935020600602 [NXP]

IC PHASE LOCKED LOOP, 50 MHz, PDIP16, PLASTIC, SOT-38, DIP-16, PLL or Frequency Synthesis Circuit;
935020600602
型号: 935020600602
厂家: NXP    NXP
描述:

IC PHASE LOCKED LOOP, 50 MHz, PDIP16, PLASTIC, SOT-38, DIP-16, PLL or Frequency Synthesis Circuit

光电二极管
文件: 总9页 (文件大小:146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
DESCRIPTION  
PIN CONFIGURATIONS  
The NE/SE564 is a versatile, high guaranteed frequency  
phase-locked loop designed for operation up to 50MHz. As shown  
in the Block Diagram, the NE/SE564 consists of a VCO, limiter,  
phase comparator, and post detection processor.  
D, N Packages  
1
2
3
4
5
6
7
8
16  
V+  
TTL OUTPUT  
LOOP GAIN CONTROL  
15  
14  
HYSTERESIS SET  
FEATURES  
Operation with single 5V supply  
INPUT TO PHASE COMP  
FROM VCO  
ANALOG OUT  
13 FREQ. SET CAP  
LOOP FILTER  
LOOP FILTER  
TTL-compatible inputs and outputs  
Guaranteed operation to 50MHz  
External loop gain control  
12  
11  
10  
9
FREQ. SET CAP  
VCO OUT 2  
FM/RF INPUT  
Reduced carrier feedthrough  
BIAS FILTER  
GND  
V+  
VCO OUT TTL  
No elaborate filtering needed in FSK applications  
Can be used as a modulator  
TOP VIEW  
Variable loop gain (externally controlled)  
SR01025  
Figure 1. Pin Configuration  
Signal generators  
APPLICATIONS  
High speed modems  
FSK receivers and transmitters  
Frequency Synthesizers  
Various satcom/TV systems  
pin configuration  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
0 to +70°C  
ORDER CODE  
NE564D  
DWG #  
SOT109-1  
SOT38-4  
SOT38-4  
16-Pin Plastic Small Outline (SO) Package  
16-Pin Plastic Dual In-Line Package (DIP)  
16-Pin Plastic Dual In-Line Package (DIP)  
0 to +70°C  
NE564N  
-55 to +125°C  
SE564N  
BLOCK DIAGRAM  
V
+
14  
4
5
1
PHASE  
COMPARATOR  
2
LIMITER  
7
6
DC  
RETRIEVER  
3
AMPLIFIER  
SCHMITT  
TRIGGER  
11  
16  
9
POST DETECTION  
PROCESSOR  
VCO  
15  
10  
8
12  
13  
SR01026  
Figure 2. Block Diagram  
1
1994 Aug 31  
853-0908 13720  
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V+  
Supply voltage  
Pin 1  
14  
6
V
V
Pin 10  
I
Sink Max (Pin 9) and sourcing (Pin 11)  
Bias current adjust pin (sinking)  
Power dissipation  
11  
1
mA  
mA  
mW  
OUT  
I
BIAS  
P
D
600  
Operating ambient temperature  
NE  
°C  
°C  
°C  
T
0 to +70  
A
SE  
-55 to +125  
-65 to +150  
T
Storage temperature range  
STG  
NOTE:  
Operation above 5V will require heatsinking of the case.  
DC AND AC ELECTRICAL CHARACTERISTICS  
V
CC  
= 5V; T = 0 to 25°C; f = 5MHz, I = 400µA; unless otherwise specified.  
A
O
2
LIMITS  
SE564  
TYP  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
NE564  
TYP  
60  
UNITS  
MAX  
MIN  
MAX  
MIN  
Maximum VCO frequency  
Lock range  
C = 0 (stray)  
1
50  
65  
45  
MHz  
Input > 200mV  
RMS  
°
T = 25 C  
40  
20  
50  
70  
30  
80  
40  
70  
A
°
T = 125 C  
A
% of f  
°
O
T = -55 C  
A
o
T = 0 C  
70  
40  
A
°
T = 70 C  
A
Capture range  
Input > 200mV  
, R = 27Ω  
20  
30  
20  
30  
% of f  
O
RMS  
2
f
= 5MHz,  
O
°
°
T = -55 C to +125 C  
T = 0 to +70 C  
= 0 to +70 C  
f
T = -55 C to +125 C  
T = 0 to +70 C  
500  
1500  
800  
A
A
°
VCO frequency drift with  
temperature  
°
o
600  
500  
PPM/ C  
= 5MHz,  
300  
O
°
°
A
A
°
C = 91pF  
= 100“Internal”  
1
VCO free-running frequency  
4
5
3
6
8
3.5  
5
3
6.5  
8
MHz  
R
C
VCO frequency change with  
supply voltage  
V
= 4.5V to 5.5V  
% of f  
CC  
O
Modulation frequency: 1kHz  
f
= 5MHz, input deviation:  
O
°
2%T = 25 C  
16  
8
28  
14  
mV  
mV  
mV  
mV  
mV  
mV  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
28  
14  
13  
°
1%T = 25 C  
Demodulated output voltage  
°
1%T = 0 C  
16  
8
°
1%T = -55 C  
6
10  
°
1%T = 70 C  
15  
°
1%T = 125 C  
12  
16  
1
Distortion  
Deviation: 1% to 8%  
1
%
S/N  
Signal-to-noise ratio  
AM rejection  
Std. condition, 1% to 10% dev.  
Std. condition, 30% AM  
40  
35  
40  
35  
dB  
dB  
Modulation frequency: 1kHz  
f
= 5MHz, input deviation: 1%  
Demodulated output at oper-  
ating voltage  
mV  
mV  
O
RMS  
RMS  
V
CC  
V
CC  
= 4.5V  
= 5.5V  
7
8
12  
14  
7
8
12  
14  
I
Supply current  
V
CC  
= 5V I , I  
10  
45  
60  
45  
60  
mA  
CC  
1
Output  
“1” output leakage current  
“0” output voltage  
V
= 5V, Pins 16, 9  
= 2mA, Pins 16, 9  
= 6mA, Pins 16, 9  
1
0.3  
0.4  
20  
0.6  
0.8  
1
0.3  
0.4  
20  
0.6  
0.8  
µA  
V
V
OUT  
I
OUT  
OUT  
I
2
1994 Aug 31  
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
TYPICAL PERFORMANCE CHARACTERISTICS  
Lock Range vs Signal Input  
1000  
8
6
I
= 40  
A
µ
0
PIN  
VCO Capacitor vs Frequency  
2
6
5
4
3
10  
10  
10  
10  
4
2
I
= 0µA  
PIN  
2
100  
8
2
10  
6
10  
1
4
V
5V  
2
3
4
5
10  
CC  
= 5MHz  
.1  
1
10  
10  
10  
10  
2
f
o
FREQUENCY kHz  
10  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
NORMALIZED LOCK RANGE  
Typical Noirmalized VCO  
Frequency as a Function of  
Temperature  
Typical Noirmalized VCO  
Frequency as a Function of  
Pin 2 Bias Current  
Typical Noirmalized VCO  
Frequency as a Function of  
Pin 2 Bias Current  
1.10  
VCO FREQUENCY: 50MHz  
1.05  
1.00  
0.95  
1.10  
FREQUENCY: 50MHz  
1.01  
BIAS CURRENT: — 200µA  
FREQUENCY: 5MHz  
1.00  
0.99  
1.05  
1.00  
0.98  
0.95  
0.90  
FREQUENCY: 500MHz  
BIAS CURRENT: — 200µA  
0.97  
0.96  
0.90  
–600µA –400  
–200  
0
+200  
–50 –25  
25  
0
25  
50  
75 100 125  
–600µA –400 –200  
0
+200 +400  
o
BIAS CURENT (µA), PIN 2  
BIAS CURENT (µA), PIN 2  
TEMPERATURE (IN C)  
SR01027  
Figure 3. Typical Performance Characteristics  
3
1994 Aug 31  
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
V
– PHASE COMPARATOR’S  
D
OUTPUT VOLTAGE IN mV  
800  
VCO FREQUENCY  
IN MHz  
I
= 200µA  
= 0µA  
BIAS  
600  
400  
200  
I
= 400µA  
BIAS  
I
1.6  
1.4  
1.2  
I
µ
BIAS = 800 A  
BIAS  
I
= 800µA  
BIAS  
I
µ
BIAS = 00 A  
f
= 1.0MHz  
o
0
–400  
–200  
200  
400  
600  
800  
40  
60  
100  
120  
140  
160  
V
IN mV  
D
0 – PHASE  
ERROR IN  
DEGREES  
.8  
.6  
–200  
–400  
–600  
–800  
Variation of the Comparator’s Output Voltage  
vs Phase Error and Bias Current (K )  
VCO Output Frequency as a Function of  
Input Voltage and Bias Current (K )  
D
O
SR01028  
Figure 4. Typical Performance Characteristics (cont.)  
TEST CIRCUIT  
+5V  
R3  
1K  
R1  
VCO  
15  
pF  
OUYPUT  
390  
C3  
INPUT  
9
1
10  
16  
2
6
7
3
DEMODULATED  
OUTPUT  
0.1µF  
1K  
14  
13  
0.1µF  
564  
8
R2  
C2  
C2  
4
430pF  
C1  
R2  
5
12  
430pF  
SR01029  
Figure 5. Test Circuit  
4
1994 Aug 31  
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
FUNCTIONAL DESCRIPTION  
Phase Comparator Section  
The phase detection processor consists of a doubled-balanced  
modulator with a limiter amplifier to improve AM rejection.  
Schottky-clamped vertical PNPs are used to obtain TTL level inputs.  
(Figure 6)  
The NE564 is a monolithic phase-locked loop with a post detection  
processor. The use of Schottky clamped transistors and optimized  
device geometries extends the frequency of operation to greater  
than 50MHz.  
The loop gain can be varied by changing the current in Q and Q  
which effectively changes the gain of the differential amplifiers. This  
can be accomplished by introducing a current at Pin 2.  
4
15  
In addition to the classical PLL applications, the NE564 can be used  
as a modulator with a controllable frequency deviation.  
Post Detection Processor Section  
The post detection processor consists of a unity gain  
transconductance amplifier and comparator. The amplifier can be  
used as a DC retriever for demodulation of FSK signals, and as a  
post detection filter for linear FM demodulation. The comparator has  
adjustable hysteresis so that phase jitter in the output signal can be  
eliminated.  
The output of the PLL can be written as shown in the following  
equation:  
(f - f )  
IN  
O
(1)  
V
O
=
K
VCO  
K
VCO  
= conversion gain of the VCO  
As shown in the equivalent schematic, the DC retriever is formed by  
the transconductance amplifier Q - Q together with an external  
42  
43  
f
f
= frequency of the input signal  
IN  
O
capacitor which is connected at the amplifier output (Pin 14). This  
forms an integrator whose output voltage is shown in the following  
equation:  
= free-running frequency of the VCO  
The process of recovering FSK signals involves the conversion of  
the PLL output into logic compatible signals. For high data rates, a  
considerable amount of carrier will be present at the output of the  
PLL due to the wideband nature of the loop filter. To avoid the use  
of complicated filters, a comparator with hysteresis or Schmitt trigger  
is required. With the conversion gain of the VCO fixed, the output  
voltage as given by Equation 1 varies according to the frequency  
deviation of f from f . Since this differs from system to system, it  
g
C
M
(3)  
V
O
=
V dt  
IN  
2
g
M
= transconductance of the amplifier  
C = capacitor at the output (Pin 14)  
2
V
IN  
= signal voltage at amplifier input  
IN  
O
is necessary that the hysteresis of the Schmitt trigger be capable of  
being changed, so that it can be optimized for a particular system.  
This is accomplished in the 564 by varying the voltage at Pin 15  
which results in a change of the hysteresis of the Schmitt trigger.  
With proper selection of C , the integrator time constant can be  
2
varied so that the output voltage is the DC or average value of the  
input signal for use in FSK, or as a post detection filter in linear  
demodulation.  
For FSK signals, an important factor to be considered is the drift in  
the free-running frequency of the VCO itself. If this changes due to  
temperature, according to Equation 1 it will lead to a change in the  
DC levels of the PLL output, and consequently to errors in the digital  
output signal. This is especially true for narrowband signals where  
The comparator with hysteresis is made up of Q - Q with  
49  
50  
positive feedback being provided by Q - Q . The hysteresis is  
47  
48  
varied by changing the current in Q with a resulting variation in the  
52  
loop gain of the comparator. This method of hysteresis control,  
which is a DC control, provides symmetric variation around the  
nominal value.  
the deviation in f itself may be less than the change in f due to  
IN  
O
temperature. This effect can be eliminated if the DC or average  
value of the signal is retrieved and used as the reference to the  
comparator. In this manner, variations in the DC levels of the PLL  
output do not affect the FSK output.  
Design Formula  
The free-running frequency of the VCO is shown by the following  
equation:  
1
VCO Section  
(4)  
f
O
22 R (C + C )  
Due to its inherent high-frequency performance, an emitter-coupled  
oscillator is used in the VCO. In the circuit, shown in the equivalent  
schematic, transistors Q21 and Q23 with current sources Q25 - Q26  
form the basic oscillator. The approximate free-running frequency of  
the oscillator is shown in the following equation:  
C
1
S
R
= 100Ω  
C
C = external cap in farads  
1
C
= stray capacitance  
S
1
(2)  
f
O
The loop filter diagram shown is explained by the following equation:  
1
22 R (C + C )  
C
1
S
(5)  
f
S
=
(First Order)  
R
= R = R = 100(INTERNAL)  
19 20  
C
1 + sRC  
3
C = external frequency setting capacitor  
1
R = R = R = 1.3k(Internal)*  
12  
13  
C
= stray capacitance  
S
By adding capacitors to Pins 4 and 5, a pole is added to the loop  
transfer at  
Variation of V (phase detector output voltage) changes the  
D
frequency of the oscillator. As indicated by Equation 2, the  
frequency of the oscillator has a negative temperature coefficient  
due to the monolithic resistor. To compensate for this, a current I  
1
RC  
NOTE:  
*Refer to Figure 6.  
ω =  
3
R
with negative temperature coefficient is introduced to achieve a low  
frequency drift with temperature.  
5
1994 Aug 31  
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
EQUIVALENT SCHEMATIC  
PHASE  
COMPARATOR  
7
5
1
LIMITER  
D1  
D2  
Q7  
Q10  
Q11  
Q9  
Q12  
1
DC RETRIEVER  
14  
SCHMITT TRIGGER  
15  
QR  
Q2 Q3  
Q16  
6
R7 R8  
1k 1k  
Q13  
Q14  
Q1  
3
2
Q5  
Q6  
Q41  
Q47  
D3  
Q40  
Q48  
Q15  
Q4  
D5  
D4  
D10  
D11  
16  
8
R27  
10k  
Q50  
Q49  
Q42  
10  
Q41  
R26  
10k  
R29  
10k  
Q20  
Q17  
Q42  
Q35  
R48  
10k  
Q44  
Q14  
Q24  
Q15  
Q22  
D12  
D11  
Q23  
R35  
11  
Q30  
Q45  
Q58  
Q46  
Q22  
Q21  
9
Q29  
R36  
100  
Q32  
Q31  
100  
Q37  
Q31  
Q27  
Q26  
D7  
D6  
Q34  
Q25  
Q36  
Q33  
Q39  
Q28  
D9  
D8  
AMPLIFIER  
VCO  
12  
13  
SR01030  
Figure 6. Equivalent Schematic  
LOCK RANGE ADJUSTMENT  
I
2
0.01µF  
LOOP FILTER  
0.01µF  
16  
2
11  
4
0.47µF  
.01µF  
FM INPUT  
6
7
5
15  
14  
f
= 5MHz  
O
M
1k  
ANALOG OUT  
1kHz  
f
= 1kHz  
564  
BIAS FILTER  
3
1
POST DETECTION FILTER  
0.1µF  
13  
8
10  
9
12  
80pF  
f
= 5MHz  
O
FREQUENCY SET CAP  
1k  
5V  
5V  
SR01031  
Figure 7. FM Demodulator at 5V  
6
1994 Aug 31  
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
APPLICATIONS  
5V  
FINE FREQUENCY  
ADJUSTMENT  
I
FM Demodulator  
2
The NE564 can be used as an FM demodulator. The connections  
for operation at 5V and 12V are shown in Figures 7 and 8,  
respectively. The input signal is AC coupled with the output signal  
being extracted at Pin 14. Loop filtering is provided by the  
capacitors at Pins 4 and 5 with additional filtering being provided by  
the capacitor at Pin 14. Since the conversion gain of the VCO is not  
very high, to obtain sufficient demodulated output signal the  
frequency deviation in the input signal should be 1% or higher.  
2k  
MODULATING  
INPUT  
1kHz  
16  
2
11  
4
0.47µF  
1kHz  
6
7
5
15  
14  
1k  
564  
.01µF  
3
1
Modulation Techniques  
13  
The NE564 phase-locked loop can be modulated at either the loop  
filter ports (Pins 4 and 5) or the input port (Pin 6) as shown in Figure  
9. The approximate modulation frequency can be determined from  
the frequency conversion gain curve shown in Figure 10. This curve  
will be appropriate for signals injected into Pins 4 and 5 as shown in  
Figure 9.  
8
10  
9
12  
80pF  
f
= 5MHz  
O
FREQUENCY SET CAP  
5V  
1k  
MODULATED OUTPUT  
(TTL)  
5V  
I
2
LOCK RANGE ADJUSTMENT  
0.01µF  
SR01033  
Figure 9. Modulator  
The lock range graph indicates that the +1.0MHz frequency  
deviations will be within the lock range for input signal levels greater  
than approximately 50mV with zero Pin 2 bias current. (While  
strictly this figure is appropriate only for 50MHz, it can be used as a  
LOOP FILTER  
0.01µF  
16  
2
11  
4
0.47µF  
.01µF  
FM INPUT  
f
= 5MHz  
6
7
5
O
M
1k  
f
= 1kHz  
ANALOG OUT  
1kHz  
guide for lock range estimates at other f ’ frequencies).  
15  
14  
O
564  
BIAS  
FILTER  
POST  
DETECTION  
FILTER  
The hysteresis was adjusted experimentally via the 10kΩ  
potentiometer and 2kbias arrangement to give the waveshape  
shown in Figure 12 for 20k, 500k, 2M baud rates with square wave  
FSK modulation. Note the magnitude and phase relationships of the  
phase comparators’ output voltages with respect to each other and  
to the FSK output. The high-frequency sum components of the input  
and VCO frequency also are viable as noise on the phase  
comparator’s outputs.  
3
1
0.1µF  
13  
8
10  
9
12  
80pF  
f
= 5MHz  
O
.01µF  
FREQUENCY SET CAP  
200  
1k  
OUTLINE OF SETUP PROCEDURE  
12V  
SR01032  
1. Determine operating frequency of the VCO: IF÷ N in feedback  
Figure 8. FM Demodulator at 12V  
loop, then  
FSK Demodulation  
f = N x f .  
O IN  
The 564 PLL is particularly attractive for FSK demodulation since it  
contains an internal voltage comparator and VCO which have TTL  
compatible inputs and outputs, and it can operate from a single 5V  
power supply. Demodulated DC voltages associated with the mark  
and space frequencies are recovered with a single external  
capacitor in a DC retriever without utilizing extensive filtering  
networks. An internal comparator, acting as a Schmitt trigger with  
an adjustable hysteresis, shapes the demodulated voltages into  
compatible TTL output levels. The high-frequency design of the 564  
enables it to demodulate FSK at high data rates in excess of 1.0M  
baud.  
2. Calculate value of the VCO frequency set capacitor:  
1
C
O
2200 f  
O
3. Set I (current sinking into Pin 2) for 100µA. After operation is  
2
obtained, this value may be adjusted for best dynamic behavior,  
VCC * 1.3V  
and replace with fixed resistor value of R =  
.
2
IB2  
4. Check VCO output frequency with digital counter at Pin 9 of  
device (loop open, VCO to φ det.). Adjust C trim or frequency  
O
adj. Pins 4 - 5 for exact center frequency, if needed.  
Figure 10 shows a high-frequency FSK decoder designed for input  
frequency deviations of +1.0MHz centered around a free-running  
frequency of 10.8MHz. the value of the timing capacitance required  
was estimated from Figure 8 to be approximately 40pF. A trimmer  
5. Close loop and inject input signal to Pin 6. Monitor Pins 3 and 6  
with two-channel scope. Lock should occur with ∆φ  
equal to  
3 - 6  
o
90 (phase error).  
capacitor was added to fine tune f ’ 10.8MHz.  
O
7
1994 Aug 31  
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
6. If pulsed burst or ramp frequency is used for input signal, special  
loop filter design may be required in place of simple single  
capacitor filter on Pins 4 and 5. (See PLL application section)  
50% in duty cycle, DC offsets will occur in the loop which tend to  
create an artificial or biased VCO.  
8. For multiplier circuits where phase jitter is a problem, loop filter  
capacitors may be increased to a value of 10 - 50µF on Pins 4,  
5. Also, careful supply decoupling may be necessary. This  
7. The input signal to Pin 6 and the VCO feedback signal to Pin 3  
must have a duty cycle of 50% for proper operation of the phase  
detector. Due to the nature of a balanced mixer if signals are not  
includes the counter chain V lines.  
CC  
BIAS  
ADJ  
0.22µF 0.22µF  
+5V  
2k  
10k  
10k  
1.2k  
HYSTERESIS  
ADJUST  
FSK  
OUTPUT  
2k  
1
10  
15  
16  
2
6
0.1µF  
0.1µF  
FSK  
INPUT  
1k  
14  
7
10µF/8V  
1k  
NE564  
3
9
510Ω  
0–20pF  
*NOTE:  
12  
+5V  
Use R  
only if rise time is critical.  
9-11  
*510Ω  
33pF  
11  
13  
8
300pF  
4
5
300pF  
SR01034  
Figure 10. 10.8MHz FSK Decoder Using the 564  
8
1994 Aug 31  
Philips Semiconductors  
Product specification  
Phase-locked loop  
NE/SE564  
SR01035  
Figure 11. Phase Comparator (Pins 4 and 5) and FSK (Pin 16) Outputs  
+5V  
BIAS ADJUST  
.47µF  
10k  
CER.  
I
2
.47µF CER.  
2k  
.33µF  
2
1
10  
4
5
INPUT SIGNAL  
510Ω  
LOOP  
FILTER  
6
11  
.33µF  
*510Ω  
NE564  
f
1kΩ  
.47µF  
T
DET.  
7
VCO  
9
OUTPUT  
VCO  
3
8
12  
13  
Nxf  
T
C
O
*NOTE:  
Use R  
only if rise time is critical.  
9-11  
f = Nxf  
T
÷N  
Figure 12. NE564 Phase-Locked Frequency Multiplier  
9
1994 Aug 31  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY