935271552557 [NXP]

935271552557;
935271552557
型号: 935271552557
厂家: NXP    NXP
描述:

935271552557

商用集成电路
文件: 总76页 (文件大小:459K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UDA1355H  
Stereo audio codec with SPDIF  
interface  
Preliminary specification  
2003 Apr 10  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
CONTENTS  
11  
I2C-BUS DESCRIPTION  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
11.10  
Characteristics  
Bit transfer  
Byte transfer  
1
FEATURES  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
General  
Control  
IEC 60958 input  
IEC 60958 output  
Digital I/O interface  
ADC digital sound processing  
DAC digital sound processing  
Data transfer  
Register address  
Device address  
Start and stop conditions  
Acknowledgment  
Write cycle  
Read cycle  
2
3
4
5
6
7
GENERAL DESCRIPTION  
ORDERING INFORMATION  
QUICK REFERENCE DATA  
BLOCK DIAGRAM  
12  
REGISTER MAPPING  
12.1  
12.2  
12.3  
Address mapping  
Read/write registers mapping  
Read registers mapping  
PINNING  
13  
LIMITING VALUES  
FUNCTIONAL DESCRIPTION  
14  
THERMAL CHARACTERISTICS  
CHARACTERISTICS  
TIMING CHARACTERISTICS  
PACKAGE OUTLINE  
SOLDERING  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
IC control  
Microcontroller interface  
Clock systems  
IEC 60958 decoder  
IEC 60958 encoder  
Analog input  
Analog output  
Digital audio input and output  
Power-on reset  
15  
16  
17  
18  
18.1  
Introduction to soldering surface mount  
packages  
Reflow soldering  
Wave soldering  
Manual soldering  
18.2  
18.3  
18.4  
18.5  
8
APPLICATION MODES  
8.1  
8.2  
8.3  
8.4  
Static mode pin assignment  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
Static mode basic applications  
Microcontroller mode pin assignment  
Microcontroller mode applications  
19  
20  
21  
DATA SHEET STATUS  
DISCLAIMERS  
9
SPDIF SIGNAL FORMAT  
TRADEMARKS  
9.1  
9.2  
9.3  
SPDIF channel encoding  
SPDIF hierarchical layers  
Timing characteristics  
10  
L3-BUS DESCRIPTION  
10.1  
10.2  
10.3  
10.4  
Device addressing  
Register addressing  
Data write mode  
Data read mode  
2003 Apr 10  
2
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
1
FEATURES  
General  
1.1  
2.7 to 3.6 V power supply  
Integrated digital interpolator filter and Digital-to-Analog  
Converter (DAC)  
24-bit data path in interpolator  
No analog post filtering required for DAC  
32, 44.1 and 48 kHz output frequencies (including  
double and half of these frequencies) supported in  
microcontroller mode  
Integrated Analog-to-Digital Converter (ADC),  
Programmable Gain Amplifier (PGA) and digital  
decimator filter  
Via microcontroller, 40 status bits can be set for left and  
right channel.  
24-bit data path in decimator  
Master or slave mode for digital audio data I/O interface  
I2S-bus, MSB-justified, LSB-justified 16, 18, 20,  
1.5  
Digital I/O interface  
and 24 bits formats supported on digital I/O interface.  
Supports sampling frequencies from 16 to 100 kHz  
Supported static mode:  
1.2  
Control  
– I2S-bus format  
Controlled by means of static pins or microcontroller  
(L3-bus or I2C-bus) interface.  
– LSB-justified 16 and 24 bits format  
– MSB-justified format.  
1.3  
IEC 60958 input  
Supported microcontroller mode:  
– I2S-bus format  
On-chip amplifier for converting IEC 60958 input to  
CMOS levels  
– LSB-justified 16, 18, 20 or 24 bits format  
– MSB-justified format.  
Supports level I, II and III timing  
Selectable IEC 60958 input channel, one of four  
Supports input frequencies from 28 to 96 kHz  
Lock indication signal available on pin LOCK  
BCK and WS signals can be slave or master, depending  
on application mode.  
1.6  
ADC digital sound processing  
40 status bits can be read for left and right channel via  
L3-bus or I2C-bus  
Supports sampling frequencies from 16 to 100 kHz  
Channel status bits available via L3-bus or I2C-bus: lock,  
pre-emphasis, audio sample frequency, two channel  
Pulse Code Modulation (PCM) indication and clock  
accuracy  
Analog front-end includes a 0 to +24 dB PGA in steps of  
3 dB, selectable via microcontroller interface  
Digital independent left and right volume control of  
+24 to 63.5 dB in steps of 0.5 dB via microcontroller  
interface  
Pre-emphasis information of incoming IEC 60958  
bitstream available in register  
Bitstream ADC operating at 64fs  
Detection of digital data preamble, such as AC3,  
available on pin in microcontroller mode.  
Comb filter decreases sample rate from 64fs to 8fs  
Decimator filter (8fs to fs) made of a cascade of three FIR  
half-band filters.  
1.4  
IEC 60958 output  
CMOS output level converted to IEC 60958 output  
signal  
1.7  
DAC digital sound processing  
Digital de-emphasis for 32, 44.1, 48 and 96 kHz audio  
sampling frequencies  
Full-swing digital signal, with level II timing using crystal  
oscillator clock  
Automatic de-emphasis when using IEC 60958 to DAC  
32, 44.1 and 48 kHz output frequencies supported in  
static mode  
Soft mute made of a cosine roll-off circuit selectable via  
pin MUTE or L3-bus interface  
2003 Apr 10  
3
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Programmable digital silence detector  
which can generate level II output signals with CMOS  
levels. In microcontroller mode the UDA1355H offers a  
large variety of possibilities for defining signal flows  
through the IC, offering a flexible analog, digital and SPDIF  
converter chip with possibilities for off-chip sound  
processing via the digital input and output interface.  
Interpolating filter (fs to 64fs or fs to 128fs) comprising a  
recursive and a FIR filter in cascade  
Selectable fifth-order noise shaper operating at 64fs or  
third-order noise shaper operating at 128fs (specially for  
low sampling frequencies, e.g. 16 kHz) generating  
bitstream for DAC  
A lock indicator is available on pin LOCK when the  
IEC 60958 decoder and the clock regeneration  
mechanism is in lock. By default the DAC output and the  
digital data interface output are muted when the decoder is  
not in lock.  
Filter Stream DAC (FSDAC)  
In microcontroller mode:  
– Left and right volume control (for balance control)  
0 to 78 dB and −∞  
The UDA1355H contains two clock systems which can run  
at independent frequencies, allowing to lock-on to an  
incoming SPDIF or digital audio signal, and in the mean  
time generating a stable signal by means of the crystal  
oscillator for driving, for example, the ADC or SPDIF  
output signal.  
– Left and right bass boost and treble control  
– Optional resonant bass boost control  
– Mixing possibility of two data streams.  
2
GENERAL DESCRIPTION  
Using the crystal oscillator (which requires a 12.288 MHz  
crystal) and the on-chip low jitter PLL, all standard audio  
sampling frequencies (fs = 32, 44.1 and 48 kHz including  
half and double these frequencies) can be generated.  
The UDA1355H is a single-chip IEC 60958 decoder and  
encoder with integrated stereo digital-to-analog converters  
and analog-to-digital converters employing bitstream  
conversion techniques.  
The UDA1355H has a selectable one-of-four SPDIF input  
(accepting level I, II and III timing) and one SPDIF output  
3
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
UDA1355H  
QFP44  
plastic quad flat package; 44 leads (lead length 1.3 mm); body  
SOT307-2  
10 × 10 × 1.75 mm  
2003 Apr 10  
4
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
4
QUICK REFERENCE DATA  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VDDA1  
VDDA2  
VDDX  
DAC supply voltage  
ADC supply voltage  
2.7  
3.0  
3.6  
3.6  
3.6  
V
V
V
2.7  
2.7  
3.0  
3.0  
crystal oscillator and PLL  
supply voltage  
VDDI  
digital core supply voltage  
digital pad supply voltage  
DAC supply current  
2.7  
2.7  
3.0  
3.0  
4.7  
4.7  
1.7  
1.7  
10.2  
10.4  
0.2  
0.2  
0.9  
1.2  
18.2  
34.7  
0.5  
0.7  
3.6  
3.6  
V
VDDE  
IDDA1  
V
fs = 48 kHz; power-on  
mA  
mA  
μA  
μA  
mA  
mA  
μA  
μA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
fs = 96 kHz; power-on  
fs = 48 kHz; power-down  
fs = 96 kHz; power-down  
fs = 48 kHz; power-on  
fs = 96 kHz; power-on  
fs = 48 kHz; power-down  
fs = 96 kHz; power-down  
fs = 48 kHz; power-on  
fs = 96 kHz; power-on  
IDDA2  
ADC supply current  
IDDX  
crystal oscillator and PLL  
supply current  
IDDI  
digital core supply current fs = 48 kHz; all on  
fs = 96 kHz; all on  
IDDE  
digital pad supply current  
fs = 48 kHz; all on  
fs = 96 kHz; all on  
Tamb  
ambient temperature  
40  
+85  
Digital-to-analog converter; fi = 1 kHz; VDDA1 = 3.0 V  
Vo(rms)  
output voltage (RMS  
value)  
900  
0.1  
mV  
dB  
ΔVo  
output voltage unbalance  
(THD+N)/S  
total harmonic  
distortion-plus-noise to  
signal ratio  
IEC 60958 input; fs = 48 kHz  
at 0 dB  
88  
75  
37  
dB  
dB  
dB  
at 20 dB  
at 60 dB; A-weighted  
IEC 60958 input; fs = 96 kHz  
at 0 dB  
83  
37  
dB  
dB  
at 60 dB; A-weighted  
S/N  
signal-to-noise ratio  
channel separation  
IEC 60958 input; code = 0;  
A-weighted  
fs = 48 kHz  
fs = 96 kHz  
98  
dB  
dB  
dB  
96  
αcs  
100  
2003 Apr 10  
5
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
Analog-to-digital converter; fi = 1 kHz; VDDA2 = 3.0 V  
Vi(rms)  
ΔVi  
input voltage (RMS value) Vo = 1.16 dBFS digital output  
1.0  
V
input voltage unbalance  
0.1  
dB  
(THD+N)/S  
total harmonic  
fs = 48 kHz  
distortion-plus-noise to  
signal ratio  
at 0 dB  
85  
35  
dB  
dB  
at 60 dB; A-weighted  
fs = 96 kHz  
at 0 dB  
85  
35  
dB  
dB  
at 60 dB; A-weighted  
code = 0; A-weighted  
fs = 48 kHz  
S/N  
signal-to-noise ratio  
channel separation  
97  
dB  
dB  
dB  
fs = 96 kHz  
95  
αcs  
100  
External crystal  
fxtal  
crystal frequency  
12.288  
10  
MHz  
pF  
CL(xtal)  
crystal load capacitor  
Device reset  
trst  
reset time  
250  
μs  
Power consumption  
Ptot  
total power consumption  
IEC 60958 input; fs = 48 kHz  
DAC in playback mode  
74  
63  
mW  
mW  
DAC in Power-down mode  
2003 Apr 10  
6
V
V
V
V
V
V
V
V
CLK_OUT  
11  
DDX  
12  
SSX  
15  
ADCP DDA2  
DDI  
27  
REF  
38  
DDE  
6
DDA1  
39  
32  
37  
13  
14  
XTALIN  
CLOCK AND  
TIMING  
XTAL  
XTALOUT  
34  
36  
40  
42  
44  
VINL  
VINR  
VOUTL  
VOUTR  
MUTE  
DAC  
DAC  
ADC  
ADC  
AUDIO  
FEATURE  
PROCESSOR  
AUDIO  
FEATURE  
PROCESSOR  
INTER-  
POLATOR SHAPER  
NOISE  
COMB  
FILTER MATOR  
DECI-  
16  
43  
2
RESET  
RTCB  
WSI  
INPUT  
AND  
OUTPUT  
SELECT  
9
8
WSO  
3
DATAI  
BCKI  
DATAO  
BCKO  
DATA IN  
DATA OUT  
1
10  
SLICER  
23  
24  
25  
26  
SPDIF0  
SPDIF1  
SPDIF2  
SPDIF3  
IEC 60958  
DECODER  
IEC 60958  
ENCODER  
5
SPDIFOUT  
21  
22  
4
SLICER_SEL0  
SLICER_SEL1  
LOCK  
UDA1355H  
CONTROL  
INTERFACE  
33  
35  
28  
29 30 31  
20  
17 18 19  
7
41  
MGU826  
V
V
SSIS  
MODE0  
MODE2  
V
V
SSA1  
MP0  
MP2  
MP1 SEL_STATIC  
ADCN  
SSE  
V
MODE1  
SSA2  
Fig.1 Block diagram.  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
6
PINNING  
SYMBOL  
PIN  
PAD(1)  
DESCRIPTION  
bit clock input (master or slave)  
BCKI  
1
2
bpt4mtht5v  
bpt4mtht5v  
iptht5v  
op4mc  
op4mc  
vdde  
WSI  
word select input (master or slave)  
digital data input  
DATAI  
LOCK  
3
4
PLL lock indicator output  
SPDIF output  
SPDIFOUT  
VDDE  
5
6
digital pad supply voltage  
digital pad ground  
VSSE  
7
vsse  
DATAO  
WSO  
8
ops5c  
digital data output  
9
bpt4mtht5v  
bpt4mtht5v  
op4mc  
vddco  
word select output (master or slave)  
bit clock output (master or slave)  
clock output; 256fs or 384fs  
crystal oscillator and PLL supply voltage  
crystal oscillator input  
BCKO  
CLK_OUT  
VDDX  
10  
11  
12  
13  
14  
15  
16  
17  
XTALIN  
XTALOUT  
VSSX  
apio  
apio  
crystal oscillator output  
crystal oscillator and PLL ground  
reset input  
vssco  
RESET  
MODE0  
ipthdt5v  
apio  
mode selection input 0 for static mode or microcontroller mode (grounded  
for I2C-bus)  
MODE1  
MODE2  
18  
19  
bpts5tht5v  
bpts5tht5v  
mode selection input 1 for static mode or AO address input and output for  
microcontroller mode  
mode selection input 2 for static mode or U_RDY output for microcontroller  
mode  
SEL_STATIC  
20  
21  
apio  
selection input for static mode, I2C-bus mode or L3-bus mode  
SLICER_SEL0  
bpts5tht5v  
SPDIF slicer selection input 0 for static mode and USER bit output for  
microcontroller mode  
SLICER_SEL1  
22  
bpts5tht5v  
SPDIF slicer selection input 1 for static mode and AC3 preamble detect  
output for microcontroller mode  
SPDIF0  
SPDIF1  
SPDIF2  
SPDIF3  
VDDI  
23  
24  
25  
26  
27  
28  
29  
apio  
apio  
apio  
apio  
vddi  
vssis  
apio  
SPDIF input 0  
SPDIF input 1  
SPDIF input 2  
SPDIF input 3  
digital core supply voltage  
digital core ground  
VSSIS  
MP0  
multi-purpose pin 0: frequency select for static mode, not used for  
microcontroller mode  
MP1  
MP2  
30  
31  
iptht5v  
multi-purpose pin 1: SFOR1 for static mode, SCL for I2C-bus mode and  
L3CLOCK for L3-bus mode  
multi-purpose pin 2: SFOR0 for static mode, SDA for I2C-bus mode and  
L3DATA for L3-bus mode  
iic400kt5v  
VADCP  
VADCN  
32  
33  
vddco  
vssco  
positive ADC reference voltage  
negative ADC reference voltage  
2003 Apr 10  
8
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SYMBOL  
VINL  
PIN  
PAD(1)  
apio  
DESCRIPTION  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
ADC left channel input  
ADC ground  
VSSA2  
VINR  
vssco  
apio  
ADC right channel input  
ADC supply voltage  
VDDA2  
VREF  
vddco  
apio  
reference voltage for ADC and DAC  
DAC supply voltage  
DAC left channel output  
DAC ground  
VDDA1  
VOUTL  
VSSA1  
VOUTR  
RTCB  
MUTE  
vddco  
apio  
vssco  
apio  
DAC right channel output  
test control input  
ipthdt5v  
iipthdt5v  
DAC mute input  
Note  
1. See Table 1.  
Table 1 Pad description  
PAD  
DESCRIPTION  
iptht5v  
input pad; push-pull; TTL with hysteresis; 5 V tolerant  
input pad; push-pull; TTL with hysteresis; pull-down; 5 V tolerant  
output pad; push-pull; 4 mA output drive; CMOS  
ipthdt5v  
op4mc  
ops5c  
output pad; push-pull; 5 ns slew rate control; CMOS  
bpt4mtht5v  
bidirectional pad; push-pull input; 3-state output; 4 mA output drive; TTL with hysteresis;  
5 V tolerant  
bpts5tht5v  
bidirectional pad; push-pull input; 3-state output; 5 ns slew rate control; TTL with hysteresis;  
5 V tolerant  
iic400kt5v  
apio  
I2C-bus pad; 400 kHz I2C-bus specification with open drain; 5 V tolerant  
analog pad; analog input or output  
analog supply pad  
vddco  
vssco  
vdde  
analog ground pad  
digital supply pad  
vsse  
digital ground pad  
vddi  
digital core supply pad  
vssis  
digital core ground pad  
2003 Apr 10  
9
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
V
V
BCKI  
WSI  
1
2
33  
32  
ADCN  
ADCP  
DATAI  
3
31 MP2  
30 MP1  
4
LOCK  
SPDIFOUT  
5
29 MP0  
V
V
6
28  
27  
DDE  
SSIS  
DDI  
UDA1355H  
V
V
7
SSE  
26 SPDIF3  
25 SPDIF2  
24 SPDIF1  
23 SPDIF0  
DATAO  
WSO  
8
9
BCKO  
10  
CLK_OUT 11  
MGU828  
Fig.2 Pin configuration.  
7
FUNCTIONAL DESCRIPTION  
IC control  
Table 2 Control mode selection via pin SEL_STATIC  
7.1  
LEVEL  
MODE  
HIGH  
MID  
static mode  
I2C-bus mode  
L3-bus mode  
The UDA1355H can be controlled either via static pins or  
via the microcontroller serial hardware interface being the  
I2C-bus with a clock up to 400 kHz or the L3-bus with a  
clock up to 2 MHz. It is recommended to use the  
microcontroller interface since this gives full access to all  
the IC features.  
LOW  
7.2  
Microcontroller interface  
The UDA1355H has a microcontroller interface and all the  
sound processing features and system settings can be  
controlled by the microcontroller.  
The two microcontroller interfaces only differ in interface  
format. The register addresses and features that can be  
controlled are identical for L3-bus mode and I2C-bus  
mode.  
The controllable settings are:  
Restoring L3-bus defaults  
The UDA1355H can operate in three control modes:  
Static mode with limited features  
Power-on settings for all blocks  
Digital interface input and output formats  
Volume settings for the decimator  
PGA gain settings  
L3-bus mode with full featuring  
I2C-bus mode with full featuring.  
The modes are selected via the 3-level pin SEL_STATIC  
according to Table 2.  
2003 Apr 10  
10  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Set two times 40 bits of channel status bits of the SPDIF  
output  
Table 3 Output frequencies  
OUTPUT FREQUENCY  
Select one of four SPDIF input sources  
Enable digital mixer inside interpolator  
Control mute and mixer volumes of digital mixer  
BASIC AUDIO  
FREQUENCY  
MICRO-  
CONTROLLER STATIC MODE  
MODE  
Selection of filter mode and settings of treble and bass  
boost for the interpolator (DAC) section  
32 kHz  
44.1 kHz  
48 kHz  
256 × 16 kHz  
384 × 16 kHz  
Volume settings of interpolator  
256 × 32 kHz  
384 × 32 kHz  
256 × 64 kHz  
384 × 64 kHz  
256 × 22.05 kHz  
384 × 22.05 kHz  
256 × 44.1 kHz  
384 × 44.1 kHz  
256 × 88.2 kHz  
384 × 88.2 kHz  
256 × 24 kHz  
384 × 24 kHz  
256 × 48 kHz  
384 × 48 kHz  
256 × 96 kHz  
384 × 96 kHz  
256 × 32 kHz  
256 × 44.1 kHz  
256 × 48 kHz  
Selection of soft mute via cosine roll-off (only effective in  
L3-bus control mode) and bypass of auto mute  
Selection of de-emphasis  
Enable and control of digital mixer inside interpolator.  
The readable settings are:  
Mute status of interpolator  
PLL lock and adaptive lock  
Two times 40 bits of channels status bits of the SPDIF  
input signal.  
7.3  
Clock systems  
The UDA1355H has two clock systems.  
The first system uses an external crystal of 12.288 MHz to  
generate the audio related system clocks. Only a crystal  
with a frequency of 12.288 MHz is allowed.  
The second system is a PLL which locks on the SPDIF or  
incoming digital audio signal (e.g. I2S-bus) and recovers  
the system clock.  
Remarks:  
If an application mode is selected which does not need  
a crystal oscillator, the crystal oscillator cannot be  
omitted. The reason is that the interpolator switches to  
the crystal clock when an SPDIF input signal is  
removed. This switch prevents the noise shaper noise  
from moving inside the audio band as the PLL gradually  
decreases in frequency.  
7.3.1  
CRYSTAL OSCILLATOR CLOCK SYSTEM  
The crystal oscillator and the on-chip PLL and divider  
circuit can be used to generate internal and external clock  
signals related to standard audio sampling frequencies  
(such as 32, 44.1 and 48 kHz including half and double of  
these frequencies).  
If no accurate output frequency is needed, the crystal  
can be replaced with a resonator.  
The audio frequencies supported in either microcontroller  
mode or static mode are given in Table 3.  
Instead of the crystal, a 12.288 MHz system clock can  
be applied to pin XTALIN.  
The block diagram of the crystal oscillator and the PLL  
circuit is given in Fig.3.  
2003 Apr 10  
11  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
7.3.4  
CLOCK OUTPUT  
The UDA1355H has a clock output pin (pin CLK_OUT),  
which can be used to drive other audio devices in the  
system. In microcontroller mode the output clock is  
256fs or 384fs. In static mode the output clock is 256 times  
32, 44.1 and 48 kHz.  
12.288 MHz  
handbook, halfpage  
13  
14  
XTALIN  
CRYSTAL  
OSCILLATOR  
PLL  
MODULE  
XTALOUT  
The source of the output clock is either the crystal  
oscillator or the PLL, depending on the selected  
application and control mode.  
256f or 384f clock  
s
s
11  
CLK_OUT  
PLL clock  
7.4  
IEC 60958 decoder  
2
L3-bus or I C-bus  
register setting  
UDA1355H  
The UDA1355H IEC 60958 decoder can select one of four  
SPDIF input channels. An on-chip amplifier with hysteresis  
amplifies the SPDIF input signal to CMOS level, making it  
possible to accept both analog and digital SPDIF signals  
(see Fig.5).  
MGU830  
Fig.3 Crystal oscillator clock system.  
7.3.2  
PLL CLOCK SYSTEM  
The PLL locks on the incoming digital data of the SPDIF or  
WS input signal. The PLL recovers the clock from the  
SPDIF or WSI signal and removes jitter to produce a stable  
system clock (see Fig.4).  
handbook, halfpage  
23  
24  
SPDIF0  
SPDIF1  
10 nF  
25  
26  
SPDIF2  
SPDIF3  
75 Ω  
180 pF  
UDA1355H  
select SPDIF source  
UDA1355H  
MGU829  
23  
SPDIF0  
24  
SPDIF1  
IEC 60958  
DECODER  
Fig.5 IEC 60958 input circuit.  
25  
SPDIF2  
SPDIF3  
26  
2
7.4.1  
AUDIO DATA  
SLICER  
256f  
or  
384f  
s
s
PLL  
From the incoming SPDIF bitstream 24 bits of data for the  
left and right channel are extracted.  
WSI  
MGU827  
There is a hard mute (not a cosine roll-off mute) if the  
IEC 60958 decoder is out of lock or detects bi-mark phase  
encoding violations. The lock indicator and the key  
channel status bits are accessible in L3-bus mode.  
Fig.4 PLL clock system.  
The UDA1355H supports the following sample  
frequencies and data rates, including half and double of  
these frequencies:  
7.3.3  
WORD SELECTION DETECTION CIRCUIT  
This circuit is clocked by the 12.288 MHz crystal oscillator  
clock and generates a Word Selection (WS) detection  
signal. If the WS detector does not detect any WS edge,  
defined as 7 times LOW and 7 times HIGH, then the  
WS detection signal is LOW. This information can be used  
to set the clock for the noise shaper in the interpolator. This  
will prevent noise shaper noise in the audio band.  
fs = 32 kHz; resulting in a data rate of 2.048 Mbit/s  
fs = 44.1 kHz; resulting in a data rate of 2.8224 Mbit/s  
fs = 48 kHz; resulting in a data rate of 3.072 Mbit/s.  
2003 Apr 10  
12  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
7.4.2  
CHANNEL STATUS AND USER BITS  
7.5  
IEC 60958 encoder  
As well as the data bits there are several IEC 60958 key  
channel status bits:  
When using the crystal oscillator clock, the IEC 60958  
encoder output is a full-swing digital signal with level II  
timing.  
Pre-emphasis and audio sampling frequency bits  
Two channel PCM indicator bits  
Clock accuracy bits.  
When the recovered clock from the PLL is used the  
IEC 60958 encoder will function correctly but will not meet  
level II timing requirements.  
In total 40 status bits per channel are recovered from the  
incoming IEC 60958 bitstream. These are readable via the  
microcontroller interface.  
7.5.1  
STATIC MODE  
All user and channel status bits are set to logic 0. This is  
default value specified by IEC.  
User bits, which can contain a large variety of data, such  
as CD text, are output to pin SLICER_SEL0 (see Table 4).  
In microcontroller mode this signal contains the raw user  
bits extracted from the SPDIF bitstream. Signal U_RDY  
gives a pulse on pin MODE2 each time there is a new user  
bit available. Both signals can be used by an external  
microcontroller to grab and decode the user bits.  
In static mode 0 and 2, the selected SPDIF input channel  
can be looped through to pin SPDIFOUT (see Fig.6).  
7.5.2  
MICROCONTROLLER MODE  
Two times 40 channel status bits can be set. Default value  
for each status bit is logic 0. When setting the channel  
status bits, it is possible to set only the left channel status  
bits and have the bits copied to the right channel.  
Table 4 Signal names in microcontroller mode  
PIN NAME  
SLICER_SEL0  
SIGNAL NAME  
The procedure of writing the channel status bits is as  
follows:  
USER  
U_RDY  
AC3  
MODE2  
1. Set bit SPDO_VALID = 0 to prevent immediately  
sending the status bits during writing.  
SLICER_SEL1  
2. Set bit l_r_copy = 1 if the right channel needs the  
same status bits as the left channel or set  
bit l_r_copy = 0 if the right channel needs different  
status bits to the left channel.  
7.4.3  
DIGITAL DATA  
Audio and digital data can be transmitted in the SPDIF  
bitstream. The PCM channel status bit should be set to  
logic 1 if the SPDIF bitstream is carrying digital data  
instead of audio data, but in practice it proves that not all  
equipment handles these channel status bits properly.  
3. Write the left and right channel status bits.  
4. Set bit SPDO_VALID = 1 after writing all channel  
status bits to the register. Starting from the next SPDIF  
block the IEC 60958 encoder will use the new status  
bits.  
In the UDA1355H, digital data is detected via bit PCM, or  
via the sync bytes as specified by IEC. These sync bytes  
are two sync words, F872H and 4E1FH (two subframes)  
preceded by four or more subframes filled with zeros.  
Signal AC3 is kept HIGH for 4096 frames when the  
UDA1355H detects this burst preamble. Signal AC3 is  
present on pin SLICER_SEL1 in microcontroller mode  
(see Table 4).  
In microcontroller modes 2 and 13, the selected SPDIF  
input channel can be looped through to pin SPDIFOUT  
(see Fig.6).  
2003 Apr 10  
13  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SPDOUT_SEL1  
UDA1355H  
SPDOUT_SEL0  
SPDOUT_SEL2  
23  
IEC 60958  
SPDIF0  
[
]
MODE 3:0  
DECODER  
24  
25  
26  
SPDIF1  
SPDIF2  
SPDIF3  
5
SLICER  
SPDIF OUT  
select  
SPDIF source  
IEC 60958  
ENCODER  
SPDIF  
source  
21, 22  
17 to 19  
20  
[
]
[
]
SLICER_SEL 1:0  
MODE 2:0 SEL_STATIC  
MGU833  
Fig.6 Selection options for SPDIF output.  
7.6  
Analog input  
ADC  
7.6.2  
DECIMATION  
7.6.1  
The decimation from 64fs is performed in two stages: comb  
filter and decimation filter. The first stage realizes a  
sin x  
The analog input is equipped with a Programmable Gain  
Amplifier (PGA) which can be controlled via the  
microcontroller interface. The control range is from  
0 to 24 dB gain in 3 dB steps independent for the left and  
right channels.  
-----------  
fourth-order  
characteristic with a decimation factor  
x
of eight. The second stage consists of three half-band  
filters each decimating by a factor of two. Table 6 shows  
the characteristics.  
In applications in with a 2 V (RMS) input signal, a 12 kΩ  
resistor must be used in series with the input of the ADC.  
The 12 kΩ resistor forms a voltage divider together with  
the internal ADC resistor and ensures that the voltage,  
applied to the input of the IC, never exceeds 1 V (RMS).  
In the application for a 2 V (RMS) input signal, the PGA  
must be set to 0 dB. When a 1 V (RMS) input signal is  
applied to the ADC in the same application, the PGA gain  
must be set to 6 dB.  
Table 6 Decimation filter characteristics  
ITEM  
Pass-band ripple  
Stop band  
CONDITIONS VALUE (dB)  
0 to 0.45fs  
>0.55fs  
±0.02  
60  
Dynamic range  
0 to 0.45fs  
140  
Overall gain from ADC DC; VI = 0 dB;  
1.16  
input to digital output  
note 1  
An overview of the maximum input voltages allowed with  
and without an external resistor and the PGA gain setting  
is given in Table 5.  
Note  
1. The output is not 0 dB when VI(rms) = 1 V at VDD = 3 V.  
This is because the analog components can spread  
over the process. When there is no external resistor,  
the 1.16 dB scaling prevents clipping caused by  
process mismatch.  
Table 5 Maximum input voltage; VDD = 3 V  
EXTERNAL  
RESISTOR  
(12 kΩ)  
MAXIMUM  
INPUT  
VOLTAGE  
PGA GAIN  
SETTING  
In the ADC path there are left and right independent digital  
volume controls with a range from +24 to 63.5 dB  
and −∞ dB. This volume control is also used as a digital  
linear mute that can be used to prevent plops when  
powering-up or powering down the ADC front path.  
Present  
0 dB  
6 dB  
0 dB  
6 dB  
2 V (RMS)  
1 V (RMS)  
1 V (RMS)  
0.5 V (RMS)  
Absent  
2003 Apr 10  
14  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
7.6.3  
DC FILTERING  
Support for 1fs and 2fs input data rate and 192 kHz  
audio via I2S-bus.  
In the decimator there are two digital DC blocking circuits.  
The stereo interpolator has the following sound features:  
The first blocking circuit is in front of the volume control to  
remove DC bias from the ADC output. The DC bias is  
added in the ADC to prevent audio band Idle tones  
occurring in the noise shaper. With the DC components  
removed, a signal gain of 24 dB can be achieved.  
Linear volume control using 14-bit coefficients with  
0.25 dB steps: range 0 to 78 dB and −∞ dB; hold for  
master volume and mixing volume control  
A cosine roll-off soft mute with 32 coefficients; each  
coefficient is used for four samples, in total 128 samples  
are needed to fully mute or de-mute (approximately  
3 ms at fs = 44.1 kHz)  
The second blocking circuit removes the DC components  
introduced by the decimator stage.  
Independent selectable de-emphasis for 32, 44.1, 48  
7.6.4  
OVERLOAD DETECTION  
and 96 kHz for both channels  
Bit OVERFLOW = 1 when the output data in the left or  
right channel is larger than 1.16 dB of the maximum  
possible digital swing. This condition is set for at least  
512fs cycles (that is 11.6 ms at fs = 44.1 kHz). This  
time-out is reset for each infringement.  
Treble is the selectable positive gain for high  
frequencies. The edge frequency of the treble is fixed  
and depends on the sampling frequency. Treble can be  
set independently for left and right channel with two  
settings:  
7.7  
Analog output  
– fc = 1.5 kHz; fs = 44.1 kHz; 0 to 6 dB gain range with  
2 dB steps  
7.7.1  
AUDIO FEATURE PROCESSOR  
– fc = 3 kHz; fs = 44.1 kHz; 0 to 6 dB gain range with  
2 dB steps.  
The audio feature processor provides automatic  
de-emphasis for the IEC 60958 bitstream.  
In microcontroller mode all features are available and  
there is a default mute on start up.  
Normal bass boost is the selectable positive gain for low  
frequencies. The edge frequency of the bass boost is  
fixed and depends on the sampling frequency. Normal  
bass boost can be set independently for the left and right  
channel with two sets:  
7.7.2  
INTERPOLATING FILTER  
The digital filter interpolates from 1fs to 64fs, or from  
1fs to 128fs, by cascading a half-band filter and a FIR filter.  
– fc = 250 Hz; fs = 44.1 kHz; 0 to 18 dB gain range with  
2 dB steps  
The stereo interpolator has the following basic features:  
24-bit data path  
– fc = 300 Hz; fs = 44.1 kHz; 0 to 24 dB gain range with  
2 dB steps.  
Resonant bass boost optional function is selected if  
bit BASS_SEL = 1. When selected, the characteristics  
are determined by six 14-bit coefficients. Resonant bass  
boost controls the left and right channel with the same  
characteristics. When resonant bass boost is selected,  
the treble control also changes to a single control for  
both channels following the gain setting of the left  
channel.  
Mixing of two channels:  
– To prevent clipping inside the core, there is an  
automatic signal level correction of 6 dB scaling  
before mixing and +6 dB gain after digital volume  
control  
– Position of mixing can be set before or after bass  
boost and treble  
– Master volume control and mute with independent left  
and right channel settings for balance control  
A software program is available for users to generate the  
required six 14-bit coefficients by entering the desired  
centre frequency (fc), positive or negative peak gain,  
sampling frequency (fs) and shape factor (see  
Figs 7 and 8).  
– Independently left and right channel de-emphasis,  
volume control and mute (no left or right)  
– Output of the mixer is to the I2S-bus or IEC 60958  
decoder.  
Full FIR filter implementation for all the upsampling  
filters  
Integrated digital silence detection for left and right  
channels with selectable silence detection time  
2003 Apr 10  
15  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 7 Interpolation filter characteristics  
mute controls available: for source 1, for source 2 and for  
the master (sum) signal. All three volume ranges can be  
controlled in 0.25 dB steps.  
ITEM  
CONDITIONS  
0 to 0.45fs  
>0.55fs  
VALUE (dB)  
±0.035  
60  
Pass-band ripple  
Stop band  
To prevent clipping inside the mixer, the signals are scaled  
with 6 dB before mixing, therefore the sum of the two  
signals is always equal to or lower than 0 dB. After the  
mixing there is a 6 dB gain in the master volume control.  
This means that at the analog output the signal can clip,  
but the clipping can be undone by decreasing the master  
volume control.  
Dynamic range  
0 to 0.4535fs  
140  
7.7.3  
DIGITAL MIXER  
The UDA1355H has a digital mixer inside the interpolator.  
The digital mixer can be used as a cross over or a selector.  
A functional block diagram of the mixer mode is shown in  
Fig.9. This mixer can be used in microcontroller mode  
only.  
The output of the mixer is available via the I2S-bus output  
or via the SPDIF output. The output signal of the mixer is  
scaled to a maximum of 0 dB, so the digital output can  
never clip.  
The UDA1355H can be set to the mixer mode by setting  
bit MIX = 1. In the mixer mode, there are three volume and  
MGU832  
MGU831  
10  
10  
handbook, halfpage  
handbook, halfpage  
gain  
(dB)  
gain  
(dB)  
8
8
6
4
6
4
2
2
0
0
2  
4  
6  
8  
10  
2  
4  
6  
8  
10  
2
3
2
3
1
10  
10  
10  
1
10  
10  
10  
f (Hz))  
f (Hz))  
fc = 70 Hz  
Peak gain = 10 dB  
fc = 70 Hz  
Peak gain = 10 dB  
fs = 44.1 kHz  
Shape factor = 1.4142  
fs = 44.1 kHz  
Shape factor = 1.4142  
Fig.7 Resonant bass boost example 1.  
Fig.8 Resonant bass boost example 2.  
2003 Apr 10  
16  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
mixing before  
sound features  
mixing after  
sound features  
channel 2  
VOLUME  
AND  
1f  
UDA1355H  
s
DE-EMPHASIS  
MUTE  
2
L3/I C bit  
VOLUME  
AND  
MUTE  
BASS-BOOST  
AND  
TREBLE  
to  
MASTER  
VOLUME  
AND  
2f  
DE-EMPHASIS  
channel 1  
s
interpolation  
filter and  
DAC output  
INT.  
FILTER  
MUTE  
output of mixer  
MGU834  
Fig.9 Digital mixer (DAC) inside the interpolator DSP.  
7.7.4  
DIGITAL SILENCE DETECTOR  
7.7.6  
FILTER STREAM DAC  
The UDA1355H is equipped with a digital silence detector.  
This detects whether a certain amount of consecutive  
samples are 0. The number of samples can be set with  
bits SD_VALUE[1:0] to 3200, 4800, 9600 or 19600  
samples.  
The FSDAC is a semi digital reconstruction filter that  
converts the 1-bit data bitstream of the noise shaper to an  
analog output voltage. The filter coefficients are  
implemented as current sources and are summed at virtual  
ground of the operational amplifier output. In this way, very  
high signal-to-noise performance and low clock jitter  
sensitivity are achieved. A post filter is not needed due to  
the inherent filter function of the FSDAC. On-chip  
amplifiers convert the FSDAC output current to an output  
voltage signal capable of driving a line output. The output  
voltage of the FSDAC scales proportionally with the supply  
voltage.  
The digital silence detection status can be read via the  
microcontroller interface.  
7.7.5  
NOISE SHAPER (DAC)  
The noise shaper shifts in-band quantization noise to  
frequencies above the audio band. The noise shaper  
output is converted into an analog signal using a Filter  
Stream Digital-to-Analog Converter (FSDAC). This noise  
shaping technique enables high signal-to-noise ratios to  
be achieved.  
7.7.7  
DAC MUTE  
The DAC and interpolator can be muted by setting  
pin MUTE to a HIGH level. The output signal is muted to  
zero via a cosine roll-off curve and the DAC is powered  
down. When pin MUTE is at LOW level the signal rise  
follows the same cosine curve.  
The UDA1355H is equipped with two noise shapers:  
A third-order noise shaper operating at 128fs. Which is  
used at low sampling frequencies (8 to 16 kHz) to  
prevent noise shaper noise shifting into the audio band  
for the fifth-order noise shaper  
To prevent plops in case of changing inputs, clock to the  
DAC or application modes, a special mute circuit for the  
DAC is implemented (see Table 8).  
A fifth-order noise shaper operating at 64fs. Which is  
used at high sampling frequencies (from 32 kHz  
upwards).  
In all application modes in which the DAC is active the  
DAC can be muted by pin MUTE. The microcontroller  
mute bits and pin MUTE act as an OR function.  
When the noise shaper changes, the clock to the FSDAC  
changes and the filter characteristic of the FSDAC also  
changes. The effect on the roll of is compensated by  
selecting the filter matching speed and order of the noise  
shaper.  
2003 Apr 10  
17  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 8 Muting to prevent plopping  
BIT  
OCCASION  
DE-MUTE CONDITION  
MT1  
MT2  
MTM  
Input selection  
Select channel 1 source  
Select channel 2 source  
x
no mute after selection  
x
no mute after selection  
Select chip mode  
PLL is source for the DAC  
x
x
wait until PLL is locked again  
no mute after selection  
Crystal is source for the DAC  
Select between microcontroller mode and static mode  
PLL is source for the DAC  
x
x
wait until PLL is locked again  
no mute after selection  
Crystal is source for the DAC  
Audio features  
Select noise shaper order  
Select FSDAC output polarity  
Select SPDIF input  
x
x
x
x
no mute after selection  
no mute after selection  
PLL is locked again  
no mute needed  
Select mixer  
Select mixer position  
Select crystal clock source  
no mute needed  
no mute after selection  
7.8  
Digital audio input and output  
LSB-justified; 18 bits  
LSB-justified; 20 bits  
LSB-justified; 24 bits  
MSB-justified.  
The selection of the digital audio input and output formats  
and master or slave modes differ for static and  
microcontroller mode.  
In master mode, when 256fs output clock is selected and  
the digital interface is master, the BCK output clock will be  
64fs. In case 384fs output clock is selected, the BCK output  
clock will be 48fs.  
7.9  
Power-on reset  
The UDA1355H has a dedicated reset pin with an internal  
pull-down resistor. In this way a Power-on reset circuit can  
be made with a capacitor and a resistor at pin RESET. The  
external resistor is needed since the pad is 5 V tolerant.  
This means that there is a transmission gate in series with  
the input and the resistor inside the pad cannot be seen  
from the outside world (see Fig.10).  
In the static mode the digital audio input formats are:  
I2S-bus  
LSB-justified; 16 bits  
LSB-justified; 24 bits  
MSB-justified.  
The reset timing is determined by the external pull-down  
resistor and the external capacitor which is connected to  
pin RESET. At Power-on reset, all the digital sound  
processing features and the system controlling features  
are set to the default setting of the microcontroller mode.  
Since the bit controlling the clock of the synchronous  
registers is set to enable, the synchronous registers are  
also reset.  
The digital audio output formats are:  
I2S-bus  
MSB-justified.  
In the microcontroller mode, the following formats are  
independently selectable:  
I2S-bus  
LSB-justified; 16 bits  
2003 Apr 10  
18  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
8
APPLICATION MODES  
In this chapter the application modes for static mode and  
microcontroller mode are described.  
handbook, halfpage  
Transmission gate  
for 5V tolerance  
The UDA1355H can be controlled by static pins, the  
L3-bus or I2C-bus interface. Due to the limitations imposed  
by the pin count, only basic functions are available in static  
mode. For optimum use of the UDA1355H features, the  
microcontroller mode is strongly recommended.  
16  
RESET  
V
UDA1355H  
SS  
There are 11 application modes available in the static  
mode and 14 application modes in microcontroller mode.  
The application modes are explained in the two sections:  
Section 8.2 explains the application modes 0 to 10.  
Section 8.4 explains the more advanced features of  
modes 0 to 10 and modes 12 to 14 available in the  
microcontroller mode.  
MGU835  
Fig.10 5 V tolerant pull-down input pad.  
The clock should be running during the reset time. When  
no clock can be guaranteed in microcontroller mode, a soft  
reset should be given when the system is running by  
writing to register 7FH.  
8.1  
Static mode pin assignment  
The default values for all non-pin controlled settings are  
identical to the start-up defaults from the microcontroller  
mode. Whether BCK and WS are master or slave depends  
on the selected application mode.  
Table 9 defines the pin functions in static mode.  
Table 9 Static mode pin assignment  
STATIC MODE  
PIN  
LEVEL  
DESCRIPTION  
SYMBOL  
4
LOCK  
LOW  
IEC 60958 decoder out of lock (when SPDIF input) or clock  
regeneration out of lock (I2S-bus input)  
HIGH  
IEC 60958 decoder in lock (when SPDIF input) or clock  
regeneration in lock (I2S-bus input)  
16  
RESET  
LOW  
HIGH  
normal operation  
reset  
17, 18, MODE0, MODE1,  
select application mode; see Table 10  
19  
MODE2  
20  
SEL_STATIC  
HIGH  
LOW  
static pin control  
microcontroller mode  
22, 21 SLICER_SEL1,  
SLICER_SEL0  
LOW, LOW  
IEC 60958 input from pin SPDIF0  
LOW, HIGH IEC 60958 input from pin SPDIF1  
HIGH, LOW IEC 60958 input from pin SPDIF2  
HIGH, HIGH IEC 60958 input from pin SPDIF3  
29  
FREQ_SEL  
LOW  
select 44.1 kHz sampling frequency for the crystal oscillator,  
note 1  
MID  
select 32 kHz sampling frequency for the crystal oscillator, note 1  
select 48 kHz sampling frequency for the crystal oscillator, note 1  
HIGH  
2003 Apr 10  
19  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
STATIC MODE  
PIN  
LEVEL  
DESCRIPTION  
set I2S-bus format for digital data input and output interface  
SYMBOL  
30, 31 SFOR1, SFOR0  
LOW, LOW  
LOW, HIGH set LSB-justified 16 bits format for digital data input interface and  
MSB-justified format for digital data output interface  
HIGH, LOW set LSB-justified 24 bits format for digital data input interface and  
MSB-justified format for digital data output interface  
HIGH, HIGH set MSB-justified format for digital data input and output interface  
44  
MUTE  
LOW  
HIGH  
normal operation  
mute active  
Note  
1. FPLL 256fs is output from pin CLKOUT in PLL locked static mode.  
8.2  
Static mode basic applications  
The static application modes are selected with the pins MODE2, MODE1 and MODE0, with pin MODE0 being a 3-level  
pin. In Table 10, the encoding of the pins MODE[2:0] is given.  
Table 10 Static mode basic applications  
MODE SELECTION PINS(1)  
CLOCK(2)  
PLL  
LOCKS  
ON  
I2S-BUS I2S-BUS  
INPUT OUTPUT  
SLAVE MASTER  
MODE  
SPDIF  
INPUT OUTPUT  
SPDIF  
MODE2 MODE1 MODE0  
ADC  
DAC  
INPUT  
0
1
L
L
L
L
L
M
H
L
PLL  
PLL  
PLL  
PLL  
xtal  
xtal  
xtal  
PLL  
xtal  
xtal  
xtal  
xtal  
PLL  
PLL  
PLL  
PLL  
SPDIF  
I2S-bus  
SPDIF  
PLL  
PLL  
2
L
L
PLL  
PLL  
xtal  
xtal  
xtal  
xtal  
xtal  
xtal  
PLL  
PLL  
3
L
H
H
H
L
xtal  
xtal  
xtal  
xtal  
xtal  
xtal  
4
L
M
H
L
xtal  
xtal  
xtal  
PLL  
5
L
xtal  
6
H
H
H
H
H
H
PLL  
PLL  
PLL  
xtal  
I2S-bus  
SPDIF  
I2S-bus  
SPDIF  
SPDIF  
7
L
M
H
L
PLL  
8
L
PLL  
xtal  
xtal  
9
H
H
H
PLL  
PLL  
10  
11  
M
H
PLL  
not used  
Notes  
1. In column mode selection pins means:  
L: pin at 0 V; M: pin at half VDDD; H: pin at VDDD  
.
2. In column clock means:  
xtal: the clock is based on the crystal oscillator; PLL: the clock is based on the PLL.  
2003 Apr 10  
20  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
The first 11 application modes are given in this section. Schematic diagrams of these application modes are given in  
Table 11. In this table the basic features are mentioned and also the extra features in case of microcontroller mode are  
given. It should be noted that the blocks running at the crystal clock (XTAL) are marked unshaded while the blocks  
running at the PLL clock are shaded.  
Table 11 Overview of static mode basic applications  
MODE  
FEATURES  
SCHEMATIC  
0
Data path:  
Input SPDIF to outputs DAC, I2S or  
SPDIFOUT via loop through.  
SPDIF LOCK  
PLL  
Features:  
MUTE  
System locks onto the SPDIF input  
signal  
DAC  
BCK and WS are master  
Microcontroller mode:  
SPDIFOUT  
SPDIF IN  
2
2
I S OUTPUT  
I S master  
– DAC sound features can be used  
– SPDIF input channel status bits  
(two times 40 bits) can be read.  
MGU836  
1
Data path:  
Input I2S to outputs DAC or SPDIF  
(level II not guaranteed: depends on  
I2S-bus clock).  
2
I
S LOCK  
PLL  
MUTE  
Features:  
System locks onto the WSI signal  
BCKI and WSI are slave  
Microcontroller mode:  
DAC  
SPDIF OUT  
2
2
I S slave  
I S INPUT  
– DAC sound features can be used  
– SPDIF output channel status bits  
(two times 40 bits) setting.  
MGU837  
2003 Apr 10  
21  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
MODE  
FEATURES  
SCHEMATIC  
2
Data path:  
Input SPDIF to outputs I2S or  
SPDIFOUT via loop through  
Input I2S to output DAC.  
SPDIF LOCK  
PLL  
MUTE  
Features:  
DAC  
Possibility to process input SPDIF via  
I2S-bus using an external DSP and  
then to output DAC  
SPDIFOUT  
SPDIF IN  
2
2
System locks onto the SPDIF input  
I S INPUT  
I S OUTPUT  
signal  
2
2
I S slave  
I S master  
I2S input and output with BCK and WS  
are master  
EXTERNAL DSP  
(e.g. equalizing, spatializing)  
(SAA7715)  
Microcontroller mode: see Section 8.4.  
MGU838  
3
Data path:  
Input ADC to outputs I2S or SPDIF.  
Features:  
XTAL  
Crystal oscillator generates the clocks  
Microcontroller mode:  
– PGA gain setting  
ADC  
– Volume control in decimator setting  
SPDIF OUT  
– SPDIF output channel status bits  
(two times 40 bits) setting.  
2
2
I S master  
I S OUTPUT  
MGU839  
4
Data path:  
Input ADC to output I2S  
Input I2S to outputs DAC or SPDIF.  
Features:  
XTAL  
MUTE  
ADC  
DAC  
Possibility to process input ADC via  
I2S-bus using a external DSP and then  
to outputs DAC or SPDIF  
SPDIF OUT  
Crystal oscillator generates the clocks  
2
2
I S INPUT  
I S OUTPUT  
I2S input and output with BCK and WS  
are master  
2
2
I S slave  
I S master  
Microcontroller mode: see Section 8.4.  
EXTERNAL DSP  
(e.g. equalizing, spatializing)  
(SAA7715)  
MGU840  
2003 Apr 10  
22  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
MODE  
FEATURES  
SCHEMATIC  
5
Data path:  
Input ADC to outputs I2S or SPDIF  
Input I2S to output DAC.  
Features:  
XTAL  
MUTE  
ADC  
Possibility to process input ADC via  
I2S-bus using an external DSP and  
then to output DAC  
DAC  
SPDIF OUT  
Crystal oscillator generates the clocks  
I2S input and output with BCK and WS  
2
2
I S INPUT  
I S OUTPUT  
are master  
2
2
I S slave  
I S master  
Microcontroller mode: see Section 8.4.  
EXTERNAL DSP  
(e.g. equalizing, spatializing)  
(SAA7715)  
MGU841  
6
Data path:  
Input ADC to output I2S  
Input I2S to outputs DAC or SPDIF  
(level II not guaranteed: depends on  
I2S-bus clock).  
2
I
S LOCK  
XTAL  
PLL  
MUTE  
ADC  
DAC  
Features:  
Possibility to process input ADC via  
I2S-bus using an external DSP and  
then to outputs DAC or SPDIF  
SPDIF OUT  
2
2
I S INPUT  
I S OUTPUT  
Crystal oscillator generates the clocks  
for input ADC and output I2S  
2
2
I S slave  
I S master  
WSI is slave  
EXTERNAL DSP  
(SAA7715)  
WSO is master  
Microcontroller mode: see Section 8.4.  
MGU842  
2003 Apr 10  
23  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
MODE  
FEATURES  
SCHEMATIC  
7
Data path:  
Input SPDIF to output DAC  
Input ADC to outputs SPDIF or I2S.  
Features:  
Crystal oscillator generates the clocks  
SPDIF LOCK  
MUTE  
for outputs SPDIF and I2S  
XTAL  
PLL  
PLL locks onto the SPDIF input signal  
WS of I2S output is master  
ADC  
DAC  
Microcontroller mode:  
SPDIF OUT  
SPDIF IN  
– Decimator features can be used  
– DAC sound features can be used  
2
2
I S OUTPUT  
I S master  
MGU843  
– SPDIF input channel status bits  
(two times 40 bits) can be read  
– SPDIF output channel status bits  
(two times 40 bits) setting.  
8
Data path:  
Input ADC to outputs SPDIF or I2S  
Input I2S to output DAC.  
Features:  
2
I
S LOCK  
XTAL  
PLL  
Possibility to process input ADC, via  
I2S-bus using an external DSP and  
then to output DAC  
MUTE  
ADC  
DAC  
Crystal oscillator generates the clocks  
SPDIF OUT  
for outputs SPDIF and I2S  
2
WSI is slave  
2
I S INPUT  
I S OUTPUT  
WSO master  
2
2
I S slave  
I S master  
Microcontroller mode:  
– Decimator features can be used  
– DAC sound features can be used  
EXTERNAL DSP  
(e.g. Sample Rate Convertor)  
(SAA7715)  
MGU844  
– SPDIF output channel status bits  
(two times 40 bits) setting.  
2003 Apr 10  
24  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
MODE  
FEATURES  
SCHEMATIC  
9
Data path:  
Input SPDIF to output I2S  
Input I2S to outputs DAC or SPDIF.  
Features:  
SPDIF LOCK  
XTAL  
PLL  
MUTE  
Possibility to process input SPDIF, via  
I2S-bus using an external DSP and  
then to outputs DAC or SPDIF  
BCK and WS being master for both I2S  
DAC  
SPDIF IN  
SPDIF OUT  
input and output (different clocks)  
2
I S INPUT  
2
I S OUTPUT  
Input I2S to outputs DAC and SPDIF;  
BCK and WS being master; clocks  
based on crystal oscillator  
2
2
I S slave  
I S master  
EXTERNAL DSP  
(e.g. Sample Rate Convertor)  
(SAA7715)  
Microcontroller mode:  
– DAC sound features can be used  
MGU845  
– SPDIF output channel status bits  
(two times 40) setting.  
10  
Data path:  
Input SPDIF to output DAC or I2S  
Input I2S-bus to output SPDIF.  
Features:  
Possibility to process input SPDIF, via  
I2S-bus using an external DSP and  
then to output SPDIF  
SPDIF LOCK  
XTAL  
PLL  
MUTE  
DAC  
Input SPDIF to outputs I2S and DAC;  
locking onto the SPDIF input signal;  
BCK and WS being master  
Input I2S to output SPDIF; BCK and  
WS being master; clocks are  
SPDIF IN  
SPDIF OUT  
2
I S INPUT  
2
I S OUTPUT  
generated by the crystal oscillator  
2
2
I S slave  
I S master  
Microcontroller mode:  
EXTERNAL DSP  
(e.g. Sample Rate Convertor)  
(SAA7715)  
– DAC sound features can be used  
– SPDIF input channel status bits  
(two times 40) can be read  
MGU846  
– SPDIF output channel status bits  
(two times 40) setting.  
11  
12  
13  
14  
15  
Not used  
See microcontroller mode  
See microcontroller mode  
See microcontroller mode  
Not used  
2003 Apr 10  
25  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
8.3  
Microcontroller mode pin assignment  
In microcontroller mode all features become available, such as volume control, PGA gain and mixing (in some modes).  
The pin functions are defined in Table 12.  
Table 12 Microcontroller mode pin assignment  
SYMBOL  
L3-BUS  
SYMBOL  
I2C-BUS  
PIN  
LEVEL  
DESCRIPTION  
4
LOCK  
LOCK  
LOW FPLL and SPDIF are out of LOCK  
HIGH FPLL in lock when SPDIF is not used; FPLL or SPDIF in lock when  
SPDIF is used  
16 RESET  
RESET  
LOW normal operation  
HIGH reset  
17 no function  
18 A0  
no function  
A0  
LOW connect to ground  
A0 address input/output bit (for microcontroller register)  
19 U_RDY  
U_RDY  
LOW user bit stable  
HIGH new user bit  
20 SEL_STATIC SEL_STATIC  
MID  
I2C-bus mode  
LOW L3-bus mode  
HIGH static mode  
21 USER  
22 AC3  
USER  
AC3  
user bit output (new bit every SPDIF sub-frame)  
LOW no I2S-bus data preamble detected  
HIGH I2S-bus data preamble detected  
29 L3MODE  
30 L3CLOCK  
31 L3DATA  
44 MUTE  
no function  
SCL  
L3MODE for L3-bus mode; no function for I2C-bus  
L3CLOCK for L3-bus mode or SCL for I2C-bus mode  
L3DATA for L3-bus mode or SDA for I2C-bus mode  
SDA  
MUTE  
LOW no mute  
HIGH mute active  
2003 Apr 10  
26  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
8.4  
Microcontroller mode applications  
In Table 13, the encoding of bits MODE[3:0] in the microcontroller mode is given.  
Table 13 Microcontroller mode applications  
MODE BITS  
CLOCK(1)  
PLL  
LOCKS  
ON  
INPUT  
I2S-BUS  
INPUT  
SLAVE  
I2S-BUS  
OUTPUT  
MASTER  
MODE  
SPDIF  
INPUT  
SPDIF  
OUTPUT  
MODE[3:0]  
ADC  
DAC  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
PLL  
PLL  
PLL  
PLL  
xtal  
xtal  
xtal  
PLL  
xtal  
xtal  
xtal  
xtal  
PLL  
PLL  
-
PLL  
SPDIF  
I2S  
PLL  
PLL  
2
PLL  
PLL  
xtal  
xtal  
xtal  
xtal  
xtal  
xtal  
xtal  
PLL  
PLL  
PLL  
xtal  
xtal  
xtal  
xtal  
xtal  
xtal  
PLL  
PLL  
SPDIF  
3
4
xtal  
xtal  
xtal  
PLL  
5
xtal  
I2S  
6
PLL  
7
PLL  
PLL  
SPDIF  
I2S  
8
PLL  
PLL  
xtal  
xtal  
9
PLL  
PLL  
xtal  
SPDIF  
SPDIF  
10  
11  
12  
13  
14  
15  
PLL  
not used  
PLL  
PLL  
PLL  
xtal  
PLL  
PLL  
xtal  
xtal  
PLL  
PLL  
PLL  
PLL  
xtal  
xtal  
PLL  
SPDIF  
SPDIF  
I2S  
PLL  
PLL  
not used  
Note  
1. In column clock means:  
xtal: the clock is based on the crystal oscillator; PLL: the clock is based on the PLL.  
2003 Apr 10  
27  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
In the microcontroller mode, more features are available. The application modes are given in Table 14. Some modes are  
the same in terms of data path as for the static mode. These modes are already explained in Section 8.2. Some modes  
are combined into one mode (like modes 4 and 5).  
Table 14 Overview of microcontroller modes  
MODE  
FEATURE  
See static mode  
SCHEMATIC  
0
1
2
See static mode  
Data path:  
Inputs ADC, I2S and SPDIF to outputs  
SPDIF LOCK  
DAC, I2S or SPDIF.  
PLL  
Features:  
ADC  
MUTE  
All clocks are related to the SPDIF  
clock  
DAC  
I2S input and output have master BCK  
SPDIF IN  
and WS  
SPDIF OUT  
SPDIF input channel status bits (two  
times 40) can be read  
SPDIF  
OUT  
Output SPDIF supported but the timing  
not according to level II: depends on  
I2S-bus clock  
2
I S OUTPUT  
2
I S INPUT  
2
2
Output SPDIFOUT loop through can  
be selected with independent SPDIF  
input channel select.  
I S slave  
I S master  
EXTERNAL DSP  
(e.g. equalizing, spatializing)  
(SAA7715)  
MGU847  
3
See static mode  
4 + 5 Data path:  
Inputs ADC and I2S to outputs DAC,  
I2S or SPDIF.  
Features:  
XTAL  
ADC  
MUTE  
Mode 4 and 5 are combined in  
microcontroller mode  
DAC  
Crystal oscillator generates the clocks  
I2S input and output have master BCK  
and WS  
SPDIF OUT  
SPDIF output channel status bits (two  
times 40) setting.  
2
2
I S INPUT  
I S OUTPUT  
2
2
I S slave  
I S master  
EXTERNAL DSP  
(e.g. equalizing, spatializing)  
(SAA7715)  
MGU848  
2003 Apr 10  
28  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
MODE  
FEATURE  
See static mode  
SCHEMATIC  
6
7
8
9
See static mode  
See static mode  
Data path:  
Inputs ADC and I2S to outputs DAC or  
SPDIF  
Input SPDIF to output I2S.  
SPDIF LOCK  
XTAL  
PLL  
Features:  
MUTE  
Input SPDIF to output I2S with BCK  
and WS being master; the clocks for  
this are recovered from the SPDIF  
input signal  
ADC  
DAC  
The rest of the clocks are generated by  
SPDIF IN  
SPDIF OUT  
the crystal oscillator  
2
2
I S INPUT  
I S OUTPUT  
SPDIF input channel status bits (two  
times 40) can be read  
2
2
I S slave  
I S master  
SPDIF output channel status bits (two  
times 40) setting  
EXTERNAL DSP  
(e.g. Sample Rate Convertor)  
(SAA7715)  
Possibility to process input SPDIF, via  
I2S-bus using an external DSP and  
then to outputs DAC or SPDIF.  
MGU849  
10  
Data path:  
Inputs ADC and SPDIF to outputs DAC  
or I2S  
SPDIF LOCK  
XTAL  
PLL  
Input I2S to output SPDIF.  
Features:  
MUTE  
ADC  
DAC  
BCK and WS are master  
SPDIF input channel status bits (two  
times 40) can be read  
SPDIF IN  
SPDIF OUT  
SPDIF output channel status bits (two  
2
2
times 40) setting  
I S INPUT  
I S OUTPUT  
Possibility to process inputs ADC or  
SPDIF, via I2S-bus using an external  
DSP and then to output SPDIF.  
2
2
I S slave  
I S master  
EXTERNAL DSP  
(e.g. Sample Rate Convertor)  
(SAA7715)  
MGU850  
11  
Not used  
2003 Apr 10  
29  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
MODE  
FEATURE  
SCHEMATIC  
12  
Data path:  
Input ADC to outputs I2S or SPDIF  
Inputs I2S and SPDIF to output DAC.  
Features:  
SPDIF LOCK  
XTAL  
PLL  
BCK and WS of I2S output are master  
MUTE  
ADC  
Inputs SPDIF and I2S to output DAC  
with mixing/selection possibility; clocks  
are generated from SPDIF input signal,  
and BCK and WS are master  
DAC  
SPDIF IN  
SPDIF OUT  
SPDIF input channel status bits (two  
times 40) can be read  
2
2
2
2
I S slave  
I S master  
I S INPUT  
I S OUTPUT  
SPDIF output channel status bits (two  
MGU851  
times 40) setting.  
13  
Data path:  
Input ADC to output I2S  
Inputs I2S and SPDIF to outputs DAC  
SPDIF LOCK  
XTAL  
PLL  
MUTE  
or SPDIF.  
ADC  
Features  
DAC  
BCK and WS being master  
SPDIF IN  
SPDIF input channel status bits (two  
times 40) can be read  
SPDIF OUT  
SPDIF  
OUT  
Output SPDIF supported but the timing  
not according to level II  
2
2
I S master  
I S OUTPUT  
2
2
Output SPDIFOUT loop through can  
be selected with independent SPDIF  
input channel select.  
I S slave  
I S INPUT  
MGU852  
14  
Data path:  
Inputs ADC and I2S to outputs DAC  
2
I
S LOCK  
SPDIF and I2S.  
PLL  
Features:  
ADC  
MUTE  
All clocks are related to WS signal of  
DAC  
I2S-bus input  
Master BCK and WS for I2S output;  
slave BCK and WS for I2S input  
SPDIF OUT  
SPDIF output channel status bits (two  
times 40) can be set; level II timing  
depends on the I2S-bus clocks.  
2
2
2
2
I S slave  
I S master  
I S INPUT  
I S OUTPUT  
MGU853  
15  
Not used  
2003 Apr 10  
30  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
9
SPDIF SIGNAL FORMAT  
SPDIF channel encoding  
9.2  
SPDIF hierarchical layers  
9.1  
The SPDIF signal format is shown in Fig.12. A PCM signal  
is transmitted in sequential blocks. Each block consists  
of 192 frames. Each frame contains two sub-frames, one  
for each channel. Each subframe is preceded by a  
preamble. There are three types of preambles: B, M  
and W. Preambles can be spotted easily in an SPDIF  
bitstream because these sequences never occur in the  
channel parts of a valid SPDIF bitstream.  
The digital signal is coded using Biphase Mark Code  
(BMC), which is a kind of phase modulation. In this  
scheme, a logic 1 in the data corresponds to two  
zero-crossings in the coded signal, and a logic 0 to one  
zero-crossing. An example of the encoding is given in  
Fig.11.  
The sub-frame format is represented by Fig.13.  
A sub-frame contains a single audio sample word which  
may be 24 bits wide, a validity bit which indicates whether  
the sample is valid, a bit containing user data, a bit  
indicating the channel status and a parity bit for this  
sub-frame.  
handbook, halfpage  
clock  
data  
The data bits 31 to 4 in each sub-frame are encoded using  
a BMC scheme. The sync preamble contains a violation of  
the BMC scheme and can be detected. Table 15 indicates  
the values of the preambles.  
BMC  
MGU606  
Fig.11 Biphase mark encoding.  
M
channel 1  
W
channel 2  
B
channel 1  
sub-frame  
W
channel 2  
M
channel 1  
channel 2  
M
channel 1  
W
channel 2  
sub-frame  
frame 191  
frame 0  
frame 191  
block  
MGU607  
Fig.12 SPDIF signal format  
0
3
4
7
8
27 28  
M
31  
L
S
B
L
S
B
sync  
preamble  
auxiliary  
audio sample word  
S
B
V
U
C
P
validity flag  
user data  
channel status  
parity bit  
MGU608  
Fig.13 Sub-frame format  
31  
2003 Apr 10  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 15 Preambles  
9.3.3  
DUTY CYCLE  
The duty cycle (see Fig.14) is defined as:  
CHANNEL CODING  
PRECEDING  
STATE  
0
1
tH  
---------------  
Duty cycle =  
× 100%  
tL + tH  
B
M
W
11101000  
11100010  
11100100  
00010111  
00011101  
00011011  
The duty cycle should be in the range:  
40% to 60% when the data bit is a logic 1  
45% to 55% when the data bits are two succeeding  
logic 0.  
9.3  
Timing characteristics  
9.3.1  
FREQUENCY REQUIREMENTS  
The SPDIF specification IEC 60958 supports three levels  
of clock accuracy:  
10 L3-BUS DESCRIPTION  
The exchange of data and control information between the  
microcontroller and the UDA1355H is accomplished  
through a serial hardware L3-bus interface comprising the  
following pins:  
Level I high accuracy: Tolerance of transmitting  
sampling frequency shall be within 50 × 106  
Level II, normal accuracy: All receivers should receive a  
signal of 1000 × 106 of nominal sampling frequency  
MP0: mode line with signal L3MODE  
MP1: clock line with signal L3CLOCK  
MP2: data line with signal L3DATA.  
Level III, variable pitch shifted clock mode: A deviation  
of 12.5% of the nominal sampling frequency is possible.  
The UDA1355H inputs support level I, II, and III as  
specified by the IEC 60958 standard.  
The exchange of bytes in L3-bus mode is LSB first.  
The L3-bus format has two modes of operation:  
Address mode  
9.3.2  
RISE AND FALL TIMES  
Rise and fall times (see Fig.14) are defined as:  
Data transfer mode.  
tr  
The address mode is used to select a device for a  
subsequent data transfer. The address mode is  
---------------  
Rise time =  
Fall time =  
× 100%  
tL + tH  
characterized by L3MODE being LOW and a burst of  
8 pulses on L3CLOCK, accompanied by 8 bits (see  
Fig.15). The data transfer mode is characterized by  
L3MODE being HIGH and is used to transfer one or more  
bytes representing a register address, instruction or data.  
tf  
---------------  
tL + tH  
× 100%  
Rise and fall times should be in the range:  
0% to 20% when the data bit is a logic 1  
Basically two types of data transfers can be defined:  
Write action: data transfer to the device  
0% to 10% when the data bits are two succeeding  
logic 0.  
Read action: data transfer from the device.  
10.1 Device addressing  
The device address consists of one byte with:  
t
t
L
handbook, halfpage  
H
Data Operating Mode (DOM) bits 0 and 1 representing  
90%  
50%  
10%  
the type of data transfer (see Table 16)  
Address bits 2 to 7 representing a 6-bit device address.  
t
t
f
MGU612  
r
Fig.14 Rise, fall time and duty cycle.  
2003 Apr 10  
32  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 16 Selection of data transfer  
10.3 Data write mode  
The data write mode is explained in the signal diagram of  
Fig.15.  
DOM BITS  
TRANSFER  
not used  
BIT 0  
BIT 1  
For writing data to a device, 4 bytes must be sent (see  
Table 18):  
0
1
0
1
0
0
1
1
not used  
Byte 1 starting with 01 for signalling the write action to  
the device, followed by the device address  
write data or prepare read  
read data  
Byte 2 starting with 0 for signalling the write action,  
followed by 7 bits indicating the destination address in  
binary format with A6 being the MSB and A0 being the  
LSB  
The device address of the UDA1355H is given in Table 17,  
being the first 6 bits of the device address byte. The  
address can be set one of two by using pin MODE1  
(pin A0 in microcontroller mode).  
Byte 3 with bit D15 being the MSB  
Byte 4 with bit D0 being the LSB.  
It should be noted that each time a new destination register  
address needs to be written, the device address must be  
sent again.  
Table 17 L3-bus device address  
MSB  
ADDRESS  
LSB  
0
0
0
0
1
A0  
10.4 Data read mode  
Remark: When using the device address, there is often  
misunderstanding. This is caused by the fact that the data  
is sent LSB first. This means that when we use the device  
address in, for example the NXP L3-bus/I2C-bus  
bithacker’, we have to use the address like LSB MSB.  
For the UDA1355H this means that the device address to  
be used is either 10H (010000) or 30H (110000).  
For reading data from the device, first a prepare read must  
be done and then data read. The data read mode is  
explained in the signal diagram of Fig.16.  
For reading data from a device, the following 6 bytes are  
involved (see Table 19):  
Byte 1 with the device address including 01 for  
signalling the write action to the device  
10.2 Register addressing  
Byte 2 is sent with the register address from which data  
needs to be read. This byte starts with 1, which indicates  
that there will be a read action from the register, followed  
again by 7 bits for the destination address in binary  
format with A6 being the MSB and A0 being the LSB  
After sending the device address, including Data  
Operating Mode (DOM) bits indicating whether the  
information is to be read or written, one data byte is sent  
using bit 0 to indicate whether the information will be read  
or written and bits 1 to 7 for the destination register  
address.  
Byte 3 with the device address including 11 is sent to the  
device. The 11 indicates that the device must write data  
to the microcontroller  
Basically there are three methods for register addressing:  
Byte 4, sent by the device to the bus, with the  
(requested) register address and a flag bit indicating  
whether the requested register was valid (bit is logic 0)  
or invalid (bit is logic 1)  
Addressing for write data: bit 0 is logic 0 indicating a  
write action to the destination register, followed by  
bits 1 to 7 indicating the register address (see Fig.15)  
Addressing for prepare read: bit 0 is logic 1 indicating  
that data will be read from the register (see Fig.16)  
Byte 5, sent by the device to the bus, with the data  
information in binary format with D15 being the MSB  
Addressing for data read action: in this case the device  
returns a register address prior to sending data from that  
register. When bit 0 is logic 0, the register address is  
valid; in case bit 0 is logic 1 the register address is  
invalid.  
Byte 6, sent by the device to the bus, with the data  
information in binary format with D0 being the LSB.  
2003 Apr 10  
33  
L3 wake-up pulse after power-up  
L3CLOCK  
L3MODE  
L3DATA  
device address  
register address  
data byte 1  
data byte 2  
0
1
0
MGS753  
DOM bits  
write  
Fig.15 Data write mode.  
L3CLOCK  
L3MODE  
L3DATA  
device address  
register address  
device address  
register address  
data byte 1  
data byte 2  
0
1
1
1
1
0/1  
DOM bits  
read  
valid/non-valid  
prepare read  
send by the device  
MGS754  
Fig.16 Data read mode.  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 18 L3-bus write data  
FIRST IN TIME  
LAST IN TIME  
BYTE  
L3-BUS MODE  
address  
ACTION  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7  
1
2
3
4
device address  
register address  
data byte 1  
0
0
1
A0  
A5  
1
0
0
0
0
data transfer  
data transfer  
data transfer  
A6  
A4  
A3  
A2  
A1  
D9  
D1  
A0  
D8  
D0  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
data byte 2  
Table 19 L3-bus read data  
FIRST IN TIME  
LAST IN TIME  
BYTE  
L3-BUS MODE  
address  
ACTION  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7  
1
2
3
4
5
6
device address  
register address  
device address  
register address  
data byte 1  
0
1
1
1
A6  
1
A0  
A5  
1
A4  
1
0
A3  
0
0
A2  
0
0
0
data transfer  
address  
A1  
0
A0  
0
A0  
data transfer  
data transfer  
data transfer  
0 or 1 A6  
A5  
A4  
D12  
D4  
A3  
D11  
D3  
A2  
D10  
D2  
A1  
D9  
D1  
A0  
D8  
D0  
D15  
D7  
D14  
D6  
D13  
D5  
data byte 2  
11 I2C-BUS DESCRIPTION  
11.1 Characteristics  
11.2 Bit transfer  
One data bit is transferred during each clock pulse (see  
Fig.17). The data on the SDA line must remain stable  
during the HIGH period of the clock pulse as changes in  
the data line at this time will be interpreted as control  
signals. The maximum clock frequency is 400 kHz. To be  
able to run on this high frequency all the inputs and outputs  
connected to this bus must be designed for this high speed  
I2C-bus according the NXP specification.  
The bus is for 2-way, 2-line communication between  
different ICs or modules. The two lines are a Serial Data  
Line (SDA) and a Serial Clock Line (SCL). Both lines must  
be connected to the supply voltage (VDD) via a pull-up  
resistor when connected to the output stages of a  
microcontroller. For a 400 kHz IC the recommendation for  
this type of bus from NXP Semiconductors must be  
followed (e.g. up to loads of 200 pF on the bus a pull-up  
resistor can be used, between 200 to 400 pF a current  
source or switched resistor must be used). Data transfer  
can only be initiated when the bus is not busy.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBC621  
Fig.17 Bit transfer on the I2C-bus.  
2003 Apr 10  
35  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
11.3 Byte transfer  
11.7 Start and stop conditions  
Each byte (8 bits) is transferred with the MSB first (see  
Table 20).  
Both data and clock line will remain HIGH when the bus in  
not busy. A HIGH-to-LOW transition of the data line, while  
the clock is HIGH, is defined as a start condition (S).  
A LOW-to-HIGH transition of the data line while the clock  
is HIGH is defined as a stop condition (P); (see Fig.18).  
Table 20 Byte transfer  
MSB  
BIT  
LSB  
7
6
5
4
3
2
1
0
11.8 Acknowledgment  
The number of data bits transferred between the start and  
stop conditions from the transmitter to receiver is not  
limited. Each byte of eight bits is followed by one  
acknowledge bit (see Fig.19). At the acknowledge bit the  
data line is released by the master and the master  
generates an extra acknowledge related clock pulse.  
11.4 Data transfer  
A device generating a message is a transmitter; a device  
receiving a message is the receiver. The device that  
controls the message is the master and the devices which  
are controlled by the master are the slaves.  
A slave receiver which is addressed must generate an  
acknowledge after the reception of each byte. Also a  
master must generate an acknowledge after the reception  
of each byte that has been clocked out of the slave  
transmitter.  
11.5 Register address  
The register addresses in the I2C-bus mode are the same  
as in the L3-bus mode.  
11.6 Device address  
The device that acknowledges has to pull-down the SDA  
line during the acknowledge clock pulse, so that the SDA  
line is stable LOW during the HIGH period of the  
acknowledge related clock pulse. Set-up and hold times  
must be taken into account. A master receiver must signal  
an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of  
the slave. In this event the transmitter must leave the data  
line HIGH to enable the master to generate a stop  
condition.  
Before any data is transmitted on the I2C-bus, the device  
which should respond is addressed first. The addressing is  
always done with the first byte transmitted after the start  
procedure. The device address can be one of two, being  
set by bit A0 which corresponds to pin MODE1.  
The UDA1355H acts as a slave receiver or a slave  
transmitter. Therefore, the clock signal SCL is only an  
input signal. The data signal SDA is a bidirectional line.  
The UDA1355H slave address is shown in Table 21.  
Table 21 I2C-bus slave address  
DEVICE ADDRESS  
R/W  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
0
1
1
0
1
A0  
0/1  
SDA  
SDA  
SCL  
SCL  
S
P
STOP condition  
START condition  
MBC622  
Fig.18 START and STOP conditions on the I2C-bus.  
2003 Apr 10  
36  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
8
SCL FROM  
MASTER  
1
2
9
S
clock pulse for  
acknowledgement  
START  
condition  
MBC602  
Fig.19 Acknowledge on the I2C-bus.  
11.9 Write cycle  
4. After this the microcontroller writes the 8-bit register  
address (ADDR) where the writing of the register  
content of the UDA1355H must start.  
The write cycle is used to write groups of two bytes to the  
internal registers for the digital sound feature control and  
system setting. It is also possible to read these locations  
for chip status information.  
5. The UDA1355H acknowledges this register address  
(A).  
6. The microcontroller sends two bytes data with the  
Most Significant (MS) byte first and then the Least  
Significant (LS) byte. After each byte an acknowledge  
is followed from the UDA1355H.  
The I2C-bus configuration for a write cycle is shown in  
Table 22. The write cycle is used to write the data to the  
internal registers. The device and register addresses are  
one byte each, the setting data is always a couple of two  
bytes.  
7. If repeated groups of two bytes are transmitted, then  
the register address is auto incremented. After each  
byte an acknowledge is followed from the  
microcontroller.  
The format of the write cycle is as follows:  
1. The microcontroller starts with a start condition (S).  
8. Finally, the UDA1355H frees the I2C-bus and the  
microcontroller can generate a stop condition (P).  
2. The first byte (8 bits) contains the device address  
0011010 and a logic 0 (write) for the R/W bit.  
3. This is followed by an acknowledge (A) from the  
UDA1355H.  
Table 22 Master transmitter writes to the UDA1355H registers in the I2C mode.  
DEVICE  
ADDRESS  
REGISTER  
ADDRESS  
R/W  
DATA 1  
DATA 2(1)  
.....  
DATA n(1)  
LSn  
S
0011010  
0
A
ADDR  
A
MS1  
A
LS1  
A
....  
A
A
MSn  
A
A
P
acknowledge from UDA1355H  
Note  
1. Auto increment of register address.  
2003 Apr 10  
37  
11.10 Read cycle  
The read cycle is used to read the data values from the internal registers. The I2C-bus configuration for a read cycle is shown in Table 23  
The format of the read cycle is as follows:  
1. The microcontroller starts with a start condition (S).  
2. The first byte (8 bits) contains the device address 0011010 and a logic 0 (write) for the R/W bit.  
3. This is followed by an acknowledge (A) from the UDA1355H.  
4. After this microcontroller writes the 8-bit register address (ADDR) where the reading of the register content of the UDA1355H must start.  
5. The UDA1355H acknowledges this register address (A).  
6. Then the microcontroller generates a repeated start (Sr).  
7. Then the microcontroller generates the device address 0011010 again, but this time followed by a logic 1 (read) of the R/W bit. An acknowledge (A)  
follows from the UDA1355H.  
8. The UDA1355H sends two bytes data with the Most Significant (MS) byte first and then the Least Significant (LS) byte. After each byte an  
acknowledged follows from the microcontroller.  
9. If repeated groups of two bytes are transmitted, then the register address is auto incremented. After each byte an acknowledge follows from the  
microcontroller.  
10. The microcontroller stops this cycle by generating a Negative Acknowledge (NA).  
11. Finally, the UDA1355H frees the I2C-bus and the microcontroller can generate a stop condition (P).  
Table 23 Master transmitter reads from the UDA1355H registers in the I2C-bus mode  
DEVICE  
ADDRESS  
REGISTER  
ADDRESS  
DEVICE  
ADDRESS  
R/W  
R/W  
DATA 1  
DATA 2(1)  
DATA n(1)  
LSn NA  
S
0011010  
0
A
ADDR  
A
Sr  
0011010  
1
A
MS1 A LS1  
A
...  
A
...  
A
MSn  
A
P
acknowledge from UDA1355H  
acknowledge from master  
Note  
1. Auto increment of register address.  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
12 REGISTER MAPPING  
In this chapter the register addressing of the microcontroller interface of the UDA1355H is given. In Section 12.1, the  
mapping of the readable and writable registers is given. The explanation of the register definitions are explained in  
Sections 12.2 and 12.3.  
12.1 Address mapping  
Table 24 Register map settings  
ADDRESS  
R/W  
DESCRIPTION  
System settings  
00H  
R/W crystal clock power-on setting; crystal clock and PLL divider settings; MODE and WS detector  
settings; clock output setting  
01H  
02H  
03H  
04H  
R/W I2S-bus output format settings  
R/W I2S-bus input format settings  
R/W reserved for manufacturers evaluation and should be kept untouched for normal operation  
R/W analog power and clock settings  
Interpolator  
10H  
R/W master volume control settings  
11H  
R/W mixer volume settings  
12H  
R/W sound feature and bass boost and treble settings  
R/W gain select; de-emphasis and mute settings  
13H  
14H  
R/W DAC polarity; noise shaper selection; mixer; source selection; silence detector and interpolator  
oversampling settings  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
R
mute and silence detector status read-out  
R/W resonant bass boost coefficient k1 setting  
R/W resonant bass boost coefficient km setting  
R/W resonant bass boost coefficient a1 setting  
R/W resonant bass boost coefficient a2 setting  
R/W resonant bass boost coefficient b1 setting  
R/W resonant bass boost coefficient b2m setting  
Decimator  
20H  
21H  
22H  
28H  
R/W ADC gain settings  
R/W ADC mute and PGA gain settings;  
R/W ADC polarity and DC cancellation settings  
R
mute status and overflow ADC read-out  
SPDIF input  
30H  
40H  
59H  
5AH  
5BH  
5CH  
R/W SPDIF power control and SPDIF input settings  
R/W reserved for manufacturers evaluation and should be kept untouched for normal operation  
R
R
R
R
SPDIF LOCK; bit error information and SPDIF encoder output status read-out  
SPDIF input status bits 15 to 0 left channel read-out  
SPDIF input status bits 31 to 16 left channel read-out  
SPDIF input status bits 39 to 32 left channel read-out  
2003 Apr 10  
39  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
ADDRESS  
5DH  
R/W  
R
DESCRIPTION  
SPDIF input status bits 15 to 0 right channel read-out  
SPDIF input status bits 31 to 16 right channel read-out  
SPDIF input status bits 39 to 32 right channel read-out  
5EH  
R
5FH  
R
SPDIF output  
50H  
R/W SPDIF output valid; left to right channel status bit copy; power control and SPDIF output  
selection setting  
51H  
52H  
53H  
54H  
55H  
56H  
60H  
61H  
62H  
63H  
64H  
R/W SPDIF output status bits 39 to 24 left channel setting  
R/W SPDIF output status bits 23 to 8 left channel setting  
R/W SPDIF output status bits 7 to 0 left channel setting  
R/W SPDIF output status bits 39 to 24 right channel setting  
R/W SPDIF output status bits 23 to 8 right channel setting  
R/W SPDIF output status bits 7 to 0 right channel setting  
R/W reserved for manufacturers evaluation and should be kept untouched for normal operation  
R/W reserved for manufacturers evaluation and should be kept untouched for normal operation  
R/W reserved for manufacturers evaluation and should be kept untouched for normal operation  
R/W reserved for manufacturers evaluation and should be kept untouched for normal operation  
R/W reserved for manufacturers evaluation and should be kept untouched for normal operation  
Device ID  
7EH  
R
device ID; version  
Software reset  
7FH  
R/W restore L3-bus defaults  
12.2 Read/write registers mapping  
12.2.1 SYSTEM SETTINGS  
Table 25 Register address 00H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
EXPU  
PON_XTAL XTL_DIV4  
PLL  
XTL_DIV3  
XTL_DIV2  
XTL_DIV1 XTL_DIV0  
Default  
0
0
1
0
1
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
MODE3  
MODE2  
MODE1  
MODE0  
ws_detct_EN ws_detct_set CLKOUT_ CLKOUT_  
SEL1  
SEL0  
Default  
0
0
1
0
1
0
1
0
2003 Apr 10  
40  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 26 Description of register bits (address 00H)  
BIT  
SYMBOL  
EXPU  
DESCRIPTION  
15  
EXPU. Bit EXPU is reserved for manufacturers evaluation and should be kept  
untouched for normal operation of UDA1355H.  
14  
13  
reserved  
PON_XTALPLL  
Power control crystal oscillator and PLL. If this bit is logic 0, then the crystal  
oscillator and PLL are turned off; if this bit is logic 1, then the crystal oscillator and PLL  
are running.  
12 to 8 XTL_DIV[4:0]  
Crystal oscillator clock divider setting. Value to select the sampling frequency and  
the system clock output frequency (256fs or 384fs). When 256fs is selected, the master  
BCKI and BCKO clock frequency of digital interface running with crystal oscillator clock  
will be 64fs; when 384fs is selected, it will be 48fs (see Table 27).  
7 to 4 MODE[3:0]  
Microcontroller application mode setting. Value to select the microcontroller  
application mode (see Table 28).  
3
2
ws_detct_EN  
ws_detct_set  
Word select detector enable.If this bit is logic 0, then WS detector is disabled; if this  
bit is logic 1, then WS detector is enabled.  
Word select detector limit setting. If this bit is logic 0, then the lower frequency limit  
of the WS detector is 4095 clock cycles (3 kHz); if this bit is logic 1, then the lower  
frequency limit of the WS detector is 2047 clock cycles (6 kHz).  
1 and 0 CLKOUT_SEL[1:0] Clock output select. If these bits are 00 or 10, then the BCKI and BCKO clock  
frequency of digital interface running with FPLL clock will be 64fs; otherwise, it will be  
48fs. The selection between 256fs and 384fs for the crystal clock output is set via the  
bits XTL_DIV[4:0]:  
00 = FPLL clock 256fs  
01 = FPLL clock 384fs  
10 = crystal clock  
11 = crystal clock  
Table 27 Crystal oscillator output frequencies  
XTL_DIV4  
XTL_DIV3  
XTL_DIV2  
XTL_DIV1  
XTL_DIV0  
OUTPUT RATE  
Based on 32 kHz  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
256 × 16 kHz  
384 × 16 kHz  
256 × 32 kHz  
384 × 32 kHz  
256 × 64 kHz  
384 × 64 kHz  
Based on 44.1 kHz  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
256 × 22.05 kHz  
384 × 22.05 kHz  
256 × 44.1 kHz  
384 × 44.1 kHz  
256 × 88.2 kHz  
384 × 88.2 kHz  
2003 Apr 10  
41  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
XTL_DIV4  
XTL_DIV3  
XTL_DIV2  
XTL_DIV1  
XTL_DIV0  
OUTPUT RATE  
Based on 48 kHz  
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
256 × 24 kHz  
384 × 24 kHz  
256 × 48 kHz  
384 × 48 kHz  
256 × 96 kHz  
384 × 96 kHz  
Table 28 Application mode selection  
MODE3  
MODE2  
MODE1  
MODE0  
FUNCTION  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
mode 0  
mode 1  
mode 2  
mode 3  
mode 4  
mode 5  
mode 6  
mode 7  
mode 8  
mode 9  
mode 10  
mode 11  
mode 12  
mode 13  
mode 14  
mode 15  
Table 29 Register address 01H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Default  
MUTE_DAO  
0
0
0
0
0
0
0
0
BIT  
7
6
0
5
4
3
0
2
1
SFORO1  
0
0
SFORO0  
0
Symbol PON_DIGO  
DIGOUT1 DIGOUT0  
SFORO2  
Default  
1
1
0
0
2003 Apr 10  
42  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 30 Description of register bits (address 01H)  
BIT  
15 to 9  
8
SYMBOL  
DESCRIPTION  
reserved  
MUTE_DAO Digital mute setting. If this bit is logic 0, then the digital output is not muted; if this bit is  
logic 1, then the digital output is muted.  
7
PON_DIGO  
Power control digital output. If this bit is logic 0, then the digital output is in Power-down  
mode; if this bit is logic 1, then the digital output is in power-on mode. The registers have  
their own clock, which means that there cannot be a dead-lock situation.  
6
reserved  
5 and 4 DIGOUT[1:0] Input selector for digital output. Value to select the input signal for the digital output. The  
default input will be chosen if in an application an invalid data signal is selected:  
00 = ADC input  
01 = digital input  
10 = IEC 60958 input  
11 = interpolator mixer output  
3
reserved  
2 to 0 SFORO[2:0] Digital output format. Value to set the digital output format:  
000 = I2S-bus  
001 = LSB-justified; 16 bits  
010 = LSB-justified; 18 bits  
011 = LSB-justified; 20 bits  
100 = LSB-justified; 24 bits  
101 = MSB-justified  
110 = not used; output is default value  
111 = not used; output is default value  
Table 31 Register address 02H  
BIT  
15  
14  
13  
12  
11  
10  
9
0
8
0
Symbol  
Default  
0
0
0
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
Default  
PON_DIGI  
1
SFORI2  
0
SFORI1  
0
SFORI0  
0
0
0
0
0
Table 32 Description of register bits (address 02H)  
BIT  
SYMBOL  
DESCRIPTION  
15 to 8  
7
reserved  
PON_DIGI  
Power control digital input. If this bit is logic 0, then the digital input is in Power-down  
mode; if this bit is logic 1, then the digital input is in power-on mode. The registers have their  
own clock, which means that there cannot be a dead-lock situation.  
6 to 3  
reserved  
2003 Apr 10  
43  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
BIT  
SYMBOL  
DESCRIPTION  
2 to 0 SFORI[2:0]  
Digital input format. Value to set the digital input format:  
000 = I2S-bus  
001 = LSB-justified; 16 bits  
010 = LSB-justified; 18 bits  
011 = LSB-justified; 20 bits  
100 = LSB-justified; 24 bits  
101 = MSB-justified  
110 = not used; input is default value  
111 = not used; input is default value  
Table 33 Register address 04H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Default  
PON_DAC  
1
PON_ADCL PON_ADCR PON_ADC_bias  
0
0
0
0
1
1
1
7
6
5
4
3
2
1
BIT  
0
EN_INT  
1
Symbol DACLK_OFF DACLK_AUTO  
Default  
EN_DEC  
1
0
0
0
0
0
0
Table 34 Description of register bits (address 04H)  
BIT  
SYMBOL  
PON_DAC  
DESCRIPTION  
15  
Power control DAC. If this bit is logic 0, then the DAC is in Power-down mode; if this bit  
is logic 1, then the DAC is in power-on mode. This bit is only connected to the DAC input  
and is not combined with mute status or other signals.  
14 to 11 −  
reserved  
10  
PON_ADCL  
Power control ADC left channel. Value to set power on the ADC left channel (see  
Table 35).  
9
PON_ADCR  
Power control ADC right channel. Value to set power on the ADC right channel (see  
Table 35).  
8
7
PON_ADC_bias Power control ADC bias. Value to set power on the ADCs (see Table 35).  
DACLK_OFF  
DAC clock enable. If this bit is logic 0, then the DAC clock is disabled; if this bit is  
logic 1, then the DAC clock is enabled.  
6
DACLK_AUTO  
DAC clock auto function. If this bit is logic 0, then the DAC clock auto function is  
disabled; if this bit is logic 1, then the DAC clock auto function is enabled. If the FPLL is  
unlocked, the interpolator will be muted and the DAC clock is automatically disabled.  
5 to 3  
2
reserved  
EN_DEC  
Decimator and ADC clock enable. If this bit is logic 0, then the clock to decimator and  
ADC is disabled; if this bit is logic 1, then the clock to decimator and ADC is running.  
1
0
reserved  
EN_INT  
Interpolator clock enable. If this bit is logic 0, then the clock to interpolator and FSDAC  
is disabled; if this bit is logic 1, then the clock to the interpolator and FSDAC is running.  
2003 Apr 10  
44  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 35 ADC power control  
PON_ADC_BIAS  
PON_ADCR  
PON_ADCL  
DESCRIPTION  
no power on both ADCs  
0
1
1
1
1
X
0
1
0
1
X
0
0
1
1
no power on both ADCs  
only power on right channel ADC  
only power on left channel ADC  
power on both ADCs  
12.2.2 INTERPOLATOR  
Table 36 Register address 10H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Default  
MVCL_7  
0
MVCL_6  
0
MVCL_5  
0
MVCL_4  
0
MVCL_3  
0
MVCL_2  
0
MVCL_1  
0
MVCL_0  
0
BIT  
7
MVCR_7  
0
6
MVCR_6  
0
5
MVCR_5  
0
4
MVCR_4  
0
3
MVCR_3  
0
2
MVCR_2  
0
1
MVCR_1  
0
0
MVCR_0  
0
Symbol  
Default  
Table 37 Description of register bits (address 10H)  
BIT SYMBOL  
15 to 8 MVCL_[7:0]  
DESCRIPTION  
Master volume setting left channel. Value to program the left channel master volume  
attenuation. The range is 0 dB to 78 dB and dB (see Table 38).  
7 to 0 MVCR_[7:0] Master volume setting right channel. Value to program the right channel master volume  
attenuation. The range is 0 dB to 78 dB and dB (see Table 38).  
Table 38 Master volume setting left and right channel  
MVCL_7  
MVCR_7  
MVCL_6  
MVCR_6  
MVCL_5  
MVCR_5  
MVCL_4  
MVCR_4  
MVCL_3  
MVCR_3  
MVCL_2  
MVCR_2  
MVCL_1  
MVCR_1  
MVCL_0  
MVCR_0  
VOLUME (dB)  
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
1
:
0
0
1
1
0
:
0
1
0
1
0
:
0
0.25  
0.5  
0.75  
1  
:
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
51  
51.25  
51.5  
51.75  
52  
2003 Apr 10  
45  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
MVCL_7  
MVCR_7  
MVCL_6  
MVCR_6  
MVCL_5  
MVCR_5  
MVCL_4  
MVCR_4  
MVCL_3  
MVCR_3  
MVCL_2  
MVCR_2  
MVCL_1  
MVCR_1  
MVCL_0  
VOLUME (dB)  
MVCR_0  
1
1
:
1
1
:
0
0
:
1
1
:
0
1
:
1
0
:
0
0
:
0
0
:
54  
56  
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
66  
69  
72  
78  
−∞  
Table 39 Register address 11H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Default  
VC2_7  
1
VC2_6  
1
VC2_5  
1
VC2_4  
1
VC2_3  
1
VC2_2  
1
VC2_1  
VC2_0  
1
1
BIT  
7
VC1_7  
0
6
VC1_6  
0
5
VC1_5  
0
4
VC1_4  
0
3
VC1_3  
0
2
VC1_2  
0
1
VC1_1  
0
0
VC1_0  
0
Symbol  
Default  
Table 40 Description of register bits (address 11H)  
BIT SYMBOL  
DESCRIPTION  
15 to 8 VC2_[7:0]  
Mixer volume setting channel 2. Value to program channel 2 mixer volume attenuation. The  
range is 0 dB to 72 dB and dB (see Table 41).  
7 to 0 VC1_[7:0]  
Mixer volume setting channel 1. Value to program channel 1 mixer volume attenuation. The  
range is 0 dB to 72 dB and dB (see Table 41).  
Table 41 Mixer volume setting channel 1 and 2  
VC2_7 VC2_6 VC2_5 VC2_4 VC2_3 VC2_2 VC2_1 VC2_0  
VC1_7 VC1_6 VC1_5 VC1_4 VC1_3 VC1_2 VC1_1 VC1_0  
VOLUME (dB)  
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
0
:
0
0
0
0
1
:
0
0
1
1
0
:
0
1
0
1
0
:
0
0.25  
0.5  
0.75  
1  
:
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
45  
45.25  
45.5  
45.75  
46  
2003 Apr 10  
46  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
VC2_7 VC2_6 VC2_5 VC2_4 VC2_3 VC2_2 VC2_1 VC2_0  
VC1_7 VC1_6 VC1_5 VC1_4 VC1_3 VC1_2 VC1_1 VC1_0  
VOLUME (dB)  
1
1
:
0
1
:
1
0
:
1
0
:
1
0
:
1
0
:
0
0
:
0
0
:
48  
50  
:
1
1
1
1
1
:
1
1
1
1
1
:
0
0
0
1
1
:
1
1
1
0
0
:
0
1
1
0
0
:
1
0
1
0
1
:
0
0
0
0
0
:
0
0
0
0
0
:
60  
63  
66  
72  
−∞  
:
1
1
1
1
1
1
0
0
−∞  
Table 42 Register address 12H  
BIT  
Symbol  
Default  
15  
M1  
0
14  
M0  
0
13  
12  
TRL0  
0
11  
BBL3  
0
10  
BBL2  
0
9
BBL1  
0
8
BBL0  
0
TRL1  
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
Default  
BB_OFF  
0
BB_FIX  
0
TRR1  
0
TRR0  
0
BBR3  
0
BBR2  
0
BBR1  
0
BBR0  
0
Table 43 Description of register bits (address 12H)  
BIT  
SYMBOL  
DESCRIPTION  
15 and 14  
M[1:0]  
Sound feature mode. Value to program the sound processing filter sets (modes) of bass  
boost and treble:  
00 = flat set  
01 = minimum set  
10 = minimum set  
11 = maximum set  
13 and 12  
TRL[1:0]  
Treble settings left. Value to program the left channel treble setting. Both left and right  
channels will follow the left channel setting when bit BASS_SEL = 1. The used filter set is  
selected with the sound feature mode bits M1 and M2 (see Table 44).  
11 to 8  
7
BBL[3:0]  
BB_OFF  
Normal bass boost settings left. Value to program the left bass boost settings. The  
used filter set is selected by the sound feature mode bits M1 and M2 (see Table 45).  
Resonant bass boost. If this bit is logic 0 then the resonant bass boost is enabled; if this  
bit is logic 1 then the resonant bass boost is disabled.  
2003 Apr 10  
47  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
BIT  
SYMBOL  
DESCRIPTION  
6
BB_FIX  
Resonant bass boost coefficient. If this bit is logic 0 then the resonant bass boost  
coefficient is finished loading; if this bit is logic 1 then the resonant bass boost coefficient  
is loading to register.  
5 and 4  
3 to 0  
TRR[1:0]  
BBR[3:0]  
Treble settings right. Value to program the right treble setting. The used filter set is  
selected by the sound feature mode bits M1 and M2 (see Table 44).  
Normal bass boost settings right. Value to program the right bass boost settings. The  
used filter set is selected by the sound feature mode bits M1 and M2 (see Table 45).  
Table 44 Treble settings  
TRL1  
TRL0  
FLAT SET (dB)  
MIN. SET (dB)  
MAX. SET (dB)  
TRR1  
TRR0  
0
0
1
1
0
1
0
1
0
0
0
0
0
2
4
6
0
2
4
6
Table 45 Normal bass boost settings; note 1  
BBL3  
BBR3  
BBL2  
BBR2  
BBL1  
BBR1  
BBL0  
BBR0  
FLAT SET (dB) MIN SET (dB) MAX SET (dB)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
4
4
6
6
8
8
10  
12  
14  
16  
18  
18  
18  
18  
18  
18  
18  
10  
12  
14  
16  
18  
20  
22  
24  
24  
24  
24  
Note  
1. The bass boost setting is only effective when bit BASS_SEL = 0.  
2003 Apr 10  
48  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 46 Register address 13H  
BIT  
Symbol  
Default  
15  
14  
MTM  
0
13  
GS  
0
12  
MIXGAIN  
0
11  
MT2  
1
10  
DE2_2  
0
9
DE2_1  
0
8
DE2_0  
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
Default  
MTNS1  
0
MTNS0  
0
WS_SEL  
0
DE_SW  
0
MT1  
0
DE1_2  
0
DE1_1  
0
DE1_0  
0
Table 47 Description of register bits (address 13H)  
BIT  
SYMBOL  
DESCRIPTION  
15  
14  
-
reserved  
MTM  
Master mute. If this bit is logic 0 then there is no master mute or the master de-mute is in  
progress; if this bit is logic 1 then the master mute is in progress or muted.  
13  
12  
11  
GS  
Gain select. See Table 48.  
MIXGAIN  
MT2  
Mixer gain select. See Tables 48 and 49.  
Channel 2 mute. If this bit is logic 0 then channel 2 is not muted or the de-mute is in  
progress; if this bit is logic 1 then channel 2 is muted or the muting is in progress.  
10 to 8  
7 and 6  
DE2_[2:0] De-emphasis setting for channel 2. See Table 50.  
MTNS[1:0] Interpolator mute. Selection:  
00 = no mute  
01 = if no WS signal is detected, the noise shaper of the interpolator mute  
1x = the noise shaper of the interpolator mute  
5
4
WS_SEL  
DE_SW  
MT1  
WS signal select. If this bit is logic 0 then WS_DET is selected for the WS detection; if  
this bit is logic 1 then FPLL is selected for the WS detection.  
De-emphasis select. If this bit is logic 0 then SPDIF pre-emphasis information is  
selected; if this bit is logic 1 then the de-emphasis setting is selected.  
3
Channel 1 mute. If this bit is logic 0 then channel 1 is not muted or the de-mute is in  
progress; if this bit is logic 1 then channel 1 is muted or the muting is in progress.  
2 to 0  
DE1_[2:0] De-emphasis setting for channel 1. See Table 50.  
Table 48 DAC gain setting  
GS  
0
MIX(1)  
MIX_GAIN  
DAC GAIN (dB)  
X(2)  
0
X(2)  
0
0
6
0
6
6
1
1
1
0
1
0
1
1
1
1
Notes  
1. See Table 52.  
2. X = don’t care  
2003 Apr 10  
49  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 49 Mixer gain setting  
MIX(1)  
MIX_GAIN  
MIXER OUTPUT GAIN  
1
1
0
1
DAC output gain is set to 0 dB and mixer signal output gain is set 6 dB  
DAC output gain and mixer signal output gain are set to 0 dB  
Note  
1. See Table 52.  
Table 50 De-emphasis setting for the incoming signal  
DE2_2  
DE1_2  
DE2_1  
DE1_1  
DE2_0  
DE1_0  
FUNCTION  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
off  
32 kHz  
44.1 kHz  
48 kHz  
96 kHz  
Table 51 Register address 14H  
BIT 15 14  
13  
12  
11  
10  
9
8
Symbol DA_POL_ SEL_NS  
INV  
MIX_POS  
MIX  
DAC_CH2_ DAC_CH2_ DAC_CH1_ DAC_CH1_  
SEL1  
1
SEL0  
1
SEL1  
0
SEL0  
1
Default  
0
1
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol SILENCE SDET_ON  
SD_  
SD_  
BASS_SEL BYPASS  
OS_IN1  
OS_IN0  
VALUE1  
VALUE0  
Default  
0
0
0
0
0
0
0
0
Table 52 Description of register bits (address 14H)  
BIT  
SYMBOL  
DESCRIPTION  
15  
DA_POL_INV  
DAC polarity control. If this bit is logic 0 then the DAC output is not inverted; if this  
bit is logic 1 then the DAC output is inverted.  
14  
13  
12  
SEL_NS  
MIX_POS  
MIX  
Select noise shaper. If this bit is logic 0 then the third order noise shaper is  
selected; if this bit is logic 1 then the fifth order noise shaper is selected.  
Mixer position. Mixing is done before or after the sound processing unit (see  
Table 53).  
Mixer. If this bit is logic 0 then the mixer is disabled; if this bit is logic 1 then the mixer  
is enabled (see Tables 48, 49 and 53).  
11 and DAC_CH2_SEL[1:0] DAC channel 2 input selection. Value to select the input mode to channel 2 of the  
10 interpolator (see Table 54).  
9 and 8 DAC_CH1_SEL[1:0] DAC channel 1 input selection. Value to select the input mode to channel 1 of the  
interpolator (see Table 54).  
2003 Apr 10  
50  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
BIT  
SYMBOL  
SILENCE  
DESCRIPTION  
7
Silence detector overrule. Value to force the DAC output to silence. This will give a  
plop at the output of the DAC because of mismatch in offsets and the DC offset  
added to the signal in the interpolator itself. If this bit is logic 0 then there is no  
overruling and the FSDAC silence switch setting depends on the silence detector  
circuit and on the status of bit MTM; if this bit is logic 1 then there is overruling and  
the FSDAC silence switch is activated independent of the status of the digital silence  
detector circuit or the status of bit MTM.  
6
SDET_ON  
Silence detector enable. If this bit is logic 0 then the silence detection circuit is  
disabled; if this bit is logic 1 then the silence detection circuit is enabled.  
5 and 4 SD_VALUE[1:0]  
Silence detector setting. Value to program the silence detector. The number of zero  
samples counted before the silence detector signals whether there has been digital  
silence:  
00 = 3200 samples  
01 = 4800 samples  
10 = 9600 samples  
11 = 19200 samples  
3
2
BASS_SEL  
BYPASS  
Bass boost select. If this bit is logic 0 then the normal bass boost function is  
selected; if this bit is logic 1 then the resonant bass boost function is selected.  
Mixer bypass mode. If this bit is logic 0 then the mixer is in mixer mode; if this bit is  
logic 1 then the mixer is in mixer bypass mode.  
1 and 0 OS_IN[1:0]  
Oversampling ratio select. Value to select the oversampling input mode. This mode  
is only for I2S-bus input:  
00 = single speed input; normal input; mixing possible  
01 = double speed input; after first half-band filter; no mixing possible but volume  
and mute still possible  
10 = quad speed input; in front of noise shaper; no mixing possible; no volume  
control possible  
11 = reserved.  
Table 53 Mixer signal control signals  
MIX  
MIX_POS  
FUNCTION  
0
X(1)  
this is the default setting: no mixing, volume of channel 1 is forced to 0 dB and  
volume of channel 2 is forced to −∞ dB  
1
1
0
1
mixing is done before the sound processing; input signals are automatically scaled  
by 6 dB in order to prevent clipping during adding; after the addition, the 6 dB scaling  
is compensated  
mixing is done after the sound processing; input signals are automatically scaled in  
order to prevent clipping during adding  
Note  
1. X = don’t care  
2003 Apr 10  
51  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 54 Data source selector DAC channel 1 and 2; note 1  
DAC_CH2_SEL1 DAC_CH2_SEL0  
DATA OUTPUT DAC  
DAC_CH1_SEL1 DAC_CH1_SEL0  
0
0
1
1
0
1
0
1
ADC input  
I2S-bus input  
IEC 60958 input  
I2S-bus input  
Note  
1. The change of the data source will take place only when the mix mode is turned on (bit MIX = 1).  
The channel 2 input selection is valid only when the channel 1 data source is correct.  
Table 55 Register addresses 19H, 1AH, 1BH, 1CH, 1DH and 1EH  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Default  
BASS_x_13 BASS_x_12 BASS_x_11 BASS_x_10 BASS_x_9 BASS_x_8  
0
0
0
0
0
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol BASS_x_7 BASS_x_6 BASS_x_5 BASS_x_4 BASS_x_3 BASS_x_2 BASS_x_1 BASS_x_0  
Default  
0
0
0
0
0
0
0
0
Table 56 Description of register bits (addresses 19H, 1AH, 1BH, 1CH, 1DH and 1EH)  
BIT  
SYMBOL  
DESCRIPTION  
15 and 14  
13 to 0  
reserved  
BASS_x_[13:0] Resonant bass boost coefficient x. Six 14-bit registers are used as the filter  
coefficients to specify the bass boost characteristics. The six coefficients are k1, km,  
a1, a2, b1 and b2m. A software program is available for users to generate these six  
14-bit coefficients by entering the desired centre frequency, peak gain, sampling  
frequency and shape factor (default flat response).  
12.2.3 DECIMATOR SETTINGS  
Table 57 Register address 20H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
DECL7  
DECL6  
DECL5  
DECL4  
DECL3  
DECL2  
DECL1  
DECL0  
Default  
0
0
0
0
0
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
DECR7  
DECR6  
DECR5  
DECR4  
DECR3  
DECR2  
DECR1  
DECR0  
Default  
0
0
0
0
0
0
0
0
2003 Apr 10  
52  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 58 Description of register bits (address 20H)  
BIT  
SYMBOL  
DESCRIPTION  
15 to 8 MA_DECL[7:0]  
ADC volume setting left channel. Value to program the ADC gain setting for the left  
channel. The range is from +24 to 63 dB and −∞ dB (see Table 59).  
7 to 0 MA_DECR[7:0] ADC volume setting right channel. Value to program the ADC gain setting for the right  
channel. The range is from +24 to 63 dB and −∞ dB (see Table 59).  
Table 59 ADC volume control settings  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
DECL7  
DECL6  
DECL5  
DECL4  
DECL3  
DECL2  
DECL1  
DECL0  
GAIN (dB)  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
MA_  
DECR7  
DECR6  
DECR5  
DECR4  
DECR3  
DECR2  
DECR1  
DECR0  
0
0
0
:
0
0
0
:
1
1
1
:
1
0
0
:
0
1
1
:
0
1
1
:
0
1
1
:
0
1
0
:
+24.0  
+23.5  
+23.0  
:
0
0
0
1
:
0
0
0
1
:
0
0
0
1
:
0
0
0
1
:
0
0
0
1
:
0
0
0
1
:
1
0
0
1
:
0
1
0
1
:
+1.0  
+0.5  
0
0.5  
:
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
1
0
62.0  
62.5  
63.0  
63.5  
−∞  
Table 60 Register address 21H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol MT_ADC  
PGA_GAIN_ PGA_GAIN_ PGA_GAIN_ PGA_GAIN_  
CTRLL3  
CTRLL2  
CTRLL1  
CTRLL0  
Default  
0
0
0
0
0
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
PGA_GAIN_ PGA_GAIN_ PGA_GAIN_ PGA_GAIN_  
CTRLR3  
CTRLR2  
CTRLR1  
CTRLR0  
Default  
0
0
0
0
0
0
0
0
2003 Apr 10  
53  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 61 Description of register bits (address 21H)  
BIT  
SYMBOL  
MT_ADC  
DESCRIPTION  
15  
Mute ADC. If this bit is logic 0 then the ADC is not muted; if this bit is logic 1 then  
the ADC is muted.  
14 to 12 −  
reserved  
11 to 8 PGA_GAIN_CTRLL[3:0] PGA gain control left channel. Value to program the gain of the left input  
amplifier. There are nine settings (see Table 62).  
7 to 4  
reserved  
3 to 0 PGA_GAIN_CTRLR[3:0] PGA gain control right channel. Value to program the gain of the right input  
amplifier. There are nine settings (see Table 62).  
Table 62 ADC input amp PGA gain settings  
PGA_GAIN_  
CTRLL3  
PGA_GAIN_  
CTRLL2  
PGA_GAIN_  
CTRLL1  
PGA_GAIN_  
CTRLL0  
GAIN (dB)  
PGA_GAIN_  
CTRLR3  
PGA_GAIN_  
CTRLR2  
PGA_GAIN_  
CTRLR1  
PGA_GAIN_  
CTRLR0  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
3
6
9
12  
15  
18  
21  
24  
Table 63 Register address 22H  
BIT  
15  
14  
13  
12  
11  
10  
9
0
8
0
Symbol  
Default  
ADCPOL_INV  
0
0
0
0
0
0
BIT  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
Symbol  
Default  
DC_SKIP HP_EN_DEC  
1
1
Table 64 Description of register bits (address 22H)  
BIT  
SYMBOL  
DESCRIPTION  
15 to 13 −  
reserved  
12  
ADCPOL_INV  
ADC polarity control. If this bit is logic 0 then the ADC input is not inverted; if this bit is  
logic 1 then the ADC input is inverted.  
2003 Apr 10  
54  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
BIT  
11 to 2  
1
SYMBOL  
DESCRIPTION  
reserved  
DC_SKIP  
DC filter skip. If this bit is logic 0 then the DC filter is enabled; if this bit is logic 1 then the  
DC filter is disabled. The DC filter is at the output of the comb filter just before the  
decimator. This DC filter compensates for the DC offset added in the ADC (to remove idle  
tones from the audio band). This DC offset must not be amplified in order to prevent  
clipping.  
0
HP_EN_DEC  
High-pass enable. If this bit is logic 0 then the high-pass is disabled; if this bit is logic 1  
then the high-pass is enabled. The high-pass is a DC filter which is at the output of the  
decimation filter (running at fs).  
12.2.4 SPDIF INPUT SETTINGS  
Table 65 Register address 30H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Default  
0
0
0
0
0
0
0
0
BIT  
7
0
6
0
5
0
4
3
0
2
0
1
0
Symbol  
Default  
PON_SPDI  
1
SLICER_SEL1 SLICER_SEL0  
0
0
Table 66 Description of register bits (address 30H)  
BIT  
15 to 5  
4
SYMBOL  
DESCRIPTION  
reserved  
PON_SPDI  
Power control SPDIF input. If this bit is logic 0 then the SPDIF input is switched to  
Power-down mode; if this bit is logic 1 then the SPDIF input is switched to power-on  
mode.  
3 and 2  
reserved  
1 and 0 SLICER_SEL[1:0] SPDIF source select. Value to select an IEC 60958 input channel:  
00 = IEC 60958 input from pin SPDIF0  
01 = IEC 60958 input from pin SPDIF1  
10 = IEC 60958 input from pin SPDIF2  
11 = IEC 60958 input from pin SPDIF3  
2003 Apr 10  
55  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
12.2.5 SPDIF OUTPUT SETTINGS  
Table 67 Register address 50H  
BIT  
15  
14  
13  
12  
11  
10  
9
0
8
Symbol  
Default  
SPDO_ VALID  
0
0
0
0
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
Default  
L_r_copy  
1
PON_SPDO DIS_SPDO SPDOUT_SEL2 SPDOUT_SEL1 SPDOUT_SEL0  
0
0
1
0
1
0
0
Table 68 Description of register bits (address 50H)  
BIT  
SYMBOL  
DESCRIPTION  
15 to 9  
8
reserved  
SPDO_VALID  
SDPDIF output valid. If this bit is logic 0 then the SPDIF output is invalid; if this bit is  
logic 1 then the SPDIF output is valid.  
7
6
reserved  
L_r_copy  
SPDIF channel status copy. If this bit is logic 0 then the status bits of the left channel  
are not copied to the right channel; if this bit is logic 1 then the status bits of the left  
channel are copied to the right channel.  
5
4
reserved  
PON_SPDO  
Power control of SPDIF output. If this bit is logic 0 then the SPDIF output is switched  
to Power-down mode; if this bit is logic 1 then the SPDIF output is switched to  
power-on mode.  
3
DIS_SPDO  
SPDIF encoder enable. If this bit is logic 0 then the SPDIF encoder is enabled; if this  
bit is logic 1 then the SPDIF encoder is disabled.  
2 to 0 SPDOUT_SEL[2:0] SPDIF output source selector. Value to select the input source for SPDIF output.  
The selection option to select the SPDIF input just after the slicer was already there.  
Added is an independent selection of the input signals SPDIF0 to SPDIF3:  
000 = ADC  
001 = I2S-bus input  
010 = not used  
011 = interpolator mix output  
100 = SPDIF0 loop through  
101 = SPDIF1 loop through  
110 = SPDIF2 loop through  
111 = SPDIF3 loop through  
2003 Apr 10  
56  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 69 Register addresses 51H (left) and 54H (right)  
BIT  
Symbol  
15  
14  
13  
12  
11  
10  
9
8
SPDO_  
BIT39  
SPDO_  
BIT38  
SPDO_  
BIT37  
SPDO_  
BIT36  
SPDO_  
BIT35  
SPDO_  
BIT34  
SPDO_  
BIT33  
SPDO_  
BIT32  
Default  
0
0
0
0
0
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
SPDO_  
BIT31  
SPDO_  
BIT30  
SPDO_  
BIT29  
SPDO_  
BIT28  
SPDO_  
BIT27  
SPDO_  
BIT26  
SPDO_  
BIT25  
SPDO_  
BIT24  
Default  
0
0
0
0
0
0
0
0
Table 70 Register addresses 52H (left) and 55H (right)  
BIT  
Symbol  
15  
14  
13  
12  
11  
10  
9
8
SPDO_  
BIT23  
SPDO_  
BIT22  
SPDO_  
BIT21  
SPDO_  
BIT20  
SPDO_  
BIT19  
SPDO_  
BIT18  
SPDO_  
BIT17  
SPDO_  
BIT16  
Default  
0
0
0
0
0
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
SPDO_  
BIT15  
SPDO_  
BIT14  
SPDO_  
BIT13  
SPDO_  
BIT12  
SPDO_  
BIT11  
SPDO_  
BIT10  
SPDO_  
BIT9  
SPDO_  
BIT8  
Default  
0
0
0
0
0
0
0
0
Table 71 Register addresses 53H (left) and 56H (right)  
BIT  
Symbol  
Default  
15  
14  
13  
12  
11  
10  
9
8
0
0
0
0
0
0
0
0
BIT  
7
6
5
4
3
2
1
0
Symbol  
SPDO_  
BIT7  
SPDO_  
BIT6  
SPDO_  
BIT5  
SPDO_  
BIT4  
SPDO_  
BIT3  
SPDO_  
BIT2  
SPDO_  
BIT1  
SPDO_  
BIT0  
Default  
0
0
0
0
0
0
0
0
Table 72 Description of register bits  
BIT SYMBOL  
39 to 36 SPDO_BIT[39:36] reserved  
35 to 33 SPDO_BIT[35:33] Word length. Value indicating the word length (see Table 73).  
DESCRIPTION  
32  
SPDO_BIT[32]  
Audio sample word length. Value to signal the maximum audio sample word length.  
If bit 32 is logic 0, then the maximum length is 20 bits; if bit 32 is logic 1, then the  
maximum length is 24 bits (see Table 73).  
31 to 30 SPDO_BIT[31:30] reserved  
2003 Apr 10  
57  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
BIT  
SYMBOL  
DESCRIPTION  
29 to 28 SPDO_BIT[29:28] Clock accuracy. Value indicating the clock accuracy:  
00 = level II  
01 = level I  
10 = level III  
11 = reserved  
27 to 24 SPDO_BIT[27:24] Sample frequency. Value indicating the sampling frequency:  
0000 = 44.1 kHz  
0001 = 48 kHz  
0010 = 32 kHz  
other states = reserved  
23 to 20 SPDO_BIT[23:20] Channel number. Value indicating the channel number (see Table 74).  
19 to 16 SPDO_BIT[19:16] Source number. Value indicating the source number (see Table 75).  
15 to 8 SPDO_BIT[15:8]  
General information. Value indicating general information (see Table 76).  
7 to 6  
SPDO_BIT[7:6]  
Mode. Value indicating mode 0:  
00 = mode 0  
other states = reserved  
5 to 3  
SPDO_BIT[5:3]  
Audio sampling. Value indicating the type of audio sampling (linear PCM). For  
bit SPDO_BIT1 = 0:  
000 = two audio samples without pre-emphasis  
001 = two audio samples with 50/15 μs pre-emphasis  
010 = reserved (two audio samples with pre-emphasis)  
011 = reserved (two audio samples with pre-emphasis)  
other states = reserved  
2
1
0
SPDO_BIT2  
SPDO_BIT1  
SPDO_BIT0  
Software copyright. Value indicating software for which copyright is asserted or not.  
If this bit is logic 0, then copyright is asserted; if this bit is logic 1, then no copyright is  
asserted.  
Audio sample word. Value indicating the type of audio sample word. If this bit is  
logic 0, then the audio sample word represents linear PCM samples; if this bit is  
logic 1, then the audio sample word is used for other purposes.  
Channel status. Value indicating the consumer use of the status block. This bit is  
logic 0.  
Table 73 Word length  
SPDO_BIT32  
SPDO_BIT35  
SPDO_BIT34  
SPDO_BIT33  
WORD LENGTH  
not indicated  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16 bits  
18 bits  
reserved  
19 bits  
20 bits  
17 bits  
reserved  
2003 Apr 10  
58  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SPDO_BIT32  
SPDO_BIT35  
SPDO_BIT34  
SPDO_BIT33  
WORD LENGTH  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
indicated  
20 bits  
22 bits  
reserved  
23 bits  
24 bits  
21 bits  
reserved  
Table 74 Channel number  
SPDO_BIT23  
SPDO_BIT22  
SPDO_BIT21  
SPDO_BIT20  
CHANNEL NUMBER  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
don’t care  
A (left for stereo transmission)  
B (right for stereo transmission)  
C
D
E
F
G
H
I
J
K
L
M
N
O
Table 75 Source number  
SPDO_BIT19  
SPDO_BIT18  
SPDO_BIT17  
SPDO_BIT16  
SOURCE NUMBER  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
don’t care  
1
2
3
4
5
6
7
8
9
10  
2003 Apr 10  
59  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SPDO_BIT19  
SPDO_BIT18  
SPDO_BIT17  
SPDO_BIT16  
SOURCE NUMBER  
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
11  
12  
13  
14  
15  
Table 76 General information  
SPDO_BIT[15:8]  
FUNCTION  
00000 000  
Lxxxx 001  
Lxxxx 010  
Lxxxx 011  
Lxxxx 100  
Lxxxx 110  
Lxxxx 101  
general  
laser optical products  
digital-to-digital converters and signal processing products  
magnetic tape or disc based products  
broadcast reception of digitally encoded audio signals with video signals  
broadcast reception of digitally encoded audio signals without video signals  
musical instruments, microphones and other sources without copyright  
information  
Lxx00 110  
Lxx10 110  
analog-to-digital converters for analog signals without copyright information  
analog-to-digital converters for analog signals which include copyright  
information in the form of Cp- and L-bit status  
Lxxx1 000  
L1000 000  
Lxxxx 111  
Lxxx0 000  
solid state memory based products  
experimental products not for commercial sale  
reserved  
reserved, except 000 0000 and 000 0001L  
12.3 Read registers mapping  
12.3.1 INTERPOLATOR  
Table 77 Register address 18H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
BIT  
7
6
5
4
3
2
1
0
Symbol  
SDETR2 SDETL2 SDETR1 SDETL1 MUTE_STATE_M MUTE_STATE_CH2 MUTE_STATE_CH1  
2003 Apr 10  
60  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 78 Description of register bits (address 18H)  
BIT  
15 to 7  
6
SYMBOL  
DESCRIPTION  
reserved  
SDETR2  
Silence detector channel 2 right. If this bit is logic 0 then there is no silence  
detection for the right input of channel 2; if this bit is logic 1 then there is silence  
detection for the right input of channel 2.  
5
4
3
SDETL2  
Silence detector channel 2 left. If this bit is logic 0 then there is no silence  
detection for the left input of channel 2; if this bit is logic 1 then there is silence  
detection for the left input of channel 2.  
SDETR1  
Silence detector channel 1 right. If this bit is logic 0 then there is no silence  
detection for the right input of channel 1; if this bit is logic 1 then there is silence  
detection for the right input of channel 1.  
SDETL1  
Silence detector channel 1 left. If this bit is logic 0 then there is no silence  
detection for the left input of channel 1; if this bit is logic 1 then there is silence  
detection for the left input of channel 1.  
2
1
0
MUTE_STATE_M  
Mute status interpolator. If this bit is logic 0 then the interpolator is not muted; if this  
bit is logic 1 then the interpolator is muted.  
MUTE_STATE_CH2 Mute status channel 2. If this bit is logic 0 then the interpolator channel 2 is not  
muted; if this bit is logic 1 then the interpolator channel 2 is muted.  
MUTE_STATE_CH1 Mute status channel 1. If this bit is logic 0 then the interpolator channel 1 is not  
muted; if this bit is logic 1 then the interpolator channel 1 is muted.  
12.3.2 DECIMATOR  
Table 79 Register address 28H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
BIT  
7
6
5
4
3
2
1
0
Symbol  
MT_ADC_stat  
OVERFLOW  
Table 80 Description of register bits (address 28H)  
BIT  
SYMBOL  
DESCRIPTION  
15 to 3  
2
reserved  
MT_ADC_stat Mute status decimator. If this bit is logic 0 then the decimator is not muted; if this bit is  
logic 1 then the decimator is muted.  
1
0
reserved  
OVERFLOW  
Overflow decimator. If this bit is logic 0 then there is no overflow in the decimator (digital  
level above 1.16 dB.); if this bit is logic 1 then there is an overflow in the decimator.  
2003 Apr 10  
61  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
12.3.3 SPDIF INPUT  
Table 81 Register address 59H  
BIT  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
SPDO_STATUS  
BIT  
7
6
5
4
3
2
1
0
Symbol  
B_ERR  
SPDIF_LOCK  
Table 82 Description of register bits (address 59H)  
BIT  
15 to 9  
8
SYMBOL  
DESCRIPTION  
reserved  
SPDO_STATUS SPDIF encoder output status. If this bit is logic 0 then the SPDIF encoder output is  
enabled; if this bit is logic 1 then the SPDIF encoder output is disabled.  
7 to 2  
1
reserved  
B_ERR  
Bit error detection. If this bit is logic 0 then there is no biphase error; if this bit is logic 1  
then there is a biphase error.  
0
SPDIF_LOCK  
SPDIF lock indicator. If this bit is logic 0 then the SPDIF decoder block is not in lock; if  
this bit is logic 1 then the SPDIF decoder block is in lock.  
Table 83 Register address 5CH (left) and 5FH (right); note 1  
BIT  
Symbol  
15  
14  
13  
12  
11  
10  
9
8
BIT  
Symbol  
7
6
5
4
3
2
1
0
SPDI_  
BIT39  
SPDI_  
BIT38  
SPDI_  
BIT37  
SPDI_  
BIT36  
SPDI_  
BIT35  
SPDI_  
BIT34  
SPDI_  
BIT33  
SPDI_  
BIT32  
Note  
1. See for the description of the SPDI bit the corresponding SPDO bit description of Table 72.  
Table 84 register addresses 5BH (left) and 5EH (right); note 1  
BIT  
Symbol  
15  
14  
13  
12  
11  
10  
9
8
SPDI_  
BIT31  
SPDI_  
BIT30  
SPDI_  
BIT29  
SPDI_  
BIT28  
SPDI_  
BIT27  
SPDI_  
BIT26  
SPDI_  
BIT25  
SPDI_  
BIT24  
BIT  
Symbol  
7
6
5
4
3
2
1
0
SPDI_  
BIT23  
SPDI_  
BIT22  
SPDI_  
BIT21  
SPDI_  
BIT20  
SPDI_  
BIT19  
SPDI_  
BIT18  
SPDI_  
BIT17  
SPDI_  
BIT16  
Note  
1. See for the description of the SPDI bit the corresponding SPDO bit description of Table 72.  
2003 Apr 10  
62  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Table 85 register address 5AH (left) and 5DH (right); see note 1  
BIT  
Symbol  
15  
14  
13  
12  
11  
10  
9
8
SPDI_  
BIT15  
SPDI_  
BIT14  
SPDI_  
BIT13  
SPDI_  
BIT12  
SPDI_  
BIT11  
SPDI_  
BIT10  
SPDI_  
BIT9  
SPDI_  
BIT8  
BIT  
Symbol  
7
6
5
4
3
2
1
0
SPDI_  
BIT7  
SPDI_  
BIT6  
SPDI_  
BIT5  
SPDI_  
BIT4  
SPDI_  
BIT3  
SPDI_  
BIT2  
SPDI_  
BIT1  
SPDI_  
BIT0  
Note  
1. See for the description of the SPDI bit the corresponding SPDO bit description of Table 72.  
13 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); all voltage referenced to ground.  
SYMBOL PARAMETER CONDITIONS MIN. MAX.  
VDD supply voltage 2.7 5.0  
UNIT  
note 1  
V
Tstg  
storage temperature  
65  
40  
+125  
+85  
°C  
°C  
V
Tamb  
Vesd  
ambient temperature  
electrostatic discharge voltage  
Human Body Model (HBM); note 2 3000  
+3000  
+250  
100  
Machine Model (MM); note 3  
Tamb = 125 °C; VDD = 3.6 V  
Tamb = 0 °C;VDD = 3 V; note 4  
output short-circuit to VSSA1  
output short-circuit to VDDA1  
250  
V
Ilu(prot)  
latch-up protection current  
short-circuit current of DAC  
mA  
Isc(DAC)  
20  
mA  
mA  
100  
Notes  
1. All VDD and VSS connections must be made to the same power supply.  
2. JEDEC class 2 compliant.  
3. JEDEC class B compliant.  
4. DAC operation after short-circuiting cannot be guaranteed.  
14 THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
70  
UNIT  
K/W  
thermal resistance from junction to ambient  
2003 Apr 10  
63  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
15 CHARACTERISTICS  
VDD = 3.0 V; Tamb = 25 °C; RL = 5 kΩ; all voltages referenced to ground; unless otherwise specified; note 1.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDDA1  
DAC supply voltage  
ADC supply voltage  
2.7  
3.0  
3.6  
V
V
V
VDDA2  
2.7  
2.7  
3.0  
3.0  
3.6  
3.6  
VDDX  
crystal oscillator and PLL  
supply voltage  
VDDI  
digital core supply voltage  
digital pad supply voltage  
DAC supply current  
2.7  
2.7  
3.0  
3.0  
3.6  
3.6  
V
V
VDDE  
IDDA1  
fs = 48 kHz; power-on  
fs = 96 kHz; power-on  
fs = 48 kHz; power-down  
fs = 96 kHz; power-down  
fs = 48 kHz; power-on  
fs = 96 kHz; power-on  
fs = 48 kHz; power-down  
fs = 96 kHz; power-down  
fs = 48 kHz; power-on  
fs = 96 kHz; power-on  
fs = 48 kHz; all on  
4.7  
4.7  
1.7  
1.7  
10.2  
10.4  
0.2  
0.2  
0.9  
1.2  
18.2  
34.7  
0.5  
0.7  
mA  
mA  
μA  
μA  
IDDA2  
ADC supply current  
mA  
mA  
μA  
μA  
IDDX  
crystal oscillator and PLL  
supply current  
mA  
mA  
mA  
mA  
mA  
mA  
IDDI  
digital core supply current  
fs = 96 kHz; all on  
IDDE  
digital pad supply current  
fs = 48 kHz; all on  
fs = 96 kHz; all on  
Digital input pins  
VIH  
HIGH-level input voltage  
0.8VDD  
VDD + 0.5  
V
VIL  
LOW-level input voltage  
hysteresis on pin RESET  
input leakage current  
input capacitance  
0.5  
+0.2VDD  
V
Vhys(RESET)  
0.8  
V
|ILI|  
2
μA  
pF  
Ci  
10  
Digital output pins  
VOH  
HIGH-level output voltage  
IOH = 2 mA  
0.85VDD  
3
V
VOL  
LOW-level output voltage  
IOL = 2 mA  
0.4  
V
IL(max)  
maximum output load  
(nominal)  
mA  
Rpu  
Rpd  
pull-up resistance  
16  
16  
33  
33  
78  
78  
kΩ  
kΩ  
pull-down resistance  
3-level input pins  
VIH  
VIM  
VIL  
HIGH-level input voltage  
0.9VDD  
0.4VDD  
0
VDD  
V
V
V
MID-level input voltage  
LOW-level input voltage  
0.6VDD  
0.5  
2003 Apr 10  
64  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Reference voltage  
VREF  
reference voltage on  
pin REF  
with respect to VSSA  
0.45VDD 0.5VDD 0.55VDD  
V
Digital-to-analog converter  
Vo(rms)  
output voltage (RMS value)  
900  
0.1  
mV  
dB  
ΔVo  
output voltage unbalance  
(THD+N)/S  
total harmonic  
distortion-plus-noise to  
signal ratio  
IEC 60958 input; fs = 48 kHz  
at 0 dB  
88  
75  
37  
dB  
dB  
dB  
at 20 dB  
at 60 dB; A-weighted  
IEC 60958 input; fs = 96 kHz  
at 0 dB  
83  
37  
dB  
dB  
at 60 dB; A-weighted  
S/N  
signal-to-noise ratio  
IEC 60958 input; code = 0;  
A-weighted  
fs = 48 kHz  
fs = 96 kHz  
3
98  
96  
100  
dB  
dB  
dB  
kΩ  
pF  
Ω
αcs  
RL  
channel separation  
load resistance  
fi = 1 kHz tone  
CL  
load capacitance  
output resistance  
maximum output current  
note 2  
200  
3.0  
Ro  
0.13  
tbf  
Io(max)  
(THD + N)/S < 0.1%;  
mA  
RL = 5 kΩ  
Analog-to-digital converter  
VADCP  
VADCN  
Vi(rms)  
positive ADC reference  
voltage  
VDDA2  
0.0  
V
negative ADC reference  
voltage  
V
input voltage (RMS value)  
Vo = 1.16 dBFS digital  
output  
1.0  
V
ΔVi  
input voltage unbalance  
0.1  
dB  
(THD+N)/S  
total harmonic  
fs = 48 kHz  
distortion-plus-noise to  
signal ratio  
at 0 dB  
85  
35  
dB  
dB  
at 60 dB; A-weighted  
fs = 96 kHz  
at 0 dB  
85  
35  
dB  
dB  
at 60 dB; A-weighted  
code = 0; A-weighted  
fs = 48 kHz  
S/N  
signal-to-noise ratio  
channel separation  
97  
dB  
dB  
dB  
fs = 96 kHz  
95  
αcs  
100  
2003 Apr 10  
65  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
IEC 60958 inputs  
Vi(p-p)  
input voltage (peak-to-peak  
value)  
0.2  
0.5  
3.3  
V
Ri  
input resistance  
6
kΩ  
mV  
Vhys  
IDD(diff)  
hysteresis voltage  
40  
tbf  
IDD(DAC,input)/IDD(DAC,no input)  
Power consumption  
Ptot  
total power consumption  
IEC 60958 input; fs = 48 kHz  
DAC in playback mode  
74  
63  
mW  
mW  
DAC in Power-down mode −  
Notes  
1. All power supply pins (VDD and VSS) must be connected to the same external power supply unit.  
2. When the DAC must drive a higher capacitive load (above 50 pF), then a series resistor of 100 Ω must be used in  
order to prevent oscillations in the output.  
16 TIMING CHARACTERISTICS  
VDD = 2.7 to 3.6 V; Tamb = 20 to +85 °C; RL = 5 kΩ; unless otherwise specified.  
SYMBOL  
Device reset  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
trst  
reset time  
250  
μs  
PLL lock time  
tlock  
time-to-lock  
fs = 32 kHz  
85.0  
63.0  
60.0  
40.0  
ms  
ms  
ms  
ms  
fs = 44.1 kHz  
fs = 48 kHz  
fs = 96 kHz  
I2S-bus interface (see Fig.20)  
Tcy(BCK) bit clock period  
tBCKH  
1
/
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
128fs  
bit clock HIGH time  
bit clock LOW time  
rise time  
30  
30  
tBCKL  
tr  
20  
20  
tf  
fall time  
tsu(DATAI)  
th(DATAI)  
td(DATAO-BCK)  
data input set-up time  
data input hold time  
10  
10  
data output to bit clock  
delay  
30  
td(DATAO-WS)  
data output to word  
select delay  
30  
ns  
th(DATAO)  
tsu(WS)  
th(WS)  
data output hold time  
word select set-up time  
word select hold time  
0
ns  
ns  
ns  
10  
10  
2003 Apr 10  
66  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
L3-bus interface (see Figs 21 and 22)  
tr  
rise time  
note 1  
note 1  
note 2  
note 2  
note 2  
10  
10  
ns/V  
ns/V  
ns  
tf  
fall time  
Tcy(CLK)L3  
tCLK(L3)H  
tCLK(L3)L  
tsu(L3)A  
L3CLOCK cycle time  
L3CLOCK HIGH time  
L3CLOCK LOW time  
500  
250  
250  
190  
ns  
ns  
L3MODE set-up time in  
address mode  
ns  
th(L3)A  
L3MODE hold time in  
address mode  
190  
190  
190  
190  
190  
ns  
ns  
ns  
ns  
ns  
tsu(L3)D  
th(L3)D  
tstp(L3)  
tsu(L3)DA  
L3MODE set-up time in  
data transfer mode  
L3MODE hold time in  
data transfer mode  
L3MODE stop time in  
data transfer mode  
L3DATA set-up time in  
address and data  
transfer mode  
th(L3)DA  
L3DATA hold time in  
address and data  
transfer mode  
30  
ns  
td(L3)R  
L3DATA delay time in  
data transfer mode  
0
0
50  
50  
ns  
ns  
tdis(L3)R  
L3DATA disable time  
for read data  
I2C-bus interface (see Fig.23)  
fSCL  
tLOW  
tHIGH  
tr  
SCL clock frequency  
0
400  
kHz  
μs  
μs  
ns  
SCL LOW time  
SCL HIGH time  
1.3  
0.6  
rise time SDA and SCL note 3  
fall time SDA and SCL note 3  
20 + 0.1Cb  
20 + 0.1Cb  
0.6  
300  
300  
tf  
ns  
tHD;STA  
hold time START  
condition  
note 4  
μs  
tSU;STA  
tSU;STO  
tBUF  
set-up time repeated  
START  
0.6  
0.6  
μs  
μs  
μs  
ns  
set-up time STOP  
condition  
bus free time  
between a STOP and START 1.3  
condition  
tSU;DAT  
data set-up time  
100  
2003 Apr 10  
67  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
SYMBOL  
PARAMETER  
data hold time  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
tHD;DAT  
tSP  
0
0
μs  
ns  
pF  
pulse width of spikes  
load capacitance  
note 5  
for each bus line  
50  
400  
CL  
Notes  
1. In order to prevent digital noise interfering with the L3-bus communication, the rise and fall times should be as small  
as possible.  
2. When the sampling frequency is below 32 kHz, the L3CLOCK cycle must be limited to 164fs cycle.  
3. Cb is the total capacitance of one bus line in pF. The maximum capacitive load for each bus line is 400 pF.  
4. After this period, the first clock pulse is generated.  
5. To be suppressed by the input filter.  
WS  
t
BCKH  
t
d(DATAO-BCK)  
t
t
t
f
h(WS)  
r
t
su(WS)  
BCK  
t
BCKL  
t
t
h(DATAO)  
d(DATAO-WS)  
T
cy(BCK)  
DATAO  
DATAI  
t
su(DATAI)  
t
h(DATAI)  
MGS756  
Fig.20 I2S-bus interface timing.  
2003 Apr 10  
68  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
L3MODE  
t
t
su(L3)A  
h(L3)A  
t
CLK(L3)L  
t
t
t
CLK(L3)H  
su(L3)A  
h(L3)A  
L3CLOCK  
T
cy(CLK)(L3)  
t
t
h(L3)DA  
su(L3)DA  
BIT 0  
BIT 7  
L3DATA  
MGL723  
Fig.21 L3-bus interface timing for address mode.  
t
stp(L3)  
L3MODE  
t
CLK(L3)L  
t
T
h(L3)D  
cy(CLK)L3  
t
t
CLK(L3)H  
su(L3)D  
L3CLOCK  
t
t
su(L3)DA  
h(L3)DA  
L3DATA  
write  
BIT 0  
BIT 7  
L3DATA  
read  
t
t
d(L3)R  
dis(L3)R  
MBL566  
Fig.22 L3-bus interface timing for data transfer mode (write and read).  
69  
2003 Apr 10  
SDA  
SCL  
t
t
t
t
t
t
SP  
r
BUF  
LOW  
HD;STA  
f
t
t
SU;STO  
HD;STA  
t
t
t
t
SU;DAT  
SU;STA  
HD;DAT  
HIGH  
P
S
P
Sr  
MBC611  
Fig.23 I2C-bus interface timing.  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
17 PACKAGE OUTLINE  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
y
X
A
33  
23  
34  
22  
Z
E
e
H
E
E
A
2
A
(A )  
3
A
1
w M  
θ
b
p
L
p
pin 1 index  
L
12  
44  
detail X  
1
11  
w M  
Z
v
M
A
D
b
p
e
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
10o  
0o  
0.25 1.85  
0.05 1.65  
0.4 0.25 10.1 10.1  
0.2 0.14 9.9 9.9  
12.9 12.9  
12.3 12.3  
0.95  
0.55  
1.2  
0.8  
1.2  
0.8  
mm  
2.1  
0.25  
0.8  
1.3  
0.15 0.15  
0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
97-08-01  
03-02-25  
SOT307-2  
2003 Apr 10  
71  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
18 SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
18.1 Introduction to soldering surface mount  
packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
18.2 Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferably be kept:  
below 220 °C for all the BGA packages and packages  
with a thickness Š2.5 mm and packages with a  
thickness <2.5 mm and a volume 350 mm3 so called  
thick/large packages  
18.4 Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
below 235 °C for packages with a thickness <2.5 mm  
and a volume <350 mm3 so called small/thin packages.  
18.3 Wave soldering  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2003 Apr 10  
72  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
18.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
suitable  
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA  
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, HVSON, SMS  
not suitable(3)  
suitable  
PLCC(4), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
SSOP, TSSOP, VSO, VSSOP  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your NXP Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2003 Apr 10  
73  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
19 DATA SHEET STATUS  
DOCUMENT  
STATUS(1)  
PRODUCT  
STATUS(2)  
DEFINITION  
Objective data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary data sheet  
Product data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Notes  
1. Please consult the most recently issued document before initiating or completing a design.  
2. The product status of device(s) described in this document may have changed since this document was published  
and may differ in case of multiple devices. The latest product status information is available on the Internet at  
URL http://www.nxp.com.  
20 DISCLAIMERS  
property or environmental damage. NXP Semiconductors  
accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at  
the customer’s own risk.  
Limited warranty and liability Information in this  
document is believed to be accurate and reliable.  
However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to  
the accuracy or completeness of such information and  
shall have no liability for the consequences of use of such  
information.  
Applications Applications that are described herein for  
any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or  
warranty that such applications will be suitable for the  
specified use without further testing or modification.  
In no event shall NXP Semiconductors be liable for any  
indirect, incidental, punitive, special or consequential  
damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the  
removal or replacement of any products or rework  
charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any  
other legal theory.  
Customers are responsible for the design and operation of  
their applications and products using NXP  
Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or  
customer product design. It is customer’s sole  
responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the  
customer’s applications and products planned, as well as  
for the planned application and use of customer’s third  
party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks  
associated with their applications and products.  
Notwithstanding any damages that customer might incur  
for any reason whatsoever, NXP Semiconductors’  
aggregate and cumulative liability towards customer for  
the products described herein shall be limited in  
accordance with the Terms and conditions of commercial  
sale of NXP Semiconductors.  
NXP Semiconductors does not accept any liability related  
to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications  
or products, or the application or use by customer’s third  
party customer(s). Customer is responsible for doing all  
necessary testing for the customer’s applications and  
products using NXP Semiconductors products in order to  
avoid a default of the applications and the products or of  
the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this  
respect.  
Right to make changes NXP Semiconductors  
reserves the right to make changes to information  
published in this document, including without limitation  
specifications and product descriptions, at any time and  
without notice. This document supersedes and replaces all  
information supplied prior to the publication hereof.  
Suitability for use NXP Semiconductors products are  
not designed, authorized or warranted to be suitable for  
use in life support, life-critical or safety-critical systems or  
equipment, nor in applications where failure or malfunction  
of an NXP Semiconductors product can reasonably be  
expected to result in personal injury, death or severe  
2003 Apr 10  
74  
NXP Semiconductors  
Preliminary specification  
Stereo audio codec with SPDIF interface  
UDA1355H  
Limiting values Stress above one or more limiting  
values (as defined in the Absolute Maximum Ratings  
System of IEC 60134) will cause permanent damage to  
the device. Limiting values are stress ratings only and  
(proper) operation of the device at these or any other  
conditions above those given in the Recommended  
operating conditions section (if present) or the  
Characteristics sections of this document is not warranted.  
Constant or repeated exposure to limiting values will  
permanently and irreversibly affect the quality and  
reliability of the device.  
Quick reference data The Quick reference data is an  
extract of the product data given in the Limiting values and  
Characteristics sections of this document, and as such is  
not complete, exhaustive or legally binding.  
Non-automotive qualified products Unless this data  
sheet expressly states that this specific NXP  
Semiconductors product is automotive qualified, the  
product is not suitable for automotive use. It is neither  
qualified nor tested in accordance with automotive testing  
or application requirements. NXP Semiconductors accepts  
no liability for inclusion and/or use of non-automotive  
qualified products in automotive equipment or  
applications.  
Terms and conditions of commercial sale NXP  
Semiconductors products are sold subject to the general  
terms and conditions of commercial sale, as published at  
http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an  
individual agreement is concluded only the terms and  
conditions of the respective agreement shall apply. NXP  
Semiconductors hereby expressly objects to applying the  
customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
In the event that customer uses the product for design-in  
and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the  
product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and  
specifications, and (b) whenever customer uses the  
product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at  
customer’s own risk, and (c) customer fully indemnifies  
NXP Semiconductors for any liability, damages or failed  
product claims resulting from customer design and use of  
the product for automotive applications beyond NXP  
Semiconductors’ standard warranty and NXP  
No offer to sell or license Nothing in this document  
may be interpreted or construed as an offer to sell products  
that is open for acceptance or the grant, conveyance or  
implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Semiconductors’ product specifications.  
Export control This document as well as the item(s)  
described herein may be subject to export control  
regulations. Export might require a prior authorization from  
national authorities.  
21 TRADEMARKS  
I2C-bus logo is a trademark of NXP B.V.  
2003 Apr 10  
75  
NXP Semiconductors  
provides High Performance Mixed Signal and Standard Product  
solutions that leverage its leading RF, Analog, Power Management,  
Interface, Security and Digital Processing expertise  
Customer notification  
This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal  
definitions and disclaimers. No changes were made to the technical content, except for package outline  
drawings which were updated to the latest version.  
Contact information  
For additional information please visit: http://www.nxp.com  
For sales offices addresses send e-mail to: salesaddresses@nxp.com  
© NXP B.V. 2010  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753503/01/pp76  
Date of release: 2003 Apr 10  
Document order number: 9397 750 09925  

相关型号:

935271649125

IC AHC SERIES, 2-INPUT NAND GATE, PDSO5, PLASTIC, SC-74A, 5 PIN, Gate
NXP

935271651125

IC AHCT/VHCT SERIES, 2-INPUT NOR GATE, PDSO5, PLASTIC, SC-74A, 5 PIN, Gate
NXP

935271652125

IC AHCT/VHCT SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SC-74A, 5 PIN, Gate
NXP

935271653125

Inverter, AHC Series, 1-Func, 1-Input, CMOS, PDSO5
NXP

935271657125

Buffer, AHC Series, 1-Func, 1-Input, CMOS, PDSO5
NXP

935271658125

IC AHC SERIES, 2-INPUT AND GATE, PDSO5, PLASTIC, SC-74A, 5 PIN, Gate
NXP

935271659125

IC AHCT/VHCT SERIES, 2-INPUT AND GATE, PDSO5, PLASTIC, SC-74A, 5 PIN, Gate
NXP

935271664125

AHC/VHC/H/U/V SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SC-74A, SOT-753, 5 PIN
NXP

935271753118

IC 8 I/O, PIA-GENERAL PURPOSE, PDSO20, 4.40 MM, PLASTIC, MO-152, SOT-266-1, SSOP-20, Parallel IO Port
NXP

935271787125

IC HC/UH SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SC-74A, 5 PIN, Gate
NXP

935271788125

IC LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-753, SC-74A, 5 PIN, Gate
NXP

935271789125

HCT SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO5, PLASTIC, SC-74A, SOT-753, 5 PIN
NXP