NUC7401-LD1C [NUVOTON]

Arm Cortex®-M0 32-bit Microcontroller;
NUC7401-LD1C
型号: NUC7401-LD1C
厂家: NUVOTON    NUVOTON
描述:

Arm Cortex®-M0 32-bit Microcontroller

微控制器
文件: 总82页 (文件大小:1635K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NUC2201  
Arm Cortex® -M0  
32-bit Microcontroller  
NuMicro® Family  
NUC2201 Series  
Datasheet  
The information described in this document is the exclusive intellectual property of  
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.  
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based  
system design. Nuvoton assumes no responsibility for errors or omissions.  
All data and specifications are subject to change without notice.  
For additional information or questions, please contact: Nuvoton Technology Corporation.  
www.nuvoton.com  
Aug. 24, 2018  
Page 1 of 82  
Rev 1.00  
NUC2201  
TABLE OF CONTENTS  
1 GENERAL DESCRIPTION.....................................................................................7  
1.1 Key Features Support Table..................................................................... 7  
2 FEATURES ............................................................................................................8  
2.1 NuMicro® NUC2201 Features USB Line .................................................... 8  
3 ABBREVIATIONS ................................................................................................11  
4 PARTS INFORMATION LIST AND PIN CONFIGURATION................................13  
4.1 NuMicro® NUC2201xxxAE Selection Guide .................................................13  
4.1.1 NuMicro® NUC2201 Naming Rule ..................................................................13  
4.1.2 NuMicro® NUC2201 USB Line Selection Guide ..................................................14  
4.2 Pin Configuration .................................................................................15  
4.2.1 NuMicro® NUC2201 Pin Diagram ...................................................................15  
4.3 Pin Description....................................................................................17  
4.3.1 NuMicro® NUC2201 Pin Description................................................................17  
5 BLOCK DIAGRAM...............................................................................................22  
5.1 NuMicro® NUC2201 Block Diagram...........................................................22  
6 FUNCTIONAL DESCRIPTION.............................................................................23  
6.1 Arm® Cortex® -M0 Core ..........................................................................23  
6.2 System Manager .................................................................................25  
6.2.1 Overview ................................................................................................25  
6.2.2 System Reset ..........................................................................................25  
6.2.3 System Power Distribution ...........................................................................26  
6.2.4 System Memory Map .................................................................................27  
6.2.5 Register Lock...........................................................................................28  
6.2.6 Auto Trim................................................................................................29  
6.2.7 System Timer (SysTick) ..............................................................................31  
6.2.8 Nested Vectored Interrupt Controller (NVIC)......................................................32  
6.2.9 System Control.........................................................................................36  
6.3 Clock Controller...................................................................................37  
6.3.1 Overview ................................................................................................37  
6.3.2 System Clock and SysTick Clock ...................................................................40  
6.3.3 Power-down Mode Clock.............................................................................41  
6.3.4 Frequency Divider Output ............................................................................41  
6.4 Flash Memory Controller (FMC) ...............................................................43  
6.4.1 Overview ................................................................................................43  
Aug. 24, 2018  
Page 2 of 82  
Rev 1.00  
NUC2201  
6.4.2 Features.................................................................................................43  
6.5 External Bus Interface (EBI)....................................................................44  
6.5.1 Overview ................................................................................................44  
6.5.2 Features.................................................................................................44  
6.6 General Purpose I/O (GPIO) ...................................................................45  
6.6.1 Overview ................................................................................................45  
6.6.2 Features.................................................................................................45  
6.7 PDMA Controller (PDMA).......................................................................46  
6.7.1 Overview ................................................................................................46  
6.7.2 Features.................................................................................................46  
6.8 Timer Controller (TIMER) .......................................................................48  
6.8.1 Overview ................................................................................................48  
6.8.2 Features.................................................................................................48  
6.9 PWM Generator and Capture Timer (PWM) .................................................49  
6.9.1 Overview ................................................................................................49  
6.9.2 Features.................................................................................................50  
6.10Watchdog Timer (WDT) .........................................................................51  
6.10.1 Overview ................................................................................................51  
6.10.2 Features.................................................................................................51  
6.11Window Watchdog Timer (WWDT)............................................................52  
6.11.1 Overview ................................................................................................52  
6.11.2 Features.................................................................................................52  
6.12Real Time Clock (RTC)..........................................................................53  
6.12.1 Overview ................................................................................................53  
6.12.2 Features.................................................................................................53  
6.13UART Interface Controller (UART) ............................................................54  
6.13.1 Overview ................................................................................................54  
6.13.2 Features.................................................................................................54  
6.14I2C Serial Interface Controller (I2C)............................................................55  
6.14.1 Overview ................................................................................................55  
6.14.2 Features.................................................................................................55  
6.15Serial Peripheral Interface (SPI) ...............................................................56  
6.15.1 Overview ................................................................................................56  
6.15.2 Features.................................................................................................56  
6.16USB Device Controller (USBD) ................................................................57  
Aug. 24, 2018  
Page 3 of 82  
Rev 1.00  
NUC2201  
6.16.1 Overview ................................................................................................57  
6.16.2 Features.................................................................................................57  
6.17Analog-to-Digital Converter (ADC) ............................................................58  
6.17.1 Overview ................................................................................................58  
6.17.2 Features.................................................................................................58  
7 APPLICATION CIRCUIT......................................................................................59  
8 ELECTRICAL CHARACTERISTICS....................................................................60  
8.1 Absolute Maximum Ratings.....................................................................60  
8.1.1 EMC characteristics ...................................................................................61  
8.2 DC Electrical Characteristics ...................................................................62  
8.3 AC Electrical Characteristics ...................................................................67  
8.3.1 External 4~24 MHz High Speed Oscillator ........................................................67  
8.3.2 External 4~24 MHz High Speed Crystal ...........................................................67  
8.3.3 32.768 kHz External Low Speed Crystal Oscillator (LXT).......................................68  
8.3.4 Internal 22.1184 MHz High Speed Oscillator .....................................................69  
8.3.5 Internal 48 MHz High Speed Oscillator ............................................................69  
8.3.6 Internal 10 kHz Low Speed Oscillator ..............................................................70  
8.3.7 PLL characteristics ....................................................................................70  
8.4 Analog Characteristics...........................................................................71  
8.4.1 12-bit SARADC Specification........................................................................71  
8.4.2 LDO and Power Management.......................................................................72  
8.4.3 Low Voltage Reset Specification....................................................................73  
8.4.4 Brown-out Detector Specification ...................................................................73  
8.4.5 Power-on Reset Specification .......................................................................73  
8.4.6 Temperature Sensor ..................................................................................74  
8.4.7 USB PHY ...............................................................................................75  
8.5 Flash DC Electrical Characteristics............................................................76  
8.6 I2C Dynamic Characteristics....................................................................77  
8.7 SPI Dynamic Characteristics ...................................................................78  
9 PACKAGE DIMENSIONS ....................................................................................80  
9.1 64-pin LQFP (7x7x1.4 mm footprint 2.0 mm) ................................................80  
9.2 48-pin LQFP (7x7x1.4 mm footprint 2.0 mm) ................................................81  
10REVISION HISTORY............................................................................................82  
Aug. 24, 2018  
Page 4 of 82  
Rev 1.00  
NUC2201  
List of Figures  
Figure 4-1 NuMicro® NUC2201 Series Selection Code................................................................. 13  
Figure 4-2 NuMicro® NUC2201SxxAE LQFP 64-pin Diagram....................................................... 15  
Figure 4-3 NuMicro® NUC2201LxxAE LQFP 48-pin Diagram ....................................................... 16  
Figure 5-1 NuMicro® NUC2201 Block Diagram ............................................................................. 22  
Figure 6-1 Functional Controller Diagram...................................................................................... 23  
Figure 6-2 NuMicro® NUC2201 Power Distribution Diagram......................................................... 26  
Figure 6-3 Clock Generator Block Diagram................................................................................... 38  
Figure 6-4 Clock Generator Global View Diagram......................................................................... 39  
Figure 6-5 System Clock Block Diagram ....................................................................................... 40  
Figure 6-6 SysTick Clock Control Block Diagram.......................................................................... 40  
Figure 6-7 Clock Source of Frequency Divider .............................................................................. 41  
Figure 6-8 Frequency Divider Block Diagram ................................................................................ 42  
Figure 8-1 Typical Crystal Application Circuit ................................................................................ 68  
Figure 8.3-2 Typical Crystal Application Circuit ............................................................................. 69  
Figure 8-3 Power-up Ramp Condition............................................................................................ 74  
Figure 8-4 I2C Timing Diagram ...................................................................................................... 77  
Figure 8-5 SPI Master Mode Timing Diagram ............................................................................... 78  
Figure 8-6 SPI Slave Mode Timing Diagram ................................................................................. 79  
Aug. 24, 2018  
Page 5 of 82  
Rev 1.00  
NUC2201  
List of Tables  
Table 1.1-1 NuMicro® NUC2201 Series Connectivity Support Table .............................................. 7  
Table 3-1 List of Abbreviations....................................................................................................... 12  
Table 6-1 Address Space Assignments for On-Chip Controllers................................................... 28  
Table 6-2 Exception Model ............................................................................................................ 33  
Table 6-3 System Interrupt Map..................................................................................................... 34  
Table 6-4 Vector Table Format ...................................................................................................... 35  
Aug. 24, 2018  
Page 6 of 82  
Rev 1.00  
NUC2201  
1
GENERAL DESCRIPTION  
The NuMicro® NUC2201 series 32-bit microcontrollers are embedded with the Arm® Cortex® -M0  
core with a cost equivalent to traditional 8-bit MCU for industrial control and applications requiring  
rich communication interfaces.  
The NuMicro® NUC2201 USB Line with USB 2.0 full-speed functions is embedded with the  
Cortex® -M0 core running up to 72 MHz and features 128K bytes flash, 16K bytes embedded  
SRAM and 8 Kbytes loader ROM for the ISP. It is also equipped with plenty of peripheral devices,  
such as Timers, Watchdog Timer, Window Watchdog Timer, RTC, PDMA with CRC calculation  
unit, UART, SPI, I2C, PWM Timer, GPIO, LIN, USB 2.0 FS Device, 12-bit ADC, Low Voltage  
Reset Controller and Brown-out Detector.  
1.1 Key Features Support Table  
Product Line  
NUC2201L  
NUC2201S  
UART  
SPI  
I2C  
2
Timer  
PWM  
ADC  
10  
USB  
Package  
LQFP48  
LQFP64  
2
3
1
4
4
4
6
1
1
2
2
12  
Table 1.1-1 NuMicro® NUC2201 Series Connectivity Support Table  
Aug. 24, 2018  
Page 7 of 82  
Rev 1.00  
NUC2201  
2
FEATURES  
The equipped features are dependent on the product line and their sub products.  
2.1 NuMicro® NUC2201 Features USB Line  
Arm® Cortex® -M0 core  
Runs up to 72 MHz  
One 24-bit system timer  
Supports low power sleep mode  
Single-cycle 32-bit hardware multiplier  
NVIC for the 32 interrupt inputs, each with 4-levels of priority  
Serial Wire Debug supports with 2 watchpoints/4 breakpoints  
Built-in LDO for wide operating voltage ranges from 2.5 V to 5.5 V  
Flash Memory  
128K bytes Flash for program code  
8 KB flash for ISP loader  
Supports In-System-Program (ISP) and In-Application-Program (IAP) application code  
update  
512 byte page erase for flash  
Configurable Data Flash address and size for 128 KB system  
Supports 2-wired ICP update through SWD/ICE interface  
SRAM Memory  
16K bytes embedded SRAM  
Supports PDMA mode  
PDMA (Peripheral DMA)  
Supports 9 channels PDMA for automatic data transfer between SRAM and peripherals  
Supports CRC calculation with four common polynomials, CRC-CCITT, CRC-8, CRC-16 and  
CRC-32  
Clock Control  
Flexible selection for different applications  
Built-in 22.1184 MHz high speed oscillator for system operation  
Trimmed to ±1 % at +25 and VDD = 5 V  
Trimmed to ±3 % at -40 ~ +105 and VDD = 2.5 V ~ 5.5 V  
Built-in 48 MHz internal high speed RC oscillator (HIRC) for USB device operation  
(Frequency variation < 2% at -40oC ~ +105oC)  
Dynamically calibrating the HIRC OSC to 48 MHz ±0.25% from -40to 105by  
external 32.768K crystal oscillator (LXT) or internal USB synchronous mode  
Built-in 10 kHz low speed oscillator for Watchdog Timer and Wake-up operation  
Supports one PLL, up to 72 MHz, for high performance system operation  
External 4~24 MHz high speed crystal input for USB and precise timing operation  
External 32.768 kHz low speed crystal input for RTC function and low power system  
operation  
GPIO  
Four I/O modes:  
Quasi-bidirectional  
Push-pull output  
Open-drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable  
I/O pin configured as interrupt source with edge/level setting  
Timer  
Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter  
Independent clock source for each timer  
Provides one-shot, periodic, toggle and continuous counting operation modes  
Supports event counting function  
Supports input capture function  
Aug. 24, 2018  
Page 8 of 82  
Rev 1.00  
NUC2201  
Watchdog Timer  
Multiple clock sources  
8 selectable time-out period from 1.6 ms ~ 26.0 sec (depending on clock source)  
Wake-up from Power-down or Idle mode  
Interrupt or reset selectable on watchdog time-out  
Supports 4 selectable Watchdog Timer reset delay period(1026, 130, 18 or 3 WDT_CLK)  
Window Watchdog Timer  
6-bit down counter with 11-bit prescale for wide range window selected  
RTC  
Supports software compensation by setting frequency compensate register (FCR)  
Supports RTC counter (second, minute, hour) and calendar counter (day, month, year)  
Supports Alarm registers (second, minute, hour, day, month, year)  
Selectable 12-hour or 24-hour mode  
Automatic leap year recognition  
Supports periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4,  
1/2 and 1 second  
Supports battery power pin (VBAT  
Supports wake-up function  
PWM/Capture  
)
Up to three built-in 16-bit PWM generators providing six PWM outputs or three  
complementary paired PWM outputs  
Each PWM generator equipped with one clock source selector, one clock divider, one 8-bit  
prescaler and one Dead-Zone generator for complementary paired PWM  
Supports One-shot or Auto-reload mode  
Up to six 16-bit digital capture timers (shared with PWM timers) providing six rising/falling  
capture inputs  
Supports Capture interrupt  
UART  
Up to three UART controllers  
UART ports with flow control (TXD, RXD, nCTS and nRTS)  
UART0 with 64-byte FIFO is for high speed  
UART1/2(optional) with 16-byte FIFO for standard device  
Supports IrDA (SIR) and LIN function  
Supports RS-485 9-bit mode and direction control  
Programmable baud-rate generator up to 1/16 system clock  
Supports CTS wake-up function (UART0 and UART1 support)  
Supports PDMA mode  
SPI  
Up to two sets of SPI controllers  
The maximum SPI clock rate of Master can up to 36 MHz (chip working at 5V)  
The maximum SPI clock rate of Slave can up to 18 MHz (chip working at 5V)  
Supports SPI Master/Slave mode  
Full duplex synchronous serial data transfer  
Variable length of transfer data from 8 to 32 bits  
MSB or LSB first data transfer  
Rx and Tx on both rising or falling edge of serial clock independently  
Two slave/device select lines in Master mode, and one slave/device select line in Slave  
mode  
Supports Byte Suspend mode in 32-bit transmission  
Supports PDMA mode  
Supports three wire, no slave select signal, bi-direction interface  
I2C  
Up to two sets of I2C devices  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Aug. 24, 2018  
Page 9 of 82  
Rev 1.00  
NUC2201  
Arbitration between simultaneously transmitting masters without corruption of serial data on  
the bus  
Serial clock synchronization allowing devices with different bit rates to communicate via one  
serial bus  
Serial clock synchronization used as a handshake mechanism to suspend and resume serial  
transfer  
Programmable clocks allowing for versatile rate control  
Supports multiple address recognition (four slave address with mask option)  
Supports wake-up function  
USB 2.0 Full-Speed Device  
One set of USB 2.0 FS Device 12 Mbps  
On-chip USB Transceiver  
Provides 1 interrupt source with 4 interrupt events  
Supports Control, Bulk In/Out, Interrupt and Isochronous transfers  
Auto suspend function when no bus signaling for 3 ms  
Provides 8 programmable endpoints  
Includes 512 Bytes internal SRAM as USB buffer  
Provides remote wake-up capability  
Supports Crystal-less function  
ADC  
12-bit SAR ADC with 1 MSPS(chip working at 5V)  
Up to 12-ch single-end input or 5-ch differential input  
Single scan/single cycle scan/continuous scan  
Each channel with individual result register  
Scan on enabled channels  
Threshold voltage detection  
Conversion started by software programming, external input or PWM Center-aligned trigger  
Supports PDMA mode  
EBI (External bus interface)  
Accessible space: 64 KB in 8-bit mode or 128 KB in 16-bit mode  
Supports 8-/16-bit data width  
Supports byte write in 16-bit data width mode  
96-bit unique ID (UID)  
128-bit unique customer ID(UCID)  
One built-in temperature sensor with 1resolution  
Brown-out Detector  
With 4 levels: 4.4 V/3.7 V/2.7 V/2.2 V  
Supports Brown-out Interrupt and Reset option  
Low Voltage Reset  
Threshold voltage level: 2.0 V  
Operating Temperature: -40~ 105℃  
Packages:  
All Green package (RoHS)  
LQFP 64-pin / 48-pin  
Aug. 24, 2018  
Page 10 of 82  
Rev 1.00  
NUC2201  
3
ABBREVIATIONS  
Acronym  
Description  
ACMP  
ADC  
AES  
APB  
AHB  
BOD  
CAN  
DAP  
DES  
EBI  
Analog Comparator Controller  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Advanced Peripheral Bus  
Advanced High-Performance Bus  
Brown-out Detection  
Controller Area Network  
Debug Access Port  
Data Encryption Standard  
External Bus Interface  
EPWM  
FIFO  
FMC  
FPU  
GPIO  
HCLK  
HIRC  
HXT  
IAP  
Enhanced Pulse Width Modulation  
First In, First Out  
Flash Memory Controller  
Floating-point Unit  
General-Purpose Input/Output  
The Clock of Advanced High-Performance Bus  
22.1184 MHz Internal High Speed RC Oscillator  
4~24 MHz External High Speed Crystal Oscillator  
In Application Programming  
In Circuit Programming  
ICP  
ISP  
In System Programming  
LDO  
LIN  
Low Dropout Regulator  
Local Interconnect Network  
10 kHz internal low speed RC oscillator (LIRC)  
Memory Protection Unit  
LIRC  
MPU  
NVIC  
PCLK  
PDMA  
PLL  
Nested Vectored Interrupt Controller  
The Clock of Advanced Peripheral Bus  
Peripheral Direct Memory Access  
Phase-Locked Loop  
PWM  
QEI  
Pulse Width Modulation  
Quadrature Encoder Interface  
Secure Digital Input/Output  
Serial Peripheral Interface  
SDIO  
SPI  
Aug. 24, 2018  
Page 11 of 82  
Rev 1.00  
NUC2201  
SPS  
Samples per Second  
TDES  
TMR  
Triple Data Encryption Standard  
Timer Controller  
UART  
UCID  
USB  
Universal Asynchronous Receiver/Transmitter  
Unique Customer ID  
Universal Serial Bus  
WDT  
WWDT  
Watchdog Timer  
Window Watchdog Timer  
Table 3-1 List of Abbreviations  
Aug. 24, 2018  
Page 12 of 82  
Rev 1.00  
NUC2201  
4
PARTS INFORMATION LIST AND PIN CONFIGURATION  
4.1 NuMicro® NUC2201xxxAE Selection Guide  
4.1.1 NuMicro® NUC2201 Naming Rule  
NUC 2 2 01 - X X X X X  
ARM-Based  
32-bit Microcontroller  
Temperature  
N: -40~ +85℃  
E: -40~ +105℃  
C: -40~ +125℃  
CPU core  
1/2: Cortex-M0  
5/7: ARM7  
9: ARM9  
Reserved  
RAM Size  
1: 4KB  
2: 8KB  
Function  
0: Advanced Line  
2: USB Line  
3: Automotive Line  
4: Connectivity Line  
3: 16KB  
APROM Size  
C: 32KB  
D: 64KB  
E: 128KB  
Package Type  
L: LQFP 48  
S: LQFP 64  
Figure 4-1 NuMicro® NUC2201 Series Selection Code  
Aug. 24, 2018  
Page 13 of 82  
Rev 1.00  
NUC2201  
4.1.2 NuMicro® NUC2201 USB Line Selection Guide  
Connectivity  
NUC2201LE3AE 128 16 Config.  
NUC2201SE3AE 128 16 Config.  
8
8
31  
45  
4
4
2
3
1
2
2
2
1
1
2
3
-
-
-
-
-
-
-
-
6
6
10  
12  
v
v
-
v
v
LQFP48  
LQFP64  
v
Aug. 24, 2018  
Page 14 of 82  
Rev 1.00  
NUC2201  
4.2 Pin Configuration  
4.2.1 NuMicro® NUC2201 Pin Diagram  
4.2.1.1 NuMicro® NUC2201SxxAE LQFP 64 pin (7 mm * 7mm)  
AD8/ADC5/PA.5  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PB.9/TM1/UART2_TXD  
PB.10/TM2/UART2_RXD  
PB.11/TM3/PWM4  
AD7/ADC6/PA.6  
VREF  
AVDD  
PE.5/TM1_EXT/TM1/PWM5  
PC.0/SPI0_SS0  
AD5/ADC7/PC.7  
AD4/ADC8/PC.6  
PC.1/SPI0_CLK  
AD3/ADC9/PC.15  
PC.2/SPI0_MISO0  
NUC2201SxxAE  
LQFP 64-pin  
AD2/ADC10/PC.14  
PC.3/SPI0_MOSI0  
AD6/ADC11/TM0/TM0_EXT/INT1/PB.15  
PB.3/UART0_nCTS/TM3_EXT/TM3/nWRH  
PB.2/UART0_nRTS/TM2_EXT/TM2/nWRL  
PB.1/UART0_TXD  
XT1_OUT/PF.0  
XT1_IN/PF.1  
nRESET  
PB.0/UART0_RXD  
VSS  
USB_D+  
VDD  
PVSS  
USB_D-  
USB_VDD33_CAP  
CLKO/TM0/STADC/PB.8  
USB_VBUS  
Figure 4-2 NuMicro® NUC2201SxxAE LQFP 64-pin Diagram  
Aug. 24, 2018  
Page 15 of 82  
Rev 1.00  
NUC2201  
4.2.1.2 NuMicro® NUC2201LxxAE LQFP 48 pin (7 mm * 7mm)  
ADC5/PA.5  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PC.0/SPI0_SS0  
PC.1/SPI0_CLK  
PC.2/SPI0_MISO0  
PC.3/SPI0_MOSI0  
ADC6/PA.6  
VREF  
AVDD  
ADC7/PC.7  
PB.3/UART0_nCTS/TM3_EXT/TM3  
PB.2/UART0_nRTS/TM2_EXT/TM2  
PB.1/UART0_TXD  
PB.0/UART0_RXD  
USB_D+  
NUC2201LxxAE  
LQFP 48-pin  
ADC8/PC.6  
ADC11/TM0/TM0_EXT/INT1/PB.15  
XT1_OUT/PF.0  
XT1_IN/PF.1  
nRESET  
USB_D-  
PVSS  
USB_VDD33_CAP  
USB_VBUS  
CLKO/TM0/STADC/PB.8  
Figure 4-3 NuMicro® NUC2201LxxAE LQFP 48-pin Diagram  
Aug. 24, 2018  
Page 16 of 82  
Rev 1.00  
NUC2201  
4.3 Pin Description  
4.3.1 NuMicro® NUC2201 Pin Description  
Pin  
Type  
Pin No.  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
PB.14  
I/O  
I
General purpose digital I/O pin.  
External interrupt0 input pin.  
EBI Address/Data bus bit0  
1
INT0  
AD0  
I/O  
I/O  
I/O  
P
PB.13  
General purpose digital I/O pin.  
EBI Address/Data bus bit1  
2
AD1  
3
4
5
1
2
3
VBAT  
Power supply by batteries for RTC.  
External 32.768 kHz (low speed) crystal output pin.  
External 32.768 kHz (low speed) crystal input pin.  
General purpose digital I/O pin.  
I2C1 clock pin.  
X32_OUT  
X32_IN  
PA.11  
O
I
I/O  
I/O  
O
4
6
7
I2C1_SCL  
nRD  
EBI read enable output pin  
PA.10  
I/O  
I/O  
O
General purpose digital I/O pin.  
I2C1 data input/output pin.  
5
I2C1_SDA  
nWR  
EBI write enable output pin  
PA.9  
I/O  
I/O  
I/O  
I/O  
I/O  
I
General purpose digital I/O pin.  
I2C0 clock pin.  
8
9
6
7
8
9
I2C0_SCL  
PA.8  
General purpose digital I/O pin.  
I2C0 data input/output pin.  
I2C0_SDA  
PB.4  
General purpose digital I/O pin.  
Data receiver input pin for UART1.  
General purpose digital I/O pin.  
Data transmitter output pin for UART1.  
General purpose digital I/O pin.  
Request to Send output pin for UART1.  
EBI address latch enable output pin  
General purpose digital I/O pin.  
Clear to Send input pin for UART1.  
EBI chip select enable output pin  
LDO output pin.  
10  
11  
UART1_RXD  
PB.5  
I/O  
O
UART1_TXD  
PB.6  
I/O  
O
12  
UART1_nRTS  
ALE  
O
PB.7  
I/O  
I
13  
14  
UART1_nCTS  
nCS  
O
10  
LDO_CAP  
P
Aug. 24, 2018  
Page 17 of 82  
Rev 1.00  
NUC2201  
Pin  
Type  
Pin No.  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
15  
16  
17  
11  
12  
13  
VDD  
P
P
Power supply for I/O ports and LDO source for internal PLL and digital circuit.  
Ground pin for digital circuit.  
VSS  
USB_VBUS  
USB Power supply from USB host or HUB.  
USB_VDD33_C  
AP  
18  
14  
USB Internal power regulator output 3.3V decoupling pin.  
19  
20  
15  
16  
USB_D-  
USB_D+  
PB.0  
USB USB differential signal D-.  
USB USB differential signal D+.  
I/O  
I
General purpose digital I/O pin.  
Data receiver input pin for UART0.  
General purpose digital I/O pin.  
Data transmitter output pin for UART0.  
General purpose digital I/O pin.  
Request to Send output pin for UART0.  
Timer2 external capture input pin.  
Timer2 toggle output pin.  
21  
22  
17  
18  
UART0_RXD  
PB.1  
I/O  
O
UART0_TXD  
PB.2  
I/O  
O
UART0_nRTS  
TM2_EXT  
TM2  
19  
23  
I
O
nWRL  
O
EBI low byte write enable output pin  
General purpose digital I/O pin.  
Clear to Send input pin for UART0.  
Timer3 external capture input pin.  
Timer3 toggle output pin.  
PB.3  
I/O  
I
UART0_nCTS  
TM3_EXT  
TM3  
20  
24  
I
O
nWRH  
O
EBI high byte write enable output pin  
General purpose digital I/O pin.  
1st SPI0 MOSI (Master Out, Slave In) pin.  
General purpose digital I/O pin.  
PC.3  
I/O  
I/O  
I/O  
25  
26  
21  
22  
SPI0_MOSI0  
PC.2  
SPI0_MISO0  
I/O  
1st SPI0 MISO (Master In, Slave Out) pin.  
PC.1  
I/O  
I/O  
I/O  
I/O  
General purpose digital I/O pin.  
SPI0 serial clock pin.  
27  
28  
23  
24  
SPI0_CLK  
PC.0  
General purpose digital I/O pin.  
1st SPI0 slave select pin.  
SPI0_SS0  
PE.5  
I/O  
General purpose digital I/O pin.  
29  
PWM5  
I/O  
I
PWM5 output/Capture input.  
TM1_EXT  
Timer1 external capture input pin.  
Aug. 24, 2018  
Page 18 of 82  
Rev 1.00  
NUC2201  
Pin  
Type  
Pin No.  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
TM1  
O
Timer1 toggle output pin.  
PB.11  
I/O  
General purpose digital I/O pin.  
30  
TM3  
I/O  
Timer3 event counter input / toggle output.  
PWM4  
I/O  
I/O  
I/O  
I
PWM4 output/Capture input.  
General purpose digital I/O pin.  
Timer2 event counter input / toggle output.  
Data receiver input pin for UART2.  
General purpose digital I/O pin.  
Timer1 event counter input / toggle output.  
Data transmitter output pin for UART2.  
General purpose digital I/O pin.  
1st SPI1 MOSI (Master Out, Slave In) pin.  
General purpose digital I/O pin.  
1st SPI1 MISO (Master In, Slave Out) pin.  
General purpose digital I/O pin.  
SPI1 serial clock pin.  
PB.10  
31  
32  
TM2  
UART2_RXD  
PB.9  
I/O  
I/O  
O
TM1  
UART2_TXD  
PC.11  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
33  
34  
35  
SPI1_MOSI0  
PC.10  
SPI1_MISO0  
PC.9  
SPI1_CLK  
PC.8  
General purpose digital I/O pin.  
1st SPI1 slave select pin.  
36  
37  
38  
SPI1_SS0  
MCLK  
EBI clock output  
PA.15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
General purpose digital I/O pin.  
PWM3 output/Capture input.  
General purpose digital I/O pin.  
PWM2 output/Capture input.  
EBI Address/Data bus bit15  
25  
26  
PWM3  
PA.14  
PWM2  
AD15  
PA.13  
General purpose digital I/O pin.  
PWM1 output/Capture input.  
EBI Address/Data bus bit14  
27  
28  
39  
40  
PWM1  
AD14  
PA.12  
General purpose digital I/O pin.  
PWM0 output/Capture input.  
EBI Address/Data bus bit13  
PWM0  
AD13  
41  
42  
29  
30  
ICE_DAT  
ICE_CLK  
Serial wire debugger data pin.  
Serial wire debugger clock pin.  
Aug. 24, 2018  
Page 19 of 82  
Rev 1.00  
NUC2201  
Pin  
Type  
Pin No.  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
43  
31  
32  
AVSS  
PA.0  
ADC0  
PA.1  
ADC1  
AD12  
PA.2  
ADC2  
AD11  
PA.3  
ADC3  
AD10  
PA.4  
ADC4  
AD9  
AP  
I/O  
AI  
Ground pin for analog circuit.  
General purpose digital I/O pin.  
ADC0 analog input.  
44  
45  
I/O  
AI  
General purpose digital I/O pin.  
ADC1 analog input.  
33  
34  
35  
36  
37  
38  
I/O  
I/O  
AI  
EBI Address/Data bus bit12  
General purpose digital I/O pin.  
ADC2 analog input.  
46  
47  
48  
49  
50  
I/O  
I/O  
AI  
EBI Address/Data bus bit11  
General purpose digital I/O pin.  
ADC3 analog input.  
I/O  
I/O  
AI  
EBI Address/Data bus bit10  
General purpose digital I/O pin.  
ADC4 analog input.  
I/O  
I/O  
AI  
EBI Address/Data bus bit9  
General purpose digital I/O pin.  
ADC5 analog input.  
PA.5  
ADC5  
AD8  
I/O  
I/O  
AI  
EBI Address/Data bus bit8  
General purpose digital I/O pin.  
ADC6 analog input.  
PA.6  
ADC6  
AD7  
I/O  
AP  
AP  
I/O  
AI  
EBI Address/Data bus bit7  
Voltage reference input for ADC.  
Power supply for internal analog circuit.  
General purpose digital I/O pin.  
ADC7 analog input.  
51  
52  
39  
40  
VREF  
AVDD  
PC.7  
ADC7  
AD5  
41  
53  
54  
55  
I/O  
I/O  
AI  
EBI Address/Data bus bit5  
General purpose digital I/O pin.  
ADC8 analog input.  
PC.6  
ADC8  
AD4  
42  
I/O  
I/O  
AI  
EBI Address/Data bus bit4  
General purpose digital I/O pin.  
ADC9 analog input.  
PC.15  
ADC9  
AD3  
I/O  
EBI Address/Data bus bit3  
Aug. 24, 2018  
Page 20 of 82  
Rev 1.00  
NUC2201  
Pin  
Type  
Pin No.  
Pin Name  
Description  
LQFP  
LQFP  
64-pin  
48-pin  
PC.14  
ADC10  
AD2  
I/O  
AI  
I/O  
I/O  
I
General purpose digital I/O pin.  
ADC10 analog input.  
56  
EBI Address/Data bus bit2  
PB.15  
INT1  
General purpose digital I/O pin.  
External interrupt1 input pin.  
43  
TM0_EXT  
TM0  
I
Timer 0 external capture input pin.  
Timer0 event counter input / toggle output.  
ADC11 analog input.  
57  
58  
I/O  
AI  
I/O  
I/O  
O
ADC11  
AD6  
EBI Address/Data bus bit6  
PF.0  
General purpose digital I/O pin.  
External 4~24 MHz (high speed) crystal output pin.  
General purpose digital I/O pin.  
External 4~24 MHz (high speed) crystal input pin.  
44  
XT1_OUT  
PF.1  
I/O  
I
59  
60  
45  
46  
XT1_IN  
External reset input: active LOW, with an internal pull-up. Set this pin low reset  
chip to initial state.  
nRESET  
I
61  
62  
63  
VSS  
P
P
Ground pin for digital circuit.  
VDD  
Power supply for I/O ports and LDO source for internal PLL and digital circuit.  
PLL ground.  
47  
48  
PVSS  
PB.8  
STADC  
TM0  
P
I/O  
I
General purpose digital I/O pin.  
ADC external trigger input.  
64  
I/O  
O
Timer0 event counter input / toggle output.  
Frequency divider clock output pin.  
CLKO  
Note: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power  
Aug. 24, 2018  
Page 21 of 82  
Rev 1.00  
NUC2201  
5
BLOCK DIAGRAM  
5.1 NuMicro® NUC2201 Block Diagram  
Memory  
Timer/PWM  
Analog Interface  
12-bit ADC x 12  
32-bit Timer x 4  
APROM  
128 KB  
LDROM  
8 KB  
RTC  
ARM  
Cortex-M0  
72MHz  
USB PHY  
PDMA  
Watchdog Timer  
DataFlash  
Configurable  
SRAM  
16 KB  
PWM/Capture  
Timer x 6  
Bridge  
AHB Bus  
APB Bus  
Power Control  
Clock Control  
PLL  
Connectivity  
UART x 3  
I/O Ports  
General Purpose  
I/O  
LDO  
Power On Reset  
LVR  
High Speed  
Oscillator  
48 MHz  
High Speed  
Crystal Osc.  
4 ~ 24 MHz  
External Interrupt  
Reset Pin  
SPI x 2  
I2C x 2  
USB  
High Speed  
Oscillator  
22.1184 MHz  
Low Speed  
Crystal Osc.  
32.768 KHz  
Low Speed  
Oscillator  
10 kHz  
Brownout  
Detection  
Figure 5-1 NuMicro® NUC2201 Block Diagram  
Aug. 24, 2018  
Page 22 of 82  
Rev 1.00  
NUC2201  
6
FUNCTIONAL DESCRIPTION  
6.1 Arm® Cortex® -M0 Core  
The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an  
AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug  
functionality. The processor can execute Thumb code and is compatible with other Cortex™-M  
profile processor. The profile supports two modes -Thread mode and Handler mode. Handler  
mode is entered as a result of an exception. An exception return can only be issued in Handler  
mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.  
Figure 6-1 shows the functional controller of processor.  
Cortex® -M0 Components  
CortexTM-M0 processor  
Debug  
Nested  
Vectored  
Interrupt  
Controller  
(NVIC)  
Interrupts  
Breakpoint  
and  
Watchpoint  
Unit  
Cortex® -M0  
Processor  
Core  
Debug  
Access  
Port  
Wakeup  
Interrupt  
Controller  
(WIC)  
Debugger  
Interface  
Bus Matrix  
(DAP)  
AHB-Lite  
Interface  
Serial Wire or  
JTAG Debug Port  
Figure 6-1 Functional Controller Diagram  
The implemented device provides the following components and features:  
A low gate count processor:  
-
-
-
-
-
-
-
Armv6-M Thumb® instruction set  
Thumb-2 technology  
Armv6-M compliant 24-bit SysTick timer  
A 32-bit hardware multiplier  
System interface supported with little-endian data accesses  
Ability to have deterministic, fixed-latency, interrupt handling  
Load/store-multiples and multicycle-multiplies that can be abandoned and  
restarted to facilitate rapid interrupt handling  
-
-
C Application Binary Interface compliant exception model. This is the Armv6-M,  
C Application Binary Interface (C-ABI) compliant exception model that enables  
the use of pure C functions as interrupt handlers  
Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event  
Aug. 24, 2018  
Page 23 of 82  
Rev 1.00  
 
NUC2201  
(WFE) instructions, or the return from interrupt sleep-on-exit feature  
NVIC:  
-
-
-
-
32 external interrupt inputs, each with four levels of priority  
Dedicated Non-maskable Interrupt (NMI) input  
Supports for both level-sensitive and pulse-sensitive interrupt lines  
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power  
Sleep mode  
Debug support  
-
-
-
-
Four hardware breakpoints  
Two watchpoints  
Program Counter Sampling Register (PCSR) for non-intrusive code profiling  
Single step and vector catch capabilities  
Bus interfaces:  
-
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration  
to all system peripherals and memory  
-
Single 32-bit slave port that supports the DAP (Debug Access Port)  
Aug. 24, 2018  
Page 24 of 82  
Rev 1.00  
NUC2201  
6.2 System Manager  
6.2.1 Overview  
System management includes the following sections:  
System Resets  
System Memory Map  
System management registers for Part Number ID, chip reset and on-chip controllers  
reset , multi-functional pin control  
System Timer (SysTick)  
Nested Vectored Interrupt Controller (NVIC)  
System Control registers  
6.2.2 System Reset  
The system reset can be issued by one of the following listed events. For these reset event flags  
can be read by RSTSRC register.  
Power-on Reset  
Low level on the nRESET pin  
Watchdog Time-out Reset  
Low Voltage Reset  
Brown-out Detector Reset  
CPU Reset  
System Reset  
System Reset and Power-on Reset all reset the whole chip including all peripherals. The  
difference between System Reset and Power-on Reset is external crystal circuit and BS  
(ISPCON[1]) bit. System Reset does not reset external crystal circuit and BS (ISPCON[1]) bit, but  
Power-on Reset does.  
Aug. 24, 2018  
Page 25 of 82  
Rev 1.00  
NUC2201  
6.2.3 System Power Distribution  
In this chip, the power distribution is divided into four segments.  
Analog power from AVDD and AVSS provides the power for analog components  
operation.  
Digital power from VDD and VSS supplies the power to the internal regulator which  
provides a fixed 1.8 V power for digital operation and I/O pins.  
USB transceiver power from VBUS offers the power for operating the USB transceiver.  
Battery power from VBAT supplies the RTC and external 32.768 kHz crystal.  
The outputs of internal voltage regulators, LDO and VDD33, require an external capacitor which  
should be located close to the corresponding pin. Analog power (AVDD) should be the same  
voltage level with the digital power (VDD). Figure 6-2 shows the NuMicro® NUC2201 power  
distribution.  
AVDD  
USB_D+  
USB_D-  
12-bit  
SAR-ADC  
USB 1.1  
Tranceiver  
AVSS  
NUC2201  
Power  
Distribution  
USB_VDD33_CAP  
1uF  
Analog Comparator  
3.3V  
Low  
Voltage  
Reset  
Brown-  
out  
Detector  
5V to 3.3V LDO  
USB_VBUS  
Internal  
22.1184 MHz & 10 kHz  
Oscillator  
Temperature  
Seneor  
FLASH  
Digital Logic  
LDO_CAP  
1uF  
1.8V  
1.8V  
POR18  
POR50  
External  
32.768 kHz  
Crystal  
ULDO  
RTC  
PLL  
LDO  
IO cell  
GPIO  
Figure 6-2 NuMicro® NUC2201 Power Distribution Diagram  
Aug. 24, 2018  
Page 26 of 82  
Rev 1.00  
 
NUC2201  
6.2.4 System Memory Map  
The NuMicro® NUC2201 provides 4G-byte addressing space. The memory locations assigned to each  
on-chip controllers are shown in the following table. The detailed register definition, memory space,  
and programming detailed will be described in the following sections for each on-chip peripheral. The  
NuMicro® NUC2201 only supports little-endian data format.  
Address Space  
Token  
Controllers  
Flash and SRAM Memory Space  
0x0000_0000 0x0001_FFFF  
0x2000_0000 0x2000_3FFF  
FLASH_BA  
SRAM_BA  
FLASH Memory Space (128 KB)  
SRAM Memory Space (16 KB)  
AHB Controllers Space (0x5000_0000 0x501F_FFFF)  
0x5000_0000 0x5000_01FF  
0x5000_0200 0x5000_02FF  
0x5000_0300 0x5000_03FF  
0x5000_4000 0x5000_7FFF  
0x5000_8000 0x5000_BFFF  
GCR_BA  
CLK_BA  
INT_BA  
System Global Control Registers  
Clock Control Registers  
Interrupt Multiplexer Control Registers  
GPIO Control Registers  
GPIO_BA  
PDMA_BA  
Peripheral DMA Control Registers  
0x5000_C000 0x5000_FFFF  
0x5001_0000 0x5001_03FF  
FMC_BA  
EBI_BA  
Flash Memory Control Registers  
External Bus Interface Control Registers  
APB1 Controllers Space (0x4000_0000 ~ 0x400F_FFFF)  
0x4000_4000 0x4000_7FFF  
0x4000_8000 0x4000_BFFF  
0x4001_0000 0x4001_3FFF  
0x4002_0000 0x4002_3FFF  
0x4003_0000 0x4003_3FFF  
0x4003_4000 0x4003_7FFF  
0x4004_0000 0x4004_3FFF  
0x4005_0000 0x4005_3FFF  
0x4006_0000 0x4006_3FFF  
0x400E_0000 0x400E_FFFF  
WDT_BA  
RTC_BA  
Watchdog Timer Control Registers  
Real Time Clock (RTC) Control Register  
Timer0/Timer1 Control Registers  
TMR01_BA  
I2C0_BA  
I2C0 Interface Control Registers  
SPI0_BA  
SPI1_BA  
PWMA_BA  
UART0_BA  
USBD_BA  
ADC_BA  
SPI0 with master/slave function Control Registers  
SPI1 with master/slave function Control Registers  
PWM0/1/2/3 Control Registers  
UART0 Control Registers  
USB 2.0 FS device Controller Registers  
Analog-Digital-Converter (ADC) Control Registers  
APB2 Controllers Space (0x4010_0000 ~ 0x401F_FFFF)  
0x4011_0000 0x4011_3FFF  
0x4012_0000 0x4012_3FFF  
0x4014_0000 0x4014_3FFF  
0x4015_0000 0x4015_3FFF  
0x4015_4000 0x4015_7FFF  
TMR23_BA  
I2C1_BA  
Timer2/Timer3 Control Registers  
I2C1 Interface Control Registers  
PWM4/5 Control Registers  
UART1 Control Registers  
PWMB_BA  
UART1_BA  
UART2_BA  
UART2 Control Registers  
System Controllers Space (0xE000_E000 ~ 0xE000_EFFF)  
0xE000_E010 0xE000_E0FF  
0xE000_E100 0xE000_ECFF  
SCS_BA  
SCS_BA  
System Timer Control Registers  
External Interrupt Controller Control Registers  
Aug. 24, 2018  
Page 27 of 82  
Rev 1.00  
NUC2201  
0xE000_ED00 0xE000_ED8F  
SCS_BA  
System Control Registers  
Table 6-1 Address Space Assignments for On-Chip Controllers  
6.2.5 Register Lock  
Some of the system control registers need to be protected to avoid inadvertent write and disturb the  
chip operation. These system control registers are protected after the power on reset till user to  
disable register protection. For user to program these protected registers, a register protection disable  
sequence needs to be followed by a special programming. The register protection disable sequence is  
writing the data “59h”, “16h” “88h” to the register REGWRPROT address at 0x5000_0100  
continuously. Any different data value, different sequence or any other write to other address during  
these three data writing will abort the whole sequence.  
After the protection is disabled, user can check the protection disable bit at address 0x5000_0100 bit0,  
1 is protection disable, and 0 is protection enable. Then user can update the target protected register  
value and then write any data to the address “0x5000_0100” to enable register protection.  
The protected registers are listed as following table.  
Register  
IPRSTC1  
IPRSTC1  
IPRSTC1  
IPRSTC1  
BODCR  
Bit  
Description  
[3] EBI_RST  
EBI Controller Reset (Write-protection Bit)  
PDMA Controller Reset (Write Protect)  
[2] PDMA_RST  
[1] CPU_RST  
CPU Kernel One-Shot Reset (Write Protect)  
CHIP One-Shot Reset (Write Protect)  
[0] CHIP_RST  
[7] LVR_EN  
Low Voltage Reset Enable Bit (Write Protect)  
Brown-Out Detector Low Power Mode (Write Protect)  
Brown-Out Reset Enable Bit (Write Protect)  
Brown-Out Detector Threshold Voltage Selection (Write Protect)  
Brown-Out Detector Enable Bit (Write Protect)  
Power-On-Reset Enable Bit (Write Protect)  
Register Write-Protection Code (Write Only)  
Register Write-Protection Disable Index (Read Only)  
NMI Interrupt Enable Bit (Write Protect)  
BODCR  
[5] BOD_LPM  
BODCR  
[3] BOD_RSTEN  
[2:1] BOD_VL  
BODCR  
BODCR  
[0] BOD_EN  
PORCR  
[15:0] POR_DIS_CODE  
[7:0] REGWRPROT  
[0] REGPROTDIS  
[8] NMI_EN  
REGWRPROT  
REGWRPROT  
NMI_SEL  
PWRCON  
PWRCON  
PWRCON  
PWRCON  
PWRCON  
[8] PD_WAIT_CPU  
[7] PWR_DOWN_EN  
[5] PD_WU_INT_EN  
[4] PD_WU_DLY  
[3] OSC10K_EN  
Power-Down Entry Condition Control (Write Protect)  
System Power-Down Enable Bit (Write Protect)  
Power-Down Mode Wake-Up Interrupt Enable Bit (Write Protect)  
Wake-Up Delay Counter Enable Bit (Write Protect)  
10 KHz Internal Low Speed RC Oscillator (LIRC) Enable Bit (Write  
Protect)  
PWRCON  
[2] OSC22M_EN  
[1] XTL32K_EN  
22.1184 MHz Internal High Speed RC Oscillator (HIRC) Enable Bit  
(Write Protect)  
PWRCON  
32.768 KHz External Low Speed Crystal Oscillator (LXT) Enable Bit  
Aug. 24, 2018  
Page 28 of 82  
Rev 1.00  
NUC2201  
(Write Protect)  
PWRCON  
[0] XTL12M_EN  
4~24 MHz External High Speed Crystal Oscillator (HXT) Enable Bit  
(Write Protect)  
APBCLK  
CLKSEL0  
CLKSEL0  
CLKSEL1  
ISPCON  
ISPCON  
ISPCON  
ISPCON  
ISPCON  
ISPCON  
ISPTRG  
FATCON  
ISPSTA  
TCSR0  
[0] WDT_EN  
[5:3] STCLK_S  
[2:0] HCLK_S  
[1:0] WDT_S  
[6] ISPFF  
Watchdog Timer Clock Enable Bit (Write Protect)  
Cortex™-M0 SysTick Clock Source Select (Write Protect)  
HCLK Clock Source Select (Write Protect)  
Watchdog Timer Clock Source Select (Write Protect)  
ISP Fail Flag (Write Protect)  
[5] LDUEN  
LDROM Update Enable Bit (Write Protect)  
[4] CFGUEN  
[3] APUEN  
Enable Config Update By ISP (Write Protect)  
APROM Update Enable Bit (Write Protect)  
[1] BS  
Boot Select (Write Protect )  
[0] ISPEN  
ISP Enable Bit (Write Protect )  
[0] ISPGO  
ISP Start Trigger (Write-Protection Bit)  
[4] FOMSEL0  
[6] ISPFF  
Chip Frequency Optimization Mode Select 0 (Write-Protection Bit)  
ISP Fail Flag (Write-Protection Bit)  
[31] DBGACK_TMR  
[31] DBGACK_TMR  
[31] DBGACK_TMR  
[31] DBGACK_TMR  
[31] DBGACK_WDT  
[10:8] WTIS  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
ICE Debug Mode Acknowledge Disable Bit (Write Protect)  
Watchdog Timer Time-Out Interval Selection (Write Protect)  
Watchdog Timer Enable Bit (Write Protect)  
TCSR1  
TCSR2  
TCSR3  
WTCR  
WTCR  
WTCR  
[7] WTE  
WTCR  
[6] WTIE  
Watchdog Timer Time-Out Interrupt Enable Bit (Write Protect)  
WTCR  
[4] WTWKE  
Watchdog Timer Time-Out Wake-Up Function Control (Write Protect)  
Watchdog Timer Reset Enable Bit (Write Protect)  
WTCR  
[1] WTRE  
WTCRALT  
[1:0] WTRDSEL  
Watchdog Timer Reset Delay Selection (Write Protect)  
6.2.6 Auto Trim  
This chip supports auto-trim function: the HIRC trim (48 MHz and 22.1184 MHz RC oscillator),  
according to the accurate LXT (32.768 kHz crystal oscillator) or internal USB synchronous mode,  
automatically gets accurate HIRC output frequency, 0.25 % deviation within all temperature ranges.  
For instance, the system needs an accurate 22.1184 MHz clock. In such case, if users do not want to  
use PLL as the system clock source, they need to solder 32.768 kHz crystal in system, and set  
FREQSEL (SYS_IRCTCTL[1:0] trim frequency selection) to “01”, and the auto-trim function will be  
enabled. Interrupt status bit FREQ_LOCK (SYS_IRCTSTS[0] HIRC frequency lock status) 1”  
indicates the HIRC output frequency is accurate within 0.25% deviation. To get better results, it is  
recommended to set both TRIM_LOOP (SYS_IRCTCTL[5:4]) Trim Calculation Loop and  
Aug. 24, 2018  
Page 29 of 82  
Rev 1.00  
NUC2201  
TRIM_RETRY_CNT (SYS_IRCTCTL[7:6] Trim Value Update Limitation Count) to “11”.  
Another example is that the system needs an accurate 48 MHz clock for USB application. In such  
case, if neither using use PLL as the system clock source, user has to set FREQSEL  
(SYS_HIRCTCTL1[1:0] trim frequency selection) to “01, and the auto-trim function will be enabled.  
Status bit FREQLOCK (SYS_HIRCTISTS[8] HIRC Frequency Lock Status) 1indicates the HIRC48  
output frequency is accurate within 0.25% deviation.  
Aug. 24, 2018  
Page 30 of 82  
Rev 1.00  
NUC2201  
6.2.7 System Timer (SysTick)  
The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The  
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.  
When system timer is enabled, it will count down from the value in the SysTick Current Value  
Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register  
(SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter  
transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.  
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0  
before enabling the feature. This ensures the timer will count from the SYST_RVR value rather  
than an arbitrary value when it is enabled.  
If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded  
with this value. This mechanism can be used to disable the feature independently from the timer  
enable bit.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference  
Manual” and “Arm® v6-M Architecture Reference Manual”.  
Aug. 24, 2018  
Page 31 of 82  
Rev 1.00  
NUC2201  
6.2.8 Nested Vectored Interrupt Controller (NVIC)  
The Cortex® -M0 provides an interrupt controller as an integral part of the exception mode, named  
as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor kernel  
and provides following features:  
Nested and Vectored interrupt support  
Automatic processor state saving and restoration  
Reduced and deterministic interrupt latency  
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler  
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.  
All of the interrupts and most of the system exceptions can be configured to different priority  
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the  
current running one’s priority. If the priority of the new interrupt is higher than the current one, the  
new interrupt handler will override the current handler.  
When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched  
from a vector table in memory. There is no need to determine which interrupt is accepted and  
branch to the starting address of the correlated ISR by software. While the starting address is  
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,  
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers  
from stack and resume the normal execution. Thus it will take less and deterministic time to  
process the interrupt request.  
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the  
overhead of states saving and restoration and therefore reduces delay time in switching to  
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the  
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current  
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will  
give priority to the higher one without delay penalty. Thus it advances the real-time capability.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference  
Manual” and “Arm® v6-M Architecture Reference Manual”  
Aug. 24, 2018  
Page 32 of 82  
Rev 1.00  
NUC2201  
6.2.8.1 Exception Model and System Interrupt Map  
The following table lists the exception model supported by NuMicro® NUC2201. Software can set  
four levels of priority on some of these exceptions as well as on all interrupts. The highest user-  
configurable priority is denoted as “0” and the lowest priority is denoted as “3”. The default priority  
of all the user-configurable interrupts is “0”. Note that priority “0” is treated as the fourth priority on  
the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.  
Exception Name  
Reset  
Vector Number  
Priority  
-3  
1
NMI  
2
-2  
Hard Fault  
Reserved  
3
-1  
4 ~ 10  
Reserved  
Configurable  
Reserved  
Configurable  
Configurable  
Configurable  
SVCall  
11  
Reserved  
12 ~ 13  
PendSV  
14  
SysTick  
15  
16 ~ 47  
Interrupt (IRQ0 ~ IRQ31)  
Table 6-2 Exception Model  
Interrupt Number  
Vector  
Number  
Source  
Module  
Interrupt Name  
Interrupt Description  
(Bit In Interrupt  
Registers)  
1 ~ 15  
16  
-
-
-
System exceptions  
0
1
2
3
BOD_INT  
WDT_INT  
EINT0  
Brown-out Brown-out low voltage detected interrupt  
17  
WDT  
GPIO  
GPIO  
Watchdog Timer interrupt  
18  
External signal interrupt from PB.14 pin  
External signal interrupt from PB.15 pin  
19  
EINT1  
External signal interrupt from  
PA[6:0]/PA[15:8]/PB[11:0]/PB[15:13]  
20  
21  
4
5
GPAB_INT  
GPIO  
GPIO  
External interrupt from  
PC[3:0]/PC[11:6]/PC[15:14]/PE[5]/PF[1:0]  
GPCEF_INT  
22  
23  
24  
25  
26  
27  
28  
29  
6
7
PWMA_INT  
PWMB_INT  
TMR0_INT  
TMR1_INT  
TMR2_INT  
TMR3_INT  
UART02_INT  
UART1_INT  
PWM0~3  
PWM4~7  
TMR0  
PWM0, PWM1, PWM2 and PWM3 interrupt  
PWM4 and PWM5 interrupt  
Timer 0 interrupt  
8
9
TMR1  
Timer 1 interrupt  
10  
11  
12  
13  
TMR2  
Timer 2 interrupt  
TMR3  
Timer 3 interrupt  
UART0/2  
UART1  
UART0 and UART2 interrupt  
UART1 interrupt  
Aug. 24, 2018  
Page 33 of 82  
Rev 1.00  
NUC2201  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
SPI0_INT  
SPI0  
SPI0 interrupt  
SPI1 interrupt  
Reserved  
SPI1_INT  
SPI1  
-
-
-
-
Reserved  
I2C0_INT  
I2C0  
I2C0 interrupt  
I2C1 interrupt  
Reserved  
I2C1_INT  
I2C1  
-
-
-
-
Reserved  
-
-
Reserved  
USB_INT  
USBD  
USB 2.0 FS Device interrupt  
Reserved  
-
-
-
-
PDMA  
-
Reserved  
PDMA_INT  
-
PDMA interrupt  
Reserved  
Clock controller interrupt for chip wake-up from Power-  
down state  
44  
28  
PWRWU_INT  
CLKC  
45  
46  
47  
29  
30  
31  
ADC_INT  
IRC_INT  
RTC_INT  
ADC  
IRC  
ADC interrupt  
IRC TRIM interrupt  
Real Time Clock interrupt  
RTC  
Table 6-3 System Interrupt Map  
Aug. 24, 2018  
Page 34 of 82  
Rev 1.00  
NUC2201  
6.2.8.2 Vector Table  
When an interrupt is accepted, the processor will automatically fetch the starting address of the  
interrupt service routine (ISR) from a vector table in memory. For Armv6-M, the vector table base  
address is fixed at 0x00000000. The vector table contains the initialization value for the stack  
pointer on reset, and the entry point addresses for all exception handlers. The vector number on  
previous page defines the order of entries in the vector table associated with exception handler  
entry as illustrated in previous section.  
Vector Table Word Offset  
Description  
0
SP_main The Main stack pointer  
Exception Entry Pointer using that Vector Number  
Table 6-4 Vector Table Format  
Vector Number  
6.2.8.3 Operation Description  
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-  
Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-  
1-to-clear policy, both registers reading back the current enabled state of the corresponding  
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become  
Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it  
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit  
prevents new activations of the associated interrupt.  
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used  
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register  
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers  
reading back the current pended state of the corresponding interrupts. The Clear-Pending  
Register has no effect on the execution status of an Active interrupt.  
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register  
supporting four interrupts).  
Aug. 24, 2018  
Page 35 of 82  
Rev 1.00  
NUC2201  
6.2.9 System Control  
The Cortex® -M0 status and operating mode control are managed by System Control Registers.  
Including CPUID, Cortex™-M0 interrupt priority and Cortex® -M0 power management can be  
controlled through these system control registers.  
For more detailed information, please refer to the “Arm® Cortex® -M0 Technical Reference  
Manual” and “Arm® v6-M Architecture Reference Manual”.  
Aug. 24, 2018  
Page 36 of 82  
Rev 1.00  
NUC2201  
6.3 Clock Controller  
6.3.1 Overview  
The clock controller generates the clocks for the whole chip, including system clocks and all  
peripheral clocks. The clock controller also implements the power control function with the  
individually clock ON/OFF control, clock source selection and clock divider. The chip enters  
Power-down mode when Cortex® -M0 core executes the WFI instruction only if the  
PWR_DOWN_EN (PWRCON[7]) bit and PD_WAIT_CPU (PWRCON[8]) bit are both set to 1.  
After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave  
Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external  
high speed crystal oscillator and 22.1184/48 MHz internal high speed RC oscillator to reduce the  
overall system power consumption. The following figures show the clock generator and the  
overview of the clock source control.  
The clock generator consists of 6 clock sources as listed below:  
32.768 kHz external low speed crystal oscillator (LXT)  
4~24 MHz external high speed crystal oscillator (HXT)  
Programmable PLL output clock frequency (PLL source can be selected from external  
4~24 MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal high  
speed RC oscillator (HIRC)) (PLL FOUT)  
22.1184 MHz internal high speed RC oscillator (HIRC)  
48 MHz internal high speed RC oscillator (HIRC48)  
10 kHz internal low speed RC oscillator (LIRC)  
Aug. 24, 2018  
Page 37 of 82  
Rev 1.00  
NUC2201  
XTL32K_EN (PWRCON[1])  
X32_OUT  
X32_IN  
LXT  
HXT  
32.768 kHz  
LXT  
XTL12M_EN (PWRCON[0])  
XT1_OUT  
XT1_IN  
4~24 MHz  
HXT  
PLL_SRC (PLLCON[19])  
PLL  
0
1
PLL FOUT  
OSC22M_EN (PWRCON[2])  
22.1184 MHz  
HIRC  
HIRC  
LIRC  
OSC10K_EN(PWRCON[3])  
10 kHz  
LIRC  
OSC48M_EN(PWRCON[12])  
HIRC48  
48 MHz  
HIRC48  
Legend:  
LXT = 32.768 kHz external low speed crystal oscillator  
HXT = 4~24 MHz external high speed crystal oscillator  
HIRC = 22.1184 MHz internal high speed RC oscillator  
HIRC48 = 48 MHz internal high speed RC oscillator  
LIRC = 10 kHz internal low speed RC oscillator  
Figure 6-3 Clock Generator Block Diagram  
Aug. 24, 2018  
Page 38 of 82  
Rev 1.00  
NUC2201  
22.1184  
MHz  
22.1184 MHz  
10 kHz  
111  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
PDMA  
I2C 0~1  
4~24  
MHz  
PLLFOUT  
32.768 kHz  
4~24 MHz  
1/(HCLK_N+1)  
32.768  
kHz  
PCLK  
22.1184 MHz  
10 kHz  
111  
101  
011  
010  
001  
000  
10 kHz  
CLKSEL0[2:0]  
TMR 3  
TMR 2  
TMR 1  
TMR 0  
External trigger  
HCLK  
22.1184 MHz  
4~24 MHz  
1
PLLFOUT  
32.768 kHz  
4~24 MHz  
0
PLLCON[19]  
22.1184 MHz  
CLKSEL1[22:20]  
CLKSEL1[18:16]  
CLKSEL1[14:12]  
CLKSEL1[10:8]  
FMC  
CPUCLK  
22.1184 MHz  
HCLK  
1
0
1/2  
1/2  
1/2  
111  
011  
010  
001  
000  
SysTick  
SYST_CSR[2]  
4~24 MHz  
32.768 kHz  
4~24 MHz  
10 kHz  
111  
22.1184 MHz  
011  
PWM 4-5  
PWM 2-3  
PWM 0-1  
HCLK  
010  
32.768 kHz  
001  
CLKSEL0[5:3]  
4~24 MHz  
000  
CLKSEL2[17:16]  
10 kHz  
11  
10  
WWDT  
WDT  
CLKSEL2[5:4]  
CLKSEL1[31:28]  
10 kHz  
11  
10  
01  
HCLK  
1/2048  
32.768 kHz  
22.1184 MHz  
11  
01  
00  
PLLFOUT  
4~24 MHz  
CLKSEL1[1:0]  
HCLK  
1
0
SPI0-1  
PLLFOUT  
CLKSEL1[25:24]  
CLK_SEL1[5:4]  
1/(UART_N+1)  
1/(ADC_N+1)  
UART 0-2  
22.1184 MHz  
HCLK  
11  
10  
01  
00  
ADC  
BOD  
PLLFOUT  
4~24 MHz  
22.1184 MHz  
HCLK  
10 kHz  
11  
10  
01  
00  
FDIV  
RTC  
32.768 kHz  
4~24 MHz  
CLKSEL1[3:2]  
10 kHz  
1
0
32.768 kHz  
CLKSEL2[3:2]  
CLKSEL2[18]  
1/(USB_N+1)  
HIRC48  
1
0
USB  
PLLFOUT  
CLKSEL0[8]  
Figure 6-4 Clock Generator Global View Diagram  
Aug. 24, 2018  
Page 39 of 82  
Rev 1.00  
NUC2201  
6.3.2 System Clock and SysTick Clock  
The system clock has 4 clock sources which were generated from clock generator block. The  
clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is  
shown in Figure 6-5.  
HCLK_S (CLKSEL0[2:0])  
22.1184 MHz  
111  
10 kHz  
011  
010  
001  
000  
CPUCLK  
HCLK  
CPU  
AHB  
APB  
PLLFOUT  
32.768 kHz  
4~24 MHz  
1/(HCLK_N+1)  
PCLK  
HCLK_N (CLKDIV[3:0])  
CPU in Power Down Mode  
Note: Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable.  
Figure 6-5 System Clock Block Diagram  
The clock source of SysTick in Cortex® -M0 core can use CPU clock or external clock  
(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The  
clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block  
diagram is shown in Figure 6-6.  
STCLK_S (CLKSEL0[5:3])  
22.1184 MHz  
111  
011  
010  
001  
000  
1/2  
1/2  
1/2  
HCLK  
STCLK  
4~24 MHz  
32.768 kHz  
4~24 MHz  
Note: Before clock switching, both the pre-selected and newly selected  
clock sources must be turned on and stable.  
Figure 6-6 SysTick Clock Control Block Diagram  
Aug. 24, 2018  
Page 40 of 82  
Rev 1.00  
 
 
NUC2201  
6.3.3 Power-down Mode Clock  
When chip enters Power-down mode, system clocks, some clock sources, and some peripheral  
clocks will be disabled. Some clock sources and peripherals clocks are still active in Power-down  
mode.  
The clocks still kept active are listed below:  
Clock Generator  
-
-
10 kHz internal low speed RC oscillator (LIRC) clock  
32.768 kHz external low speed crystal oscillator clock  
RTC/WDT/Timer/PWM Peripherals Clock (when 32.768 kHz external low speed  
crystal oscillator or 10 kHz intertnal low speed RC oscillator is adopted as clock  
source)  
6.3.4 Frequency Divider Output  
This device is equipped with a power-of-2 frequency divider which is composed by16 chained  
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one  
multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided  
clocks with the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock  
divider.  
The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock  
divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).  
When writing 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When writing 0  
to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low  
state and stay in low state.  
If DIVIDER1(FRQDIV[5]) is set to 1, the frequency divider clock (FRQDIV_CLK) will bypass  
power-of-2 frequency divider. The frequency divider clock will be output to CLKO pin directly.  
FRQDIV_S (CLKSEL2[3:2])  
FDIV_EN(APBCLK[6])  
22.1184 MHz  
11  
FRQDIV_CLK  
HCLK  
10  
01  
00  
32.768 kHz  
4~24 MHz  
Note: Before clock switching, both the pre-selected and newly selected  
clock sources must be turned on and stable.  
Figure 6-7 Clock Source of Frequency Divider  
Aug. 24, 2018  
Page 41 of 82  
Rev 1.00  
NUC2201  
DIVIDER_EN  
(FRQDIV[4])  
Enable  
divide-by-2 counter  
FSEL  
(FRQDIV[3:0])  
16 chained  
divide-by-2 counter  
FRQDIV_CLK  
DIVIDER1  
(FRQDIV[5])  
1/2  
1/22 1/23  
... 1/215 1/216  
CLKO_1HZ_EN  
(FRQDIV[6])  
0000  
0001  
16 to 1  
MUX  
:
:
0
1
CLKO  
0
1
1110  
1111  
RTC_SEL_10K  
(CLKSEL2[18])  
32.768 kHz  
10 kHz  
0
1
1Hz clock from RTC  
/32768  
Figure 6-8 Frequency Divider Block Diagram  
Aug. 24, 2018  
Page 42 of 82  
Rev 1.00  
NUC2201  
6.4 Flash Memory Controller (FMC)  
6.4.1 Overview  
The NuMicro® NUC2201 has 128K bytes on-chip embedded Flash for application program  
memory (APROM) that can be updated through ISP procedure. The In-System-Programming  
(ISP) function enables user to update program memory when chip is soldered on PCB. After chip  
is powered on, Cortex® -M0 CPU fetches code from APROM or LDROM decided by boot select  
(CBS) in CONFIG0. By the way, the NuMicro® NUC2201 supports another flexible feature:  
configurable Data Flash size. The Data Flash size is decided by Data Flash enable (DFEN) in  
Config0 and Data Flash base address (DFBADR) in Config1. When DFEN is set to 1, the Data  
Flash size is zero and the APROM size is 128K bytes. When DFEN is set to 0, the APROM and  
Data Flash share 128K bytes continuous address and the start address of Data Flash is defined  
by (DFBADR) in Config1.  
6.4.2 Features  
Runs up to 50 MHz with zero wait cycle for continuous address read access and runs  
up to 72 MHz with one wait cycle for continuous address read.  
All embedded flash memory supports 512 bytes page erase  
128 KB application program memory (APROM)  
8 KB In-System-Programming (ISP) loader program memory (LDROM)  
Configurable Data Flash size with 512 bytes page erase unit  
Supports In-Application-Programming (IAP) to switch code between APROM and  
LDROM without reset  
In-System-Programming (ISP) to update on-chip Flash  
Aug. 24, 2018  
Page 43 of 82  
Rev 1.00  
NUC2201  
6.5 External Bus Interface (EBI)  
6.5.1 Overview  
The NuMicro® NUC2201 series LQFP-64 package equips an external bus interface (EBI) for  
access external device.  
To save the connections between external device and this chip, EBI supports address bus and  
data bus multiplex mode. And, address latch enable (ALE) signal is used to differentiate the  
address and data cycle.  
6.5.2 Features  
External Bus Interface has the following functions:  
Supports external devices with max. 64 KB size (8-bit data width)/128 KB (16-bit data  
width)  
Supports variable external bus base clock (MCLK) which based on HCLK  
Supports 8-bit or 16-bit data width  
Supports variable data access time (tACC), address latch enable time (tALE) and  
address hold time (tAHD)  
Supports address bus and data bus multiplex mode to save the address pins  
Supports configurable idle cycle for different access condition: Write command finish  
(W2X), Read-to-Read (R2R)  
Aug. 24, 2018  
Page 44 of 82  
Rev 1.00  
NUC2201  
6.6 General Purpose I/O (GPIO)  
6.6.1 Overview  
The NuMicro® NUC2201 series has up to 45 General Purpose I/O pins to be shared with other  
function pins depending on the chip configuration. These 45 pins are arranged in 5 ports named  
as GPIOA, GPIOB, GPIOC, GPIOE and GPIOF. The GPIOA/B/C/E port has the maximum of 15  
pins and GPIOF port has the maximum of 2 pins. Each of the 45 pins is independent and has the  
corresponding register bits to control the pin mode function and data.  
The I/O type of each of I/O pins can be configured by software individually as input, output, open-  
drain or Quasi-bidirectional mode. After reset, the I/O mode of all pins are depending on  
Config0[10] setting. In Quasi-bidirectional mode, I/O pin has a very weak individual pull-up  
resistor which is about 110~300 Kfor VDD is from 5.0 V to 2.5 V.  
6.6.2 Features  
Four I/O modes:  
Quasi-bidirectional  
-
-
-
-
Push-Pull output  
Open-Drain output  
Input only with high impendence  
TTL/Schmitt trigger input selectable by GPx_TYPE[15:0] in GPx_MFP[31:16]  
I/O pin configured as interrupt source with edge/level setting  
Configurable default I/O mode of all pins after reset by Config0[10] setting  
-
-
If Config[10] is 0, all GPIO pins in input tri-state mode after chip reset  
If Config[10] is 1, all GPIO pins in Quasi-bidirectional mode after chip reset  
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  
Enabling the pin interrupt function will also enable the pin wake-up function.  
Aug. 24, 2018  
Page 45 of 82  
Rev 1.00  
NUC2201  
6.7 PDMA Controller (PDMA)  
6.7.1 Overview  
The NuMicro® NUC2201 series DMA contains nine-channel peripheral direct memory access  
(PDMA) controller and a cyclic redundancy check (CRC) generator.  
The PDMA that transfers data to and from memory or transfer data to and from APB devices. For  
PDMA channel (PDMA CH0~CH8), there is one-word buffer as transfer buffer between the  
Peripherals APB devices and Memory. Software can stop the PDMA operation by disable PDMA  
PDMACEN (PDMA_CSRx[0]). The CPU can recognize the completion of a PDMA operation by  
software polling or when it receives an internal PDMA interrupt. The PDMA controller can  
increase source or destination address or fixed them as well.  
The DMA controller contains a cyclic redundancy check (CRC) generator that can perform CRC  
calculation with programmable polynomial settings. The CRC engine supports CPU PIO mode  
and DMA transfer mode.  
6.7.2 Features  
Supports nine PDMA channels and one CRC channel. Each PDMA channel can  
support a unidirectional transfer  
AMBA AHB master/slave interface compatible, for data transfer and register  
read/write  
Hardware round robin priority scheme. DMA channel 0 has the highest priority and  
channel 8 has the lowest priority  
PDMA operation  
-
-
-
Peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfer  
Supports word/half-word/byte transfer data width from/to peripheral  
Supports address direction: increment, fixed.  
Cyclic Redundancy Check (CRC)  
-
Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32  
CRC-CCITT: X16 + X12 + X5 + 1  
CRC-8: X8 + X2 + X + 1  
CRC-16: X16 + X15 + X2 + 1  
CRC-32: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 +  
X2 + X + 1  
-
-
-
Supports programmable CRC seed value.  
Supports programmable order reverse setting for input data and CRC checksum.  
Supports programmable 1’s complement setting for input data and CRC  
checksum.  
-
-
Supports CPU PIO mode or DMA transfer mode.  
Supports the follows write data length in CPU PIO mode  
8-bit write mode (byte): 1-AHB clock cycle operation.  
16-bit write mode (half-word): 2-AHB clock cycle operation.  
Aug. 24, 2018  
Page 46 of 82  
Rev 1.00  
NUC2201  
32-bit write mode (word): 4-AHB clock cycle operation.  
-
Supports byte alignment transfer data length and word alignment transfer source  
address in CRC DMA mode.  
Aug. 24, 2018  
Page 47 of 82  
Rev 1.00  
NUC2201  
6.8 Timer Controller (TIMER)  
6.8.1 Overview  
The timer controller includes four 32-bit timers, TIMER0 ~ TIMER3, allowing user to easily  
implement a timer control for applications. The timer can perform functions, such as frequency  
measurement, delay timing, clock generation, and event counting by external input pins, and  
interval measurement by external capture pins.  
6.8.2 Features  
Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter  
Independent clock source for each timer  
Provides four timer counting modes: one-shot, periodic, toggle and continuous  
counting  
Time-out period = (Period of timer clock input) * (8-bit prescale counter + 1) * (24-bit  
TCMP)  
Maximum counting cycle time = (1 / T MHz) * (28) * (224), T is the period of timer clock  
24-bit up counter value is readable through TDR (Timer Data Register)  
Supports event counting function to count the event from external counter pin  
(TM0~TM3)  
Supports external pin capture (TM0_EXT~TM3_EXT) for interval measurement  
Supports external pin capture (TM0_EXT~TM3_EXT) for reset 24-bit up counter  
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is  
generated  
Aug. 24, 2018  
Page 48 of 82  
Rev 1.00  
NUC2201  
6.9 PWM Generator and Capture Timer (PWM)  
6.9.1 Overview  
The NuMicro® NUC2201 series has 2 sets of PWM group supporting a total of 3 sets of PWM  
generators that can be configured as 6 independent PWM outputs, PWM0~PWM5, or as 3  
complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5) with 3  
programmable Dead-zone generators.  
Each PWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2,  
1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM counters for PWM  
period control, two 16-bit comparators for PWM duty control and one Dead-zone generator. The 3  
sets of PWM generators provide eight independent PWM interrupt flags set by hardware when the  
corresponding PWM period down counter reaches 0. Each PWM interrupt source with its  
corresponding enable bit can cause CPU to request PWM interrupt. The PWM generators can be  
configured as one-shot mode to produce only one PWM cycle signal or auto-reload mode to  
output PWM waveform continuously.  
When DZEN01 (PCR[4]) is set, PWM0 and PWM1 perform complementary PWM paired function;  
the paired PWM period, duty and Dead-time are determined by PWM0 timer and Dead-zone  
generator 0. Similarly, the complementary PWM pairs of (PWM2, PWM3) and (PWM4, PWM5)  
are controlled by PWM2 and PWM4 timers and Dead-zone generator 2 and 4, respectively. Refer  
from 錯誤! 找不到參照來源。 to 錯誤! 找不到參照來源。 for the architecture of PWM Timers.  
To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and  
16-bit comparator are implemented with double buffer. When user writes data to  
counter/comparator buffer registers the updated value will be load into the 16-bit down counter/  
comparator at the time down counter reaching 0. The double buffering feature avoids glitch at  
PWM outputs.  
When the 16-bit period down counter reaches 0, the interrupt request is generated. If PWM-timer  
is set as auto-reload mode, when the down counter reaches 0, it is reloaded with PWM Counter  
Register (CNRx) automatically then start decreasing, repeatedly. If the PWM-timer is set as one-  
shot mode, the down counter will stop and generate one interrupt request when it reaches 0.  
The value of PWM counter comparator is used for pulse high width modulation. The counter  
control logic changes the output to high level when down-counter value matches the value of  
compare register.  
The alternate feature of the PWM-timer is digital input Capture function. If Capture function is  
enabled the PWM output pin is switched as capture input mode. The Capture0 and PWM0 share  
one timer which is included in PWM0 and the Capture1 and PWM1 share PWM1 timer, and etc.  
Therefore user must setup the PWM-timer before enable Capture feature. After capture feature is  
enabled, the capture always latched PWM-counter to Capture Rising Latch Register (CRLR)  
when input channel has a rising transition and latched PWM-counter to Capture Falling Latch  
Register (CFLR) when input channel has a falling transition. Capture channel 0 interrupt is  
programmable by setting CRL_IE0 (CCR0[1]) (Rising latch Interrupt enable) and CFL_IE0  
(CCR0[2]) (Falling latch Interrupt enable) to decide the condition of interrupt occur. Capture  
channel 1 has the same feature by setting CRL_IE1 (CCR0[17]) and CFL_IE1 (CCR0[18]). And  
capture channel 2 to channel 3 on each group have the same feature by setting the  
corresponding control bits in CCR2. For each group, whenever Capture issues Interrupt 0/1/2/3,  
the PWM counter 0/1/2/3 will be reload at this moment.  
The maximum captured frequency that PWM can capture is confined by the capture interrupt  
latency. When capture interrupt occurred, software will do at least three steps, including: Read  
PIIR to get interrupt source and Read CRLRx/CFLRx(x=0~3) to get capture value and finally write  
1 to clear PIIR to 0. If interrupt latency will take time T0 to finish, the capture signal mustn’t  
transition during this interval (T0). In this case, the maximum capture frequency will be 1/T0. For  
example:  
Aug. 24, 2018  
Page 49 of 82  
Rev 1.00  
NUC2201  
HCLK = 50 MHz, PWM_CLK = 25 MHz, Interrupt latency is 900 ns  
So the maximum capture frequency will be 1/900ns ≈ 1000 kHz  
6.9.2 Features  
6.9.2.1 PWM Function:  
Up to 2 PWM groups (PWMA/PWMB) to support 6 PWM channels or 3  
complementary PWM paired channels  
PWM group A has two PWM generators and PWM group B has one PWM generator  
with each PWM generator supporting one 8-bit prescaler, two clock dividers, two  
PWM-timers, one Dead-zone generator and two PWM outputs.  
Up to 16-bit resolution  
PWM Interrupt request synchronized with PWM period  
One-shot or Auto-reload mode  
Edge-aligned type or Center-aligned type option  
PWM trigger ADC start-to-conversion  
6.9.2.2 Capture Function:  
Timing control logic shared with PWM Generators  
Supports 6 Capture input channels shared with 6 PWM output channels  
Each channel supports one rising latch register (CRLR), one falling latch register  
(CFLR) and Capture interrupt flag (CAPIFx)  
Aug. 24, 2018  
Page 50 of 82  
Rev 1.00  
NUC2201  
6.10 Watchdog Timer (WDT)  
6.10.1 Overview  
The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown  
state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog  
Timer supports the function to wake-up system from Idle/Power-down mode.  
6.10.2 Features  
18-bit free running up counter for Watchdog Timer time-out interval.  
Selectable time-out interval (24 ~ 218) WDT_CLK cycle and the time-out interval period  
is 104 ms ~ 26.3168 s if WDT_CLK = 10 kHz.  
System kept in reset state for a period of (1 / WDT_CLK) * 63  
Supports Watchdog Timer reset delay period  
-
Selectable it includes (102613018 or 3) * WDT_CLK reset delay period.  
Supports to force Watchdog Timer enabled after chip powered on or reset while  
CWDTEN (CONFIG0[31] Watchdog Enable) bit is set to 0.  
Supports Watchdog Timer time-out wake-up function only if WDT clock source is  
selected as 10 kHz  
Aug. 24, 2018  
Page 51 of 82  
Rev 1.00  
NUC2201  
6.11 Window Watchdog Timer (WWDT)  
6.11.1 Overview  
The Window Watchdog Timer is used to perform a system reset within a specified window period  
to prevent software run to uncontrollable status by any unpredictable condition.  
6.11.2 Features  
6-bit down counter value (WWDTVAL[5:0]) and 6-bit compare window value  
(WWDTCR[21:16]) to make the WWDT time-out window period flexible  
Supports 4-bit value to programmable maximum 11-bit prescale counter period of  
WWDT counter  
Aug. 24, 2018  
Page 52 of 82  
Rev 1.00  
NUC2201  
6.12 Real Time Clock (RTC)  
6.12.1 Overview  
The Real Time Clock (RTC) controller provides the real time and calendar message. The RTC  
offers programmable time tick and alarm match interrupts. The data format of time and calendar  
messages are expressed in BCD format. A digital frequency compensation feature is available to  
compensate external crystal oscillator frequency accuracy.  
The RTC controller also offers 80 bytes spare registers to store user’s important information.  
6.12.2 Features  
Supports real time counter in Time Loading Register (TLR) (hour, minute, second)  
and calendar counter in Calendar Loading Register (CLR) (year, month, day) for RTC  
time and calendar check  
Supports alarm time (hour, minute, second) and calendar (year, month, day) settings  
in Time Alarm Register (TAR) and Calendar Alarm Register (CAR) register  
Selectable 12-hour or 24-hour time scale in Time Scale Selection Register (TSSR)  
register  
Supports Leap Year indication in Leap Year Indicator Register (LIR) register  
Supports Day of the Week counter in Day of the Week Register (DWR) register  
Frequency of RTC clock source compensate by RTC Frequency Compensation  
Register (FCR) register  
All time and calendar message expressed in BCD format  
Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64,  
1/32, 1/16, 1/8, 1/4, 1/2 and 1 second  
Supports RTC Time Tick and Alarm Match interrupt  
Supports chip wake-up from Idle or Power-down mode while a RTC interrupt signal is  
generated  
Supports 80 bytes spare registers  
Aug. 24, 2018  
Page 53 of 82  
Rev 1.00  
NUC2201  
6.13 UART Interface Controller (UART)  
6.13.1 Overview  
The NuMicro® NUC2201 series provides up to three channels of Universal Asynchronous  
Receiver/Transmitters (UART). UART0 supports High Speed UART and UART1~2 perform  
Normal Speed UART. Besides, only UART0 and UART1 support the flow control function. The  
UART Controller performs a serial-to-parallel conversion on data received from the peripheral,  
and a parallel-to-serial conversion on data transmitted from the CPU. The UART controller also  
supports IrDA SIR Function, LIN master/slave function and RS-485 function mode. Each UART  
Controller channel supports seven types of interrupts.  
6.13.2 Features  
Full duplex, asynchronous communications  
Separates receive / transmit 64/16/16 bytes (UART0/UART1/UART2) entry FIFO for  
data payloads  
Supports hardware auto flow control/flow control function (CTS, RTS) and  
programmable RTS flow control trigger level (UART0 and UART1 support)  
Programmable receiver buffer trigger level  
Supports programmable baud-rate generator for each channel individually  
Supports CTS wake-up function (UART0 and UART1 support)  
Supports 7-bit receiver buffer time-out detection function  
UART0/UART1 can through DMA channels to receive/transmit data  
Programmable transmitting data delay time between the last stop and the next start bit  
by setting UA_TOR [DLY] register  
Supports break error, frame error, parity error and receive / transmit buffer overflow  
detect function  
Fully programmable serial-interface characteristics  
-
-
Programmable data bit length, 5-, 6-, 7-, 8-bit character  
Programmable parity bit, even, odd, no parity or stick parity bit generation and  
detection  
-
Programmable stop bit length, 1, 1.5, or 2 stop bit generation  
IrDA SIR function mode  
Supports 3-/16-bit duration for normal mode  
LIN function mode  
-
-
-
-
Supports LIN master/slave mode  
Supports programmable break generation function for transmitter  
Supports break detect function for receiver  
RS-485 function mode.  
-
-
Supports RS-485 9-bit mode  
Supports hardware or software direct enable control provided by RTS pin  
(UART0 and UART1 support)  
Aug. 24, 2018  
Page 54 of 82  
Rev 1.00  
NUC2201  
6.14 I2C Serial Interface Controller (I2C)  
6.14.1 Overview  
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange  
between devices. The I2C standard is a true multi-master bus including collision detection and  
arbitration that prevents data corruption if two or more masters attempt to control the bus  
simultaneously.  
6.14.2 Features  
The I2C bus uses two wires (I2Cn_SDA and I2Cn_SCL) to transfer information between devices  
connected to the bus. The main features of the I2C bus include:  
Supports up to two I2C serial interface controller  
Master/Slave mode  
Bidirectional data transfer between masters and slaves  
Multi-master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial data on  
the bus  
Serial clock synchronization allow devices with different bit rates to communicate via one  
serial bus  
Built-in a 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and  
timer-out counter overflows.  
Programmable clocks allow for versatile rate control  
Supports 7-bit addressing mode  
Supports multiple address recognition ( four slave address with mask option)  
Supports Power-down wake-up function  
Aug. 24, 2018  
Page 55 of 82  
Rev 1.00  
NUC2201  
6.15 Serial Peripheral Interface (SPI)  
6.15.1 Overview  
The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that  
operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bi-  
direction interface. The NuMicro® NUC2201 series contains up to two sets of SPI controllers  
performing a serial-to-parallel conversion on data received from a peripheral device, and a  
parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI controller  
can be configured as a master or a slave device.  
The SPI controller supports the variable bus clock function for special applications. This controller  
also supports the PDMA function to access the data buffer and also supports Dual I/O Transfer  
mode.  
6.15.2 Features  
Up to two sets of SPI controllers  
Supports Master or Slave mode operation  
Supports Dual I/O Transfer mode  
Configurable bit length of a transaction word from 8 to 32 bits  
Provides separate 8-layer depth transmit and receive FIFO buffers  
Supports MSB first or LSB first transfer sequence  
Two slave select lines in Master mode  
Supports the Byte Reorder function  
Supports Byte or Word Suspend mode  
Variable output bus clock frequency in Master mode  
Supports PDMA transfer  
Supports 3-wire, no slave select signal, bi-direction interface  
Aug. 24, 2018  
Page 56 of 82  
Rev 1.00  
NUC2201  
6.16 USB Device Controller (USBD)  
6.16.1 Overview  
There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is  
compliant with USB 2.0 full-speed device specification and supports control/bulk/interrupt/  
isochronous transfer types, and use High Internal RC Oscillator (HIRC48M) obtain to crystal-less  
option.  
In this device controller, there are two main interfaces: the APB bus and USB bus which comes  
from the USB PHY transceiver. For the APB bus, the CPU can program control registers through  
it. There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is  
necessary to write data to SRAM or read data from SRAM through the APB interface or SIE. User  
needs to set the effective starting address of SRAM for each endpoint buffer through “buffer  
segmentation register (USB_BUFSEGx)”.  
There are 8 endpoints in this controller. Each of the endpoint can be configured as IN or OUT  
endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are  
implemented in this block. The block of Endpoint Controlis also used to manage the data  
sequential synchronization, endpoint states, current start address, transaction status, and data  
buffer status for each endpoint.  
There are four different interrupt events in this controller. They are the wake-up function, device  
plug-in or plug-out event, USB events, and BUS events. Any event will cause an interrupt, and  
users just need to check the related event flags in interrupt event status register (USB_INTSTS)  
to acknowledge what kind of interrupt occurring, and then check the related USB Endpoint Status  
Register (USB_EPSTS) to acknowledge what kind of event occurring in this endpoint.  
A software-disconnect function is also supported for this USB controller. It is used to simulate the  
disconnection of this device from the host. If DRVSE0 (USB_DRVSE0[0]) is set to 1, the USB  
controller will force the output of USB_D+ and USB_D- to level low. After DRVSE0 bit is cleared  
to 0, host will enumerate the USB device again.  
Please refer to Universal Serial Bus Specification Revision 1.1 for details.  
6.16.2 Features  
Compliant with USB 2.0 Full-Speed specification  
Provides 1 interrupt vector with 4 different interrupt events (WAKEUP, FLDET, USB  
and BUS)  
Supports Control/Bulk/Interrupt/Isochronous transfer type  
Supports suspend function when no bus activity existing for 3 ms  
Provides 8 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer  
types and maximum 512 bytes buffer size  
Provides remote wake-up capability  
Supports Crystal-less  
Aug. 24, 2018  
Page 57 of 82  
Rev 1.00  
NUC2201  
6.17 Analog-to-Digital Converter (ADC)  
6.17.1 Overview  
The NuMicro® NUC2201 series contains one 12-bit successive approximation analog-to-digital  
converters (SAR A/D converter) with 12 input channels. The A/D converter supports three  
operation modes: single, single-cycle scan and continuous scan mode. The A/D converter can be  
started by software, PWM Center-aligned trigger and external STADC pin.  
6.17.2 Features  
Analog input voltage range: 0~VREF  
12-bit resolution and 10-bit accuracy is guaranteed  
Up to 12 single-end analog input channels or 5 differential analog input channels  
Up to 1 MSPS conversion rate (chip working at 5V)  
Three operating modes  
-
-
Single mode: A/D conversion is performed one time on a specified channel  
Single-cycle scan mode: A/D conversion is performed one cycle on all specified  
channels with the sequence from the smallest numbered channel to the largest  
numbered channel  
-
Continuous scan mode: A/D converter continuously performs Single-cycle scan  
mode until software stops A/D conversion  
An A/D conversion can be started by:  
-
-
-
Writing 1 to ADST bit (ADCR[11])through software  
PWM Center-aligned trigger  
External pin STADC  
Conversion results are held in data registers for each channel with valid and overrun  
indicators  
Supports two set digital comparators. The conversion result can be compared with  
specify value and user can select whether to generate an interrupt when conversion  
result matches the compare register setting  
Channel 7 supports 3 input sources: external analog voltage, internal Band-gap  
voltage, and internal temperature sensor output  
Aug. 24, 2018  
Page 58 of 82  
Rev 1.00  
NUC2201  
7
APPLICATION CIRCUIT  
AVCC  
VREF  
AVDD  
FB  
DVCC  
USB_VBUS  
USB_D-  
USB_D+  
33R  
33R  
VDD  
USB OTG Slot  
VBAT  
0.1uF 1uF  
10uF 0.1uF  
Power  
USB_VDD33_CAP  
VSS  
1uF  
FB  
DVCC  
AVSS  
[2]  
DVCC  
[1]  
100K  
100K  
SPI_SS  
SPI_CLK  
SPI_MISO  
CS  
CLK  
MISO  
MOSI  
VDD  
VSS  
VDD  
SPI Device  
ICE_DAT  
ICE_CLK  
nRESET  
VSS  
SWD  
Interface  
NUC2201xE3AE  
SPI_MOSI  
20p  
XT1_IN  
4~ 24 MHz  
crystal  
20p  
20p  
DVCC  
4.7K  
DVCC  
XT1_OUT  
X32_IN  
4.7K  
Crystal  
CLK  
DIO  
I2C_SCL  
I2C_SDA  
VDD  
VSS  
I2C Device  
32.768kHz  
crystal  
20p  
X32_OUT  
DVCC  
Reset  
Circuit  
10K  
nRST  
PC COM Port  
RS 232 Transceiver  
ROUT RIN  
10uF/10V  
RXD  
TXD  
UART  
TIN  
TOUT  
LDO CAP  
_
LDO  
1uF  
Note1: For the SPI device, the chip supply voltage must  
be equal to SPI device working voltage. For example,  
when the SPI Flash working voltage is 3.3 V, the chip  
supply voltage must also be 3.3V.  
Note2: It is recommended to use pull-up resistor on both  
ICE_DAT and ICE_CLK pin if CIOINI(Config0[10]) is set  
to 0.  
Aug. 24, 2018  
Page 59 of 82  
Rev 1.00  
NUC2201  
8
ELECTRICAL CHARACTERISTICS  
8.1 Absolute Maximum Ratings  
SYMBOL  
PARAMETER  
MIN.  
-0.3  
VSS-0.3  
4
MAX  
+7.0  
VDD+0.3  
24  
UNIT  
DC Power Supply  
V
V
VDDVSS  
VIN  
Input Voltage  
Oscillator Frequency  
1/tCLCL  
TA  
MHz  
C  
Operating Temperature  
Junction temperature  
-40  
+105  
+125  
+150  
120  
TJ  
-40  
C  
Storage Temperature  
TST  
-55  
C  
Maximum Current into VDD  
-
mA  
mA  
mA  
mA  
mA  
mA  
Maximum Current out of VSS  
120  
Maximum Current sunk by a I/O pin  
Maximum Current sourced by a I/O pin  
Maximum Current sunk by total I/O pins  
Maximum Current sourced by total I/O pins  
35  
35  
100  
100  
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability  
of the device.  
Aug. 24, 2018  
Page 60 of 82  
Rev 1.00  
NUC2201  
8.1.1 EMC characteristics  
Maximum  
value  
Symbol  
Parameter  
Conditions  
Unit  
1.  
2.  
Fast transient voltage burst limits to be  
applied through 0.1 uF + 10 uF on VDD and  
VSS pins to induce a functional disturbance  
VDD = 3.3 V, LQFP64, TA = +25  
°C, fHCLK = 72 MHz  
VEFTB  
4.4  
kV  
to be applied through 1 uF on LDO_Pin and  
VSS pins  
Note: Guaranteed by characterization results, not tested in production.  
Maximum  
value  
Symbol  
Ratings  
Conditions  
Unit  
8
4
TA = +25 °C, excepte X32_IN pin  
TA = +25 °C  
Electrostatic discharge voltage (human  
body model)  
V
V
ESD(HBM)  
kV  
1
TA = +25 °C, excepte X32_IN pin  
TA = +25 °C  
Electrostatic discharge voltage (charge  
device model)  
ESD(CDM)  
0.5  
Note: Guaranteed by characterization results, not tested in production.  
Symbol  
Parameter  
Static latch-up class  
Conditions  
Value  
300  
Unit  
LU  
mA  
T
+25 °C  
A
Note: Guaranteed by characterization results, not tested in production.  
Aug. 24, 2018  
Page 61 of 82  
Rev 1.00  
NUC2201  
8.2 DC Electrical Characteristics  
(VDD-VSS = 5.5 V, TA = 25C, FOSC = 72 MHz unless otherwise specified.)  
SPECIFICATION  
PARAMETER  
SYM.  
VDD  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Operation Voltage  
2.5  
5.5  
5.5  
0.3  
V
V
V
VDD = 2.5V ~ 5.5V up to 72 MHz  
RTC Operation  
voltage for  
PF.0~PF.2  
VBAT  
2.5  
-
VSS  
Power Ground  
-0.3  
0
AVSS  
LDO Output Voltage  
VLDO  
1.62  
1.21  
-0.3  
1.8  
1.98  
1.29  
0.3  
V
V
V
VDD ≥ 2.5V  
Band-gap Voltage  
VBG  
-
-
VDD = 2.5 V ~ 5.5 V, TA = -40C~105C  
Allowed voltage  
difference for VDD  
and AVDD  
VDD  
-
AVDD  
All digital  
module  
VDD  
HXT  
HIRC  
PLL  
Operating Current  
Normal Run Mode  
at 72 MHz  
IDD1  
24  
mA  
5.5V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
X
X
X
X
X
X
X
V
V
V
V
V
V
V
V
X
V
X
V
X
V
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
16  
mA  
mA  
mA  
mA  
mA  
mA  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
while(1){} executed  
from flash  
22.5  
14.5  
18  
VLDO =1.8 V  
Operating Current  
Normal Run Mode  
at 50 MHz  
12.5  
16.5  
while(1){} executed  
from flash  
IDD8  
11  
mA  
3.3V  
VLDO =1.8 V  
12 MHz  
X
V
V
V
V
X
X
X
X
V
X
V
Operating Current  
Normal Run Mode  
at 22.1184 MHz  
IDD9  
IDD10  
IDD11  
-
-
-
9
4.5  
9
-
-
-
mA  
mA  
mA  
5.5V  
5.5V  
3.3V  
X
X
X
while(1){} executed  
from flash  
IDD12  
-
4.5  
-
mA  
3.3V  
VLDO =1.8 V  
X
V
X
X
X
X
X
X
X
X
X
X
X
X
V
X
V
X
V
Operating Current  
Normal Run Mode  
at 12 MHz  
IDD13  
IDD14  
IDD15  
IDD16  
IDD17  
5.5  
4.5  
4
mA  
mA  
mA  
mA  
mA  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
12 MHz  
12 MHz  
12 MHz  
12 MHz  
4 MHz  
while(1){} executed  
from flash  
3
VLDO =1.8 V  
Operating Current  
3
Aug. 24, 2018  
Page 62 of 82  
Rev 1.00  
NUC2201  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
2.5  
MAX. UNIT  
Normal Run Mode  
at 4 MHz  
IDD18  
IDD19  
mA  
mA  
5.5V  
3.3V  
4 MHz  
X
X
X
X
X
V
1.7  
4 MHz  
4 MHz  
while(1){} executed  
from flash  
IDD20  
1.3  
mA  
3.3V  
VDD  
X
X
X
VLDO =1.8 V  
LXT  
All digital  
modules  
HIRC  
PLL  
(kHz)  
IDD21  
133  
uA  
Operating Current  
HCLK = 32.768 kHz  
while(1){}  
5.5V  
5.5V  
3.3V  
3.3V  
32.768  
32.768  
32.768  
32.768  
X
X
X
X
X
X
X
X
V
X
V
X
uA  
uA  
uA  
IDD22  
IDD23  
IDD24  
130  
119  
116  
executed from flash  
All digital  
module  
VDD  
HXT/LXT LIRC (kHz)  
PLL  
Operating Current  
Normal Run Mode  
at 10 kHz  
IDD25  
127  
A  
5.5V  
5.5V  
3.3V  
3.3V  
X
X
X
X
10  
10  
10  
10  
X
X
X
X
V
X
V
X
IDD26  
IDD27  
IDD28  
126  
113  
112  
A  
A  
A  
while(1){} executed  
from flash  
VLDO =1.8 V  
All digital  
module  
VDD  
HXT  
HIRC  
PLL  
IIDLE1  
17  
mA  
Operating Current  
Idle Mode  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
3.3V  
3.3V  
5.5V  
5.5V  
12 MHz  
X
X
X
X
V
V
V
V
V
V
V
V
X
X
V
V
V
V
X
X
X
X
X
X
X
X
X
X
V
X
V
X
X
X
V
X
X
X
V
X
V
X
IIDLE2  
IIDLE3  
IIDLE4  
IIDLE5  
IIDLE6  
IIDLE7  
IIDLE8  
IIDLE9  
IIDLE10  
IIDLE11  
IIDLE12  
IIDLE13  
IIDLE14  
9
15.5  
7.5  
13  
7.5  
11.5  
6
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
12 MHz  
at 72 MHz  
VLDO =1.8 V  
12 MHz  
12 MHz  
X
Operating Current  
Idle Mode  
X
at 50 MHz  
X
VLDO =1.8 V  
X
-
-
-
-
6.5  
2
-
-
-
-
X
Operating Current  
Idle Mode  
X
X
at 22.1184 MHz  
VLDO =1.8 V  
6.5  
2
X
4.3  
3
12 MHz  
12 MHz  
Operating Current  
Idle Mode  
at 12 MHz  
IIDLE15  
IIDLE16  
2.9  
1.6  
mA  
mA  
3.3V  
3.3V  
12 MHz  
12 MHz  
X
X
X
X
V
X
VLDO =1.8 V  
Aug. 24, 2018  
Page 63 of 82  
Rev 1.00  
NUC2201  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
2.6  
MAX. UNIT  
IIDLE17  
IIDLE18  
IIDLE19  
IIDLE20  
mA  
mA  
5.5V  
5.5V  
4 MHz  
X
X
X
X
V
X
Operating Current  
Idle Mode  
2.2  
4 MHz  
4 MHz  
4 MHz  
at 4 MHz  
1.4  
0.9  
mA  
mA  
3.3V  
3.3V  
X
X
X
X
V
X
VLDO =1.8 V  
LXT  
All digital  
modules  
VDD  
HIRC  
PLL  
(kHz)  
IIDLE21  
130  
A  
5.5V  
5.5V  
3.3V  
3.3V  
32.768  
32.768  
32.768  
32.768  
X
X
X
X
X
X
X
X
V
X
V
X
Operating Current  
Idle Mode  
IIDLE22  
IIDLE23  
IIDLE24  
126  
116  
113  
A  
A  
A  
at 32.768 kHz  
All digital  
module  
VDD  
HXT/LXT LIRC (kHz)  
PLL  
X
IIDLE25  
126  
A  
5.5V  
5.5V  
X
X
X
X
10  
10  
10  
10  
V
X
V
X
Operating Current  
Idle Mode  
IIDLE26  
IIDLE27  
IIDLE28  
125  
112  
111  
A  
A  
A  
X
at 10 kHz  
3.3V  
3.3V  
X
X
HXT/HIRC  
PLL  
RAM  
retension  
VDD  
LXT (kHz)  
RTC  
IPWD1  
13  
A  
Standby Current  
Power-down Mode  
(Deep Sleep Mode)  
VLDO =1.6 V  
5.5V  
5.5V  
3.3V  
3.3V  
X
X
X
X
X
X
V
X
V
V
V
V
V
IPWD2  
IPWD3  
IPWD4  
15  
11  
13  
A  
A  
A  
32.768  
X
32.768  
VBAT = 5.0 V, 32.768 kHz external low speed crystal  
oscillator (LXT), RTC ON and VDD/AVDD power domain  
OFF.  
2
2
A  
A  
RTC Operating  
Current  
IVBAT  
VBAT = 3.0 V, 32.768 kHz external low speed crystal  
oscillator (LXT), RTC ON and VDD/AVDD power domain  
OFF.  
Input Current PA,  
PB, PC, PD, PE, PF  
(Quasi-bidirectional  
mode)  
IIN1  
-67  
-
-75  
+1  
VDD = VBAT = 5.5V, VIN = 0V or VIN=VDD  
A  
A  
Input Leakage  
Current PA, PB, PC,  
PD, PE, PF  
VDD = VBAT = 5.5V, 0<VIN<VDD  
ILK  
-1  
Open-drain or input only mode.  
Aug. 24, 2018  
Page 64 of 82  
Rev 1.00  
NUC2201  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Logic 1 to 0  
Transition Current  
PA~PF (Quasi-  
[3]  
ITL  
-610  
-650  
VDD = 5.5V, VIN=2.0V  
A  
bidirectional mode)  
Input Low Voltage  
PA, PB, PC, PD, PE,  
PF (TTL input)  
-0.3  
-0.3  
-
-
0.8  
0.6  
VDD = VBAT = 4.5 V  
VDD = VBAT = 2.5 V  
VIL1  
VIH1  
VIL3  
VIH3  
V
VDD  
+0.2  
2.0  
1.5  
-
-
VDD = VBAT = 5.5V  
VDD = VBAT =3.0V  
Input High Voltage  
PA, PB, PC, PD, PE,  
PF (TTL input)  
V
VDD  
+0.2  
0
0
-
-
0.8  
0.4  
VDD = VBAT = 4.5V  
VDD = VBAT = 3.0V  
Input Low Voltage  
XT1_IN[*2]  
V
V
VDD  
+0.3  
3.5  
-
-
VDD = VBAT = 5.5V  
VDD = VBAT = 3.0V  
Input High Voltage  
XT1_IN[*2]  
VDD  
+0.3  
2.4  
0.6  
0
X32 Output Pin  
VXOUT  
0.9  
V
Input Low Voltage  
X32I[*4]  
VXOUT -  
0.3  
VIL4  
-
V
Input High Voltage  
X32I[*4]  
VXOUT  
+0.3  
VIH4  
1.8  
V
V
Negative going  
threshold  
VILS  
-0.3  
-
-
0.2VDD  
(Schmitt input),  
nRESET  
Positive going  
threshold  
VDD  
+0.3  
VIHS  
0.7 VDD  
V
(Schmitt input),  
nRESET  
Internal nRESET pin  
pull up resistor  
RRST  
40  
150  
kΩ  
Negative going  
threshold  
0.3  
VDD  
VILS  
-0.3  
-
-
V
(Schmitt input),  
Positive going  
threshold  
VDD  
+0.3  
VIHS  
0.7 VDD  
V
(Schmitt input),  
ISR11  
ISR12  
ISR12  
ISR21  
ISR22  
-300  
-50  
-40  
-30  
-3  
-400  
-80  
VDD = VBAT = 4.5V, VS = 2.4V  
VDD = VBAT = 2.7V, VS = 2.2V  
VDD = VBAT = 2.5V, VS = 2.0V  
A  
A  
A  
Source Current PA,  
PB, PC, PD, PE, PF  
(Quasi-bidirectional  
Mode)  
-73  
-65  
mA VDD = VBAT = 4.5V, VS = 2.4V  
mA VDD = VBAT = 2.7V, VS = 2.2V  
Source Current PA,  
PB, PC, PD, PE, PF  
(Push-pull Mode)  
-5.2  
Aug. 24, 2018  
Page 65 of 82  
Rev 1.00  
NUC2201  
SPECIFICATION  
PARAMETER  
SYM.  
TEST CONDITIONS  
MIN.  
-2.5  
9
TYP.  
-5  
MAX. UNIT  
ISR22  
ISK1  
ISK1  
ISK1  
mA VDD = VBAT = 2.5V, VS = 2.0V  
13  
9
mA VDD = VBAT = 4.5V, VS = 0.45V  
mA VDD = VBAT = 2.7V, VS = 0.45V  
mA VDD = VBAT = 2.5V, VS = 0.45V  
Sink Current PA, PB,  
PC, PD, PE, PF  
(Quasi-bidirectional  
and Push-pull Mode)  
6
4
8
Note:  
1. nRESET pin is a Schmitt trigger input.  
2. XT1_IN is a CMOS input.  
3. Pins of PA, PB, PC, PD, PE and PF can source a transition current when they are being externally driven from 1 to 0. In the  
condition of VDD = 5.5 V, the transition current reaches its maximum value when VIN approximates to 2 V.  
4. If X32I is as external clock input, the input high voltage should be lower than 1.8V to avoid chip damage.  
Aug. 24, 2018  
Page 66 of 82  
Rev 1.00  
NUC2201  
8.3 AC Electrical Characteristics  
8.3.1 External 4~24 MHz High Speed Oscillator  
tCLCL  
tCLCH  
tCLCX  
90%  
10%  
0.7 VDD  
0.3 VDD  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
Symbol  
tCHCX  
Parameter  
Min  
10  
10  
2
Typ  
Max  
-
Unit  
Test Condition  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
-
-
-
-
ns  
ns  
ns  
ns  
-
-
-
-
tCLCX  
-
tCLCH  
15  
15  
tCHCL  
2
8.3.2 External 4~24 MHz High Speed Crystal  
Symbol  
VHXT  
Parameter  
Operation Voltage  
Temperature  
Min.  
2.5  
-40  
-
Typ.  
Max  
5.5  
105  
-
Unit  
V
Test Conditions  
-
-
-
-
TA  
2
mA  
mA  
MHz  
12 MHz, VDD = 5.5V  
IHXT  
Operating Current  
Clock Frequency  
-
0.8  
-
-
12 MHz, VDD = 3.3V  
-
fHXT  
4
24  
8.3.2.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
10~20pF  
C2  
10~20pF  
R
4 MHz ~ 24 MHz  
without  
Aug. 24, 2018  
Page 67 of 82  
Rev 1.00  
NUC2201  
XT1_OUT  
XT1_IN  
R
C1  
C2  
Figure 8-1 Typical Crystal Application Circuit  
8.3.3 32.768 kHz External Low Speed Crystal Oscillator (LXT)  
tCLCL  
tCLCH  
90%  
10%  
Xin_VIH  
tCLCX  
Xin_VIL  
tCHCL  
tCHCX  
Note: Duty cycle is 50%.  
PARAMETER  
CONDITION  
MIN.  
2.5  
TYP.  
MAX.  
5.5  
UNIT  
Operation Voltage VDD  
Operation Temperature  
Operation Current  
-
-
-
-
V
-40  
105  
32.768KHz at VDD=5V  
External crystal  
1.6  
A  
Clock Frequency  
-
32.768  
-
kHz  
8.3.3.1 Typical Crystal Application Circuits  
CRYSTAL  
C1  
C2  
10~20 pF  
32.768 kHz  
10~20 pF  
X32_IN  
X32_OUT  
Crystal  
C1  
C2  
Vss  
Vss  
Aug. 24, 2018  
Page 68 of 82  
Rev 1.00  
NUC2201  
Figure 8.3-2 Typical Crystal Application Circuit  
8.3.4 Internal 22.1184 MHz High Speed Oscillator  
Symbol  
Parameter  
Supply Voltage  
Center Frequency  
Min  
1.62  
-
Typ  
1.8  
Max  
Unit  
V
Test Conditions  
VHRC  
1.98  
-
-
22.1184  
MHz  
TA = 25  
-1  
-
+1  
%
fHRC  
VDD = 5 V  
Calibrated Internal  
Oscillator Frequency  
TA = -40 ~ 105 ℃  
-3  
-
+3  
%
VDD = 2.5 V ~ 5 .5 V  
TA = 25 ,VDD = 5 V  
IHRC  
Operating Current  
-
1200  
-
μA  
8.3.5 Internal 48 MHz High Speed Oscillator  
Symbol  
Parameter  
Supply Voltage  
Center Frequency  
Min  
1.62  
-
Typ  
1.8  
48  
Max  
Unit  
V
Test Conditions  
VHRC  
1.98  
-
-
MHz  
TA = 25 ℃  
-1  
-
+1  
%
fHRC  
VDD = 5 V  
Calibrated Internal  
Oscillator Frequency  
TA = -40 ~ 105 ℃  
-2  
-
+2  
%
VDD = 2.5 V ~ 5 .5 V  
TA = 25 ,VDD = 5 V  
IHRC  
Operating Current  
-
640  
-
μA  
Aug. 24, 2018  
Page 69 of 82  
Rev 1.00  
NUC2201  
8.3.6 Internal 10 kHz Low Speed Oscillator  
Symbol  
Parameter  
Supply Voltage  
Center Frequency  
Min  
2.5  
-
Typ  
-
Max  
5.5  
-
Unit  
V
Test Conditions  
VLRC  
-
-
10  
kHz  
VDD = 2.5 V ~ 5.5 V  
-10  
-50  
-
-
+10  
+50  
%
%
TA = 25℃  
fLRC  
Oscillator Frequency  
VDD = 2.5 V ~ 5.5 V  
TA = -40~ +105℃  
8.3.7 PLL characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
4
24  
fPLL_IN  
fPLL_OUT  
TS  
PLL input clock  
MHz  
MHz  
µs  
50  
500  
200  
350  
PLL multiplier output clock  
PLL stable time[*1]  
100  
Jitter  
200  
ps  
Cycle-to-cycle Jitter[*2]  
Peak to peak @ 480M  
Note: Guaranteed by characterization and design results, not tested in production.  
Aug. 24, 2018  
Page 70 of 82  
Rev 1.00  
NUC2201  
8.4 Analog Characteristics  
8.4.1 12-bit SARADC Specification  
Symbol  
-
Parameter  
Min  
Typ  
Max  
Unit  
Bit  
Test Condition  
Resolution  
12  
-
-
-
-
-
-
-
DNL  
INL  
EO  
Differential Nonlinearity Error  
Integral Nonlinearity Error  
Offset Error  
-
-
-
-
-
-
±3  
±4  
-
LSB  
LSB  
LSB  
LSB  
LSB  
-
-
3
EG  
Gain Error (Transfer Gain)  
Absolute Error  
-2  
-
EA  
4
-
-
Monotonic  
Guaranteed  
FADC  
FS  
ADC Clock Frequency  
-
-
-
21  
MHz  
kSPS  
1/FADC  
1/FADC  
V
Sample Rate (FADC/TCONV  
)
-
2~9  
16~23  
-
1000  
TACQ  
TCONV  
AVDD  
IDDA  
VIN  
Acquisition Time (Sample Stage)  
Total Conversion Time  
Supply Voltage  
-
-
2.5  
5.5  
-
Supply Current (Avg.)  
Analog Input Voltage  
Input Capacitance  
-
0
-
2.8  
-
-
mA  
AVDD = 5 V  
AVDD  
V
-
-
-
CIN  
6
-
-
pF  
RIN  
Input Load  
-
6.5  
kΩ  
Note: The condition is that the error in a conversion started after ADC enable is less than ±0.5 LSB. The  
reference and input signal are already settled.  
Aug. 24, 2018  
Page 71 of 82  
Rev 1.00  
NUC2201  
EF (Full scale error) = EO + EG  
Gain Error Offset Error  
EG  
EO  
4095  
4094  
4093  
4092  
Ideal transfer curve  
7
6
5
4
3
2
1
ADC  
output  
code  
Actual transfer curve  
DNL  
1 LSB  
4095  
Analog input voltage  
(LSB)  
Offset Error  
EO  
Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer curve  
and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and gain error from  
the actual transfer curve.  
8.4.2 LDO and Power Management  
Symbol  
VDD  
Parameter  
DC Power Supply  
Output Voltage  
Temperature  
Min  
2.5  
Typ  
-
Max  
5.5  
Unit  
V
Test Condition  
-
-
VLDO  
1.62  
-40  
1.8  
25  
1.98  
105  
V
TA  
Notes:  
1. It is recommended that a 0.1 uF or higher capacitor is connected between VDD and the closest VSS pin of  
the device.  
2. To ensure power stability, a 1uF or higher capacitor must be connected between LDO pin and the closest  
VSS pin of the device.  
Aug. 24, 2018  
Page 72 of 82  
Rev 1.00  
NUC2201  
8.4.3 Low Voltage Reset Specification  
Symbol  
VDD  
Parameter  
Supply Voltage  
Temperature  
Min  
0
Typ  
Max  
5.5  
Unit  
V
Test Condition  
-
μA  
V
TA  
-40  
-
25  
1
105  
5
-
ILVR  
Quiescent Current  
VDD = 5.5 V  
TA = 25 ℃  
TA = -40 ℃  
TA = 105 ℃  
1.90  
1.70  
2.00  
2.00  
1.90  
2.20  
2.10  
2.10  
2.45  
VLVR  
Threshold Voltage  
V
V
8.4.4 Brown-out Detector Specification  
Symbol  
AVDD  
TA  
Parameter  
Supply Voltage  
Temperature  
Min  
0
Typ  
-
Max  
5.5  
Unit  
V
Test Condition  
-
μA  
V
-40  
-
25  
105  
140  
4.6  
-
IBOD  
Quiescent Current  
-
AVDD = 5.5 V  
4.2  
3.5  
2.55  
2.05  
4.3  
3.6  
2.6  
2.1  
4.4  
3.7  
2.7  
2.2  
4.5  
3.8  
2.75  
2.25  
BOV_VL [1:0] = 11  
BOV_VL [1:0] = 10  
BOV_VL [1:0] = 01  
BOV_VL [1:0] = 00  
BOV_VL [1:0] = 11  
BOV_VL [1:0] = 10  
BOV_VL [1:0] = 01  
BOV_VL [1:0] = 00  
3.9  
V
Brown-out Voltage  
VBOD  
(Falling edge)  
2.85  
2.35  
4.7  
V
V
V
4.0  
V
Brown-out Voltage  
VBOD  
(Rising edge)  
2.9  
V
2.4  
V
8.4.5 Power-on Reset Specification  
Symbol  
TA  
Parameter  
Temperature  
Reset Voltage  
Min  
-40  
1.6  
Typ  
25  
2
Max  
105  
2.4  
Unit  
Test Condition  
-
-
VPOR  
V
VDD Start Voltage to Ensure  
VPOR  
RRVDD  
tPOR  
-
-
-
-
100  
mV  
V/ms  
ms  
Power-on Reset  
VDD Raising Rate to Ensure  
0.025  
0.5  
-
-
Power-on Reset  
Minimum Time for VDD Stays at  
VPOR to Ensure Power-on Reset  
Note: Guaranteed by characterization results, not tested in production.  
Aug. 24, 2018  
Page 73 of 82  
Rev 1.00  
NUC2201  
VDD  
tPOR  
RRVDD  
VPOR  
Time  
Figure 8-3 Power-up Ramp Condition  
8.4.6  
Temperature Sensor  
Symbol  
Parameter  
Temperature  
Current Consumption  
Gain  
Min  
-40  
-
Typ  
-
Max  
105  
-
Unit  
Test Condition  
μA  
TA  
ITEMP  
16  
mV/℃  
-
-
-1.55  
735  
-1.672  
748  
-1.75  
755  
TA = 0 ℃  
Offset  
mV  
Note:  
1. Guaranteed by design, not tested in production.  
2. VTEMP (mV) = Tc (mV/°C) x Temperature (°C) + Vos (mV)  
Aug. 24, 2018  
Page 74 of 82  
Rev 1.00  
NUC2201  
8.4.7 USB PHY  
8.4.7.1 Low-/full-Speed DC Electrical Specifications  
Symbol  
Parameter  
Input High (driven)  
Min.  
2.0  
-
Typ.  
Max.  
Unit  
V
Test Conditions  
VIH  
VIL  
VDI  
-
-
-
-
Input Low  
0.8  
V
-
Differential Input Sensitivity  
0.2  
V
|PADP-PADM|  
Differential  
VCM  
VSE  
0.8  
-
2.5  
2.0  
V
Includes VDI range  
Common-mode Range  
Single-ended Receiver Threshold  
Receiver Hysteresis  
0.8  
-
V
mV  
V
-
-
0
200  
-
VOL  
VOH  
VCRS  
RPU  
ZDRV  
CIN  
Output Low (driven)  
-
-
0.3  
3.6  
2.0  
1.575  
-
-
Output High (driven)  
2.8  
1.3  
1.425  
-
V
-
Output Signal Cross Voltage  
Pull-up Resistor  
-
V
-
-
-
kΩ  
Ω
Driver Output Resistance  
Transceiver Capacitance  
10  
-
Steady state drive*  
Pin to GND  
-
20  
pF  
*Driver output resistance doesn’t include series resistor resistance.  
8.4.7.2 USB Full-Speed Driver Electrical Characteristics  
Symbol  
Parameter  
Min.  
4
Typ.  
Max.  
20  
Unit  
ns  
Test Conditions  
CL=50p  
TFR  
TFF  
Rise Time  
Fall Time  
-
-
-
4
20  
ns  
CL=50p  
TFRFF  
Rise and Fall Time Matching  
90  
111.11  
%
TFRFF=TFR/TFF  
8.4.7.3 USB LDO Specification  
Symbol  
VBUS  
Parameter  
VBUS Pin Input Voltage  
LDO Output Voltage  
Min.  
4.0  
2.97  
-
Typ.  
5.0  
Max.  
5.5  
3.63  
-
Unit  
V
Test Conditions  
-
-
-
VDD33  
Cbp  
3.3  
V
External Bypass Capacitor  
1.0  
uF  
Aug. 24, 2018  
Page 75 of 82  
Rev 1.00  
NUC2201  
8.5 Flash DC Electrical Characteristics  
Symbol  
Parameter  
Supply Voltage  
Endurance  
Min  
1.62  
Typ  
Max  
Unit  
V
Test Condition  
[2]  
VFLA  
1.8  
1.98  
-
NENDUR  
20,000  
100  
-
-
cycles[1]  
year  
-
TA = 25℃  
-
TRET  
Data Retention  
TA = 85℃  
10  
20  
60  
-
year  
ms  
TERASE  
TPROG  
IDD1  
Page Erase Time  
Program Time  
Read Current  
-
-
-
-
-
-
-
-
-
-
us  
9
8
mA  
mA  
mA  
IDD2  
Program Current  
Erase Current  
-
IDD3  
-
12  
Notes:  
1. Number of program/erase cycles.  
2. VFLA is source from chip LDO output voltage.  
Aug. 24, 2018  
Page 76 of 82  
Rev 1.00  
NUC2201  
8.6 I2C Dynamic Characteristics  
Standard Mode[1][2]  
Fast Mode[1][2]  
Symbol  
Parameter  
Unit  
Min.  
4.7  
Max.  
-
Min.  
Max.  
-
tLOW  
SCL low period  
1.2  
0.6  
1.2  
uS  
uS  
uS  
tHIGH  
SCL high period  
4
-
-
-
-
tSU; STA  
Repeated START condition setup  
time  
4.7  
tHD; STA  
tSU; STO  
tBUF  
START condition hold time  
STOP condition setup time  
Bus free time  
4
-
-
0.6  
-
-
uS  
uS  
uS  
nS  
uS  
nS  
nS  
pF  
4
4.7[3]  
250  
0[4]  
-
0.6  
-
1.2[3]  
-
tSU;DAT  
tHD;DAT  
tr  
Data setup time  
-
100  
-
Data hold time  
3.45[5]  
1000  
300  
400  
0[4]  
0.8[5]  
300  
300  
400  
SCL/SDA rise time  
20+0.1Cb  
tf  
SCL/SDA fall time  
-
-
-
Cb  
Capacitive load for each bus line  
-
Notes:  
1. Guaranteed by design, not tested in production.  
2. HCLK must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher  
than 8 MHz to achieve the maximum fast mode I2C frequency.  
3. I2C controller must be retriggered immediately at slave mode after receiving STOP condition.  
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
5. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
Repeated  
START  
STOP  
START  
STOP  
SDA  
SCL  
tBUF  
tLOW  
tr  
tf  
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tSU;DAT  
Figure 8-4 I2C Timing Diagram  
Aug. 24, 2018  
Page 77 of 82  
Rev 1.00  
NUC2201  
8.7 SPI Dynamic Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
SPI Master Mode (VDD = 4.5 V ~ 5.5 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
1
2
SPI Master Mode (VDD = 3.0 V ~ 3.6 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
2
4
SPI Slave Mode (VDD = 4.5 V ~ 5.5 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
3.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
16  
22  
SPI Slave Mode (VDD = 3.0 V ~ 3.6 V, 0 pF loading Capacitor)  
tDS  
tDH  
tV  
Data setup time  
0
4.5  
-
-
-
-
-
ns  
ns  
ns  
Data hold time  
Data output valid time  
18  
24  
CLKP=0  
CLKP=1  
SPICLK  
tV  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tDS  
tDH  
Data Valid  
tV  
Data Valid  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tDS  
tDH  
Data Valid  
Figure 8-5 SPI Master Mode Timing Diagram  
Aug. 24, 2018  
Page 78 of 82  
Rev 1.00  
NUC2201  
CLKP=0  
CLKP=1  
SPICLK  
tDS  
tDH  
Data Valid  
Data Valid  
MOSI  
MISO  
Data Valid  
CLKP=0, TX_NEG=1, RX_NEG=0  
or  
CLKP=1, TX_NEG=0, RX_NEG=1  
tv  
Data Valid  
tDS  
tDH  
Data Valid  
Data Valid  
Data Valid  
MOSI  
MISO  
CLKP=0, TX_NEG=0, RX_NEG=1  
or  
CLKP=1, TX_NEG=1, RX_NEG=0  
tv  
Data Valid  
Figure 8-6 SPI Slave Mode Timing Diagram  
Aug. 24, 2018  
Page 79 of 82  
Rev 1.00  
NUC2201  
9
PACKAGE DIMENSIONS  
9.1 64-pin LQFP (7x7x1.4 mm footprint 2.0 mm)  
Aug. 24, 2018  
Page 80 of 82  
Rev 1.00  
NUC2201  
9.2 48-pin LQFP (7x7x1.4 mm footprint 2.0 mm)  
Aug. 24, 2018  
Page 81 of 82  
Rev 1.00  
NUC2201  
10 REVISION HISTORY  
Date  
Revision  
Description  
2018.08.24  
1.00  
1. Initial version  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
Aug. 24, 2018  
Page 82 of 82  
Rev 1.00  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY