74F1763 [NXP]

Intelligent DRAM controller IDC; 智能DRAM控制器IDC
74F1763
型号: 74F1763
厂家: NXP    NXP
描述:

Intelligent DRAM controller IDC
智能DRAM控制器IDC

动态存储器 控制器
文件: 总16页 (文件大小:118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
74F1763  
Intelligent DRAM controller (IDC)  
Product specification  
1999 Jan 08  
Supersedes data of 1989 Nov 17  
IC15 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
FEATURES  
DRAM signal timing generator  
ability to select the RAS precharge time and Row-Address Hold time  
to fit the particular DRAMs being used. DTACK has been modified  
from previous family parts to become a negative true, tri-stated  
output. The options for latched or unlatched address are contained  
on a single device by the addition of an Address Latch Enable (ALE)  
input. Finally, a burst refresh monitor has been added to ensure  
complete refreshing after length page-mode access cycles. With a  
maximum clock frequency of 100 MHz, the F1763 is capable of  
controlling DRAM arrays with access times down to 40 nsec.  
Automatic refresh circuitry  
Selectable row address hold and RAS precharge times  
Facilitates page mode accesses  
Controls 1 MBit DRAMs  
Intelligent burst-mode refresh after page-mode access cycles  
TYPICAL SUPPLY CURRENT  
TYPE  
f
MAX  
(TOTAL)  
PRODUCT DESCRIPTION  
The Philips Semiconductors Intelligent Dynamic RAM Controller is a  
1 MBit, single-port version of the 74F1764 Dual Port Dynamic RAM  
Controller. It contains automatic signal timing, address multiplexing  
and refresh control required for interfacing with dynamic RAMs.  
Additional features have been added to this device to take  
advantage of technological advances in Dynamic RAMs. A  
Page-Mode access pin allows the user to assert RAS for the entire  
access cycle rather than the pre-defined four-clock-cycle pulse width  
used for normal random access cycles. In addition, the user has the  
74F1763  
100 MHz  
150 mA  
ORDERING INFORMATION  
COMMERCIAL RANGE  
V
T
= 5V "10%;  
PACKAGES  
PKG DWG #  
CC  
= 0_C TO 70_C  
A
48-pin Plastic DIP  
N74F1763N  
SOT240-1  
NO TAG  
INPUT AND OUTPUT LOADING FAN-OUT TABLE  
PINS  
DESCRIPTION  
74F (U.L.) HIGH/LOW  
1.0/1.0  
1.0/1.0  
1.0/1.0  
1.0/1.0  
1.0/1.0  
50/80  
LOAD VALUE HIGH/LOW  
20 mA/0.6 mA  
20 mA/0.6 mA  
20 mA/0.6 mA  
20 mA/0.6 mA  
20 mA/0.6 mA  
35 mA/60 mA  
35 mA/60 mA  
20 mA/0.6 mA  
20 mA/0.6 mA  
20 mA/0.6 mA  
20 mA/0.6 mA  
35 mA/60 mA  
35 mA/60 mA  
35 mA/60 mA  
REQ  
DRAM Request Input  
Clock Input  
CP  
PAGE  
Page Mode Select Input  
PRECHRG RAS Precharge Select Input  
HLDROW  
DTACK  
GNT  
Row Hold Select Input  
Data Transfer Ack. Output  
Access Grant Output  
50/80  
RCP  
Refresh Clock Input  
1.0/1.0  
1.0/1.0  
1.0/1.0  
1.0/1.0  
NA  
RA0–9  
CA0–9  
ALE  
Row Address Inputs  
Column Address Inputs  
Address Latch Enable Input  
Row Address Strobe Output  
Column Address Strobe Output  
DRAM Address Outputs  
RAS  
CAS  
NA  
MA0–9  
NOTES:  
NA  
One (1.0) FAST Unit Load is defined as 20 mA in the HIGH state and 0.6 mA in the LOW state.  
FAST Unit Loads do not correspond to DRAM Input Loads. See Functional Description for details.  
2
1999 Jan 08  
853–1406 20619  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
BLOCK DIAGRAM  
RAS  
CAS  
PAGE  
CP  
PRECHRG  
HLDROW  
RAS, CAS, MUX, DTACK  
TIMING  
DTACK  
REFRESH  
ARBITRATION  
REQ  
GNT  
BURST REFRESH MONITOR  
REFRESH ADDRESS COUNTER  
RCP  
RA0–9  
CA0–9  
ROW ADDRESS LATCH  
MULTIPLEXER  
MA0–9  
COLUMN ADDR. LATCH  
ALE  
SF01400  
DIP PIN CONFIGURATION  
PLCC PIN CONFIGURATION  
GNT  
REQ  
1
2
48  
47  
HLDROW  
PRECHRG  
RAS  
PAGE  
3
46 CP  
4
45  
44  
43  
42  
41  
40  
RCP  
RA0  
CA0  
5
CAS  
6
DTACK  
MA0  
6
5
4
3
2
1
44 43 42 41 40  
7
RA1  
CA1  
8
7
8
39  
38  
37  
36  
35  
CA0  
RA1  
CA1  
MA1  
MA0  
MA1  
MA2  
MA3  
GND  
9
RA2  
MA2  
9
10  
11  
39 CA2  
MA3  
10  
11  
RA2  
CA2  
38  
37  
36  
V
V
GND  
CC  
CC  
GND 12  
12  
34  
33  
32  
31  
30  
29  
GND  
V
CC  
13  
V
GND  
CC  
MA4 13  
RA3  
CA3  
RA4  
CA4  
14  
15  
16  
17  
35 RA3  
34  
GND  
MA4  
MA5  
MA6  
MA5  
MA6  
14  
15  
16  
17  
CA3  
33 RA4  
MA7  
MA8  
32  
CA4  
RA5  
MA7 18  
MA8 19  
31  
30  
29  
28  
27  
26  
25  
RA5  
CA5  
18 19 20 21 22 23 24 25 26 27 28  
20  
RA6  
CA6  
MA9  
21  
22  
23  
24  
ALE  
CA9  
RA9  
CA8  
RA7  
CA7  
RA8  
SF01401  
SF01402  
3
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
PIN DESCRIPTION  
PINS  
SYMBOL  
TYPE  
NAME AND FUNCTION  
DIP  
Active Low Memory Access Request input, must be asserted for the entire DRAM access cycle.  
REQ is sampled on the rising edge of the CP clock.  
REQ  
GNT  
48  
Input  
Output  
Input  
Active High Grant output. When High indicates that a DRAM access (inactive during refresh)  
cycle has begun. Asserted from the rising edge of the CP clock.  
1
Active Low Page-Mode Access input. Forces the IDC to keep RAS asserted for as long as the  
PAGE input is Low and REQ is asserted Low.  
PAGE  
47  
Row Address Hold input. If Low will configure the IDC to maintain the row addresses for a full  
CP clock cycle after RAS is asserted. If High will program the IDC to maintain row addresses for  
a 1/2 CP clock cycle after RAS is asserted.  
HLDROW  
2
3
Input  
Input  
RAS Precharge input. A Low will program the IDC to guarantee a minimum of 4 CP clock cycles  
of precharge. A High will guarantee 3 clock cycles of precharge.  
PRECHRG  
CP  
46  
45  
Input  
Input  
Clock input. Used by the Controller for all timing and arbitration functions.  
RCP  
Refresh Clock input. Divided internally by 64 to produce an internal Refresh Request.  
Active Low, 3-state Data Transfer Acknowledge output. Enabled by the REQ input and asserted  
four clock cycles after the assertion of RAS, 3-stated when REQ goes High.  
DTACK  
6
Output  
44, 42, 40,  
35, 33, 31,  
29, 27, 25,  
23  
RA0–9  
Inputs  
Row Address inputs.  
43, 41, 39,  
34, 32, 30,  
28, 26, 24,  
22  
Column Address inputs. Propagated to the MA0–9 outputs 1 CP clock cycle after RAS is  
asserted, if HLDROW = 0 or 1/2 clock cycle later if HLDROW is 1.  
CA0–9  
RAS  
Inputs  
Active Low Row Address Strobe. Asserted for four clock cycles during each refresh cycle  
regardless of the PAGE input. Also asserted for four clock cycles during processor access if the  
PAGE input is High. If PAGE is Low, RAS is negated upon negation of PAGE or REQ, whichever  
occurs first.  
4
5
Output  
Active Low Column Address Strobe. Always asserted 1.5 CP clock cycles after the assertion of  
RAS. Negated upon negation of REQ. HLDROW input pin does not affect RAS to CAS timing.  
CAS  
MA0–9  
ALE  
Output  
Output  
Input  
7–10,  
15–20  
DRAM multiplexed address outputs. Row and column addresses asserted on these pins during  
an access cycle. Refresh counter addresses presented on these outputs during refresh cycles.  
Active Low Address Latch Enable input. A Low on this pin will cause the address latches to be  
transparent. A High level will latch the RA0–9 and CA0–9 inputs.  
21  
V
36–38  
11–14  
+5V "10% Supply voltage.  
CC  
GND  
Ground  
4
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
FUNCTIONAL DESCRIPTION  
RAS precharge timing  
The 74F1763 1 Megabit Intelligent DRAM Controller (IDC) is a  
synchronous device with most signal timing being a function of the  
CP input clock.  
In order to meet the RAS precharge requirement of dynamic RAMs,  
the controller will hold-off a subsequent RAS signal assertion due to  
a processor access request or a refresh cycle for four or three full  
CP clock cycles from the previous negation of RAS, depending on  
the state of the PRECHRG input. If the PRECHRG input is Low,  
RAS remains High for at least 4 CP clock cycles. If the PRECHRG  
input is High RAS remains High for at least 3 CP clock cycles.  
Arbitration  
Once the DRAM’s RAS precharge time has been satisfied, the REQ  
input is sampled on each rising edge of the CP clock and an  
internally generated refresh request is sampled on each falling edge  
of the same clock. When only one of these requests is sampled as  
active the appropriate memory cycle will begin immediately. For a  
memory access cycle this will be indicated by GNT and RAS outputs  
both being asserted and for a refresh cycle by multiplexing refresh  
address to the MA0–9 outputs and subsequent assertion of RAS  
after 1/2CP clock cycle. If both memory access and refresh requests  
are active at a given time the request sampled first will begin  
immediately and the other request (if still asserted) will be serviced  
upon completion of the current cycle and it’s associated RAS  
precharge time.  
Refresh timing  
The refresh address counter wakes-up in an all 1’s state and is an  
up counter. The refresh clock (RCP) is internally divided down by 64  
to produce an internal refresh request. This refresh request is  
recognized either immediately or at the end of a running memory  
access cycle. Due to the possibility that page mode access cycles  
may be lengthy, the controller keeps track of how many refresh  
requests have been missed by logging them internally (up to 128)  
and servicing any pending refresh requests at the end of the  
memory access cycle. The controller performs RAS-only refresh  
cycles until all pending refresh requests are depleted.  
Memory access  
Page-mode access  
The row (RA0–9) and column (CA0–9) address inputs are latched  
when ALE input is High. When ALE is Low the input addresses  
propagate directly to the outputs. When GNT and RAS are asserted,  
after a REQ has been sampled the RA0–9 address inputs will have  
already propagated to the MA0–9 outputs for the row address. One  
or one-half CP clock cycles later (depending on the state of the  
HLDROW input) the column address (CA0–9) inputs are propagated  
to the MA0–9 outputs. CAS is always asserted one and one-half CP  
clock cycles after RAS is asserted. If the PAGE input is High, RAS  
will be negated approximately four CP clock cycles after its initial  
assertion. At this time the DTACK output becomes valid indicating  
the completion of a memory access cycle. The IDC will maintain the  
state of all its outputs until the REQ input is negated ( see timing  
waveforms).  
Fast accesses to consecutive locations of DRAM can be realized by  
asserting the PAGE input as shown in the timing waveforms. In this  
mode, the controller does not automatically negate RAS after four  
CP clock cycles, but keeps it asserted throughout the access cycle.  
By using external gates, the CAS output can be gated on and off  
while changing the column address inputs to the controller, which  
will propagate to the MA –MA address outputs and provide a new  
0
9
column address. This is only useful if the ALE input is Low, enabling  
the user to charge addresses. This mode can be used with DRAMs  
that support page or nibble mode addressing.  
Output driving characteristics  
Considering the transmission line characteristic of the DRAM arrays,  
the outputs of the IDC have been designed to provide incident-edge  
switching (in Dual-Inline-Packaged memory arrays), needed in high  
performance systems. For more information on the driving  
characteristics, please refer to Philips Semiconductors application  
note AN218. The driving characteristics of the 74F1763 are the  
same as those of the 74F765 shown in the application note.  
Row address hold times  
If the HLDROW input of the IDC is High the row address outputs will  
remain valid 1/2 CP clock cycle after RAS is asserted. If the  
HLDROW input is Low the row address outputs will remain valid one  
CP clock cycle after RAS is asserted.  
5
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
ABSOLUTE MAXIMUM RATINGS  
Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the  
operating free-air temperature range.  
SYMBOL  
PARAMETER  
RATING  
–0.5 to +7.0  
–0.5 to +7.0  
–30 to +5  
UNIT  
V
V
CC  
Supply voltage  
Input voltage  
Input current  
V
IN  
V
I
IN  
mA  
V
V
OUT  
Voltage applied to output in High output state  
Current applied to output in Low output state  
Operating free-air temperature range  
Storage temperature  
–0.5 to +V  
120  
CC  
I
mA  
_C  
_C  
OUT  
T
A
0 to +70  
T
STG  
–65 to +150  
RECOMMENDED OPERATION CONDITIONS  
LIMITS  
NOM  
5.0  
SYMBOL  
PARAMETER  
UNIT  
MIN  
4.5  
MAX  
V
CC  
Supply voltage  
5.5  
V
V
V
IH  
High-level input voltage  
Low-level input voltage  
Input clamp current  
High-level output current  
2.0  
V
0.8  
–18  
–15  
24  
V
IL  
IK  
I
mA  
mA  
mA  
_C  
1
I
OH  
1
I
OL  
Low-level output current  
Operating free-air temperature range  
T
A
0
70  
NOTE:  
1. Transient currents will exceed these values in actual operation.  
DC ELECTRICAL CHARACTERISTICS  
Over recommended operating free-air temperature range unless otherwise noted.  
LIMITS  
1
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
2
MIN  
2.5  
2.7  
2.4  
TYP  
MAX  
"10% V  
"5% V  
V
V
CC  
V
V
V
= MIN,  
= MAX,  
= MIN  
CC  
IL  
I
= –15 mA  
OH  
V
OH  
High-level output voltage  
3.4  
CC  
CC  
IH  
3
I
= –35 mA "5% V  
V
OH2  
"10% V  
"5% V  
0.35  
0.35  
0.50  
0.50  
0.80  
–1.2  
100  
V
CC  
V
V
V
= MIN,  
= MAX,  
= MIN  
CC  
IL  
I
= 24 mA  
OL  
V
Low-level output voltage  
V
OL  
CC  
CC  
IH  
4
I
= 60 mA  
"5% V  
0.35  
V
OL2  
V
Input clamp voltage  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= MIN, I = I  
IK  
–0.73  
V
IK  
I
I
Input current at maximum input voltage  
High-level input current  
= 0.0V, V = 7.0V  
mA  
mA  
mA  
mA  
mA  
I
I
I
IH  
= MAX, V = 2.7V  
20  
I
I
Low-level input current  
= MAX, V = 0.5V  
–0.6  
–225  
220  
IL  
I
5
I
I
Output current  
= MAX, V = 2.25V  
–100  
OS  
CC  
O
Supply current (total)  
= MAX  
NOTES:  
1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.  
2. All typical values are at V = 5V, T = 25_C.  
CC  
A
3. I  
4. I  
is transient current necessary to guarantee a Low to High transition in a 70W transmission line.  
is transient current necessary to guarantee a High to Low transition in a 70W transmission line.  
OH2  
OL2  
5. Not more than one output should be shorted at a time. For testing I , the use of high-speed test apparatus and/or sample-and-hold  
OS  
techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged  
shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In  
any sequence of parameter tests, I tests should be performed last.  
OS  
6
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
AC ELECTRICAL CHARACTERISTICS  
LIMITS  
MAX  
T
= 25_C  
T
V
= 0_C to +70_C  
= +5.0V "10%  
CC  
A
A
V
= +5.0V "10%  
TEST  
CONDITIONS  
CC  
NO  
PARAMETER  
UNIT  
C = 300pF  
C = 300pF  
L
L
R = 70W  
RL = 70W  
L
MIN  
10  
5
TYP  
MIN  
MAX  
1
2
3
4
5
6
7
8
9
CP clock period (tcp)  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP clock low time  
5
CP clock high time  
5
5
RCP clock period  
100  
10  
10  
4
100  
RCP clock low time  
10  
RCP clock high time  
Setup time REQ(#) to CP(")  
REQ High hold time after CP(")  
10  
2
4
1
0
0
2
REQ High pulse width  
1/2tcp + 5  
8.5  
1/2tcp + 5  
11  
1/2tcp + 5  
13.5  
1/2tcp + 5  
8.5  
1/2tcp + 5  
15.5  
10 Propagation delay CP(") to GNT  
High  
11  
Propagation delay REQ(") to GNT  
8.5  
10.5  
13  
8.5  
14  
ns  
Low  
12 ALE pulse width Low  
4
2
1
0
4
2
ns  
ns  
13 RA0–9, CA0–9 High or Low setup to  
ALE(")  
14 ALE(") to RA0–9, CA0–9 High or  
1
4
0
1
4
ns  
ns  
Low hold  
15 Propagation delay RA0–9, CA0–9  
ALE Low  
7.5  
11  
14  
3
High or Low to MA0–9  
16 Propagation delay ALE(#) to MA0–9  
17 Propagation delay CP(") to RAS(#)  
5.5  
8.5  
8.5  
13  
5.5  
8.5  
15  
14  
ns  
ns  
ns  
10.5  
12.5  
18 RAS(#) to MA0–9 (column address)  
HLDROW = 1  
HLDROW = 0  
PAGE = 1  
1/2tcp – 2  
1/2tcp + 2 1/2tcp + 5.5 1/2tcp – 2.5 1/2tcp + 7  
skew  
19 RAS(#) to MA0–9 (column address)  
1tcp – 2  
1tcp + 2  
1tcp + 5.5  
1tcp – 2.5  
1tcp + 7  
ns  
skew  
20 RAS(#) to RAS(") skew  
4tcp + 1.5  
12  
4tcp + 3.5  
14  
4tcp + 6  
16.5  
4tcp + 1  
12  
4tcp + 6.5  
18.5  
ns  
ns  
ns  
21 Propagation delay CP(") to RAS(")  
22 Propagation delay REQ(") to  
14.5  
17.5  
20  
14  
24  
4
RAS(")  
23 Propagation delay CP(#) to CAS(#)  
24 Propagation delay PAGE(") to  
6
8
10  
15  
6
11  
17  
ns  
ns  
10  
12.5  
10  
4
RAS(")  
25 RAS(#) to CAS(#) skew  
1.5tcp–4.5 1.5tcp–2.5 1.5tcp–0.5  
1.5tcp–5.5  
10  
1.5tcp  
17  
ns  
ns  
ns  
26 Propagation delay REQ(") to CAS(")  
10  
12  
15  
27 MA0–9 (column address) to CAS(#)  
1tcp – 8  
1tcp – 4  
1tcp – 0.5  
1tcp – 9  
1tcp – 0.5  
skew  
28 MA0–9 (column address) to CAS(#)  
HLDROW = 0  
1/2tcp – 8  
2
1/2tcp – 4 1/2tcp – 0.5 1/2tcp – 9 1/2tcp – 0.5  
ns  
ns  
skew  
29 Set-up time PAGE(#) to CP(")  
2
7
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
AC ELECTRICAL CHARACTERISTICS (Continued)  
LIMITS  
T
= 25_C  
T
V
= 0_C TO +70_C  
= +5.0V "10%  
CC  
A
A
V
CC  
= +5.0V "10%  
TEST  
CONDITIONS  
NO  
PARAMETER  
UNIT  
C = 300pF  
R = 70W  
L
C = 300pF  
RL = 70W  
L
L
MIN  
TYP  
MAX  
MIN  
MAX  
30 Propagation delay REQ(#) to  
DTACK(")  
6
8
11.5  
6
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
31 Propagation delay CP(") to  
DTACK(#)  
7.5  
9
9.5  
12  
12  
13  
7.5  
9
13  
32 Propagation delay REQ(") to  
15.5  
DTACK (3-state)  
33 MA0–9 (refresh address) to  
1/2tcp – 5  
1tcp – 2  
4tcp – 6  
3tcp – 6  
1/2tcp – 6.5  
1tcp – 2.5  
4tcp – 6.5  
3tcp + 1  
RAS(#) skew  
34 RAS(#) to MA0–9 (refresh  
address) skew  
35 RAS(") to RAS(#) skew  
PRECHRG = 0  
PRECHRG = 1  
4tcp – 3.5  
3tcp – 3.5  
4tcp – 1.5  
3tcp – 1.5  
4tcp – 6.5  
3tcp – 6.5  
(precharge)  
36 RAS(") to RAS(#) skew  
(precharge)  
NOTES:  
1. REQ High hold means that, if REQ is High at the rising clock edge, it is guaranteed that the REQ input was not sampled as Low.  
2. A 50% duty cycle clock is recommended. If the duty cycle of the clock is not 50%, REQ should be held high for enough time such that a  
falling CP clock edge samples REQ as High. This is to ensure that refresh cycles don’t get locked-up.  
3. When ALE is Low, the address input latches are in the transparent mode and therefore any changes in the address inputs will be propagated  
to the MA0–9 outputs. Figure 2 illustrates RA0–9 inputs propagating to the MA0–9 outputs, but later in the cycle, if ALE is still Low when the  
CA0–9 inputs are multiplexed to the MA0–9 outputs the CA0–9 inputs will be in the transparent mode.  
4. If PAGE is High and REQ is Low, RAS is automatically negated after approximately 4 CP clock cycles. If PAGE is Low and REQ is also Low,  
RAS will be negated when PAGE goes High. RAS will always be negated when REQ goes High regardless of the state of PAGE input.  
TIMING DIAGRAMS  
1
3
CP  
2
4
6
RCP  
5
SF01403  
Figure 1. Clock cycle timing  
8
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
TIMING DIAGRAMS (Continued)  
CP  
8
9
7
REQ  
11  
10  
GNT  
ALE  
12  
14  
13  
VALID  
ADDRESS  
NOTE 1  
RA0–9,  
CA0–9  
15  
HLDROW = 0  
16  
HLDROW = 1  
VALID ROW ADDRESS  
NOTE 2  
VALID COLUMN ADDRESS  
21  
MA0–9  
RAS  
18  
17  
22  
19  
20  
23  
24  
26  
PAGE = 1  
25  
CAS  
28  
27  
29  
NOTE 3  
PAGE  
31  
30  
32  
3-STATE  
DTACK  
3-STATE  
NOTE 1: If the RA0–9 and CA0–9 address inputs are not latched, RA0–9 inputs should remain valid until row address hold time is met and CA0–9 inputs should remain valid until column  
address hold time is met.  
NOTE 2: MA0–9 outputs will contain the present row address on the RA0–RA9 inputs or the last row address latched into the device.  
NOTE 3: PAGE input may be asserted anytime before this rising clock edge in order to hold RAS low.  
SF01404  
Figure 2. Memory access cycle timing  
9
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
TIMING DIAGRAMS (Continued)  
CP  
REQ  
GNT  
ALE  
NOTE 1  
NOTE 2  
NOTE 3  
RA0–9,  
CA0–9  
PRECHRG = 1  
PRECHRG = 0  
REFRESH  
ADDR.  
REFRESH  
ADDR.  
MA0–9  
NEXT REFRESH ADDRESS  
NOTE 4  
33  
33  
34  
34  
35  
20  
36  
20  
RAS  
PRECHRG = 1  
PRECHRG = 0  
PRECHRG = 1  
PRECHRG = 0  
CAS  
DTACK  
3-STATE  
NOTE 1: REQ input is a don’t care during a memory refresh cycle. If REQ is asserted during a refresh cycle, it will be recognized at the first rising CP clock edge, following the refresh  
cycle and its associated RAS precharge time (see Figure 4).  
NOTE 2: RA0–9 and CA0–9 address inputs may be latched at anytime during a memory refresh cycle. However, a memory access cycle will not begin until after the completion of the  
refresh cycle.  
NOTE 3: RA0–9 and CA0–9 if in the transparent mode do not propogate to the MA0–9 outputs during a refresh cycle.  
NOTE 4: MA0–9 output will contain the present row address on the RA0–RA9 inputs or the last row address latched into the device.  
SF01405  
Figure 3. Refresh cycle timing following a memory access cycle  
10  
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
TIMING DIAGRAMS (Continued)  
CP  
8
9
7
REQ  
GNT  
11  
10  
ALE  
12  
14  
13  
VALID  
ADDRESS  
NOTE 1  
RA0–9,  
CA0–9  
15  
HLDROW = 0  
16  
HLDROW = 1  
REFRESH  
ADDRESS  
REFRESH  
ADDRESS  
VALID ROW ADDRESS  
NOTE 2  
VALID COLUMN ADDRESS  
MA0–9  
RAS  
18  
PRECHRG = 0  
PRECHRG = 1  
17  
22  
21  
19  
20  
23  
36  
24  
26  
PAGE = 1  
35  
25  
CAS  
28  
27  
29  
NOTE 3  
PAGE  
31  
30  
32  
3-STATE  
DTACK  
3-STATE  
NOTE 1: If the RA0–9 and CA0–9 address inputs are not latched, RA0–9 inputs should remain valid until row address hold time is met and CA0–9 inputs should remain valid until column  
address hold time is met.  
NOTE 2: MA0–9 outputs will contain the present row address on the RA0–RA9 inputs or the last row address latched into the device.  
NOTE 3: PAGE input may be asserted anytime before this rising clock edge in order to hold RAS low.  
SF01406  
Figure 4. Memory access cycle timing following a refresh cycle  
11  
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
PU  
1, 7, 9, 10  
F160A  
Q0  
33.34 MHz  
CP  
Q2  
16.67 MHz  
CPU CLOCK  
CP  
RCP  
PU  
D
C
Q
D
C
PRECHRG  
RAS  
CAS  
RAS  
Q
HLROW  
74F1763  
DRAM  
CONTROLLER  
REQ  
MEMORY  
SELECT  
(FROM ADDRESS DECODER  
PAGE  
AS  
ALE  
A3  
A2  
CA9  
RA9  
MA0–MA9  
MA0–MA9  
A4–A12  
RA0–8  
CA0–8  
A13–A21  
CAS0  
CAS1  
A0  
A1  
PLD  
10  
CAS2  
CAS3  
SIZ0  
SIZ1  
STERM  
D
C
Q
Q
DS  
CP  
Q3  
F164  
MR  
CBACK  
CBREQ  
DSACK0  
D
Q
DSACK1  
C
SF01407  
Figure 5. 16.67 MHz 68030 interface with 74F1763 for cache burst mode support using 4Mbytes of 100nsec. nibble-mode DRAMs  
(Four 32 bit words read to or written from cache in only clock cycles  
12  
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
TEST CIRCUIT AND WAVEFORMS  
t
w
AMP (V)  
90%  
V
CC  
90%  
NEGATIVE  
PULSE  
V
V
M
M
10%  
10%  
V
V
OUT  
IN  
0V  
R
L
PULSE  
GENERATOR  
D.U.T.  
t
t )  
t
t )  
THL ( f  
TLH ( r  
R
C
L
t
t )  
T
t
t )  
TLH ( r  
THL ( f  
AMP (V)  
90%  
M
90%  
POSITIVE  
PULSE  
V
V
M
10%  
10%  
0V  
Test Circuit Simulating RAM Boards  
DEFINITIONS:  
t
w
Input Pulse Definition  
INPUT PULSE REQUIREMENTS  
R
C
=
=
Load resistor; see AC CHARACTERISTICS for value.  
Load capacitance includes jig and probe capacitance;  
see AC CHARACTERISTICS for value.  
L
L
Family  
V
Rep. Rate  
t
t
t
Amplitude  
M
R
T
=
Termination resistance should be equal to Z  
pulse generators.  
of  
w
TLH  
THL  
OUT  
2.5ns 2.5ns  
74F  
3.0V  
1.5V  
1MHz  
500ns  
SF01408  
13  
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
DIP48: plastic dual in-line package; 48 leads (600 mil)  
SOT240-1  
14  
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
NOTES  
15  
1999 Jan 08  
Philips Semiconductors  
Product specification  
Intelligent DRAM controller (IDC)  
74F1763  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1999  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 02-99  
Document order number:  
9397-750-05195  
Philips  
Semiconductors  

相关型号:

74F1764-1A

1MX1, DRAM CONTROLLER, PQCC44
NXP

74F1764-1N

IC 1M X 1, DRAM CONTROLLER, PDIP48, Memory Controller
NXP

74F1764A

DRAM Controller, 1M X 1, Bipolar, PQCC44
NXP

74F1764N

1MX1, DRAM CONTROLLER, PDIP48
NXP

74F1765-1A

IC 1M X 1, DRAM CONTROLLER, PQCC44, Memory Controller
NXP

74F1765-1N

IC 1M X 1, DRAM CONTROLLER, PDIP48, Memory Controller
NXP

74F1765N

DRAM Controller, 1M X 1, Bipolar, PDIP48
NXP

74F1779

8-bit bidirectional binary counter -State
NXP

74F1779D

Binary Counter, F/FAST Series, Synchronous, Positive Edge Triggered, 8-Bit, Bidirectional, TTL, PDSO16,
YAGEO

74F1779D-T

Binary Counter, F/FAST Series, Synchronous, Positive Edge Triggered, 8-Bit, Bidirectional, TTL, PDSO16,
YAGEO

74F1779N

Binary Counter, F/FAST Series, Synchronous, Positive Edge Triggered, 8-Bit, Bidirectional, TTL, PDIP16
YAGEO

74F1804

Hex 2-input NAND drivers
NXP