74HCT4516DB [NXP]

Binary up/down counter; 二进制加/减计数器
74HCT4516DB
型号: 74HCT4516DB
厂家: NXP    NXP
描述:

Binary up/down counter
二进制加/减计数器

计数器 触发器 逻辑集成电路 光电二极管 输出元件
文件: 总14页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
For a complete data sheet, please also download:  
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines  
74HC/HCT4516  
Binary up/down counter  
December 1990  
Product specification  
File under Integrated Circuits, IC06  
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
parallel load input (PL), four parallel inputs (D0 to D3), four  
parallel outputs (Q0 to Q3), an active LOW terminal count  
output (TC), and an overriding asynchronous master reset  
input (MR).  
FEATURES  
Output capability: standard  
ICC category: MSI  
Information on D0 to D3 is loaded into the counter while PL  
is HIGH, independent of all other input conditions except  
the MR input, which must be LOW. When PL and CE are  
LOW, the counter changes on the LOW-to-HIGH transition  
of CP. UP/DN determines the direction of the count, HIGH  
for counting up, LOW for counting down. When counting  
up, TC is LOW when Q0 to Q3 are HIGH and CE is LOW.  
When counting down, TC is LOW when Q0 to Q3 and CE  
are LOW. A HIGH on MR resets the counter (Q0 to  
GENERAL DESCRIPTION  
The 74HC/HCT4516 are high-speed Si-gate CMOS  
devices and are pin compatible with the “4516” of the  
“4000B” series. They are specified in compliance with  
JEDEC standard no. 7A.  
The 74HC/HCT4516 are edge-triggered synchronous  
up/down 4-bit binary counters with a clock input (CP), an  
up/down count control input (UP/DN), an active LOW  
count enable input (CE), an asynchronous active HIGH  
Q3 = LOW) independent of all other input conditions.  
Logic equation for terminal count:  
TC = CE . {(UP/DN) . Q0 . Q1 . Q2 . Q3 + (UP DN) . Q0 . Q1 . Q2 . Q3}  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns  
TYPICAL  
HC HCT  
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
ns  
t
PHL/ tPLH  
propagation delay CP to Qn  
maximum clock frequency  
input capacitance  
19  
45  
3.5  
59  
19  
57  
3.5  
61  
CL = 15 pF; VCC = 5 V  
fmax  
CI  
MHz  
pF  
CPD  
power dissipation capacitance per package  
notes 1 and 2  
pF  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW):  
PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fo) where:  
fi = input frequency in MHz  
fo = output frequency in MHz  
(CL × VCC2 × fo) = sum of outputs  
CL = output load capacitance in pF  
VCC = supply voltage in V  
2. For HC the condition is VI = GND to VCC  
For HCT the condition is VI = GND to VCC 1.5 V  
ORDERING INFORMATION  
See “74HC/HCT/HCU/HCMOS Logic Package Information”.  
December 1990  
2
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
PIN DESCRIPTION  
PIN NO.  
SYMBOL  
PL  
NAME AND FUNCTION  
1
parallel load input (active HIGH)  
parallel inputs  
4, 12, 13, 3  
D0 to D3  
CE  
5
count enable input (active LOW)  
parallel outputs  
6, 11, 14, 2  
Q0 to Q3  
TC  
7
terminal count output (active LOW)  
ground (0 V)  
8
GND  
MR  
9
asynchronous master reset input (active HIGH)  
up/down control input  
10  
15  
16  
UP/DN  
CP  
clock input (LOW-to-HIGH, edge-triggered)  
positive supply voltage  
VCC  
Fig.2  
Fig.3 IEC logic symbol.  
Fig.1 Pin configuration.  
December 1990  
3
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
FUNCTION TABLE  
MR PL UP/DN  
CE  
CP  
MODE  
L
L
L
L
H
X
X
L
H
X
X
H
L
L
X
X
X
X
parallel load  
no change  
count down  
count up  
L
L
L
X
H
reset  
Notes  
1. H = HIGH voltage level  
L = LOW voltage level  
X = don’t care  
= LOW-to-HIGH clock transition  
Fig.4 Functional diagram.  
Fig.5 Timing diagram.  
December 1990  
4
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
Fig.6 Logic diagram.  
December 1990  
5
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
DC CHARACTERISTICS FOR 74HC  
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.  
Output capability: standard  
ICC category: MSI  
AC CHARACTERISTICS FOR 74HC  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL  
PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to+85  
40 to +125  
WAVEFORMS  
min. typ. max. min. max. min. max.  
tPHL/ tPLH propagation delay  
CP to Qn  
72  
26  
21  
220  
44  
37  
275  
55  
47  
330  
66  
56  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
4.5  
6.0  
Fig.7  
tPHL  
propagation delay  
MR to Qn  
69  
25  
20  
210  
42  
36  
265  
53  
45  
315  
63  
54  
2.0  
4.5  
6.0  
Fig.10  
Fig.9  
t
t
t
PLH/ tPHL propagation delay  
83  
30  
24  
250  
50  
43  
315  
63  
54  
375  
75  
64  
2.0  
4.5  
6.0  
PL to Qn  
PHL/ tPLH propagation delay  
CP to TC  
74  
27  
22  
260  
52  
44  
325  
65  
55  
395  
78  
66  
2.0  
4.5  
6.0  
Fig.7  
PHL/ tPLH propagation delay  
CE to TC  
36  
13  
10  
125  
25  
21  
155  
31  
26  
190  
38  
32  
2.0  
4.5  
6.0  
Fig.8  
tPLH  
propagation delay  
MR to TC  
69  
25  
20  
235  
47  
40  
295  
59  
50  
355  
71  
60  
2.0  
4.5  
6.0  
Fig.10  
Fig.9  
t
t
PLH/ tPHL propagation delay  
91  
33  
26  
300  
60  
51  
375  
75  
64  
450  
90  
77  
2.0  
4.5  
6.0  
PL to TC  
TLH/ tTHL output transition time  
19  
7
6
75  
15  
13  
95  
19  
16  
110  
22  
19  
2.0  
4.5  
6.0  
Fig.9  
tW  
tW  
tW  
clock pulse width CP, 80  
CE HIGH or LOW  
25  
9
7
100  
20  
17  
120  
24  
20  
2.0  
4.5  
6.0  
Fig.7  
16  
14  
parallel load pulse  
width HIGH  
80  
16  
14  
28  
10  
8
100  
20  
17  
120  
24  
20  
2.0  
4.5  
6.0  
Fig.10  
Fig.10  
master reset pulse  
width HIGH  
80  
16  
14  
19  
7
6
100  
20  
17  
120  
24  
20  
2.0  
4.5  
6.0  
December 1990  
6
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
T
amb (°C)  
74HC  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to+85  
40 to +125  
WAVEFORMS  
min. typ. max. min. max. min. max.  
trem  
trem  
tsu  
tsu  
tsu  
th  
removal time  
MR to CP  
80  
16  
14  
28  
10  
8
100  
20  
17  
120  
24  
20  
ns  
2.0  
4.5  
6.0  
Fig.10  
removal time  
PL to CP  
80  
16  
14  
25  
9
7
100  
20  
17  
120  
24  
20  
ns  
2.0  
4.5  
6.0  
Fig.10  
Fig.8  
Fig.8  
Fig.11  
Fig.8  
Fig.11  
Fig.8  
Fig.7  
set-up time  
UP/DN to CP  
100 30  
20  
17  
125  
25  
21  
150  
30  
26  
ns  
2.0  
4.5  
6.0  
11  
9
set-up time  
CE to CP  
100 19  
20  
17  
125  
25  
21  
150  
30  
26  
ns  
2.0  
4.5  
6.0  
7
6
set-up time  
Dn to PL  
100 17  
20  
17  
125  
25  
21  
150  
30  
26  
ns  
2.0  
4.5  
6.0  
6
5
hold time  
CE to CP  
5
5
5
0
0
0
5
5
5
5
5
5
ns  
2.0  
4.5  
6.0  
th  
hold time  
Dn to PL  
3
3
3
6  
2  
2  
3
3
3
3
3
3
ns  
2.0  
4.5  
6.0  
th  
hold time  
UP/DN to CP  
0
0
0
19  
7  
6  
0
0
0
0
0
0
ns  
2.0  
4.5  
6.0  
fmax  
maximum clock pulse 6.0  
frequency  
16  
49  
58  
4.8  
24  
28  
4.0  
20  
24  
MHz  
2.0  
4.5  
6.0  
30  
35  
December 1990  
7
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
DC CHARACTERISTICS FOR 74HCT  
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.  
Output capability: standard  
ICC category: MSI  
Note to HCT types  
The value of additional quiescent supply current (ICC) for a unit load of 1 is given in the family specifications.  
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.  
INPUT  
UNIT LOAD COEFFICIENT  
Dn  
0.75  
1.00  
1.00  
1.25  
1.50  
PL, CE  
UP/DN  
CP  
MR  
December 1990  
8
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
AC CHARACTERISTICS FOR 74HCT  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
74HCT  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85  
40 to+125  
WAVEFORMS  
min. typ. max. min. max. min. max.  
tPHL/ tPLH  
tPHL  
PLH/ tPHL  
tPHL/ tPLH  
PHL/ tPLH  
tPLH  
propagation delay  
CP to Qn  
28  
24  
32  
29  
18  
31  
34  
7
50  
42  
53  
58  
31  
50  
68  
15  
63  
53  
66  
73  
39  
63  
85  
19  
75  
63  
80  
87  
47  
75  
102  
22  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
Fig.7  
propagation delay  
MR to Qn  
Fig.10  
Fig.9  
t
propagation delay  
PL to Qn  
propagation delay  
CP to TC  
Fig.7  
t
propagation delay  
CE to TC  
Fig.8  
propagation delay  
MR to TC  
Fig.10  
Fig.9  
t
PLH/ tPHL  
TLH/ tTHL  
propagation delay  
PL to TC  
t
output transition time  
Fig.9  
tW  
clock pulse width CP, 16  
CE HIGH or LOW  
9
20  
20  
25  
29  
21  
25  
25  
25  
13  
24  
24  
30  
35  
26  
30  
30  
30  
15  
Fig.7  
tW  
parallel load pulse  
width HIGH  
16  
20  
23  
17  
20  
20  
20  
10  
8
Fig.10  
Fig.10  
Fig.10  
Fig.10  
Fig.8  
tW  
master rest pulse  
width HIGH  
5
trem  
trem  
tsu  
tsu  
tsu  
th  
removal time  
MR to CP  
14  
10  
11  
9
removal time  
PL to CP  
set-up time  
UP/DN to CP  
set-up time  
CE to CP  
Fig.8  
set-up time  
Dn to PL  
9
Fig.11  
Fig.8  
hold time  
CE to CP  
9
December 1990  
9
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
T
amb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL  
PARAMETER  
UNIT  
VCC  
(V)  
+25  
40 to +85  
40 to+125  
WAVEFORMS  
min. typ. max. min. max. min. max.  
th  
hold time  
Dn to PL  
5
6  
5  
52  
5
5
ns  
ns  
4.5  
4.5  
Fig.11  
Fig.8  
Fig.7  
th  
hold time  
UP/DN to CP  
0
0
0
fmax  
maximum clock pulse 30  
frequency  
24  
20  
MHz 4.5  
December 1990  
10  
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
AC WAVEFORMS  
(1) HC : VM = 50%; VI = GND to VCC  
.
(1) HC : VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.8 Waveforms showing the set-up and hold  
times form count enable (CE) and up/down  
(UP/DN) control inputs to the clock pulse  
(CP), the propagation delays from UP/DN,  
CE to TC.  
Fig.7 Waveforms showing the clock (CP) to  
output (Qn) and terminal count (TC)  
propagation delays, the clock pulse width  
and the maximum clock pulse frequency.  
(1) HC : VM = 50%; VI = GND to VCC  
.
(1) HC : VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.9 Waveforms showing the preset enable  
pulse width, preset enable to output  
delays and output transition times.  
Fig.10 Waveforms showing the master reset pulse,  
master reset to terminal count and Qn  
delay and master reset to clock removal  
time.  
December 1990  
11  
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
(1) HC : VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.11 Waveforms showing the data set-up and hold times to parallel load (PL).  
December 1990  
12  
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
APPLICATION INFORMATION  
Terminal count (TC) lines at the 2nd, 3rd, etc. Stages may have a negative-going glitch pulse resulting from differential  
delays of different 4516s. These negative-going glitches do not affect proper 4516 operation. However, if the terminal  
count signals are used to trigger other edge-sensitive logic devices, such as flip-flops or counters, the terminal count  
signals should be gated with the clock signal using a 2-input OR gate such as HC/HCT32.  
Fig.12 Cascading counter packages (parallel clocking).  
Ripple clocking mode: the UP/DN control can be changed at any count. The only restriction on changing the  
UP/DN control is that the clock input to the first counting stage must be “HIGH”. For cascading counters operating in a  
fixed up-count or down-count mode, the OR gates are not required between stages and TC is connected directly to the  
CP input of the next stage with CE grounded.  
Fig.13 Cascading counter packages (ripple clocking).  
December 1990  
13  
Philips Semiconductors  
Product specification  
Binary up/down counter  
74HC/HCT4516  
Use the following formulae to calculate  
Ntotal  
:
i
Ntotal  
=
(16 × N ) + N0  
i
π
1
f
out = fin/Ntotal  
Fig.15 Programmable cascaded frequency divider.  
Fig.14 State diagram.  
PACKAGE OUTLINES  
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.  
parallel inputs  
count-up count-down  
n
n
D3  
D2  
D1  
D0  
(1)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
(1)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Note  
1. no count; fout is HIGH.  
December 1990  
14  

相关型号:

74HCT4516DB-T

IC HCT SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT BIDIRECTIONAL BINARY COUNTER, PDSO16, Counter
NXP

74HCT4516N

Binary up/down counter
NXP

74HCT4516NB

暂无描述
NXP

74HCT4516PW-T

IC HCT SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT BIDIRECTIONAL BINARY COUNTER, PDSO16, Counter
NXP

74HCT4518

Dual synchronous BCD counter
NXP

74HCT4518D

IC HCT SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP DECADE COUNTER, PDSO16, Counter
NXP

74HCT4518D-T

Synchronous Up Counter
ETC

74HCT4518DB

IC HCT SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP DECADE COUNTER, PDSO16, Counter
NXP

74HCT4518N

IC HCT SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP DECADE COUNTER, PDIP16, Counter
NXP

74HCT4518NB

暂无描述
NXP

74HCT4518PW

IC HCT SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP DECADE COUNTER, PDSO16, Counter
NXP

74HCT4518PW-T

暂无描述
NXP