NUC500-VE1C [NUVOTON]

ARM Cortex™-M0 32-BIT MICROCONTROLLER;
NUC500-VE1C
型号: NUC500-VE1C
厂家: NUVOTON    NUVOTON
描述:

ARM Cortex™-M0 32-BIT MICROCONTROLLER

文件: 总89页 (文件大小:2245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NuMicroNUC120 Data Sheet  
ARM Cortex™-M0  
32-BIT MICROCONTROLLER  
NuMicro™ Family  
NUC120 Data Sheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
Publication Release Date: Jan. 2, 2012  
- 1 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
Contents  
1
2
GENERAL DESCRIPTION ......................................................................................................... 7  
FEATURES................................................................................................................................. 8  
2.1  
NuMicroNUC120 Features – USB Line ...................................................................... 8  
3
PARTS INFORMATION LIST AND PIN CONFIGURATION .................................................... 12  
3.1  
3.2  
NuMicroNUC120 Products Selection Guide............................................................. 12  
3.1.1 NuMicroNUC120 Medium Density USB Line Selection Guide....................................12  
3.1.2 NuMicroNUC120 Low Density USB Line Selection Guide..........................................12  
Pin Configuration .......................................................................................................... 14  
3.2.1 NuMicroNUC120 Medium Density Pin Diagram .........................................................14  
3.2.2 NuMicroNUC120 Low Density Pin Diagram ...............................................................17  
4
5
BLOCK DIAGRAM .................................................................................................................... 19  
4.1  
4.2  
NuMicroNUC120 Medium Density Block Diagram ................................................... 19  
NuMicroNUC120 Low Density Block Diagram.......................................................... 20  
FUNCTIONAL DESCRIPTION.................................................................................................. 21  
5.1  
5.2  
ARM® Cortex™-M0 Core.............................................................................................. 21  
System Manager........................................................................................................... 23  
5.2.1 Overview ........................................................................................................................23  
5.2.2 System Reset.................................................................................................................23  
5.2.3 System Power Distribution .............................................................................................24  
5.2.4 System Memory Map......................................................................................................25  
5.2.5 System Timer (SysTick) .................................................................................................27  
5.2.6 Nested Vectored Interrupt Controller (NVIC)..................................................................28  
Clock Controller ............................................................................................................ 32  
5.3  
5.3.1 Overview ........................................................................................................................32  
5.3.2 Clock Generator .............................................................................................................34  
5.3.3 System Clock and SysTick Clock ...................................................................................35  
5.3.4 Peripherals Clock ...........................................................................................................36  
5.3.5 Power Down Mode Clock ...............................................................................................36  
5.3.6 Frequency Divider Output...............................................................................................37  
USB Device Controller (USB)....................................................................................... 38  
5.4  
5.5  
5.6  
5.7  
5.4.1 Overview ........................................................................................................................38  
5.4.2 Features .........................................................................................................................38  
General Purpose I/O (GPIO) ........................................................................................ 39  
5.5.1 Overview ........................................................................................................................39  
5.5.2 Features .........................................................................................................................39  
I2C Serial Interface Controller (Master/Slave) (I2C) ...................................................... 40  
5.6.1 Overview ........................................................................................................................40  
5.6.2 Features .........................................................................................................................41  
PWM Generator and Capture Timer (PWM) ................................................................ 42  
5.7.1 Overview ........................................................................................................................42  
Publication Release Date: Jan. 2, 2012  
- 2 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
5.7.2 Features .........................................................................................................................43  
Real Time Clock (RTC)................................................................................................. 44  
5.8  
5.9  
5.8.1 Overview ........................................................................................................................44  
5.8.2 Features .........................................................................................................................44  
Serial Peripheral Interface (SPI)................................................................................... 45  
5.9.1 Overview ........................................................................................................................45  
5.9.2 Features .........................................................................................................................45  
5.10 Timer Controller (TMR)................................................................................................. 46  
5.10.1 Overview ......................................................................................................................46  
5.10.2 Features .......................................................................................................................46  
5.11 Watchdog Timer (WDT)................................................................................................ 47  
5.11.1 Overview ......................................................................................................................47  
5.11.2 Features .......................................................................................................................49  
5.12 UART Interface Controller (UART) ............................................................................... 49  
5.12.1 Overview ......................................................................................................................49  
5.12.2 Features .......................................................................................................................51  
5.13 PS/2 Device Controller (PS2D)..................................................................................... 52  
5.13.1 Overview ......................................................................................................................52  
5.13.2 Features .......................................................................................................................52  
5.14 I2S Controller (I2S)......................................................................................................... 53  
5.14.1 Overview ......................................................................................................................53  
5.14.2 Features .......................................................................................................................53  
5.15 Analog-to-Digital Converter (ADC) ............................................................................... 54  
5.15.1 Overview ......................................................................................................................54  
5.15.2 Features .......................................................................................................................54  
5.16 Analog Comparator (CMP) ........................................................................................... 55  
5.16.1 Overview ......................................................................................................................55  
5.16.2 Features .......................................................................................................................55  
5.17 PDMA Controller (PDMA)............................................................................................. 56  
5.17.1 Overview ......................................................................................................................56  
5.17.2 Features .......................................................................................................................56  
5.18 External Bus Interface (EBI) ......................................................................................... 57  
5.18.1 Overview ......................................................................................................................57  
5.18.2 Features .......................................................................................................................57  
FLASH MEMORY CONTROLLER (FMC) ................................................................................ 58  
6
7
6.1  
6.2  
Overview....................................................................................................................... 58  
Features........................................................................................................................ 58  
ELECTRICAL CHARACTERISTICS......................................................................................... 59  
7.1  
7.2  
Absolute Maximum Ratings.......................................................................................... 59  
DC Electrical Characteristics ........................................................................................ 60  
7.2.1 NuMicroNUC100/NUC120 Medium Density DC Electrical Characteristics.................60  
7.2.2 NuMicroNUC100/NUC120 Low Density DC Electrical Characteristics .......................65  
Publication Release Date: Jan. 2, 2012  
- 3 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
7.2.3 Operating Current Curve (Test condition: run NOP).......................................................70  
7.2.4 Idle Current Curve..........................................................................................................72  
7.2.5 Power Down Current Curve............................................................................................74  
AC Electrical Characteristics ........................................................................................ 75  
7.3  
7.4  
7.3.1 External 4~24 MHz High Speed Crystal.........................................................................75  
7.3.2 External 32.768 kHz Low Speed Crystal ........................................................................76  
7.3.3 Internal 22.1184 MHz High Speed Oscillator..................................................................76  
7.3.4 Internal 10 kHz Low Speed Oscillator.............................................................................76  
Analog Characteristics.................................................................................................. 77  
7.4.1 Specification of 12-bit SARADC .....................................................................................77  
7.4.2 Specification of LDO and Power management...............................................................78  
7.4.3 Specification of Low Voltage Reset ................................................................................79  
7.4.4 Specification of Brown-Out Detector...............................................................................79  
7.4.5 Specification of Power-On Reset (5 V)...........................................................................79  
7.4.6 Specification of Temperature Sensor .............................................................................80  
7.4.7 Specification of Comparator ...........................................................................................80  
7.4.8 Specification of USB PHY ..............................................................................................81  
Flash DC Electrical Characteristics .............................................................................. 82  
7.5  
7.6  
SPI Dynamic Characteristics ........................................................................................ 83  
8
9
PACKAGE DIMENSIONS......................................................................................................... 85  
8.1  
8.2  
8.3  
100L LQFP (14x14x1.4 mm footprint 2.0mm) .............................................................. 85  
64L LQFP (10x10x1.4mm footprint 2.0 mm) ................................................................ 86  
48L LQFP (7x7x1.4mm footprint 2.0mm) ..................................................................... 87  
REVISION HISTORY................................................................................................................ 88  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 4 -  
NuMicroNUC120 Data Sheet  
Figures  
Figure 3-1 NuMicroNUC100 Series selection code ................................................................... 13  
Figure 3-2 NuMicroNUC120 Medium Density LQFP 100-pin Pin Diagram ............................... 14  
Figure 3-3 NuMicroNUC120 Medium Density LQFP 64-pin Pin Diagram ................................. 15  
Figure 3-4 NuMicroNUC120 Medium Density LQFP 48-pin Pin Diagram ................................. 16  
Figure 3-5 NuMicroNUC120 Low Density LQFP 64-pin Pin Diagram........................................ 17  
Figure 3-6 NuMicroNUC120 Low Density LQFP 48-pin Pin Diagram........................................ 18  
Figure 4-1 NuMicroNUC120 Medium Density Block Diagram ................................................... 19  
Figure 4-2 NuMicroNUC120 Low Density Block Diagram ......................................................... 20  
Figure 5-1 Functional Controller Diagram...................................................................................... 21  
Figure 5-2 NuMicroNUC120 Power Distribution Diagram.......................................................... 24  
Figure 5-4 Clock generator global view diagram ........................................................................... 33  
Figure 5-5 Clock generator block diagram..................................................................................... 34  
Figure 5-6 System Clock Block Diagram ....................................................................................... 35  
Figure 5-7 SysTick Clock Control Block Diagram.......................................................................... 35  
Figure 5-8 Clock Source of Frequency Divider.............................................................................. 37  
Figure 5-9 Block Diagram of Frequency Divider............................................................................ 37  
Figure 5-10 I2C Bus Timing............................................................................................................ 40  
Figure 5-11 Timing of Interrupt and Reset Signal.......................................................................... 48  
Figure 7-1 Typical Crystal Application Circuit ................................................................................ 76  
Figure 7-2 SPI Master dynamic characteristics timing................................................................... 84  
Figure 7-3 SPI Slave dynamic characteristics timing..................................................................... 84  
Publication Release Date: Jan. 2, 2012  
- 5 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
Tables  
Table 1-1 Connectivity Supported Table.......................................................................................... 7  
Table 5-1 Address Space Assignments for On-Chip Controllers................................................... 26  
Table 5-2 Exception Model ............................................................................................................ 29  
Table 5-3 System Interrupt Map..................................................................................................... 30  
Table 5-4 Vector Table Format ...................................................................................................... 31  
Table 5-5 Watchdog Timeout Interval Selection............................................................................ 47  
Table 5-6 UART Baud Rate Equation............................................................................................ 49  
Table 5-7 UART Baud Rate Setting Table..................................................................................... 50  
Publication Release Date: Jan. 2, 2012  
- 6 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
1
GENERAL DESCRIPTION  
The NuMicroNUC100 Series is 32-bit microcontrollers with embedded ARM® Cortex™-M0 core  
for industrial control and applications which need rich communication interfaces. The Cortex™-M0  
is the newest ARM® embedded processor with 32-bit performance and at a cost equivalent to  
traditional 8-bit microcontroller. NuMicroNUC100 Series includes NUC100, NUC120, NUC130  
and NUC140 product line.  
The NuMicroNUC120 USB Line with USB 2.0 full-speed function embeds Cortex™-M0 core  
running up to 50 MHz with 32K/64K/128K-byte embedded flash, 4K/8K/16K-byte embedded  
SRAM, and 4K-byte loader ROM for the ISP. It also equips with plenty of peripheral devices, such  
as Timers, Watchdog Timer, RTC, PDMA, UART, SPI, I2C, I2S, PWM Timer, GPIO, PS/2, USB  
2.0 FS Device, 12-bit ADC, Analog Comparator, Low Voltage Reset Controller and Brown-Out  
Detector.  
Product Line  
NUC100  
UART  
SPI  
I2C  
USB  
LIN  
CAN  
PS/2  
I2S  
NUC120  
NUC130  
NUC140  
Table 1-1 Connectivity Supported Table  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 7 -  
 
NuMicroNUC120 Data Sheet  
2
FEATURES  
The equipped features are dependent on the product line and their sub products.  
2.1 NuMicroNUC120 Features – USB Line  
Core  
ARM® Cortex™-M0 core runs up to 50 MHz  
One 24-bit system timer  
Supports low power sleep mode  
Single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Serial Wire Debug supports with 2 watchpoints/4 breakpoints  
Build-in LDO for wide operating voltage ranges from 2.5 V to 5.5 V  
Flash Memory  
32K/64K/128K bytes Flash for program code (128KB only support in NuMicro™  
NUC100/NUC120 Medium Density)  
4KB flash for ISP loader  
Support In-system program (ISP) application code update  
512 byte page erase for flash  
Configurable data flash address and size for 128KB system, fixed 4KB data flash for  
the 32KB and 64KB system  
Support 2 wire ICP update through SWD/ICE interface  
Support fast parallel programming mode by external programmer  
SRAM Memory  
4K/8K/16K bytes embedded SRAM (16KB only support in NuMicroNUC100/NUC120  
Medium Density)  
Support PDMA mode  
PDMA (Peripheral DMA)  
Support 9 channels PDMA for automatic data transfer between SRAM and peripherals  
(Only support 1 channel in NuMicroNUC100/NUC120 Low Density)  
Clock Control  
Flexible selection for different applications  
Built-in 22.1184 MHz high speed OSC for system operation  
‹
‹
Trimmed to  
Trimmed to  
1 % at +25 and VDD = 5 V  
3 % at -40 ~ +85 and VDD = 2.5 V ~ 5.5 V  
Built-in 10 KHz low speed OSC for Watchdog Timer and Wake-up operation  
Support one PLL, up to 50 MHz, for high performance system operation  
External 4~24 MHz high speed crystal input for USB and precise timing operation  
External 32.768 kHz low speed crystal input for RTC function and low power system  
operation  
GPIO  
Four I/O modes:  
‹
‹
‹
‹
Quasi bi-direction  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 8 -  
 
NuMicroNUC120 Data Sheet  
TTL/Schmitt trigger input selectable  
I/O pin can be configured as interrupt source with edge/level setting  
High driver and high sink IO mode support  
Timer  
Support 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle and continuous counting operation modes  
(NuMicroNUC100/NUC120 Medium Density only support one-shot and periodic  
mode)  
Support event counting function (NuMicroNUC100/NUC120 Low Density only)  
Watchdog Timer  
Multiple clock sources  
8 selectable time out period from 1.6ms ~ 26.0sec (depends on clock source)  
WDT can wake-up from power down or idle mode  
Interrupt or reset selectable on watchdog time-out  
RTC  
Support software compensation by setting frequency compensate register (FCR)  
Support RTC counter (second, minute, hour) and calendar counter (day, month, year)  
Support Alarm registers (second, minute, hour, day, month, year)  
Selectable 12-hour or 24-hour mode  
Automatic leap year recognition  
Support periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8,  
1/4, 1/2 and 1 second  
Support wake-up function  
PWM/Capture  
Built-in up to four 16-bit PWM generators provide eight PWM outputs or four  
complementary paired PWM outputs  
Each PWM generator equipped with one clock source selector, one clock divider, one  
8-bit prescaler and one Dead-Zone generator for complementary paired PWM  
Up to eight 16-bit digital Capture timers (shared with PWM timers) provide eight  
rising/falling capture inputs  
Support Capture interrupt  
UART  
Up to three UART controllers (NuMicroNUC100/NUC120 Low Density only support 2  
UART controllers)  
UART ports with flow control (TXD, RXD, CTS and RTS)  
UART0 with 63-byte FIFO is for high speed  
UART1/2(optional) with 15-byte FIFO for standard device  
Support IrDA (SIR) function  
Support RS-485 9-bit mode and direction control. (NuMicroNUC100/NUC120 Low  
Density Only)  
Programmable baud-rate generator up to 1/16 system clock  
Support PDMA mode  
SPI  
Up to four sets of SPI controller (NuMicroNUC100/NUC120 Low Density only  
support 2 SPI controllers)  
Master up to 16 MHz, and Slave up to 10 MHz (chip working @ 5V)  
Support SPI master/slave mode  
Publication Release Date: Jan. 2, 2012  
- 9 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
Full duplex synchronous serial data transfer  
Variable length of transfer data from 1 to 32 bits  
MSB or LSB first data transfer  
Rx and Tx on both rising or falling edge of serial clock independently  
2 slave/device select lines when it is as the master, and 1 slave/device select line  
when it is as the slave  
Support byte suspend mode in 32-bit transmission  
Support PDMA mode  
I2C  
Up to two sets of I2C device  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
Programmable clocks allow versatile rate control  
Support multiple address recognition (four slave address with mask option)  
I2S  
Interface with external audio CODEC  
Operate as either master or slave mode  
Capable of handling 8-, 16-, 24- and 32-bit word sizes  
Mono and stereo audio data supported  
I2S and MSB justified data format supported  
Two 8 word FIFO data buffers are provided, one for transmit and one for receive  
Generates interrupt requests when buffer levels cross a programmable boundary  
Support two DMA requests, one for transmit and one for receive  
PS/2 Device Controller  
Host communication inhibit and request to send detection  
Reception frame error detection  
Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention  
Double buffer for data reception  
S/W override bus  
USB 2.0 Full-Speed Device  
One set of USB 2.0 FS Device 12Mbps  
On-chip USB Transceiver  
Provide 1 interrupt source with 4 interrupt events  
Support Control, Bulk In/Out, Interrupt and Isochronous transfers  
Auto suspend function when no bus signaling for 3 ms  
Provide 6 programmable endpoints  
Include 512 Bytes internal SRAM as USB buffer  
Provide remote wake-up capability  
EBI (External bus interface) support (NuMicroNUC100/NUC120 Low Density 64-pin  
Package Only)  
Accessible space: 64KB in 8-bit mode or 128KB in 16-bit mode  
Support 8-/16-bit data width  
Support byte write in 16-bit data width mode  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 10 -  
NuMicroNUC120 Data Sheet  
ADC  
12-bit SAR ADC with 600K SPS  
Up to 8-ch single-end input or 4-ch differential input  
Single scan/single cycle scan/continuous scan  
Each channel with individual result register  
Scan on enabled channels  
Threshold voltage detection  
Conversion start by software programming or external input  
Support PDMA mode  
Analog Comparator  
Up to two analog comparators  
External input or internal bandgap voltage selectable at negative node  
Interrupt when compare result change  
Power down wake-up  
One built-in temperature sensor with 1resolution  
Brown-Out detector  
With 4 levels: 4.5 V/3.8 V/2.7 V/2.2 V  
Support Brown-Out Interrupt and Reset option  
Low Voltage Reset  
Threshold voltage levels: 2.0 V  
Operating Temperature: -40~85℃  
Packages:  
All Green package (RoHS)  
LQFP 100-pin / 64-pin / 48-pin (100-pin for NuMicroNUC100/NUC120 Medium  
Density Only)  
Publication Release Date: Jan. 2, 2012  
- 11 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
3
PARTS INFORMATION LIST AND PIN CONFIGURATION  
3.1 NuMicroNUC120 Products Selection Guide  
3.1.1 NuMicroNUC120 Medium Density USB Line Selection Guide  
Connectivity  
ISP  
Loader  
ROM  
Data  
Flash  
ISP  
ICP  
Part number APROM RAM  
I/O  
Timer  
I2S Comp. PWM ADC RTC EBI  
Package  
UART SPI I2C USB LIN CAN  
NUC120LD3AN 64 KB 16 KB  
4 KB  
4 KB up to 31 4x32-bit  
2
2
2
2
3
3
3
1
1
2
2
4
4
4
2
2
2
2
2
2
2
1
1
1
1
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
2
2
2
2
2
4
4
6
6
8
8
8
8x12-bit  
8x12-bit  
8x12-bit  
8x12-bit  
8x12-bit  
8x12-bit  
8x12-bit  
v
v
v
v
v
v
v
-
-
-
-
-
-
-
v
v
v
v
v
v
v
LQFP48  
LQFP48  
LQFP64  
LQFP64  
LQFP100  
LQFP100  
LQFP100  
NUC120LE3AN 128 KB 16 KB Definable 4 KB up to 31 4x32-bit  
NUC120RD3AN 64 KB 16 KB 4 KB 4 KB up to 45 4x32-bit  
NUC120RE3AN 128 KB 16 KB Definable 4 KB up to 45 4x32-bit  
NUC120VD2AN 64 KB 8 KB  
NUC120VD3AN 64 KB 16 KB  
4 KB  
4 KB  
4 KB up to 76 4x32-bit  
4 KB up to 76 4x32-bit  
NUC120VE3AN 128 KB 16 KB Definable 4 KB up to 76 4x32-bit  
3.1.2 NuMicroNUC120 Low Density USB Line Selection Guide  
Connectivity  
ISP  
Loader  
ROM  
Data  
Flash  
ISP  
ICP  
Part number APROM RAM  
I/O  
Timer  
I2S Comp. PWM ADC RTC EBI  
Package  
UART SPI I2C USB LIN CAN  
NUC120LC1BN 32 KB 4 KB  
NUC120LD1BN 64 KB 4 KB  
NUC120LD2BN 64 KB 8 KB  
NUC120RC1BN 32 KB 4 KB  
NUC120RD1BN 64 KB 4 KB  
NUC120RD2BN 64 KB 8 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB up to 31 4x32-bit  
4 KB up to 31 4x32-bit  
4 KB up to 31 4x32-bit  
4 KB up to 45 4x32-bit  
4 KB up to 45 4x32-bit  
4 KB up to 45 4x32-bit  
2
2
2
2
2
2
1
1
1
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
2
2
2
4
4
4
4
4
4
8x12-bit  
8x12-bit  
8x12-bit  
8x12-bit  
8x12-bit  
8x12-bit  
v
v
v
v
v
v
-
-
v
v
v
v
v
v
LQFP48  
LQFP48  
LQFP48  
LQFP64  
LQFP64  
LQFP64  
-
v
v
v
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 12 -  
 
NuMicroNUC120 Data Sheet  
NUC 1 0 0 - X X X X X  
ARM-Based  
32-bit Microcontroller  
Temperature  
N: -40 ~ +85  
E: -40 ~ +105  
C: -40 ~ +125  
CPU core  
1: Cortex-M0  
5/7: ARM7  
9: ARM9  
Reserve  
RAM Size  
1: 4K  
2: 8K  
Function  
0: Advance Line  
2: USB Line  
3: Automotive Line  
4: Connectivity Line  
3: 16K  
APROM Size  
A: 8K  
Package Type  
Y: QFN 36  
L: LQFP 48  
R: LQFP 64  
V: LQFP 100  
B: 16K  
C: 32K  
D: 64K  
E: 128K  
Figure 3-1 NuMicroNUC100 Series selection code  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 13 -  
 
NuMicroNUC120 Data Sheet  
3.2 Pin Configuration  
3.2.1 NuMicroNUC120 Medium Density Pin Diagram  
3.2.1.1 NuMicroNUC120 Medium Density LQFP 100 pin  
ADC5/PA.5  
ADC6/PA.6  
ADC7/SPISS21/PA.7  
VREF  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
PB.9/SPISS11  
PB.10/SPISS01  
PB.11/PWM4  
PE.5/PWM5  
PE.6  
AVDD  
SPISS20/PD.0  
SPICLK2/PD.1  
MISO20/PD.2  
MOSI20/PD.3  
MISO21/PD.4  
MOSI21/PD.5  
CPN0/PC.7  
CPP0/PC.6  
CPN1/PC.15  
CPP1/PC.14  
INT1/PB.15  
XT1_OUT  
XT1_IN  
PC.0/SPISS00/I2SLRCLK  
PC.1/SPICLK0/I2SBCLK  
PC.2/MISO00/I2SDI  
PC.3/MOSI00/I2SDO  
PC.4/MISO01  
PC.5/MOSI01  
PD.15/TXD2  
PD.14/RXD2  
PD.7  
NUC120VxxAN  
Medium Density  
LQFP 100-pin  
PD.6  
PB.3/CTS0  
PB.2/RTS0  
PB.1/TXD0  
PB.0/RXD0  
D+  
/RESET  
VSS  
VDD  
D-  
PS2DAT  
VDD33  
PS2CLK  
VBUS  
PVSS  
PE.7  
STADC/PB.8  
PE.8  
Figure 3-2 NuMicroNUC120 Medium Density LQFP 100-pin Pin Diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 14 -  
 
NuMicroNUC120 Data Sheet  
3.2.1.2 NuMicroNUC120 Medium Density LQFP 64 pin  
ADC5/PA.5  
ADC6/PA.6  
ADC7/PA.7  
AVDD  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PB.9  
PB.10  
PB.11/PWM4  
PE.5/PWM5  
PC.0/SPISS00/I2SLRCLK  
PC.1/SPICLK0/I2SBCLK  
PC.2/MISO00/I2SDI  
PC.3/MOSI00/I2SDO  
PB.3/CTS0  
PB.2/RTS0  
PB.1/TXD0  
PB.0/RXD0  
D+  
CPN0/PC.7  
CPP0/PC.6  
CPN1/PC.15  
CPP1/PC.14  
INT1/PB.15  
XT1_OUT  
XT1_IN  
NUC120RxxAN  
Medium Density  
LQFP 64-pin  
/RESET  
VSS  
VDD  
D-  
PVSS  
VDD33  
STADC/PB.8  
VBUS  
Figure 3-3 NuMicroNUC120 Medium Density LQFP 64-pin Pin Diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 15 -  
 
NuMicroNUC120 Data Sheet  
3.2.1.3 NuMicroNUC120 Medium Density LQFP 48 pin  
Figure 3-4 NuMicroNUC120 Medium Density LQFP 48-pin Pin Diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 16 -  
 
NuMicroNUC120 Data Sheet  
3.2.2 NuMicroNUC120 Low Density Pin Diagram  
3.2.2.1 NuMicroNUC120 Low Density LQFP 64 pin  
AD8/ADC5/PA.5  
AD7/ADC6/PA.6  
AD6/ADC7/PA.7  
AVDD  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PB.9/TM1  
PB.10/TM2  
PB.11/TM3  
PE.5  
AD5/CPN0/PC.7  
AD4/CPP0/PC.6  
AD3/CPN1/PC.15  
AD2/CPP1/PC.14  
INT1/PB.15  
XT1_OUT  
PC.0/SPISS00/I2SLRCLK  
PC.1/SPICLK0/I2SBCLK  
PC.2/MISO00/I2SDI  
PC.3/MOSI00/I2SDO  
PB.3/CTS0/nWRH  
PB.2/RTS0/nWRL  
PB.1/TXD0  
NUC120RxxBN  
Low Density  
LQFP 64-pin  
XT1_IN  
/RESET  
PB.0/RXD0  
VSS  
D+  
VDD  
D-  
PVSS  
VDD33  
STADC/TM0/PB.8  
VBUS  
Figure 3-5 NuMicroNUC120 Low Density LQFP 64-pin Pin Diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 17 -  
 
NuMicroNUC120 Data Sheet  
3.2.2.2 NuMicroNUC120 Low Density LQFP 48 pin  
Figure 3-6 NuMicroNUC120 Low Density LQFP 48-pin Pin Diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 18 -  
 
NuMicroNUC120 Data Sheet  
4
BLOCK DIAGRAM  
4.1 NuMicroNUC120 Medium Density Block Diagram  
Cortex-M0  
50MHz  
FLASH  
128KB  
PDMA  
10 kHz  
P
L
L
32.768 kHz  
22.1184 MHz  
4~24 MHz  
SRAM  
16KB  
GPIO  
A,B,C,D,E  
CLK_CTL  
ISP 4KB  
2.5V~  
5.5V  
LDO  
PS2  
SPI 2/3  
RTC  
12-bit ADC  
WDT  
SPI 0/1  
Analog  
I2C 1  
Timer 0/1/  
Timer 2/3  
PWM 4~7  
I2C 0  
UART 0 -3M  
Comparator  
POR  
Brown-out  
LVR  
UART 1 -115K  
UART 2 -115K  
I2S  
PWM 0~3  
USB-FS  
512BRAM  
USBPHY  
Peripherals with PDMA  
Figure 4-1 NuMicroNUC120 Medium Density Block Diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 19 -  
 
NuMicroNUC120 Data Sheet  
4.2 NuMicroNUC120 Low Density Block Diagram  
Cortex-M0  
50MHz  
FLASH  
64KB  
PDMA  
10 kHz  
P
L
L
32.768 kHz  
22.1184 MHz  
4~24 MHz  
SRAM  
8KB  
GPIO  
A,B,C,D,E  
CLK_CTL  
ISP 4KB  
2.5V~  
5.5V  
LDO  
RTC  
12-bit ADC  
WDT  
SPI 0/1  
Analog  
I2C 1  
Timer 0/1/  
Timer 2/3  
UART 0 -3M  
Comparator  
POR  
Brown-out  
LVR  
UART 1 -115K  
PWM 0~3  
USB-FS  
512BRAM  
I2S  
I2C 0  
USBPHY  
Peripherals with PDMA  
Figure 4-2 NuMicroNUC120 Low Density Block Diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 20 -  
 
NuMicroNUC120 Data Sheet  
5
FUNCTIONAL DESCRIPTION  
5.1 ARM® Cortex™-M0 Core  
The Cortex™-M0 processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA  
AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex-M  
profile processor. The profile supports two modes -Thread mode and Handler mode. Handler  
mode is entered as a result of an exception. An exception return can only be issued in Handler  
mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.  
Figure 5-1 shows the functional controller of processor.  
Cortex-M0 components  
Cortex-M0 processor  
Debug  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Interrupts  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex-M0  
Processor  
Core  
Debug  
Access  
Port  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debugger  
interface  
Bus Matrix  
(DAP)  
AHB-Lite  
interface  
Serial Wire or  
JTAG debug port  
Figure 5-1 Functional Controller Diagram  
The implemented device provides:  
A low gate count processor that features:  
z
‹
‹
‹
‹
‹
‹
‹
The ARMv6-M Thumb® instruction set  
Thumb-2 technology  
ARMv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
The system interface supports little-endian data accesses  
The ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and  
restarted to facilitate rapid interrupt handling  
‹
C Application Binary Interface compliant exception model. This is the ARMv6-M,  
C Application Binary Interface (C-ABI) compliant exception model that enables  
the use of pure C functions as interrupt handlers  
Publication Release Date: Jan. 2, 2012  
- 21 -  
Revision V2.03  
 
 
NuMicroNUC120 Data Sheet  
‹
Low power sleep mode entry using Wait For Interrupt (WFI), Wait For Event  
(WFE) instructions, or the return from interrupt sleep-on-exit feature  
z
NVIC that features:  
‹
‹
‹
‹
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-Maskable Interrupt (NMI) input.  
Support for both level-sensitive and pulse-sensitive interrupt lines  
Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode  
support.  
z
z
Debug support  
‹
‹
‹
‹
Four hardware breakpoints.  
Two watchpoints.  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling.  
Single step and vector catch capabilities.  
Bus interfaces:  
‹
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration  
to all system peripherals and memory.  
‹
Single 32-bit slave port that supports the DAP (Debug Access Port).  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 22 -  
NuMicroNUC120 Data Sheet  
5.2 System Manager  
5.2.1 Overview  
System management includes these following sections:  
z
z
z
System Resets  
System Memory Map  
System management registers for Part Number ID, chip reset and on-chip controllers  
reset , multi-functional pin control  
z
z
z
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control registers  
5.2.2 System Reset  
The system reset can be issued by one of the below listed events. For these reset event flags can  
be read by RSTSRC register.  
z
z
z
z
z
z
z
The Power-On Reset  
The low level on the /RESET pin  
Watchdog Time Out Reset  
Low Voltage Reset  
Brown-Out Detector Reset  
CPU Reset  
System Reset  
System Reset and Power-On Reset all reset the whole chip including all peripherals. The  
difference between System Reset and Power-On Reset is external crystal circuit and ISPCON.BS  
bit. System Reset doesn’t reset external crystal circuit and ISPCON.BS bit, but Power-On Reset  
does.  
Publication Release Date: Jan. 2, 2012  
- 23 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.2.3 System Power Distribution  
In this chip, the power distribution is divided into three segments.  
z
z
z
Analog power from AVDD and AVSS provides the power for analog components  
operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which  
provides a fixed 2.5 V power for digital operation and I/O pins.  
USB transceiver power from VBUS offers the power for operating the USB transceiver.  
The outputs of internal voltage regulators, LDO and VDD33, require an external capacitor which  
should be located close to the corresponding pin. Analog power (AVDD) should be the same  
voltage level of the digital power (VDD). Figure 5-2 shows the power distribution of NuMicro™  
NUC120.  
Figure 5-2 NuMicroNUC120 Power Distribution Diagram  
Publication Release Date: Jan. 2, 2012  
- 24 -  
Revision V2.03  
 
 
NuMicroNUC120 Data Sheet  
5.2.4 System Memory Map  
NuMicroNUC100 Series provides 4G-byte addressing space. The memory locations assigned  
to each on-chip controllers are shown in the following table. The detailed register definition,  
memory space, and programming detailed will be described in the following sections for each on-  
chip peripherals. NuMicroNUC100 Series only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 – 0x0001_FFFF FLASH_BA  
0x2000_0000 – 0x2000_3FFF SRAM_BA  
FLASH Memory Space (128KB)  
SRAM Memory Space (16KB)  
External Memory Space (128KB)  
0x6000_0000 – 0x6001_FFFF EXTMEM_BA  
(NuMicroNUC100/NUC120 Low Density 64-pin Only)  
AHB Controllers Space (0x5000_0000 – 0x501F_FFFF)  
0x5000_0000 – 0x5000_01FF GCR_BA  
0x5000_0200 – 0x5000_02FF CLK_BA  
0x5000_0300 – 0x5000_03FF INT_BA  
0x5000_4000 – 0x5000_7FFF GPIO_BA  
0x5000_8000 – 0x5000_BFFF PDMA_BA  
0x5000_C000 – 0x5000_FFFF FMC_BA  
System Global Control Registers  
Clock Control Registers  
Interrupt Multiplexer Control Registers  
GPIO Control Registers  
Peripheral DMA Control Registers  
Flash Memory Control Registers  
External Bus Interface Control Registers  
0x5001_0000 – 0x5001_03FF EBI_BA  
(NuMicroNUC100/NUC120 Low Density 64-pin Only)  
APB1 Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4000_4000 – 0x4000_7FFF WDT_BA  
0x4000_8000 – 0x4000_BFFF RTC_BA  
0x4001_0000 – 0x4001_3FFF TMR01_BA  
0x4002_0000 – 0x4002_3FFF I2C0_BA  
0x4003_0000 – 0x4003_3FFF SPI0_BA  
0x4003_4000 – 0x4003_7FFF SPI1_BA  
0x4004_0000 – 0x4004_3FFF PWMA_BA  
0x4005_0000 – 0x4005_3FFF UART0_BA  
0x4006_0000 – 0x4006_3FFF USBD_BA  
0x400D_0000 – 0x400D_3FFF ACMP_BA  
Watchdog Timer Control Registers  
Real Time Clock (RTC) Control Register  
Timer0/Timer1 Control Registers  
I2C0 Interface Control Registers  
SPI0 with master/slave function Control Registers  
SPI1 with master/slave function Control Registers  
PWM0/1/2/3 Control Registers  
UART0 Control Registers  
USB 2.0 FS device Controller Registers  
Analog Comparator Control Registers  
Publication Release Date: Jan. 2, 2012  
- 25 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
Address Space  
0x400E_0000 – 0x400E_FFFF ADC_BA  
APB2 Controllers Space (0x4010_0000 ~ 0x401F_FFFF)  
Token  
Controllers  
Analog-Digital-Converter (ADC) Control Registers  
0x4010_0000 – 0x4010_3FFF PS2_BA  
0x4011_0000 – 0x4011_3FFF TMR23_BA  
0x4012_0000 – 0x4012_3FFF I2C1_BA  
PS/2 Interface Control Registers  
Timer2/Timer3 Control Registers  
I2C1 Interface Control Registers  
SPI2 with master/slave function Control Registers  
0x4013_0000 – 0x4013_3FFF SPI2_BA  
0x4013_4000 – 0x4013_7FFF SPI3_BA  
(NuMicroNUC100/NUC120 Medium Density Only)  
SPI3 with master/slave function Control Registers  
(NuMicroNUC100/NUC120 Medium Density Only)  
PWM4/5/6/7 Control Registers  
0x4014_0000 – 0x4014_3FFF PWMB_BA  
0x4015_0000 – 0x4015_3FFF UART1_BA  
0x4015_4000 – 0x4015_7FFF UART2_BA  
0x401A_0000 – 0x401A_3FFF I2S_BA  
(NuMicroNUC100/NUC120 Medium Density Only)  
UART1 Control Registers  
UART2 Control Registers  
(NuMicroNUC100/NUC120 Medium Density Only)  
I2S Interface Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 – 0xE000_E0FF SCS_BA  
0xE000_E100 – 0xE000_ECFF SCS_BA  
0xE000_ED00 – 0xE000_ED8F SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
System Control Registers  
Table 5-1 Address Space Assignments for On-Chip Controllers  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 26 -  
 
NuMicroNUC120 Data Sheet  
5.2.5 System Timer (SysTick)  
The Cortex-M0 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value  
Register (SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the  
counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on  
reads.  
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to  
zero before enabling the feature. This ensures the timer will count from the SYST_RVR value  
rather than an arbitrary value when it is enabled.  
If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is  
reloaded with this value. This mechanism can be used to disable the feature independently from  
the timer enable bit.  
For more detailed information, please refer to the documents “ARM® Cortex™-M0 Technical  
Reference Manual” and “ARM® v6-M Architecture Reference Manual”.  
Publication Release Date: Jan. 2, 2012  
- 27 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.2.6 Nested Vectored Interrupt Controller (NVIC)  
Cortex-M0 provides an interrupt controller as an integral part of the exception mode, named as  
“Nested Vectored Interrupt Controller (NVIC)”. It is closely coupled to the processor kernel and  
provides following features:  
z
z
z
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When any interrupts is accepted, the starting address of the interrupt service routine (ISR) is  
fetched from a vector table in memory. There is no need to determine which interrupt is accepted  
and branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the documents “ARM® Cortex™-M0 Technical  
Reference Manual” and “ARM® v6-M Architecture Reference Manual”.  
Publication Release Date: Jan. 2, 2012  
- 28 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.2.6.1 Exception Model and System Interrupt Map  
Table 5-2 lists the exception model supported by NuMicroNUC100 Series. Software can set  
four levels of priority on some of these exceptions as well as on all interrupts. The highest user-  
configurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority  
of all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on  
the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Name  
Reset  
Vector Number  
Priority  
-3  
1
2
NMI  
-2  
Hard Fault  
Reserved  
3
-1  
4 ~ 10  
11  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
Reserved  
12 ~ 13  
14  
PendSV  
SysTick  
15  
Interrupt (IRQ0 ~ IRQ31)  
16 ~ 47  
Table 5-2 Exception Model  
Interrupt  
Number  
Vector  
Number  
Interrupt  
Name  
Source IP Interrupt description  
(Bit in Interrupt  
Registers)  
0 ~ 15  
16  
-
-
-
System exceptions  
0
1
2
3
4
5
6
7
8
9
BOD_OUT Brown-Out Brown-Out low voltage detected interrupt  
17  
WDT_INT  
EINT0  
WDT  
GPIO  
GPIO  
GPIO  
GPIO  
Watchdog Timer interrupt  
18  
External signal interrupt from PB.14 pin  
External signal interrupt from PB.15 pin  
External signal interrupt from PA[15:0]/PB[13:0]  
External interrupt from PC[15:0]/PD[15:0]/PE[15:0]  
19  
EINT1  
20  
GPAB_INT  
GPCDE_INT  
21  
22  
PWMA_INT PWM0~3 PWM0, PWM1, PWM2 and PWM3 interrupt  
PWMB_INT PWM4~7 PWM4, PWM5, PWM6 and PWM7 interrupt  
23  
24  
TMR0_INT  
TMR1_INT  
TMR0  
TMR1  
Timer 0 interrupt  
Timer 1 interrupt  
25  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 29 -  
 
NuMicroNUC120 Data Sheet  
Interrupt  
Number  
Vector  
Number  
Interrupt  
Name  
Source IP Interrupt description  
(Bit in Interrupt  
Registers)  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
TMR2_INT  
TMR3_INT  
TMR2  
TMR3  
Timer 2 interrupt  
Timer 3 interrupt  
UART02_INT UART0/2 UART0 and UART2 interrupt  
UART1 UART1 interrupt  
UART1_INT  
SPI0_INT  
SPI1_INT  
SPI2_INT  
SPI3_INT  
I2C0_INT  
I2C1_INT  
Reserved  
Reserved  
Reserved  
USB_INT  
PS2_INT  
SPI0  
SPI1  
SPI2  
SPI3  
I2C0  
I2C1  
SPI0 interrupt  
SPI1 interrupt  
SPI2 interrupt  
SPI3 interrupt  
I2C0 interrupt  
I2C1 interrupt  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
USBD  
PS/2  
USB 2.0 FS Device interrupt  
PS/2 interrupt  
ACMP_INT  
PDMA_INT  
I2S_INT  
ACMP  
PDMA  
I2S  
Analog Comparator-0 or Comaprator-1 interrupt  
PDMA interrupt  
I2S interrupt  
Clock controller interrupt for chip wake-up from  
power down state  
44  
28  
PWRWU_INT  
CLKC  
ADC  
45  
46  
47  
29  
30  
31  
ADC_INT  
Reserved  
RTC_INT  
ADC interrupt  
Reserved Reserved  
RTC Real time clock interrupt  
Table 5-3 System Interrupt Map  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 30 -  
 
NuMicroNUC120 Data Sheet  
5.2.6.2 Vector Table  
When any interrupts is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base  
address is fixed at 0x00000000. The vector table contains the initialization value for the stack  
pointer on reset, and the entry point addresses for all exception handlers. The vector number on  
previous page defines the order of entries in the vector table associated with exception handler  
entry as illustrated in previous section.  
Vector Table Word Offset Description  
0
SP_main – The Main stack pointer  
Vector Number  
Exception Entry Pointer using that Vector Number  
Table 5-4 Vector Table Format  
5.2.6.3 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-  
Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-  
1-to-clear policy, both registers reading back the current enabled state of the corresponding  
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become  
Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it  
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit  
prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used  
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers  
reading back the current pended state of the corresponding interrupts. The Clear-Pending  
Register has no effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
The general registers associated with the NVIC are all accessible from a block of memory in the  
System Control Space and will be described in next section.  
Publication Release Date: Jan. 2, 2012  
- 31 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.3 Clock Controller  
5.3.1 Overview  
The clock controller generates the clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and a clock divider. The chip will not  
enter power down mode until CPU sets the power down enable bit (PWR_DOWN_EN) and  
Cortex-M0 core executes the WFI instruction. After that, chip enter power down mode and wait for  
wake-up interrupt source triggered to leave power down mode. In the power down mode, the  
clock controller turns off the external 4~24 MHz high speed crystal and internal 22.1184 MHz high  
speed oscillator to reduce the overall system power consumption.  
Publication Release Date: Jan. 2, 2012  
- 32 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
22.1184  
MHz  
22.1184 MHz  
10 kHz  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
EBI  
4~12  
MHz  
PLLFOUT  
32.768 kHz  
4~24 MHz  
1/(HCLK_N+1)  
PDMA  
ACMP  
I2C 0~1  
SPI 0-3  
32.768  
kHz  
PCLK  
22.1184 MHz  
HCLK  
10 kHz  
111  
010  
001  
000  
CLKSEL0[2:0]  
TMR 0  
TMR 1  
TMR 2  
TMR 3  
22.1184 MHz  
4~24 MHz  
32.768 kHz  
4~24 MHz  
1
PLLFOUT  
0
22.1184 MHz  
PLLCON[19]  
CLKSEL1[22:20]  
CLKSEL1[18:16]  
CLKSEL1[14:12]  
CLKSEL1[10:8]  
PS2  
FMC  
22.1184 MHz  
HCLK  
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
CPUCLK  
1
0
SysTick  
4~24 MHz  
32.768 kHz  
4~24 MHz  
SYST_CSR[2]  
22.1184 MHz  
HCLK  
11  
10  
01  
00  
FDIV  
PWM 6-7  
PWM 4-5  
PWM 2-3  
PWM 0-1  
CLKSEL0[5:3]  
32.768 kHz  
4~24 MHz  
22.1184 MHz  
HCLK  
11  
10  
01  
00  
32.768 kHz  
CLKSEL2[7:2]  
CLKSEL1[31:28]  
RTC  
I2S  
PLLFOUT  
4~24 MHz  
10 kHz  
BOD  
11  
10  
WDT  
CLKSEL2[1:0]  
HCLK  
1/2048  
22.1184 MHz  
PLLFOUT  
CLKSEL1[1:0]  
11  
01  
00  
1/(ADC_N+1)  
1/(UART_N+1)  
1/(USB_N+1)  
ADC  
UART 0-2  
USB  
4~24 MHz  
CLKSEL1[3:2]  
CLKSEL1[25:24]  
PLLFOUT  
Figure 5-3 Clock generator global view diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 33 -  
 
NuMicroNUC120 Data Sheet  
5.3.2 Clock Generator  
The clock generator consists of 5 clock sources which are listed below:  
z
z
z
One external 32.768 kHz low speed crystal  
One external 4~24 MHz high speed crystal  
One programmable PLL FOUT(PLL source consists of external 4~24 MHz high speed  
crystal and internal 22.1184 MHz high speed oscillator)  
z
z
One internal 22.1184 MHz high speed oscillator  
One internal 10 kHz low speed oscillator  
XTL32K_EN (PWRCON[1])  
X32I  
External  
32.768 kHz  
32.768 kHz  
Crystal  
X32O  
XTL12M_EN (PWRCON[0])  
4~24 MHz  
XT_IN  
External  
4~24 MHz  
PLL_SRC (PLLCON[19])  
Crystal  
XT_OUT  
0
1
PLL FOUT  
PLL  
OSC22M_EN (PWRCON[2])  
Internal  
22.1184 MHz  
Oscillator  
22.1184 MHz  
10 kHz  
OSC10K_EN(PWRCON[3])  
Internal  
10 kHz  
Oscillator  
Figure 5-4 Clock generator block diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 34 -  
 
NuMicroNUC120 Data Sheet  
5.3.3 System Clock and SysTick Clock  
The system clock has 5 clock sources which were generated from clock generator block. The  
clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is  
showed in Figure 5-5.  
HCLK_S (CLKSEL0[2:0])  
22.1184 MHz  
111  
10 kHz  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
AHB  
APB  
PLLFOUT  
32.768 kHz  
4~24 MHz  
1/(HCLK_N+1)  
PCLK  
HCLK_N (CLKDIV[3:0])  
CPU in Power Down Mode  
Figure 5-5 System Clock Block Diagram  
The clock source of SysTick in Cortex-M0 core can use CPU clock or external clock  
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The  
clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block  
diagram is showed in Figure 5-6.  
Figure 5-6 SysTick Clock Control Block Diagram  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 35 -  
 
NuMicroNUC120 Data Sheet  
5.3.4 Peripherals Clock  
The peripherals clock had different clock source switch setting which depends on the different  
peripheral. Please refer the CLKSEL1 and CLKSEL2 register description in 5.3.7.  
5.3.5 Power Down Mode Clock  
When chip enters into power down mode, system clocks, some clock sources, and some  
peripheral clocks will be disabled. Some clock sources and peripherals clock are still active in  
power down mode.  
For theses clocks which still keep active list below:  
z
Clock Generator  
‹
‹
Internal 10 kHz low speed oscillator clock  
External 32.768 kHz low speed crystal clock  
z
Peripherals Clock (When WDT adopt internal 10 kHz low speed oscillator as clock  
source and RTC adopt external 32.768 kHz low speed crystal as clock source)  
Publication Release Date: Jan. 2, 2012  
- 36 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.3.6 Frequency Divider Output  
This device is equipped a power-of-2 frequency divider which is composed by16 chained divide-  
by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is  
reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with  
the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock  
divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).  
When write 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When write 0 to  
DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low  
state and stay in low state.  
Figure 5-7 Clock Source of Frequency Divider  
Figure 5-8 Block Diagram of Frequency Divider  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 37 -  
 
NuMicroNUC120 Data Sheet  
5.4 USB Device Controller (USB)  
5.4.1 Overview  
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is  
compliant with USB 2.0 full-speed device specification and support control/bulk/interrupt/  
isochronous transfer types.  
In this device controller, there are two main interfaces: the APB bus and USB bus which comes  
from the USB PHY transceiver. For the APB bus, the CPU can program control registers through  
it. There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is  
necessary to write data to SRAM or read data from SRAM through the APB interface or SIE.  
Users need to set the effective starting address of SRAM for each endpoint buffer through “buffer  
segmentation register (USB_BUFSEGx)”.  
There are 6 endpoints in this controller. Each of the endpoint can be configured as IN or OUT  
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are  
implemented in this block. The block of ENDPOINT CONTROL is also used to manage the data  
sequential synchronization, endpoint states, current start address, transaction status, and data  
buffer status for each endpoint.  
There are four different interrupt events in this controller. They are the wake-up function, device  
plug-in or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend  
and resume, etc. Any event will cause an interrupt, and users just need to check the related event  
flags in interrupt event status register (USB_INTSTS) to acknowledge what kind of interrupt  
occurring, and then check the related USB Endpoint Status Register (USB_EPSTS) to  
acknowledge what kind of event occurring in this endpoint.  
A software-disable function is also supported for this USB controller. It is used to simulate the  
disconnection of this device from the host. If user enables DRVSE0 bit (USB_DRVSE0), the USB  
controller will force the output of USB_DP and USB_DM to level low and its function is disabled.  
After disable the DRVSE0 bit, host will enumerate the USB device again.  
Reference: Universal Serial Bus Specification Revision 1.1  
5.4.2 Features  
This Universal Serial Bus (USB) performs a serial interface with a single connector type for  
attaching all USB peripherals to the host system. Following is the feature listing of this USB.  
z
z
Compliant with USB 2.0 Full-Speed specification  
Provide 1 interrupt vector with 4 different interrupt events (WAKEUP, FLDET, USB  
and BUS)  
z
z
z
Support Control/Bulk/Interrupt/Isochronous transfer type  
Support suspend function when no bus activity existing for 3 ms  
Provide 6 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types  
and maximum 512 bytes buffer size  
z
Provide remote wake-up capability  
Publication Release Date: Jan. 2, 2012  
- 38 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.5 General Purpose I/O (GPIO)  
5.5.1 Overview  
NuMicroNUC100/NUC120 Medium Density has up to 80 General Purpose I/O pins can be  
shared with other function pins; it depends on the chip configuration. These 80 pins are arranged  
in 5 ports named with GPIOA, GPIOB, GPIOC, GPIOD and GPIOE. Each port equips maximum  
16 pins. Each one of the 80 pins is independent and has the corresponding register bits to control  
the pin mode function and data.  
NuMicroNUC100/NUC120 Low Density has up to 65 General Purpose I/O pins can be shared  
with other function pins; it depends on the chip configuration and package. These 65 pins are  
arranged in 4 ports named with GPIOA, GPIOB, GPIOC and GPIOD with each port equips  
maximum 16 pins and another port named GPIOE with 1 pins PE.5.  
The I/O type of each of I/O pins can be configured by software individually as input, output, open-  
drain or quasi-bidirectional mode. After reset, the I/O type of all pins stay in quasi-bidirectional  
mode and port data register GPIOx_DOUT[15:0] resets to 0x0000_FFFF. Each I/O pin equips a  
very weakly individual pull-up resistor which is about 110KΩ~300KΩ for VDD is from 5.0 V to 2.5  
V.  
5.5.2 Features  
Four I/O modes:  
z
‹
‹
‹
‹
Quasi bi-direction  
Push-Pull output  
Open-Drain output  
Input only with high impendence  
z
z
z
TTL/Schmitt trigger input selectable  
I/O pin can be configured as interrupt source with edge/level setting  
High driver and high sink IO mode support  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 39 -  
 
NuMicroNUC120 Data Sheet  
5.6 I2C Serial Interface Controller (Master/Slave) (I2C)  
5.6.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data  
exchange between devices. The I2C standard is a true multi-master bus including collision  
detection and arbitration that prevents data corruption if two or more masters attempt to control  
the bus simultaneously.  
Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a  
byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit  
with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is  
sampled during the high period of SCL; therefore, the SDA line may be changed only during the  
low period of SCL and must be held stable during the high period of SCL. A transition on the SDA  
line while SCL is high is interpreted as a command (START or STOP). Please refer to the Figure  
5-9 for more detail I2C BUS Timing.  
Figure 5-9 I2C Bus Timing  
The device’s on-chip I2C logic provides the serial interface that meets the I2C bus standard mode  
specification. The I2C port handles byte transfers autonomously. To enable this port, the bit ENS1  
in I2CON should be set to '1'. The I2C H/W interfaces to the I2C bus via two pins: SDA and SCL.  
Pull up resistor is needed for I2C operation as these are open drain pins. When the I/O pins are  
used as I2C port, user must set the pins function to I2C in advance.  
Publication Release Date: Jan. 2, 2012  
- 40 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.6.2 Features  
The I2C bus uses two wires (SDA and SCL) to transfer information between devices connected to  
the bus. The main features of the bus are:  
z
z
z
z
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
z
z
z
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
Built-in a 14-bit time-out counter will request the I2C interrupt if the I2C bus hangs up  
and timer-out counter overflows.  
z
z
z
z
External pull-up are needed for high output  
Programmable clocks allow versatile rate control  
Supports 7-bit addressing mode  
I2C-bus controllers support multiple address recognition ( Four slave address with  
mask option)  
Publication Release Date: Jan. 2, 2012  
- 41 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.7 PWM Generator and Capture Timer (PWM)  
5.7.1 Overview  
NuMicroNUC100/NUC120 Medium Density has 2 sets of PWM group supports total 4 sets of  
PWM Generators which can be configured as 8 independent PWM outputs, PWM0~PWM7, or as  
4 complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3), (PWM4, PWM5) and (PWM6,  
PWM7) with 4 programmable dead-zone generators. NuMicroNUC100/NUC120 Low Density  
only support 1 set of PWM group supports total 2 sets of PWM Generators which can be  
configured as 4 independent PWM outputs, PWM0~PWM3, or as 2 complementary PWM pairs,  
(PWM0, PWM1) and (PWM2, PWM3) with 2 programmable dead-zone generators.  
Each PWM Generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1,  
1/2, 1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM down-  
counters for PWM period control, two 16-bit comparators for PWM duty control and one dead-  
zone generator. The 4 sets of PWM Generators provide eight independent PWM interrupt flags  
which are set by hardware when the corresponding PWM period down counter reaches zero.  
Each PWM interrupt source with its corresponding enable bit can cause CPU to request PWM  
interrupt. The PWM generators can be configured as one-shot mode to produce only one PWM  
cycle signal or auto-reload mode to output PWM waveform continuously.  
When PCR.DZEN01 is set, PWM0 and PWM1 perform complementary PWM paired function; the  
paired PWM period, duty and dead-time are determined by PWM0 timer and Dead-zone  
generator 0. Similarly, the complementary PWM pairs of (PWM2, PWM3), (PWM4, PWM5) and  
(PWM6, PWM7) are controlled by PWM2, PWM4 and PWM6 timers and Dead-zone generator 2,  
4 and 6, respectively.  
To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and  
16-bit comparator are implemented with double buffer. When user writes data to  
counter/comparator buffer registers the updated value will be load into the 16-bit down counter/  
comparator at the time down counter reaching zero. The double buffering feature avoids glitch at  
PWM outputs.  
When the 16-bit period down counter reaches zero, the interrupt request is generated. If PWM-  
timer is set as auto-reload mode, when the down counter reaches zero, it is reloaded with PWM  
Counter Register (CNRx) automatically then start decreasing, repeatedly. If the PWM-timer is set  
as one-shot mode, the down counter will stop and generate one interrupt request when it reaches  
zero.  
The value of PWM counter comparator is used for pulse high width modulation. The counter  
control logic changes the output to high level when down-counter value matches the value of  
compare register.  
The alternate feature of the PWM-timer is digital input Capture function. If Capture function is  
enabled the PWM output pin is switched as capture input mode. The Capture0 and PWM0 share  
one timer which is included in PWM0 and the Capture1 and PWM1 share PWM1 timer, and etc.  
Therefore user must setup the PWM-timer before enable Capture feature. After capture feature is  
enabled, the capture always latched PWM-counter to Capture Rising Latch Register (CRLR)  
when input channel has a rising transition and latched PWM-counter to Capture Falling Latch  
Register (CFLR) when input channel has a falling transition. Capture channel 0 interrupt is  
programmable by setting CCR0.CRL_IE0[1] (Rising latch Interrupt enable) and  
CCR0.CFL_IE0[2]] (Falling latch Interrupt enable) to decide the condition of interrupt occur.  
Capture channel 1 has the same feature by setting CCR0.CRL_IE1[17] and CCR0.CFL_IE1[18].  
And capture channel 2 to channel 3 on each group have the same feature by setting the  
corresponding control bits in CCR2. For each group, whenever Capture issues Interrupt 0/1/2/3,  
Publication Release Date: Jan. 2, 2012  
- 42 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
the PWM counter 0/1/2/3 will be reload at this moment.  
The maximum captured frequency that PWM can capture is confined by the capture interrupt  
latency. When capture interrupt occurred, software will do at least three steps, they are: Read  
PIIR to get interrupt source and Read CRLRx/CFLRx(x=0~3) to get capture value and finally write  
1 to clear PIIR to zero. If interrupt latency will take time T0 to finish, the capture signal mustn’t  
transition during this interval (T0). In this case, the maximum capture frequency will be 1/T0. For  
example:  
HCLK = 50 MHz, PWM_CLK = 25 MHz, Interrupt latency is 900 ns  
So the maximum capture frequency will is 1/900ns 1000 kHz  
5.7.2 Features  
5.7.2.1 PWM function features:  
z
PWM group has two PWM generators. Each PWM generator supports one 8-bit  
prescaler, one clock divider, two PWM-timers (down counter), one dead-zone  
generator and two PWM outputs.  
z
z
z
z
Up to 16-bit resolution  
PWM Interrupt request synchronized with PWM period  
One-shot or Auto-reload mode PWM  
Up to 2 PWM group (PWMA/PWMB) to support 8 PWM channels or 4 PWM paired  
channels (only 1 PWM group support for NuMicroNUC100/NUC120 Low Density)  
5.7.2.2 Capture Function Features:  
z
z
Timing control logic shared with PWM Generators  
Support 8 Capture input channels shared with 8 PWM output channels (NuMicro™  
NUC100/NUC120 Low Density only support 4 Capture input channels shared with 4  
PWM output channels)  
z
Each channel supports one rising latch register (CRLR), one falling latch register  
(CFLR) and Capture interrupt flag (CAPIFx)  
Publication Release Date: Jan. 2, 2012  
- 43 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.8 Real Time Clock (RTC)  
5.8.1 Overview  
Real Time Clock (RTC) controller provides user the real time and calendar message. The clock  
source of RTC is from an external 32.768 kHz low speed crystal connected at pins X32I and  
X32O (reference to pin descriptions) or from an external 32.768 kHz low speed oscillator output  
fed at pin X32I. The RTC controller provides the time message (second, minute, hour) in Time  
Loading Register (TLR) as well as calendar message (day, month, year) in Calendar Loading  
Register (CLR). The data message is expressed in BCD format. It also offers alarm function that  
user can preset the alarm time in Time Alarm Register (TAR) and alarm calendar in Calendar  
Alarm Register (CAR).  
The RTC controller supports periodic Time Tick and Alarm Match interrupts. The periodic interrupt  
has 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second which are selected by  
TTR (TTR[2:0]). When RTC counter in TLR and CLR is equal to alarm setting time registers TAR  
and CAR, the alarm interrupt flag (RIIR.AIF) is set and the alarm interrupt is requested if the alarm  
interrupt is enabled (RIER.AIER=1). Both RTC Time Tick and Alarm Match can cause chip wake-  
up from power down mode if wake-up function is enabled (TWKE (TTR[3])=1).  
5.8.2 Features  
z
There is a time counter (second, minute, hour) and calendar counter (day, month, year) for  
user to check the time  
z
z
z
z
z
z
z
Alarm register (second, minute, hour, day, month, year)  
12-hour or 24-hour mode is selectable  
Leap year compensation automatically  
Day of week counter  
Frequency compensate register (FCR)  
All time and calendar message is expressed in BCD code  
Support periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2  
and 1 second  
z
z
Support RTC Time Tick and Alarm Match interrupt  
Support wake-up chip from power down mode  
Publication Release Date: Jan. 2, 2012  
- 44 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.9 Serial Peripheral Interface (SPI)  
5.9.1 Overview  
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol which  
operates in full duplex mode. Devices communicate in master/slave mode with 4-wire bi-direction  
interface. The NuMicroNUC100/NUC120 Medium Density contains up to four sets of SPI  
controller performing a serial-to-parallel conversion on data received from a peripheral device,  
and a parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI  
controller can be set as a master that can drive up to 2 external peripheral slave devices; it also  
can be configured as a slave device controlled by an off-chip master device. NuMicro™  
NUC100/NUC120 Low Density contains two sets of SPI controller only.  
This controller supports a variable serial clock for special application and it also supports 2-bit  
transfer mode to connect 2 off-chip slave devices at the same time. The SPI controller also  
supports PDMA function to access the data buffer.  
5.9.2 Features  
z
z
z
z
z
Up to four sets of SPI controller for NuMicroNUC100/NUC120 Medium Density  
Up to two sets of SPI controller for NuMicroNUC100/NUC120 Low Density  
Support master or slave mode operation  
Support 1-bit or 2-bit transfer mode  
Configurable bit length up to 32-bit of a transfer word and configurable word numbers up to 2  
of a transaction, so the maximum bit length is 64-bit for each data transfer  
z
Provide burst mode operation, transmit/receive can be transferred up to two times word  
transaction in one transfer  
z
z
z
z
z
z
z
Support MSB or LSB first transfer  
2 device/slave select lines in master mode, but 1 device/slave select line in slave mode  
Support byte reorder function  
Support byte or word suspend mode  
Variable output serial clock frequency in master mode  
Support two programmable serial clock frequencies in master mode  
Support two channel PDMA request, one for transmitter and another for receiver  
Publication Release Date: Jan. 2, 2012  
- 45 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.10 Timer Controller (TMR)  
5.10.1 Overview  
The timer controller includes four 32-bit timers, TIMER0~TIMER3, which allows user to easily  
implement a timer control for applications. The timer can perform functions like frequency  
measurement, event counting, interval measurement, clock generation, delay timing, and so on.  
The timer can generates an interrupt signal upon timeout, or provide the current value during  
operation. Note: toggle mode, continuous counting mode and event counting function only  
support in NuMicroNUC100/NUC120 Low Density.  
5.10.2 Features  
4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter  
z
z
z
Independent clock source for each timer  
Provides one-shot, periodic, toggle and continuous counting operation modes (NuMicro™  
NUC100/NUC120 Medium Density only support one-shot and periodic mode)  
z
z
z
z
Time out period = (Period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit TCMP)  
Maximum counting cycle time = (1 / T MHz) * (28) * (224), T is the period of timer clock  
24-bit timer value is readable through TDR (Timer Data Register)  
Support event counting function to count the event from external pin (NuMicro™  
NUC100/NUC120 Low Density only)  
Publication Release Date: Jan. 2, 2012  
- 46 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.11 Watchdog Timer (WDT)  
5.11.1 Overview  
The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown  
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog  
Timer supports another function to wake-up chip from power down mode. The watchdog timer  
includes an 18-bit free running counter with programmable time-out intervals. Table 5-5 show the  
watchdog timeout interval selection and Figure 5-64 shows the timing of watchdog interrupt signal  
and reset signal.  
Setting WTE (WDTCR [7]) enables the watchdog timer and the WDT counter starts counting up.  
When the counter reaches the selected time-out interval, Watchdog timer interrupt flag WTIF will  
be set immediately to request a WDT interrupt if the watchdog timer interrupt enable bit WTIE is  
set, in the meanwhile, a specified delay time (1024 * TWDT) follows the time-out event. User must  
set WTR (WDTCR [0]) (Watchdog timer reset) high to reset the 18-bit WDT counter to avoid chip  
from Watchdog timer reset before the delay time expires. WTR bit is cleared automatically by  
hardware after WDT counter is reset. There are eight time-out intervals with specific delay time  
which are selected by Watchdog timer interval select bits WTIS (WDTCR [10:8]). If the WDT  
counter has not been cleared after the specific delay time expires, the watchdog timer will set  
Watchdog Timer Reset Flag (WTRF) high and reset chip. This reset will last 63 WDT clocks (TRST  
)
then chip restarts executing program from reset vector (0x0000_0000). WTRF will not be cleared  
by Watchdog reset. User may poll WTRF by software to recognize the reset source. WDT also  
provides wake-up function. When chip is powered down and the Watchdog Timer Wake-up  
Function Enable bit (WDTR[4]) is set, if the WDT counter reaches the specific time interval  
defined by WTIS (WDTCR [10:8]) , the chip is waken up from power down state. First example, if  
WTIS is set as 000, the specific time interval for chip to wake up from power down state is 24 *  
TWDT. When power down command is set by software, then, chip enters power down state. After  
24 * TWDT time is elapsed, chip is waken up from power down state. Second example, if WTIS  
(WDTCR [10:8]) is set as 111, the specific time interval for chip to wake up from power down  
state is 218 * TWDT. If power down command is set by software, then, chip enters power down  
state. After 218 * TWDT time is elapsed, chip is waken up from power down state. Notice if WTRE  
(WDTCR [1]) is set to 1, after chip is waken up, software should clear the Watchdog Timer  
counter by setting WTR(WDTCR [0]) to 1 as soon as possible. Otherwise, if the Watchdog Timer  
counter is not cleared by setting WTR (WDTCR [0]) to 1 before time starting from waking up to  
software clearing Watchdog Timer counter is over 1024 * TWDT , the chip is reset by Watchdog  
Timer.  
Timeout Interval  
Selection  
WTR Timeout Interval  
(WDT_CLK=10 kHz)  
Interrupt Period  
TINT  
WTIS  
TTIS  
Min. TWTR ~ Max. TWTR  
1.6 ms ~ 104 ms  
000  
001  
010  
011  
100  
101  
110  
111  
24 * TWDT  
26 * TWDT  
28 * TWDT  
210 * TWDT  
212 * TWDT  
214 * TWDT  
216 * TWDT  
218 * TWDT  
1024 * TWDT  
1024 * TWDT  
1024 * TWDT  
1024 * TWDT  
1024 * TWDT  
1024 * TWDT  
1024 * TWDT  
1024 * TWDT  
6.4 ms ~ 108.8 ms  
25.6 ms ~ 128 ms  
102.4 ms ~ 204.8 ms  
409.6 ms ~ 512 ms  
1.6384 s ~ 1.7408 s  
6.5536 s ~ 6.656 s  
26.2144 s ~ 26.3168 s  
Table 5-5 Watchdog Timeout Interval Selection  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 47 -  
 
NuMicroNUC120 Data Sheet  
TWDT  
TTIS  
TINT  
1024 * TWDT  
INT  
TRST  
RST  
Minimum TWTR  
Maximum TWTR  
63 * TWDT  
TWDT : Watchdog Engine Clock Time Period  
TTIS : Watchdog Timeout Interval Selection Period  
TINT : Watchdog Interrupt Period  
TRST : Watchdog Reset Period  
TWTR : Watchdog Timeout Interval Period  
Figure 5-10 Timing of Interrupt and Reset Signal  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 48 -  
 
NuMicroNUC120 Data Sheet  
5.11.2 Features  
z
z
z
18-bit free running counter to avoid chip from Watchdog timer reset before the delay time  
expires.  
Selectable time-out interval (24 ~ 218) and the time out interval is 104 ms ~ 26.3168 s (if  
WDT_CLK = 10 kHz).  
Reset period = (1 / 10 kHz) * 63, if WDT_CLK = 10 kHz.  
5.12 UART Interface Controller (UART)  
NuMicroNUC100/NUC120 Medium Density provides up to three channels of Universal  
Asynchronous Receiver/Transmitters (UART). UART0 supports High Speed UART and UART1~2  
perform Normal Speed UART, besides, only UART0 and UART1 support flow control function.  
NuMicroNUC100/NUC120 Low Density only supports UART0 and UART1.  
5.12.1 Overview  
The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel  
conversion on data received from the peripheral, and a parallel-to-serial conversion on data  
transmitted from the CPU. The UART controller also supports IrDA SIR Function and RS-485  
mode functions. Each UART channel supports seven types of interrupts including transmitter  
FIFO empty interrupt (INT_THRE), receiver threshold level reaching interrupt (INT_RDA), line  
status interrupt (parity error or framing error or break interrupt) (INT_RLS), receiver buffer time out  
interrupt (INT_TOUT), MODEM/Wake-up status interrupt (INT_MODEM) and Buffer error interrupt  
(INT_BUF_ERR). Interrupts of UART0 and UART2 share the interrupt number 12 (vector number  
is 28); Interrupt number 13 (vector number is 29) only supports UART1 interrupt. Refer to Nested  
Vectored Interrupt Controller chapter for System Interrupt Map.  
The UART0 is built-in with a 64-byte transmitter FIFO (TX_FIFO) and a 64-byte receiver FIFO  
(RX_FIFO) that reduces the number of interrupts presented to the CPU and the UART1~2 are  
equipped 16-byte transmitter FIFO (TX_FIFO) and 16-byte receiver FIFO (RX_FIFO). The CPU  
can read the status of the UART at any time during the operation. The reported status information  
includes the type and condition of the transfer operations being performed by the UART, as well  
as 4 error conditions (parity error, framing error, break interrupt and buffer error) probably occur  
while receiving data. The UART includes a programmable baud rate generator that is capable of  
dividing clock input by divisors to produce the serial clock that transmitter and receiver need. The  
baud rate equation is Baud Rate = UART_CLK / M * [BRD + 2], where M and BRD are defined in  
Baud Rate Divider Register (UA_BAUD). Table 5-6 lists the equations in the various conditions  
and Table 5-7 list the UART baud rate setting table.  
Mode  
DIV_X_EN DIV_X_ONE  
Divider X  
BRD Baud rate equation  
0
1
2
0
1
1
0
0
1
B
B
A
A
A
UART_CLK / [16 * (A+2)]  
UART_CLK / [(B+1) * (A+2)] , B must >= 8  
UART_CLK / (A+2), A must >=3  
Don’t care  
Table 5-6 UART Baud Rate Equation  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 49 -  
 
NuMicroNUC120 Data Sheet  
System clock = Internal 22.1184 MHz high speed oscillator  
Mode0 Mode1  
Parameter Register  
Mode2  
Register  
Baud rate  
Register  
x
Parameter  
A=0,B=11  
Parameter  
A=22  
921600  
460800  
x
0x3000_0016  
0x3000_002E  
0x2B00_0000  
A=1,B=15  
A=2,B=11  
0x2F00_0001  
0x2B00_0002  
A=1  
0x0000_0001  
0x0000_0004  
0x0000_000A  
0x0000_0016  
A=46  
A=94  
A=4,B=15  
A=6,B=11  
0x2F00_0004  
0x2B00_0006  
230400  
115200  
57600  
A=4  
A=10  
A=22  
0x3000_005E  
0x3000_00BE  
0x3000_017E  
A=10,B=15  
A=14,B=11  
0x2F00_000A  
0x2B00_000E  
A=190  
A=382  
A=22,B=15  
A=30,B=11  
0x2F00_0016  
0x2B00_001E  
A=62,B=8  
0x0000_0022 A=46,B=11  
A=34,B=15  
0x2800_003E  
0x2B00_002E  
0x2F00_0022  
38400  
19200  
9600  
A=34  
A=70  
A=574  
A=1150  
A=2302  
A=4606  
0x3000_023E  
0x3000_047E  
0x3000_08FE  
0x3000_11FE  
A=126,B=8  
0x0000_0046 A=94,B=11  
A=70,B=15  
0x2800_007E  
0x2B00_005E  
0x2F00_0046  
A=254,B=8  
0x0000_008E A=190,B=11  
A=142,B=15  
0x2800_00FE  
0x2B00_00BE  
0x2F00_008E  
A=142  
A=286  
A=510,B=8  
0x0000_011E A=382,B=11  
A=286,B=15  
0x2800_01FE  
0x2B00_017E  
0x2F00_011E  
4800  
Table 5-7 UART Baud Rate Setting Table  
The UART0 and UART1 controllers support auto-flow control function that uses two low-level  
signals, /CTS (clear-to-send) and /RTS (request-to-send), to control the flow of data transfer  
between the UART and external devices (ex: Modem). When auto-flow is enabled, the UART is  
not allowed to receive data until the UART asserts /RTS to external device. When the number of  
bytes in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR [19:16]), the /RTS is de-  
asserted. The UART sends data out when UART controller detects /CTS is asserted from external  
device. If a valid asserted /CTS is not detected the UART controller will not send data out.  
The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (User must set  
IrDA_EN (UA_FUN_SEL [1]) to enable IrDA function). The SIR specification defines a short-range  
infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The  
maximum data rate is 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR  
Protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So it cannot transmit and  
receive data at the same time. The IrDA SIR physical layer specifies a minimum 10ms transfer  
delay between transmission and reception. This delay feature must be implemented by software.  
For NuMicroNUC100/NUC120 Low Density, another alternate function of UART controllers is  
RS-485 9-bit mode function, and direction control provided by RTS pin or can program GPIO  
(PB.2 for RTS0 and PB.6 for RTS1) to implement the function by software. The RS-485 mode is  
selected by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 driver  
control is implemented using the RTS control signal from an asynchronous serial port to enable  
the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are same as UART.  
Publication Release Date: Jan. 2, 2012  
- 50 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.12.2 Features  
z
Full duplex, asynchronous communications  
z
Separate receive / transmit 64/16/16 bytes (UART0/UART1/UART2) entry FIFO for data  
payloads  
z
Support hardware auto flow control/flow control function (CTS, RTS) and programmable  
RTS flow control trigger level (UART0 and UART1 support)  
z
z
z
z
z
z
Programmable receiver buffer trigger level  
Support programmable baud-rate generator for each channel individually  
Support CTS wake-up function (UART0 and UART1 support)  
Support 7-bit receiver buffer time out detection function  
UART0/UART1 can be served by the DMA controller  
Programmable transmitting data delay time between the last stop and the next start bit by  
setting UA_TOR [DLY] register  
z
z
Support break error, frame error, parity error and receive / transmit buffer overflow detect  
function  
Fully programmable serial-interface characteristics  
„
„
Programmable number of data bit, 5-, 6-, 7-, 8-bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
„
Programmable stop bit, 1, 1.5, or 2 stop bit generation  
z
z
Support IrDA SIR function mode  
Support for 3-/16-bit duration for normal mode  
Support RS-485 function mode. (NuMicroNUC100/NUC120 Low Density only)  
„
„
„
Support RS-485 9-bit mode  
Support hardware or software direct enable control provided by RTS pin  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 51 -  
 
NuMicroNUC120 Data Sheet  
5.13 PS/2 Device Controller (PS2D)  
5.13.1 Overview  
PS/2 device controller provides basic timing control for PS/2 communication. All communication  
between the device and the host is managed through the CLK and DATA pins. Unlike PS/2  
keyboard or mouse device controller, the received/transmit code needs to be translated as  
meaningful code by firmware. The device controller generates the CLK signal after receiving a  
request to send, but host has ultimate control over communication. DATA sent from the host to  
the device is read on the rising edge and DATA sent from device to the host is change after rising  
edge. A 16 bytes FIFO is used to reduce CPU intervention. S/W can select 1 to 16 bytes for a  
continuous transmission.  
5.13.2 Features  
Host communication inhibit and request to send detection  
z
z
z
z
z
Reception frame error detection  
Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention  
Double buffer for data reception  
S/W override bus  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 52 -  
 
NuMicroNUC120 Data Sheet  
5.14 I2S Controller (I2S)  
5.14.1 Overview  
The I2S controller consists of IIS protocol to interface with external audio CODEC. Two 8 word  
deep FIFO for read path and write path respectively and is capable of handling 8 ~ 32 bit word  
sizes. DMA controller handles the data movement between FIFO and memory.  
5.14.2 Features  
I2S can operate as either master or slave  
z
z
z
z
z
z
z
Capable of handling 8-, 16-, 24- and 32-bit word sizes  
Mono and stereo audio data supported  
I2S and MSB justified data format supported  
Two 8 word FIFO data buffers are provided, one for transmit and one for receive  
Generates interrupt requests when buffer levels cross a programmable boundary  
Two DMA requests, one for transmit and one for receive  
Publication Release Date: Jan. 2, 2012  
- 53 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.15 Analog-to-Digital Converter (ADC)  
5.15.1 Overview  
NuMicroNUC100 Series contains one 12-bit successive approximation analog-to-digital  
converters (SAR A/D converter) with 8 input channels. The A/D converter supports three  
operation modes: single, single-cycle scan and continuous scan mode. The A/D converters can  
be started by software and external STADC pin.  
5.15.2 Features  
Analog input voltage range: 0~VREF  
z
z
z
z
z
z
12-bit resolution and 10-bit accuracy is guaranteed  
Up to 8 single-end analog input channels or 4 differential analog input channels  
Maximum ADC clock frequency is 16 MHz  
Up to 600K SPS conversion rate  
Three operating modes  
„ Single mode: A/D conversion is performed one time on a specified channel  
„ Single-cycle scan mode: A/D conversion is performed one cycle on all specified  
channels with the sequence from the lowest numbered channel to the highest  
numbered channel  
„ Continuous scan mode: A/D converter continuously performs Single-cycle scan mode  
until software stops A/D conversion  
z
An A/D conversion can be started by  
„ Software write 1 to ADST bit  
„ External pin STADC  
z
z
z
z
Conversion results are held in data registers for each channel with valid and overrun  
indicators  
Conversion result can be compared with specify value and user can select whether to  
generate an interrupt when conversion result is equal to the compare register setting  
Channel 7 supports 3 input sources: external analog voltage, internal bandgap voltage,  
and internal temperature sensor output  
Support Self-calibration to minimize conversion error  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 54 -  
 
NuMicroNUC120 Data Sheet  
5.16 Analog Comparator (CMP)  
5.16.1 Overview  
NuMicroNUC100 Series contains two comparators. The comparators can be used in a number  
of different configurations. The comparator output is a logical one when positive input greater than  
negative input, otherwise the output is a zero. Each comparator can be configured to cause an  
interrupt when the comparator output value changes. The block diagram is shown in Error!  
Reference source not found..  
5.16.2 Features  
Analog input voltage range: 0~5.0 V  
z
z
z
z
Hysteresis function supported  
Two analog comparators with optional internal reference voltage input at negative end  
One interrupt vector for both comparators  
Publication Release Date: Jan. 2, 2012  
- 55 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.17 PDMA Controller (PDMA)  
5.17.1 Overview  
NuMicroNUC100/NUC120 Medium Density contains a peripheral direct memory access  
(PDMA) controller that transfers data to and from memory or transfer data to and from APB  
devices. The PDMA has nine channels of DMA (Peripheral-to-Memory or Memory-to-Peripheral  
or Memory-to-Memory). For each PDMA channel (PDMA CH0~CH8), there is one word buffer as  
transfer buffer between the Peripherals APB devices and Memory.  
Software can stop the PDMA operation by disable PDMA [PDMACEN]. The CPU can recognize  
the completion of a PDMA operation by software polling or when it receives an internal PDMA  
interrupt. The PDMA controller can increase source or destination address or fixed them as well.  
Notice: NuMicroNUC100/NUC120 Low Density only has 1 PDMA channel (channel 0).  
5.17.2 Features  
z
Up to nine DMA channels. Each channel can support a unidirectional transfer (NuMicro™  
NUC100/NUC120 Low Density only has 1 PDMA channel)  
z
z
z
AMBA AHB master/slave interface compatible, for data transfer and register read/write  
Support source and destination address increased mode or fixed mode  
Hardware channel priority. DMA channel 0 has the highest priority and channel 8 has the  
lowest priority  
Publication Release Date: Jan. 2, 2012  
- 56 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
5.18 External Bus Interface (EBI)  
5.18.1 Overview  
The NuMicroNUC100/NUC120 Low Density LQFP-64 package equips an external bus interface  
(EBI) for external device used.  
To save the connections between external device and this chip, EBI support address bus and  
data bus multiplex mode. And, address latch enable (ALE) signal supported differentiate the  
address and data cycle.  
5.18.2 Features  
External Bus Interface has the following functions:  
z
External devices with max. 64K-byte size (8-bit data width)/128K-byte (16-bit data width)  
supported  
z
z
z
Variable external bus base clock (MCLK) supported  
8-bit or 16-bit data width supported  
Variable data access time (tACC), address latch enable time (tALE) and address hold  
time (tAHD) supported  
z
z
Address bus and data bus multiplex mode supported to save the address pins  
Configurable idle cycle supported for different access condition: Write command finish  
(W2X), Read-to-Read (R2R)  
Publication Release Date: Jan. 2, 2012  
- 57 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
6
FLASH MEMORY CONTROLLER (FMC)  
6.1 Overview  
NuMicroNUC100 Series equips with 128/64/32K bytes on chip embedded Flash for application  
program memory (APROM) that can be updated through ISP procedure. In System Programming  
(ISP) function enables user to update program memory when chip is soldered on PCB. After chip  
power on, Cortex-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in  
Config0. By the way, NuMicroNUC100 Series also provides additional DATA Flash for user, to  
store some application dependent data before chip power off. For 128K bytes APROM device, the  
data flash is shared with original 128K program memory and its start address is configurable and  
defined by user application request in Config1. For 64K/32K bytes APROM device, the data flash  
is fixed at 4K.  
6.2 Features  
z
Run up to 50 MHz with zero wait state for continuous address read access  
z
128/64/32KB application program memory (APROM) (NuMicroNUC100/NUC120 Low  
Density only support up to 64KB size)  
z
z
z
z
4KB in system programming (ISP) loader program memory (LDROM)  
Configurable or fixed 4KB data flash with 512 bytes page erase unit  
Programmable data flash start address for 128K APROM device  
In System Program (ISP) to update on chip Flash  
Publication Release Date: Jan. 2, 2012  
- 58 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
7
ELECTRICAL CHARACTERISTICS  
7.1 Absolute Maximum Ratings  
SYMBOL  
PARAMETER  
VDDVSS  
VIN  
MIN  
-0.3  
VSS-0.3  
4
MAX  
+7.0  
VDD+0.3  
24  
UNIT  
V
DC Power Supply  
Input Voltage  
V
Oscillator Frequency  
Operating Temperature  
1/tCLCL  
TA  
MHz  
°C  
-40  
+85  
Storage Temperature  
TST  
-55  
+150  
120  
°C  
Maximum Current into VDD  
-
mA  
mA  
mA  
mA  
mA  
mA  
Maximum Current out of VSS  
120  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
35  
35  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and  
reliability of the device.  
Publication Release Date: Jan. 2, 2012  
- 59 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
7.2 DC Electrical Characteristics  
7.2.1 NuMicroNUC100/NUC120 Medium Density DC Electrical Characteristics  
(VDD-VSS=3.3 V, TA = 25°C, FOSC = 50 MHz unless otherwise specified.)  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Operation voltage  
VDD  
2.5  
5.5  
V
V
V
V
V
VDD =2.5 V ~ 5.5 V up to 50 MHz  
VSS  
Power Ground  
-0.3  
-10%  
0
AVSS  
LDO Output Voltage  
Analog Operating Voltage  
Analog Reference Voltage  
VLDO  
AVDD  
Vref  
2.5  
+10%  
VDD  
VDD > 2.7 V  
0
AVDD  
VDD = 5.5 V@50 MHz,  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
54  
31  
51  
28  
22  
14  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
enable all IP and PLL, XTAL=12  
MHz  
VDD = 5.5 V@ 50 MHz,  
disable all IP and enable PLL,  
XTAL=12 MHz  
Operating Current  
Normal Run Mode  
@ 50 MHz  
VDD = 3 V@50 MHz,  
enable all IP and PLL, XTAL=12  
MHz  
VDD = 3 V@50 MHz,  
disable all IP and enable PLL,  
XTAL=12 MHz  
Operating Current  
Normal Run Mode  
@ 12 MHz  
VDD = 5.5 V@12 MHz,  
enable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 5.5 V@12 MHz,  
disable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 3 V@12MHz,  
enable all IP and disable PLL,  
XTAL=12 MHz  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 60 -  
 
NuMicroNUC120 Data Sheet  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VDD = 3 V@12 MHz,  
IDD8  
12  
mA  
disable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 5 V@4 MHz,  
IDD9  
15  
11  
13  
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
enable all IP and disable PLL,  
XTAL=4 MHz  
VDD = 5 V@4 MHz,  
IDD10  
IDD11  
IDD12  
IIDLE1  
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
disable all IP and disable PLL,  
XTAL=4 MHz  
Operating Current  
Normal Run Mode  
@ 4 MHz  
V
DD = 3 V@4 MHz,  
enable all IP and disable PLL,  
XTAL=4 MHz  
VDD = 3 V@4 MHz,  
disable all IP and disable PLL,  
XTAL=4 MHz  
VDD= 5.5 V@50 MHz,  
38  
15  
35  
13  
13  
5.5  
12  
enable all IP and PLL, XTAL=12  
MHz  
VDD=5.5 V@50 MHz,  
disable all IP and enable PLL,  
XTAL=12 MHz  
Operating Current  
Idle Mode  
V
DD = 3 V@50 MHz,  
@ 50 MHz  
enable all IP and PLL, XTAL=12  
MHz  
V
DD = 3 V@50 MHz,  
disable all IP and enable PLL,  
XTAL=12 MHz  
Operating Current  
Idle Mode  
VDD = 5.5 V@12 MHz,  
enable all IP and disable PLL,  
XTAL=12 MHz  
@ 12 MHz  
VDD = 5.5 V@12 MHz,  
disable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 3 V@12 MHz,  
enable all IP and disable PLL,  
XTAL=12 MHz  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 61 -  
NuMicroNUC120 Data Sheet  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VDD = 3 V@12 MHz,  
IIDLE8  
4
mA  
disable all IP and disable PLL,  
XTAL=12 MHz  
V
DD = 5 V@4 MHz,  
IIDLE9  
IIDLE10  
IIDLE11  
IIDLE12  
8.5  
3.5  
7
mA  
mA  
mA  
mA  
enable all IP and disable PLL,  
XTAL=4 MHz  
V
DD = 5 V@4 MHz,  
disable all IP and disable PLL,  
XTAL=4 MHz  
Operating Current  
Idle Mode  
@ 4 MHz  
VDD = 3 V@4 MHz,  
enable all IP and disable PLL,  
XTAL=4 MHz  
V
DD = 3 V@4 MHz,  
2.5  
disable all IP and disable PLL,  
XTAL=4 MHz  
VDD = 5.5 V, RTC OFF, No load  
@ Disable BOV function  
IPWD1  
IPWD2  
IPWD3  
IPWD4  
23  
18  
28  
22  
μA  
μA  
μA  
μA  
VDD = 3.3 V, RTC OFF, No load  
@ Disable BOV function  
Standby Current  
Power down Mode  
VDD = 5.5 V, RTC run , No load  
@ Disable BOV function  
VDD = 3.3 V, RTC run , No load  
@ Disable BOV function  
Input Current PA, PB, PC,  
PD, PE (Quasi-bidirectional  
mode)  
VDD = 5.5 V, VIN = 0 V or VIN=VDD  
IIN1  
-50  
-60  
μA  
Input Current at /RESET[1]  
VDD = 3.3 V, VIN = 0.45 V  
VDD = 5.5 V, 0<VIN<VDD  
IIN2  
ILK  
-55  
-2  
-45  
-
-30  
+2  
μA  
μA  
Input Leakage Current PA,  
PB, PC, PD, PE  
Logic 1 to 0 Transition Current  
PA~PE (Quasi-bidirectional  
mode)  
[3]  
VDD = 5.5 V, VIN<2.0 V  
ITL  
-650  
-
-200  
μA  
VDD = 4.5 V  
VDD = 2.5 V  
-0.3  
-0.3  
-
-
0.8  
0.6  
Input Low Voltage PA, PB,  
PC, PD, PE (TTL input)  
VIL1  
V
VDD  
+0.2  
V
DD = 5.5 V  
DD =3.0 V  
2.0  
1.5  
-
-
Input High Voltage PA, PB,  
PC, PD, PE (TTL input)  
VIH1  
V
V
VDD  
+0.2  
V
Input Low Voltage PA, PB,  
PC, PD, PE (Schmitt input)  
VIL2  
-0.5  
-
0.2 VDD  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 62 -  
NuMicroNUC120 Data Sheet  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Input High Voltage PA, PB,  
PC, PD, PE (Schmitt input)  
VIH2 0.4 VDD  
-
VDD+0.5  
V
V
Hysteresis voltage of PA~PE  
(Schmitt input)  
0.2 VDD  
VHY  
VDD = 4.5 V  
DD = 3.0 V  
VDD = 5.5 V  
DD = 3.0 V  
0
-
-
0.8  
0.4  
Input Low Voltage XT1[*2]  
VIL3  
V
V
V
0
3.5  
VDD  
+0.2  
-
Input High Voltage XT1[*2]  
VIH3  
VDD  
+0.2  
V
2.4  
-
-
Input Low Voltage X32I[*2]  
Input High Voltage X32I[*2]  
VIL4  
VIH4  
0
0.4  
2.5  
V
V
1.7  
Negative going threshold  
(Schmitt input), /RESET  
VILS  
-0.5  
-
-
0.3 VDD  
VDD+0.5  
V
V
Positive going threshold  
(Schmitt input), /RESET  
VIHS 0.7 VDD  
VDD = 4.5 V, VS = 2.4 V  
VDD = 2.7 V, VS = 2.2 V  
ISR11  
ISR12  
ISR13  
ISR21  
ISR22  
ISR23  
ISK11  
ISK12  
ISK13  
-300  
-50  
-40  
-20  
-4  
-370  
-70  
-60  
-24  
-6  
-450  
-90  
-80  
-28  
-8  
μA  
μA  
Source Current PA, PB, PC,  
PD, PE (Quasi-bidirectional  
Mode)  
V
DD = 2.5 V, VS = 2.0 V  
μA  
VDD = 4.5 V, VS = 2.4 V  
VDD = 2.7 V, VS = 2.2 V  
mA  
mA  
mA  
mA  
mA  
mA  
Source Current PA, PB, PC,  
PD, PE (Push-pull Mode)  
V
DD = 2.5 V, VS = 2.0 V  
-3  
-5  
-7  
VDD = 4.5 V, VS = 0.45 V  
VDD = 2.7 V, VS = 0.45 V  
10  
7
16  
10  
9
20  
Sink Current PA, PB, PC, PD,  
PE (Quasi-bidirectional and  
Push-pull Mode)  
13  
VDD = 2.5 V, VS = 0.45 V  
6
12  
Brown-Out voltage with  
BOV_VL [1:0] =00b  
VBO2.2  
VBO2.7  
VBO3.8  
VBO4.5  
VBH  
2.1  
2.6  
3.6  
4.3  
30  
2.2  
2.7  
3.8  
4.5  
-
2.3  
2.8  
4.0  
4.7  
150  
V
V
Brown-Out voltage with  
BOV_VL [1:0] =01b  
Brown-Out voltage with  
BOV_VL [1:0] =10b  
V
Brown-Out voltage with  
BOV_VL [1:0] =11b  
V
Hysteresis range of BOD  
voltage  
VDD = 2.5 V~5.5 V  
mV  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 63 -  
NuMicroNUC120 Data Sheet  
Note:  
1. /RESET pin is a Schmitt trigger input.  
2. Crystal Input is a CMOS input.  
3. Pins of PA, PB, PC, PD and PE can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD=5.5 V, 5he transition current reaches its maximum value when VIN approximates to 2 V.  
Publication Release Date: Jan. 2, 2012  
- 64 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
7.2.2 NuMicroNUC100/NUC120 Low Density DC Electrical Characteristics  
(VDD-VSS=3.3 V, TA = 25°C, FOSC = 50 MHz unless otherwise specified.)  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Operation voltage  
VDD  
2.5  
5.5  
V
V
V
V
V
VDD =2.5 V ~ 5.5 V up to 50 MHz  
VSS  
Power Ground  
-0.3  
-10%  
0
AVSS  
LDO Output Voltage  
Analog Operating Voltage  
Analog Reference Voltage  
VLDO  
AVDD  
Vref  
2.5  
+10%  
VDD  
VDD > 2.7 V  
0
AVDD  
VDD = 5.5 V@50 MHz,  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
46  
30  
44  
28  
19  
13  
17  
enable all IP and PLL, XTAL=12  
MHz  
VDD = 5.5 V@50 MHz,  
disable all IP and enable PLL,  
XTAL=12 MHz  
Operating Current  
Normal Run Mode  
@ 50 MHz  
VDD = 3 V@50 MHz,  
enable all IP and PLL, XTAL=12  
MHz  
VDD = 3 V@50 MHz,  
disable all IP and enable PLL,  
XTAL=12 MHz  
Operating Current  
Normal Run Mode  
@ 12 MHz  
VDD = 5.5 V@12 MHz,  
enable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 5.5 V@12 MHz,  
disable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 3 V@12 MHz,  
enable all IP and disable PLL,  
XTAL=12 MHz  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 65 -  
 
NuMicroNUC120 Data Sheet  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
V
DD = 3 V@12 MHz,  
IDD8  
mA  
11.5  
disable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 5 V@4 MHz,  
IDD9  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
13.5  
10  
12  
8
enable all IP and disable PLL,  
XTAL=4 MHz  
VDD = 5 V@4 MHz,  
IDD10  
IDD11  
IDD12  
IIDLE1  
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
disable all IP and disable PLL,  
XTAL=4 MHz  
Operating Current  
Normal Run Mode  
@ 4 MHz  
VDD = 3 V@4 MHz,  
enable all IP and disable PLL,  
XTAL=4 MHz  
VDD = 3 V@4 MHz,  
disable all IP and disable PLL,  
XTAL=4 MHz  
VDD= 5.5 V@50 MHz,  
30  
13  
28  
12  
11  
5
enable all IP and PLL, XTAL=12  
MHz  
VDD=5.5 V@50 MHz,  
disable all IP and enable PLL,  
XTAL=12 MHz  
Operating Current  
Idle Mode  
VDD = 3 V@50 MHz,  
@ 50 MHz  
enable all IP and PLL, XTAL=12  
MHz  
VDD = 3 V@50 MHz,  
disable all IP and enable PLL,  
XTAL=12 MHz  
Operating Current  
Idle Mode  
VDD = 5.5 V@12 MHz,  
enable all IP and disable PLL,  
XTAL=12 MHz  
@ 12 MHz  
VDD = 5.5 V@12 MHz,  
disable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 3 V@12 MHz,  
10  
enable all IP and disable PLL,  
XTAL=12 MHz  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 66 -  
NuMicroNUC120 Data Sheet  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VDD = 3 V@12 MHz,  
IIDLE8  
mA  
4
disable all IP and disable PLL,  
XTAL=12 MHz  
VDD = 5 V@4 MHz,  
IIDLE9  
IIDLE10  
IIDLE11  
IIDLE12  
mA  
mA  
mA  
mA  
7
enable all IP and disable PLL,  
XTAL=4 MHz  
VDD = 5 V@4 MHz,  
3.5  
6
disable all IP and disable PLL,  
XTAL=4 MHz  
Operating Current  
Idle Mode  
@ 4 MHz  
VDD = 3 V@4 MHz,  
enable all IP and disable PLL,  
XTAL=4 MHz  
VDD = 3 V@4 MHz,  
2.5  
disable all IP and disable PLL,  
XTAL=4 MHz  
VDD = 5.5 V, RTC OFF, No load  
@ Disable BOV function  
IPWD1  
IPWD2  
IPWD3  
IPWD4  
17  
14.5  
20  
μA  
μA  
μA  
μA  
VDD = 3.3 V, RTC OFF, No load  
@ Disable BOV function  
Standby Current  
Power down Mode  
VDD = 5.5 V, RTC run , No load  
@ Disable BOV function  
VDD = 3.3 V, RTC run , No load  
@ Disable BOV function  
17  
Input Current PA, PB, PC,  
PD, PE (Quasi-bidirectional  
mode)  
VDD = 5.5 V, VIN = 0 V or VIN=VDD  
IIN1  
-50  
-60  
μA  
Input Current at /RESET[1]  
VDD = 3.3 V, VIN = 0.45 V  
VDD = 5.5 V, 0<VIN<VDD  
IIN2  
ILK  
-55  
-2  
-45  
-
-30  
+2  
μA  
μA  
Input Leakage Current PA,  
PB, PC, PD, PE  
Logic 1 to 0 Transition Current  
PA~PE (Quasi-bidirectional  
mode)  
[3]  
VDD = 5.5 V, VIN<2.0 V  
ITL  
-650  
-
-200  
μA  
VDD = 4.5 V  
VDD = 2.5 V  
-0.3  
-0.3  
-
-
0.8  
0.6  
Input Low Voltage PA, PB,  
PC, PD, PE (TTL input)  
VIL1  
V
VDD  
+0.2  
V
DD = 5.5 V  
DD =3.0 V  
2.0  
1.5  
-
-
Input High Voltage PA, PB,  
PC, PD, PE (TTL input)  
VIH1  
V
V
VDD  
+0.2  
V
Input Low Voltage PA, PB,  
PC, PD, PE (Schmitt input)  
0.2  
VDD  
VIL2  
-0.5  
-
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 67 -  
NuMicroNUC120 Data Sheet  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Input High Voltage PA, PB,  
PC, PD, PE (Schmitt input)  
VDD  
+0.5  
0.4  
VDD  
VIH2  
-
V
Hysteresis voltage of PA~PE  
(Schmitt input)  
0.2 VDD  
VHY  
V
VDD = 4.5 V  
DD = 3.0 V  
VDD = 5.5 V  
DD = 3.0 V  
0
0
-
-
0.8  
V
0.4  
Input Low Voltage XT1[*2]  
VIL3  
V
VDD  
+0.2  
3.5  
2.4  
-
V
Input High Voltage XT1[*2]  
VIH3  
VDD  
+0.2  
V
-
-
Input Low Voltage X32I[*2]  
Input High Voltage X32I[*2]  
VIL4  
VIH4  
0
0.4  
2.5  
v
1.7  
V
Negative going threshold  
(Schmitt input), /RESET  
VILS  
-0.5  
-
-
0.3 VDD  
VDD+0.5  
V
V
Positive going threshold  
(Schmitt input), /RESET  
VIHS 0.7 VDD  
VDD = 4.5 V, VS = 2.4 V  
VDD = 2.7 V, VS = 2.2 V  
ISR11  
ISR12  
ISR12  
ISR21  
ISR22  
ISR22  
ISK1  
-300  
-50  
-40  
-20  
-4  
-370  
-70  
-60  
-24  
-6  
-450  
-90  
-80  
-28  
-8  
μA  
μA  
Source Current PA, PB, PC,  
PD, PE (Quasi-bidirectional  
Mode)  
V
DD = 2.5 V, VS = 2.0 V  
μA  
VDD = 4.5 V, VS = 2.4 V  
VDD = 2.7 V, VS = 2.2 V  
mA  
mA  
mA  
mA  
mA  
mA  
Source Current PA, PB, PC,  
PD, PE (Push-pull Mode)  
V
DD = 2.5 V, VS = 2.0 V  
-3  
-5  
-7  
VDD = 4.5 V, VS = 0.45 V  
VDD = 2.7 V, VS = 0.45 V  
10  
7
16  
10  
9
20  
Sink Current PA, PB, PC, PD,  
PE (Quasi-bidirectional and  
Push-pull Mode)  
ISK1  
13  
V
DD = 2.5 V, VS = 0.45 V  
ISK1  
6
12  
Brown-Out voltage with  
BOV_VL [1:0] =00b  
VBO2.2  
VBO2.7  
VBO3.8  
VBO4.5  
VBH  
2.1  
2.6  
3.6  
4.3  
30  
2.2  
2.7  
3.8  
4.5  
-
2.3  
2.8  
4.0  
4.7  
150  
V
V
Brown-Out voltage with  
BOV_VL [1:0] =01b  
Brown-Out voltage with  
BOV_VL [1:0] =10b  
V
Brown-Out voltage with  
BOV_VL [1:0] =11b  
V
Hysteresis range of BOD  
voltage  
VDD = 2.5 V~5.5 V  
mV  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 68 -  
NuMicroNUC120 Data Sheet  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Bandgap voltage  
VDD = 2.5 V~5.5 V  
VBG  
1.20  
1.26  
1.32  
V
Note:  
1. /RESET pin is a Schmitt trigger input.  
2. Crystal Input is a CMOS input.  
3. Pins of PA, PB, PC, PD and PE can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD=5.5 V, 5he transition current reaches its maximum value when VIN approximates to 2 V.  
Publication Release Date: Jan. 2, 2012  
- 69 -  
Revision V2.03  
NuMicroNUC120 Data Sheet  
7.2.3 Operating Current Curve (Test condition: run NOP)  
1. XTAL clock = 12 MHz, PLL disable, all-IP disable:  
Unit: mA  
2.  
XTAL clock = 12 MHz, PLL disable, all-IP enable  
Unit: mA  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 70 -  
 
NuMicroNUC120 Data Sheet  
3.  
XTAL clock = 12 MHz, PLL enable, all-IP disable  
Unit: mA  
4.  
XTAL clock = 12 MHz, PLL enable, all-IP enable  
Unit: mA  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 71 -  
NuMicroNUC120 Data Sheet  
7.2.4 Idle Current Curve  
1.  
XTAL clock = 12 MHz, PLL disable, all-IP disable  
Unit: mA  
2.  
XTAL clock = 12 MHz, PLL disable, all-IP enable  
Unit: mA  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 72 -  
 
NuMicroNUC120 Data Sheet  
3.  
XTAL clock = 12 MHz, PLL enable, all-IP disable  
Unit: mA  
4.  
XTAL clock = 12 MHz, PLL enable, all-IP enable  
Unit: mA  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 73 -  
NuMicroNUC120 Data Sheet  
7.2.5 Power Down Current Curve  
XTAL clock = 12 MHz, PLL Disable  
Unit: mA  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 74 -  
 
NuMicroNUC120 Data Sheet  
7.3 AC Electrical Characteristics  
t
CLCL  
t
t
CLCH  
CLCX  
t
t
CHCX  
CHCL  
Note: Duty cycle is 50%.  
SYMBOL  
tCHCX  
PARAMETER  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
CONDITION  
MIN.  
TYP.  
MAX. UNIT  
20  
20  
-
-
-
-
-
-
nS  
nS  
nS  
nS  
tCLCX  
-
tCLCH  
10  
10  
tCHCL  
-
7.3.1 External 4~24 MHz High Speed Crystal  
PARAMETER  
Input clock frequency  
Temperature  
CONDITION  
MIN.  
4
TYP.  
MAX. UNIT  
External crystal  
12  
-
24  
85  
5.5  
-
MHz  
-
-
-40  
2.5  
-
VDD  
5
V
Operating current  
12 MHz@ VDD = 5V  
1
mA  
7.3.1.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
R
4 MHz ~ 24 MHz  
without  
without  
without  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 75 -  
 
NuMicroNUC120 Data Sheet  
Figure 7-1 Typical Crystal Application Circuit  
7.3.2 External 32.768 kHz Low Speed Crystal  
PARAMETER  
Input clock frequency  
CONDITION  
MIN.  
-
TYP.  
MAX. UNIT  
External crystal  
32.768  
-
kHz  
Temperature  
VDD  
-
-
-40  
2.5  
-
-
85  
5.5  
V
7.3.3 Internal 22.1184 MHz High Speed Oscillator  
PARAMETER  
Supply voltage[1]  
CONDITION  
MIN.  
2.5  
-
TYP.  
MAX. UNIT  
-
-
5.5  
V
MHz  
%
Center Frequency  
-
22.1184  
-
-
+25; VDD =5 V  
-1  
+1  
Calibrated Internal Oscillator Frequency  
Operation Current  
-40~+85;  
-3  
-
-
+3  
-
%
VDD=2.5 V~5.5 V  
VDD =5 V  
500  
uA  
7.3.4 Internal 10 kHz Low Speed Oscillator  
PARAMETER  
CONDITION  
MIN.  
2.5  
-
TYP.  
MAX. UNIT  
Supply voltage[1]  
-
-
10  
-
5.5  
-
V
kHz  
%
Center Frequency  
-
+25; VDD =5 V  
-30  
+30  
Calibrated Internal Oscillator Frequency  
-40~+85;  
-50  
-
+50  
%
VDD=2.5 V~5.5 V  
Note: Internal operation voltage comes from LDO.  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 76 -  
 
NuMicroNUC120 Data Sheet  
7.4 Analog Characteristics  
7.4.1 Specification of 12-bit SARADC  
SYMBOL  
-
PARAMETER  
MIN.  
TYP.  
MAX. UNIT  
Resolution  
Differential nonlinearity error  
Integral nonlinearity error  
Offset error  
-
-
-
-
-
-
12  
Bit  
LSB  
LSB  
LSB  
-
DNL  
INL  
EO  
±3  
-
-
±4  
±1  
10  
EG  
Gain error (Transfer gain)  
Monotonic  
1
1.005  
-
Guaranteed  
FADC  
FS  
ADC clock frequency (AVDD=5V/3V)  
Sample rate  
-
-
-
-
16/8  
MHz  
K SPS  
V
600  
VDDA  
IDD  
Supply voltage  
3
-
-
5.5  
0.5  
1.5  
VDDA  
1
-
mA  
mA  
V
Supply current (Avg.)  
IDDA  
VREF  
IREF  
VIN  
-
-
Reference voltage  
Reference current (Avg.)  
Input voltage  
-
-
-
-
mA  
V
0
-
VREF  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 77 -  
 
NuMicroNUC120 Data Sheet  
7.4.2 Specification of LDO and Power management  
PARAMETER  
Input Voltage  
Output Voltage  
MIN.  
2.7  
TYP.  
5
MAX. UNIT  
NOTE  
5.5  
V
V
VDD input voltage  
VDD > 2.7 V  
-10%  
2.5  
+10%  
Temperature  
Cbp  
-40  
-
25  
1
85  
-
uF  
Resr=1ohm  
Note:  
1. It is recommended that a 10uF or higher capacitor and a 100nF bypass capacitor are connected between VDD and the  
closest VSS pin of the device.  
2. For ensuring power stability, a 1uF or higher capacitor must be connected between LDO pin and the closest VSS pin of  
the device.  
Publication Release Date: Jan. 2, 2012  
- 78 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
7.4.3 Specification of Low Voltage Reset  
PARAMETER  
Operation voltage  
Quiescent current  
Temperature  
CONDITION  
MIN.  
1.7  
-
TYP.  
MAX.  
5.5  
5
UNIT  
V
-
-
-
VDD=5.5 V  
-
uA  
-40  
25  
85  
Temperature=25℃  
Temperature=-40℃  
1.7  
-
2.0  
2.4  
2.3  
-
V
V
Threshold voltage  
Hysteresis  
Temperature=85℃  
-
1.6  
0
-
V
V
-
0
0
7.4.4 Specification of Brown-Out Detector  
PARAMETER  
Operation voltage  
Quiescent current  
Temperature  
CONDITION  
MIN.  
2.5  
-
TYP.  
-
MAX.  
5.5  
UNIT  
V
-
AVDD=5.5 V  
-
-
125  
85  
μA  
V
-40  
4.3  
3.6  
2.6  
2.1  
30  
25  
4.5  
3.8  
2.7  
2.2  
-
BOV_VL[1:0]=11  
BOV_VL [1:0]=10  
BOV_VL [1:0]=01  
BOV_VL [1:0]=00  
-
4.7  
4.0  
V
Brown-Out voltage  
Hysteresis  
2.8  
V
2.3  
V
150  
mV  
7.4.5 Specification of Power-On Reset (5 V)  
PARAMETER  
Temperature  
CONDITION  
MIN.  
TYP.  
25  
2
MAX.  
UNIT  
-
V+  
-40  
85  
-
Reset voltage  
-
-
V
Quiescent current  
Vin>reset voltage  
1
-
nA  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 79 -  
 
NuMicroNUC120 Data Sheet  
7.4.6 Specification of Temperature Sensor  
PARAMETER  
Supply voltage[1]  
Temperature  
Current consumption  
Gain  
CONDITIONS  
MIN.  
2.5  
TYP.  
MAX.  
5.5  
UNIT  
V
-
-
-40  
125  
6.4  
-
10.5  
uA  
-1.76  
720  
mV/℃  
mV  
Offset  
Temp=0 ℃  
Note: Internal operation voltage comes from LDO.  
7.4.7 Specification of Comparator  
PARAMETER  
Temperature  
CONDITION  
MIN.  
TYP.  
MAX. UNIT  
-
-40  
2.4  
-
25  
3
85  
5.5  
V
VDD  
-
VDD current  
20 uA@VDD=3 V  
20  
5
40  
uA  
mV  
V
Input offset voltage  
Output swing  
-
-
-
-
-
15  
0.1  
0.1  
-
-
VDD-0.1  
VDD-1.2  
-
Input common mode range  
DC gain  
-
V
70  
dB  
@VCM=1.2 V and  
VDIFF=0.1 V  
Propagation delay  
-
200  
20  
-
ns  
20 mV@VCM=1 V  
50 mV@VCM=0.1 V  
50 mV@VCM=VDD-1.2  
Comparison voltage  
10  
-
mV  
@10 mV for non-  
hysteresis  
One bit control  
Hysteresis  
W/O and W. hysteresis  
@VCM=0.4 V ~ VDD-1.2 V  
-
-
±10  
-
-
mV  
us  
@CINP=1.3 V  
CINN=1.2 V  
Wake-up time  
2
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 80 -  
 
NuMicroNUC120 Data Sheet  
7.4.8 Specification of USB PHY  
7.4.8.1 USB DC Electrical Characteristics  
SYMBOL  
PARAMETER  
Input high (driven)  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VIH  
VIL  
VDI  
2.0  
V
Input low  
0.8  
V
V
Differential input sensitivity  
|PADP-PADM|  
0.2  
0.8  
0.8  
Differential  
VCM  
VSE  
Includes VDI range  
2.5  
2.0  
V
common-mode range  
Single-ended receiver threshold  
Receiver hysteresis  
V
mV  
V
200  
VOL  
Output low (driven)  
0
0.3  
3.6  
VOH  
VCRS  
RPU  
Output high (driven)  
2.8  
V
Output signal cross voltage  
Pull-up resistor  
1.3  
2.0  
V
1.425  
1.575  
kΩ  
Termination  
Voltage  
for  
VTRM  
3.0  
3.6  
V
upstream port pull up (RPU)  
Driver output resistance  
Transceiver capacitance  
ZDRV  
CIN  
Steady state drive*  
Pin to GND  
10  
20  
pF  
*Driver output resistance doesn’t include series resistor resistance.  
7.4.8.2 USB Full-Speed Driver Electrical Characteristics  
SYMBOL  
TFR  
PARAMETER  
Rise Time  
CONDITIONS  
CL=50p  
MIN.  
4
TYP.  
MAX. UNIT  
20  
20  
ns  
ns  
%
TFF  
Fall Time  
CL=50p  
4
TFRFF  
Rise and fall time matching  
TFRFF=TFR/TFF  
90  
111.11  
7.4.8.3 USB Power Dissipation  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Standby  
50  
uA  
uA  
uA  
IVDDREG  
VDDD and VDDREG Supply  
Current (Steady State)  
Input mode  
(Full  
Speed)  
Output mode  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 81 -  
 
NuMicroNUC120 Data Sheet  
7.5 Flash DC Electrical Characteristics  
SYMBOL  
Nendu  
Tret  
PARAMETER  
Endurance  
CONDITIONS  
MIN.  
10000  
100  
20  
TYP. MAX. UNIT  
cycles[1]  
Temp=25 ℃  
Retention time  
year  
Terase  
Tmass  
Tprog  
Vdd  
Page erase time  
Mass erase time  
Program time  
40  
60  
55  
2.75  
14  
7
ms  
ms  
us  
40  
50  
40  
35  
Supply voltage  
2.25  
2.5  
V[2]  
mA  
mA  
uA  
Idd1  
Read current  
Idd2  
Program/Erase current  
Power down current  
Ipd  
10  
1. Number of program/erase cycles.  
2. Vdd is source from chip LDO output voltage.  
3. This table is guaranteed by design, not test in production.  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 82 -  
 
NuMicroNUC120 Data Sheet  
7.6 SPI Dynamic Characteristics  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
SPI master mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
26  
0
18  
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
-
4
6
SPI master mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
39  
0
26  
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
-
6
10  
SPI slave mode (VDD = 4.5V ~ 5.5V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
Data hold time  
0
-
-
ns  
ns  
ns  
2*PCLK+4  
-
-
-
Data output valid time  
2*PCLK+19  
2*PCLK+27  
SPI slave mode (VDD = 3.0V ~ 3.6V, 30pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
Data hold time  
0
-
-
ns  
ns  
ns  
2*PCLK+8  
-
-
-
Data output valid time  
2*PCLK+27  
2*PCLK+40  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 83 -  
 
NuMicroNUC120 Data Sheet  
Figure 7-2 SPI Master dynamic characteristics timing  
Figure 7-3 SPI Slave dynamic characteristics timing  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 84 -  
 
NuMicroNUC120 Data Sheet  
8
PACKAGE DIMENSIONS  
8.1 100L LQFP (14x14x1.4 mm footprint 2.0mm)  
H
D
D
A
A2  
A1  
7
51  
7
50  
H
E
E
100  
26  
L1  
L
1
25  
c
e
b
θ
Y
Controlling Dimension : Millimeters  
Dimension in inch  
Dimension in mm  
Symbol  
A
Nom  
Nom  
Min  
Max  
Min  
Max  
1.60  
0.063  
A1  
A
0.002  
0.05  
1.35  
0.17  
0.10  
1.45  
0.27  
0.053 0.055 0.057  
1.40  
0.22  
2
b
0.011  
0.008  
0.009  
0.006  
0.007  
0.004  
0.547  
0.547  
c
0.15  
0.20  
D
E
14.00  
0.551  
0.551  
0.020  
14.10  
13.90  
13.90  
0.556  
0.556  
14.00 14.10  
0.50  
e
H D  
16.00  
16.20  
16.20  
16.00  
15.80  
15.80  
0.45  
0.622  
0.622  
0.018  
0.638  
0.638  
0.030  
0.630  
0.630  
0.024  
0.039  
H E  
L
0.60  
1.00  
0.75  
L1  
y
0.10  
7
0.004  
7
θ
0
0
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 85 -  
 
NuMicroNUC120 Data Sheet  
8.2 64L LQFP (10x10x1.4mm footprint 2.0 mm)  
Dimension in inch  
Dimension in mm  
Symbol  
Nom  
Nom  
Min  
Max  
Min  
Max  
0.063  
1.60  
A
A
A
b
c
0.002  
0.053  
0.007  
0.004  
1
0.05  
1.35  
0.17  
0.09  
0.15  
1.45  
0.27  
0.20  
0.006  
0.057  
2
0.055  
0.008  
1.40  
0.20  
0.011  
0.008  
10.00  
10.00  
0.50  
0.393  
0.393  
0.020  
D
E
e
H
H
L
L
y
D
12.00  
12.00  
0.60  
0.472  
0.472  
0.024  
0.039  
E
0.030  
7
0.75  
7
0.45  
0
0.018  
0
1.00  
1
0.10  
3.5  
0.004  
3.5  
0
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 86 -  
 
NuMicroNUC120 Data Sheet  
8.3 48L LQFP (7x7x1.4mm footprint 2.0mm)  
Publication Release Date: Jan. 2, 2012  
Revision V2.03  
- 87 -  
 
NuMicroNUC120 Data Sheet  
9
REVISION HISTORY  
PAGE/  
CHAP.  
VERSION  
DATE  
DESCRIPTION  
V1.00  
V1.01  
V1.02  
V1.03  
March 1, 2010  
April 9, 2010  
May 31, 2010  
July 27, 2010  
-
Preliminary version initial issued  
Ch4  
7.2  
Modify the block diagram  
Add operation current of DC characteristics  
Modify LQFP 48 Pin Description  
3.3.1  
1. Modify LQFP 48 Pin Description  
V1.04  
V2.00  
Aug. 23, 2010  
Nov. 11 2010  
7.2  
-
2. Modify operation current of DC characteristics  
Update low density and selection table  
Remove NUC130/NUC140  
Add SPI Dynamic Characteristics  
Remove TM0~3 of medium density  
Remove word “MICROWIRE” in all document  
V2.01  
May 6, 2011  
-
Modify temperature sensor spec  
Revise Pin description position for multi-function T2EX, T3EX,  
nRD, nWR  
V2.02  
V2.03  
June 20, 2011  
Jan. 2, 2012  
-
-
Update title of SPI Dynamic Characteristics  
Update BOD spec  
1. Remove feature “Dynamic priority changing” for NVIC  
2. Modify ADC analog characteristic spec  
Publication Release Date: Jan. 2, 2012  
- 88 -  
Revision V2.03  
 
NuMicroNUC120 Data Sheet  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Publication Release Date: Jan. 2, 2012  
- 89 -  
Revision V2.03  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY