87C552 [NXP]

80C51 8-bit microcontroller 8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM, capture/compare, high I/O; 80C51的8位微控制器8K / 256 OTP , 8通道10位A / D , I2C , PWM ,捕获/比较,高I / O
87C552
型号: 87C552
厂家: NXP    NXP
描述:

80C51 8-bit microcontroller 8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM, capture/compare, high I/O
80C51的8位微控制器8K / 256 OTP , 8通道10位A / D , I2C , PWM ,捕获/比较,高I / O

微控制器和处理器 外围集成电路 可编程只读存储器
文件: 总24页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
NOTICE  
PLEASE SEE THE P87C552 DATA SHEET FOR NEW DESIGN-INS  
87C552  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM,  
capture/compare, high I/O  
Product specification  
1998 May 01  
Supersedes data of 1998 Jan 19  
IC20 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
DESCRIPTION  
The 87C552 Single-Chip 8-Bit Microcontroller is manufactured in an  
advanced CMOS process and is a derivative of the 80C51  
microcontroller family. The 87C552 has the same instruction set as  
the 80C51. Three versions of the derivative exist:  
83C552—8k bytes mask programmable ROM  
80C552—ROMless version of the 83C552  
87C552—8k bytes EPROM  
The 87C552 contains a 8k × 8 a volatile 256 × 8 read/write data  
FEATURES  
80C51 central processing unit  
memory, five 8-bit I/O ports, one 8-bit input port, two 16-bit  
timer/event counters (identical to the timers of the 80C51), an  
additional 16-bit timer coupled to capture and compare latches, a  
15-source, two-priority-level, nested interrupt structure, an 8-input  
ADC, a dual DAC pulse width modulated interface, two serial  
8k × 8 EPROM expandable externally to 64k bytes  
An additional 16-bit timer/counter coupled to four capture registers  
2
interfaces (UART and I C-bus), a “watchdog” timer and on-chip  
and three compare registers  
oscillator and timing circuits. For systems that require extra  
capability, the 87C552 can be expanded using standard TTL  
compatible memories and logic.  
Two standard 16-bit timer/counters  
256 × 8 RAM, expandable externally to 64k bytes  
Capable of producing eight synchronized, timed outputs  
A 10-bit ADC with eight multiplexed analog inputs  
Two 8-bit resolution, pulse width modulation outputs  
In addition, the 87C552 has two software selectable modes of power  
reduction—idle mode and power-down mode. The idle mode freezes  
the CPU while allowing the RAM, timers, serial ports, and interrupt  
system to continue functioning. The power-down mode saves the  
RAM contents but freezes the oscillator, causing all other chip  
functions to be inoperative.  
Five 8-bit I/O ports plus one 8-bit input port shared with analog  
inputs  
The device also functions as an arithmetic processor having  
facilities for both binary and BCD arithmetic plus bit-handling  
capabilities. The instruction set consists of over 100 instructions: 49  
one-byte, 45 two-byte, and 17 three-byte. With a 16MHz crystal,  
58% of the instructions are executed in 0.75µs and 40% in 1.5µs.  
Multiply and divide instructions require 3µs.  
2
I C-bus serial I/O port with byte oriented master and slave  
functions  
Full-duplex UART compatible with the standard 80C51  
On-chip watchdog timer  
16MHz speed  
Extended temperature ranges  
OTP package available  
ORDERING INFORMATION  
FREQ  
MHz  
EPROM  
TEMPERATURE °C AND PACKAGE  
DRAWING NUMBER  
S87C552-4A68  
S87C552-4BA  
S87C552-5A68  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Quad Flat Pack  
16  
SOT188-3  
SOT318-2  
SOT188-3  
16  
–40 to +85, Plastic Leaded Chip Carrier  
16  
NOTE:  
1. For ROM and ROMless see data sheet 80C552/83C552  
2
1998 May 01  
853-1690 19336  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
BLOCK DIAGRAM  
T0  
T1  
INT0  
INT1  
PWM0 PWM1  
ADC0-7 SDA SCL  
AV  
AV  
REF  
SS  
+
V
V
SS  
5
1
1
DD  
STADC  
3
3
3
3
AV  
DD  
XTAL1  
T0, T1  
PROGRAM  
MEMORY  
8k x 8  
DATA  
MEMORY  
256 x 8 RAM  
DUAL  
PWM  
SERIAL  
C PORT  
TWO 16-BIT  
TIMER/EVENT  
COUNTERS  
XTAL2  
EA  
ADC  
2
CPU  
I
EPROM  
ALE  
80C51 CORE  
EXCLUDING  
ROM/RAM  
PSEN  
3
WR  
RD  
8-BIT INTERNAL BUS  
3
0
16  
AD0-7  
T2  
T2  
16-BIT  
TIMER/  
EVENT  
FOUR  
16-BIT  
CAPTURE  
16-BIT  
COMPARA-  
TORS  
WITH  
REGISTERS  
COMPARA-  
TOR  
OUTPUT  
T3  
16  
PARALLEL I/O  
PORTS AND  
EXTERNAL BUS  
SERIAL  
UART  
PORT  
8-BIT  
PORT  
WATCHDOG  
TIMER  
2
LATCHES  
SELECTION  
COUNTERS  
A8-15  
3
3
1
1
1
4
P0  
P1  
P2  
P3  
TxD  
RxD  
P5  
P4  
CT0I-CT3I  
T2  
RT2  
CMSR0-CMSR5 RST EW  
CMT0, CMT1  
3
4
5
0
1
2
ALTERNATE FUNCTION OF PORT 3  
ALTERNATE FUNCTION OF PORT 4  
ALTERNATE FUNCTION OF PORT 5  
ALTERNATE FUNCTION OF PORT 0  
ALTERNATE FUNCTION OF PORT 1  
ALTERNATE FUNCTION OF PORT 2  
SU00211  
3
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
LOGIC SYMBOL  
PIN CONFIGURATIONS  
V
V
9
1
61  
SS  
DD  
XTAL1  
XTAL2  
10  
60  
44  
EA/V  
ALE/PROG  
PSEN  
PLASTIC  
LEADED  
CHIP CARRIER  
PP  
LOW ORDER  
ADDRESS AND  
DATA BUS  
AV  
AV  
AVref+  
AVref–  
STADC  
SS  
DD  
26  
CT0I  
CT1I  
CT2I  
CT3I  
T2  
RT2  
SCL  
SDA  
27  
43  
PWM0  
PWM1  
Pin Function  
Pin Function  
Pin Function  
1
2
P5.0/ADC0  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
P3.0/RxD  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
NC  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
PSEN  
V
ALE/PROG  
DD  
ADC0-7  
3
STADC  
EA/V  
PP  
4
PWM0  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
AVref–  
5
PWM1  
6
EW  
HIGH ORDER  
ADDRESS AND  
DATA BUS  
7
8
9
P4.0/CMSR0  
P4.1/CMSR1  
P4.2/CMSR2  
P4.3/CMSR3  
P4.4/CMSR4  
P4.5/CMSR5  
P4.6/CMT0  
P4.7/CMT1  
RST  
P1.0/CT0I  
P1.1/CT1I  
P1.2/CT2I  
P1.3/CT3I  
P1.4/T2  
CMSR0-5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
NC  
XTAL2  
XTAL1  
RxD/DATA  
TxD/CLOCK  
INT0  
V
SS  
AVref+  
V
INT1  
T0  
T1  
WR  
RD  
SS  
CMT0  
CMT1  
AV  
AV  
SS  
NC  
DD  
P2.0/A08  
P2.1/A09  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
RST  
EW  
P5.7/ADC7  
P5.6/ADC6  
P5.5/ADC5  
P5.4/ADC4  
P5.3/ADC3  
P5.2/ADC2  
P5.1/ADC1  
SU00210  
P1.5/RT2  
P1.6/SCL  
P1.7/SDA  
SU00208  
PLASTIC QUAD FLAT PACK PIN FUNCTIONS  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
AV  
1
2
3
P4.1/CMSR1  
P4.2/CMSR2  
NC  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
NC  
NC  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
P2.3/A11  
P2.4/A12  
NC  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
SS  
NC  
AV  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
NC  
NC  
NC  
XTAL2  
XTAL1  
IC  
DD  
80  
65  
4
5
6
P4.3/CMSR3  
P4.4/CMSR4  
P4.5/CMSR5  
NC  
P5.7/ADC7  
P5.6/ADC6  
P5.5/ADC5  
P5.4/ADC4  
P5.3/ADC3  
P5.2/ADC2  
P5.1/ADC1  
P5.0/ADC0  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
ALE/PROG  
EA/V  
PP  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
7
8
P4.6/CMT0  
P4.7/CMT1  
1
64  
41  
9
RST  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P1.0/CT0I  
P1.1/CT1I  
P1.2/CT2I  
PQFP  
V
DD  
24  
IC  
P1.3/CT3I  
P1.4/T2  
V
V
V
STADC  
PWM0  
PWM1  
EW  
NC  
NC  
SS  
SS  
SS  
P1.5/RT2  
P1.6/SCL  
P1.7/SDA  
P3.0/RxD  
P3.1/TxD  
P3.2/INT0  
25  
40  
NC  
P0.1/AD1  
P0.0/AD0  
AVref–  
AVref+  
P2.0/A08  
P2.1/A09  
P2.2/A10  
P4.0/CMSR0  
NC = Not Connected  
IC = Internally Connected (do not use)  
SU00209  
4
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
PIN DESCRIPTION  
PIN NO.  
MNEMONIC  
PLCC  
QFP  
TYPE  
NAME AND FUNCTION  
V
DD  
2
72  
I
Digital Power Supply: +5V power supply pin during normal operation, idle and  
power-down mode.  
STADC  
3
74  
I
Start ADC Operation: Input starting analog to digital conversion (ADC operation can also  
be started by software).  
PWM0  
PWM1  
EW  
4
5
75  
76  
O
O
Pulse Width Modulation: Output 0.  
Pulse Width Modulation: Output 1.  
6
77  
I
Enable Watchdog Timer: Enable for T3 watchdog timer and disable power-down mode.  
P0.0-P0.7  
57-50  
58-51  
I/O  
Port 0: Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written  
to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed  
low-order address and data bus during accesses to external program and data memory. In  
this application it uses strong internal pull-ups when emitting 1s. Port 0 is also used to input  
the code byte during programming and to output the code byte during verification.  
P1.0-P1.7  
16-23  
16-21  
22-23  
16-19  
20  
10-17  
10-15  
16-17  
10-13  
14  
I/O  
I/O  
I/O  
I
Port 1: 8-bit I/O port. Alternate functions include:  
(P1.0-P1.5): Quasi-bidirectional port pins.  
(P1.6, P1.7): Open drain port pins.  
CT0I-CT3I (P1.0-P1.3): Capture timer input signals for timer T2.  
T2 (P1.4): T2 event input.  
I
21  
22  
23  
15  
16  
17  
I
RT2 (P1.5): T2 timer reset signal. Rising edge triggered.  
2
I/O  
I/O  
SCL (P1.6): Serial port clock line I C-bus.  
2
SDA (P1.7): Serial port data line I C-bus.  
Port 1 is also used to input the lower order address byte during EPROM programming and  
verification. A0 is on P1.0, etc.  
P2.0-P2.7  
P3.0-P3.7  
39-46  
38-42,  
45-47  
I/O  
I/O  
Port 2: 8-bit quasi-bidirectional I/O port.  
Alternate function: High-order address byte for external memory (A08-A15). Port 2 is also  
used to input the upper order address during EPROM programming and verification. A8 is  
on P2.0, A9 on P2.1, through A12 on P2.4.  
24-31  
18-20,  
23-27  
Port 3: 8-bit quasi-bidirectional I/O port. Alternate functions include:  
24  
25  
26  
27  
28  
29  
30  
31  
18  
19  
20  
23  
24  
25  
26  
27  
RxD(P3.0): Serial input port.  
TxD (P3.1): Serial output port.  
INT0 (P3.2): External interrupt.  
INT1 (P3.3): External interrupt.  
T0 (P3.4): Timer 0 external input.  
T1 (P3.5): Timer 1 external input.  
WR (P3.6): External data memory write strobe.  
RD (P3.7): External data memory read strobe.  
P4.0-P4.7  
P5.0-P5.7  
7-14  
7-12  
80, 1-2  
4-8  
I/O  
O
Port 4: 8-bit quasi-bidirectional I/O port. Alternate functions include:  
80, 1-2  
4-6  
CMSR0-CMSR5 (P4.0-P4.5): Timer T2 compare and set/reset outputs on a match with  
timer T2.  
13, 14  
7, 8  
O
I
CMT0, CMT1 (P4.6, P4.7): Timer T2 compare and toggle outputs on a match with timer T2.  
68-62,  
1
71-64,  
Port 5: 8-bit input port.  
ADC0-ADC7 (P5.0-P5.7): Alternate function: Eight input channels to ADC.  
RST  
15  
9
I/O  
I
Reset: Input to reset the 87C552. It also provides a reset pulse as output when timer T3  
overflows.  
XTAL1  
35  
32  
Crystal Input 1: Input to the inverting amplifier that forms the oscillator, and input to the  
internal clock generator. Receives the external clock signal when an external oscillator is  
used.  
XTAL2  
34  
31  
O
Crystal Input 2: Output of the inverting amplifier that forms the oscillator. Left open-circuit  
when an external clock is used.  
V
36, 37  
47  
34-36  
48  
I
Digital ground.  
SS  
PSEN  
O
Program Store Enable: Active-low read strobe to external program memory.  
5
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
PIN DESCRIPTION (Continued)  
PIN NO.  
MNEMONIC  
PLCC  
QFP  
TYPE  
NAME AND FUNCTION  
ALE/PROG  
48  
49  
O
Address Latch Enable: Latches the low byte of the address during accesses to external  
memory. It is activated every six oscillator periods. During an external data memory  
access, one ALE pulse is skipped. ALE can drive up to eight LS TTL inputs and handles  
CMOS inputs without an external pull-up. This pin is also the program pulse input (PROG)  
during EPROM programming.  
EA/V  
49  
50  
I
External Access: When EA is held at TTL level high, the CPU executes out of the internal  
program ROM provided the program counter is less than 8192. When EA is held at TTL  
low level, the CPU executes out of external program memory. EA is not allowed to float.  
PP  
This pin also receives the 12.75V programming supply voltage (V ) during EPROM  
PP  
programming.  
AV  
AV  
AV  
AV  
58  
59  
60  
61  
59  
60  
61  
63  
I
I
I
I
Analog to Digital Conversion Reference Resistor: Low-end.  
Analog to Digital Conversion Reference Resistor: High-end.  
Analog Ground  
REF–  
REF+  
SS  
Analog Power Supply  
DD  
NOTE:  
1. To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher or lower than V + 0.5V or V – 0.5V,  
DD  
SS  
respectively.  
OSCILLATOR CHARACTERISTICS  
IDLE MODE  
XTAL1 and XTAL2 are the input and output, respectively, of an  
inverting amplifier. The pins can be configured for use as an on-chip  
oscillator, as shown in the logic symbol.  
In the idle mode, the CPU puts itself to sleep while some of the  
on-chip peripherals stay active. The instruction to invoke the idle  
mode is the last instruction executed in the normal operating mode  
before the idle mode is activated. The CPU contents, the on-chip  
RAM, and all of the special function registers remain intact during  
this mode. The idle mode can be terminated either by any enabled  
interrupt (at which time the process is picked up at the interrupt  
service routine and continued), or by a hardware reset which starts  
the processor in the same manner as a power-on reset.  
To drive the device from an external clock source, XTAL1 should be  
driven while XTAL2 is left unconnected. There are no requirements  
on the duty cycle of the external clock signal, because the input to  
the internal clock circuitry is through a divide-by-two flip-flop.  
However, minimum and maximum high and low times specified in  
the data sheet must be observed.  
POWER-DOWN MODE  
RESET  
In the power-down mode, the oscillator is stopped and the  
instruction to invoke power-down is the last instruction executed.  
Only the contents of the on-chip RAM are preserved. A hardware  
reset is the only way to terminate the power-down mode. The control  
bits for the reduced power modes are in the special function register  
PCON. Table 1 shows the state of the I/O ports during low current  
operating modes.  
A reset is accomplished by holding the RST pin high for at least two  
machine cycles (24 oscillator periods), while the oscillator is running.  
To insure a good power-on reset, the RST pin must be high long  
enough to allow the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles. At power-on, the voltage on  
V
DD  
and RST must come up at the same time for a proper start-up.  
Table 1. External Pin Status During Idle and Power-Down Modes  
PROGRAM  
MEMORY  
PWM0/  
PWM1  
MODE  
Idle  
ALE  
PSEN  
PORT 0  
Data  
PORT 1  
Data  
PORT 2  
Data  
PORT 3  
Data  
PORT 4  
Data  
Internal  
1
1
0
0
1
1
0
0
High  
High  
High  
High  
Idle  
External  
Internal  
Float  
Data  
Address  
Data  
Data  
Data  
Power-down  
Power-down  
Data  
Data  
Data  
Data  
External  
Float  
Data  
Data  
Data  
Data  
6
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
Serial Control Register (S1CON) – See Table 2  
S1CON (D8H)  
CR2  
ENS1  
STA  
STO  
SI  
AA  
CR1  
CR0  
Bits CR0, CR1 and CR2 determine the serial clock frequency that is generated in the master mode of operation.  
Table 2. Serial Clock Rates  
BIT FREQUENCY (kHz) AT f  
OSC  
CR2  
CR1  
CR0  
6MHz  
12MHz  
16MHz  
f
DIVIDED BY  
OSC  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
23  
27  
31.25  
37  
6.25  
50  
47  
54  
62.5  
75  
12.5  
62.5  
71  
83.3  
100  
17  
256  
224  
192  
160  
960  
120  
60  
1
100  
200  
0.5 < 62.5  
0 to 224  
133  
267  
1
100  
0.25 < 62.5  
0 to 225  
0.67 < 56  
0 to 223  
96 × (256 – (reload value Timer 1))  
Timer 1 in Mode 2.  
NOTE:  
2
2
1. These frequencies exceed the upper limit of 100kHz of the I C-bus specification and cannot be used in an I C-bus application.  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
–65 to +150  
–0.5 to +13  
–0.5 to +6.5  
5.0  
UNIT  
°C  
V
Storage temperature range  
Voltage on EA/V to V  
PP  
SS  
Voltage on any other pin to V  
V
SS  
Input, output DC current on any single I/O pin  
mA  
W
Power dissipation (based on package heat transfer limitations, not device power  
consumption)  
1.0  
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
DEVICE SPECIFICATIONS  
SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
TYPE  
MIN  
4.5  
MAX  
5.5  
MIN  
3.5  
MAX  
16  
TEMPERATURE RANGE (°C)  
0 to +70  
P87C552-4  
P87C552-5  
4.5  
5.5  
3.5  
16  
–40 to +85  
7
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
DC ELECTRICAL CHARACTERISTICS  
V
SS  
, AV = 0V  
SS  
TEST  
LIMITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
40  
UNIT  
mA  
I
I
I
Supply current operating:  
PCA8XC552-5-16  
See notes 1 and 2  
DD  
f
= 16MHz  
OSC  
Idle mode:  
87C552  
See notes 1 and 3  
= 16MHz  
ID  
f
7
mA  
OSC  
Power-down current:  
87C552  
See notes 1 and 4;  
2V < V < V max  
PD  
PD  
DD  
50  
µA  
Inputs  
V
V
V
V
V
V
Input low voltage, except EA, P1.6, P1.7  
Input low voltage to EA  
–0.5  
–0.5  
–0.5  
0.2V –0.1  
V
V
IL  
DD  
0.2V –0.3  
IL1  
IL2  
IH  
DD  
5
Input low voltage to P1.6/SCL, P1.7/SDA  
Input high voltage, except XTAL1, RST  
Input high voltage, XTAL1, RST  
0.3V  
V
DD  
0.2V +0.9  
V
DD  
V
DD  
+0.5  
+0.5  
V
DD  
0.7V  
0.7V  
V
IH1  
IH2  
DD  
DD  
5
Input high voltage, P1.6/SCL, P1.7/SDA  
6.0  
V
I
I
Logical 0 input current, ports 1, 2, 3, 4, except P1.6, P1.7  
Logical 1-to-0 transition current, ports 1, 2, 3, 4, except P1.6, P1.7  
Input leakage current, port 0, EA, STADC, EW  
V
= 0.45V  
–50  
–650  
10  
µA  
µA  
µA  
IL  
TL  
IN  
See note 6  
0.45V < V < V  
DD  
±I  
±I  
±I  
IL1  
IL2  
IL3  
I
0V < V < 6V  
0V < V < 5.5V  
I
Input leakage current, P1.6/SCL, P1.7/SDA  
Input leakage current, port 5  
10  
1
µA  
µA  
DD  
0.45V < V < V  
I
DD  
Outputs  
7
V
V
Output low voltage, ports 1, 2, 3, 4, except P1.6, P1.7  
I
I
= 1.6mA  
= 3.2mA  
0.45  
0.45  
V
V
OL  
OL  
7
Output low voltage, port 0, ALE, PSEN, PWM0,  
PWM1  
OL1  
OL  
7
V
V
Output low voltage, P1.6/SCL, P1.7/SDA  
I
OL  
= 3.0mA  
0.4  
V
OL2  
Output high voltage, ports 1, 2, 3, 4, except P1.6/SCL, P1.7/SDA  
OH  
–I = 60µA  
2.4  
V
V
V
OH  
–I = 25µA  
0.75V  
OH  
DD  
DD  
–I = 10µA  
OH  
0.9V  
V
V
Output high voltage (port 0 in external bus mode, ALE,  
PSEN, PWM0, PWM1)  
OH1  
8
–I = 400µA  
2.4  
V
V
V
OH  
–I = 150µA  
0.75V  
OH  
DD  
DD  
–I = 40µA  
OH  
0.9V  
Output high voltage (RST)  
–I = 400µA  
2.4  
0.8V  
V
V
OH2  
OH  
–I = 120µA  
OH  
DD  
R
C
Internal reset pull-down resistor  
Pin capacitance  
50  
150  
10  
kΩ  
RST  
IO  
Test freq = 1MHz,  
pF  
T
= 25°C  
amb  
Analog Inputs  
AV  
Analog supply voltage:  
DD  
9
87C552  
AV = V ±0.2V  
4.5  
5.5  
1.2  
V
DD  
DD  
AI  
AI  
Analog supply current: operating:  
Port 5 = 0 to AV  
mA  
DD  
DD  
Idle mode:  
87C552  
ID  
50  
50  
µA  
µA  
AI  
PD  
Power-down mode:  
87C552  
2V < AV < AV max  
PD DD  
8
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
DC ELECTRICAL CHARACTERISTICS (Continued)  
TEST  
LIMITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
Analog Inputs (Continued)  
AV  
AV  
Analog input voltage  
Reference voltage:  
AV –0.2  
AV +0.2  
V
IN  
SS  
DD  
REF  
AV  
AV  
AV –0.2  
V
V
REF–  
REF+  
SS  
AV +0.2  
DD  
R
C
Resistance between AV  
and AV  
REF–  
10  
50  
15  
kΩ  
pF  
REF  
REF+  
Analog input capacitance  
Sampling time  
IA  
t
t
8t  
CY  
µs  
ADS  
ADC  
Conversion time (including sampling time)  
50t  
µs  
CY  
10, 11, 12  
DL  
Differential non-linearity  
±1  
LSB  
LSB  
LSB  
%
e
10, 13  
IL  
e
Integral non-linearity  
±2  
±2  
10, 14  
OS  
Offset error  
e
10, 15  
G
Gain error  
±0.4  
±3  
e
10, 16  
A
e
Absolute voltage error  
LSB  
LSB  
dB  
M
CTC  
Channel to channel matching  
±1  
17  
C
Crosstalk between inputs of port 5  
0–100kHz  
–60  
t
NOTES FOR DC ELECTRICAL CHARACTERISTICS:  
1. See Figures 10 through 15 for I test conditions.  
DD  
2. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = RST = Port 0 = EW = V ; STADC = V  
.
DD  
DD  
SS  
3. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; Port 0 = EW = V ; EA = RST = STADC = V  
.
DD  
DD  
SS  
4. The power-down current is measured with all output pins disconnected; XTAL2 not connected; Port 0 = EW = V  
;
DD  
EA = RST = STADC = XTAL1 = V  
.
SS  
2
5. The input threshold voltage of P1.6 and P1.7 (SIO1) meets the I C specification, so an input voltage below 1.5V will be recognized as a logic  
0 while an input voltage above 3.0V will be recognized as a logic 1.  
6. Pins of ports 1 (except P1.6, P1.7), 2, 3, and 4 source a transition current when they are being externally driven from 1 to 0. The transition  
current reaches its maximum value when V is approximately 2V.  
IN  
7. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
8. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9V specification when the  
OH  
DD  
address bits are stabilizing.  
9. The following condition must not be exceeded: V – 0.2V < AV < V + 0.2V.  
DD  
DD  
DD  
10.Conditions: AV  
= 0V; AV = 5.0V. Measurement by continuous conversion of AV = –20mV to 5.12V in steps of 0.5mV, derivating  
REF–  
DD  
IN  
parameters from collected conversion results of ADC. AV  
(87C552) = 4.977V. ADC is monotonic with no missing codes.  
REF+  
11. The differential non-linearity (DL ) is the difference between the actual step width and the ideal step width. (See Figure 1.)  
e
12.The ADC is monotonic; there are no missing codes.  
13.The integral non-linearity (IL ) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
e
appropriate adjustment of gain and offset error. (See Figure 1.)  
14.The offset error (OS ) is the absolute difference between the straight line which fits the actual transfer curve (after removing gain error), and  
e
a straight line which fits the ideal transfer curve. (See Figure 1.)  
15.The gain error (G ) is the relative difference in percent between the straight line fitting the actual transfer curve (after removing offset error),  
e
and the straight line which fits the ideal transfer curve. Gain error is constant at every point on the transfer curve. (See Figure 1.)  
16.The absolute voltage error (A ) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
e
ADC and the ideal transfer curve.  
17.This should be considered when both analog and digital signals are simultaneously input to port 5.  
9
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
Offset  
error  
Gain  
error  
OS  
e
G
e
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
(1)  
Code  
Out  
6
5
(5)  
4
(4)  
3
(3)  
2
1
1 LSB  
(ideal)  
0
1
2
3
4
5
6
7
1018  
1019  
1020  
1021  
1022  
)
1023  
1024  
AV (LSB  
IN  
ideal  
Offset  
error  
OS  
e
AV  
AV  
REF–  
REF+  
1024  
1 LSB =  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential non-linearity (DL ).  
e
(4) Integral non-linearity (IL ).  
e
(5) Center of a step of the actual transfer curve.  
SU00212  
Figure 1. ADC Conversion Characteristic  
10  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
1, 2  
AC ELECTRICAL CHARACTERISTICS  
12MHz CLOCK 16MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT  
MHz  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
3.5  
16  
CLCL  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
127  
28  
85  
8
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
–55  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
48  
28  
t
–35  
ns  
234  
145  
150  
83  
4t  
3t  
–100  
ns  
CLCL  
43  
23  
t
–40  
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
205  
143  
3t  
–45  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–105  
ns  
CLCL  
0
0
0
ns  
59  
312  
10  
38  
208  
10  
t
–25  
ns  
CLCL  
5t  
–105  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3, 4  
3
Address valid to ALE low  
RD pulse width  
43  
23  
t
6t  
6t  
–40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
CLCL  
CLCL  
CLCL  
400  
400  
275  
275  
–100  
–100  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
AVDV  
LLWL  
AVWL  
QVWX  
DW  
3
WR pulse width  
3
RD low to valid data in  
Data hold after RD  
252  
148  
5t  
–165  
CLCL  
3
0
0
0
3
Data float after RD  
97  
55  
2t  
–70  
CLCL  
3
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data before WR  
517  
585  
300  
350  
398  
238  
8t  
–150  
–165  
CLCL  
CLCL  
3
9t  
3, 4  
3, 4  
4
200  
203  
23  
138  
120  
3
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
t
–130  
–60  
CLCL  
CLCL  
CLCL  
CLCL  
4
433  
33  
288  
13  
7t  
t
–150  
–50  
4
Data hold after WR  
WHQX  
RLAZ  
WHLH  
4
RD low to address float  
RD or WR high to ALE high  
0
0
0
3, 4  
43  
123  
23  
103  
t
–40  
t
+40  
CLCL  
CLCL  
External Clock  
3
t
t
t
t
5
5
5
5
High time  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
3
Low time  
3
Rise time  
20  
20  
20  
20  
20  
20  
3
Fall time  
4
Serial Timing – Shift Register Mode (Test Conditions: T  
= 0°C to +70°C; V = 0V; Load Capaciatnce = 80pF)  
SS  
amb  
t
t
t
t
t
6
6
6
6
6
Serial port clock cycle time  
1.0  
700  
50  
0
0.75  
492  
8
12t  
µs  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t  
–133  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
2t  
CLCL  
–117  
0
0
700  
492  
10t  
–133  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. t  
= 1/f  
= 83.3ns at f  
= 62.5ns at f  
= one oscillator clock period.  
CLCL  
CLCL  
CLCL  
OSC  
t
t
= 12MHz.  
= 16MHz.  
OSC  
OSC  
4. These values are characterized but not 100% production tested.  
11  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
AC ELECTRICAL CHARACTERISTICS (Continued)  
SYMBOL  
PARAMETER  
INPUT  
OUTPUT  
2
5
I C Interface (Refer to Figure 9)  
1
1
1
t
t
t
t
t
t
t
t
t
t
t
t
t
t
START condition hold time  
14 t  
> 4.0µs  
> 4.7µs  
> 4.0µs  
HD;STA  
LOW  
CLCL  
CLCL  
CLCL  
SCL low time  
16 t  
14 t  
SCL high time  
HIGH  
2
SCL rise time  
1µs  
RC  
3
SCL fall time  
0.3µs  
250ns  
250ns  
250ns  
0ns  
< 0.3µs  
FC  
Data set-up time  
> 20 t  
– t  
SU;DAT1  
SU;DAT2  
SU;DAT3  
HD;DAT  
SU;STA  
SU;STO  
BUF  
CLCL  
RD  
1
SDA set-up time (before rep. START cond.)  
SDA set-up time (before STOP cond.)  
Data hold time  
> 1µs  
> 8 t  
CLCL  
> 8 t  
– t  
CLCL  
FC  
1
Repeated START set-up time  
STOP condition set-up time  
Bus free time  
14 t  
14 t  
14 t  
> 4.7µs  
> 4.0µs  
> 4.7µs  
CLCL  
CLCL  
CLCL  
1
1
2
SDA rise time  
1µs  
0.3µs  
RD  
3
SDA fall time  
< 0.3µs  
FD  
NOTES:  
1. At 100 kbit/s. At other bit rates this value is inversely proportional to the bit-rate of 100 kbit/s.  
2. Determined by the external bus-line capacitance and the external bus-line pull-resistor, this must be < 1µs.  
3. Spikes on the SDA and SCL lines with a duration of less than 3 t  
SCL = 400pF.  
will be filtered out. Maximum capacitance on bus-lines SDA and  
CLCL  
4. t  
= 1/f  
= one oscillator clock period at pin XTAL1. For 62ns (42s) < t  
< 285ns (16MHz (24Hz) > f  
> 3.5MHz) the SI01  
OSC  
CLCL  
OSC  
CLCL  
2
interface meets the I C-bus specification for bit-rates up to 100 kbit/s.  
5. These values are guaranteed but not 100% production tested.  
12  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The first character is always  
P – PSEN  
‘t’ (= time). The other characters, depending on their positions,  
indicate the name of a signal or the logical status of that signal. The  
Q – Output data  
R – RD signal  
designations are:  
A – Address  
t – Time  
V – Valid  
C – Clock  
W – WR signal  
D – Input data  
H – Logic level high  
X – No longer a valid logic level  
Z – Float  
I
– Instruction (program memory contents)  
Examples: t  
= Time for address valid to ALE low.  
= Time for ALE low to PSEN low.  
AVLL  
LLPL  
L – Logic level low, or ALE  
t
t
LHLL  
ALE  
t
t
LLPL  
AVLL  
t
PLPH  
t
LLIV  
t
PLIV  
PSEN  
t
LLAX  
t
PXIZ  
t
PLAZ  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A0–A15  
A8–A15  
SU00006  
Figure 2. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
LLAX  
t
t
RLDV  
AVLL  
t
RLAZ  
t
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPH  
A0–A15 FROM PCH  
SU00007  
Figure 3. External Data Memory Read Cycle  
13  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
t
t
LLAX  
WHQX  
t
AVLL  
QVWX  
t
DW  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPH  
A8–A15 FROM PCH  
SU00213  
Figure 4. External Data Memory Write Cycle  
t
r
t
f
t
HIGH  
V
0.8V  
V
IH1  
0.8V  
V
V
IH1  
IH1  
IH1  
0.8V  
0.8V  
t
LOW  
t
CLCL  
SU00214  
Figure 5. External Clock Drive XTAL1  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
t
QVXH  
OUTPUT DATA  
0
1
2
3
4
5
6
7
WRITE TO SBUF  
t
XHDX  
t
SET TI  
XHDV  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
SU00027  
Figure 6. Shift Register Mode Timing  
14  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
2.4V  
2.0V  
0.8V  
2.0V  
0.8V  
Test Points  
0.45V  
NOTE:  
AC inputs during testing are driven at 2.4V for a logic ‘1’ and 0.45V for a logic ‘0’.  
Timing measurements are made at 2.0V for a logic ‘1’ and 0.8V for a logic ‘0’.  
SU00215  
Figure 7. AC Testing Input/Output  
Float  
2.4V  
2.4V  
2.0V  
0.8V  
2.0V  
0.8V  
0.45V  
0.45V  
NOTE:  
The float state is defined as the point at which a port 0 pin sinks 3.2mA or sources 400µA at the voltage test levels.  
SU00216  
Figure 8. AC Testing Input, Float Waveform  
repeated START condition  
START or repeated START condition  
START condition  
t
SU;STA  
STOP condition  
t
RD  
0.7 V  
CC  
SDA  
(INPUT/OUTPUT)  
0.3 V  
CC  
t
BUF  
t
t
t
FC  
FD  
RC  
t
SU;STO  
0.7 V  
CC  
SCL  
(INPUT/OUTPUT)  
0.3 V  
CC  
t
SU;DAT3  
t
t
t
HIGH  
t
SU;DAT1  
t
t
SU;DAT2  
HD;STA  
LOW  
HD;DAT  
SU00107A  
2
Figure 9. Timing SIO1 (I C) Interface  
15  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
50  
40  
30  
(1)  
(2)  
I
mA  
DD  
20  
10  
0
(3)  
(4)  
(1) Maximum operating mode; V  
= 6V  
= 4V  
DD  
DD  
(2) Maximum operating mode; V  
NOTE:  
0
4
8
12  
16  
(3) Maximum idle mode; V  
(4) Maximum idle mode; V  
= 6V  
DD  
DD  
These values are valid only within the frequency  
specifications of the device under test.  
f (MHz)  
= 4V  
SU00217  
Figure 10. 16MHz Version Supply Current (I ) as a Function of Frequency at XTAL1 (f  
)
DD  
OSC  
V
V
DD  
DD  
I
DD  
P1.6  
P1.7  
V
DD  
P0  
V
V
DD  
DD  
RST  
EA  
STADC  
EW  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
AV  
SS  
V
SS  
AV  
ref–  
SU00218  
Figure 11. I Test Condition, Active Mode  
DD  
1
All other pins are disconnected  
1. Active Mode:  
a. The following pins must be forced to V : EA, RST, Port 0, and EW.  
DD  
b. The following pins must be forced to V : STADC, AV , and AV .  
ref–  
SS  
ss  
c. Ports 1.6 and 1.7 should be connected to V through resistors of sufficiently high value such that the sink current into these pins cannot  
DD  
exceed the I  
spec of these pins.  
OL1  
d. The following pins must be disconnected: XTAL2 and all pins not specified above.  
16  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
V
V
DD  
DD  
I
DD  
P1.6  
P1.7  
V
DD  
P0  
RST  
V
DD  
STADC  
EW  
EA  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
AV  
SS  
V
SS  
AV  
ref–  
SU00219  
Figure 12. I Test Condition, Idle Mode  
DD  
2
All other pins are disconnected  
2. Idle Mode:  
a. The following pins must be forced to V : Port 0 and EW.  
DD  
b. The following pins must be forced to V : RST, STADC, AV ,, AV , and EA.  
SS  
ss  
ref–  
c. Ports 1.6 and 1.7 should be connected to V through resistors of sufficiently high value such that the sink current into these pins cannot  
DD  
exceed the I  
spec of these pins. These pins must not have logic 0 written to them prior to this measurement.  
OL1  
d. The following pins must be disconnected: XTAL2 and all pins not specified above.  
V
–0.5  
DD  
0.7V  
DD  
0.5V  
0.2V  
–0.1  
DD  
t
CHCX  
t
t
CHCL  
t
CLCX  
CLCH  
t
CLCL  
SU00220  
Figure 13. Clock Signal Waveform for I Tests in Active and Idle Modes  
DD  
t
= t  
= 5ns  
CHCL  
CLCH  
V
V
DD  
DD  
I
DD  
P1.6  
P1.7  
V
DD  
V
RST  
DD  
STADC  
P0  
EW  
EA  
(NC)  
XTAL2  
XTAL1  
AV  
SS  
V
SS  
AV  
ref–  
SU00221  
Figure 14. I Test Condition, Power Down Mode  
DD  
3
All other pins are disconnected. V = 2V to 5.5V  
DD  
3. Power Down Mode:  
a. The following pins must be forced to V : Port 0 and EW.  
DD  
b. The following pins must be forced to V : RST, STADC, XTAL1, AV ,, AV , and EA.  
SS  
ss  
ref–  
c. Ports 1.6 and 1.7 should be connected to V through resistors of sufficiently high value such that the sink current into these pins cannot  
DD  
exceed the I  
spec of these pins. These pins must not have logic 0 written to them prior to this measurement.  
OL1  
d. The following pins must be disconnected: XTAL2 and all pins not specified above.  
17  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
programmed, further programming of the code memory and  
encryption table is disabled. However, the other lock bit can still be  
programmed.  
EPROM CHARACTERISTICS  
The 87C552 is programmed by using a modified Quick-Pulse  
Programming algorithm. It differs from older methods in the value  
used for V (programming supply voltage) and in the width and  
number of the ALE/PROG pulses.  
PP  
Note that the EA/V pin must not be allowed to go above the  
PP  
maximum specified V level for any amount of time. Even a narrow  
PP  
glitch above that voltage can cause permanent damage to the  
The 87C552 contains two signature bytes that can be read and used  
by an EPROM programming system to identify the device. The  
signature bytes identify the device as an 87C552 manufactured by  
Philips.  
device. The V source should be well regulated and free of glitches  
PP  
and overshoot.  
Program Verification  
Table 3 shows the logic levels for reading the signature byte, and for  
programming the program memory, the encryption table, and the  
lock bits. The circuit configuration and waveforms for quick-pulse  
programming are shown in Figures 15 and 16. Figure 17 shows the  
circuit configuration for normal program memory verification.  
If lock bit 2 has not been programmed, the on-chip program memory  
can be read out for program verification. The address of the program  
memory locations to be red is applied to ports 1 and 2 as shown in  
Figure 17. The other pins are held at the “Verify Code Data” levels  
indicated in Table 3. The contents of the address location will be  
emitted on port 0. External pull-ups are required on port 0 for this  
operation.  
Quick-Pulse Programming  
The setup for microcontroller quick-pulse programming is shown in  
Figure 15. Note that the 87C552 is running with a 4 to 6MHz  
oscillator. The reason the oscillator needs to be running is that the  
device is executing internal address and program data transfers.  
If the encryption table has been programmed, the data presented at  
port 0 will be the exclusive NOR of the program byte with one of the  
encryption bytes. The user will have to know the encryption table  
contents in order to correctly decode the verification data. The  
encryption table itself cannot be read out.  
The address of the EPROM location to be programmed is applied to  
ports 1 and 2, as shown in Figure 15. The code byte to be  
programmed into that location is applied to port 0. RST, PSEN, and  
pins of ports 2 and 3 specified in Table 3 are held at the “Program  
Code Data” levels indicated in Table 3. The ALE/PROG is pulsed  
low 25 times as shown in Figure 16.  
Reading the Signature Bytes  
The signature bytes are read by the same procedure as a normal  
verification of locations 030H and 031H, except that P3.6 and P3.7  
need to be pulled to a logic low. The values are:  
To program the encryption table, repeat the 25-pulse programming  
sequence for addresses 0 through 1FH, using the “Pgm Encryption  
Table” levels. Do not forget that after the encryption table is  
programmed, verification cycles will produce only encrypted data.  
(030H) = 15H indicates manufactured by Philips Components  
(031H) = 94H indicates 87C552  
Program/Verify Algorithms  
Any algorithm in agreement with the conditions listed in Table 3, and  
which satisfies the timing specifications, is suitable.  
To program the lock bits, repeat the 25-pulse programming  
sequence using the “Pgm Lock Bit” levels. After one lock bit is  
Table 3. EPROM Programming Modes  
MODE  
RST  
PSEN  
ALE/PROG  
EA/V  
P2.7  
P2.6  
P3.7  
P3.6  
PP  
Read signature  
Program code data  
Verify code data  
Pgm encryption table  
Pgm lock bit 1  
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
1
0
0
0
0
1
1
0
1
1
1
1
0
0
1
1
0
1
0
0*  
1
V
PP  
1
0*  
0*  
0*  
V
PP  
PP  
PP  
V
V
Pgm lock bit 2  
NOTES:  
1. 0 = Valid low for that pin; 1 = valid high for that pin.  
2. V = 12.75V ±0.25V.  
PP  
3. V = 5V ±10% during programming and verification.  
DD  
*
ALE/PROG receives 25 programming pulses while V is held at 12.75V. Each programming pulse is low for 100µs (±10µs) and high for a  
PP  
minimum of 10µs.  
Trademark phrase of Intel Corporation.  
18  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
+5V  
V
DD  
P0  
A0-A7  
PGM DATA  
+12.75V  
P1  
1
1
1
RST  
P3.6  
EA/V  
PP  
25 100µs PULSES TO GROUND  
ALE/PROG  
PSEN  
0
1
87C552  
P3.7  
XTAL2  
P2.7  
0
P2.6  
4-6MHz  
XTAL1  
A8-A12  
P2.0-P2.4  
V
SS  
SU00222  
Figure 15. Programming Configuration  
25 PULSES  
1
0
ALE/PROG:  
ALE/PROG:  
10µs MIN  
100µs+10  
1
0
SU00018  
Figure 16. PROG Waveform  
+5V  
V
DD  
P0  
A0-A7  
PGM DATA  
P1  
1
1
1
RST  
P3.6  
1
1
EA/V  
PP  
ALE/PROG  
PSEN  
0
87C552  
P3.7  
0 ENABLE  
XTAL2  
P2.7  
0
P2.6  
4-6MHz  
XTAL1  
A8-A12  
P2.0-P2.4  
V
SS  
SU00223  
Figure 17. Program Verification  
19  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I C, PWM, capture/compare, high I/O  
87C552  
2
EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS  
T
amb  
= 21°C to +27°C, V = 5V±10%, V = 0V  
DD SS  
SYMBOL  
PARAMETER  
MIN  
MAX  
13.0  
50  
UNIT  
V
V
PP  
Programming supply voltage  
Programming supply current  
Oscillator frequency  
12.5  
I
PP  
mA  
MHz  
1/t  
CLCL  
4
6
t
t
t
t
t
t
t
t
t
t
t
t
Address setup to PROG low  
Address hold after PROG  
Data setup to PROG low  
Data hold after PROG  
48t  
AVGL  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
48t  
48t  
48t  
48t  
GHAX  
DVGL  
GHDX  
EHSH  
SHGL  
GHSL  
GLGH  
AVQV  
ELQZ  
EHQZ  
GHGL  
P2.7 (ENABLE) high to V  
PP  
V
setup to PROG low  
hold after PROG  
10  
10  
90  
µs  
µs  
µs  
PP  
PP  
V
PROG width  
110  
Address to data valid  
48t  
CLCL  
CLCL  
CLCL  
ENABLE low to data valid  
Data float after ENABLE  
PROG high to PROG low  
48t  
48t  
0
10  
µs  
PROGRAMMING*  
ADDRESS  
VERIFICATION*  
ADDRESS  
P1.0–P1.7  
P2.0–P2.4  
t
AVQV  
PORT 0  
DATA IN  
DATA OUT  
t
t
t
DVGL  
GHDX  
GHAX  
t
AVGL  
ALE/PROG  
t
t
GLGH  
GHGL  
t
t
SHGL  
GHSL  
LOGIC 1  
LOGIC 1  
EA/V  
PP  
LOGIC 0  
t
t
t
EHSH  
ELQV  
EHQZ  
P2.7  
ENABLE  
SU00020  
*
FOR PROGRAMMING VERIFICATION SEE FIGURE 17.  
FOR VERIFICATION CONDITIONS SEE TABLE 3.  
Figure 18. EPROM Programming and Verification  
2
2
Purchase of Philips I C components conveys a license under the Philips’ I C patent  
2
to use the components in the I C system provided the system conforms to the  
I C specifications defined by Philips. This specification can be ordered using the  
2
code 9398 393 40011.  
20  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM, capture/compare, high I/O  
87C552  
PLCC68: plastic leaded chip carrier; 68 leads; pedestal  
SOT188-3  
21  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM, capture/compare, high I/O  
87C552  
QFP80: plastic quad flat package; 80 leads (lead length 1.95 mm); body 14 x 20 x 2.8 mm  
SOT318-2  
22  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM, capture/compare, high I/O  
87C552  
NOTES  
23  
1998 May 01  
Philips Semiconductors  
Product specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM, capture/compare, high I/O  
87C552  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 05-98  
Document order number:  
9397 750 05367  
Philips  
Semiconductors  

相关型号:

87C552/BMA

8-Bit Microcontroller
ETC

87C554

80C51 8-bit microcontroller . 6 clock operation 16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM, capture/compare, high I/O, 64L LQFP
NXP

87C575

80C51 8-bit microcontroller family 8K/256 OTP/ROM/ROMless, 4 comparator, failure detect circuitry, watchdog timer
NXP

87C576

80C51 8-bit microcontroller family 8K/256 OTP/ROM, 6 channel 10-bit A/D, 4 comparators, failure detect circuitry, watchdog timer
NXP

87C58

80C51 8-bit microcontroller family 8K.64K/256.1K OTP/ROM/ROMless, low voltage 2.7V.5.5V, low power, high speed 33 MHz
NXP

87C58

CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER
INTEL

87C58X2

80C51 8-bit microcontroller family 4K/8K/16K/32K ROM/OTP 128B/256B RAM low voltage 2.7 to 5.5 V, low power, high speed 30/33 MHz
NXP

87C652

80C51 8-bit microcontroller 8K/16K, 256 OTP, I2C
NXP

87C654

CMOS single-chip 8-bit microcontroller
NXP

87C654-16/BMA

8-Bit Microcontroller
ETC

87C654-16/BMAOT

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 16MHz, CMOS, CQCC44,
PHILIPS

87C654-16/BQA

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 16MHz, CMOS, CDIP40,
PHILIPS