To be defined.  
CLKP=0  
SPICLK  
CLKP=1  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 7-2 SPI Master Dynamic Characteristics Timing  
May 3, 2017  
Page 78 of 99  
Rev.2.04  
NUC123  
CLKP=0  
CLKP=1  
SPICLK  
tDS  
tDH  
Data Valid  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tv  
Data Valid  
tDS  
tDH  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tv  
Data Valid  
Figure 7-3 SPI Slave Dynamic Characteristics Timing  
May 3, 2017  
Page 79 of 99  
Rev.2.04  
NUC123  
8
ELECTRICAL CHARACTERISTICS (NUC123XXXAEX)  
8.1 Absolute Maximum Ratings  
Symbol  
VDD VSS  
VIN  
Parameter  
Min  
-0.3  
VSS - 0.3  
4
Max  
+7.0  
VDD + 0.3  
24  
Unit  
V
DC Power Supply  
Input Voltage  
V
1/tCLCL  
TA  
Oscillator Frequency  
MHz  
 
Operating Temperature  
-40  
+105  
+150  
120  
TST  
Storage Temperature  
-55  
IDD  
Maximum Current into VDD  
-
mA  
mA  
mA  
mA  
mA  
mA  
ISS  
Maximum Current out of VSS  
120  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
35  
35  
IIO  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affect the lift and reliability of  
the device.  
May 3, 2017  
Page 80 of 99  
Rev.2.04  
NUC123  
8.2 DC Electrical Characteristics  
(VDD-VSS=2.5 ~ 5.5 V, TA = 25C)  
SPECIFICATIONS  
PARAMETER  
SYM  
VDD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Operation voltage  
2.5  
5.5  
V
VDD = 2.5V ~ 5.5V up to 72 MHz  
VDD rise rate to ensure internal  
operation correctly  
VRISE  
0.05  
-0.3  
1.62  
0
V/ms  
VSS  
Power ground  
V
V
V
AVSS  
LDO output voltage  
Analog operating voltage  
VLDO  
1.8  
1.98  
VDD > 2.5V  
AVDD  
VDD  
VDD = 5.5V at 72 MHz,  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
39  
24  
37  
23  
10  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All IP and PLL Enabled,  
XTAL = 12 MHz  
VDD = 5.5V at 72 MHz,  
All IP Disabled and PLL Enabled, XTAL =  
12 MHz  
Operating current  
Normal Run mode  
at 72 MHz  
VDD = 3V at 72 MHz,  
All IP and PLL enabled,  
XTAL = 12 MHz  
VDD = 3V at 72 MHz,  
All IP Disabled and PLL Enabled, XTAL =  
12 MHz  
VDD = 5.5V at 12 MHz,  
All IP Enabled and PLL Disabled, XTAL =  
12 MHz  
VDD = 5.5V at 12 MHz,  
All IP and PLL Disabled,  
XTAL = 12 MHz  
Operating current  
Normal Run mode  
at 12 MHz  
VDD = 3V at 12 MHz,  
8
All IP Enabled and PLL Disabled, XTAL =  
12 MHz  
VDD = 3V at 12 MHz,  
All IP and PLL Disabled,  
XTAL = 12 MHz  
IDD8  
6
6
mA  
mA  
VDD = 5V at 4 MHz,  
Operating current  
Normal Run mode  
IDD9  
All IP Enabled and PLL Disabled, XTAL =  
4 MHz  
May 3, 2017  
Page 81 of 99  
Rev.2.04  
 
NUC123  
SPECIFICATIONS  
PARAMETER  
SYM  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
at 4 MHz  
VDD = 5V at 4 MHz,  
IDD10  
5
mA  
All IP and PLL Disabled,  
XTAL = 4 MHz  
VDD = 3V at 4 MHz,  
IDD11  
4
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All IP Enabled and PLL Disabled, XTAL =  
4 MHz  
VDD = 3V at 4 MHz,  
IDD12  
All IP and PLL Disabled,  
XTAL = 4 MHz  
VDD = 5.5V at 72 MHz,  
IIDLE1  
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
IIDLE8  
IIDLE9  
IIDLE10  
IIDLE11  
IIDLE12  
28  
12  
25  
10  
6
All IP and PLL Enabled,  
XTAL = 12 MHz  
VDD = 5.5V at 72 MHz,  
All IP Disabled and PLL Enabled, XTAL =  
12 MHz  
Operating current  
Idle mode  
VDD = 3V at 72 MHz,  
at 72 MHz  
All IP and PLL Enabled,  
XTAL = 12 MHz  
VDD = 3V at 72 MHz,  
All IP Disabled and PLL Enabled,  
XTAL=12 MHz  
VDD = 5.5V at 12 MHz,  
All IP Enabled and PLL Disabled, XTAL =  
12 MHz  
VDD = 5.5V at 12 MHz,  
3
All IP and PLL Disabled,  
XTAL = 12 MHz  
Operating current  
Idle mode  
VDD = 3V at 12 MHz,  
at 12 MHz  
5
All IP Enabled and PLL Disabled, XTAL =  
12 MHz  
VDD = 3 V at 12 MHz,  
2
All IP and PLL Disabled,  
XTAL = 12 MHz  
VDD = 5V at 4 MHz,  
5
All IP Enabled and PLL Disabled, XTAL =  
4 MHz  
VDD = 5V at 4 MHz,  
4
All IP and PLL Disabled,  
XTAL = 4 MHz  
Operating current  
Idle mode  
VDD = 3V at 4 MHz,  
at 4 MHz  
3
All IP Enabled and PLL Disabled, XTAL =  
4 MHz  
VDD = 3V at 4 MHz,  
2
All IP and PLL Disabled,  
XTAL = 4 MHz  
May 3, 2017  
Page 82 of 99  
Rev.2.04  
NUC123  
SPECIFICATIONS  
PARAMETER  
SYM  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 5.5V at 10 kHz,  
IIDLE5  
110  
uA  
All IP Enabled and PLL Disabled, LIRC  
10 kHz Enabled  
VDD = 5.5V at 10 kHz,  
IIDLE6  
IIDLE7  
IIDLE8  
110  
100  
100  
uA  
uA  
uA  
All IP and PLL Disabled,  
LIRC 10 kHz Enabled  
Operating current  
Idle mode  
VDD = 3V at 10 kHz,  
at 10 kHz  
All IP Enabled and PLL Disabled, LIRC  
10 kHz Enabled  
VDD = 3 V at 10 kHz,  
All IP and PLL Disabled,  
LIRC 10 kHz Enabled  
VDD = 5.5V, No load  
IPWD1  
15  
13  
A  
A  
when BOV function Disabled  
Standby current  
Power-down mode  
VDD = 3.3V, No load  
IPWD2  
when BOV function Disabled  
Input Current PA, PB, PC, PD, PE,  
PF (Quasi-bidirectional mode)  
IIN1  
IIN2  
ILK  
-64  
-45  
-
VDD = 5.5V, VIN = 0V  
A  
A  
A  
Input Current at /RESET[1]  
-55  
-2  
-30  
+2  
VDD = 3.3V, VIN = 0.45V  
VDD = 5.5V, 0 < VIN < VDD  
Input Leakage Current PA, PB, PC,  
PD, PE, PF  
Logic 1 to 0 Transition Current  
PA~PF (Quasi-bidirectional mode)  
[3]  
ITL  
-650  
-
-200  
VDD = 5.5V, VIN < 2.0V  
A  
-0.3  
-0.3  
2.0  
-
-
-
-
0.8  
VDD = 4.5V  
VDD = 2.5V  
VDD = 5.5V  
VDD = 3.0V  
Input Low Voltage PA, PB, PC, PD,  
PE, PF (TTL input)  
VIL1  
V
0.6  
VDD +0.2  
VDD +0.2  
Input High Voltage PA, PB, PC,  
PD, PE, PF (TTL input)  
VIH1  
V
1.5  
Input Low Voltage PA, PB, PC, PD,  
PE, PF (Schmitt input)  
VIL2  
VIH2  
VHY  
-0.5  
-
-
0.35 VDD  
VDD+0.5  
V
V
V
Input High Voltage PA, PB, PC,  
PD, PE, PF (Schmitt input)  
0.65 VDD  
Hysteresis voltage of PA~PE  
(Schmitt input)  
0.2 VDD  
0
-
-
-
-
0.8  
VDD = 4.5V  
VDD = 3.0V  
VDD = 5.5V  
VDD = 3.0V  
Input Low Voltage XT1[*2]  
Input High Voltage XT1[*2]  
VIL3  
V
V
0
0.4  
3.9  
2.4  
VDD +0.2  
VDD +0.2  
VIH3  
Negative going threshold  
(Schmitt input), /RESET  
VILS  
-0.5  
-
-
0.2 VDD  
VDD+0.5  
V
V
Positive going threshold  
(Schmitt input), /RESET  
VIHS  
0.6 VDD  
May 3, 2017  
Page 83 of 99  
Rev.2.04  
NUC123  
SPECIFICATIONS  
PARAMETER  
SYM  
TEST CONDITIONS  
MIN  
-300  
-50  
-40  
-24  
-4  
TYP  
-370  
-70  
-60  
-28  
-6  
MAX  
-450  
-90  
-80  
-32  
-8  
UNIT  
A  
ISR11  
ISR12  
ISR12  
ISR21  
ISR22  
ISR22  
ISK1  
VDD = 4.5V, VS = 2.4V  
Source Current PA, PB, PC, PD,  
PE, PF (Quasi-bidirectional Mode)  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
VDD = 4.5V, VS = 2.4V  
VDD = 2.7V, VS = 2.2V  
VDD = 2.5V, VS = 2.0V  
VDD = 4.5V, VS = 0.45V  
VDD = 2.7V, VS = 0.45V  
VDD = 2.5V, VS = 0.45V  
A  
A  
mA  
mA  
mA  
mA  
mA  
mA  
Source Current PA, PB, PC, PD,  
PE, PF (Push-pull Mode)  
-3  
-5  
-7  
10  
16  
20  
Sink Current PA, PB, PC, PD, PE,  
PF (Quasi-bidirectional and Push-  
pull Mode)  
ISK1  
7
10  
13  
ISK1  
6
9
12  
Brown-out voltage with  
BOV_VL [1:0] =00b  
VBO2.2  
VBO2.7  
VBO3.8  
2.1  
2.6  
3.5  
2.2  
2.7  
3.7  
2.3  
2.8  
3.9  
V
V
V
Brown-out voltage with  
BOV_VL [1:0] =01b  
Brown-out voltage with  
BOV_VL [1:0] =10b  
Brown-out voltage with  
BOV_VL [1:0] =11b  
VBO4.5  
VBH  
4.2  
30  
4.4  
-
4.6  
V
Hysteresis range of BOD voltage  
150  
mV  
VDD = 2.5V - 5.5V  
Notes:  
1. nRESET pin is a Schmitt trigger input.  
2. Crystal Input is a CMOS input.  
3. Pins of PA, PB, PC, PD and PE can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD=5.5 V, 5he transition current reaches its maximum value when VIN approximates to 2V.  
May 3, 2017  
Page 84 of 99  
Rev.2.04  
NUC123  
8.3 AC Electrical Characteristics  
8.3.1 External 4~24 MHz High Speed Oscillator  
tCLCL  
tCLCH  
90%  
10%  
0.7 VDD  
tCLCX  
0.3 VDD  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
10  
10  
2
TYP  
MAX  
UNIT  
nS  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
-
-
-
-
-
-
nS  
15  
15  
nS  
2
nS  
8.3.2 External 4~24 MHz High Speed Crystal  
PARAMETER  
Input clock frequency  
CONDITIONS  
MIN  
4
TYP  
MAX  
24  
UNIT  
MHz  
External crystal  
-
-
-
Temperature  
VDD  
-
-
-40  
2.5  
105  
5.5  
V
8.3.2.1  
Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R
4 MHz ~ 24 MHz  
10~20pF  
10~20pF  
without  
XT1_OUT  
XT1_IN  
R
C1  
C2  
Figure 8-1 Typical Crystal Application Circuit  
May 3, 2017  
Page 85 of 99  
Rev.2.04  
NUC123  
8.3.3 Internal 22.1184 MHz High Speed Oscillator  
PARAMETER  
CONDITIONS  
MIN  
2.5  
-
TYP  
MAX  
5.5  
-
UNIT  
V
Supply voltage[1]  
Center Frequency  
-
-
-
22.1184  
-
MHz  
%
+25; VDD =5 V  
-1  
+1  
Calibrated Internal Oscillator Frequency  
Operation Current  
-40~+105;  
-3  
-
-
+3  
-
%
VDD=2.5 V~5.5 V  
VDD =5 V  
500  
uA  
8.3.4 Internal 10 kHz Low Speed Oscillator  
PARAMETER  
CONDITIONS  
MIN  
2.5  
-
TYP  
MAX  
5.5  
-
UNIT  
V
Supply voltage[1]  
Center Frequency  
-
-
-
10  
-
kHz  
%
+25; VDD =5 V  
-30  
+30  
Calibrated Internal Oscillator Frequency  
-40~+105;  
-50  
-
+50  
%
VDD=2.5 V~5.5 V  
Note: Internal operation voltage comes from LDO.  
May 3, 2017  
Page 86 of 99  
Rev.2.04  
NUC123  
8.4 Analog Characteristics  
8.4.1 10-bit SARADC Specifications  
Specification  
PARAMETER  
Sym.  
TEST CONDITIONS  
Min.  
TYP.  
Max.  
5.5  
1.5  
10  
Unit  
V
Operating voltage  
AVDD  
IADC  
2.7  
AVDD = VDD  
Operating current  
Resolution  
mA  
bit  
V
AVDD = VDD = 5V, FSPS = 200K  
RADC  
VREF  
VIN  
Reference voltage  
ADC input voltage  
AVDD  
VREF connected to AVDD in chip  
0
AVDD  
V
VDD = 5V, ADC clock = 3MHz  
Free running conversion  
Sampling rate  
FSPS  
INL  
200K  
Hz  
Integral non-linearity error  
(INL)  
±1  
LSB  
LSB  
Differential non-linearity  
(DNL)  
DNL  
±1  
±2  
Gain error  
EG  
LSB  
LSB  
LSB  
Hz  
Offset error  
EOFFSET  
EABS  
3
4
Absolute error  
ADC clock frequency  
Clock cycle  
FADC  
100K  
16  
3M  
VDD = 5V  
ADCYC  
Cycle  
May 3, 2017  
Page 87 of 99  
Rev.2.04  
NUC123  
8.4.2 LDO and Power Management Specifications  
PARAMETER  
Input Voltage  
Output Voltage  
MIN  
2.5  
TYP  
5
MAX  
5.5  
UNIT  
V
NOTE  
VDD input voltage  
VDD > 2.5V  
1.62  
1.8  
1.98  
V
Temperature  
Cbp  
-40  
-
25  
1
105  
-
uF  
Resr = 1Ω  
Notes:  
1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between VDD and the  
closest VSS pin of the device.  
2. To ensure power stability, a 1uF (Cbp) or higher capacitor must be connected between LDO pin and the closest VSS pin  
of the device.  
8.4.3 Low Voltage Reset Specifications  
PARAMETER  
Operation voltage  
Quiescent current  
Temperature  
CONDITIONS  
MIN  
1.7  
-
TYP  
MAX  
5.5  
5
UNIT  
V
-
-
-
VDD = 5.5 V  
-
uA  
-40  
25  
105  
Temperature = 25℃  
Temperature = -40℃  
1.7  
-
2.0  
1.8  
2.3  
-
V
V
Threshold voltage  
Hysteresis  
Temperature = 85℃  
-
2.2  
0
-
V
V
-
0
0
May 3, 2017  
Page 88 of 99  
Rev.2.04  
NUC123  
8.4.4 Brown-out Detector Specifications  
PARAMETER  
Operation voltage  
Quiescent current  
Temperature  
CONDITIONS  
MIN  
2.5  
-
TYP  
-
MAX  
5.5  
UNIT  
V
-
AVDD = 5.5 V  
-
-
125  
105  
4.6  
μA  
V
-40  
4.2  
3.5  
2.6  
2.1  
30  
25  
4.4  
3.7  
2.7  
2.2  
-
BOV_VL[1:0] = 11  
BOV_VL [1:0] = 10  
BOV_VL [1:0] = 01  
BOV_VL [1:0] = 00  
-
3.9  
V
Brown-out voltage  
2.8  
V
2.3  
V
Hysteresis  
150  
mV  
8.4.5 Power-On Reset (5V) Specifications  
PARAMETER  
Temperature  
CONDITIONS  
MIN  
TYP  
25  
2
MAX  
UNIT  
-
V+  
-40  
105  
Reset voltage  
Quiescent current  
-
-
-
-
V
Vin>reset voltage  
1
nA  
May 3, 2017  
Page 89 of 99  
Rev.2.04  
NUC123  
8.4.6 USB PHY Specifications  
8.4.6.1  
USB DC Electrical Characteristics  
SYMBOL  
PARAMETER  
Input high (driven)  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
VIL  
VDI  
2.0  
V
V
V
Input low  
0.8  
Differential input sensitivity  
|PADP-PADM|  
0.2  
0.8  
0.8  
Differential  
VCM  
VSE  
Includes VDI range  
2.5  
2.0  
V
common-mode range  
Single-ended receiver threshold  
Receiver hysteresis  
Output low (driven)  
V
mV  
V
200  
VOL  
VOH  
VCRS  
RPU  
RPD  
0
0.3  
3.6  
Output high (driven)  
Output signal cross voltage  
Pull-up resistor  
2.8  
V
1.3  
2.0  
V
1.425  
14.25  
1.575  
15.75  
kΩ  
kΩ  
Pull-down resistor  
Termination Voltage for upstream port  
pull up (RPU)  
VTRM  
3.0  
3.6  
V
ZDRV  
CIN  
Driver output resistance  
Transceiver capacitance  
Steady state drive*  
Pin to GND  
10  
Ω
20  
pF  
Note: Driver output resistance doesn’t include series resistor resistance.  
8.4.6.2  
USB Full-Speed Driver Electrical Characteristics  
SYMBOL  
TFR  
PARAMETER  
CONDITIONS  
CL = 50p  
MIN  
4
TYP  
MAX  
20  
UNIT  
ns  
Rising time  
Falling time  
TFF  
CL = 50p  
4
20  
ns  
TFRFF  
Rising and falling time matching  
TFRFF = TFR/TFF  
90  
111.11  
%
8.4.6.3  
USB Power Dissipation  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBUS current  
(steady state)  
IVBUS  
Standby  
50  
uA  
8.4.6.4  
USB LDO Specification  
SYMBOL  
VBUS  
PARAMETER  
VBUS Pin Input Voltage  
LDO Output Voltage  
CONDITIONS  
MIN.  
4.0  
TYP.  
5.0  
MAX.  
5.5  
UNIT  
V
VDD33  
3.0  
3.3  
3.6  
V
May 3, 2017  
Page 90 of 99  
Rev.2.04  
NUC123  
Cbp  
External Bypass Capacitor  
1.0  
-
uF  
May 3, 2017  
Page 91 of 99  
Rev.2.04  
NUC123  
8.5 Flash DC Electrical Characteristics  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
1.62  
TYP.  
MAX.  
UNIT  
VDD  
Supply Voltage  
1.8  
1.98  
V[1]  
NENDUR  
TRET  
TERASE  
TMER  
TPROG  
IDD1  
Endurance  
20000  
100  
cycles[2]  
year  
ms  
Data Retention  
At 25℃  
Page Erase Time  
Mass Erase Time  
Program Time  
20  
40  
ms  
35  
μs  
Read Current  
-
-
TBD  
mA/MHz  
mA  
IDD2  
Program/Erase Current  
Power Down Current  
7
IPD  
1
20  
μA  
Note1: VDD is source from chip LDO output voltage.  
Note2: Number of program/erase cycles.  
Note3: This table is guaranteed by design, not test in production.  
May 3, 2017  
Page 92 of 99  
Rev.2.04  
NUC123  
8.6 SPI Dynamic Characteristics  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
SPI Master mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
4
0
-
2
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
7
11  
SPI Master mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
5
0
-
3
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
13  
18  
SPI Slave mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
-
-
ns  
ns  
ns  
Data hold time  
2*PCLK+4  
-
-
-
Data output valid time  
2*PCLK+11  
2*PCLK+19  
SPI Slave mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
-
-
ns  
ns  
ns  
Data hold time  
2*PCLK+6  
-
-
-
Data output valid time  
2*PCLK+19  
2*PCLK+25  
CLKP=0  
CLKP=1  
SPICLK  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8-2 SPI Master Dynamic Characteristics timing  
May 3, 2017  
Page 93 of 99  
Rev.2.04  
NUC123  
CLKP=0  
CLKP=1  
SPICLK  
tDS  
tDH  
Data Valid  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tv  
Data Valid  
tDS  
tDH  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tv  
Data Valid  
Figure 8-3 SPI Slave Dynamic Characteristics Timing  
May 3, 2017  
Page 94 of 99  
Rev.2.04  
NUC123  
9
PACKAGE DIMENSIONS  
9.1 64L LQFP (7x7x1.4 mm footprint 2.0 mm)  
May 3, 2017  
Page 95 of 99  
Rev.2.04  
NUC123  
9.2 48L LQFP (7x7x1.4 mm footprint 2.0 mm)  
May 3, 2017  
Page 96 of 99  
Rev.2.04  
NUC123  
9.3 33L QFN (5x5x0.8 mm)  
32  
25  
1
24  
8
17  
16  
9
32  
25  
24  
1
17  
8
16  
9
May 3, 2017  
Page 97 of 99  
Rev.2.04  
NUC123  
10 REVISION HISTORY  
Date  
Revision  
Description  
2012.04.01  
2015.05.29  
1.00  
Preliminary version.  
2.00  
1. Merged NUC123xxxANx & NUC123xxxAEx into this document.  
1. Removed ADC function pins of NUC123 QFN33 package type in section 4.3.1.3,  
4.3.2.3 and 4.4.1.  
2015.11.04  
2016.01.12  
2016.07.06  
2.01  
2.02  
2.03  
1. Revised section 8.2 Source Current PA, PB, PC, PD, PE, PF (Push-pull Mode).  
1. Updated ADC function pins of NUC123 QFN33 package type in section 4.3.1.3,  
4.3.2.3 and 4.4.1.  
1. Updated Typical Crystal Application Circuit for External 4~24 MHz High Speed  
Crystal in section 7.3.2.1.  
2017.05.03  
2.04  
May 3, 2017  
Page 98 of 99  
Rev.2.04  
NUC123  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
May 3, 2017  
Page 99 of 99  
Rev.2.04  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY