935191500005 [NXP]

IC DATACOM, INTERFACE CIRCUIT, UUC8, DIE-8, Network Interface;
935191500005
型号: 935191500005
厂家: NXP    NXP
描述:

IC DATACOM, INTERFACE CIRCUIT, UUC8, DIE-8, Network Interface

电信 电信集成电路
文件: 总20页 (文件大小:94K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCA82C250  
CAN controller interface  
Product specification  
2000 Jan 13  
Supersedes data of 1997 Oct 21  
File under Integrated Circuits, IC18  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
FEATURES  
APPLICATIONS  
Fully compatible with the “ISO 11898” standard  
High speed (up to 1 Mbaud)  
High-speed applications (up to 1 Mbaud) in cars.  
GENERAL DESCRIPTION  
Bus lines protected against transients in an automotive  
environment  
The PCA82C250 is the interface between the CAN  
protocol controller and the physical bus. The device  
provides differential transmit capability to the bus and  
differential receive capability to the CAN controller.  
Slope control to reduce Radio Frequency Interference  
(RFI)  
Differential receiver with wide common-mode range for  
high immunity against ElectroMagnetic Interference  
(EMI)  
Thermally protected  
Short-circuit proof to battery and ground  
Low-current standby mode  
An unpowered node does not disturb the bus lines  
At least 110 nodes can be connected.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
CONDITIONS  
MIN.  
4.5  
MAX.  
5.5  
UNIT  
supply voltage  
supply current  
V
ICC  
standby mode  
170  
µA  
Mbaud  
V
1/tbit  
VCAN  
Vdiff  
tPD  
maximum transmission speed  
CANH, CANL input/output voltage  
differential bus voltage  
non-return-to-zero  
1
8  
1.5  
+18  
3.0  
50  
V
propagation delay  
high-speed mode  
ns  
Tamb  
ambient temperature  
40  
+125  
°C  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
CODE  
SOT97-1  
SOT96-1  
PCA82C250  
PCA82C250T  
PCA82C250U  
DIP8  
SO8  
plastic dual in-line package; 8 leads (300 mil)  
plastic small outline package; 8 leads; body width 3.9 mm  
bare die; 2790 × 1780 × 380 µm  
2000 Jan 13  
2
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
BLOCK DIAGRAM  
V
CC  
3
PROTECTION  
DRIVER  
1
TXD  
8
SLOPE/  
STANDBY  
Rs  
HS  
7
6
CANH  
CANL  
4
RXD  
RECEIVER  
5
REFERENCE  
VOLTAGE  
V
ref  
PCA82C250  
2
MKA669  
GND  
Fig.1 Block diagram.  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
transmit data input  
TXD  
GND  
VCC  
1
2
3
4
5
6
handbook, halfpage  
TXD  
ground  
1
2
3
4
8
7
6
5
Rs  
supply voltage  
GND  
CANH  
CANL  
PCA82C250  
RXD  
Vref  
receive data output  
reference voltage output  
V
CC  
V
RXD  
ref  
CANL  
LOW-level CAN voltage  
input/output  
MKA670  
CANH  
Rs  
7
8
HIGH-level CAN voltage  
input/output  
Fig.2 Pin configuration.  
slope resistor input  
2000 Jan 13  
3
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
FUNCTIONAL DESCRIPTION  
Pin 8 (Rs) allows three different modes of operation to be  
selected: high-speed, slope control or standby.  
The PCA82C250 is the interface between the CAN  
protocol controller and the physical bus. It is primarily  
intended for high-speed applications (up to 1 Mbaud) in  
cars. The device provides differential transmit capability to  
the bus and differential receive capability to the CAN  
controller. It is fully compatible with the “ISO 11898”  
standard.  
For high-speed operation, the transmitter output  
transistors are simply switched on and off as fast as  
possible. In this mode, no measures are taken to limit the  
rise and fall slope. Use of a shielded cable is  
recommended to avoid RFI problems. The high-speed  
mode is selected by connecting pin 8 to ground.  
A current limiting circuit protects the transmitter output  
stage against short-circuit to positive and negative battery  
voltage. Although the power dissipation is increased  
during this fault condition, this feature will prevent  
destruction of the transmitter output stage.  
For lower speeds or shorter bus length, an unshielded  
twisted pair or a parallel pair of wires can be used for the  
bus. To reduce RFI, the rise and fall slope should be  
limited. The rise and fall slope can be programmed with a  
resistor connected from pin 8 to ground. The slope is  
proportional to the current output at pin 8.  
If the junction temperature exceeds a value of  
approximately 160 °C, the limiting current of both  
transmitter outputs is decreased. Because the transmitter  
is responsible for the major part of the power dissipation,  
this will result in a reduced power dissipation and hence a  
lower chip temperature. All other parts of the IC will remain  
in operation. The thermal protection is particularly needed  
when a bus line is short-circuited.  
If a HIGH level is applied to pin 8, the circuit enters a low  
current standby mode. In this mode, the transmitter is  
switched off and the receiver is switched to a low current.  
If dominant bits are detected (differential bus voltage  
>0.9 V), RXD will be switched to a LOW level.  
The microcontroller should react to this condition by  
switching the transceiver back to normal operation (via  
pin 8). Because the receiver is slow in standby mode, the  
first message will be lost.  
The CANH and CANL lines are also protected against  
electrical transients which may occur in an automotive  
environment.  
Table 1 Truth table of the CAN transceiver  
SUPPLY  
TXD  
CANH  
HIGH  
CANL  
LOW  
BUS STATE  
dominant  
recessive  
recessive  
recessive  
recessive  
RXD  
0
4.5 to 5.5 V  
4.5 to 5.5 V  
0
1 (or floating)  
X(1)  
floating  
floating  
floating  
floating  
floating  
floating  
1
<2 V (not powered)  
2 V < VCC < 4.5 V  
2 V < VCC < 4.5 V  
X(1)  
X(1)  
X(1)  
>0.75VCC  
X(1)  
floating if  
floating if  
VRs > 0.75VCC  
VRs > 0.75VCC  
Note  
1. X = don’t care.  
Table 2 Pin Rs summary  
CONDITION FORCED AT PIN Rs  
Rs > 0.75VCC  
MODE  
RESULTING VOLTAGE OR CURRENT AT PIN Rs  
V
standby  
IRs < 10 µA  
0.4VCC < VRs < 0.6VCC  
IRs < 500 µA  
10 µA < IRs < 200 µA  
slope control  
high-speed  
VRs < 0.3VCC  
2000 Jan 13  
4
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); all voltages are referenced to pin 2;  
positive input current.  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
0.3  
MAX.  
+9.0  
UNIT  
V
V
V
Vn  
DC voltage at pins 1, 4, 5 and 8  
DC voltage at pins 6 and 7  
0.3  
8.0  
VCC + 0.3  
+18.0  
V6, 7  
0 V < VCC < 5.5 V;  
no time limit  
Vtrt  
transient voltage at pins 6 and 7  
storage temperature  
see Fig.8  
150  
55  
+100  
+150  
+125  
+150  
+2000  
+200  
V
Tstg  
Tamb  
Tvj  
°C  
°C  
°C  
V
ambient temperature  
40  
virtual junction temperature  
electrostatic discharge voltage  
note 1  
note 2  
note 3  
40  
Vesd  
2000  
200  
V
Notes  
1. In accordance with “IEC 60747-1”. An alternative definition of virtual junction temperature is:  
Tvj = Tamb + Pd × Rth(vj-a), where Rth(j-a) is a fixed value to be used for the calculation of Tvj. The rating for Tvj limits  
the allowable combinations of power dissipation (Pd) and ambient temperature (Tamb).  
2. Classification A: human body model; C = 100 pF; R = 1500 ; V = ±2000 V.  
3. Classification B: machine model; C = 200 pF; R = 25 ; V = ±200 V.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
UNIT  
thermal resistance from junction to ambient  
PCA82C250  
100  
160  
K/W  
K/W  
PCA82C250T  
QUALITY SPECIFICATION  
According to “SNW-FQ-611 part E”.  
2000 Jan 13  
5
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
CHARACTERISTICS  
VCC = 4.5 to 5.5 V; Tamb = 40 to +125 °C; RL = 60 ; I8 > 10 µA; unless otherwise specified; all voltages referenced  
to ground (pin 2); positive input current; all parameters are guaranteed over the ambient temperature range by design,  
but only 100% tested at +25 °C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply  
I3  
supply current  
dominant; V1 = 1 V  
70  
mA  
recessive; V1 = 4 V;  
R8 = 47 kΩ  
14  
mA  
mA  
µA  
recessive; V1 = 4 V;  
V8 = 1 V  
18  
standby; Tamb < 90 °C;  
100  
170  
note 1  
DC bus transmitter  
VIH  
VIL  
IIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
recessive bus voltage  
output recessive  
output dominant  
V1 = 4 V  
0.7VCC  
0.3  
200  
100  
2.0  
VCC + 0.3 V  
0.3VCC  
+30  
600  
3.0  
V
µA  
µA  
V
IIL  
V1 = 1 V  
V6,7  
ILO  
V1 = 4 V; no load  
off-state output leakage current 2 V < (V6,V7) < 7 V  
5 V < (V6,V7) < 18 V  
2  
+1  
mA  
mA  
V
5  
+12  
4.5  
V7  
CANH output voltage  
CANL output voltage  
V1 = 1 V  
2.75  
0.5  
V6  
V1 = 1 V  
2.25  
3.0  
V
V6, 7  
difference between output  
voltage at pins 6 and 7  
V1 = 1 V  
1.5  
V
V1 = 1 V; RL = 45 ;  
1.5  
V
VCC 4.9 V  
V1 = 4 V; no load  
V7 = 5 V; VCC 5 V  
V7 = 5 V; VCC = 5.5 V  
V6 = 18 V  
500  
+50  
mV  
mA  
mA  
mA  
Isc7  
short-circuit CANH current  
short-circuit CANL current  
105  
120  
160  
Isc6  
DC bus receiver: V1 = 4 V; pins 6 and 7 externally driven; 2 V < (V6, V7) < 7 V; unless otherwise specified  
Vdiff(r)  
differential input voltage  
(recessive)  
1.0  
1.0  
+0.5  
+0.4  
V
V
7 V < (V6, V7) < 12 V;  
not standby mode  
Vdiff(d)  
differential input voltage  
(dominant)  
0.9  
1.0  
5.0  
5.0  
V
V
7 V < (V6, V7) < 12 V;  
not standby mode  
Vdiff(hys)  
VOH  
differential input hysteresis  
see Fig.5  
150  
mV  
V
HIGH-level output voltage  
(pin 4)  
I4 = 100 µA  
0.8VCC  
VCC  
VOL  
LOW-level output voltage (pin 4) I4 = 1 mA  
I4 = 10 mA  
0
0
5
0.2VCC  
1.5  
V
V
Ri  
CANH, CANL input resistance  
25  
kΩ  
2000 Jan 13  
6
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
100  
UNIT  
kΩ  
Rdiff  
Ci  
differential input resistance  
CANH, CANL input capacitance  
differential input capacitance  
20  
20  
10  
pF  
pF  
Cdiff  
Reference output  
Vref  
reference output voltage  
V8 = 1 V;  
50 µA < I5 < 50 µA  
0.45VCC  
0.4VCC  
0.55VCC  
0.6VCC  
V
V
V8 = 4 V;  
5 µA < I5 < 5 µA  
Timing (see Figs 4, 6 and 7)  
tbit  
minimum bit time  
V8 = 1 V  
V8 = 1 V  
V8 = 1 V  
V8 = 1 V  
1
µs  
ns  
ns  
ns  
ns  
tonTXD  
toffTXD  
tonRXD  
toffRXD  
delay TXD to bus active  
delay TXD to bus inactive  
delay TXD to receiver active  
delay TXD to receiver inactive  
50  
40  
55  
82  
80  
120  
150  
V8 = 1 V; VCC < 5.1 V;  
Tamb < +85 °C  
V8 = 1 V; VCC < 5.1 V;  
Tamb < +125 °C  
82  
90  
90  
170  
170  
190  
ns  
ns  
ns  
V8 = 1 V; VCC < 5.5 V;  
Tamb < +85 °C  
V8 = 1 V; VCC < 5.5 V;  
Tamb < +125 °C  
tonRXD  
delay TXD to receiver active  
delay TXD to receiver inactive  
R8 = 47 kΩ  
R8 = 24 kΩ  
R8 = 47 kΩ  
R8 = 24 kΩ  
R8 = 47 kΩ  
390  
260  
260  
210  
14  
520  
320  
450  
320  
ns  
ns  
toffRXD  
ns  
ns  
SR  
differential output voltage slew  
rate  
V/µs  
tWAKE  
tdRXDL  
wake-up time from standby  
(via pin 8)  
20  
3
µs  
µs  
bus dominant to RXD LOW  
V8 = 4 V; standby mode  
Standby/slope control (pin 8)  
V8  
input voltage for high-speed  
0.3VCC  
500  
V
I8  
input current for high-speed  
input voltage for standby mode  
slope control mode current  
slope control mode voltage  
V8 = 0 V  
µA  
V
Vstb  
Islope  
Vslope  
0.75VCC  
10  
200  
0.6VCC  
µA  
V
0.4VCC  
Note  
1. I1 = I4 = I5 = 0 mA; 0 V < V6 < VCC; 0 V < V7 < VCC; V8 = VCC  
.
2000 Jan 13  
7
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
+5 V  
handbook, halfpage  
100 pF  
CANH  
V
CC  
TXD  
PCA82C250  
V
62 Ω  
100 pF  
ref  
CANL  
RXD  
Rs  
GND  
30 pF  
R
ext  
MKA671  
Fig.3 Test circuit for dynamic characteristics.  
V
CC  
V
TXD  
0 V  
0.9 V  
V
diff  
0.5 V  
0.7V  
CC  
V
RXD  
0.3V  
CC  
t
t
offTXD  
onTXD  
t
t
MKA672  
onRXD  
offRXD  
Fig.4 Timing diagram for dynamic characteristics.  
8
2000 Jan 13  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
V
RXD  
HIGH  
LOW  
hysteresis  
0.5 V  
0.9 V  
V
MKA673  
diff  
Fig.5 Hysteresis.  
V
CC  
V
Rs  
0 V  
V
RXD  
t
MKA674  
WAKE  
V1 = 1 V.  
Fig.6 Timing diagram for wake-up from standby.  
9
2000 Jan 13  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
1.5 V  
0 V  
V
diff  
V
RXD  
t
MKA675  
dRXDL  
V1 = 4 V; V8 = 4 V.  
Fig.7 Timing diagram for bus dominant to RXD LOW.  
+5 V  
V
CC  
1 nF  
TXD  
CANH  
PCA82C250  
SCHAFFNER  
GENERATOR  
62 Ω  
1 nF  
RXD  
CANL  
V
ref  
MKA676  
Rs  
GND  
R
ext  
The waveforms of the applied transients shall be in accordance with “ISO 7637 part 1”, test pulses 1, 2, 3a and 3b.  
Fig.8 Test circuit for automotive transients.  
2000 Jan 13  
10  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
APPLICATION INFORMATION  
handbook, halfpage  
P8xC592/P8xCE598  
CAN-CONTROLLER  
CTX0 CRX0 CRX1 PX,Y  
R
ext  
+5 V  
TXD  
RXD  
V
Rs  
ref  
V
CC  
PCA82C250T  
CAN-TRANSCEIVER  
100 nF  
GND  
CANH  
CANL  
CAN BUS  
LINE  
124 Ω  
124 Ω  
MKA677  
Fig.9 Application of the CAN transceiver.  
2000 Jan 13  
11  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
SJA1000  
CAN-CONTROLLER  
TX0 TX1  
RX0 RX1  
3.6 kΩ  
6.8 kΩ  
390 Ω  
+5 V  
100 nF  
390 Ω  
V
DD  
V
SS  
6N137  
0 V  
6N137  
390 Ω  
+5 V  
100 nF  
390 Ω  
+5 V  
+5 V  
TXD  
RXD  
V
Rs  
ref  
V
CC  
PCA82C250  
CAN-TRANSCEIVER  
R
100 nF  
ext  
GND  
CANH CANL  
124 Ω  
124 Ω  
CAN BUS LINE  
MKA678  
Fig.10 Application with galvanic isolation.  
2000 Jan 13  
12  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
INTERNAL PIN CONFIGURATION  
V
CC  
3
1
TXD  
8
Rs  
4
RXD  
7
6
CANH  
CANL  
PCA82C250  
5
V
ref  
2
MKA679  
GND  
Fig.11 Internal pin configuration.  
2000 Jan 13  
13  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
BONDING PAD LOCATIONS  
SYMBOL  
COORDINATES(1)  
PAD  
x
y
TXD  
GND  
VCC  
1
2
3
4
5
6
7
8
196  
1280  
1767  
2588  
2594  
1689  
948  
135  
135  
135  
RXD  
Vref  
135  
1640  
1640  
1640  
1640  
CANL  
CANH  
Rs  
196  
Note  
1. All coordinates (µm) represent the position of the centre of each pad with respect to the bottom left-hand corner of  
the die (x/y = 0).  
5
8
7
6
1.78  
mm  
PCA82C250U  
1
2
3
4
0
x
0
y
MGL945  
2.79 mm  
Fig.12 Bonding pad locations.  
2000 Jan 13  
14  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
PACKAGE OUTLINES  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
D
M
E
A
2
A
A
1
L
c
w M  
Z
b
1
e
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.14  
0.53  
0.38  
1.07  
0.89  
0.36  
0.23  
9.8  
9.2  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
1.15  
0.068 0.021 0.042 0.014  
0.045 0.015 0.035 0.009  
0.39  
0.36  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.045  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
99-12-27  
SOT97-1  
050G01  
MO-001  
SC-504-8  
2000 Jan 13  
15  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
v
c
y
H
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-05-22  
99-12-27  
SOT96-1  
076E03  
MS-012  
2000 Jan 13  
16  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
SOLDERING  
Introduction  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
WAVE SOLDERING  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mount components are mixed on  
one printed-circuit board. However, wave soldering is not  
always suitable for surface mount ICs, or for printed-circuit  
boards with high population densities. In these situations  
reflow soldering is often used.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Through-hole mount packages  
SOLDERING BY DIPPING OR BY SOLDER WAVE  
For packages with leads on two sides and a pitch (e):  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
MANUAL SOLDERING  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
300 and 400 °C, contact may be up to 5 seconds.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Surface mount packages  
REFLOW SOLDERING  
MANUAL SOLDERING  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
2000 Jan 13  
17  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
Suitability of IC packages for wave, reflow and dipping soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(1) DIPPING  
suitable(2)  
MOUNTING  
PACKAGE  
Through-hole mount DBS, DIP, HDIP, SDIP, SIL  
suitable  
Surface mount  
BGA, LFBGA, SQFP, TFBGA  
not suitable  
not suitable(3)  
suitable  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, SMS  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2000 Jan 13  
18  
Philips Semiconductors  
Product specification  
CAN controller interface  
PCA82C250  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
BARE DIE DISCLAIMER  
All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of  
ninety (90) days from the date of Philips’ delivery. If there are data sheet limits not guaranteed, these will be separately  
indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips Semiconductors  
has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, Philips  
Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing,  
handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in  
which the die is used.  
2000 Jan 13  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
285002/05/pp20  
Date of release: 2000 Jan 13  
Document order number: 9397 750 06609  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY