935056440602 [NXP]

RF/Microwave Amplifier, RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER, SOT109-1, MS-012AC, SO-16;
935056440602
型号: 935056440602
厂家: NXP    NXP
描述:

RF/Microwave Amplifier, RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER, SOT109-1, MS-012AC, SO-16

放大器 射频 微波 功率放大器
文件: 总21页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA5219  
Wideband variable gain amplifier  
Product specification  
Replaces data of 1993 Dec 10  
1997 Nov 07  
IC17 Data Handbook  
Philip s Se m ic ond uc tors  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
DESCRIPTION  
PIN CONFIGURATION  
The SA5219 represents a breakthrough in monolithic amplifier  
design featuring several innovations. This unique design has  
combined the advantages of a high speed bipolar process with the  
proven Gilbert architecture.  
N, D PACKAGES  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
CC1  
CC2  
GND  
GND  
2
The SA5219 is a linear broadband RF amplifier whose gain is  
controlled by a single DC voltage. The amplifier runs off a single 5  
volt supply and consumes only 40mA. The amplifier has high  
impedance (1k) differential inputs. The output is 50differential.  
Therefore, the 5219 can simultaneously perform AGC, impedance  
transformation, and the balun functions.  
1
IN  
OUT  
A
A
GND  
OUT  
GND  
IN  
2
1
B
B
GND  
GND  
2
1
V
GND  
GND  
BG  
2
2
The dynamic range is excellent over a wide range of gain setting.  
Furthermore, the noise performance degrades at a comparatively  
slow rate as the gain is reduced. This is an important feature when  
building linear AGC systems.  
V
AGC  
SR00273  
Figure 1. Pin Configuration  
FEATURES  
700MHz bandwidth  
APPLICATIONS  
High impedance differential input  
50differential output  
Linear AGC systems  
Very linear AM modulator  
RF balun  
Single 5V power supply  
0 - 1V gain control pin  
Cable TV multi-purpose amplifier  
Fiber optic AGC  
>60dB gain control range at 200MHz  
26dB maximum gain differential  
RADAR  
Exceptional V  
/ V  
linearity  
GAIN  
CONTROL  
User programmable fixed gain block  
Video  
7dB noise figure minimum  
Full ESD protection  
Easily cascadable  
Satellite receivers  
Cellular communications  
ORDERING INFORMATION  
Description  
Temperature Range  
-40 to +85°C  
Order Code  
DWG #  
SOT109-1  
SOT38-4  
16-Pin Plastic Small Outline (SO) package  
16-Pin Plastic Dual In-Line package (DIP)  
SA5219D  
SA5219N  
-40 to +85°C  
2
1997 Nov 07  
853-1724 18663  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V
CC  
Supply voltage  
-0.5 to +8.0  
V
o
1
Power dissipation, T = 25 C (still air)  
A
16-Pin Plastic DIP  
16-Pin Plastic SO  
P
D
1450  
1100  
mW  
mW  
°C  
°C  
T
Maximum operating junction temperature  
Storage temperature range  
150  
JMAX  
T
-65 to +150  
STG  
NOTES:  
1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ  
:
JA  
16-Pin DIP: θ = 85°C/W  
JA  
16-Pin SO: θ = 110°C/W  
JA  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V
CC  
Supply voltage  
V
CC1  
= V  
= 4.5 to 7.0V  
V
CC2  
Operating ambient temperature range  
SA Grade  
T
A
°C  
°C  
-40 to +85  
-40 to +105  
Operating junction temperature range  
SA Grade  
T
J
DC ELECTRICAL CHARACTERISTICS  
o
T = 25 C, V  
= V  
= +5V, V  
= 1.0V, unless otherwise specified.  
A
CC1  
CC2  
AGC  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
MAX  
MIN  
TYP  
I
Supply current  
DC tested  
36  
16  
22  
0.8  
43  
19  
25  
1.2  
50  
22  
28  
1.6  
mA  
dB  
dB  
kΩ  
CC  
A
Voltage gain (single-ended in/single-ended out)  
Voltage gain (single-ended in/differential out)  
Input resistance (single-ended)  
DC tested, R = 10kΩ  
L
V
A
DC tested, R = 10kΩ  
V
L
R
DC tested at ±50µA  
DC tested at ±1mA  
IN  
R
Output resistance (single-ended)  
Output offset voltage (output referred)  
DC level on inputs  
35  
60  
+20  
2.0  
2.4  
45  
80  
±150  
2.4  
mV  
V
OUT  
V
OS  
V
1.6  
1.9  
18  
IN  
V
OUT  
DC level on outputs  
2.9  
V
PSRR  
Output offset supply rejection ratio  
dB  
4.5V<V <7V  
CC  
V
R
Bandgap reference voltage  
1.2  
2
1.32  
1.45  
-6  
V
BG  
R
= 10kΩ  
BG  
Bandgap loading  
10  
kΩ  
V
BG  
V
AGC  
AGC DC control voltage range  
AGC pin DC bias current  
0-1.3  
-0.7  
I
0V<V  
<1.3V  
µA  
BAGC  
AGC  
3
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
AC ELECTRICAL CHARACTERISTICS  
o
T = 25 C, V  
= V  
= +5.0V, V  
= 1.0V, unless otherwise specified.  
A
CC1  
CC2  
AGC  
LIMITS  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
MAX  
MIN  
BW  
GF  
-3dB bandwidth  
Gain flatness  
700  
MHz  
dB  
DC - 500MHz  
+0.4  
Maximuminputvoltageswing(single-ended)for  
linear operation  
V
IMAX  
200  
mV  
P-P  
1
R = 50Ω  
400  
1.9  
9.3  
2.5  
-60  
0.3  
0.013  
2
mV  
Maximum output voltage swing (single-ended)  
L
P-P  
V
OMAX  
1
for linear operation  
R = 1kΩ  
L
V
P-P  
NF  
Noise figure (unmatched configuration)  
Equivalent input noise voltage spectral density  
Reverse isolation  
R
= 50, f = 50MHz  
f = 100MHz  
dB  
S
V
nV/Hz  
dB  
IN-EQ  
S12  
f = 100MHz  
G/V  
Gain supply sensitivity (single-ended)  
Gain temperature sensitivity  
dB/V  
CC  
G/T  
R = 50Ω  
L
dB/°C  
pF  
C
Input capacitance (single-ended)  
-3dB bandwidth of gain control function  
1dB gain compression point at output  
IN  
BW  
20  
MHz  
dBm  
AGC  
O-1dB  
P
f = 100MHz  
-3  
f = 100MHz, V  
=0.1V  
AGC  
AGC  
AGC  
P
1dB gain compression point at input  
Third-order intercept point at output  
-10  
dBm  
dBm  
I-1dB  
f = 100MHz, V  
>0.5V  
IP3  
+13  
OUT  
f = 100MHz, V  
<0.5V  
IP3  
Third-order intercept point at input  
Gain match output A to output B  
+5  
dBm  
dB  
IN  
G  
f = 100MHz, V  
= 1V  
0.1  
AB  
AGC  
NOTE:  
1. With R > 1k, overload occurs at input for single-ended gain < 13dB and at output for single-ended gain > 13dB. With R = 50, overload  
L
L
occurs at input for single-ended gain < 6dB and at output for single-ended gain > 6dB.  
Otherwise, there is an advantage to common mode rejection, a  
specification that is not normally important to RF designs. The  
source impedance can be chosen for two different performance  
characteristics: Gain, or noise performance. Gain optimization will  
be realized if the input impedance is matched to about 1k. A 4:1  
balun will provide such a broadband match from a 50source.  
Noise performance will be optimized if the input impedance is  
matched to about 200. A 2:1 balun will provide such a broadband  
match from a 50source. The minimum noise figure can then be  
expected to be about 7dB. Maximum gain will be about 23dB for a  
single-ended output. If the differential output is used and properly  
matched, nearly 30dB can be realized. With gain optimization, the  
noise figure will degrade to about 8dB. With no matching unit at the  
input, a 9dB noise figure can be expected from a 50source. If the  
source is terminated, the noise figure will increase to about 15dB.  
All these noise figures will occur at maximum gain.  
SA5219 APPLICATIONS  
The SA5219 is a wideband variable gain amplifier (VGA) circuit  
which finds many applications in the RF, IF and video signal  
processing areas. This application note describes the operation of  
the circuit and several applications of the VGA. The simplified  
equivalent schematic of the VGA is shown in Figure 2. Transistors  
Q1-Q6 form the wideband Gilbert multiplier input stage which is  
biased by current source I1. The top differential pairs are biased  
from a buffered and level-shifted signal derived from the V  
input  
AGC  
and the RF input appears at the lower differential pair. The circuit  
topology and layout offer low input noise and wide bandwidth. The  
second stage is a differential transimpedance stage with current  
feedback which maintains the wide bandwidth of the input stage.  
The output stage is a pair of emitter followers with 50output  
impedance. There is also an on-chip bandgap reference with  
buffered output at 1.3V, which can be used to derive the gain control  
voltage.  
The SA5219 has an excellent noise figure vs gain relationship. With  
any VGA circuit, the noise performance will degrade with decreasing  
gain. The 5219 has about a 1.2dB noise figure degradation for  
each 2dB gain reduction. With the input matched for optimum gain,  
the 8dB noise figure at 23dB gain will degrade to about a 20dB  
noise figure at 0dB gain.  
Both the inputs and outputs should be capacitor coupled or DC  
isolated from the signal sources and loads. Furthermore, the two  
inputs should be DC isolated from each other and the two outputs  
should likewise be DC isolated from each other. The SA5219 was  
designed to provide optimum performance from a 5V power source.  
However, there is some range around this value (4.5 - 7V) that can  
be used.  
The SA5219 also displays excellent linearity between voltage gain  
and control voltage. Indeed, the relationship is of sufficient linearity  
that high fidelity AM modulation is possible using the SA5219. A  
The input impedance is about 1k. The main advantage to a  
differential input configuration is to provide the balun function.  
4
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
maximum control voltage frequency of about 20MHz permits video  
baseband sources for AM.  
BAT17 as shown. The diodes are biased by R1 and R2 to V such  
that a quiescent current of about 2mA in each leg is achieved. An  
SA5230 low voltage op amp is used as an integrator which drives  
CC  
A stabilized bandgap reference voltage is made available on the  
SA5219 (Pin 7). For fixed gain applications this voltage can be  
resistor divided, and then fed to the gain control terminal (Pin 8).  
Using the bandgap voltage reference for gain control produces very  
stable gain characteristics over wide temperature ranges. The gain  
setting resistors are not part of the RF signal path, and thus stray  
capacitance here is not important.  
the V  
pin on all three SA5219s. R3 and C3 filter the high  
AGC  
frequency ripple from the full-wave rectified signal. A voltage  
divider is used to generate the reference for the non-inverting input  
of the op amp at about 1.7V. Keeping D3 the same type as D1 and  
D2 will provide a first order compensation for the change in Schottky  
voltage over the operating temperature range and improve the AGC  
performance. R6 is a variable resistor for adjustments to the op  
amp reference voltage. In low cost and large volume applications  
this could be replaced with a fixed resistor, which would result in a  
slight loss of the AGC dynamic range. Cascading three SA5219s  
will give a dynamic range in excess of 60dB.  
The wide bandwidth and excellent gain control linearity make the  
SA5219 VGA ideally suited for the automatic gain control (AGC)  
function in RF and IF processing in cellular radio base stations,  
Direct Broadcast Satellite (DBS) decoders, cable TV systems, fiber  
optic receivers for wideband data and video, and other radio  
communication applications. A typical AGC configuration using the  
SA5219 is shown in Figure 3. Three SA5219s are cascaded with  
appropriate AC coupling capacitors. The output of the final stage  
drives the full-wave rectifier composed of two UHF Schottky diodes  
The SA5219 is a very user-friendly part and will not oscillate in most  
applications. However, in an application such as with gains in  
excess of 60dB and bandwidth beyond 100MHz, good PC board  
layout with proper supply decoupling is strongly recommended.  
V
CC  
R
3
R
R
2
1
Q
7
A1  
Q
8
OUT  
OUT  
A
B
Q
Q
Q
Q
4
1
2
3
50  
50  
R
4
I
I
3
2
V
AGC  
+
Q
Q
6
5
0–1V  
IN  
B
BANDGAP  
REFERENCE  
V
BG  
IN  
A
I
1
SR00274  
Figure 2. Equivalent Schematic of VGA  
AGC  
OUTPUT  
RF/IF  
INPUT  
5219  
5219  
5219  
V
CC  
R1  
R2  
R4  
C4  
L1  
L2  
D1  
D2  
BAT 17  
C3  
5230  
+
R3  
D3  
R6  
V
CC  
R5  
BAT 17  
SR00275  
Figure 3. AGC Configuration Using Cascaded SA5219s  
5
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
0.1µF  
10µF  
0.1µF  
+
V
CC  
V
5VDC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
CC1  
CC2  
GND1  
GND  
2
V
IN  
A
OUT  
IN  
OUT  
A
A
0.1µF  
0.1µF  
0.1µF  
50Ω  
GND1  
GND2  
IN  
B
OUT  
B
OUT  
B
0.1µF  
GND1  
GND2  
GND2  
GND2  
V
BG  
V
AGC  
SR00276  
Figure 4. VGA AC Evaluation Board  
+5V  
MINI CIRCUITS  
2:1 BALUN  
OR SIMILAR  
50Ω  
SOURCE  
50Ω  
OUTPUT  
5219  
50Ω  
This circuit will exhibit about a 7dB  
noise figure with approximately  
22dB gain.  
1 : 2  
V
AGC  
+1V  
SR00277  
Figure 5. Broadband Noise Optimization  
+5V  
2:1 TURNS RATIO  
LC TUNED  
TRANSFORMER  
50Ω  
50Ω  
OUTPUT  
This circuit will exhibit about a 7dB  
noise figure with approximately  
22dB gain. Narrowband circuits  
have the advantage of greater stabil-  
ity, particularly when multiple de-  
vices are cascaded.  
5219  
SOURCE  
50Ω  
V
AGC  
+1V  
SR00278  
Figure 6. Narrowband Noise Optimization  
+5V  
MINI CIRCUITS  
4:1 BALUN OR  
EQUIVALENT  
50Ω  
50Ω  
SOURCE  
OUTPUT  
This circuit will exhibit about an 8dB  
noise figure with 24dB gain.  
5219  
1 : 4  
50Ω  
V
AGC  
+1V  
SR00279  
Figure 7. Broadband Gain Optimization  
6
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
+5V  
4:1 TURNS RATIO  
LC TUNED  
TRANSFORMER  
50Ω  
50Ω  
OUTPUT  
This circuit will exhibit approximate-  
ly an 8dB noise figure and 25dB gain.  
5219  
SOURCE  
50Ω  
V
AGC  
+1V  
SR00280  
Figure 8. Narrowband Gain Optimization  
+5V  
50Ω  
50Ω  
SOURCE  
OUTPUT  
50Ω  
The noisefigureofthisconfiguration  
will be approximately 15dB.  
5219  
50Ω  
V
AGC  
+1V  
SR00281  
Figure 9. Simple Amplifier Configuration  
+5V  
50Ω  
50Ω  
SOURCE  
OUTPUT  
With the 50source left untermi-  
5219  
nated, the noise figure is 9dB.  
50Ω  
V
AGC  
+1V  
SR00282  
Figure 10. Unterminated Configuration  
+5V  
50Ω  
50Ω  
SOURCE  
OUTPUT  
5219  
Gain = 19dB + 20log  
V
10 AGC  
50Ω  
V
R2  
AGC  
= ƪ  
ƫ
1V  
VBG  
where V  
AGC  
R1 ) R2  
V
BG  
and is in units of Volts, for V  
AGC  
R
R
2
1
SR00283  
Figure 11. User-Programmable Fixed Gain Block  
7
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
+5V  
FULL CARRIER  
AM (DSB)  
50Ω  
RF INPUT  
50Ω  
OUTPUT  
5219  
V
SOURCE  
50Ω  
All harmonic distortion products will be  
at least -50dBc over the audio spectrum.  
AGC  
.5V  
+5V  
R
9R  
MODULATING  
SIGNAL  
SR00284  
Figure 12. AM Modulator  
50Ω  
CRYSTAL  
FILTER  
OUTPUT  
5219  
5219  
5219  
50Ω  
V
V
V
AGC  
AGC  
AGC  
The high input impedance to the NE5219 makes matching  
to crystal filters relatively easy. The total delta gain of this  
systemwillapproach80dB. IFfrequencieswellintotheUHF  
region can be configured with this type of architecture.  
GAIN CONTROL  
SIGNAL  
SR00285  
Figure 13. Receiver AGC IF Gain  
(+5V, unless otherwise noted)  
V
CC  
R
S
±
V
R
R
L
S
T
5219  
R
L
R
T
±
V
AGC  
SR00286  
Figure 14. Test Set-up 1 (Used for all Graphs)  
8
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
10  
20  
19.5  
19  
V
= 5.5V  
= 5.0V  
= 4.5V  
CC  
CC  
CC  
9
8
7
6
5
4
3
2
1
0
V
V
5.5V  
5.0V  
4.5V  
18.5  
18  
17.5  
17  
R
= 0Ω  
= ∞  
S
L
T = 25°C  
R
R
= R = 50Ω  
S
L
R
= ∞  
t
R
= ∞  
16.5  
16  
t
V
= 1.1V  
AGC  
f = 10MHz  
See Test Setup 1  
DC Tested  
See test-setup 1  
15.5  
15  
0
0.2  
0.4  
0.6  
V
0.8  
(V)  
1
1.2  
–100  
–50  
0
50  
100  
150  
Temperature (°C)  
AGC  
SR00287  
SR00289  
Figure 15. Gain vs V  
and V  
Figure 17. Voltage Gain vs Temperature and V  
CC  
AGC  
CC  
-55°C  
+25°C  
10  
9
8
7
6
5
4
3
2
1
0
55  
50  
45  
40  
35  
30  
25  
20  
+125°C  
V
= 7.0V  
CC  
V
= 6.0V  
CC  
V
= 5.0V  
= 4.5V  
CC  
CC  
V
R
= R = 50Ω  
L
S
R
= ∞  
t
See test-setup 1  
See test-setup 1  
100  
–100  
–50  
0
50  
150  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1
1.2  
Temperature (°C)  
V
AGC  
SR00288  
SR00290  
Figure 16. Insertion Gain vs V  
and Temperature  
Figure 18. Supply Current vs Temperature and V  
CC  
AGC  
9
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
5
4.5  
4
1.5  
1.45  
1.4  
V
= 7.0V  
= 6.0V  
CC  
V
CC  
3.5  
3
1.35  
V
= 7.0V  
= 4.5V  
CC  
1.3  
1.25  
1.2  
V
CC  
V
= 5.0V  
= 4.5V  
CC  
CC  
2.5  
2
V
1.5  
1
1.15  
1.1  
DC Tested  
See test-setup 1  
DC Tested  
See test-setup 1  
0.5  
0
1.05  
1
–100  
–50  
0
50  
100  
150  
–100  
–50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
SR00291  
SR00293  
Figure 19. Input Resistance vs Temperature  
Figure 21. Output Bias Voltage vs Temperature and V  
CC  
2.5  
2
2.5  
2
V
= 7.0V  
CC  
CC  
= 5.0V  
CC  
V
V
V
= 6.0V  
1.5  
1.5  
= 4.5V  
CC  
V
= 1.1V  
AGC  
= 10kΩ  
1
0.5  
0
1
0.5  
0
R
L
DC Tested  
See test-setup 1  
DC Tested  
See test-setup 1  
–100  
–50  
0
50  
100  
150  
–100  
–50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
SR00292  
SR00294  
Figure 20. Input Bias Voltage vs Temperature  
Figure 22. DC Output Swing vs Temperature  
10  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
16  
14  
12  
10  
8
20  
10  
1.1V  
0.8V  
0.4V  
V
V
V
V
= 7.0V  
= 6.0V  
= 5.0V  
= 4.5V  
CC  
CC  
CC  
CC  
200mV  
100mV  
50mV  
0
–10  
–20  
–30  
T = 25°C  
= 1.1V  
V
6
AGC  
= 50Ω  
R
t
25mV  
f = 10MHz  
4
See Test Setup 1  
T = 25°C  
R
= R =  
L
S
2
50Ω  
R
= 50Ω  
See Test  
Setup 1  
t
0
–100  
10  
100  
1000 1500  
–50  
0
50  
100  
150  
Frequency (MHz)  
Temperature (°C)  
SR00295  
SR00297  
Figure 23. Insertion Gain vs Frequency and V  
Figure 25. Insertion Gain vs Temperature and V  
AGC  
CC  
15  
10  
0
5.5V  
4.5V  
–5  
–10  
5
125°C  
–15  
T = 25°C  
25°C  
V
= 1.1V  
AGC  
= R = 50Ω  
0
R
-55°C  
S
L
R
= 50Ω  
t
–20  
See Test Setup 1  
R
= R = 50Ω  
L
S
R
= 50Ω  
t
See Test Setup 1  
–5  
–25  
10  
100  
Frequency (MHz)  
10  
1000 1500  
100  
1000 1500  
Frequency (MHz)  
SR00298  
SR00296  
Figure 24. Insertion Gain vs Frequency and V  
Figure 26. Output Return Loss vs Frequency  
CC  
11  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
0
–10  
–20  
–30  
–40  
–50  
15  
10  
5
OUTPUT  
T = 25°C  
= R = 50Ω  
R
S
L
R
= 50Ω  
t
f = 100MHz  
See test-setup 1  
–60  
T = 25°C  
R
= R = 50Ω  
R = 50Ω  
t
S
INPUT  
L
0
–70  
–80  
–90  
See test-setup 1  
–5  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1
Frequency (MHz)  
V
AGC  
SR00299  
SR00301  
Figure 27. Reverse Isolation vs Frequency  
Figure 29. Third-Order Intermodulation Intercept vs V  
AGC  
20  
18  
16  
14  
12  
10  
8
0
OUTPUT  
–5  
–10  
–15  
–20  
–25  
–30  
INPUT  
T = 25°C  
R
= R = 50Ω  
S
L
T = 25°C  
R
= 50Ω  
t
6
f = 100MHz  
See test-setup 1  
R
= R = 50Ω  
S
L
R
= ∞  
t
4
2
0
f = 50MHz  
See test-setup 1  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1
0
0.2  
0.4  
V
0.6  
(V)  
AGC  
0.8  
1
V
AGC  
SR00300  
SR00302  
Figure 28. 1dB Gain Compression vs V  
Figure 30. Noise Figure vs V  
AGC  
AGC  
12  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
12  
10  
8
16  
14  
0Termination  
12  
on INB  
10  
50Termination  
8
6
on INB  
6
4
T = 25°C  
R
= R = 50Ω  
L
t
S
V
= 1.1V  
AGC  
= R = 50Ω  
4
2
0
R = 50Ω  
R
S
L
R
= R = 10k  
2
1
R = on INA  
t
f = 100MHz  
2
See test-setup 1  
See Figure 10  
0
10  
100  
1000  
–60  
–10  
40  
90  
140  
Frequency (MHz)  
Temperature (°C)  
SR00303  
SR00305  
Figure 31. Noise Figure vs Frequency  
Figure 33. Fixed Gain vs Temperature  
1.4  
V
V
V
V
= 7.0V  
CC  
CC  
CC  
CC  
1.35  
= 6.0V  
= 5.0V  
= 4.5V  
1.3  
1.25  
1.2  
1.15  
1.1  
Bandgap Load = 2kΩ  
1.05  
1
–100  
–50  
0
50  
100  
150  
Temperature (°C)  
SR00304  
Figure 32. Bandgap Voltage vs Temperature and V  
CC  
13  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
+VCC  
GND  
INA  
OUTA  
INB  
OUTB  
NE5219  
TOP VIEW - COMPONENT SIDE  
TOP VIEW - SOLDER SIDE  
SR00306  
Figure 34. VGA AC Evaluation Board Layout (DIP Package)  
AMP10101 / NE5219SO/DN8.90  
BOTTOM VIEW - D Package  
TOP VIEW - D Package  
SR00307  
Figure 35. VGA AC Evaluation Board Layout (SO Package)  
14  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
DIP16: plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
15  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
16  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
NOTES  
17  
1997 Nov 07  
Philips Semiconductors  
Product specification  
Wideband variable gain amplifier  
SA5219  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
Preproduction Product  
Full Production  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes  
only. PhilipsSemiconductorsmakesnorepresentationorwarrantythatsuchapplicationswillbesuitableforthespecifiedusewithoutfurthertesting  
or modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
orsystemswheremalfunctionofaPhilipsSemiconductorsandPhilipsElectronicsNorthAmericaCorporationProductcanreasonablybeexpected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1997  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Philips  
Semiconductors  
it Q  
Philips Semiconductors Home  
ProducBuy  
MySemContac  
Product Information  
catalogonline  
Information as of 2003-04-22  
My.Semiconductors.COM.  
Your personal service from Use right mouse button to  
Philips Semiconductors.  
Please register now !  
Stay informed  
SA5219; Wideband  
variable gain  
amplifier  
download datasheet  
Download datasheet  
Products  
General description  
Features  
Applications  
Datasheet  
Buy online  
Parametrics  
Email/translate  
Block diagram  
Products & packages  
Support & tools  
Similar products  
MultiMarket  
Semiconductors  
Product Selector  
Catalog by  
Function  
to
General description  
The SA5219 represents a breakthrough in monolithic amplifier design featuring several innovations. This  
unique design has combined the advantages of a high speed bipolar process with the proven Gilbert  
architecture.  
Catalog by  
System  
Cross-reference  
Packages  
The SA5219 is a linear broadband RF amplifier whose gain is controlled by a single DC voltage. The  
amplifier runs off a single 5 volt supply and consumes only 40mA. The amplifier has high impedance (1k)  
differential inputs. The output is 50differential. Therefore, the 5219 can simultaneously perform AGC,  
impedance transformation, and the balun functions.  
End of Life  
information  
Distributors Go  
Here!  
The dynamic range is excellent over a wide range of gain setting. Furthermore, the noise performance  
degrades at a comparatively slow rate as the gain is reduced. This is an important feature when building linear  
AGC systems.  
Models  
SoC solutions  
to
Features  
700MHz bandwidth  
High impedance differential input  
50differential output  
Single 5V power supply  
0 - 1V gain control pin  
>60dB gain control range at 200MHz  
26dB maximum gain differential  
Exceptional V  
/ V  
linearity  
CONTROL  
GAIN  
7dB noise figure minimum  
Full ESD protection  
Easily cascadable  
 
to
Applications  
Linear AGC systems  
Very linear AM modulator  
RF balun  
Cable TV multi-purpose amplifier  
Fiber optic AGC  
RADAR  
User programmable fixed gain block  
Video  
Satellite receivers  
Cellular communications  
AN116: Applications For The NE521/522/527/529 (date 01-Dec-88)  
Down  
AN177: An Overview Of The Phase-Locked Loop (PLL) (date 01-Dec-88)  
Down  
AN178: Modeling The PLL (date 01-Dec-88)  
Down  
to
Datasheet  
Type  
number  
Title  
Publication  
release date  
Datasheet status  
Page  
count  
File  
size  
(kB)  
Datasheet  
SA5219  
Wideband  
variable gain  
amplifier  
7/11/1997  
Product  
specification  
18  
180  
Download  
Down  
to
Parametrics  
Type  
Package Application FUNCTION Operating No. Amplifier Vdd(max.) Maximum  
number  
temp.(Cel) of Type  
Pins  
Power  
Dissipation(Mw)  
General-  
Wideband  
16 variable  
gain  
SOT109  
(SO16)  
SA5219D  
purpose/Linear Amplifiers -40~85  
ICs  
5
1100  
to
Products, packages, availability and ordering  
Type  
North  
Ordering code  
Marking/Packing Package Device status Buy online  
IC packing info  
number  
American (12NC)  
type  
Down  
number  
SOT109  
(SO16)  
Standard Marking *  
Tube (Signetics)  
Full production  
Full production  
SA5219D SA5219D  
9350 564 40602  
-
-
order this  
order this  
Standard Marking *  
9350 564 40623 Reel Pack, SMD,  
13" (Signetics)  
SOT109  
(SO16)  
SA5219D-  
T
Products in the above table are all in production. Some variants are discontinued; click here for information on  
these variants.  
to
Similar products  
SA5219 links to the similar products page containing an overview of products that are similar in  
Produ  
function or related to the type number(s) as listed on this page. The similar products page includes products  
from the same catalog tree(s), relevant selection guides and products from the same functional category.  
to
Email/translate this product information  
Email this product information.  
Translate this product information page from English to:  
Translate  
French  
The English language is the official language used at the semiconductors.philips.com website and webpages.  
All translations on this website are created through the use of Google Language Tools and are provided for  
convenience purposes only. No rights can be derived from any translation on this website.  
About this Web Site  
| Copyright © 2003 Koninklijke Philips N.V. All rights reserved. | Privacy Policy |  
| Koninklijke Philips N.V. | Access to and use of this Web Site is subject to the following Terms of Use. |  

相关型号:

935056440623

RF/Microwave Amplifier, RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER, SOT109-1, MS-012AC, SO-16
NXP

935056830623

ABT SERIES, OCTAL 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO24, 7.50 MM, PLASTIC, MS-013, SOT-137-1, SO-24
NXP

935056850623

ABT SERIES, QUAD 1-BIT DRIVER, TRUE OUTPUT, PDSO14, 3.90 MM, PLASTIC, MS-012, SOT108-1, SOP-14
NXP

935056860602

ABT SERIES, QUAD 1-BIT DRIVER, TRUE OUTPUT, PDIP14, 0.300 INCH, PLASTIC, MO-001, SC501-14, SOT27-1, DIP-14
NXP

935057000602

ABT SERIES, 10 1-BIT DRIVER, TRUE OUTPUT, PDSO24, PLASTIC, SO-24
NXP

935057000623

ABT SERIES, 10 1-BIT DRIVER, TRUE OUTPUT, PDSO24, PLASTIC, SO-24
NXP

935057010602

IC ABT SERIES, 10 1-BIT DRIVER, TRUE OUTPUT, PDIP24, PLASTIC, DIP-24, Bus Driver/Transceiver
NXP

935057630602

ABT SERIES, 9-BIT REGISTERED TRANSCEIVER, TRUE OUTPUT, PQCC28, PLASTIC, MO-047AB, SOT261-3, LCC-28
NXP

935057890623

ABT SERIES, 9-BIT DRIVER, TRUE OUTPUT, PDSO24, 7.50 MM, PLASTIC, MS-013, SOT137-1, SOP-24
NXP

935059280112

IC 55 W, 2 CHANNEL, AUDIO AMPLIFIER, PZIP13, POWER, PLASTIC, SOT-141-6, DIL-BENT-SIL, 13 PIN, Audio/Video Amplifier
NXP

935059300112

IC 12 W, 4 CHANNEL, AUDIO AMPLIFIER, PZIP17, POWER, PLASTIC, SOT-243-1, DIL-BENT-SIL, 17 PIN, Audio/Video Amplifier
NXP

935059610112

IC SPECIALTY TELECOM CIRCUIT, PDSO20, 4.40 MM, PLASTIC, SOT-266-1, SSOP-20, Telecom IC:Other
NXP