74HC2G14 [NXP]

Inverting Schmitt-triggers; 施密特触发器
74HC2G14
型号: 74HC2G14
厂家: NXP    NXP
描述:

Inverting Schmitt-triggers
施密特触发器

触发器
文件: 总17页 (文件大小:75K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
74HC2G14; 74HCT2G14  
Inverting Schmitt-triggers  
Preliminary specification  
2003 May 1  
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
FEATURES  
Monostable multivibrators  
Output capability: standard.  
Wide supply voltage range from 2.0 to 6.0 V  
High noise immunity  
DESCRIPTION  
Low power dissipation  
The 74HC2G/HCT2G14 is a high-speed Si-gate CMOS  
device.  
Balanced propagation delays  
Unlimited input rise and fall times  
Very small 6 pins package.  
The 74HC2G/HCT2G14 provides two inverting buffers  
with Schmitt-trigger action. This device is capable of  
transforming slowly changing input signals into sharply  
defined, jitter-free output signals.  
APPLICATIONS  
Wave and pulse shapers for highly noisy environments  
Astable multivibrators  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C; tr = tf 6.0 ns.  
TYPICAL  
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
ns  
HC2G  
HCT2G  
tPHL/tPLH propagation delay nA to nY  
CL = 50 pF; VCC = 4.5 V  
16  
2
21  
2
CI  
input capacitance  
pF  
pF  
CPD  
power dissipation capacitance  
notes 1 and 2  
10  
10  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW).  
PD = CPD × VCC2 × fi × N + (CL × VCC2 × fo) where:  
fi = input frequency in MHz; fo = output frequency in MHz;  
CL = output load capacitance in pF;  
VCC = supply voltage in Volts;  
N = total switching outputs;  
(CL × VCC2 × fo) = sum of outputs.  
2. For HC2G the condition is VI = GND to VCC  
.
For HCT2G the condition is VI = GND to VCC 1.5 V.  
FUNCTION TABLE  
See note 1.  
INPUTS  
nA  
OUTPUTS  
nY  
L
H
L
H
Note  
1. H = HIGH voltage level;  
L = LOW voltage level.  
2003 May 1  
2
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
ORDERING INFORMATION  
TYPE NUMBER  
PACKAGES  
TEMPERATURE RANGE PINS PACKAGE MATERIAL  
CODE  
MARKING  
74HC2G14GW  
74HC2G14GV  
74HCT2G14GW  
74HCT2G14GV  
40 to +125 °C  
40 to +125 °C  
40 to +125 °C  
40 to +125 °C  
6
6
6
6
SC-88  
SC-74  
SC-88  
SC-74  
plastic  
plastic  
plastic  
plastic  
SOT363  
SOT457  
SOT363  
SOT457  
HK  
H14  
TK  
T14  
PINNING  
PIN  
SYMBOL  
1A to 2A  
DESCRIPTION  
1, 3  
2
data input  
GND  
ground (0 V)  
4, 6  
8
2Y to 1Y  
VCC  
data output  
DC supply voltage  
1A  
1
1Y  
2Y  
1
2
3
1A  
GND  
2A  
6
5
4
1Y  
V
6
4
14  
CC  
2A  
3
2Y  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
1A  
2A  
1Y  
2Y  
6
4
1
3
Fig.3 IEC logic symbol.  
Fig.4 Logic diagram (one driver).  
2003 May 1  
3
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
RECOMMENDED OPERATING CONDITIONS  
74HC2G14  
74HCT2G14  
UNIT  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
2.0  
TYP. MAX. MIN.  
TYP. MAX.  
VCC  
VI  
5.0  
6.0  
4.5  
0
5.0  
5.5  
V
V
V
input voltage  
0
VCC  
VCC  
VCC  
VCC  
VO  
output voltage  
0
0
Tamb  
operating ambient  
temperature  
see DC and AC  
characteristics per  
device  
40  
+25  
+125 40  
+25  
+125 °C  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).  
SYMBOL  
VCC  
IIK  
PARAMETER  
supply voltage  
CONDITIONS  
MIN. MAX. UNIT  
0.5  
+7.0  
±20  
±20  
25  
V
input diode current  
VI < 0.5 V or VI > VCC + 0.5 V; note 1  
VO < 0.5 V or VO > VCC + 0.5 V; note 1  
0.5 V < VO < VCC + 0.5 V; note 1  
note 1  
mA  
mA  
mA  
mA  
IOK  
output diode current  
IO  
output source or sink current  
VCC or GND current  
ICC  
50  
Tstg  
PD  
storage temperature  
65  
+150 °C  
300 mW  
power dissipation per package  
for temperature range from 40 to +125 °C;  
note 2  
Notes  
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
2. Above 110 °C the value of PD derates linearly with 8 mW/K.  
2003 May 1  
4
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
DC CHARACTERISTICS  
Type 74HC2G14  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
TEST CONDITIONS Tamb (°C)  
40 to +85 40 to +125 UNIT  
MIN. TYP.(1) MAX. MIN. MAX. MIN. MAX.  
SYMBOL  
PARAMETER  
+25  
OTHER  
VCC (V)  
VOH  
HIGH-level  
output voltage  
VI = VIH or VIL:  
IO = 20 µA  
2.0  
4.5  
6.0  
4.5  
6.0  
2.0  
4.5  
6.0  
4.5  
6.0  
1.9  
4.4  
5.9  
2.0  
4.5  
6.0  
1.9  
4.4  
5.9  
4.13  
5.63  
1.9  
4.4  
5.9  
3.7  
5.2  
V
V
V
V
V
V
V
V
V
V
VI = VIH or VIL:  
IO = 20 µA  
VI = VIH or VIL:  
IO = 20 µA  
VI = VIH or VIL;  
IO = 4.0 mA  
4.18 4.32  
5.68 5.81  
VI = VIH or VIL;  
IO = 5.2 mA  
VOL  
LOW-level output VI = VIH or VIL;  
voltage  
0
0.1  
0.1  
0.1  
0.26  
0.26  
±0.1  
1.0  
0.1  
0.1  
0.1  
0.33  
0.33  
±1.0  
10  
0.1  
0.1  
0.1  
0.4  
0.4  
IO = 20 µA  
VI = VIH or VIL;  
IO = 20 µA  
0
VI = VIH or VIL;  
IO = 20 µA  
0
VI = VIH or VIL;  
IO = 4.0 mA  
0.15  
0.16  
VI = VIH or VIL;  
IO = 5.2 mA  
II  
input leakage  
current  
VI = VCC or GND 6.0  
±1.0 µA  
20 µA  
ICC  
quiescent supply VI = VCC or GND; 6.0  
current IO = 0  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2003 May 1  
5
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
Type 74HCT2G14  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
TEST CONDITIONS Tamb (°C)  
40 to +85 40 to +125 UNIT  
MIN. TYP.(1) MAX. MIN. MAX. MIN. MAX.  
SYMBOL PARAMETER  
+25  
OTHER  
VCC (V)  
VOH  
HIGH-level  
output voltage  
VI = VIH or VIL;  
IO = 20 µA  
4.5  
4.5  
4.5  
4.5  
4.4  
4.5  
4.4  
4.13  
4.4  
3.7  
V
V
V
V
VI = VIH or VIL;  
IO = 4.0 mA  
4.18 4.32  
VOL  
LOW-leveloutput VI = VIH or VIL;  
voltage  
0
0.1  
0.26  
±0.1  
1.0  
300  
0.1  
0.33  
±1.0  
10  
0.1  
0.4  
IO = 20 µA  
VI = VIH or VIL;  
IO = 4.0 mA  
0.15  
II  
input leakage  
current  
VI = VCC or GND 5.5  
±1.0 µA  
ICC  
ICC  
quiescent supply VI = VCC or GND; 5.5  
current IO = 0  
20  
µA  
µA  
additional supply VI = VCC 2.1 V; 4.5 to 5.5 −  
375  
410  
current per input IO = 0  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2003 May 1  
6
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
TRANSFER CHARACTERISTICS  
Type 74HC2G14  
Over recommended operating conditions; voltage are referenced to GND (ground = 0 V).  
TEST CONDITIONS Tamb (°C)  
40 to +85 40 to +125 UNIT  
MIN. TYP.(1) MAX. MIN. MAX. MIN. MAX.  
SYMBOL  
PARAMETER  
+25  
VCC  
(V)  
WAVEFORMS  
Vt+  
positive going  
threshold  
see Figs. 5 and 6 2.0  
1.0  
2.3  
3.0  
0.3  
1.18  
2.6  
1.5  
1.0  
1.5  
1.0  
1.5  
3.15  
4.2  
V
V
V
V
V
V
V
V
V
4.5  
6.0  
3.15 2.3  
3.15 2.3  
3.46  
0.6  
4.2  
0.9  
2.0  
2.6  
1.0  
1.4  
1.7  
3.0  
0.3  
4.2  
0.9  
3.0  
0.3  
Vt  
negative going see Figs. 5 and 6 2.0  
threshold  
0.9  
4.5  
1.13 1.47  
1.13 2.0  
1.13 2.0  
6.0  
1.5  
0.3  
0.6  
0.8  
2.06  
0.6  
1.5  
0.3  
0.6  
0.8  
2.6  
1.0  
1.4  
1.7  
1.5  
0.3  
0.6  
0.8  
2.6  
1.0  
1.4  
1.7  
Vh  
hysteresis  
(Vt+ - Vt)  
see Figs. 5 and 6 2.0  
4.5  
6.0  
1.13  
1.40  
Note  
1. All typical values are measured at Tamb = 25 °C.  
Type 74HCT2G14  
Over recommended operating conditions; voltage are referenced to GND (ground = 0 V).  
TEST CONDITIONS Tamb (°C)  
40 to +85 40 to +125 UNIT  
MIN. TYP.(1) MAX. MIN. MAX. MIN. MAX.  
SYMBOL  
PARAMETER  
+25  
VCC  
(V)  
OTHER  
Vt+  
positive going  
threshold  
see Figs. 5 and 6 4.5  
5.5  
1.2  
1.4  
0.5  
0.6  
0.4  
0.4  
1.58  
1.78  
0.87  
1.11  
0.71  
0.67  
1.9  
2.1  
1.2  
1.4  
1.2  
1.4  
0.5  
0.6  
0.4  
0.4  
1.9  
2.1  
1.2  
1.4  
1.2  
1.4  
0.5  
0.6  
0.4  
0.4  
1.9  
2.1  
1.2  
1.4  
V
V
V
V
V
V
Vt−  
Vh  
negative going see Figs. 5 and 6 4.5  
threshold  
5.5  
hysteresis  
(Vt+ - Vt)  
see Figs. 5 and 6 4.5  
5.5  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2003 May 1  
7
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
TRANSFER CHARACTERISTIC WAVEFORMS  
handbook, halfpage  
V
T+  
handbook, halfpage  
V
I
V
V
H
O
V
T−  
V
O
MNA027  
V
V
I
H
V
V
T+  
T−  
MNA026  
Fig.6 The definitions of VT+, VTand VH; where  
T+ and VTare between limits of 20% and  
70%.  
V
Fig.5 Transfer characteristic.  
MNA028  
MNA029  
100  
1.0  
handbook, halfpage  
handbook, halfpage  
I
CC  
(mA)  
I
CC  
0.8  
(µA)  
0.6  
0.4  
0.2  
50  
0
0
0
0
1.0  
2.0  
2.5  
5.0  
V (V)  
I
V (V)  
I
Fig.7 Typical HC2G transfer characteristics;  
VCC = 2.0 V.  
Fig.8 Typical HC2G transfer characteristics;  
VCC = 4.5 V.  
2003 May 1  
8
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
MNA030  
1.6  
handbook, halfpage  
I
CC  
(mA)  
0.8  
0
0
3.0  
6.0  
V (V)  
I
Fig.9 Typical HC2G transfer characteristics;  
VCC = 6.0 V.  
MNA031  
2.0  
MNA032  
handbook, halfpage  
3.0  
handbook, halfpage  
I
I
CC  
CC  
(mA)  
(mA)  
2.0  
1.0  
1.0  
0
0
0
0
2.5  
5.0  
V (V)  
I
3.0  
6.0  
V (V)  
I
Fig.10 Typical HCT2G transfer characteristics;  
VCC = 4.5 V.  
Fig.11 Typical HCT2G transfer characteristics;  
VCC = 5.5 V.  
2003 May 1  
9
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
AC CHARACTERISTICS  
Type 74HC2G14  
GND = 0 V; tr = tf 6.0 ns; CL = 50 pF.  
TEST CONDITIONS  
Tamb (°C)  
SYMBOL  
PARAMETER  
+25  
40 to +85 40 to +125 UNIT  
VCC  
(V)  
WAVEFORMS  
MIN. TYP.(1) MAX. MIN. MAX. MIN. MAX.  
t
PHL/tPLH propagation delay see Figs 12 and 13 2.0  
53  
16  
13  
20  
7
125  
25  
21  
75  
15  
13  
155  
31  
26  
95  
19  
16  
190 ns  
38 ns  
32 ns  
110 ns  
22 ns  
19 ns  
nA to nY  
4.5  
6.0  
tTHL/tTLH output transition  
time  
see Figs 12 and 13 2.0  
4.5  
6.0  
5
Note  
1. All typical values are measured at Tamb = 25 °C.  
Type 74HCT2G14  
GND = 0 V; tr = tf 6.0 ns; CL = 50 pF.  
TEST CONDITIONS  
Tamb (°C)  
SYMBOL  
PARAMETER  
+25  
40 to +85 40 to +125 UNIT  
VCC  
(V)  
WAVEFORMS  
MIN. TYP.(1) MAX. MIN. MAX. MIN. MAX.  
tPHL/tPLH propagation delay see Figs 12 and 13 4.5  
nA to nY  
21  
32  
40  
48 ns  
tTHL/tTLH output transition  
time  
see Figs 12 and 13 4.5  
6
15  
19  
22 ns  
Note  
1. All typical values are measured at Tamb = 25 °C.  
2003 May 1  
10  
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
AC WAVEFORMS  
V
handbook, halfpage  
I
V
V
M
nA input  
M
GND  
t
t
PHL  
PLH  
V
OH  
90%  
V
V
nY output  
M
M
10%  
V
OL  
t
t
TLH  
MNA722  
THL  
For HC2G: VM = 50%; VI = GND to VCC  
.
For HCT2G: VM = 1.3 V; VI = GND to 3.0 V.  
Fig.12 The input (nA) to output (nY) propagation delays and output transition times.  
S1  
V
CC  
open  
V
CC  
GND  
R
=
L
1 kΩ  
V
V
O
I
PULSE  
GENERATOR  
D.U.T.  
C
50 pF  
=
L
R
T
MNA742  
TEST  
S1  
tPLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
open  
VCC  
Definitions for test circuit:  
CL = load capacitance including jig and probe capacitance (see “AC characteristics”).  
GND  
RT = termination resistance should be equal to the output impedance Zo of the pulse generator.  
Fig.13 Load circuitry for switching times.  
11  
2003 May 1  
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
APPLICATION INFORMATION  
The slow input rise and fall times cause additional power  
dissipation, this can be calculated using the following  
formula:  
MNA036  
200  
handbook, halfpage  
I
CC(AV)  
(µA)  
Pad = fi × (tr × ICCa + tf × ICCa) × VCC  
Where:  
150  
Pad = additional power dissipation (µW)  
fi = input frequency (MHz)  
positive-going  
edge  
100  
50  
tr = input rise time (ns); 10% to 90%  
tf = input fall time (ns); 90% to 10%  
ICCa = average additional supply current (µA).  
Average ICCa differs with positive or negative input  
transitions, as shown in Fig.14 and Fig.15.  
negative-going  
edge  
HC2G14/HCT2G14 used in relaxation oscillator circuit,  
see Fig.16.  
0
0
2.0  
4.0  
6.0  
V
(V)  
CC  
Note to the application information:  
1. All values given are typical unless otherwise  
specified.  
Fig.14 Average ICC for HC Schmitt-trigger devices;  
linear change of VI between  
0.1VCC to 0.9VCC  
.
MNA058  
200  
handbook, halfpage  
I
CC(AV)  
(µA)  
R
handbook, halfpage  
150  
positive-going  
edge  
C
100  
MNA035  
negative-going  
50  
edge  
1
T
1
0
For HC2G: f =  
--- -----------------------  
0.8 × RC  
0
2
4
6
V
(V)  
CC  
1
T
1
For HCT2G: f =  
--- --------------------------  
0.67 × RC  
Fig.15 Average ICC for HCT Schmitt-trigger  
devices; linear change of VI between  
Fig.16 Relaxation oscillator using the  
HC2G/HCT2G14.  
0.1VCC to 0.9VCC  
.
2003 May 1  
12  
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
PACKAGE OUTLINE  
Plastic surface mounted package; 6 leads  
SOT363  
D
B
E
A
X
y
H
v
M
A
E
6
5
4
Q
pin 1  
index  
A
A
1
1
2
3
c
e
1
b
p
L
p
w
M B  
e
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
1
UNIT  
A
b
c
D
E
e
e
H
L
Q
v
w
y
p
p
1
E
max  
0.30  
0.20  
1.1  
0.8  
0.25  
0.10  
2.2  
1.8  
1.35  
1.15  
2.2  
2.0  
0.45  
0.15  
0.25  
0.15  
mm  
0.1  
1.3  
0.65  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
EIAJ  
97-02-28  
SOT363  
SC-88  
2003 May 1  
13  
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
Plastic surface mounted package; 6 leads  
SOT457  
D
B
E
A
X
y
H
v
M
A
E
6
5
4
Q
pin 1  
index  
A
A
1
c
1
2
3
L
p
e
b
p
w
M B  
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
UNIT  
A
A
1
b
c
D
E
e
H
L
Q
v
w
y
p
p
E
0.1  
0.013  
0.40  
0.25  
1.1  
0.9  
0.26  
0.10  
3.1  
2.7  
1.7  
1.3  
3.0  
2.5  
0.6  
0.2  
0.33  
0.23  
mm  
0.95  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
EIAJ  
97-02-28  
01-05-04  
SOT457  
SC-74  
2003 May 1  
14  
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by  
a smooth laminar wave.  
This text gives a very brief insight to a complex  
technology. A more in-depth account of soldering ICs can  
be found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine  
pitch SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package  
placement.  
For packages with leads on four sides, the footprint  
must be placed at a 45° angle to the transport direction  
of the printed-circuit board. The footprint must  
incorporate solder thieves downstream and at the side  
corners.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package  
must be fixed with a droplet of adhesive. The adhesive  
can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit  
boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2003 May 1  
15  
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(1)  
not suitable suitable  
PACKAGE  
BGA, HBGA, LFBGA, SQFP, TFBGA  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS  
PLCC(3), SO, SOJ  
not suitable(2)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2003 May 1  
16  
Philips Semiconductors  
Preliminary specification  
Inverting Schmitt-triggers  
74HC2G14; 74HCT2G14  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS  
STATUS  
DEFINITIONS (1)  
Objective specification  
Development This data sheet contains the design target or goal specifications for  
product development. Specification may change in any manner without  
notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to  
make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors  
reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Note  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury.  
Philips Semiconductors customers using or selling these  
products for use in such applications do so at their own  
risk and agree to fully indemnify Philips Semiconductors  
for any damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in  
the Characteristics sections of the specification is not  
implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or  
title under any patent, copyright, or mask work right to  
these products, and makes no representations or  
warranties that these products are free from patent,  
copyright, or mask work right infringement, unless  
otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will  
be suitable for the specified use without further testing or  
modification.  
2003 May 1  
17  

相关型号:

74HC2G14-Q100

Dual inverting Schmitt trigger
NEXPERIA

74HC2G14GV

Inverting Schmitt-triggers
NXP

74HC2G14GV

Dual inverting Schmitt triggerProduction
NEXPERIA

74HC2G14GV-Q100

Dual inverting Schmitt trigger
NEXPERIA

74HC2G14GV-Q100,125

Inverter, HC/UH Series, 2-Func, 1-Input, CMOS, PDSO6
NXP

74HC2G14GW

Inverting Schmitt-triggers
NXP

74HC2G14GW

Dual inverting Schmitt triggerProduction
NEXPERIA

74HC2G14GW,125

74HC(T)2G14 - Dual inverting Schmitt trigger TSSOP 6-Pin
NXP

74HC2G14GW-G

IC HC/UH SERIES, DUAL 1-INPUT INVERT GATE, PDSO6, PLASTIC, SOT-363, SC-88, 6 PIN, Gate
NXP

74HC2G14GW-Q100

IC INVERT GATE, Gate
NXP

74HC2G14GW-Q100

Dual inverting Schmitt trigger
NEXPERIA

74HC2G16

Dual buffer gate
NEXPERIA