935278869118 [NXP]

LIQUID CRYSTAL DISPLAY DRIVER, PDSO56, PLASTIC, VSOP-56;
935278869118
型号: 935278869118
厂家: NXP    NXP
描述:

LIQUID CRYSTAL DISPLAY DRIVER, PDSO56, PLASTIC, VSOP-56

驱动 光电二极管 接口集成电路
文件: 总41页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF8579  
LCD column driver for dot matrix  
graphic displays  
Product specification  
2003 Sep 01  
Supersedes data of 1997 Apr 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
CONTENTS  
10  
11  
12  
13  
14  
15  
LIMITING VALUES  
HANDLING  
1
2
3
4
5
6
7
FEATURES  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
APPLICATION INFORMATION  
APPLICATIONS  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
CHIP DIMENSIONS AND BONDING PAD  
LOCATIONS  
PINNING  
16  
CHIP-ON GLASS INFORMATION  
PACKAGE OUTLINES  
SOLDERING  
FUNCTIONAL DESCRIPTION  
17  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
Multiplexed LCD bias generation  
Power-on reset  
Timing generator  
Column drivers  
Display RAM  
18  
18.1  
Introduction to soldering surface mount  
packages  
Reflow soldering  
Wave soldering  
Manual soldering  
18.2  
18.3  
18.4  
18.5  
Data pointer  
Subaddress counter  
I2C-bus controller  
Input filters  
RAM access  
Display control  
TEST pin  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
19  
20  
21  
22  
DATA SHEET STATUS  
DEFINITIONS  
DISCLAIMERS  
PURCHASE OF PHILIPS I2C COMPONENTS  
8
I2C-BUS PROTOCOL  
8.1  
9
Command decoder  
CHARACTERISTICS OF THE I2C-BUS  
9.1  
9.2  
9.3  
9.4  
Bit transfer  
Start and stop conditions  
System configuration  
Acknowledge  
2003 Sep 01  
2
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
1
FEATURES  
LCD column driver  
Used in conjunction with the PCF8578, this device forms  
part of a chip set capable of driving up to 40960 dots  
40 column outputs  
Selectable multiplex rates; 1 : 8, 1 : 16, 1 : 24 or 1 : 32  
Externally selectable bias configuration, 5 or 6 levels  
2
APPLICATIONS  
Easily cascadable for large applications (up to  
32 devices)  
Automotive information systems  
Telecommunication systems  
Point-of-sale terminals  
Computer terminals  
1280-bit RAM for display data storage  
Display memory bank switching  
Auto-incremented data loading across hardware  
subaddress boundaries (with PCF8578)  
Instrumentation.  
Power-on reset blanks display  
Logic voltage supply range 2.5 to 6 V  
Maximum LCD supply voltage 9 V  
Low power consumption  
3
GENERAL DESCRIPTION  
The PCF8579 is a low power CMOS LCD column driver,  
designed to drive dot matrix graphic displays at multiplex  
rates of 1 : 8, 1 : 16, 1 : 24 or 1 : 32. The device has  
40 outputs and can drive 32 × 40 dots in a 32 row  
multiplexed LCD. Up to 16 PCF8579s can be cascaded  
and up to 32 devices may be used on the same I2C-bus  
(using the two slave addresses). The device is optimized  
for use with the PCF8578 LCD row/column driver.  
Together these devices form a general purpose LCD dot  
matrix driver chip set, capable of driving displays of up to  
40960 dots. The PCF8579 is compatible with most  
microcontrollers and communicates via a two-line  
bidirectional bus (I2C-bus). To allow partial VDD shutdown  
the ESD protection system of the SCL and SDA pins does  
not use a diode connected to VDD. Communication  
overheads are minimized by a display RAM with  
I2C-bus interface  
TTL/CMOS compatible  
Compatible with most microcontrollers  
Optimized pinning for single plane wiring in multiple  
device applications (with PCF8578)  
Space saving 56-lead plastic mini-pack and 64-pin  
plastic low profile quad flat package  
Compatible with chip-on-glass technology  
I2C-bus address: 011110 SA0.  
auto-incremented addressing and display bank switching.  
4
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SOT314-2  
SOT190-1  
PCF8579H  
LQFP64  
VSO56  
plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm  
plastic very small outline package; 56 leads  
chip with bumps on tape  
PCF8579T  
PCF8579U  
2003 Sep 01  
3
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
5
BLOCK DIAGRAM  
C39 - C0  
17 - 56  
(30 to 33, 35 to 64, 1 to 6)  
12 (20)  
V
DD  
14 (22)  
(1)  
V
V
3
4
COLUMN  
15 (23)  
16 (24)  
PCF8579  
DRIVERS  
V
LCD  
6 (12)  
5 (11)  
OUTPUT  
CONTROLLER  
TEST  
V
SS  
Y DECODER  
AND SENSING  
AMPLIFIERS  
32 x 40 BIT  
DISPLAY RAM  
DISPLAY  
DECODER  
POWER-ON  
RESET  
X DECODER  
8 (14)  
(9) 3  
A3  
A2  
A1  
A0  
9 (16)  
10 (17)  
SYNC  
SUBADDRESS  
COUNTER  
TIMING  
GENERATOR  
RAM DATA POINTER  
(10) 4  
CLK  
11 (18)  
Y
X
2 (8)  
1 (7)  
2
SCL  
SDA  
INPUT  
FILTERS  
I C-BUS  
COMMAND  
DECODER  
CONTROLLER  
(15, 19, 21, 25 to 29, 34)  
13  
7 (13)  
SA0  
MSA919  
n.c.  
(1) Operates at LCD voltage levels, all other blocks operate at logic levels.  
The pin numbers given in parenthesis refer to the LQFP64 package.  
Fig.1 Block diagram.  
4
2003 Sep 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
6
PINNING  
SYMBOL  
PINS  
DESCRIPTION  
VSO56  
LQFP64  
SDA  
1
7
I2C-bus serial data input/output  
I2C-bus serial clock input  
cascade synchronization input  
external clock input  
SCL  
2
8
SYNC  
CLK  
3
9
4
10  
VSS  
5
6
11  
ground (logic)  
TEST  
SA0  
12  
test pin (connect to VSS)  
7
13  
I2C-bus slave address input (bit 0)  
I2C-bus subaddress inputs  
supply voltage  
A3 to A0  
VDD  
8 to 11  
14, 16 to 18  
12  
20  
15, 19, 21,25 to 29, 34  
22 and 23  
n.c.  
13(1)  
14 and 15  
16  
not connected  
V3, V4  
VLCD  
LCD bias voltage inputs  
LCD supply voltage  
24  
C39 to C0  
17 to 56  
30 to 33, 35 to 64 and 1 to 6 LCD column driver outputs  
Note  
1. Do not connect, this pin is reserved.  
2003 Sep 01  
5
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
SDA  
SCL  
1
2
3
4
5
6
7
8
9
56 C0  
55  
54  
C1  
C2  
SYNC  
CLK  
53 C3  
52 C4  
51 C5  
V
SS  
TEST  
SA0  
A3  
50  
C6  
49  
48 C8  
C7  
A2  
A1 10  
47  
46  
45  
44  
43  
42  
C9  
11  
12  
A0  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
V
DD  
n.c. 13  
V
V
14  
15  
16  
17  
3
4
PCF8579  
V
LCD  
C39  
41  
40  
39  
C38 18  
19  
20  
C37  
C36  
38  
37  
36  
35  
C35 21  
22  
C33 23  
24  
C31 25  
26  
C34  
34  
C32  
33 C23  
32 C24  
C30  
31  
30  
C25  
C26  
C29 27  
C28 28  
29 C27  
MSA918  
Fig.2 Pin configuration (VSO56).  
6
2003 Sep 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
1
2
3
4
5
6
7
8
9
48 C22  
C5  
C4  
47 C23  
46 C24  
45 C25  
C3  
C2  
C26  
C1  
44  
43 C27  
C0  
C28  
C29  
C30  
C31  
C32  
C33  
42  
41  
40  
39  
38  
37  
SDA  
SCL  
SYNC  
PCF8579  
CLK 10  
V
11  
SS  
TEST 12  
13  
14  
15  
16  
36 C34  
SA0  
A3  
35  
34  
33  
C35  
n.c.  
n.c.  
A2  
C36  
MBH590  
Fig.3 Pin configuration (LQFP64).  
7
2003 Sep 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
7
FUNCTIONAL DESCRIPTION  
The PCF8579 column driver is designed for use with the  
PCF8578. Together they form a general purpose LCD dot  
matrix chip set.  
MSA838  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
bias  
V
V
V
op  
2
3
Typically up to 16 PCF8579s may be used with one  
PCF8578. Each of the PCF8579s is identified by a unique  
4-bit hardware subaddress, set by pins A0 to A3.  
The PCF8578 can operate with up to 32 PCF8579s when  
using two I2C-bus slave addresses. The two slave  
addresses are set by the logic level on input SA0.  
V
V
7.1  
Multiplexed LCD bias generation  
4
5
The bias levels required to produce maximum contrast  
depend on the multiplex rate and the LCD threshold  
voltage (Vth). Vth is typically defined as the RMS voltage at  
which the LCD exhibits 10% contrast. Table 1 shows the  
optimum voltage bias levels for the PCF8578/PCF8579  
chip set as functions of Vop (Vop = VDD VLCD), together  
with the discrimination ratios (D) for the different multiplex  
rates. A practical value for Vop is obtained by equating  
Voff(rms) with Vth. Figure 4 shows the first 4 rows of Table 1  
as graphs.  
1:8  
1:16  
1:24  
1:32  
multiplex rate  
Vbias = V2, V3, V4, V5. See Table 1.  
Fig.4 Vbias/Vop as a function of the multiplex rate.  
Table 1 Optimum LCD bias voltages  
MULTIPLEX RATE  
PARAMETER  
1 : 8  
1 : 16  
1 : 24  
1 : 32  
0.850  
7.2  
Power-on reset  
V2  
At power-on the PCF8579 resets to a defined starting  
condition as follows:  
--------  
Vop  
0.739  
0.800  
0.830  
1. Display blank (in conjunction with PCF8578)  
2. 1 : 32 multiplex rate  
V 3  
--------  
V op  
0.522  
0.478  
0.261  
0.297  
0.430  
1.447  
3.370  
0.600  
0.400  
0.200  
0.245  
0.316  
1.291  
4.080  
0.661  
0.339  
0.170  
0.214  
0.263  
1.230  
4.680  
0.700  
0.300  
0.150  
0.193  
0.230  
1.196  
5.190  
3. Start bank, 0 selected  
V 4  
4. Data pointer is set to X, Y address 0, 0  
5. Character mode  
--------  
V op  
V 5  
6. Subaddress counter is set to 0  
7. I2C-bus is initialized.  
--------  
V op  
Data transfers on the I2C-bus should be avoided for 1 ms  
following power-on, to allow completion of the reset action.  
V off(rms)  
---------------------  
Vop  
V on(rms)  
---------------------  
Vop  
V on(rms)  
D =  
---------------------  
Voff(rms)  
V op  
--------  
Vth  
2003 Sep 01  
8
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
T
frame  
ON  
OFF  
0
1
2
3
4
5
6
7
V
V
V
V
V
V
DD  
2
3
ROW 0  
4
5
LCD  
1:8  
V
V
V
V
V
V
DD  
2
3
4
COLUMN  
5
LCD  
SYNC  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
V
DD  
V
2
V
3
V
ROW 0  
4
V
5
V
LCD  
1:16  
V
DD  
V
2
V
3
V
COLUMN  
4
V
5
V
LCD  
SYNC  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
V
DD  
V
2
V
3
V
ROW 0  
4
V
5
V
LCD  
1:24  
V
DD  
V
2
V
3
4
V
COLUMN  
V
5
V
LCD  
SYNC  
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
V
DD  
V
2
V
3
V
ROW 0  
4
V
5
V
LCD  
1:32  
V
DD  
V
2
V
3
V
COLUMN  
4
V
5
V
LCD  
SYNC  
column  
display  
MSA841  
Fig.5 LCD row/column waveforms.  
9
2003 Sep 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
T
state 1 (OFF)  
state 2 (ON)  
frame  
V
DD  
V
2
V
ROW 1  
R1 (t)  
3
V
V
V
4
5
LCD  
V
V
V
V
V
V
DD  
2
ROW 2  
R2 (t)  
3
dot matrix  
1:8 multiplex rate  
4
5
LCD  
V
V
V
V
V
V
DD  
2
COL 1  
C1 (t)  
3
4
5
LCD  
V
V
V
V
V
V
DD  
2
COL 2  
C2 (t)  
3
4
5
LCD  
V
op  
0.261 V  
op  
V
(t)  
0 V  
state 1  
0.261 V  
op  
V
V
op  
op  
0.478 V  
op  
op  
0.261 V  
V
(t)  
0 V  
state 2  
0.261 V  
op  
0.478 V  
op  
V
op  
MSA840  
V
(t) = C1(t) R1(t):  
general relationship (n = multiplex rate)  
state 1  
V
V
on(rms)  
on(rms)  
1
8
8
1
1
n
n
1
1
=
=
=
=
0.430  
(
)
(
)
V
V
8
8
1
n
n
op  
op  
V
(t) = C2(t) R2(t):  
state 2  
V
off(rms)  
(
)
n 1  
n
2
2
V
(
)
1
n
V
op  
off(rms)  
(
)
1
2
8
=
=
0.297  
2
(
)
V
8
8
1
op  
Fig.6 LCD drive mode waveforms for 1 : 8 multiplex rate.  
10  
2003 Sep 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
state 1 (OFF)  
state 2 (ON)  
T
frame  
V
V
V
V
V
V
DD  
2
ROW 1  
R1 (t)  
3
4
5
LCD  
V
V
V
V
V
V
DD  
2
ROW 2  
R2 (t)  
3
4
5
LCD  
V
V
V
V
V
V
DD  
2
COL 1  
C1 (t)  
3
4
5
dot matrix  
1:16 multiplex rate  
LCD  
V
V
V
V
V
V
DD  
2
COL 2  
C2 (t)  
3
4
5
LCD  
V
op  
0.2 V  
op  
V
(t)  
0 V  
0.2 V  
state 1  
op  
V
V
op  
op  
0.6 V  
op  
0.2 V  
op  
V
(t)  
0 V  
0.2 V  
state 2  
op  
0.6 V  
op  
V
op  
MSA836  
V
(t) = C1(t) R1(t):  
general relationship (n = multiplex rate)  
state 1  
V
V
on(rms)  
on(rms)  
1
16  
(
1
1
n
n
1
1
=
=
=
=
0.316  
)
(
)
V
V
16 16 16  
1
n
n
op  
op  
V
V
(t) = C2(t) R2(t):  
state 2  
V
off(rms)  
(
)
n 1  
n
2
2
V
(
)
1
n
op  
off(rms)  
(
)
1
2
16  
=
=
0.254  
2
(
)
V
16 16  
1
op  
Fig.7 LCD drive mode waveforms for 1 : 16 multiplex rate.sa.  
11  
2003 Sep 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
7.3  
Timing generator  
7.10 RAM access  
The timing generator of the PCF8579 organizes the  
internal data flow from the RAM to the display drivers.  
An external synchronization pulse SYNC is received from  
the PCF8578. This signal maintains the correct timing  
relationship between cascaded devices.  
There are three RAM ACCESS modes:  
Character  
Half-graphic  
Full-graphic.  
These modes are specified by bits G1 and G0 of the RAM  
ACCESS command. The RAM ACCESS command  
controls the order in which data is written to or read from  
the RAM (see Fig.8).  
7.4  
Column drivers  
Outputs C0 to C39 are column drivers which must be  
connected to the LCD. Unused outputs should be left  
open-circuit.  
To store RAM data, the user specifies the location into  
which the first byte will be loaded (see Fig.9):  
7.5  
Display RAM  
Device subaddress (specified by the DEVICE SELECT  
The PCF8579 contains a 32 × 40-bit static RAM which  
stores the display data. The RAM is divided into 4 banks of  
40 bytes (4 × 8 × 40 bits). During RAM access, data is  
transferred to/from the RAM via the I2C-bus.  
command)  
RAM X-address (specified by the LOAD X-ADDRESS  
command)  
RAM bank (specified by bits Y1 and Y0 of the RAM  
ACCESS command).  
7.6  
Data pointer  
Subsequent data bytes will be written or read according to  
the chosen RAM access mode. Device subaddresses are  
automatically incremented between devices until the last  
device is reached. If the last device has subaddress 15,  
further display data transfers will lead to a wrap-around of  
the subaddress to 0.  
The addressing mechanism for the display RAM is  
realized using the data pointer. This allows an individual  
data byte or a series of data bytes to be written into, or read  
from, the display RAM, controlled by commands sent on  
the I2C-bus.  
7.7  
Subaddress counter  
7.11 Display control  
The storage and retrieval of display data is dependent on  
the content of the subaddress counter. Storage and  
retrieval take place only when the contents of the  
subaddress counter agree with the hardware subaddress  
at pins A0, A1, A2 and A3.  
The display is generated by continuously shifting rows of  
RAM data to the dot matrix LCD via the column outputs.  
The number of rows scanned depends on the multiplex  
rate set by bits M1 and M0 of the SET MODE command.  
The display status (all dots on/off and normal/inverse  
video) is set by bits E1 and E0 of the SET MODE  
command. For bank switching, the RAM bank  
corresponding to the top of the display is set by bits  
B1 and B0 of the SET START BANK command. This is  
shown in Fig.10 This feature is useful when scrolling in  
alphanumeric applications.  
7.8  
I2C-bus controller  
The I2C-bus controller detects the I2C-bus protocol, slave  
address, commands and display data bytes. It performs  
the conversion of the data input (serial-to-parallel) and the  
data output (parallel-to-serial). The PCF8579 acts as an  
I2C-bus slave transmitter/receiver. Device selection  
depends on the I2C-bus slave address, the hardware  
subaddress and the commands transmitted.  
7.12 TEST pin  
The TEST pin must be connected to VSS  
.
7.9  
Input filters  
To enhance noise immunity in electrically adverse  
environments, RC low-pass filters are provided on the  
SDA and SCL lines.  
2003 Sep 01  
12  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
PCF8579  
driver 1  
PCF8579  
driver 2  
PCF8579  
driver k  
bank 0  
bank 1  
bank 2  
bank 3  
RAM  
4 bytes  
PCF8579 system RAM  
LSB  
40-bits  
1
k
16  
1 byte  
0
1
2
3
4
5
6
7
8
9 10 11  
character mode  
MSB  
0
1
2
3
4
5
6
7
8
9
10 12 14 16 18 20 22  
11 13 15 17 19 21 23  
2 bytes  
half-graphic mode  
0
1
2
3
4
5
6
7
8
9
12 16 20 24 28 32 36 40 44  
13 17 21 25 29 33 37 41 45  
4 bytes  
10 14 18 22 26 30 34 38 42 46  
11 15 19 23 27 31 35 39 43 47  
MSA921  
full-graphic mode  
RAM data bytes are  
written or read as  
indicated above  
Fig.8 RAM access mode.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
DEVICE SELECT:  
subaddress 12  
bank 0  
bank 1  
bank 2  
bank 3  
RAM ACCESS:  
character mode  
bank 1  
RAM  
LOAD X-ADDRESS: X-address = 8  
R / W  
slave address  
S
A
0
READ  
0
1
1
1
1
0
DATA  
1
A
A
S
R / W  
slave address  
DEVICE SELECT  
LOAD X-ADDRESS  
RAM ACCESS  
S
A
0
0
1
1
1
1
0
0
A
1
1
1
0
1
1
0
A
1
0
0
0
1
0
0
A
0
1
1
1
0
0
0
A
1
0
0
S
last command  
DATA  
A
DATA  
A
WRITE  
MSA835  
Fig.9 Example of commands specifying initial data byte RAM locations.  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
RAM  
bank 0  
top of LCD  
bank 1  
LCD  
bank 2  
bank 3  
MSA851  
Fig.10 Relationship between display and SET START BANK; 1 : 32 multiplex rate and start bank = 2.  
2003 Sep 01  
15  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
I2C-BUS PROTOCOL  
In READ mode, indicated by setting the read/write bit  
HIGH, data bytes may be read from the RAM following the  
slave address acknowledgement. After this  
8
Two 7-bit slave addresses (0111100 and 0111101) are  
reserved for both the PCF8578 and PCF8579. The least  
significant bit of the slave address is set by connecting  
input SA0 to either logic 0 (VSS) or logic 1 (VDD).  
Therefore, two types of PCF8578 or PCF8579 can be  
distinguished on the same I2C-bus which allows:  
acknowledgement the master transmitter becomes a  
master receiver and the PCF8579 becomes a slave  
transmitter. The master receiver must acknowledge the  
reception of each byte in turn. The master receiver must  
signal an end of data to the slave transmitter, by not  
generating an acknowledge on the last byte clocked out of  
the slave. The slave transmitter then leaves the data line  
HIGH, enabling the master to generate a stop  
condition (P).  
1. One PCF8578 to operate with up to 32 PCF8579s on  
the same I2C-bus for very large applications.  
2. The use of two types of LCD multiplex schemes on the  
same I2C-bus.  
Display bytes are written into, or read from, the RAM at the  
address specified by the data pointer and subaddress  
counter. Both the data pointer and subaddress counter are  
automatically incremented, enabling a stream of data to be  
transferred either to, or from, the intended devices.  
In most applications the PCF8578 will have the same slave  
address as the PCF8579.  
The I2C-bus protocol is shown in Fig.11.  
All communications are initiated with a start condition (S)  
from the I2C-bus master, which is followed by the desired  
slave address and read/write bit. All devices with this slave  
address acknowledge in parallel. All other devices ignore  
the bus transfer.  
In multiple device applications, the hardware subaddress  
pins of the PCF8579s (A0 to A3) are connected to VSS or  
VDD to represent the desired hardware subaddress code.  
If two or more devices share the same slave address, then  
each device must be allocated a unique hardware  
subaddress.  
In WRITE mode (indicated by setting the read/write bit  
LOW) one or more commands follow the slave address  
acknowledgement. The commands are also  
acknowledged by all addressed devices on the bus.  
The last command must clear the continuation bit C. After  
the last command a series of data bytes may follow.  
The acknowledgement after each byte is made only by the  
(A0, A1, A2 and A3) addressed PCF8579 or PCF8578  
with its implicit subaddress 0. After the last data byte has  
been acknowledged, the I2C-bus master issues a stop  
condition (P).  
2003 Sep 01  
16  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
acknowledge  
acknowledge by  
all addressed  
PCF8578s / PCF8579s  
by A0, A1, A2 and A3  
selected PCF8578s /  
PCF8579s only  
R / W  
slave address  
S
A
0
0
1
1
1
1
0
0
A C  
A
DISPLAY DATA  
A
P
COMMAND  
0 byte(s)  
S
1 byte  
n
n
0 byte(s)  
update data pointers  
and if necessary,  
subaddress counter  
MSA830  
(a)  
acknowledge by  
all addressed  
PCF8578s / PCF8579s  
acknowledge  
from master  
no acknowledge  
from master  
slave address  
slave address  
S
A
0
S
A
0
0
1
1
1
1
0
0
A
C
A
0
1
1
1
1
0
1
A
DATA  
A
DATA  
1
COMMAND  
P
S
S
n
1 byte  
n bytes  
last byte  
R / W  
R / W  
at this moment master  
transmitter becomes a  
master receiver and  
PCF8578/PCF8579 slave  
receiver becomes a  
slave transmitter  
update data pointers  
and if necessary  
subaddress counter  
MSA832  
(b)  
acknowledge by  
all addressed  
PCF8578s / PCF8579s  
acknowledge  
from master  
no acknowledge  
from master  
slave address  
S
A
0
0
1
1
1
1
0
1
A
A
DATA  
1
S
DATA  
P
MSA831  
n bytes  
last byte  
R / W  
update data pointers  
and if necessary,  
subaddress counter  
(c)  
Fig.11 (a) Master transmits to slave receiver (WRITE mode); (b) Master reads after sending command string  
(WRITE commands; READ data); (c) Master reads slave immediately after sending slave address (READ  
mode).  
2003 Sep 01  
17  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
8.1  
Command decoder  
MSB  
LSB  
The command decoder identifies command bytes that  
arrive on the I2C-bus. The most significant bit of a  
command is the continuation bit C (see Fig.12). When this  
bit is set, it indicates that the next byte to be transferred will  
also be a command. If the bit is reset, it indicates the  
conclusion of the command transfer. Further bytes will be  
regarded as display data. Commands are transferred in  
WRITE mode only.  
C
REST OF OPCODE  
MSA833  
C = 0; last command.  
C = 1; commands continue.  
Fig.12 General format of command byte.  
The five commands available to the PCF8579 are defined  
in Tables 2 and 3.  
Table 2 Summary of commands  
COMMAND  
SET MODE  
OPCODE(1)  
DESCRIPTION  
C
C
C
C
1
1
1
1
0
1
1
1
D
1
0
1
D
1
D
1
D
D
D
D
D
D
D
D
multiplex rate, display status, system type  
defines bank at top of LCD  
SET START BANK  
DEVICE SELECT  
RAM ACCESS  
D
D
D
D
defines device subaddress  
graphic mode, bank select (D D D D 12 is not allowed;  
see SET START BANK opcode)  
LOAD X-ADDRESS  
C
0
D
D
D
D
D
D
0 to 39  
Note  
1. C = command continuation bit. D = may be a logic 1 or 0.  
2003 Sep 01  
18  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
Table 3 Definition of PCF8578/PCF8579 commands  
COMMAND  
SET MODE  
OPCODE  
OPTIONS  
DESCRIPTION  
C
C
1
1
0
1
T
E1 E0 M1 M0 see Table 4 defines LCD drive mode  
see Table 5 defines display status  
see Table 6 defines system type  
SET START BANK  
DEVICE SELECT  
RAM ACCESS  
1
1
1
B1 B0 see Table 7 defines pointer to RAM bank  
corresponding to the top of the LCD;  
useful for scrolling, pseudo motion and  
background preparation of new display  
C
C
1
1
1
1
0
1
A3 A2 A1 A0 see Table 8 four bits of immediate data, bits  
A0 to A3, are transferred to the  
subaddress counter to define one of  
sixteen hardware subaddresses  
G1 G0 Y1 Y0 see Table 9 defines the auto-increment behaviour of  
the address for RAM access  
see Table 10 two bits of immediate data, bits Y0 to Y1,  
are transferred to the X-address pointer  
to define one of forty display RAM  
columns  
LOAD X-ADDRESS  
C
0
X5 X4 X3 X2 X1 X0 see Table 11 six bits of immediate data, bits X0 to X5,  
are transferred to the X-address pointer  
to define one of forty display RAM  
columns  
2003 Sep 01  
19  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
Table 4 Set mode option 1  
Table 8 Device select option 1  
BITS  
DESCRIPTION  
BITS  
LCD DRIVE MODE  
Decimal value of 0 to 15  
A3  
A2  
A1  
A0  
M1  
M0  
1 : 8  
MUX ( 8 rows)  
MUX (16 rows)  
MUX (24 rows)  
MUX (32 rows)  
0
1
1
0
1
0
1
0
Table 9 RAM access option 1  
1 : 16  
1 : 24  
1 : 32  
BITS  
RAM ACCESS MODE  
G1  
G0  
Character  
0
0
1
1
0
1
0
1
Table 5 Set mode option 2  
Half-graphic  
BITS  
Full-graphic  
DISPLAY STATUS  
Not allowed (note 1)  
E1  
0
E0  
0
Blank  
Note  
Normal  
0
1
1. See opcode for SET START BANK in Table 3.  
All segments on  
Inverse video  
1
0
Table 10 RAM access option 2  
1
1
DESCRIPTION  
BITS  
Table 6 Set mode option 3  
Decimal value of 0 to 3  
Y1  
Y0  
SYSTEM TYPE  
PCF8578 row only  
BIT T  
Table 11 Load X-address option 1  
0
1
PCF8578 mixed mode  
DESCRIPTION  
BITS  
Decimal value of 0 to 39  
X5 X4 X3 X2 X1 X0  
Table 7 Set start bank option 1  
BITS  
START BANK POINTER  
B1  
B0  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
0
0
1
1
0
1
0
1
2003 Sep 01  
20  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
CHARACTERISTICS OF THE I2C-BUS  
9.4  
Acknowledge  
9
The I2C-bus is for bidirectional, two-line communication  
between different ICs or modules. The two lines are a  
serial data line (SDA) and a serial clock line (SCL) which  
must be connected to a positive supply via a pull-up  
resistor. Data transfer may be initiated only when the bus  
is not busy.  
The number of data bytes transferred between the start  
and stop conditions from transmitter to receiver is  
unlimited. Each data byte of eight bits is followed by one  
acknowledge bit. The acknowledge bit is a HIGH level put  
on the bus by the transmitter, whereas the master  
generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an  
acknowledge after the reception of each byte. Also a  
master must generate an acknowledge after the reception  
of each byte that has been clocked out of the slave  
transmitter. The device that acknowledges must pull down  
the SDA line during the acknowledge clock pulse, so that  
the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times  
must be taken into consideration). A master receiver must  
signal the end of a data transmission to the transmitter by  
not generating an acknowledge on the last byte that has  
been clocked out of the slave. In this event the transmitter  
must leave the data line HIGH to enable the master to  
generate a stop condition.  
9.1  
Bit transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the  
HIGH period of the clock pulse as changes in the data line  
at this moment will be interpreted as control signals.  
9.2  
Start and stop conditions  
Both data and clock lines remain HIGH when the bus is not  
busy. A HIGH-to-LOW transition of the data line, while the  
clock is HIGH, is defined as the start condition (S).  
A LOW-to-HIGH transition of the data line while the clock  
is HIGH, is defined as the stop condition (P).  
9.3  
System configuration  
A device transmitting a message is a ‘transmitter’, a device  
receiving a message is the ‘receiver’. The device that  
controls the message flow is the ‘master’ and the devices  
which are controlled by the master are the ‘slaves’.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBA607  
Fig.13 Bit transfer.  
2003 Sep 01  
21  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
SDA  
SDA  
SCL  
SCL  
S
P
STOP condition  
START condition  
MBA608  
Fig.14 Definition of start and stop condition.  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
MBA605  
Fig.15 System configuration.  
clock pulse for  
acknowledgement  
START  
condition  
SCL FROM  
MASTER  
2
9
1
8
DATA OUTPUT  
BY TRANSMITTER  
S
DATA OUTPUT  
BY RECEIVER  
MBA606 - 1  
The general characteristics and detailed specification of the I2C-bus are available on request.  
Fig.16 Acknowledgement on the I2C-bus.  
22  
2003 Sep 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
10 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VDD  
PARAMETER  
MIN.  
0.5  
MAX.  
UNIT  
supply voltage  
+8.0  
V
V
V
VLCD  
Vi1  
LCD supply voltage  
VDD 11  
SS 0.5  
VDD  
input voltage pins SDA, SCL, SYNC, CLK, TEST, SA0, A0,  
A1, A2 and A3  
V
VDD + 0.5  
Vi2  
Vo1  
Vo2  
II  
input voltage pins V3 and V4  
output voltage pin SDA  
output voltage pins C0 to C39  
DC input current  
V
V
V
LCD 0.5  
SS 0.5  
LCD 0.5  
VDD + 0.5  
VDD + 0.5  
VDD + 0.5  
+10  
V
V
V
10  
10  
50  
mA  
mA  
mA  
IO  
DC output current  
+10  
IDD, ISS, ILCD current at pins VDD, VSS or VLCD  
+50  
Ptot  
Po  
Tstg  
total power dissipation per package  
power dissipation per output  
storage temperature  
400  
mW  
mW  
°C  
100  
65  
+150  
11 HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is  
desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12  
under “Handling MOS Devices”.  
2003 Sep 01  
23  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
12 DC CHARACTERISTICS  
VDD = 2.5 to 6 V; VSS = 0 V; VLCD = VDD 3.5 V to VDD 9 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
VLCD  
IDD  
supply voltage  
2.5  
6.0  
DD 3.5  
V
LCD supply voltage  
supply current  
V
DD 9  
V
V
fCLK = 2 kHz; note 1  
note 2  
9
20  
µA  
V
VPOR  
power-on reset level  
1.3  
1.8  
Logic  
VIL  
VIH  
ILI1  
LOW level input voltage  
HIGH level input voltage  
VSS  
0.3VDD  
VDD  
V
0.7VDD  
1  
V
leakage current at pins SDA, SCL,  
SYNC, CLK, TEST, SA0, A0, A1, A2  
and A3  
Vi = VDD or VSS  
+1  
µA  
IOL  
Ci  
LOW level output current at pin SDA  
input capacitance  
VOL = 0.4 V; VDD = 5 V 3  
mA  
pF  
note 3  
5
LCD outputs  
ILI2  
leakage current at pins V3 to V4  
Vi = VDD or VLCD  
2  
+2  
µA  
VDC  
DC component of LCD drivers pins  
C0 to C39  
±20  
mV  
RCOL  
output resistance at pins C0 to C39  
note 4  
3
6
kΩ  
Notes  
1. Outputs are open; inputs at VDD or VSS; I2C-bus inactive; clock with 50% duty factor.  
2. Resets all logic when VDD < VPOR  
3. Periodically sampled; not 100% tested.  
.
4. Resistance measured between output terminal (C0 to C39) and bias input (V3, V4, VDD and VLCD) when the specified  
current flows through one output under the following conditions (see Table 1):  
a) Vop = VDD VLCD = 9 V;  
b) V3 VLCD 4.70 V; V4 VLCD 4.30 V; ILOAD = 100 µA.  
2003 Sep 01  
24  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
13 AC CHARACTERISTICS  
All timing values are referred to VIH and VIL levels with an input voltage swing of VSS to VDD  
.
V
DD = 2.5 to 6 V; VSS = 0 V; VLCD = VDD 3.5 V to VDD 9 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX.  
fclk clock frequency 50% duty factor note 1 10  
DD VLCD = 9 V; with test loads  
UNIT  
kHz  
tPLCD  
driver delays  
V
100  
µs  
I2C-bus  
fSCL  
SCL clock frequency  
tolerable spike width on bus  
bus free time  
100  
100  
kHz  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
tSW  
tBUF  
4.7  
4.7  
4.0  
4.7  
4.0  
tSU;STA  
tHD;STA  
tLOW  
START condition set-up time  
START condition hold time  
SCL LOW time  
repeated start codes only  
tHIGH  
tr  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
data set-up time  
1.0  
0.3  
tf  
tSU;DAT  
tHD;DAT  
tSU;STO  
250  
0
data hold time  
STOP condition set-up time  
4.0  
Note  
1. Typically 0.9 to 3.3 kHz.  
1.5 kΩ  
SDA  
V
DD  
(2%)  
1 nF  
C0 to C39  
MSA916  
Fig.17 AC test loads.  
2003 Sep 01  
25  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
1/ f  
CLK  
0.7 V  
0.3 V  
DD  
DD  
CLK  
0.5 V  
(V  
V
= 9 V)  
C0 to C39  
DD  
LCD  
t
0.5 V  
PLCD  
MSA917  
Fig.18 Driver timing waveforms.  
SDA  
SCL  
t
t
t
f
BUF  
LOW  
t
t
t
SU;DAT  
t
HD;STA  
r
t
HIGH  
HD;DAT  
SDA  
t
SU;STA  
MGA728  
t
SU;STO  
Fig.19 I2C-bus timing waveforms.  
26  
2003 Sep 01  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
V
DD  
V
DD  
1:32 multiplex rate  
32 x 40 x k dots (k 16)  
(20480 dots max.)  
32  
R
C
C
C
C
C
LCD DISPLAY  
subaddress 0  
V
2
rows  
R
(4  
R
R
V
3
8
2
3)R  
40  
columns  
40  
columns  
40  
columns  
PCF8578  
(ROW MODE)  
V
unused columns  
4
subaddress 1  
subaddress k 1  
V
5
V
DD  
V
V
V
V
V
A0  
A1  
A2  
A3  
A0  
A1  
A2  
A3  
A0  
SA0  
V
R
DD  
DD  
DD  
DD  
DD  
SS  
V
V
A1  
A2  
A3  
LCD  
SS  
V
V
V
V
V
V
2
k
1
LCD  
LCD  
LCD  
PCF8579  
PCF8579  
PCF8579  
3
3
3
V
LCD  
OSC  
V
V
V
V
4
4
4
V
V
CLK SYNC  
SYNC CLK  
SYNC CLK  
SYNC CLK  
V
SDA SCL  
SS  
SCL SDA SA0  
SS  
SCL SDA SA0  
SS  
SCL SDA SA0  
V
SS  
OSC  
SS  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
DD  
SCL  
SDA  
MSA845  
Fig.20 Typical LCD driver system with 1 : 32 multiplex rate.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
V
V
V
DD  
V
V
V
V
V
V
DD  
SS  
DD  
SS  
SS  
SA0 SDA SCL  
A3  
SYNC  
SA0 SDA SCL  
A3  
SYNC  
SA0 SDA SCL  
A3  
SYNC  
CLK  
k
CLK  
2
CLK  
1
SS  
SS  
SS  
V
3
V
3
V
3
A2  
A2  
A2  
V
4
V
4
V
4
PCF8579  
PCF8579  
PCF8579  
A1  
A0  
V
A1  
A0  
V
A1  
A0  
V
LCD  
LCD  
LCD  
V
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
subaddress 0  
DD  
40  
columns  
40  
columns  
40  
columns  
subaddress k  
1
subaddress 1  
V
DD  
R
16  
1:16 multiplex rate  
16 x 40 x k dots (k 16)  
(10240 dots max.)  
V
V
V
LCD DISPLAY  
DD  
rows  
C
C
C
C
C
2
16  
1:16 multiplex rate  
16 x 40 x k dots (k 16)  
(10240 dots max.)  
R
R
R
R
rows  
3
8
40  
columns  
40  
columns  
40  
columns  
PCF8578  
(ROW MODE)  
V
4
subaddress 0  
subaddress 1  
V
subaddress k 1  
unused columns  
V
5
V
DD  
V
A0  
A1  
A2  
V
V
A0  
A1  
A2  
A3  
V
A0  
SA0  
DD  
DD  
DD  
DD  
DD  
V
V
/
SS DD  
V
A1  
A2  
A3  
LCD  
SS  
V
V
V
V
V
V
2
k
1
LCD  
LCD  
LCD  
PCF8579  
PCF8579  
PCF8579  
3
3
3
V
LCD  
V
OSC  
V
V
A3  
V
V
4
4
4
R
V
V
SCL CLK SYNC  
SYNC CLK SCL  
SYNC CLK SCL  
SYNC CLK SCL  
V
SDA  
SS  
SDA SA0  
SS  
SDA SA0  
V
SS  
SDA SA0  
V
SS  
OSC  
SS  
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
DD  
SCL  
SDA  
MSA847  
Fig.21 Split screen application with 1 : 16 multiplex rate for improved contrast.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
V
V
V
DD  
V
V
V
V
V
V
DD  
SS  
DD  
SS  
SS  
SA0 SDA SCL  
A3  
SYNC  
SA0 SDA SCL  
A3  
SYNC  
SA0 SDA SCL  
A3  
SYNC  
CLK  
k
CLK  
2
CLK  
1
SS  
SS  
SS  
V
3
V
3
V
3
A2  
A2  
A2  
V
4
V
4
V
4
PCF8579  
PCF8579  
PCF8579  
A1  
A0  
V
A1  
A0  
V
A1  
A0  
V
LCD  
LCD  
LCD  
V
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
subaddress 0  
DD  
40  
columns  
40  
columns  
40  
columns  
subaddress k  
1
subaddress 1  
V
DD  
1:32 multiplex rate  
32 x 40 x k dots (k 16)  
(20480 dots max.)  
V
V
V
LCD DISPLAY  
DD  
R
R
C
C
C
C
C
32  
2
32  
1:32 multiplex rate  
32 x 40 x k dots (k 16)  
(20480 dots max.)  
(4  
2 3)R  
rows  
3
8
40  
40  
columns  
40  
columns  
PCF8578  
(ROW MODE)  
V
4
columns  
subaddress 0  
subaddress 1  
V
subaddress k 1  
unused columns  
R
R
V
5
V
DD  
V
A0  
A1  
A2  
V
V
A0  
A1  
A2  
A3  
V
A0  
SA0  
DD  
DD  
DD  
DD  
DD  
V
V
/
SS DD  
V
A1  
A2  
A3  
LCD  
SS  
V
V
V
V
V
V
2
k
1
LCD  
LCD  
LCD  
PCF8579  
PCF8579  
PCF8579  
3
3
3
V
LCD  
V
OSC  
V
V
A3  
V
V
4
4
4
R
V
V
SCL CLK SYNC  
SYNC CLK SCL  
SYNC CLK SCL  
SYNC CLK SCL  
V
SDA  
SS  
SDA SA0  
SS  
SDA SA0  
V
SS  
SDA SA0  
V
SS  
OSC  
SS  
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
V
DD  
SCL  
SDA  
MSA846  
Fig.22 Split screen application with 1 : 32 multiplex rate.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
V
SS  
V
SCL  
SDA  
DD  
V
LCD  
R0  
R
R
OSC  
R
(4  
2 3)R  
R
R
n.c.  
n.c.  
LCD DISPLAY  
PCF8578  
R31/C31  
C0  
C27  
C28  
C39  
C0  
C27  
C28  
C39  
PCF8579  
PCF8579  
to other  
PCF8579s  
MSA852  
Fig.23 Example of single plane wiring, single screen with 1 : 32 multiplex rate (PCF8578 in row driver mode).  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
15 CHIP DIMENSIONS AND BONDING PAD LOCATIONS  
y
8
9
7
6
5
4
3
2
1
56 55 54 53 52  
51  
A2  
C5  
10  
11  
A1  
A0  
50  
49  
48  
C6  
C7  
C8  
C9  
47  
46  
C10  
C11  
V
12  
13  
DD  
45  
n.c.  
V
3
14  
15  
44  
43  
C12  
C13  
V
4
4.76  
mm  
0
x
V
0
16  
C14  
42  
LCD  
41  
40  
C15  
C16  
39  
38  
37  
C17  
C18  
C19  
C20  
PCF8579  
C39  
C38  
C37  
17  
18  
19  
20  
36  
35  
C21  
C22  
34  
C36  
21  
22  
23  
24 25  
26  
27  
28 29  
30  
31  
32 33  
MSA920  
3.02 mm  
Chip area: 14.37 mm2.  
Bonding pad dimensions: 120 µm × 120 µm.  
Gold bump dimensions (if ordered): 94 × 94 × 25 µm.  
The numbers given in the square boxes refer to the pad number.  
Fig.24 Bonding pad locations.  
31  
2003 Sep 01  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
Table 12 Bonding pad locations (dimensions in µm); all x/y coordinates are referenced to centre of chip, see Fig.24.  
PINS  
PAD NUMBER  
SYMBOL  
x
y
VSO56  
LQFP64  
1
SDA  
SCL  
SYNC  
CLK  
VSS  
TEST  
SA0  
A3  
252  
48  
2142  
2142  
1
7
2
2
8
3
156  
360  
564  
786  
1032  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1032  
786  
564  
360  
156  
48  
2142  
3
9
4
2142  
4
10  
11  
12  
13  
14  
16  
17  
18  
20  
21  
22  
23  
24  
30  
31  
32  
33  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
5
2142  
5
6
2142  
6
7
2142  
7
8
2142  
8
9
A2  
1920  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
A1  
1716  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
A0  
1512  
VDD  
n.c.  
708  
504  
V3  
300  
V4  
96  
VLCD  
C39  
C38  
C37  
C36  
C35  
C34  
C33  
C32  
C31  
C30  
C29  
C28  
C27  
C26  
C25  
C24  
C23  
C22  
C21  
C20  
C19  
C18  
108  
1308  
1512  
1716  
1920  
2142  
2142  
2142  
2142  
2142  
2142  
2142  
2142  
2142  
2142  
2142  
2142  
2142  
1830  
1570  
1326  
1122  
918  
252  
498  
702  
906  
1110  
1314  
1314  
1314  
1314  
1314  
1314  
2003 Sep 01  
32  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
PINS  
PAD NUMBER  
SYMBOL  
x
y
VSO56  
LQFP64  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
C17  
C16  
C15  
C14  
C13  
C12  
C11  
C10  
C9  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1314  
1110  
906  
714  
510  
306  
102  
102  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
1
306  
510  
714  
918  
C8  
1122  
1326  
1566  
1830  
2142  
2142  
2142  
2142  
2142  
C7  
C6  
C5  
C4  
2
C3  
3
C2  
4
C1  
702  
5
C0  
498  
6
n.c.  
15, 19, 21,  
25 to 29, 34  
2003 Sep 01  
33  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
V
V
DD  
DD  
V
3
V
4
V
LCD  
V
SS  
CLK  
SYNC  
SCL  
SDA  
V
3
V
4
V
LCD  
V
SS  
CLK  
SYNC  
SCL  
SDA  
PCF8578  
PCF8579  
R0 to R31  
C0 C1 C2  
LCD  
DISPLAY  
MSA850  
If inputs SA0 and A0 to A3 are left unconnected they are internally pulled-up to VDD  
.
Fig.25 Typical chip-on glass application (viewed from underside of chip).  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
17 PACKAGE OUTLINES  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
D
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
2003 Sep 01  
35  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
VSO56: plastic very small outline package; 56 leads  
SOT190-1  
D
E
A
X
c
y
H
v M  
A
E
Z
56  
29  
Q
p
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
L
detail X  
1
28  
w
M
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(2)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
0.3  
0.1  
3.0  
2.8  
0.42  
0.30  
0.22 21.65 11.1  
0.14 21.35 11.0  
15.8  
15.2  
1.6  
1.4  
1.45  
1.30  
0.90  
0.55  
3.3  
0.25  
0.01  
0.75  
2.25  
0.2  
0.1  
0.1  
7o  
0o  
0.012 0.12  
0.004 0.11  
0.017 0.0087 0.85  
0.012 0.0055 0.84  
0.44  
0.43  
0.62  
0.60  
0.063 0.057  
0.055 0.051  
0.035  
0.022  
inches  
0.0295  
0.089  
0.008 0.004 0.004  
0.13  
Notes  
1. Plastic or metal protrusions of 0.3 mm (0.012 inch) maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
97-08-11  
03-02-19  
SOT190-1  
2003 Sep 01  
36  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
18 SOLDERING  
To overcome these problems the double-wave soldering  
method was specifically developed.  
18.1 Introduction to soldering surface mount  
packages  
If wave soldering is used the following conditions must be  
observed for optimal results:  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
18.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Driven by legislation and environmental forces the  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 270 °C depending on solder paste material. The  
top-surface temperature of the packages should  
preferably be kept:  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
below 220 °C (SnPb process) or below 245 °C (Pb-free  
process)  
– for all BGA and SSOP-T packages  
18.4 Manual soldering  
– for packages with a thickness 2.5 mm  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
– for packages with a thickness < 2.5 mm and a  
volume 350 mm3 so called thick/large packages.  
below 235 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
18.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
2003 Sep 01  
37  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
18.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
BGA, LBGA, LFBGA, SQFP, SSOP-T(3), TFBGA, VFBGA  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, HVSON, SMS  
not suitable(4)  
suitable  
PLCC(5), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(5)(6) suitable  
not recommended(7)  
suitable  
SSOP, TSSOP, VSO, VSSOP  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account  
be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature  
exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature  
must be kept as low as possible.  
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
6. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2003 Sep 01  
38  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
19 DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
20 DEFINITIONS  
21 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 Sep 01  
39  
Philips Semiconductors  
Product specification  
LCD column driver for dot matrix graphic  
displays  
PCF8579  
Bare die  
All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for  
a period of ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be  
separately indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips  
Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die.  
Accordingly, Philips Semiconductors assumes no liability for device functionality or performance of the die or systems  
after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify  
their application in which the die is used.  
22 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2003 Sep 01  
40  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403512/04/pp41  
Date of release: 2003 Sep 01  
Document order number: 9397 750 11563  

相关型号:

935278908118

SPECIALTY MICROPROCESSOR CIRCUIT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SO-8
NXP

935278918115

NAND Gate, LVC/LCX/Z Series, 2-Func, 2-Input, CMOS, PDSO8
NXP

935278931115

LVC/LCX/Z SERIES, TRIPLE 1-INPUT INVERT GATE, PDSO8, 1 X 1.95 MM, 0.50 MM HEIGHT, 0.50 MM PITCH, PLASTIC, MO-252, SOT833-1, SON-8
NXP

935278932115

Inverter, LVC/LCX/Z Series, 3-Func, 1-Input, CMOS, PDSO8
NXP

935278954112

0.04W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SOP-8
NXP

935278954115

0.04W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SOP-8
NXP

935278975557

935278975557
NXP

935278978518

935278978518
NXP

935278996115

AUP/ULP/V SERIES, 2-INPUT NAND GATE, PDSO6, 1 X 1.45 MM, 0.50 MM HEIGHT, PLASTIC, MO-252, SOT-886, SON-6
NXP

935278996132

AUP/ULP/V SERIES, 2-INPUT NAND GATE, PDSO6, 1 X 1.45 MM, 0.50 MM HEIGHT, PLASTIC, MO-252, SOT-886, SON-6
NXP

935278998125

AUP/ULP/V SERIES, 2-INPUT NAND GATE, PDSO5
NXP

935279002132

AUP/ULP/V SERIES, 1-INPUT INVERT GATE, PDSO6, 1 X 1.45 MM, 0.50 MM HEIGHT, PLASTIC, MO-252, SOT-886, SON-6
NXP