935311454557 [NXP]

Power Supply Support Circuit;
935311454557
型号: 935311454557
厂家: NXP    NXP
描述:

Power Supply Support Circuit

文件: 总114页 (文件大小:2288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MMPF0200  
Rev. 7, 7/2019  
NXP Semiconductors  
Data Sheet: Technical Data  
12 channel configurable power  
management integrated circuit  
PF0200  
The PF0200 Power Management Integrated Circuit (PMIC) provides a highly  
programmable/ configurable architecture, with fully integrated power devices  
and minimal external components. With up to four buck converters, one boost  
regulator, six linear regulators, RTC supply, and coin-cell charger, the PF0200  
can provide power for a complete system, including applications processors,  
memory, and system peripherals, in a wide range of applications. With on-chip  
One Time Programmable (OTP) memory, the PF0200 is available in pre-  
programmed standard versions, or non-programmed to support custom  
programming. The PF0200 is especially suited to the i.MX 6SoloLite,  
POWER MANAGEMENT  
i.MX 6Solo and i.MX 6DualLite versions of the i.MX 6 family of devices and is  
supported by full system level reference designs, and pre-programmed  
versions of the device. This device is powered by SMARTMOS technology.  
EP SUFFIX (E-TYPE)  
ES SUFFIX (WF-TYPE)  
56 QFN 8X8  
56 QFN 8X8  
98ASA00405D  
98ASA00589D  
Features:  
Applications  
• Three to four buck converters, depending on configuration  
• Boost regulator to 5.0 V output  
• Six general purpose linear regulators  
• Programmable output voltage, sequence, and timing  
• OTP (One Time Programmable) memory for device configuration  
• Coin cell charger and RTC supply  
• Tablets  
• IPTV  
• Industrial Control  
• Medical monitoring  
• Home automation/ alarm/ energy management  
• DDR termination reference voltage  
• Power control logic with processor interface and event detection  
• I2C control  
• Individually programmable ON, OFF, and Standby modes  
PF0200  
VREFDDR  
i.MX6X  
DDR MEMORY  
INTERFACE  
DDR Memory  
SW3A/B  
SW1A/B  
SW2  
Processor Core  
Voltages  
External AMP  
Microphones  
Speakers  
SATA - FLASH  
SD-MMC/  
NAND Mem.  
SATA  
HDD  
NAND  
- NOR  
Interfaces  
SWBST  
Audio  
Codec  
Parallel control/GPIOS  
I2C Communication  
Control Signals  
I2C Communication  
Sensors  
VGEN1  
VGEN2  
VGEN3  
VGEN4  
VGEN5  
VGEN6  
Camera  
Camera  
GPS  
MIPI  
uPCIe  
WAM  
GPS  
MIPI  
HDMI  
LDVS Display  
USB  
Ethernet  
CAN  
LICELL  
Charger  
COINCELL  
Main Supply  
Front USB  
POD  
Rear Seat  
Infotaiment  
Rear USB  
POD  
Cluster/HUD  
Figure 1. Simplified application diagram  
© NXP B.V. 2019.  
Table of Contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.2 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.3 Bias and references block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.4 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.5 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.2 PF0200 layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
7.3 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
8.1 Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
4
5
6
7
8
9
PF0200  
2
NXP Semiconductors  
ORDERABLE PARTS  
1
Orderable parts  
The PF0200 is available with both pre-programmed and non-programmed OTP memory configurations. The non-programmed device  
uses “NP” as the programming code. The pre-programmed devices are identified using the program codes from Table 1, which also list  
the associated NXP reference designs where applicable. Details of the OTP programming for each device can be found in Table 8.  
Contact your NXP representative for more details.  
Table 1. Orderable part variations  
Temperature (T )  
Part number  
MMPF0200NPAEP  
MMPF0200F0AEP  
MMPF0200F3AEP  
MMPF0200F4AEP  
MMPF0200F6AEP  
MMPF0200F0ANES  
MMPF0200F3ANES  
MMPF0200F4ANES  
Notes  
Package  
Programming  
Reference designs  
Qualification tier Notes  
A
(2)(1)  
NP  
F0  
F3  
F4  
F6  
F0  
F3  
F4  
N/A  
N/A  
(2)(1)  
56 QFN 8x8 mm - 0.5 mm pitch  
E-Type QFN (full lead)  
(2)(1)  
-40 to 85 °C  
N/A  
Consumer  
(2)(1)  
(2)(1)  
(2)(1)  
N/A  
i.MX6SX-SDB  
N/A  
56 QFN 8x8 mm - 0.5 mm pitch  
WF-Type QFN (wettable flank)  
(2)(1)  
-40 to 105 °C  
N/A  
Extended Industrial  
(2)(1)  
N/A  
1.  
2.  
For Tape and Reel add an R2 suffix to the part number.  
For programming details see Table 8.  
PF0200  
NXP Semiconductors  
3
INTERNAL BLOCK DIAGRAM  
2
Internal block diagram  
SW1FB  
VGEN1  
100 mA  
VIN1  
PF0200  
SW1AIN  
SW1ALX  
VGEN1  
O/P  
Drive  
SW1A/B  
Single/Dual  
2500 mA  
Buck  
VGEN2  
250 mA  
VGEN2  
SW1BLX  
SW1BIN  
O/P  
Drive  
VIN2  
VGEN3  
100 mA  
SW1VSSSNS  
VGEN3  
VGEN4  
350 mA  
VGEN4  
SW2LX  
SW2IN  
O/P  
Drive  
SW2  
1500 mA  
Buck  
Core Control logic  
VIN3  
VGEN5  
100 mA  
SW2IN  
VGEN5  
SW2FB  
GNDREF1  
Initialization State Machine  
VGEN6  
200 mA  
VGEN6  
Supplies  
Control  
OTP  
SW3AFB  
SW3AIN  
SW3ALX  
O/P  
Drive  
VDDOTP  
VDDIO  
SW3A/B  
Single Phase  
2500 mA  
Buck  
CONTROL  
I2C  
Interface  
SW3BLX  
SW3BIN  
O/P  
Drive  
SCL  
SDA  
DVS CONTROL  
SW3BFB  
DVS Control  
SW3VSSSNS  
I2C Register  
map  
Trim-In-Package  
SWBSTLX  
VCOREDIG  
VCOREREF  
SWBST  
600 mA  
Boost  
O/P  
Drive  
SWBSTIN  
SWBSTFB  
Reference  
Generation  
Clocks and  
resets  
VCORE  
GNDREF  
VREFDDR  
VINREFDDR  
Clocks  
32 kHz and 16 MHz  
VHALF  
VIN  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
VSNVS  
Figure 2. PF0200 simplified internal block diagram  
PF0200  
4
NXP Semiconductors  
PIN CONNECTIONS  
3
Pin connections  
3.1  
Pinout diagram  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
INTB  
1
2
3
4
5
6
7
8
9
LICELL  
SDWNB  
VGEN6  
RESETBMCU  
STANDBY  
ICTEST  
VIN3  
VGEN5  
SW3AFB  
SW3AIN  
SW3ALX  
SW3BLX  
SW3BIN  
SW3BFB  
SW3VSSSNS  
VREFDDR  
VINREFDDR  
VHALF  
SW1FB  
SW1AIN  
EP  
SW1ALX  
SW1BLX  
SW1BIN 10  
RSVD1 11  
RSVD2 12  
RSVD3 13  
SW1VSSSNS 14  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
Figure 3. Pinout diagram  
PF0200  
NXP Semiconductors  
5
PIN CONNECTIONS  
3.2  
Pin definitions  
Table 2. PF0200 pin definitions  
Pin  
number  
Pin  
function  
Pin name  
Max rating  
Type  
Definition  
Open drain interrupt signal to processor  
1
2
INTB  
O
O
3.6 V  
3.6 V  
Digital  
Digital  
SDWNB  
Open drain signal to indicate an imminent system shutdown  
Open drain reset output to processor. Alternatively can be used as a Power Good  
output.  
3
4
5
RESETBMCU  
STANDBY  
ICTEST  
O
I
3.6 V  
3.6 V  
7.5 V  
Digital  
Digital  
Standby input signal from processor  
Digital/  
Analog  
I
Reserved pin. Connect to GND in application.  
Output voltage feedback for SW1A/B. Route this trace separately from the high-  
current path and terminate at the output capacitance.  
6
7
SW1FB (4)  
SW1AIN (4)  
I
I
3.6 V  
4.8 V  
Analog  
Analog  
Input to SW1A regulator. Bypass with at least a 4.7 μF ceramic capacitor and a  
0.1 μF decoupling capacitor as close to the pin as possible.  
8
9
SW1ALX (4)  
SW1BLX (4)  
O
O
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 1A switch node connection  
Regulator 1B switch node connection  
Input to SW1B regulator. Bypass with at least a 4.7 μF ceramic capacitor and a  
0.1 μF decoupling capacitor as close to the pin as possible.  
10  
SW1BIN (4)  
I
4.8 V  
Analog  
Reserved for pin to pin compatibility. Internally connected. Leave this pin  
unconnected.  
11  
12  
13  
RSVD1  
RSVD2  
RSVD3  
-
-
-
-
-
-
Reserved  
Reserved Reserved for pin to pin compatibility. Connect this pin to VIN.  
Reserved for pin to pin compatibility. Internally connected. Leave this pin  
unconnected.  
Reserved  
Ground reference for regulator SW1AB. It is connected externally to GNDREF  
through a board ground plane.  
14  
SW1VSSSNS  
GND  
-
GND  
Ground reference for regulator SW2. It is connected externally to GNDREF, via  
board ground plane.  
15  
16  
17  
18  
19  
20  
21  
GNDREF1  
VGEN1  
VIN1  
GND  
-
GND  
O
I
2.5 V  
Analog  
Analog  
VGEN1 regulator output, Bypass with a 2.2 μF ceramic output capacitor.  
VGEN1, 2 input supply. Bypass with a 1.0 μF decoupling capacitor as close to the  
pin as possible.  
3.6 V  
VGEN2  
RSVD4  
RSVD5  
RSVD6  
O
-
2.5 V  
Analog  
VGEN2 regulator output, Bypass with a 4.7 μF ceramic output capacitor.  
Reserved for pin to pin compatibility. Internally connected. Leave this pin  
unconnected.  
-
-
-
Reserved  
-
Reserved Reserved for pin to pin compatibility. Connect this pin to VIN  
Reserved for pin to pin compatibility. Internally connected. Leave this pin  
unconnected.  
-
Reserved  
22  
23  
SW2LX (4)  
SW2IN (4)  
O
I
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 2 switch node connection  
Input to SW2 regulator. Connect pin 23 together with pin 24 and bypass with at least  
a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as close to these pins  
as possible.  
24  
SW2IN (4)  
I
4.8 V  
Analog  
Output voltage feedback for SW2. Route this trace separately from the high-current  
path and terminate at the output capacitance.  
25  
26  
27  
SW2FB (4)  
VGEN3  
VIN2  
I
O
I
3.6 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
VGEN3 regulator output. Bypass with a 2.2 μF ceramic output capacitor.  
VGEN3,4 input. Bypass with a 1.0 μF decoupling capacitor as close to the pin as  
possible.  
PF0200  
6
NXP Semiconductors  
PIN CONNECTIONS  
Table 2. PF0200 pin definitions (continued)  
Pin  
number  
Pin  
function  
Pin name  
Max rating  
Type  
Definition  
28  
29  
VGEN4  
VHALF  
O
I
3.6 V  
3.6 V  
Analog  
Analog  
VGEN4 regulator output, Bypass with a 4.7 μF ceramic output capacitor.  
Half supply reference for VREFDDR  
VREFDDR regulator input. Bypass with at least 1.0 μF decoupling capacitor as close  
to the pin as possible.  
30  
31  
32  
VINREFDDR  
VREFDDR  
I
3.6 V  
3.6 V  
-
Analog  
Analog  
GND  
O
VREFDDR regulator output  
Ground reference for the SW3 regulator. Connect to GNDREF externally via the  
board ground plane.  
SW3VSSSNS  
GND  
Output voltage feedback for SW3B. Route this trace separately from the high-current  
path and terminate at the output capacitance.  
33  
34  
SW3BFB (4)  
SW3BIN (4)  
I
I
3.6 V  
4.8 V  
Analog  
Analog  
Input to SW3B regulator. Bypass with at least a 4.7 μF ceramic capacitor and a  
0.1 μF decoupling capacitor as close to the pin as possible.  
35  
36  
SW3BLX (4)  
SW3ALX (4)  
O
O
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 3B switch node connection  
Regulator 3A switch node connection  
Input to SW3A regulator. Bypass with at least a 4.7 μF ceramic capacitor and a  
0.1 μF decoupling capacitor as close to the pin as possible.  
37  
SW3AIN (4)  
I
4.8 V  
Analog  
Output voltage feedback for SW3A. Route this trace separately from the high-current  
path and terminate at the output capacitance.  
38  
39  
40  
SW3AFB (4)  
VGEN5  
VIN3  
I
O
I
3.6 V  
3.6 V  
4.8 V  
Analog  
Analog  
Analog  
VGEN5 regulator output. Bypass with a 2.2 μF ceramic output capacitor.  
VGEN5, 6 input. Bypass with a 1.0 μF decoupling capacitor as close to the pin as  
possible.  
41  
42  
43  
VGEN6  
LICELL  
VSNVS  
O
I/O  
O
3.6 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
VGEN6 regulator output. By pass with a 2.2 μF ceramic output capacitor.  
Coin cell supply input/output  
LDO or coin cell output to processor  
Boost regulator feedback. Connect this pin to the output rail close to the load. Keep  
this trace away from other noisy traces and planes.  
44  
SWBSTFB (4)  
I
5.5 V  
Analog  
Input to SWBST regulator. Bypass with at least a 2.2 μF ceramic capacitor and a  
0.1 μF decoupling capacitor as close to the pin as possible.  
45  
46  
47  
SWBSTIN (4)  
SWBSTLX (4)  
VDDOTP  
I
O
I
4.8 V  
7.5 V  
Analog  
Analog  
SWBST switch node connection  
Digital &  
Analog  
10 V (3)  
Supply to program OTP fuses  
48  
49  
50  
51  
52  
53  
54  
GNDREF  
VCORE  
VIN  
GND  
-
GND  
Ground reference for the main band gap regulator.  
Analog Core supply  
O
I
3.6 V  
4.8 V  
1.5 V  
1.5 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
Analog  
Digital  
Digital  
Main chip supply  
VCOREDIG  
VCOREREF  
SDA  
O
O
I/O  
I
Digital Core supply  
Main band gap reference  
I2C data line (Open drain)  
I2C clock  
SCL  
Supply for I2C bus. Bypass with 0.1 μF decoupling capacitor as close to the pin as  
possible.  
55  
56  
VDDIO  
I
I
3.6 V  
3.6 V  
Analog  
Digital  
PWRON  
Power On/off from processor  
PF0200  
NXP Semiconductors  
7
PIN CONNECTIONS  
Table 2. PF0200 pin definitions (continued)  
Pin  
number  
Pin  
function  
Pin name  
Max rating  
Type  
Definition  
Expose pad. Functions as ground return for buck regulators. Tie this pad to the inner  
and external ground planes through vias to allow effective thermal dissipation.  
-
EP  
GND  
-
GND  
Notes  
3.  
4.  
10 V Maximum voltage rating during OTP fuse programming. 7.5 V Maximum DC voltage rated otherwise.  
Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be connected  
to VIN with a 0.1 μF bypass capacitor.  
PF0200  
8
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
4
General product characteristics  
4.1  
Absolute maximum ratings  
Table 3. Absolute maximum ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage  
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.  
Symbol  
Electrical ratings  
VIN  
Description  
Value  
Unit  
Notes  
Main input supply voltage  
-0.3 to 4.8  
-0.3 to 10  
-0.3 to 3.6  
V
V
V
VDDOTP  
OTP programming input supply voltage  
Coin cell voltage  
VLICELL  
ESD Ratings  
(5)  
VESD  
Human Body Model  
Charge Device Model  
±2000  
±500  
V
Notes  
5.  
ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the Charge Device Model  
(CDM), Robotic (CZAP = 4.0 pF).  
PF0200  
NXP Semiconductors  
9
GENERAL PRODUCT CHARACTERISTICS  
4.2  
Thermal characteristics  
Table 4. Thermal ratings  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Thermal ratings  
Ambient Operating Temperature Range  
TA  
PF0200A  
PF0200AN  
-40  
-40  
85  
105  
°C  
(6)  
TJ  
Operating Junction Temperature Range  
Storage Temperature Range  
-40  
-65  
125  
150  
°C  
°C  
°C  
TST  
(7)(8)  
TPPRT  
Peak Package Reflow Temperature  
Note 8  
QFN56 Thermal resistance and package dissipation ratings  
Junction to Ambient  
Natural Convection  
Four layer board (2s2p)  
Eight layer board (2s6p)  
(9)(10)(11)  
(9)(11)  
RθJA  
°C/W  
°C/W  
28  
15  
Junction to Ambient (@200 ft/min)  
RθJMA  
Four layer board (2s2p)  
22  
10  
(12)  
(13)  
RθJB  
Junction to Board  
°C/W  
°C/W  
RΘJCBOTTOM  
Junction to Case Bottom  
1.2  
Junction to Package Top  
Natural Convection  
(14)  
2.0  
°C/W  
ΨJT  
Notes  
6.  
Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 5 for  
thermal protection features.  
7.  
8.  
Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a  
malfunction or permanent damage to the device.  
NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and  
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all  
orderable parts, and review parametrics.  
9.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.  
Per JEDEC JESD51-6 with the board horizontal.  
10.  
11.  
12.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
13.  
14.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-  
2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
4.2.1 Power dissipation  
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the  
thermal management and to avoid overheating, the PF0200 provides thermal protection. An internal comparator monitors the die  
temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I will be generated when the respective thresholds  
specified in Table 5 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register  
INTSENSE0.  
In the event of excessive power dissipation, thermal protection circuitry will shut down the PF0200. This thermal protection will act above  
the thermal protection threshold listed in Table 5. To avoid any unwanted power downs resulting from internal noise, the protection is  
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured  
such that this protection is not tripped under normal conditions.  
PF0200  
10  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 5. Thermal protection thresholds  
Parameter  
Min.  
Typ.  
Max.  
Units  
Notes  
Thermal 110 °C Threshold (THERM110)  
Thermal 120 °C Threshold (THERM120)  
Thermal 125 °C Threshold (THERM125)  
Thermal 130 °C Threshold (THERM130)  
Thermal Warning Hysteresis  
100  
110  
115  
120  
2.0  
110  
120  
125  
130  
120  
130  
135  
140  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal Protection Threshold  
130  
140  
150  
4.3  
Electrical characteristics  
4.3.1 General specifications  
Table 6. General PMIC static characteristics  
Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 2.8 to 4.5 V, VDDIO = 1.7 to 3.6 V, typical external  
component values and full load current range, unless otherwise noted.  
Pin name  
Parameter  
Load condition  
Min.  
Max.  
Unit  
VIL  
VIH  
VOL  
VOH  
VIL  
0.0  
0.8 * VSNVS  
0.0  
0.2 * VSNVS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
PWRON  
3.6  
0.4  
-2.0 mA  
RESETBMCU  
SCL  
Open Drain  
0.7* VIN  
0.0  
VIN  
0.2 * VDDIO  
3.6  
VIH  
VIL  
0.8 * VDDIO  
0.0  
0.2 * VDDIO  
3.6  
VIH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VIL  
0.8 * VDDIO  
0.0  
SDA  
-2.0 mA  
0.4  
Open Drain  
0.7*VDDIO  
0.0  
VDDIO  
0.4  
-2.0 mA  
INTB  
Open Drain  
0.7* VIN  
0.0  
VIN  
-2.0 mA  
0.4  
SDWNB  
STANDBY  
VDDOTP  
Open Drain  
0.7* VIN  
0.0  
VIN  
0.2 * VSNVS  
3.6  
VIH  
VIL  
0.8 * VSNVS  
0.0  
0.3  
VIH  
1.1  
1.7  
PF0200  
NXP Semiconductors  
11  
GENERAL PRODUCT CHARACTERISTICS  
4.3.2 Current consumption  
Table 7. Current consumption summary  
Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VDDIO = 1.7 to 3.6 V, LICELL = 1.8 to 3.3 V, VSNVS  
= 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VDDIO = 3.3 V,  
LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted.  
Mode  
PF0200 conditions  
System Conditions  
Typ.  
Max.  
Unit  
VSNVS from LICELL  
Coin Cell  
All other blocks off  
VIN = 0.0 V  
No load on VSNVS  
4.0  
7.0  
μA  
(15),(16),(19)  
VSNVSVOLT[2:0] = 110  
VSNVS from VIN or LICELL  
Wake-up from PWRON active  
32 k RC on  
All other blocks off  
VIN UVDET  
Off (15)(17)  
No load on VSNVS, PMIC able to wake-up  
17  
25  
μA  
μA  
VSNVS from VIN  
Wake-up from PWRON active  
Trimmed reference active  
SW3A/B PFM  
Trimmed 16 MHz RC off  
32 k RC on  
122  
122  
220(20)  
250(21)  
Sleep (18)  
No load on VSNVS. DDR memories in self refresh  
VREFDDR disabled  
VSNVS from either VIN or LICELL  
SW1A/B combined in PFM  
SW2 in PFM  
SW3A/B combined in PFM  
SWBST off  
Trimmed 16 MHz RC enabled  
Trimmed reference active  
VGEN1-6 enabled  
270  
270  
430(20)  
525(21)  
No load on VSNVS. Processor enabled in low power  
mode. All rails powered on except boost (load = 0 mA)  
Standby (18)  
μA  
VREFDDR enabled  
Notes  
15.  
16.  
17.  
18.  
19.  
At 25 °C only.  
Refer to Figure 4 for Coin Cell mode characteristics over temperature.  
When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 μA, typically.  
For PFM operation, headroom should be 300 mV or greater.  
Additional current may be drawn in the coin cell mode when RESETBMCU is pulled up to VSNVS due an internal path from RESETBMCU to VIN.  
The additional current is <30 μA with a pull up resistor of 100 kΩ. The i.MX 6 processors have an internal pull-up from the POR_B pin to the  
VDD_SNVS_IN pin. If additional current in the coin cell mode is not desired for i.MX6 applications, use an external switch to disconnect the  
RESETBMCU path when VIN is removed. Pull-up RESETBMCU to a rail that is off in the coin cell mode, for non-i.MX 6 applications.  
From -40 to 85 °C, Applicable to Consumer and Extended Industrial part numbers  
20.  
21.  
From -40 to 105 °C, Applicable only to Extended Industrial parts  
PF0200  
12  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
PF0200  
100  
10  
1
PF0200  
-40  
-20  
0
20  
Temperature (oC)  
40  
60  
80  
Figure 4. Coin cell mode current versus temperature  
PF0200  
NXP Semiconductors  
13  
GENERAL DESCRIPTION  
5
General description  
The PF0200 is the Power Management Integrated Circuit (PMIC) designed primarily for use with NXP’s i.MX 6 series of application  
processors.  
5.1  
Features  
This section summarizes the PF0200 features.  
• Input voltage range to PMIC: 2.8 - 4.5 V  
• Buck regulators  
Three to four channel configurable  
• SW1A/B, 2.5 A; 0.3 to 1.875 V  
• SW2, 1.5 A; 0.4 to 3.3 V  
• SW3A/B, 2.5 A (single phase); 0.4 to 3.3 V  
• SW3A, 1.25 A (independent); SW3B, 1.25 A (independent); 0.4 to 3.3 V  
Dynamic voltage scaling  
Modes: PWM, PFM, APS  
Programmable output voltage  
Programmable current limit  
Programmable soft start  
Programmable PWM switching frequency  
Programmable OCP with fault interrupt  
• Boost regulator  
SWBST, 5.0 to 5.15 V, 0.6 A, OTG support  
Modes: PFM and Auto  
OCP fault interrupt  
• LDOs  
Six user programable LDO  
• VGEN1, 0.80 to 1.55 V, 100 mA  
• VGEN2, 0.80 to 1.55 V, 250 mA  
• VGEN3, 1.8 to 3.3 V, 100 mA  
• VGEN4, 1.8 to 3.3 V, 350 mA  
• VGEN5, 1.8 to 3.3 V, 100 mA  
• VGEN6, 1.8 to 3.3 V, 200 mA  
Soft start  
LDO/Switch supply  
• VSNVS (1.0/1.1/1.2/1.3/1.5/1.8/3.0 V), 400 μA  
• DDR memory reference voltage  
VREFDDR, 0.6 to 0.9 V, 10 mA  
• 16 MHz internal master clock  
• OTP(One time programmable) memory for device configuration  
User programmable start-up sequence and timing  
• Battery backed memory including coin cell charger  
• I2C interface  
• User programmable Standby, Sleep, and Off modes  
PF0200  
14  
NXP Semiconductors  
GENERAL DESCRIPTION  
5.2  
Functional block diagram  
PF0200 Functional Internal Block Diagram  
OTP Startup Configuration  
Power Generation  
OTP Prototyping  
Voltage  
Switching Regulators  
Linear Regulators  
(Try before buy)  
VGEN1  
(0.8 to 1.55V, 100mA)  
Sequence and  
timing  
Phasing and  
Frequency Selection  
SW1A/B  
(0.3 to 1.875V, 2.5A)  
VGEN2  
(0.8 to 1.55V, 250mA)  
Bias & References  
Internal Core Voltage Reference  
DDR Voltage Reference  
VGEN3  
(1.8 to 3.3V, 100mA)  
SW2  
(0.4 to 3.3V, 1.5A)  
VGEN4  
(1.8 to 3.3V, 350mA)  
Logic and Control  
SW3A/B  
(0.4 to 3.3V)  
Configurable 2.5A or  
1.25A+1.25A  
VGEN5  
(1.8 to 3.3V, 100mA)  
Parallel MCU Interface  
Regulator Control  
I2C Communication & Registers  
VGEN6  
(1.8 to 3.3V, 200mA)  
Fault Detection and Protection  
Boost Regulator  
(5 to 5.15V, 600mA)  
USB OTG Supply  
VSNVS  
(1.0 to 3.0V, 400uA)  
RTC supply with coin cell  
charger  
Thermal  
Current Limit  
Short-Circuit  
Figure 5. Functional block diagram  
5.3  
Functional description  
5.3.1 Power generation  
The PF0200 PMIC features three buck regulators (up to four independent outputs), one boost regulator, six general purpose LDOs, one  
switch/LDO combination and a DDR voltage reference to supply voltages for the application processor and peripheral devices.  
The number of independent buck regulator outputs can be configured from three to four, thereby providing flexibility to operate with higher  
current capability, or to operate as independent outputs for applications requiring more voltage rails with lower current demands. The SW3  
regulator can be configured as a single phase or with two independent outputs. The buck regulators provide the supply to processor cores  
and to other low-voltage circuits such as IO and memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments  
for the processor cores and/or other circuitry.  
Depending on the system power path configuration, the six general purpose LDO regulators can be directly supplied from the main input  
supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A specific VREFDDR  
voltage reference is included to provide accurate reference voltage for DDR memories operating with or without VTT termination. The  
VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry on the i.MX processors; VSNVS may be  
powered from VIN, or from a coin cell.  
5.3.2 Control logic  
The PF0200 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including  
interrupt and reset. Start-up sequence of the device is selected upon the initial OTP configuration explained in the Start-up section, or by  
configuring the “Try Before Buy” feature to test different power up sequences before choosing the final OTP configuration.  
The PF0200 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor. It also ensures supply  
of critical internal logic and other circuits from the coin cell in case of brief interruptions from the main battery. A charger for the coin cell  
is included as well.  
PF0200  
NXP Semiconductors  
15  
GENERAL DESCRIPTION  
5.3.2.1  
Interface signals  
PWRON  
PWRON is an input signal to the IC that generates a turn-on event. It can be configured to detect a level, or an edge using the  
PWRON_CFG bit. Refer to section Turn on events for more details.  
STANDBY  
STANDBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby  
mode. STANDBY can be configured as active high or active low using the STANDBYINV bit. Refer to the section Standby mode for more  
details.  
Note: When operating the PMIC at VIN 2.85 V and VSNVS is programmed for a 3.0 V output, a coin cell must be present to provide  
VSNVS, or the PMIC will not reliably enter and exit the STANDBY mode.  
RESETBMCU  
RESETBMCU is an open-drain, active low output configurable for two modes of operation. In its default mode, it is de-asserted 2.0 to  
4.0 ms after the last regulator in the start-up sequence is enabled; refer to Figure 6 as an example. In this mode, the signal can be used  
to bring the processor out of reset, or as an indicator that all supplies have been enabled; it is only asserted for a turn-off event.  
When configured for its fault mode, RESETBMCU is de-asserted after the start-up sequence is completed only if no faults occurred during  
start-up. At anytime, if a fault occurs and persists for 1.8 ms typically, RESETBMCU is asserted, LOW. The PF0200 is turned off if the  
fault persists for more than 100 ms typically. The PWRON signal restarts the part, though if the fault persists, the sequence described  
above will be repeated. To enter the fault mode, set bit OTP_PG_EN of register OTP PWRGD EN to “1”. This register, 0xE8, is located  
on Extended page 1 of the register map. To test the fault mode, the bit may be set during TBB prototyping, or the mode may be  
permanently chosen by programming OTP fuses.  
SDWNB  
SDWNB is an open-drain, active low output that notifies the processor of an imminent PMIC shutdown. It is asserted low for one 32 kHz  
clock cycle before powering down and is then de-asserted in the OFF state.  
INTB  
INTB is an open-drain, active low output. It is asserted when any fault occurs, provided that the fault interrupt is unmasked. INTB is de-  
asserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.  
PF0200  
16  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6
Functional block requirements and behaviors  
6.1  
Start-up  
The PF0200 can be configured to start-up from either the internal OTP configuration, or with a hard-coded configuration built into the  
device. The internal hard-coded configuration is enabled by connecting the VDDOTP pin to VCOREDIG through a 100 kohm resistor. The  
OTP configuration is enabled by connecting VDDOTP to GND.  
For NP devices, selecting the OTP configuration causes the PF0200 to not start-up. However, the PF0200 can be controlled through the  
I2C port for prototyping and programming. Once programmed, the NP device will startup with the customer programmed configuration.  
6.1.1 Device start-up configuration  
Table 8 shows the Default Configuration which can be accessed on all devices as described above, as well as the pre-programmed OTP  
configurations.  
Table 8. Start-up configuration  
Default configuration  
All devices  
Pre-programmed OTP configuration  
Registers  
Default I2C Address  
F0  
F3  
F4  
F6  
0x08  
0x08  
3.0 V  
1.375 V  
1
0x08  
0x08  
0x08  
VSNVS_VOLT  
SW1AB_VOLT  
SW1AB_SEQ  
SW2_VOLT  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
1.375 V  
1.375 V  
1.375 V  
1.375 V  
1
2
2
2
3.0 V  
3.3 V  
5
3.15 V  
3.15 V  
3.3 V  
SW2_SEQ  
2
1
1
4
SW3A_VOLT  
SW3A_SEQ  
1.5 V  
1.5 V  
3
1.2 V  
1.5 V  
1.35 V  
3
4
4
3
SW3B_VOLT  
SW3B_SEQ  
1.5 V  
1.5 V  
3
1.2 V  
1.5 V  
1.35 V  
3
4
4
3
SWBST_VOLT  
SWBST_SEQ  
VREFDDR_SEQ  
VGEN1_VOLT  
VGEN1_SEQ  
VGEN2_VOLT  
VGEN2_SEQ  
VGEN3_VOLT  
VGEN3_SEQ  
VGEN4_VOLT  
VGEN4_SEQ  
VGEN5_VOLT  
VGEN5_SEQ  
VGEN6_VOLT  
VGEN6_SEQ  
-
5.0 V  
13  
5.0 V  
5.0 V  
5.0 V  
-
6
6
-
3
3
3
4
4
-
1.5 V  
9
1.2 V  
1.2 V  
1.2 V  
5
-
4
4
1.5 V  
1.5 V  
10  
-
-
1.5 V  
-
2
-
-
-
2.5 V  
11  
1.8 V  
1.8 V  
2.8 V  
5
-
1.8 V  
3
3
3
1.8 V  
7
1.8 V  
1.8 V  
1.8 V  
4
3
3
2.5 V  
3
2.8 V  
12  
2.5 V  
2.5 V  
3.3 V  
5
5
-
5
-
2.8 V  
3
3.3 V  
8
3.0 V  
1
-
-
PF0200  
NXP Semiconductors  
17  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 8. Start-up configuration (continued)  
Default configuration  
Pre-programmed OTP configuration  
Registers  
All devices  
F0  
F3  
F4  
F6  
PU CONFIG, SEQ_CLK_SPEED  
PU CONFIG, SWDVS_CLK  
PU CONFIG, PWRON  
SW1AB CONFIG  
1.0 ms  
2.0 ms  
1.0 ms  
12.5 mV/μs  
1.0 ms  
0.5 ms  
6.25 mV/μs  
1.5625 mV/μs  
12.5 mV/μs  
6.25 mV/μs  
Level sensitive  
SW1AB Single Phase, 2.0 MHz  
2.0 MHz  
SW2 CONFIG  
SW3A CONFIG  
SW3AB Single Phase, 2.0 MHz  
2.0 MHz  
SW3B CONFIG  
PG EN  
RESETBMCU in Default Mode  
LICELL  
VIN  
UVDET  
tR1  
tD1  
1V  
tD2  
tR2  
VSNVS  
tD3  
tR3  
PWRON  
tD4  
tR3  
SW1A/B  
SW2  
VGEN2  
tD4  
tR3  
SW3A/B  
VREFDDR  
VGEN4  
VGEN5  
tD5  
tR4  
VGEN6  
RESETBMCU  
*VSNVS will start from 1.0 V if LICELL is valid before VIN.  
Figure 6. Default start-up sequence  
PF0200  
18  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 9. Default start-up sequence timing  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
(22)  
tD1  
tR1  
tD2  
tR2  
Turn-on delay of VSNVS  
Rise time of VSNVS  
5.0  
3.0  
ms  
ms  
ms  
ms  
User determined delay  
1.0  
(23)  
(23)  
Rise time of PWRON  
Turn-on delay of first regulator  
SEQ_CLK_SPEED[1:0] = 00  
SEQ_CLK_SPEED[1:0] = 01  
2.0  
2.5  
4.0  
7.0  
0.2  
(24)  
(25)  
tD3  
tR3  
tD4  
ms  
ms  
SEQ_CLK_SPEED[1:0] = 10  
SEQ_CLK_SPEED[1:0] = 11  
Rise time of regulators  
Delay between regulators  
SEQ_CLK_SPEED[1:0] = 00  
SEQ_CLK_SPEED[1:0] = 01  
0.5  
1.0  
2.0  
ms  
SEQ_CLK_SPEED[1:0] = 10  
SEQ_CLK_SPEED[1:0] = 11  
4.0  
0.2  
2.0  
tR4  
tD5  
Rise time of RESETBMCU  
ms  
ms  
Turn-on delay of RESETBMCU  
Notes  
22.  
Assumes LICELL voltage is valid before VIN is applied. If LICELL is not valid before VIN is applied then VSNVS turn-on delay may extend to a  
maximum of 24 ms.  
23.  
24.  
25.  
Depends on the external signal driving PWRON.  
Default configuration.  
Rise time is a function of slew rate of regulators and nominal voltage selected.  
6.1.2 One time programmability (OTP)  
OTP allows the programming of start-up configurations for a variety of applications. Before permanently programming the IC by  
programming fuses, a configuration may be prototyped by using the “Try Before Buy” (TBB) feature. An error correction code(ECC)  
algorithm is available to correct a single bit error and to detect multiple bit errors when fuses are programmed.  
The parameters that can be configured by OTP are listed below.  
• General: I2C slave address, PWRON pin configuration, start-up sequence and timing  
• Buck regulators: Output voltage, single phase or independent mode configuration, switching frequency, and soft start ramp rate  
• Boost regulator and LDOs: Output voltage  
NOTE: When prototyping or programming fuses, the user must ensure that register settings are consistent with the hardware  
configuration. This is most important for the buck regulators, where the quantity, size, and value of the inductors depend on the  
configuration (single phase or independent mode) and the switching frequency. Additionally, if an LDO is powered by a buck regulator, it  
will be gated by the buck regulator in the start-up sequence.  
6.1.2.1  
Start-up sequence and timing  
Each regulator has 5-bits allocated to program its start-up time slot from a turn on event; therefore, each can be placed from position one  
to thirty-one in the start-up sequence. The all zeros code indicates that a regulator is not part of the start-up sequence and will remain off.  
See Table 10. The delay between each position is equal; however, four delay options are available. See Table 11. The start-up sequence  
will terminate at the last programmed regulator.  
PF0200  
NXP Semiconductors  
19  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 10. Start-up sequence  
SWxx_SEQ[4:0]/  
VGENx_SEQ[4:0]/  
VREFDDR_SEQ[4:0]  
Sequence  
00000  
Off  
00001  
SEQ_CLK_SPEED[1:0] * 1  
00010  
SEQ_CLK_SPEED[1:0] * 2  
*
*
*
*
*
*
*
*
11111  
SEQ_CLK_SPEED[1:0] * 31  
Table 11. Start-up sequence clock speed  
SEQ_CLK_SPEED[1:0]  
Time (μs)  
00  
01  
10  
11  
500  
1000  
2000  
4000  
6.1.2.2  
PWRON pin configuration  
The PWRON pin can be configured as either a level sensitive input (PWRON_CFG = 0), or as an edge sensitive input (PWRON_CFG =  
1). As a level sensitive input, an active high signal turns on the part and an active low signal turns off the part, or puts it into Sleep mode.  
As an edge sensitive input, such as when connected to a mechanical switch, a falling edge will turn on the part and if the switch is held  
low for greater than or equal to 4.0 seconds, the part will turn off or enter Sleep mode.  
Table 12. PWRON configuration  
PWRON_CFG  
Mode  
PWRON pin HIGH = ON  
PWRON pin LOW = OFF or Sleep mode  
0
PWRON pin pulled LOW momentarily = ON  
PWRON pin LOW for 4.0 seconds = OFF or Sleep mode  
1
2
6.1.2.3  
I C address configuration  
The I2C device address can be programmed from 0x08 to 0x0F. This allows flexibility to change the I2C address to avoid bus conflicts.  
Address bit, I2C_SLV_ADDR[3] in OTP_I2C_ADDR register is hard coded to “1” while the lower three LSBs of the I2C address  
(I2C_SLV_ADDR[2:0]) are programmable as shown in Table 13.  
Table 13. I2C address configuration  
I2C_SLV_ADDR[3]  
hard coded  
I2C device address  
(Hex)  
I2C_SLV_ADDR[2:0]  
1
1
1
1
000  
001  
010  
011  
0x08  
0x09  
0x0A  
0x0B  
PF0200  
20  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 13. I2C address configuration (continued)  
I2C_SLV_ADDR[3]  
hard coded  
I2C device address  
(Hex)  
I2C_SLV_ADDR[2:0]  
1
1
1
1
100  
101  
110  
111  
0x0C  
0x0D  
0x0E  
0x0F  
6.1.2.4  
Soft start ramp rate  
The start-up ramp rate or soft start ramp rate can be chosen from the same options as shown in Dynamic voltage scaling.  
6.1.3 OTP prototyping  
It is possible to test the desired configuration by using the “Try Before Buy” feature, before permanently programming fuses. The  
configuration is loaded from the OTP registers with this feature. These registers merely serve as temporary storage for the values to be  
written to the fuses, for the values read from the fuses, or for the values read from the default configuration. To avoid confusion, these  
registers will be referred to as the TBBOTP registers. The portion of the register map that concerns OTP is shown in Table 121 and  
Table 122.  
The contents of the TBBOTP registers are initialized to zero when a valid VIN is first applied. The values that are then loaded into the  
TBBOTP registers depend on the setting of the VDDOTP pin and on the value of the TBB_POR and FUSE_POR_XOR bits. Refer to  
Table 14.  
• If VDDOTP = VCOREDIG (1.5 V), the values are loaded from the default configuration.  
• If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1, the values are loaded from the fuses. It is required to set all the  
FUSE_PORx bits to load the fuses.  
• If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 0, the TBBOTP registers remain initialized at zero.  
The initial value of TBB_POR is always “0”; only when VDDOTP = 0.0 V and TBB_POR is set to “1” are the values from the TBBOTP  
registers maintained and not loaded from a different source.  
The contents of the TBBOTP registers are modified by I2C. To communicate with I2C, VIN must be valid and VDDIO, to which SDA and  
SCL are pulled up, must be powered by a 1.7 to 3.6 V supply. VIN, or the coin cell voltage must be valid to maintain the contents of the  
registers. To power on with the contents of the TBBOTP registers, the following conditions must exist; VIN is valid, VDDOTP = 0.0 V,  
TBB_POR = 1 and there is a valid turn-on event.  
6.1.4 Reading OTP fuses  
As described in the previous section, the contents of the fuses are loaded to the TBBOTP registers. When the following conditions are  
met; VIN is valid, VDDOTP = 0.0 V, TBB_POR = 0, and FUSE_POR_XOR = 1. If ECC is enabled at the time the fuses were programmed,  
the error corrected values can be loaded into the TBBOTP registers if desired. Once the fuses are loaded and a turn-on event occurs, the  
PMIC will power on with the configuration programmed in the fuses. Contact your NXP representative for more details on reading the OTP  
fuses.  
6.1.5 Programming OTP fuses  
The parameters that can be programmed are shown in the TBBOTP registers in the Extended page 1 of the register map. The PF0200  
offers ECC, the control registers for which functions are located in Extended page 2 of the register map. There are ten banks of twenty-  
six fuses, each that can be programmed.  
PF0200  
NXP Semiconductors  
21  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 14. Source of start-up sequence  
VDDOTP(V)  
TBB_POR FUSE_POR_XOR  
Start-up sequence  
0
0
0
0
1
x
0
1
x
x
None  
OTP fuses  
0
TBBOTP registers  
Factory defined  
1.5  
6.2  
16 MHz and 32 kHz clocks  
There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within  
-8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions:  
• VIN < UVDET  
• All regulators are in SLEEP mode  
• All regulators are in PFM switching mode  
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:  
• During start-up, VIN > UVDET  
• PWRON_CFG = 1, for power button debounce timing  
In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 25 are referenced to the 32 kHz derived from the  
16 MHz clock. The exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock.  
Table 15. 16 MHz clock specifications  
Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 2.8 to 4.5 V, LICELL = 1.8 to 3.3 V and typical external  
component values. Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Notes  
VIN16MHz  
f16MHZ  
f2MHZ  
Operating Voltage From VIN  
16 MHz Clock Frequency  
2.0 MHz Clock Frequency  
2.8  
16  
4.5  
V
14.7  
1.84  
17.3  
2.16  
MHz  
MHz  
(26)  
Notes  
26.  
2.0 MHz clock is derived from the 16 MHz clock.  
6.2.1 Clock adjustment  
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By  
changing the factory trim values of the 16MHz clock, the user may add an offset as small as 3.0% of the nominal frequency.  
6.3  
Bias and references block description  
6.3.1 Internal core voltage references  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. The bandgap and  
the rest of the core circuitry are supplied from VCORE. The performance of the regulators is directly dependent on the performance of the  
bandgap. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is kept powered as long as there is a  
valid supply and/or valid coin cell. Table 16 shows the main characteristics of the core circuitry.  
PF0200  
22  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 16. Core voltages electrical specifications(28)  
Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 2.8 to 4.5 V, LICELL = 1.8 to 3.3 V, and typical external  
component values. Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Notes  
VCOREDIG (digital core supply)  
Output Voltage  
(27)  
VCOREDIG  
ON mode  
Coin cell mode and OFF  
1.5  
1.3  
V
VCORE (Analog core supply)  
Output Voltage  
(27)  
(27)  
VCORE  
ON mode and charging  
OFF and Coin cell mode  
2.775  
0.0  
V
VCOREREF (bandgap / regulator reference)  
VCOREREF  
Output Voltage  
1.2  
0.5  
V
%
%
VCOREREFACC  
Absolute Accuracy  
VCOREREFTACC Temperature Drift  
0.25  
Notes  
27.  
3.0 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF. Extended operation down to UVDET, but no system malfunction.  
For information only.  
28.  
6.3.1.1  
External components  
Table 17. External components for core voltages  
Regulator  
Capacitor value (μF)  
VCOREDIG  
VCORE  
1.0  
1.0  
VCOREREF  
0.22  
6.3.2 VREFDDR voltage reference  
VREFDDR is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input  
voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low-frequency pole.  
This divider then utilizes a voltage follower to drive the load.  
VINREFDDR  
VINREFDDR  
CHALF1  
100 nf  
VHALF  
_
+
CHALF2  
100 nf  
Discharge  
VREFDDR  
VREFDDR  
CREFDDR  
1.0 uf  
Figure 7. VREFDDR block diagram  
PF0200  
NXP Semiconductors  
23  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.3.2.1  
VREFDDR control register  
The VREFDDR voltage reference is controlled by a single bit in VREFDDCRTL register in Table 18.  
Table 18. Register VREFDDCRTL - ADDR 0x6A  
Name  
UNUSED  
Bit #  
R/W Default  
Description  
3:0  
R/W  
0x00  
0x00  
0x00  
UNUSED  
Enable or disables VREFDDR output voltage  
0 = VREFDDR Disabled  
VREFDDREN  
UNUSED  
4
1 = VREFDDR Enabled  
7:5  
UNUSED  
External components  
Table 19. VREFDDR external components(29)  
Capacitor  
Capacitance (μF)  
VINREFDDR(30) to VHALF  
0.1  
0.1  
1.0  
VHALF to GND  
VREFDDR  
Notes  
29.  
30.  
Use X5R or X7R capacitors.  
VINREFDDR to GND, 1.0 μF minimum capacitance is provided by buck regulator output.  
VREFDDR specifications  
Table 20. VREFDDR electrical characteristics  
Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR  
1.5 V, and 25 °C, unless otherwise noted.  
=
Symbol  
VREFDDR  
VINREFDDR  
IREFDDR  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage Range  
1.2  
0.0  
1.8  
10  
V
Operating Load Current Range  
mA  
Current Limit  
IREFDDRLIM  
10.5  
15  
25  
mA  
IREFDDR when VREFDDR is forced to VINREFDDR/4  
(31)  
IREFDDRQ  
Quiescent Current  
8.0  
μA  
Active mode – DC  
Output Voltage  
VINREFDDR  
2
/
VREFDDR  
1.2 V < VINREFDDR < 1.8 V  
0.0 mA < IREFDDR < 10 mA  
V
Output Voltage Tolerance (TA = -40 to 85 °C)  
1.2 V < VINREFDDR < 1.8 V  
VREFDDRTOL  
–1.0  
1.0  
%
0.6 mA IREFDDR 10 mA  
Output Voltage Tolerance (TA = -40 to 85 °C), applicable only to the  
extended Industrial version  
VREFDDRTOL  
–1.20  
1.2  
%
1.2 V < VINREFDDR < 1.8 V  
0.6 mA IREFDDR 10 mA  
Load Regulation  
VREFDDRLOR  
1.0 mA < IREFDDR < 10 mA  
1.2 V < VINREFDDR < 1.8 V  
0.40  
mV/mA  
PF0200  
24  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 20. VREFDDR electrical characteristics (continued)  
Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR  
1.5 V, and 25 °C, unless otherwise noted.  
=
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Active mode – AC  
Turn-on Time  
Enable to 90% of end value  
tONREFDDR  
100  
10  
μs  
VINREFDDR = 1.2 V, 1.8 V  
IREFDDR = 0.0 mA  
Turn-off Time  
Disable to 10% of initial value  
VINREFDDR = 1.2 V, 1.8 V  
IREFDDR = 0.0 mA  
tOFFREFDDR  
ms  
Start-up Overshoot  
VINREFDDR = 1.2 V, 1.8 V  
IREFDDR = 0.0 mA  
VREFDDROSH  
1.0  
5.0  
6.0  
%
Transient Load Response  
VINREFDDR = 1.2 V, 1.8 V  
VREFDDRTLR  
Notes  
mV  
31.  
When VREFDDR is off there is a quiescent current of 1.5 μA typical.  
6.4  
Power generation  
6.4.1 Modes of operation  
The operation of the PF0200 can be reduced to five states, or modes: ON, OFF, Sleep, Standby, and Coin Cell. Figure 8 shows the state  
diagram of the PF0200, along with the conditions to enter and exit from each state.  
PF0200  
NXP Semiconductors  
25  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Coin Cell  
VIN < UVDET  
VIN < UVDET  
VIN > UVDET  
PWRON = 0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
Thermal shutdown  
OFF  
PWRON=1  
& VIN > UVDET  
(PWRON_CFG = 0)  
Or  
VIN < UVDET  
Sleep  
PWRON = 0  
Any SWxOMODE bits=1  
(PWRON_CFG=0)  
Or  
PWRON=0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
PWRON= 0 < 4.0 sec  
& VIN > UVDET  
(PWRON_CFG=1)  
PWRON = 0  
All SWxOMODE bits= 0  
(PWRON_CFG = 0)  
Or  
VIN < UVDET  
PWRON = 0  
Any SWxOMODE bits=1  
(PWRON_CFG=0)  
Or  
PWRON=0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
PWRON = 0 held >= 4.0 sec  
All SWxOMODE bits= 0  
& PWRONRSTEN = 1  
(PWRON_CFG = 1)  
PWRON=1  
& VIN > UVDET  
(PWRON_CFG =0)  
Or  
PWRON= 0 < 4.0 sec  
& VIN > UVDET  
(PWRON_CFG=1)  
ON  
Thermal shudown  
PWRON = 0  
All SWxOMODE bits= 0  
(PWRON_CFG = 0)  
Or  
STANDBY asserted  
STANDBY de-asserted  
PWRON = 0 held >= 4.0 sec  
All SWxOMODE bits= 0  
& PWRONRSTEN = 1  
(PWRON_CFG = 1)  
Thermal shutdown  
Standby  
Figure 8. State diagram  
To complement the state diagram in Figure 8, a description of the states is provided in following sections. Note that VIN must exceed the  
rising UVDET threshold to allow a power up. Refer to Table 27 for the UVDET thresholds. Additionally, I2C control is not possible in the  
Coin Cell mode and the interrupt signal, INTB, is only active in Sleep, Standby, and ON states.  
6.4.1.1  
ON mode  
The PF0200 enters the On mode after a turn-on event. RESETBMCU is de-asserted, high, in this mode of operation.  
6.4.1.2  
OFF mode  
The PF0200 enters the Off mode after a turn-off event. A thermal shutdown event also forces the PF0200 into the Off mode. Only  
VCOREDIG and VSNVS are powered in the mode of operation. To exit the Off mode, a valid turn-on event is required. RESETBMCU is  
asserted, LOW, in this mode.  
6.4.1.3  
Standby mode  
• Depending on STANDBY pin configuration, Standby is entered when the STANDBY pin is asserted. This is typically used for low-  
power mode of operation.  
• When STANDBY is de-asserted, Standby mode is exited.  
PF0200  
26  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
A product may be designed to go into a Low-power mode after periods of inactivity. The STANDBY pin is provided for board level control  
of going in and out of such deep sleep modes (DSM).  
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the  
operating mode of the regulators or disabling some regulators. The configuration of the regulators in Standby is pre-programmed through  
the I2C interface.  
Note that the STANDBY pin is programmable for Active High or Active Low polarity, and that decoding of a Standby event will take into  
account the programmed input polarity as shown in Table 21. When the PF0200 is powered up first, regulator settings for the Standby  
mode are mirrored from the regulator settings for the ON mode. To change the STANDBY pin polarity to Active Low, set the STANDBYINV  
bit via software first, and then change the regulator settings for Standby mode as required. For simplicity, STANDBY will generally be  
referred to as active high throughout this document.  
Table 21. Standby Pin and polarity control  
STANDBY (Pin)(33)  
STANDBYINV (I2C bit)(34)  
STANDBY Control (32)  
0
0
1
0
1
0
1
1
0
0
1
1
Notes  
32.  
33.  
34.  
STANDBY = 0: System is not in Standby, STANDBY = 1: System is in Standby  
The state of the STANDBY pin only has influence in On mode.  
Bit 6 in Power Control Register (ADDR - 0x1B)  
Since STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond  
to the pin level changes. A programmable delay is provided to hold off the system response to a Standby event. This allows the processor  
and peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into  
Standby mode.  
When enabled (STBYDLY = 01, 10, or 11) per Table 22, STBYDLY will delay the Standby initiated response for the entire IC, until the  
STBYDLY counter expires. An allowance should be made for three additional 32 k cycles required to synchronize the Standby event.  
Table 22. STANDBY delay - initiated response  
STBYDLY[1:0](35)  
Function  
00  
01  
10  
11  
No Delay  
One 32 k period (default)  
Two 32 k periods  
Three 32 k periods  
Notes  
35.  
Bits [5:4] in Power Control Register (ADDR - 0x1B)  
6.4.1.4  
Sleep mode  
• Depending on PWRON pin configuration, Sleep mode is entered when PWRON is de-asserted and SWxOMODE bit is set.  
• To exit Sleep mode, assert the PWRON pin.  
In the Sleep mode, the regulator will use the set point as programmed by SW1ABOFF[5:0] for SW1A/B and by SWxOFF[6:0] for SW2 and  
SW3A/B. The activated regulators will maintain settings for this mode and voltage until the next turn-on event. Table 23 shows the control  
bits in Sleep mode. During Sleep mode, interrupts are active and the INTB pin will report any unmasked fault event.  
PF0200  
NXP Semiconductors  
27  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 23. Regulator mode control  
SWxOMODE  
Off operational mode (sleep) (36)  
0
1
Off  
PFM  
Notes  
36.  
For sleep mode, an activated switching regulator, should use the off  
mode set point as programmed by SW1ABOFF[5:0] for SW1A/B and  
SWxOFF[6:0] for SW2 and SW3A/B.  
6.4.1.5  
Coin cell mode  
In the Coin Cell state, the coin cell is the only valid power source (VIN = 0.0 V) to the PMIC. No turn-on event is accepted in the Coin Cell  
state. Transition to the OFF state requires that VIN surpasses UVDET threshold. RESETBMCU is held low in this mode.  
If the coin cell is depleted, a complete system reset will occur. At the next application of power and the detection of a Turn-on event, the  
system will be re-initialized with all I2C bits including those that reset on COINPORB, are restored to their default states.  
6.4.2 State machine flow summary  
Table 24 provides a summary matrix of the PF0200 flow diagram to show the conditions needed to transition from one state to another.  
Table 24. State machine flow summary  
Next state  
STATE  
OFF  
Coin cell  
VIN < UVDET  
X
Sleep  
Standby  
ON  
PWRON_CFG = 0  
PWRON = 1 & VIN > UVDET  
or  
OFF  
Coin cell  
Sleep  
X
X
X
X
X
X
X
PWRON_CFG = 1  
PWRON = 0 < 4.0 s  
& VIN > UNDET  
VIN > UVDET  
X
Thermal Shutdown  
PWRON_CFG = 0  
PWRON = 1 & VIN > UVDET  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
V
IN < UVDET  
PWRON_CFG = 1  
PWRON = 0 < 4.0 s &  
VIN > UNDET  
Thermal Shutdown  
PWRON_CFG = 0  
PWRON = 0  
Any SWxOMODE = 1  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
PWRON_CFG = 0  
PWRON = 0  
All SWxOMODE = 0  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
All SWxOMODE = 0 &  
PWRONRSTEN = 1  
Standby  
V
IN < UVDET  
X
Standby de-asserted  
Thermal Shutdown  
PWRON_CFG = 0  
PWRON = 0  
Any SWxOMODE = 1  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
PWRON_CFG = 0  
PWRON = 0  
All SWxOMODE = 0  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
All SWxOMODE = 0 &  
PWRONRSTEN = 1  
ON  
V
IN < UVDET  
Standby asserted  
X
PF0200  
28  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.2.1  
Turn on events  
From OFF and Sleep modes, the PMIC is powered on by a turn-on event. The type of Turn-on event depends on the configuration of  
PWRON. PWRON may be configured as an active high when PWRON_CFG = 0, or as the input of a mechanical switch when  
PWRON_CFG = 1. VIN must be greater than UVDET for the PMIC to turn-on. When PWRON is configured as an active high and PWRON  
is high (pulled up to VSNVS) before VIN is valid, a VIN transition from 0.0 V to a voltage greater than UVDET is also a Turn-on event. See  
the State diagram, Figure 8, and the Table 24 for more details. Any regulator enabled in the Sleep mode will remain enabled when  
transitioning from Sleep to ON, i.e., the regulator will not be turned off and then on again to match the start-up sequence. The following  
is a more detailed description of the PWRON configurations:  
• If PWRON_CFG = 0, the PWRON signal is high and VIN > UVDET, the PMIC will turn on; the interrupt and sense bits, PWRONI and  
PWRONS respectively, will be set.  
• If PWRON_CFG = 1, VIN > UVDET and PWRON transitions from high to low, the PMIC will turn on; the interrupt and sense bits,  
PWRONI and PWRONS respectively, will be set.  
The sense bit will show the real time status of the PWRON pin. In this configuration, the PWRON input can be a mechanical switch  
debounced through a programmable debouncer, PWRONDBNC[1:0], to avoid a response to a very short (i.e., unintentional) key press.  
The interrupt is generated for both the falling and the rising edge of the PWRON pin. By default, a 30 ms interrupt debounce is applied to  
both falling and rising edges. The falling edge debounce timing can be extended with PWRONDBNC[1:0] as defined in the table below.  
The interrupt is cleared by software, or when cycling through the OFF mode.  
Table 25. PWRON hardware debounce bit settings  
Turn on  
debounce (ms)  
Falling edge INT  
debounce (ms)  
Rising edge INT  
debounce (ms)  
Bits  
State  
00  
01  
10  
11  
0.0  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
PWRONDBNC[1:0]  
Notes  
750  
750  
37.  
The sense bit, PWRONS, is not debounced and follows the state of the PWRON pin.  
6.4.2.2  
Turn off events  
PWRON pin  
The PWRON pin is used to power off the PF0200. The PWRON pin can be configured with OTP to power off the PMIC under the following  
two conditions:  
1. PWRON_CFG bit = 0, SWxOMODE bit = 0 and PWRON pin is low.  
2. PWRON_CFG bit = 1, SWxOMODE bit = 0, PWRONRSTEN = 1 and PWRON is held low for longer than 4.0 seconds.  
Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.  
Thermal protection  
If the die temperature surpasses a given threshold, the thermal protection circuit will power off the PMIC to avoid damage. A turn-on event  
will not power on the PMIC while it is in thermal protection. The part will remain in Off mode until the die temperature decreases below a  
given threshold. There are no specific interrupts related to this other than the warning interrupt. See Power dissipation section for more  
detailed information.  
Undervoltage detection  
When the voltage at VIN drops below the undervoltage falling threshold, UVDET, the state machine will transition to the Coin Cell mode.  
PF0200  
NXP Semiconductors  
29  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.3 Power tree  
The PF0200 PMIC features four buck regulators, one boost regulator, six general purpose LDOs, one switch/LDO combination, and a  
DDR voltage reference to supply voltages for the application processor and peripheral devices. The buck regulators as well as the boost  
regulator are supplied directly from the main input supply (VIN). The inputs to all of the buck regulators must be tied to VIN, whether they  
are powered on or off. The six general use LDO regulators are directly supplied from the main input supply or from the switching regulators  
depending on the application requirements. Since VREFDDR is intended to provide DDR memory reference voltage, it should be supplied  
by any rail supplying voltage to DDR memories; the typical application recommends the use of SW3 as the input supply for VREFDDR.  
VSNVS is supplied by either the main input supply or the coin cell. Refer to Table 26 for a summary of all power supplies provided by the  
PF0200.  
Table 26. Power tree summary  
Supply  
Output voltage (V)  
Step size (mV)  
Maximum load current (mA)  
SW1A/B  
SW2  
0.3 - 1.875  
0.4 - 3.3  
25  
25/50  
25/50  
50  
2500  
1500  
1250(38)  
600  
SW3A/B  
SWBST  
VGEN1  
VGEN2  
VGEN3  
VGEN4  
VGEN5  
VGEN6  
VSNVS  
VREFDDR  
0.4 - 3.3  
5.00/5.05/5.10/5.15  
0.80 – 1.55  
0.80 – 1.55  
1.8 – 3.3  
50  
100  
50  
250  
100  
100  
100  
100  
NA  
100  
1.8 – 3.3  
350  
1.8 – 3.3  
100  
1.8 – 3.3  
200  
1.0 - 3.0  
0.4  
0.5*SW3A_OUT  
NA  
10  
Notes  
38.  
Current rating per independent phase, when SW3A/B is set in single phase, current capability is up to  
2500 mA.  
Figure 9 shows a simplified power map with various recommended options to supply the different block within the PF0200, as well as the  
typical application voltage domain on the i.MX 6 application processors. Note that each application power tree is dependent upon the  
system’s voltage and current requirements, therefore a proper input voltage should be selected for the regulators.  
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial  
power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative  
tables and text specifying each supply for information on performance metrics and operating ranges. Table 27 summarizes the UVDET  
thresholds.  
Table 27. UVDET threshold  
UVDET Threshold  
VIN  
Rising  
Falling  
3.1 V  
2.65 V  
PF0200  
30  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
i.MX6X  
MCU  
SW1A  
CORE  
(0.3 to 1.875 V), 1.25 A  
VDDARM_IN  
VDDSOC_IN  
(0.3 to 1.875 V), 1.25 A  
SW2  
VDDHIGH  
VDDHIGH_IN  
VIN  
2.8 - 4.5 V  
(0.4 to 3.3 V), 1.5 A  
SW3A  
DDR CORE  
(0.4 to 3.3 V), 1.25 A  
SW3B  
DDR IO  
VDD_DDR_IO  
(0.4 to 3.3 V), 1.25 A  
SWBST  
5.0 V, 0.6 A  
LDO_3p0  
VREFDDR  
0.5*VDDR, 10 mA  
SW3A/B  
VIN  
VSNVS  
MUX /  
VSNVS_IN  
COIN  
CHRG  
1.0 to 3.0 V,  
400 uA  
Coincell  
VGEN1  
(0.80 to 1.55 V),  
100 mA  
USB_OTG  
VIN  
SW2  
VINMAX = 3.4 V  
VINMAX = 3.6 V  
VINMAX = 4.5 V  
VGEN2  
(0.80 to 1.55 V),  
250 mA  
DDR3  
VGEN3  
(1.8 to 3.3 V),  
100 mA  
Peripherals  
VIN  
SW2  
VGEN4  
(1.8 to 3.3 V),  
350 mA  
VGEN5  
(1.8 to 3.3 V),  
100 mA  
VIN  
SW2  
VGEN6  
(1.8 to 3.3 V),  
200 mA  
Figure 9. PF0200 typical power map  
PF0200  
NXP Semiconductors  
31  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4 Buck regulators  
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.  
6.4.4.1  
Current limit  
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit  
condition persists for more than 8.0 ms, a fault interrupt is generated.  
6.4.4.2  
General control  
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur  
by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and load current  
variation. Available switching modes for buck regulators are presented in Table 28.  
Table 28. Switching mode description  
Mode  
Description  
The regulator is switched off and the output voltage is discharged.  
OFF  
PFM  
PWM  
APS  
In this mode, the regulator is always in PFM mode, which is useful at light loads for optimized efficiency.  
In this mode, the regulator is always in PWM mode operation regardless of load conditions.  
In this mode, the regulator moves automatically between pulse skipping mode and PWM mode depending on load conditions.  
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after  
the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching  
mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes.  
Table 29 summarizes the Buck regulator programmability for Normal and Standby modes.  
Table 29. Regulator mode control  
SWxMODE[3:0]  
Normal mode  
Standby mode  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Off  
Off  
Off  
PWM  
Reserved  
PFM  
Reserved  
Off  
APS  
Off  
PWM  
PWM  
PWM  
APS  
Reserved  
APS  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
PFM  
PWM  
PFM  
Reserved  
Reserved  
Reserved  
Reserved  
Transitioning between Normal and Standby modes can affect a change in switching modes as well as output voltage. The rate of the  
output voltage change is controlled by the Dynamic Voltage Scaling (DVS), explained in Dynamic voltage scaling. The output voltage  
options are the same for Normal and Standby modes for each regulator.  
PF0200  
32  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
When in Standby mode, the regulator outputs the voltage programmed in its standby voltage register and will operate in the mode selected  
by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator will return to its normal switching mode and its output voltage  
programmed in its voltage register.  
Any regulators whose SWxOMODE bit is set to “1” will enter Sleep mode if a PWRON turn-off event occurs, and any regulator whose  
SWxOMODE bit is set to “0” will be turned off. In Sleep mode, the regulator outputs the voltage programmed in its off (Sleep) voltage  
register and operates in the PFM mode. The regulator will exit the Sleep mode when a turn-on event occurs. Any regulator whose  
SWxOMODE bit is set to “1” will remain on and change to its normal configuration settings when exiting the Sleep state to the ON state.  
Any regulator whose SWxOMODE bit is set to “0” will be powered up with the same delay in the start-up sequence as when powering On  
from Off. At this point, the regulator returns to its default ON state output voltage and switch mode settings.  
Table 23 shows the control bits in Sleep mode. When Sleep mode is activated by the SWxOMODE bit, the regulator will use the set point  
as programmed by SW1ABOFF[5:0] for SW1A/B and by SWxOFF[6:0] for SW2 and SW3A/B.  
Dynamic voltage scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.  
1. Normal operation: The output voltage is selected by I2C bits SW1AB[5:0] for SW1A/B and SWx[6:0] for SW2 and SW3A/B. A  
voltage transition initiated by I2C is governed by the DVS stepping rates shown in Table 32 and Table 33.  
2. Standby Mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state  
retention voltage of a given processor; it is selected by I2C bits SW1ABSTBY[5:0] for SW1A/B and by bits SWxSTBY[6:0] for SW2  
and SW3A/B. Voltage transitions initiated by a Standby event are governed by the SW1ABDVSSPEED[1:0] and  
SWxDVSSPEED[1:0] I2C bits shown in Table 32 and Table 33, respectively.  
3. Sleep Mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state  
retention voltage of a given processor; it is selected by I2C bits SW1ABOFF[5:0] for SW1A/B and by bits SWxOFF[6:0] for SW2,  
and SW3A/B. Voltage transitions initiated by a turn-off event are governed by the SW1ABDVSSPEED[1:0] and  
SWxDVSSPEED[1:0] I2C bits shown in Table 32 and Table 33, respectively.  
Table 30, Table 31, Table 32, and Table 33 summarize the set point control and DVS time stepping applied to all regulators.  
Table 30. DVS control logic for SW1A/B  
STANDBY  
Set Point Selected by  
0
1
SW1AB[5:0]  
SW1ABSTBY[5:0]  
Table 31. DVS control logic for SW2 and SW3A/B  
STANDBY  
Set Point Selected by  
0
1
SWx[6:0]  
SWxSTBY[6:0]  
Table 32. DVS speed selection for SW1A/B  
SW1ABDVSSPEED[1:0]  
Function  
00  
01 (default)  
10  
25 mV step each 2.0 μs  
25 mV step each 4.0 μs  
25 mV step each 8.0 μs  
25 mV step each 16 μs  
11  
PF0200  
NXP Semiconductors  
33  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 33. DVS speed selection for SW2 and SW3A/B  
Function  
SWx[6] = 0 or SWxSTBY[6] = 0  
Function  
SWx[6] = 1 or SWxSTBY[6] = 1  
SWxDVSSPEED[1:0]  
00  
01 (default)  
10  
25 mV step each 2.0 μs  
25 mV step each 4.0 μs  
25 mV step each 8.0 μs  
25 mV step each 16 μs  
50 mV step each 4.0 μs  
50 mV step each 8.0 μs  
50 mV step each 16 μs  
50 mV step each 32 μs  
11  
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are  
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the  
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in  
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.  
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control.  
During the DVS period the overcurrent condition on the regulator should be masked.  
Requested  
Set Point  
Output Voltage  
with light Load  
Internally  
Controlled Steps  
Example  
Output  
Voltage  
Actual Output  
Voltage  
Initial  
Set Point  
Actual  
Output Voltage  
Internally  
Possible  
Output Voltage  
Window  
Controlled Steps  
Request for  
Higher Voltage  
Request for  
Lower Voltage  
Voltage  
Change  
Request  
Initiated by I2C Programming, Standby Control  
Figure 10. Voltage stepping with DVS  
Regulator phase clock  
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 34. By default, each regulator is initialized at 90 ° out  
of phase with respect to each other. For example, SW1A/B is set to 0 °, SW2 is set to 90 ° and SW3A/B is set to 180 ° by default at power  
up.  
Table 34. Regulator phase clock selection  
Phase of clock sent to regulator  
SWxPHASE[1:0]  
(degrees)  
00  
01  
10  
11  
0
90  
180  
270  
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 36 shows the  
selectable options for SWxFREQ[1:0]. For each frequency, all phases will be available, this allows regulators operating at different  
frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and  
4.0 MHz, 180 ° are the same in terms of phasing. Table 35 shows the optimum phasing when using more than one switching frequency.  
PF0200  
34  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 35. Optimum phasing  
Frequencies  
Optimum phasing  
1.0 MHz  
2.0 MHz  
0 °  
180 °  
1.0 MHz  
4.0 MHz  
0 °  
180 °  
2.0 MHz  
4.0 MHz  
0 °  
180 °  
1.0 MHz  
2.0 MHz  
4.0 MHz  
0 °  
90 °  
90 °  
Table 36. Regulator frequency configuration  
SWxFREQ[1:0]  
Frequency  
00  
01  
10  
11  
1.0 MHz  
2.0 MHz  
4.0 MHz  
Reserved  
Programmable maximum current  
The maximum current, ISWxMAX, of each buck regulator is programmable. This allows the use of smaller inductors where lower currents  
are required. Programmability is accomplished by choosing the number of paralleled power stages in each regulator. The  
SWx_PWRSTG[2:0] bits on the Extended page 2 of the register map control the number of power stages. See Table 37 for the  
programmable options. Bit[0] must always be enabled to ensure the stage with the current sensor is chosen. The default setting,  
SWx_PWRSTG[2:0] = 111, represents the highest maximum current. The current limit for each option is also scaled by the percentage  
of power stages that are enabled.  
Table 37. Programmable current configuration  
Regulators  
Control bits  
% of power stages enabled  
Rated current (A)  
SW1AB_PWRSTG[2:0]  
ISW1ABMAX  
1.0  
0
0
1
1
1
1
40%  
80%  
SW1AB  
0
1
1
1
2.0  
0
60%  
1.5  
1
100%  
2.5  
SW2_PWRSTG[2:0]  
ISW2MAX  
0.55  
0
0
1
1
0
1
1
1
1
38%  
75%  
SW2  
1
1.125  
0.95  
0
63%  
1
100%  
1.5  
SW3A_PWRSTG[2:0]  
ISW3AMAX  
0.5  
0
0
1
1
0
1
0
1
1
1
1
1
40%  
80%  
SW3A  
1.0  
60%  
0.75  
100%  
1.25  
PF0200  
NXP Semiconductors  
35  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 37. Programmable current configuration (continued)  
Regulators  
Control bits  
% of power stages enabled  
Rated current (A)  
SW3B_PWRSTG[2:0]  
ISW3BMAX  
0.5  
0
0
1
1
0
1
0
1
1
1
1
1
40%  
80%  
SW3B  
1.0  
60%  
0.75  
100%  
1.25  
6.4.4.3  
SW1A/B  
SW1A/B is a 2.5 A single phase regulator. The SW1ALX and SW1BLX pins should be connected together on the board.  
SW1_CONFIG[1:0] = 01 is the only configuration supported.  
The single phase configuration is programmed by OTP by using SW1_CONFIG[1:0] bits in the register map Extended page 1, as shown  
in Table 38.  
.
Table 38. SW1 configuration  
SW1_CONFIG[1:0]  
Description  
00  
01  
10  
11  
Reserved  
A/B Single Phase  
Reserved  
Reserved  
SW1A/B single phase  
In this configuration, SW1A/B is connected as a single phase with a single inductor. This configuration allows reduced component count  
by using only one inductor for SW1A/B. Figure 11 shows the physical connection for SW1A/B in single phase.  
VIN  
SW1AIN  
SW1ALX  
SW1AMODE  
ISENSE  
CINSW1A  
Controller  
SW1A/B  
Driver  
LSW1A  
COSW1A  
SW1AFAULT  
Internal  
I2C  
Compensation  
Z2  
I2C  
Interface  
SW1FB  
Z1  
EA  
VREF  
DAC  
VIN  
SW1BIN  
SW1BMODE  
ISENSE  
CINSW1B  
Controller  
SW1BLX  
Driver  
SW1BFAULT  
EP  
Figure 11. SW1A/B single phase block diagram  
Both SW1ALX and SW1BLX nodes operate at the same DVS, frequency, and phase configured by the SW1ABCONF register.  
PF0200  
36  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
SW1A/B setup and control registers  
SW1A/B output voltage is programmable from 0.300 to 1.875 V in steps of 25 mV. The output voltage set point is independently  
programmed for Normal, Standby, and Sleep mode by setting the SW1AB[5:0], SW1ABSTBY[5:0], and SW1ABOFF[5:0] bits respectively.  
Table 39 shows the output voltage coding for SW1A/B. Note: Output voltages of 0.6 V and below are not supported.  
Table 39. SW1A/B output voltage configuration  
SW1AB[5:0]  
SW1ABSTBY[5:0]  
SW1ABOFF[5:0]  
SW1AB[5:0]  
SW1ABSTBY[5:0]  
SW1ABOFF[5:0]  
Set point  
SW1AB output (V)  
Set point  
SW1AB output (V)  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.3000  
0.3250  
0.3500  
0.3750  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Table 40 provides a list of registers used to configure and operate SW1A/B and a detailed description on each one of these register is  
provided in Table 41 through Table 45.  
PF0200  
NXP Semiconductors  
37  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 40. SW1A/B register summary  
Register  
SW1ABVOLT  
Address  
Output  
0x20  
0x21  
0x22  
0x23  
0x24  
SW1AB Output voltage set point in normal operation  
SW1AB Output voltage set point on Standby  
SW1AB Output voltage set point on Sleep  
SW1ABSTBY  
SW1ABOFF  
SW1ABMODE  
SW1ABCONF  
SW1AB Switching Mode selector register  
SW1AB DVS, Phase, Frequency and ILIM configuration  
Table 41. Register SW1ABVOLT - ADDR 0x20  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during normal  
operation mode. See Table 39 for all possible  
configurations.  
SW1AB  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
UNUSED  
Table 42. Register SW1ABSTBY - ADDR 0x21  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during Standby  
mode. See Table 39 for all possible  
configurations.  
SW1ABSTBY  
UNUSED  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
Table 43. Register SW1ABOFF - ADDR 0x22  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during Sleep  
mode. See Table 39 for all possible  
configurations.  
SW1ABOFF  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
UNUSED  
Table 44. Register SW1ABMODE - ADDR 0x23  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB switching operation mode.  
See Table 29 for all possible configurations.  
SW1ABMODE  
UNUSED  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
Set status of SW1AB when in Sleep mode  
SW1ABOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
PF0200  
38  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 45. Register SW1ABCONF - ADDR 0x24  
Name  
Bit #  
R/W Default  
Description  
SW1AB current limit level selection  
SW1ABILIM  
0
R/W  
0x00  
0 = High level current limit  
1 = Low level current limit  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
Unused  
SW1A/B switching frequency selector  
See Table 36.  
SW1ABFREQ  
3:2  
SW1A/B Phase clock selection  
See Table 34.  
SW1ABPHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW1A/B DVS speed selection  
See Table 32.  
SW1ABDVSSPEED  
SW1A/B external components  
Table 46. SW1A/B external component recommendations  
Mode  
Components  
Description  
A/B Single Phase  
(39)  
CINSW1A  
SW1A Input capacitor  
4.7 μF  
0.1 μF  
(39)  
(39)  
CIN1AHF  
SW1A Decoupling input capacitor  
SW1B Input capacitor  
CINSW1B  
4.7 μF  
(39)  
CIN1BHF  
SW1B Decoupling input capacitor  
SW1A/B Output capacitor  
0.1 μF  
(39)  
COSW1AB  
4 x 22 μF  
1.0 μH  
DCR = 12 mΩ  
ISAT = 4.5 A  
LSW1A  
SW1A/B Inductor  
Notes  
39.  
Use X5R or X7R capacitors.  
PF0200  
NXP Semiconductors  
39  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
SW1A/B specifications  
Table 47. SW1A/B electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSW1x = 3.6 V, VSW1AB  
= 1.2 V, ISW1AB = 100 mA, SW1AB_PWRSTG[2:0] = [111], typical external component values, fSW1AB = 2.0 MHz, unless otherwise noted.  
Typical values are characterized at VIN = VINSW1x = 3.6 V, VSW1AV = 1.2 V, ISW1AB = 100 mA, SW1AB_PWRSTG[2:0] = [111], and 25 °C,  
unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
SW1A/B (single phase)  
VINSW1A  
Operating Input Voltage  
2.8  
4.5  
V
V
VINSW1B  
VSW1AB  
Nominal Output Voltage  
Output Voltage Accuracy  
Table 39  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 2.5 A  
0.625 V VSW1AB 1.450 V  
1.475 V VSW1AB 1.875 V  
-25  
-3.0%  
-
-
25  
3.0%  
mV  
%
(40)  
VSW1ABACC  
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 150 mA  
-65  
-45  
-3.0%  
65  
45  
3.0%  
0.625 V < VSW1AB < 0.675 V  
0.7 V < VSW1AB < 0.85 V  
0.875 V < VSW1AB < 1.875 V  
Rated Output Load Current,  
(41)  
(41)  
ISW1AB  
2500  
mA  
A
2.8 V < VIN < 4.5 V, 0.625 V < VSW1AB < 1.875 V  
Current Limiter Peak Current Detection  
SW1A/B Single Phase (current through inductor)  
SW1ABILIM = 0  
ISW1ABLIM  
4.5  
3.3  
6.5  
4.9  
8.5  
6.4  
SW1ABILIM = 1  
Start-up Overshoot  
VSW1ABOSH  
ISW1AB = 0.0 mA  
DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V  
66  
mV  
µs  
Turn-on Time  
Enable to 90% of end value  
ISW1AB = 0.0 mA  
tONSW1AB  
500  
DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V  
Switching Frequency  
SW1ABFREQ[1:0] = 00  
SW1ABFREQ[1:0] = 01  
SW1ABFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW1AB  
MHz  
Efficiency (Single Phase)  
VIN = 3.6 V, fSW1AB = 2.0 MHz, LSW1AB = 1.0 μH  
82  
84  
86  
87  
82  
71  
PFM, 0.9 V, 1.0 mA  
PFM, 1.2 V, 50 mA  
APS, PWM, 1.2 V, 500 mA  
APS, PWM, 1.2 V, 750 mA  
APS, PWM, 1.2 V, 1250 mA  
APS, PWM, 1.2 V, 2500 mA  
ηSW1AB  
%
ΔVSW1AB  
VSW1ABLIR  
VSW1ABLOR  
Output Ripple  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient load = 0 to 1.25 A, di/dt = 100 mA/μs  
Overshoot  
Undershoot  
VSW1ABLOTR  
mV  
50  
50  
PF0200  
40  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 47. SW1A/B electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSW1x = 3.6 V, VSW1AB  
= 1.2 V, ISW1AB = 100 mA, SW1AB_PWRSTG[2:0] = [111], typical external component values, fSW1AB = 2.0 MHz, unless otherwise noted.  
Typical values are characterized at VIN = VINSW1x = 3.6 V, VSW1AV = 1.2 V, ISW1AB = 100 mA, SW1AB_PWRSTG[2:0] = [111], and 25 °C,  
unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
SW1A/B (single phase) (continued)  
Quiescent Current  
ISW1ABQ  
PFM Mode  
APS Mode  
18  
235  
µA  
SW1A P-MOSFET RDSON  
VINSW1A = 3.3 V  
RONSW1AP  
RONSW1AN  
ISW1APQ  
215  
258  
245  
326  
7.5  
mΩ  
mΩ  
µA  
SW1A N-MOSFET RDSON  
VINSW1A = 3.3 V  
SW1A P-MOSFET Leakage Current  
VINSW1A = 4.5 V  
SW1A N-MOSFET Leakage Current  
VINSW1A = 4.5 V  
ISW1ANQ  
2.5  
µA  
SW1B P-MOSFET RDSON  
VINSW1B = 3.3 V  
RONSW1BP  
RONSW1BN  
ISW1BPQ  
215  
258  
245  
326  
7.5  
mΩ  
mΩ  
µA  
SW1B N-MOSFET RDSON  
VINSW1B = 3.3 V  
SW1B P-MOSFET Leakage Current  
VINSW1B = 4.5 V  
SW1B N-MOSFET Leakage Current  
VINSW1B = 4.5 V  
ISW1BNQ  
2.5  
µA  
RSW1ABDIS  
Discharge Resistance  
600  
Ω
Notes  
40.  
Accuracy specification is inclusive of load and line regulation.  
41.  
Current rating of SW1AB supports the Power Virus mode of operation of the i.MX6X processor.  
SW1AB single phase  
Figure 12. SW1AB efficiency waveforms  
PF0200  
NXP Semiconductors  
41  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.4  
SW2  
SW2 is a single phase, 1.5 A rated buck regulator. Table 28 describes the modes, and Table 29 show the options for the SWxMODE[3:0]  
bits. Figure 13 shows the block diagram and the external component connections for SW2 regulator.  
VIN  
SW2IN  
SW2MODE  
ISENSE  
CINSW2  
Controller  
SW2  
SW2LX  
EP  
Driver  
LSW2  
COSW2  
SW2FAULT  
I2C  
Interface  
Internal  
I2C  
Compensation  
Z2  
SW2FB  
Z1  
VREF  
EA  
DAC  
Figure 13. SW2 block diagram  
SW2 setup and control registers  
SW2 output voltage is programmable from 0.400 to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal  
operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW2[6] is  
set to “0”, the output will be limited to the lower output voltages from 0.400 to 1.975 V with 25 mV increments, as determined by bits  
SW2[5:0]. Likewise, once bit SW2[6] is set to “1”, the output voltage will be limited to the higher output voltage range from 0.800 to 3.300 V  
with 50 mV increments, as determined by bits SW2[5:0].  
In order to optimize the performance of the regulator, it is recommended that only voltages from 2.000 to 3.300 V be used in the high  
range, and the lower range be used for voltages from 0.400 to 1.975 V.  
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW2[5:0], SW2STBY[5:0]  
and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] will be copied into bits SW2STBY[6], and SW2OFF[6] bits.  
Therefore, the output voltage range will remain the same in all three operating modes. Table 48 shows the output voltage coding valid for  
SW2. Note: Output voltages of 0.6 V and below are not supported.  
Table 48. SW2 output voltage configuration  
Low output voltage range(42)  
High output voltage range  
SW2[6:0]  
SW2[6:0]  
Set point  
SW2STBY[6:0]  
SW2OFF[6:0]  
SW2 output  
Set point  
SW2STBY[6:0]  
SW2OFF[6:0]  
SW2 output  
0
1
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
2
3
4
5
6
7
8
9
10  
11  
PF0200  
42  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 48. SW2 output voltage configuration (continued)  
Low output voltage range(42)  
High output voltage range  
SW2[6:0]  
SW2[6:0]  
Set point  
SW2STBY[6:0]  
SW2OFF[6:0]  
SW2 output  
Set point  
SW2STBY[6:0]  
SW2OFF[6:0]  
SW2 output  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
76  
77  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
2.5500  
2.6000  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
PF0200  
NXP Semiconductors  
43  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 48. SW2 output voltage configuration (continued)  
Low output voltage range(42)  
High output voltage range  
SW2[6:0]  
SW2[6:0]  
Set point  
SW2STBY[6:0]  
SW2OFF[6:0]  
SW2 output  
Set point  
SW2STBY[6:0]  
SW2OFF[6:0]  
SW2 output  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
3.2500  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
42.  
For voltages less than 2.0 V, only use set points 0 to 63  
Setup and control of SW2 is done through I2C registers listed in Table 49, and a detailed description of each one of the registers is  
provided in Tables 50 to Table 54.  
Table 49. SW2 register summary  
Register  
SW2VOLT  
Address  
Description  
0x35  
0x36  
0x37  
0x38  
0x39  
Output voltage set point on normal operation  
Output voltage set point on Standby  
Output voltage set point on Sleep  
SW2STBY  
SW2OFF  
SW2MODE  
SW2CONF  
Switching Mode selector register  
DVS, Phase, Frequency, and ILIM configuration  
Table 50. Register SW2VOLT - ADDR 0x35  
Name  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during normal operation  
mode. See Table 48 for all possible configurations.  
SW2  
SW2  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2. Set  
during OTP or TBB configuration only. See Table 48  
for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
PF0200  
44  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 51. Register SW2STBY - ADDR 0x36  
Name  
SW2STBY  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during Standby mode.  
See Table 48 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2 on  
Standby mode. This bit inherits the value configured  
on bit SW2[6] during OTP or TBB configuration. See  
Table 48 for all possible configurations.  
SW2STBY  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 52. Register SW2OFF - ADDR 0x37  
Name  
SW2OFF  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during Sleep mode. See  
Table 48 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2 on  
Sleep mode. This bit inherits the value configured on  
bit SW2[6] during OTP or TBB configuration. See  
Table 48 for all possible configurations.  
SW2OFF  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 53. Register SW2MODE - ADDR 0x38  
Name  
SW2MODE  
Bit #  
R/W  
Default  
Description  
Sets the SW2 switching operation mode.  
See Table 28 for all possible configurations.  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
UNUSED  
Set status of SW2 when in Sleep mode  
SW2OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 54. Register SW2CONF - ADDR 0x39  
Name  
Bit #  
R/W  
Default  
Description  
SW2 current limit level selection  
0 = High level current limit  
1 = Low level current limit  
SW2ILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
Unused  
SW2 switching frequency selector.  
See Table 36.  
SW2FREQ  
3:2  
SW2 Phase clock selection.  
See Table 34.  
SW2PHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW2 DVS speed selection.  
See Table 33.  
SW2DVSSPEED  
PF0200  
NXP Semiconductors  
45  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
SW2 external components  
Table 55. SW2 external component recommendations  
Components  
Description  
SW2 Input capacitor  
Values  
(43)  
CINSW2  
4.7 μF  
0.1 μF  
(43)  
CIN2HF  
COSW2  
SW2 Decoupling input capacitor  
SW2 Output capacitor  
(43)  
2 x 22 μF  
1.0 μH  
DCR = 50 mΩ  
ISAT = 2.65 A  
LSW2  
SW2 Inductor  
Notes  
43.  
Use X5R or X7R capacitors.  
SW2 specifications  
Table 56. SW2 electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSW2 = 3.6 V, VSW2  
=
3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical  
values are characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW2  
(44)  
VINSW2  
VSW2  
Operating Input Voltage  
2.8  
4.5  
V
V
Nominal Output Voltage  
Table 48  
Output Voltage Accuracy  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 1.5 A  
0.625 V < VSW2 < 0.85 V  
0.875 V < VSW2 < 1.975 V  
2.0 V < VSW2 < 3.3 V  
-25  
-3.0%  
-6.0%  
25  
3.0%  
6.0%  
mV  
%
(45)  
VSW2ACC  
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 50 mA  
-65  
-45  
-3.0%  
-3.0%  
65  
45  
3.0%  
3.0%  
0.625 V < VSW2 < 0.675 V  
0.7 V < VSW2 < 0.85 V  
0.875 V < VSW2 < 1.975 V  
2.0 V < VSW2 < 3.3 V  
Rated Output Load Current  
(46)  
ISW2  
1500  
mA  
A
2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V  
Current Limiter Peak Current Detection  
Current through Inductor  
SW2ILIM = 0  
SW2ILIM = 1  
ISW2LIM  
2.1  
1.57  
3.0  
2.25  
3.9  
2.93  
Start-up Overshoot  
VSW2OSH  
ISW2 = 0.0 mA  
DVS clk = 25 mV/4 μs, VIN = VINSW2 = 4.5 V  
66  
mV  
µs  
Turn-on Time  
Enable to 90% of end value  
ISW2 = 0.0 mA  
tONSW2  
550  
DVS clk = 50 mV/8 μs, VIN = VINSW2 = 4.5 V  
Switching Frequency  
SW2FREQ[1:0] = 00  
SW2FREQ[1:0] = 01  
SW2FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW2  
MHz  
PF0200  
46  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 56. SW2 electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSW2 = 3.6 V, VSW2  
=
3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical  
values are characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Efficiency  
VIN = 3.6 V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH  
94  
95  
96  
94  
92  
89  
PFM, 3.15 V, 1.0 mA  
PFM, 3.15 V, 50 mA  
APS, PWM, 3.15 V, 400 mA  
APS, PWM, 3.15 V, 600 mA  
APS, PWM, 3.15 V, 1000 mA  
APS, PWM, 3.15 V, 1500 mA  
ηSW2  
%
Switch mode supply SW2 (continued)  
ΔVSW2  
VSW2LIR  
VSW2LOR  
Output Ripple  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs  
Overshoot  
Undershoot  
VSW2LOTR  
mV  
µA  
50  
50  
Quiescent Current  
PFM Mode  
APS Mode (Low output voltage settings)  
APS Mode (High output voltage settings)  
23  
145  
305  
ISW2Q  
SW2 P-MOSFET RDSON  
at VIN = VINSW2 = 3.3 V  
RONSW2P  
RONSW2N  
ISW2PQ  
190  
212  
209  
255  
12  
mΩ  
mΩ  
µA  
SW2 N-MOSFET RDSON  
at VIN = VINSW2 = 3.3 V  
SW2 P-MOSFET Leakage Current  
VIN = VINSW2 = 4.5 V  
SW2 N-MOSFET Leakage Current  
VIN = VINSW2 = 4.5 V  
ISW2NQ  
4.0  
µA  
RSW2DIS  
Discharge Resistance  
600  
Ω
Notes  
44.  
When output is set to > 2.6 V the output will follow the input down when VIN gets near 2.8 V.  
Accuracy specification is inclusive of load and line regulation.  
45.  
46.  
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:  
(VINSW2 - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance).  
PF0200  
NXP Semiconductors  
47  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 14. SW2 efficiency waveforms  
6.4.4.5  
SW3A/B  
SW3A/B are 1.25 to 2.5 A rated buck regulators, depending on the configuration. Table 28 describes the available switching modes and  
Table 29 show the actual configuration options for the SW3xMODE[3:0] bits.  
SW3A/B can be configured in various phasing schemes, depending on the desired cost/performance trade-offs. The following  
configurations are available:  
• A single phase  
• Independent regulators  
The desired configuration is programmed in OTP by using the SW3_CONFIG[1:0] bits.Table 57 shows the options for the SW3CFG[1:0]  
bits.  
Table 57. SW3 Configuration  
SW3_CONFIG[1:0]  
Description  
00  
01  
10  
11  
A/B Single Phase  
A/B Single Phase  
Reserved  
A/B Independent  
SW3A/B single phase  
In this configuration, SW3ALX and SW3BLX are connected in single phase with a single inductor a shown in Figure 15. This configuration  
reduces cost and component count. Feedback is taken from the SW3AFB pin and the SW3BFB pin must be left open. Although control  
is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set.  
PF0200  
48  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VIN  
SW3AIN  
SW3ALX  
SW3AMODE  
ISENSE  
CINSW3A  
Controller  
SW3  
Driver  
LSW3A  
COSW3A  
SW3AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3AFB  
SW3BIN  
I2C  
Interface  
Z1  
VREF  
EA  
DAC  
VIN  
SW3BMODE  
ISENSE  
CINSW3B  
Controller  
SW3BLX  
Driver  
SW3BFAULT  
I2C  
EP  
Internal  
Compensation  
Z2  
VREF  
SW3BFB  
Z1  
DAC  
EA  
Figure 15. SW3A/B single phase block diagram  
PF0200  
NXP Semiconductors  
49  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
SW3A - SW3B independent outputs  
SW3A and SW3B can be configured as independent outputs as shown in Figure 16, providing flexibility for applications requiring more  
voltage rails with less current capability. Each output is configured and controlled independently by its respective I2C registers as shown  
in Table 59.  
VIN  
SW3AIN  
SW3ALX  
SW3AMODE  
ISENSE  
CINSW3A  
Controller  
SW3A  
Driver  
LSW3A  
COSW3A  
SW3AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3AFB  
SW3BIN  
Z1  
VREF  
EA  
DAC  
VIN  
I2C  
Interface  
SW3BMODE  
ISENSE  
CINSW3B  
Controller  
SW3B  
SW3BLX  
EP  
Driver  
LSW3B  
COSW3B  
SW3BFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3BFB  
Z1  
VREF  
EA  
DAC  
Figure 16. SW3A/B independent output block diagram  
SW3A/B setup and control registers  
SW3A/B output voltage is programmable from 0.400 to 3.300 V; however, bit SW3x[6] in register SW3xVOLT is read-only during normal  
operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW3x[6]  
is set to “0”, the output will be limited to the lower output voltages from 0.40 to 1.975 V with 25 mV increments, as determined by bits  
SW3x[5:0]. Likewise, once bit SW3x[6] is set to "1", the output voltage will be limited to the higher output voltage range from 0.800 to  
3.300 V with 50 mV increments, as determined by bits SW3x[5:0].  
In order to optimize the performance of the regulator, it is recommended that only voltages from 2.00 to 3.300 V be used in the high range  
and that that the lower range be used for voltages from 0.400 to 1.975 V.  
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW3x[5:0],  
SW3xSTBY[5:0], and SW3xOFF[5:0] bits respectively; however, the initial state of the SW3x[6] bit will be copied into the SW3xSTBY[6]  
and SW3xOFF[6] bits. Therefore, the output voltage range will remain the same on all three operating modes. Table 58 shows the output  
voltage coding valid for SW3x. Note: Output voltages of 0.6 V and below are not supported.  
PF0200  
50  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 58. SW3A/B output voltage configuration  
Low output voltage range(47)  
High output voltage range  
SW3x[6:0]  
SW3x[6:0]  
Set point  
SW3xSTBY[6:0]  
SW3xOFF[6:0]  
SW3x output  
Set Point  
SW3xSTBY[6:0]  
SW3xOFF[6:0]  
sw3xoutput  
0
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
2.5500  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
PF0200  
NXP Semiconductors  
51  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 58. SW3A/B output voltage configuration (continued)  
Low output voltage range(47)  
High output voltage range  
SW3x[6:0]  
SW3x[6:0]  
Set point  
SW3xSTBY[6:0]  
SW3xOFF[6:0]  
SW3x output  
Set Point  
SW3xSTBY[6:0]  
SW3xOFF[6:0]  
sw3xoutput  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
2.6000  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
3.2500  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
47.  
For voltages less than 2.0 V, only use set points 0 to 63.  
PF0200  
52  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 59 provides a list of registers used to configure and operate SW3A/B. A detailed description on each of these register is provided  
on Tables 60 through Table 69.  
Table 59. SW3AB register summary  
Register  
SW3AVOLT  
Address  
Output  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x43  
0x44  
0x45  
0x46  
0x47  
SW3A Output voltage set point on normal operation  
SW3A Output voltage set point on Standby  
SW3A Output voltage set point on Sleep  
SW3ASTBY  
SW3AOFF  
SW3AMODE  
SW3ACONF  
SW3BVOLT  
SW3BSTBY  
SW3BOFF  
SW3A Switching mode selector register  
SW3A DVS, phase, frequency and ILIM configuration  
SW3B Output voltage set point on normal operation  
SW3B Output voltage set point on Standby  
SW3B Output voltage set point on Sleep  
SW3BMODE  
SW3BCONF  
SW3B Switching mode selector register  
SW3B DVS, phase, frequency and ILIM configuration  
Table 60. Register SW3AVOLT - ADDR 0x3C  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (Independent) or  
SW3A/B output voltage (Single phase), during  
normal operation mode. See Table 58 for all  
possible configurations.  
SW3A  
SW3A  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(Independent) or SW3A/B (Single phase). Set  
during OTP or TBB configuration only. See  
Table 58 for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
Table 61. Register SW3ASTBY - ADDR 0x3D  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (Independent) or  
SW3A/B output voltage (Single phase), during  
Standby mode. See Table 58 for all possible  
configurations.  
SW3ASTBY  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(Independent) or SW3A/B (Single phase) on  
Standby mode. This bit inherits the value  
configured on bit SW3A[6] during OTP or TBB  
configuration. See Table 58 for all possible  
configurations.  
SW3ASTBY  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
PF0200  
NXP Semiconductors  
53  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 62. Register SW3AOFF - ADDR 0x3E  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (Independent) or  
SW3A/B output voltage (Single phase), during  
Sleep mode. See Table 58 for all possible  
configurations.  
SW3AOFF  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(Independent) or SW3A/B (Single phase) on  
Sleep mode. This bit inherits the value configured  
on bit SW3A[6] during OTP or TBB configuration.  
See Table 58 for all possible configurations.  
SW3AOFF  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 63. Register SW3AMODE - ADDR 0x3F  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A (Independent) or SW3A/B (Single  
phase) switching operation mode.  
See Table 28 for all possible configurations.  
SW3AMODE  
UNUSED  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
Set status of SW3A (Independent) or SW3A/B  
(Single phase) when in Sleep mode.  
SW3AOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 64. Register SW3ACONF - ADDR 0x40  
Name  
Bit #  
R/W Default  
Description  
SW3A current limit level selection  
0 = High level current limit  
1 = Low level current limit  
SW3AILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
Unused  
SW3A switching frequency selector. See  
Table 36.  
SW3AFREQ  
3:2  
SW3APHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW3A Phase clock selection. See Table 34.  
SW3A DVS speed selection. See Table 33.  
SW3ADVSSPEED  
Table 65. Register SW3BVOLT - ADDR 0x43  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (Independent)  
during normal operation mode. See Table 58 for  
all possible configurations.  
SW3B  
SW3B  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3B  
(Independent). Set during OTP or TBB  
configuration only. See Table 58 for all possible  
configurations.  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
PF0200  
54  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 66. Register SW3BSTBY - ADDR 0x44  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (Independent)  
SW3BSTBY  
5:0  
R/W  
0x00  
during Standby mode. See Table 58 for all  
possible configurations.  
Sets the operating output voltage range for SW3B  
(Independent) on Standby mode. This bit inherits  
the value configured on bit SW3B[6] during OTP  
or TBB configuration. See Table 58 for all  
possible configurations.  
SW3BSTBY  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 67. Register SW3BOFF - ADDR 0x45  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (Independent)  
during Sleep mode. See Table 58 for all possible  
configurations.  
SW3BOFF  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3B  
(Independent) on Sleep mode. This bit inherits  
the value configured on bit SW3B[6] during OTP  
or TBB configuration. See Table 58 for all  
possible configurations.  
SW3BOFF  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 68. Register SW3BMODE - ADDR 0x46  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B (Independent) switching  
operation mode. See Table 28 for all possible  
configurations.  
SW3BMODE  
UNUSED  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
Set status of SW3B (Independent) when in Sleep  
mode.  
SW3BOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 69. Register SW3BCONF - ADDR 0x47  
Name  
Bit #  
R/W Default  
Description  
SW3B current limit level selection  
0 = High level Current limit  
1 = Low level Current limit  
SW3BILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
Unused  
SW3BFREQ  
SW3BPHASE  
SW3BDVSSPEED  
3:2  
5:4  
7:6  
SW3B switching frequency selector. See Table 36.  
SW3B Phase clock selection. See Table 34.  
SW3B DVS speed selection. See Table 33.  
PF0200  
NXP Semiconductors  
55  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
SW3A/B external components  
Table 70. SW3A/B external component requirements  
Mode  
SW3A independent  
SW3A/B single  
phase  
Components  
Description  
SW3B independent  
(48)  
CINSW3A  
SW3A Input capacitor  
4.7 μF  
0.1 μF  
4.7 μF  
0.1 μF  
4 x 22 μF  
4.7 μF  
0.1 μF  
(48)  
CIN3AHF  
SW3A Decoupling input capacitor  
SW3B Input capacitor  
(48)  
CINSW3B  
4.7 μF  
(48)  
CIN3BHF  
SW3B Decoupling input capacitor  
SW3A Output capacitor  
0.1 μF  
(48)  
COSW3A  
2 x 22 μF  
2 x 22 μF  
(48)  
COSW3B  
SW3B Output capacitor  
1.0 μH  
DCR = 50 mΩ  
ISAT = 3.9 A  
1.0 μH  
DCR = 60 mΩ  
ISAT = 3.0 A  
LSW3A  
SW3A Inductor  
SW3B Inductor  
1.0 μH  
DCR = 60 mΩ  
ISAT = 3.0 A  
LSW3B  
Notes  
48.  
Use X5R or X7R capacitors.  
SW3A/B specifications  
Table 71. SW3A/B electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSW3x = 3.6 V,  
VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single phase and  
independent mode unless, otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3a/B  
VINSW3x  
VSW3x  
Operating Input Voltage(49)  
2.8  
-
4.5  
-
V
V
Nominal Output Voltage  
Output Voltage Accuracy  
Table 58  
PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3x < ISW3xMAX  
0.625 V < VSW3x < 0.85 V  
0.875 V < VSW3x < 1.975 V  
2.0 V < VSW3x < 3.3 V  
-25  
-3.0%  
-6.0%  
25  
3.0%  
6.0%  
mV  
%
(50)  
VSW3xACC  
PFM , steady state (2.8 V < VIN < 4.5 V, 0 < ISW3x < 50 mA)  
-65  
-45  
-3.0%  
-3.0%  
65  
45  
3.0%  
3.0%  
0.625 V < VSW3x < 0.675 V  
0.7 V < VSW3x < 0.85 V  
0.875 V < VSW3x < 1.975 V  
2.0 V < VSW3x < 3.3 V  
Rated Output Load Current (51)  
2.8 V < VIN < 4.5 V, 0.625 V < VSW3x < 3.3 V  
ISW3x  
mA  
2500  
1250  
PWM, APS mode single phase  
PWM, APS mode independent (per phase)  
PF0200  
56  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 71. SW3A/B electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSW3x = 3.6 V,  
VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single phase and  
independent mode unless, otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3a/B (continued)  
Current Limiter Peak Current Detection  
Single phase (Current through inductor)  
SW3xILIM = 0  
SW3xILIM = 1  
3.5  
2.7  
5.0  
3.8  
6.5  
4.9  
ISW3xLIM  
A
Independent mode (Current through inductor per phase)  
SW3xILIM = 0  
SW3xILIM = 1  
1.8  
1.3  
2.5  
1.9  
3.3  
2.5  
Start-up Overshoot  
VSW3xOSH  
ISW3x = 0.0 mA  
DVS clk = 25 mV/4 μs, VIN = VINSW3x = 4.5 V  
66  
mV  
µs  
Turn-on Time  
Enable to 90% of end value  
ISW3x = 0 mA  
tONSW3x  
500  
DVS clk = 25 mV/4 μs, VIN = VINSW3x = 4.5 V  
Switching Frequency  
SW3xFREQ[1:0] = 00  
SW3xFREQ[1:0] = 01  
SW3xFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW3x  
MHz  
Efficiency (Single Phase)  
fSW3 = 2.0 MHz, LSW3x 1.0 μH  
84  
85  
85  
84  
80  
74  
PFM, 1.5 V, 1.0 mA  
PFM, 1.5 V, 50 mA  
APS, PWM 1.5 V, 500 mA  
APS, PWM 1.5 V, 750 mA  
APS, PWM 1.5 V, 1250 mA  
APS, PWM 1.5 V, 2500 mA  
ηSW3AB  
%
ΔVSW3x  
VSW3xLIR  
VSW3xLOR  
Output Ripple  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient Load = 0.0 mA to ISW3x/2, di/dt = 100 mA/μs  
Overshoot  
Undershoot  
VSW3xLOTR  
mV  
50  
50  
Quiescent Current  
PFM Mode (Single Phase)  
APS Mode (Single Phase)  
PFM Mode (Independent mode)  
APS Mode (SW3A Independent mode)  
APS Mode (SW3B Independent mode)  
22  
300  
50  
250  
150  
ISW3xQ  
µA  
SW3A P-MOSFET RDSON  
at VIN = VINSW3A = 3.3 V  
RONSW3AP  
RONSW3AN  
ISW3APQ  
mΩ  
mΩ  
µA  
215  
245  
SW3A N-MOSFET RDSON  
at VIN = VINSW3A = 3.3 V  
258  
326  
7.5  
SW3A P-MOSFET Leakage Current  
VIN = VINSW3A = 4.5 V  
PF0200  
NXP Semiconductors  
57  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 71. SW3A/B electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSW3x = 3.6 V,  
VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single phase and  
independent mode unless, otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3a/B (continued)  
SW3A N-MOSFET Leakage Current  
ISW3ANQ  
RONSW3BP  
RONSW3BN  
ISW3BPQ  
2.5  
µA  
mΩ  
mΩ  
µA  
VIN = VINSW3A = 4.5 V  
SW3B P-MOSFET RDS(on)  
at VIN = VINSW3B = 3.3 V  
215  
245  
SW3B N-MOSFET RDS(on)  
at VIN = VINSW3B = 3.3 V  
258  
326  
7.5  
SW3B P-MOSFET Leakage Current  
VIN = VINSW3B = 4.5 V  
SW3B N-MOSFET Leakage Current  
ISW3BPQ  
2.5  
µA  
V
IN = VINSW3B = 4.5 V  
RSW3xDIS  
Discharge Resistance  
600  
Ω
Notes  
49. When output is set to > 2.6 V the output will follow the input down when VIN gets near 2.8 V.  
50. Accuracy specification is inclusive of load and line regulation.  
51. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:  
(VINSW3x - VSW3x) = ISW3x* (DCR of Inductor +RONSW3xP + PCB trace resistance).  
Figure 17. SW3AB single phase efficiency waveforms  
6.4.5 Boost regulator  
SWBST is a boost regulator with a programmable output from 5.0 to 5.15 V. SWBST can supply the VUSB regulator for the USB PHY in  
OTG mode, as well as the VBUS voltage. Note that the parasitic leakage path for a boost regulator will cause the SWBSTOUT and  
SWBSTFB voltage to be a Schottky drop below the input voltage whenever SWBST is disabled. The switching NMOS transistor is  
integrated on-chip. Figure 18 shows the block diagram and component connection for the boost regulator.  
PF0200  
58  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VIN  
CINBST  
SWBSTIN  
SWBSTLX  
LBST  
DBST  
SWBSTMODE  
VOBST  
Driver  
I2C  
Interface  
OC  
SWBSTFAULT  
Controller  
RSENSE  
EP  
VREFSC  
VREFUV  
SC  
UV  
SWBSTFB  
Internal  
Compensation  
COSWBST  
Z2  
Z1  
EA  
VREF  
Figure 18. Boost regulator architecture  
6.4.5.1  
SWBST setup and control  
Boost regulator control is done through a single register SWBSTCTL described in Table 72. SWBST is included in the power-up sequence  
if its OTP power-up timing bits, SWBST_SEQ[4:0], are not all zeros.  
Table 72. Register SWBSTCTL - ADDR 0x66  
Name  
Bit #  
R/W  
Default  
Description  
Set the output voltage for SWBST  
00 = 5.000 V  
SWBST1VOLT  
1:0  
R/W  
0x00  
01 = 5.050 V  
10 = 5.100 V  
11 = 5.150 V  
Set the Switching mode on Normal operation  
00 = OFF  
SWBST1MODE  
UNUSED  
3:2  
4
R
0x02  
0x00  
0x02  
0x00  
01 = PFM  
10 = Auto (Default)(52)  
11 = APS  
UNUSED  
Set the Switching mode on Standby  
00 = OFF  
SWBST1STBYMODE  
6:5  
7
R/W  
01 = PFM  
10 = Auto (Default)(52)  
11 = APS  
UNUSED  
Notes  
UNUSED  
52.  
In Auto mode, the controller automatically switches between PFM and APS modes depending on the load current.  
The SWBST regulator starts up by default in the Auto mode, if SWBST is part of the startup sequence.  
PF0200  
NXP Semiconductors  
59  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.5.2  
SWBST external components  
Table 73. SWBST external component requirements  
Components  
Description  
Values  
(53)  
CINBST  
SWBST input capacitor  
SWBST decoupling input capacitor  
SWBST output capacitor  
SWBST inductor  
10 μF  
0.1 μF  
(53)  
CINBSTHF  
(53)  
COBST  
LSBST  
DBST  
2 x 22 μF  
2.2 μH  
SWBST boost diode  
1.0 A, 20 V Schottky  
Notes  
53.  
Use X5R or X7R capacitors.  
6.4.5.3  
SWBST specifications  
Table 74. SWBST electrical specifications  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSWBST = 3.6 V,  
VSWBST = 5.0 V, ISWBST = 100 mA, typical external component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are  
characterized at VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Notes  
Switch mode supply SWBST  
VINSWBST  
VSWBST  
Input Voltage Range  
2.8  
4.5  
V
V
Nominal Output Voltage  
Table 72  
Output Voltage Accuracy  
VSWBSTACC  
2.8 V VIN 4.5 V  
0 < ISWBST < ISWBSTMAX  
-4.0  
3.0  
%
Output Ripple  
2.8 V VIN 4.5 V  
0 < ISWBST < ISWBSTMAX, excluding reverse recovery of Schottky  
ΔVSWBST  
120  
mV Vp-p  
diode  
DC Load Regulation  
VSWBSTLOR  
0.5  
50  
mV/mA  
mV  
0 < ISWBST < ISWBSTMAX  
DC Line Regulation  
VSWBSTLIR  
2.8 V VIN 4.5 V, ISWBST = ISWBSTMAX  
Continuous Load Current  
2.8 V VIN 3.0 V  
ISWBST  
500  
600  
mA  
3.0 V VIN 4.5 V  
Quiescent Current  
AUTO  
ISWBSTQ  
222  
289  
μA  
RDSONBST  
ISWBSTLIM  
MOSFET on Resistance  
Peak Current Limit  
206  
306  
mΩ  
(54)  
1400  
2200  
3200  
mA  
Start-up Overshoot  
ISWBST = 0.0 mA  
VSWBSTOSH  
500  
300  
mV  
mV  
Transient Load Response  
VSWBSTTR  
ISWBST from 1.0 to 100 mA in 1.0 µs  
Maximum transient Amplitude  
Transient Load Response  
VSWBSTTR  
ISWBST from 100 to 1.0 mA in 1.0 µs  
Maximum transient Amplitude  
300  
mV  
PF0200  
60  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 74. SWBST electrical specifications (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = VINSWBST = 3.6 V,  
VSWBST = 5.0 V, ISWBST = 100 mA, typical external component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are  
characterized at VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Notes  
Switch mode supply SWBST (continued)  
Transient Load Response  
tSWBSTTR  
ISWBST from 1.0 to 100 mA in 1.0 µs  
Time to settle 80% of transient  
500  
µs  
Transient Load Response  
tSWBSTTR  
ISWBST from 100 to 1.0 mA in 1.0 µs  
Time to settle 80% of transient  
20  
ms  
µA  
NMOS Off Leakage  
ISWBSTHSQ  
1.0  
5.0  
SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 00  
Turn-on Time  
tONSWBST  
fSWBST  
2.0  
ms  
MHz  
%
Enable to 90% of VSWBST, ISWBST = 0.0 mA  
Switching Frequency  
2.0  
86  
Efficiency  
ηSWBST  
ISWBST = ISWBSTMAX  
Notes  
54.  
Only in Auto mode.  
6.4.6 LDO regulators description  
This section describes the LDO regulators provided by the PF0200. All regulators use the main bandgap as reference. Refer to Bias and  
references block description section for further information on the internal reference voltages.  
A Low Power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest  
bias currents may be attained by forcing the part into its Low Power mode by setting the VGENxLPWR bit. The use of this bit is only  
recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded.  
When a regulator is disabled, the output will be discharged by an internal pull-down. The pull-down is also activated when RESETBMCU  
is low.  
VINx  
VINx  
VREF  
_
+
VGENxEN  
VGENxLPWR  
VGENx  
VGENx  
I2C  
Interface  
CGENx  
VGENx  
Discharge  
Figure 19. General LDO block diagram  
PF0200  
NXP Semiconductors  
61  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.6.1  
Transient response waveforms  
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 20. Note that the transient  
line and load response refers to the overshoot, or undershoot only, excluding the DC shift.  
IMAX  
ILOAD  
IMAX/10  
1.0 us  
1.0 us  
Transient Load Stimulus  
IL = IMAX/10  
IL = IMAX  
Overshoot  
VOUT  
Undershoot  
VOUT Transient Load Response  
VINx_INITIAL  
VINx  
VINx_FINAL  
10 us  
10 us  
Transient Line Stimulus  
VINx_FINAL  
VINx_INITIAL  
Overshoot  
VOUT  
Undershoot  
VOUT Transient Line Response  
Figure 20. Transient waveforms  
PF0200  
62  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.6.2  
Short-circuit protection  
All general purpose LDOs have short-circuit protection capability. The Short-circuit Protection (SCP) system includes debounced fault  
condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product  
damage. If a short-circuit condition is detected, the LDO will be disabled by resetting its VGENxEN bit, while at the same time, an interrupt  
VGENxFAULTI will be generated to flag the fault to the system processor. The VGENxFAULTI interrupt is maskable through the  
VGENxFAULTM mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators will not automatically be disabled upon a  
short-circuit detection. However, the current limiter will continue to limit the output current of the regulator. By default, the REGSCPEN is  
not set; therefore, at start-up none of the regulators will be disabled if an overloaded condition occurs. A fault interrupt, VGENxFAULTI,  
will be generated in an overload condition regardless of the state of the REGSCPEN bit. See Table 75 for SCP behavior configuration.  
Table 75. Short-circuit behavior  
REGSCPEN[0]  
Short-circuit behavior  
0
1
Current limit  
Shutdown  
6.4.6.3  
LDO regulator control  
Each LDO is fully controlled through its respective VGENxCTL register. This register enables the user to set the LDO output voltage  
according to Table 76 for VGEN1 and VGEN2; and uses the voltage set point on Table 77 for VGEN3 through VGEN6.  
Table 76. VGEN1, VGEN2 output voltage configuration  
Set point  
VGENx[3:0]  
VGENx output (V)  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.800  
0.850  
0.900  
0.950  
1.000  
1.050  
1.100  
1.150  
1.200  
1.250  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
PF0200  
NXP Semiconductors  
63  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 77. VGEN3/ 4/ 5/ 6 output voltage configuration  
Set point  
VGENx[3:0]  
VGENx output (V)  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as  
programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I2C bits for this. Table 78  
presents a summary of all valid combinations of the control bits on VGENxCTL register and the expected behavior of the LDO output.  
Table 78. LDO control  
VGENxEN  
VGENxLPWR  
VGENxSTBY STANDBY(55)  
VGENxOUT  
0
1
1
1
1
1
X
0
1
X
0
1
X
0
0
1
1
1
X
X
X
0
Off  
On  
Low Power  
On  
1
Off  
1
Low Power  
Notes  
55.  
STANDBY refers to a Standby event as described earlier.  
For more detail information, Table 79 through Table 84 provide a description of all registers necessary to operate all six general purpose  
LDO regulators.  
PF0200  
64  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 79. Register VGEN1CTL - ADDR 0x6C  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN1 output voltage.  
See Table 76 for all possible configurations.  
VGEN1  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN1 output  
VGEN1EN  
4
5
0 = OFF  
1 = ON  
Set VGEN1 output state when in Standby. Refer  
to Table 78.  
VGEN1STBY  
R/W  
Enable Low Power mode for VGEN1. Refer to  
Table 78.  
VGEN1LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
Table 80. Register VGEN2CTL - ADDR 0x6D  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN2 output voltage.  
See Table 76 for all possible configurations.  
VGEN2  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN2 output  
VGEN2EN  
4
5
0 = OFF  
1 = ON  
Set VGEN2 output state when in Standby. Refer  
to Table 78.  
VGEN2STBY  
R/W  
Enable Low Power Mode for VGEN2. Refer to  
Table 78.  
VGEN2LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
Table 81. Register VGEN3CTL - ADDR 0x6E  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN3 output voltage.  
See Table 77 for all possible configurations.  
VGEN3  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN3 output  
VGEN3EN  
4
5
0 = OFF  
1 = ON  
Set VGEN3 output state when in Standby. Refer  
to Table 78.  
VGEN3STBY  
R/W  
Enable Low Power mode for VGEN3. Refer to  
Table 78.  
VGEN3LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
PF0200  
NXP Semiconductors  
65  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 82. Register VGEN4CTL - ADDR 0x6F  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN4 output voltage.  
See Table 77 for all possible configurations.  
VGEN4  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN4 output  
VGEN4EN  
4
5
0 = OFF  
1 = ON  
Set VGEN4 output state when in Standby. Refer  
to Table 78.  
VGEN4STBY  
R/W  
Enable Low Power mode for VGEN4. Refer to  
Table 78.  
VGEN4LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
Table 83. Register VGEN5CTL - ADDR 0x70  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN5 output voltage.  
See Table 77 for all possible configurations.  
VGEN5  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN5 output  
VGEN5EN  
4
5
0 = OFF  
1 = ON  
Set VGEN5 output state when in Standby. Refer  
to Table 78.  
VGEN5STBY  
R/W  
Enable Low Power mode for VGEN5. Refer to  
Table 78.  
VGEN5LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
Table 84. Register VGEN6CTL - ADDR 0x71  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN6 output voltage.  
See Table 77 for all possible configurations.  
VGEN6  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN6 output  
VGEN6EN  
4
5
0 = OFF  
1 = ON  
Set VGEN6 output state when in Standby. Refer  
to Table 78.  
VGEN6STBY  
R/W  
Enable Low Power mode for VGEN6. Refer to  
Table 78.  
VGEN6LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
PF0200  
66  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.6.4  
External components  
Table 85 lists the typical component values for the general purpose LDO regulators.  
Table 85. LDO external components  
Regulator  
Output capacitor (μF)(56)  
VGEN1  
VGEN2  
VGEN3  
VGEN4  
VGEN5  
VGEN6  
2.2  
4.7  
2.2  
4.7  
2.2  
2.2  
Notes  
56. Use X5R/X7R ceramic capacitors.  
6.4.6.5  
VGEN1  
LDO specifications  
Table 86. VGEN1 electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN1 = 3.0 V,  
VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN  
3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, and 25 °C, unless otherwise noted.  
=
Symbol  
VGEN1  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VIN1  
VGEN1NOM  
IGEN1  
Operating Input Voltage  
Nominal Output Voltage  
Operating Load Current  
1.75  
Table 76  
3.40  
V
V
0.0  
100  
mA  
VGEN1 DC  
Output Voltage Tolerance  
1.75 V < VIN1 < 3.4 V  
VGEN1TOL  
-3.0  
3.0  
%
0.0 mA < IGEN1 < 100 mA  
VGEN1[3:0] = 0000 to 1111  
Load Regulation  
VGEN1LOR  
(VGEN1 at IGEN1 = 100 mA) - (VGEN1 at IGEN1 = 0.0 mA)  
For any 1.75 V < VIN1 < 3.4 V  
0.15  
mV/mA  
Line Regulation  
VGEN1LIR  
IGEN1LIM  
IGEN1OCP  
(VGEN1 at VIN1 = 3.4 V) - (VGEN1 at VIN1 = 1.75 V)  
For any 0.0 mA < IGEN1 < 100 mA  
0.30  
167  
mV/mA  
mA  
Current Limit  
122  
115  
200  
200  
IGEN1 when VGEN1 is forced to VGEN1NOM/2  
Overcurrent Protection Threshold  
IGEN1 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
mA  
Quiescent Current  
IGEN1Q  
No load, Change in IVIN and IVIN1  
When VGEN1 enabled  
14  
μA  
PF0200  
NXP Semiconductors  
67  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 86. VGEN1 electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN1 = 3.0 V,  
VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN  
3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, and 25 °C, unless otherwise noted.  
=
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN1 AC and transient  
PSRR  
IGEN1 = 75 mA, 20 Hz to 20 kHz  
VGEN1[3:0] = 0000 - 1101  
VGEN1[3:0] = 1110, 1111  
(57)  
PSRRVGEN1  
dB  
50  
37  
60  
45  
Output Noise Density  
VIN1 = 1.75 V, IGEN1 = 75 mA  
100 Hz – <1.0 kHz  
NOISEVGEN1  
-108  
-118  
-124  
-100  
-108  
-112  
dBV/ Hz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-on Slew Rate  
10% to 90% of end value  
1.75 V VIN1 3.4 V, IGEN1 = 0.0 mA  
VGEN1[3:0] = 0000 to 0111  
VGEN1[3:0] = 1000 to 1111  
SLWRVGEN1  
mVs  
μs  
12.5  
16.5  
Turn-On Time  
Enable to 90% of end value, VIN1 = 1.75 V, 3.4 V  
IGEN1 = 0.0 mA  
GEN1tON  
60  
500  
Turn-Off Time  
GEN1tOFF  
GEN1OSHT  
Disable to 10% of initial value, VIN1 = 1.75 V  
IGEN1 = 0.0 mA  
10  
ms  
%
Start-Up Overshoot  
1.0  
2.0  
VIN1 = 1.75 V, 3.4 V, IGEN1 = 0.0 mA  
Transient Load Response  
VIN1 = 1.75 V, 3.4 V  
VGEN1LOTR  
3.0  
8.0  
%
I
GEN1 = 10 to 100 mA in 1.0 μs. Peak of overshoot or undershoot of  
VGEN1 with respect to final value  
Refer to Figure 20  
Transient Line Response  
IGEN1 = 75 mA  
VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for  
VGEN1[3:0] = 0000 to 1101  
VGEN1LITR  
5.0  
mV  
VIN1INITIAL = VGEN1+0.3 V to VIN1FINAL = VGEN1+0.8 V for  
VGEN1[3:0] = 1110, 1111  
Refer to Figure 20  
Notes  
57.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test.  
PF0200  
68  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VGEN2  
Table 87. VGEN2 electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN1 = 3.0 V,  
VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN  
3.6V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10mA and 25°C, unless otherwise noted.  
=
Symbol  
VGEN2  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VIN1  
VGEN2NOM  
IGEN2  
Operating Input Voltage  
Nominal Output Voltage  
Operating Load Current  
1.75  
Table 76  
3.40  
V
V
0.0  
250  
mA  
VGEN2 active mode - DC  
Output VoltageTolerance  
1.75 V < VIN1 < 3.4 V  
0.0 mA < IGEN2 < 250 mA  
VGEN2[3:0] = 0000 to 1111  
VGEN2TOL  
-3.0  
3.0  
%
Load Regulation  
VGEN2LOR  
(VGEN2 at IGEN2 = 250 mA) - (VGEN2 at IGEN2 = 0.0 mA)  
For any 1.75 V < VIN1 < 3.4 V  
0.05  
mV/mA  
Line Regulation  
VGEN2LIR  
IGEN2LIM  
IGEN2OCP  
(VGEN2 at VIN1 = 3.4 V) - (VGEN2 at VIN1 = 1.75 V)  
For any 0.0 mA < IGEN2 < 250 mA  
0.50  
417  
mV/mA  
mA  
Current Limit  
305  
290  
510  
500  
IGEN2 when VGEN2 is forced to VGEN2NOM/2  
Over-current Protection Threshold  
IGEN2 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
mA  
Quiescent Current  
IGEN2Q  
No load, Change in IVIN and IVIN1  
When VGEN2 enabled  
16  
μA  
VGEN2 AC and transient  
PSRR  
IGEN2 = 187.5 mA, 20 Hz to 20 kHz  
(58)  
PSRRVGEN2  
dB  
50  
37  
60  
45  
VGEN2[3:0] = 0000 - 1101  
VGEN2[3:0] = 1110, 1111  
Output Noise Density  
IN1 = 1.75 V, IGEN2 = 187.5 mA  
V
NOISEVGEN2  
-108  
-118  
-124  
-100  
-108  
-112  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
1.75 V VIN1 3.4 V, IGEN2 = 0.0 mA  
SLWRVGEN2  
mVs  
12.5  
16.5  
VGEN2[3:0] = 0000 to 0111  
VGEN2[3:0] = 1000 to 1111  
Turn-On Time  
Enable to 90% of end value, VIN1 = 1.75 V, 3.4 V  
IGEN2 = 0.0 mA  
GEN2tON  
GEN2tOFF  
60  
500  
10  
μs  
Turn-Off Time  
Disable to 10% of initial value, VIN1 = 1.75 V  
IGEN2 = 0.0 mA  
ms  
PF0200  
NXP Semiconductors  
69  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 87. VGEN2 electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN1 = 3.0 V,  
VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN  
3.6V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10mA and 25°C, unless otherwise noted.  
=
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN2 AC and transient (continued)  
Start-up Overshoot  
GEN2OSHT  
1.0  
2.0  
%
VIN1 = 1.75 V, 3.4 V, IGEN2 = 0.0 mA  
Transient Load Response  
VIN1 = 1.75 V, 3.4 V  
IGEN2 = 25 to 250 mA in 1.0 μs  
Peak of overshoot or undershoot of VGEN2 with respect to final  
value  
Refer to Figure 20  
VGEN2LOTR  
3.0  
8.0  
%
Transient Line Response  
IGEN2 = 187.5 mA  
VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for  
VGEN2[3:0] = 0000 to 1101  
VGEN2LITR  
5.0  
mV  
VIN1INITIAL = VGEN2+0.3 V to VIN1FINAL = VGEN2+0.8 V for  
VGEN2[3:0] = 1110, 1111  
Refer to Figure 20  
Notes  
58.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test.  
PF0200  
70  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VGEN3  
Table 88. VGEN3 electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN3  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Operating Input Voltage  
2.8  
VGEN3NO  
M+ 0.250  
(59)  
VIN2  
1.8 V VGEN3NOM 2.5 V  
2.6 V VGEN3NOM 3.3 V  
3.6  
3.6  
V
VGEN3NOM  
IGEN3  
Nominal Output Voltage  
Operating Load Current  
Table 77  
V
0.0  
100  
mA  
VGEN3 DC  
Output Voltage Tolerance  
VIN2MIN < VIN2 < 3.6 V  
VGEN3TOL  
-3.0  
3.0  
%
0.0 mA < IGEN3 < 100 mA  
VGEN3[3:0] = 0000 to 1111  
Load Regulation  
VGEN3LOR  
(VGEN3 at IGEN3 = 100 mA) - (VGEN3 at IGEN3 = 0.0 mA)  
For any VIN2MIN < VIN2 < 3.6 V  
0.07  
mV/mA  
Line Regulation  
VGEN3LIR  
IGEN3LIM  
IGEN3OCP  
(VGEN3 at VIN2 = 3.6 V) - (VGEN3 at VIN2MIN  
For any 0.0 mA < IGEN3 < 100 mA  
)
0.8  
167  
mV/mA  
mA  
Current Limit  
127  
120  
200  
200  
IGEN3 when VGEN3 is forced to VGEN3NOM/2  
Overcurrent Protection Threshold  
IGEN3 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
mA  
Quiescent Current  
IGEN3Q  
No load, Change in IVIN and IVIN2  
When VGEN3 enabled  
13  
μA  
VGEN3 AC and transient  
PSRR  
IGEN3 = 75 mA, 20 Hz to 20 kHz  
(60)  
PSRRVGEN3  
dB  
35  
55  
40  
60  
VGEN3[3:0] = 0000 - 1110, VIN2 = VIN2MIN + 100 mV  
VGEN3[3:0] = 0000 - 1000, VIN2 = VGEN3NOM + 1.0 V  
Output Noise Density  
VIN2 = VIN2MIN, IGEN3 = 75 mA  
NOISEVGEN3  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-on Slew Rate  
10% to 90% of end value  
VIN2MIN VIN2 3.6 V, IGEN3 = 0.0 mA  
SLWRVGEN3  
22.0  
26.5  
30.5  
34.5  
mVs  
VGEN3[3:0] = 0000 to 0011  
VGEN3[3:0] = 0100 to 0111  
VGEN3[3:0] = 1000 to 1011  
VGEN3[3:0] = 1100 to 1111  
Turn-on Time  
Enable to 90% of end value, VIN2 = VIN2MIN, 3.6 V  
IGEN3 = 0.0 mA  
GEN3tON  
60  
500  
μs  
PF0200  
NXP Semiconductors  
71  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 88. VGEN3 electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VGEN3 AC and transient (continued)  
Turn-off Time  
GEN3tOFF  
GEN3OSHT  
Disable to 10% of initial value, VIN2 = VIN2MIN  
IGEN3 = 0.0 mA  
10  
ms  
%
Start-up Overshoot  
1.0  
2.0  
VIN2 = VIN2MIN, 3.6 V, IGEN3 = 0.0 mA  
Transient Load Response  
VIN2 = VIN2MIN, 3.6 V  
VGEN3LOTR  
IGEN3 = 10 to 100 mA in 1.0μs  
Peak of overshoot or undershoot of VGEN3 with respect to final  
value. Refer to Figure 20  
3.0  
8.0  
%
Transient Line Response  
IGEN3 = 75 mA  
VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for  
GEN3[3:0] = 0000 to 0111  
VIN2INITIAL = VGEN3+0.3 V to VIN2FINAL = VGEN3+0.8 V for  
VGEN3[3:0] = 1000 to 1010  
VGEN3LITR  
5.0  
mV  
VIN2INITIAL = VGEN3+0.25 V to VIN2FINAL = 3.6 V for  
VGEN3[3:0] = 1011 to 1111  
Refer to Figure 20  
Notes  
59.  
When the LDO Output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V, for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
60.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output voltage.  
VGEN4  
Table 89. VGEN4 electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN4  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
2.8  
VGEN4NO  
M+ 0.250  
(61)  
VIN2  
1.8 V VGEN4NOM 2.5 V  
2.6 V VGEN4NOM 3.3 V  
3.6  
3.6  
V
VGEN4NOM  
IGEN4  
Nominal Output Voltage  
Operating Load Current  
Table 77  
V
0.0  
350  
mA  
VGEN4 DC  
Output Voltage Tolerance  
VIN2MIN < VIN2 < 3.6 V  
VGEN4TOL  
-3.0  
3.0  
%
0.0 mA < IGEN4 < 350 mA  
VGEN4[3:0] = 0000 to 1111  
Load Regulation  
VGEN4LOR  
(VGEN4 at IGEN4 = 350 mA) - (VGEN4 at IGEN4 = 0.0 mA )  
For any VIN2MIN < VIN2 < 3.6 V  
0.07  
mV/mA  
PF0200  
72  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 89. VGEN4 electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN4 DC (continued)  
Line Regulation  
VGEN4LIR  
(VGEN4 at 3.6 V) - (VGEN4 at VIN2MIN  
For any 0.0 mA < IGEN4 < 350 mA  
)
0.80  
584.5  
mV/mA  
mA  
Current Limit  
IGEN4LIM  
435  
420  
700  
700  
IGEN4 when VGEN4 is forced to VGEN4NOM/2  
Overcurrent Protection Threshold  
IGEN4OCP  
IGEN4 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
mA  
Quiescent Current  
IGEN4Q  
No load, Change in IVIN and IVIN2  
When VGEN4 enabled  
13  
μA  
VGEN4 AC and transient  
PSRR  
IGEN4 = 262.5 mA, 20 Hz to 20 kHz  
(62)  
PSRRVGEN4  
dB  
35  
55  
40  
60  
VGEN4[3:0] = 0000 - 1110, VIN2 = VIN2MIN + 100 mV  
VGEN4[3:0] = 0000 - 1000, VIN2 = VGEN4NOM + 1.0 V  
Output Noise Density  
VIN2 = VIN2MIN, IGEN4 = 262.5 mA  
NOISEVGEN4  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-on Slew Rate  
10% to 90% of end value  
VIN2MIN VIN2 3.6 V, IGEN4 = 0.0 mA  
SLWRVGEN4  
22.0  
26.5  
30.5  
34.5  
mVs  
VGEN4[3:0] = 0000 to 0011  
VGEN4[3:0] = 0100 to 0111  
VGEN4[3:0] = 1000 to 1011  
VGEN4[3:0] = 1100 to 1111  
Turn-on Time  
Enable to 90% of end value, VIN2 = VIN2MIN, 3.6 V  
IGEN4 = 0.0 mA  
GEN4tON  
60  
500  
μs  
Turn-off Time  
GEN4tOFF  
GEN4OSHT  
Disable to 10% of initial value, VIN2 = VIN2MIN  
IGEN4 = 0.0 mA  
10  
ms  
%
Start-up Overshoot  
1.0  
2.0  
VIN2 = VIN2MIN, 3.6 V, IGEN4 = 0.0 mA  
Transient Load Response  
VIN2 = VIN2MIN, 3.6 V  
VGEN4LOTR  
IGEN4 = 35 to 350 mA in 1.0 μs  
Peak of overshoot or undershoot of VGEN4 with respect to final  
value. Refer to Figure 20  
3.0  
%
PF0200  
NXP Semiconductors  
73  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 89. VGEN4 electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN4 AC and transient (continued)  
Transient Line Response  
IGEN4 = 262.5 mA  
VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for  
VGEN4[3:0] = 0000 to 0111  
VGEN4LITR  
VIN2INITIAL = VGEN4+0.3 V to VIN2FINAL = VGEN4+0.8 V for  
VGEN4[3:0] = 1000 to 1010  
5.0  
8.0  
mV  
VIN2INITIAL = VGEN4+0.25 V to VIN2FINAL = 3.6 V for  
VGEN4[3:0] = 1011 to 1111  
Refer to Figure 20  
Notes  
61.  
When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
62.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output voltage.  
VGEN5  
Table 90. VGEN5 electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN3 = 3.6 V,  
VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN5  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
2.8  
VGEN5NO  
M+ 0.250  
4.5  
4.5  
(63)  
VIN3  
1.8 V VGEN5NOM 2.5 V  
2.6 V VGEN5NOM 3.3 V  
V
VGEN5NOM  
IGEN5  
Nominal Output Voltage  
Operating Load Current  
Table 77  
V
0.0  
100  
mA  
VGEN5 active mode – DC  
Output Voltage Tolerance  
VIN3MIN < VIN3 < 4.5 V  
0.0 mA < IGEN5 < 100 mA  
VGEN5[3:0] = 0000 to 1111  
VGEN5TOL  
-3.0  
3.0  
%
Load Regulation  
VGEN5LOR  
(VGEN5 at IGEN5 = 100 mA) - (VGEN5 at IGEN5 = 0.0 mA)  
For any VIN3MIN < VIN3 < 4.5 mV  
0.10  
mV/mA  
Line Regulation  
VGEN5LIR  
IGEN5LIM  
IGEN5OCP  
(VGEN5 at VIN3 = 4.5 V) - (VGEN5 at VIN3MIN  
For any 0.0 mA < IGEN5 < 100 mA  
)
0.50  
167  
mV/mA  
mA  
Current Limit  
GEN5 when VGEN5 is forced to VGEN5NOM/2  
122  
120  
200  
200  
I
Overcurrent Protection threshold  
IGEN5 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
mA  
PF0200  
74  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 90. VGEN5 electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN3 = 3.6 V,  
VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN5 active mode – DC (continued)  
Quiescent Current  
IGEN5Q  
No load, Change in IVIN and IVIN3  
When VGEN5 enabled  
13  
μA  
VGEN5 AC and transient  
PSRR  
IGEN5 = 75 mA, 20 Hz to 20 kHz  
(64)  
PSRRVGEN5  
dB  
35  
52  
40  
60  
VGEN5[3:0] = 0000 - 1111, VIN3 = VIN3MIN + 100 mV  
VGEN5[3:0] = 0000 - 1111, VIN3 = VGEN5NOM + 1.0 V  
Output Noise Density  
VIN3 = VIN3MIN, IGEN5 = 75 mA  
NOISEVGEN5  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-on Slew Rate  
10% to 90% of end value  
VIN3MIN VIN3 4.5 mV, IGEN5 = 0.0 mA  
SLWRVGEN5  
22.0  
26.5  
30.5  
34.5  
mVs  
VGEN5[3:0] = 0000 to 0011  
VGEN5[3:0] = 0100 to 0111  
VGEN5[3:0] = 1000 to 1011  
VGEN5[3:0] = 1100 to 1111  
Turn-on Time  
Enable to 90% of end value, VIN3 = VIN3MIN, 4.5 V  
IGEN5 = 0.0 mA  
GEN5tON  
60  
500  
μs  
Turn-off Time  
GEN5tOFF  
GEN5OSHT  
Disable to 10% of initial value, VIN3 = VIN3MIN  
IGEN5 = 0.0 mA  
10  
ms  
%
Start-up Overshoot  
1.0  
2.0  
VIN3 = VIN3MIN, 4.5 V, IGEN5 = 0.0 mA  
Transient Load Response  
VIN3 = VIN3MIN, 4.5 V  
IGEN5 = 10 to 100 mA in 1.0 μs  
Peak of overshoot or undershoot of VGEN5 with respect to final  
value.  
VGEN5LOTR  
3.0  
8.0  
%
Refer to Figure 20  
Transient Line Response  
IGEN5 = 75 mA  
VIN3INITIAL = 2.8 V to VIN3FINAL = 3.3 V for  
VGEN5[3:0] = 0000 to 0111  
VGEN5LITR  
-
5.0  
mV  
VIN3INITIAL = VGEN5+0.3 V to VIN3FINAL = VGEN5+0.8 V for  
VGEN5[3:0] = 1000 to 1111  
Refer to Figure 20  
Notes  
63.  
When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
64.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VIN3MIN refers to the minimum allowed input voltage for a particular output voltage.  
PF0200  
NXP Semiconductors  
75  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VGEN6  
Table 91. VGEN6 electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN3 = 3.6 V,  
VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN6  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
2.8  
VGEN6NO  
M+ 0.250  
4.5  
4.5  
(65)  
VIN3  
1.8 V VGEN6NOM 2.5 V  
2.6 V VGEN6NOM 3.3 V  
V
VGEN6NOM  
IGEN6  
Nominal Output Voltage  
Operating Load Current  
Table 77  
V
0.0  
200  
mA  
VGEN6 DC  
Output Voltage Tolerance  
VIN3MIN < VIN3 < 4.5 V  
VGEN6TOL  
-3.0  
3.0  
%
0.0 mA < IGEN6 < 200 mA  
VGEN6[3:0] = 0000 to 1111  
Load Regulation  
VGEN6LOR  
(VGEN6 at IGEN6 = 200 mA) - (VGEN6 at IGEN6 = 0.0 mA)  
For any VIN3MIN < VIN3 < 4.5 V  
0.10  
mV/mA  
Line Regulation  
VGEN6LIR  
IGEN6LIM  
IGEN6OCP  
(VGEN6 at VIN3 = 4.5 V) - (VGEN6 at VIN3MIN  
For any 0.0 mA < IGEN6 < 200 mA  
)
0.50  
333  
mV/mA  
mA  
Current Limit  
232  
220  
475  
475  
IGEN6 when VGEN6 is forced to VGEN6NOM/2  
Overcurrent Protection Threshold  
IGEN6 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
mA  
Quiescent Current  
IGEN6Q  
No load, Change in IVIN and IVIN3  
When VGEN6 enabled  
13  
μA  
VGEN6 AC and transient  
PSRR  
IGEN6 = 150 mA, 20 Hz to 20 kHz  
(66)  
PSRRVGEN6  
dB  
35  
52  
40  
60  
VGEN6[3:0] = 0000 - 1111, VIN3 = VIN3MIN + 100 mV  
VGEN6[3:0] = 0000 - 1111, VIN3 = VGEN6NOM + 1.0 V  
Output Noise Density  
VIN3 = VIN3MIN, IGEN6 = 150 mA  
NOISEVGEN6  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VIN3MIN VIN3 4.5 V. IGEN6 = 0.0 mA  
SLWRVGEN6  
22.0  
26.5  
30.5  
34.5  
mVs  
VGEN6[3:0] = 0000 to 0011  
VGEN6[3:0] = 0100 to 0111  
VGEN6[3:0] = 1000 to 1011  
VGEN6[3:0] = 1100 to 1111  
Turn-on Time  
Enable to 90% of end value, VIN3 = VIN3MIN, 4.5 V  
IGEN6 = 0.0 mA  
GEN6tON  
60  
500  
μs  
PF0200  
76  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 91. VGEN6 electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VIN3 = 3.6 V,  
VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at  
VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN6 AC and transient (continued)  
Turn-off Time  
GEN6tOFF  
GEN6OSHT  
Disable to 10% of initial value, VIN3 = VIN3MIN  
IGEN6 = 0.0 mA  
10  
ms  
%
Start-up Overshoot  
1.0  
2.0  
VIN3 = VIN3MIN, 4.5 V, IGEN6 = 0 mA  
Transient Load Response  
VIN3 = VIN3MIN, 4.5 V  
VGEN6LOTR  
IGEN6 = 20 to 200 mA in 1.0 μs  
Peak of overshoot or undershoot of VGEN6 with respect to final  
value. Refer to Figure 20  
3.0  
8.0  
%
Transient Line Response  
IGEN6 = 150 mA  
VIN3INITIAL = 2.8 V to VIN3FINAL = 3.3 V for  
VGEN6[3:0] = 0000 to 0111  
VGEN6LITR  
5.0  
mV  
VIN3INITIAL = VGEN6+0.3 V to VIN3FINAL = VGEN6+0.8 V for  
VGEN6[3:0] = 1000 to 1111  
Refer to Figure 20  
Notes  
65.  
When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
66.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VIN3MIN refers to the minimum allowed input voltage for a particular output voltage.  
6.4.7 VSNVS LDO/switch  
VSNVS powers the low power, SNVS/RTC domain on the processor. It derives its power from either VIN, or coin cell, and cannot be  
disabled. When powered by both, VIN takes precedence when above the appropriate comparator threshold. When powered by VIN,  
VSNVS is an LDO capable of supplying seven voltages: 3.0, 1.8, 1.5, 1.3, 1.2, 1.1, and 1.0 V. The bits VSNVSVOLT[2:0] in register  
VSNVS_CONTROL determine the output voltage. When powered by coin cell, VSNVS is an LDO capable of supplying 1.8, 1.5, 1.3, 1.2,  
1.1, or 1.0 V as shown in Table 92. If the 3.0 V option is chosen with the coin cell, VSNVS tracks the coin cell voltage by means of a switch,  
whose maximum resistance is 100 Ω. In this case, the VSNVS voltage is simply the coin cell voltage minus the voltage drop across the  
switch, which is 40 mV at a rated maximum load current of 400 μA.  
The default setting of the VSNVSVOLT[2:0] is 110, or 3.0 V, unless programmed otherwise in OTP. However, when the coin cell is applied  
for the very first time, VSNVS will output 1.0 V. Only when VIN is applied thereafter will VSNVS transition to its default, or programmed  
value if different. Upon subsequent removal of VIN, with the coin cell attached, VSNVS will change configuration from an LDO to a switch  
for the “110” setting, and will remain as an LDO for the other settings, continuing to output the same voltages as when VIN is applied,  
providing certain conditions are met as described in Table 92.  
PF0200  
NXP Semiconductors  
77  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
PF0200  
VIN  
2.25 V (VTL0) -  
4.5 V  
LDO/SWITCH  
Input  
LICELL  
Charger  
VREF  
Sense/  
Selector  
_
+
VSNVS  
Z
Coin Cell  
1.8 - 3.3 V  
I2C Interface  
Figure 21. VSNVS supply switch architecture  
Table 92 provides a summary of the VSNVS operation at different input voltage VIN and with or without coin cell connected to the system.  
Table 92. VSNVS modes of operation  
VSNVSVOLT[2:0]  
110  
VIN  
MODE  
> VTH1  
< VTL1  
> VTH0  
< VTL0  
VIN LDO 3.0 V  
Coin cell switch  
VIN LDO  
110  
000 – 101  
000 – 101  
Coin cell LDO  
VSNVS control  
The VSNVS output level is configured through the VSNVSVOLT[2:0]bits on VSNVSCTL register as shown in table Table 93.  
Table 93. Register VSNVSCTL - ADDR 0x6B  
Name  
Bit #  
R/W Default  
Description  
Configures VSNVS output voltage.(67)  
000 = 1.0 V  
001 = 1.1 V  
010 = 1.2 V  
VSNVSVOLT  
2:0  
7:3  
R/W  
0x80  
0x00  
011 = 1.3 V  
100 = 1.5 V  
101 = 1.8 V  
110 = 3.0 V  
111 = RSVD  
UNUSED  
Notes  
UNUSED  
67.  
Only valid when a valid input voltage is present.  
VSNVS external components  
Table 94. VSNVS External Components  
Capacitor  
Value (μF)  
VSNVS  
0.47  
PF0200  
78  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VSNVS specifications  
Table 95. VSNVS electrical characteristics  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VSNVS = 3.0 V,  
ISNVS = 5.0 μA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS  
3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise noted.  
=
Symbol  
VSNVS  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
Valid Coin Cell range  
Valid VIN  
VINSNVS  
1.8  
2.25  
3.3  
4.5  
V
Operating Load Current  
ISNVS  
5.0  
400  
μA  
V
INMIN < VIN < VINMAX  
VSNVS DC, LDO  
Output Voltage  
5.0 μA < ISNVS < 400 μA (OFF)  
3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
VTL0/VTH < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
-5.0%  
-8.0%  
3.0  
1.0 - 1.8  
7.0%  
7.0%  
5.0 μA < ISNVS < 400 μA (ON)  
3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
UVDET < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
VSNVS  
V
-5.0%  
-4.0%  
3.0  
1.0 - 1.8  
5.0%  
4.0%  
5.0 μA < ISNVS < 400 μA (Coin Cell mode)  
2.84 V < VCOIN < 3.3 V, VSNVSVOLT[2:0] = 110  
1.8 V < VCOIN < 3.3 V, VSNVSVOLT[2:0] = [000] - [101]  
VCOIN-0.04  
-8.0%  
VCOIN  
7.0%  
1.0 - 1.8  
Dropout Voltage  
VSNVSDROP  
ISNVSLIM  
50  
mV  
VIN = VCOIN = 2.85 V, VSNVSVOLT[2:0] = 110, ISNVS = 400 μA  
Current Limit  
VIN > VTH1, VSNVSVOLT[2:0] = 110  
VIN > VTH0, VSNVSVOLT[2:0] = 000 to 101  
VIN < VTL0, VSNVSVOLT[2:0] = 000 to 101  
1100  
500  
480  
6750  
6750  
4500  
μA  
VIN Threshold (Coin Cell Powered to VIN Powered) VIN going high with  
valid coin cell  
V
V
VTH0  
VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101  
2.25  
2.40  
2.55  
VIN Threshold (VIN Powered to Coin Cell Powered) VIN going low with  
valid coin cell  
VTL0  
VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101  
2.20  
5.0  
2.35  
2.50  
VHYST1  
VHYST0  
VIN Threshold Hysteresis for VTH1-VTL1  
VIN Threshold Hysteresis for VTH0-VTL0  
mV  
mV  
5.0  
Output Voltage During Crossover  
VSNVSVOLT[2:0] = 110  
(68)  
VSNVSCROSS  
VCOIN > 2.9 V  
2.70  
V
Switch to LDO: VIN > 2.825 V, ISNVS = 100 μA  
LDO to Switch: VIN < 3.05 V, ISNVS = 100 μA  
Notes  
68.  
During crossover from VIN to LICELL, the VSNVS output voltage may drop to 2.7 V before going to the LICELL voltage. Though this is outside the  
specified DC voltage level for the VDD_SNVS_IN pin of the i.MX 6, this momentary drop does not cause any malfunction. The i.MX 6’s RTC  
continues to operate through the transition, and as a worst case it may switch to the internal RC oscillator for a few clock cycles before switching  
back to the external crystal oscillator.  
PF0200  
NXP Semiconductors  
79  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 95. VSNVS electrical characteristics (continued)  
All parameters are specified at Consumer TA = -40 to 85 °C and Extended Industrial TA = -40 to 105 °C, VIN = 3.6 V, VSNVS = 3.0 V,  
ISNVS = 5.0 μA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS  
3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise noted.  
=
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VSNVS AC and transient  
Turn-on Time (Load capacitor, 0.47 μF)  
VIN > UVDET to 90% of VSNVS  
VCOIN = 0.0 V, ISNVS = 5.0 μA  
24  
(70),(71)  
tONSNVS  
ms  
VSNVSVOLT[2:0] = 000 to 110  
Start-up Overshoot  
VSNVSVOLT[2:0] = 000 to 110  
ISNVS = 5.0 μA  
dVIN/dt = 50 mV/μs  
VSNVSOSH  
40  
70  
mV  
mV  
V
Transient Line Response ISNVS = 75% of ISNVSMAX  
3.2 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
32  
22  
VSNVSLITR  
2.45 V < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
Transient Load Response  
VSNVSVOLT[2:0] = 110  
3.1 V (UVDETL)< VIN 4.5 V  
ISNVS = 75 to 750 μA  
2.8  
VSNVSLOTR  
VSNVSVOLT[2:0] = 000 to 101  
2.45 V < VIN 4.5 V  
VTL0 > VIN, 1.8 V VCOIN 3.3 V  
ISNVS = 40 to 400 μA  
1.0  
2.0  
%
Refer to Figure 20  
VSNVS DC, switch  
VINSNVS  
Operating Input voltage  
Valid Coin Cell range  
1.8  
5.0  
3.3  
400  
100  
V
μA  
Ω
ISNVS  
Operating Load Current  
Internal Switch RDS(on)  
VCOIN = 2.6 V  
RDSONSNVS  
V
IN Threshold (VIN Powered to Coin Cell Powered)  
VSNVSVOLT[2:0] = 110  
(72)  
VTL1  
2.725  
2.775  
2.90  
2.95  
3.00  
3.1  
V
V
VIN Threshold (Coin Cell Powered to VIN Powered)  
VSNVSVOLT[2:0] = 110  
VTH1  
Notes  
69.  
70.  
For 1.8 V ISNVS limited to 100 μA for VCOIN < 2.1 V  
The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to its programmed value within the specified tR1 time.  
From coin cell insertion to VSNVS =1.0 V, the delay time is typically 400 ms.  
71.  
72.  
During crossover from VIN to LICELL, the VSNVS output voltage may drop to 2.7 V before going to the LICELL voltage. Though this is outside the  
specified DC voltage level for the VDD_SNVS_IN pin of the i.MX 6, this momentary drop does not cause any malfunction. The i.MX 6’s RTC  
continues to operate through the transition, and as a worst case it may switch to the internal RC oscillator for a few clock cycles before switching  
back to the external crystal oscillator.  
6.4.7.1  
Coin cell battery backup  
The LICELL pin provides for a connection of a coin cell backup battery or a “super” capacitor. If the voltage at VIN goes below the VIN  
threshold (VTL1 and VTL0), contact-bounced, or removed, the coin cell maintained logic will be powered by the voltage applied to LICELL.  
The supply for internal logic and the VSNVS rail will switch over to the LICELL pin when VIN goes below VTL1 or VTL0, even in the  
absence of a voltage at the LICELL pin, resulting in clearing of memory and turning off of VSNVS. When system operation below VTL1  
is required, for systems not utilizing a coin cell, connect the LICELL pin to any system voltage between 1.8 and 3.0 V. A small capacitor  
should be placed from LICELL to ground under all circumstances.  
PF0200  
80  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Coin cell charger control  
The coin cell charger circuit will function as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for  
rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is programmable  
through the VCOIN[2:0] bits on register COINCTL on Table 97. The coin cell charger voltage is programmable. In the ON state, the  
charger current is fixed at ICOINHI. In Sleep and Standby modes, the charger current is reduced to a typical 10 μA. In the OFF state,  
coin cell charging is not available as the main battery could be depleted unnecessarily. The coin cell charging will be stopped when VIN  
is below UVDET.  
Table 96. Coin cell charger voltage  
VCOIN[2:0]  
VCOIN (V)(73)  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
Notes  
73.  
Coin cell voltages selected based on the type of LICELL used on the system.  
Table 97. Register COINCTL - ADDR 0x1A  
Name  
Bit #  
R/W Default  
Description  
Coin cell charger output voltage selection.  
See Table 96 for all options selectable through  
these bits.  
VCOIN  
2:0  
R/W  
0x00  
COINCHEN  
UNUSED  
3
R/W  
0x00  
0x00  
Enable or disable the Coin cell charger  
UNUSED  
7:4  
External components  
Table 98. Coin cell charger external components  
Component  
Value  
Units  
LICELL Bypass Capacitor  
100  
nF  
Coin cell specifications  
Table 99. Coin cell charger specifications  
Parameter  
Typ  
Unit  
Voltage Accuracy  
100  
60  
mV  
μA  
%
Coin Cell Charge Current in On mode ICOINHI  
Current Accuracy  
30  
PF0200  
NXP Semiconductors  
81  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
2
6.5  
Control interface I C block description  
The PF0200 contains an I2C interface port which allows access by a processor, or any I2C master, to the register set. Via these registers  
the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.  
The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL  
and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 20 ns. This can be  
accomplished by reducing the drive strength of the I2C master via software. The i.MX6 I2C driver defaults to a 40 ohm drive strength. It  
is recommended to use a drive strength of 80 ohm or higher to increase the edge times. Alternatively, this can be accomplished by using  
small capacitors from SCL and SDA to ground. For example, use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors  
of 4.8 kohm. PWRON must be logic high for I2C communication to work robustly.  
2
6.5.1 I C device ID  
I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for bus  
conflict avoidance, fuse programmability is provided to allow configuration for the lower 3 address LSB(s). Refer to One time  
programmability (OTP) for more details. This product supports 7-bit addressing only; support is not provided for 10-bit or general call  
addressing. Note, when the TBB bits for the I2C slave address are written, the next access to the chip, must then use the new slave  
address; these bits take affect right away.  
6.5.2 I2C operation  
The I2C mode of the interface is implemented generally following the Fast mode definition which supports up to 400 kbits/s operation  
(exceptions to the standard are noted to be 7-bit only addressing and no support for General Call addressing.) Timing diagrams, electrical  
specifications, and further details can be found in the I2C specification, which is available for download at:  
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf  
I2C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and each byte  
will be sent out unless a STOP command or NACK is received prior to completion.  
The following examples show how to write and read data to and from the IC. The host initiates and terminates all communication. The  
host sends a master command packet after driving the start condition. The device will respond to the host if the master command packet  
contains the corresponding slave address. In the following examples, the device is shown always responding with an ACK to  
transmissions from the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction.  
Host can  
also drive  
another  
Start instead  
Packet  
Type  
Device  
Master Driven Data  
byte 0 )  
Register Address  
Address  
(
of Stop  
7
0
7
0
0
7
0
START  
STOP  
Host SDA  
R / W  
A
C
K
A
C
K
A
C
K
Slave SDA  
Figure 22. I2C write example  
Host can also  
Packet  
Type  
Device  
Address  
Register Address  
Device Address  
PMIC Driven Data  
drive another  
Start instead of  
Stop  
23  
16  
0
15  
8
7
0
NA  
CK  
Host SDA  
START  
START  
1
STOP  
R/W  
R/W  
7
0
A
C
K
A
C
K
A
C
K
Slave SDA  
Figure 23. I2C read example  
PF0200  
82  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.5.3 Interrupt handling  
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving  
the INTB pin low.  
Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each interrupt  
can be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this will also cause the INTB pin to go high. If there  
are multiple interrupt bits set the INTB pin will remain low until all are either masked or cleared. If a new interrupt occurs while the processor  
clears an existing interrupt bit, the INTB pin will remain low.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB  
pin will not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling for  
status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any interrupts  
are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin  
will go low after unmasking.  
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are  
read only, and not latched or clearable.  
Interrupts generated by external events are debounced; therefore, the event needs to be stable throughout the debounce period before  
an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary Table 100 . Due to the  
asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
6.5.4 Interrupt bit summary  
Table 100 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer  
to the related chapters.  
Table 100. Interrupt, mask and sense bits  
Interrupt  
LOWVINI  
Mask  
LOWVINM  
Sense  
LOWVINS  
Purpose  
Trigger  
Debounce time (ms)  
Low Input Voltage Detect  
Sense is 1 if below 2.80 V threshold  
H to L  
3.9(74)  
Power on button event  
H to L  
L to H  
31.25(74)  
31.25  
PWRONI  
PWRONM  
PWRONS  
Sense is 1 if PWRON is high.  
Thermal 110 °C threshold  
Sense is 1 if above threshold  
THERM110  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
SW1AFAULTM  
SW1BFAULTM  
SW2FAULTM  
SW3AFAULTM  
SW3BFAULTM  
SWBSTFAULTM  
VGEN1FAULTM  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
SW1AFAULTS  
SW1BFAULTS  
SW2FAULTS  
SW3AFAULTS  
SW3BFAULTS  
SWBSTFAULTS  
VGEN1FAULTS  
Dual  
Dual  
3.9  
3.9  
3.9  
3.9  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Thermal 120 °C threshold  
Sense is 1 if above threshold  
THERM120  
Thermal 125 °C threshold  
Sense is 1 if above threshold  
THERM125  
Dual  
Thermal 130 °C threshold  
Sense is 1 if above threshold  
THERM130  
Dual  
Regulator 1A overcurrent limit  
Sense is 1 if above current limit  
SW1AFAULTI  
SW1BFAULTI  
SW2FAULTI  
SW3AFAULTI  
SW3BFAULTI  
SWBSTFAULTI  
VGEN1FAULTI  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
Regulator 1B overcurrent limit  
Sense is 1 if above current limit  
Regulator 2 overcurrent limit  
Sense is 1 if above current limit  
Regulator 3A overcurrent limit  
Sense is 1 if above current limit  
Regulator 3B overcurrent limit  
Sense is 1 if above current limit  
SWBST overcurrent limit  
Sense is 1 if above current limit  
VGEN1 overcurrent limit  
Sense is 1 if above current limit  
PF0200  
NXP Semiconductors  
83  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 100. Interrupt, mask and sense bits (continued)  
Interrupt  
Mask  
Sense  
Purpose  
VGEN2 overcurrent limit  
Trigger  
Debounce time (ms)  
VGEN2FAULTI  
VGEN2FAULTM  
VGEN2FAULTS  
L to H  
8.0  
Sense is 1 if above current limit  
VGEN3 overcurrent limit  
Sense is 1 if above current limit  
VGEN3FAULTI  
VGEN4FAULTI  
VGEN5FAULTI  
VGEN6FAULTI  
VGEN3FAULTM  
VGEN4FAULTM  
VGEN5FAULTM  
VGEN6FAULTM  
OTP_ECCM  
VGEN3FAULTS  
VGEN4FAULTS  
VGEN1FAULTS  
VGEN6FAULTS  
OTP_ECCS  
L to H  
L to H  
L to H  
L to H  
L to H  
8.0  
8.0  
8.0  
8.0  
8.0  
VGEN4 overcurrent limit  
Sense is 1 if above current limit  
VGEN5 overcurrent limit  
Sense is 1 if above current limit  
VGEN6 overcurrent limit  
Sense is 1 if above current limit  
1 or 2 bit error detected in OTP registers  
Sense is 1 if error detected  
OTP_ECCI  
Notes  
74.  
Debounce timing for the falling edge can be extended with PWRONDBNC[1:0].  
A full description of all interrupt, mask, and sense registers is provided in Tables 101 to 112.  
Table 101. Register INTSTAT0 - ADDR 0x05  
Name  
PWRONI  
Bit #  
R/W  
Default  
Description  
Power on interrupt bit  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
LOWVINI  
Low-voltage interrupt bit  
110 °C Thermal interrupt bit  
120 °C Thermal interrupt bit  
125 °C Thermal interrupt bit  
130 °C Thermal interrupt bit  
Unused  
THERM110I  
THERM120I  
THERM125I  
THERM130I  
UNUSED  
2
0
3
0
4
0
5
0
7:6  
00  
Table 102. Register INTMASK0 - ADDR 0x06  
Name  
PWRONM  
Bit #  
R/W  
Default  
Description  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
1
1
Power on interrupt mask bit  
Low-voltage interrupt mask bit  
110 °C Thermal interrupt mask bit  
120 °C Thermal interrupt mask bit  
125 °C Thermal interrupt mask bit  
130 °C Thermal interrupt mask bit  
Unused  
LOWVINM  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
UNUSED  
2
1
3
1
4
1
5
1
7:6  
00  
PF0200  
84  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 103. Register INTSENSE0 - ADDR 0x07  
Name  
Bit #  
R/W  
Default  
Description  
Power on sense bit  
PWRONS  
0
R
0
0 = PWRON low  
1 = PWRON high  
Low-voltage sense bit  
0 = VIN > 2.8 V  
LOWVINS  
1
2
3
4
R
R
R
R
0
0
0
0
1 = VIN 2.8 V  
110 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
THERM110S  
THERM120S  
THERM125S  
120 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
125 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
130 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
THERM130S  
UNUSED  
5
6
7
R
0
0
Unused  
Additional VDDOTP voltage sense pin  
0 = VDDOTP grounded  
VDDOTPS  
R
00  
1 = VDDOTP to VCOREDIG or greater  
Table 104. Register INTSTAT1 - ADDR 0x08  
Name  
Bit #  
R/W  
Default  
Description  
SW1AFAULTI  
SW1BFAULTI  
RSVD  
0
1
2
3
4
5
6
7
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
0
0
SW1A Overcurrent interrupt bit  
SW1B Overcurrent interrupt bit  
Reserved  
SW2FAULTI  
SW3AFAULTI  
SW3BFAULTI  
RSVD  
SW2 Overcurrent interrupt bit  
SW3A Overcurrent interrupt bit  
SW3B Overcurrent interrupt bit  
Reserved  
UNUSED  
Unused  
Table 105. Register INTMASK1 - ADDR 0x09  
Name  
Bit #  
R/W  
Default  
Description  
SW1AFAULTM  
SW1BFAULTM  
RSVD  
0
1
2
3
4
5
6
7
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
1
0
SW1A Overcurrent interrupt mask bit  
SW1B Overcurrent interrupt mask bit  
Reserved  
SW2FAULTM  
SW3AFAULTM  
SW3BFAULTM  
RSVD  
SW2 Overcurrent interrupt mask bit  
SW3A Overcurrent interrupt mask bit  
SW3B Overcurrent interrupt mask bit  
Reserved  
UNUSED  
Unused  
PF0200  
NXP Semiconductors  
85  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 106. Register INTSENSE1 - ADDR 0x0A  
Name  
Bit #  
R/W  
Default  
Description  
SW1A Overcurrent sense bit  
0 = Normal operation  
SW1AFAULTS  
0
R
0
1 = Above current limit  
SW1B Overcurrent sense bit  
0 = Normal operation  
SW1BFAULTS  
RSVD  
1
2
3
R
R
R
0
0
0
1 = Above current limit  
Reserved  
SW2 Overcurrent sense bit  
0 = Normal operation  
SW2FAULTS  
1 = Above current limit  
SW3A Overcurrent sense bit  
0 = Normal operation  
SW3AFAULTS  
SW3BFAULTS  
4
5
R
R
0
0
1 = Above current limit  
SW3B Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
RSVD  
6
7
R
0
0
Reserved  
Unused  
UNUSED  
Table 107. Register INTSTAT3 - ADDR 0x0E  
Name  
Bit #  
R/W  
Default  
Description  
SWBSTFAULTI  
UNUSED  
0
6:1  
7
R/W1C  
0
0x00  
0
SWBST overcurrent limit interrupt bit  
Unused  
OTP_ECCI  
R/W1C  
OTP error interrupt bit  
Table 108. Register INTMASK3 - ADDR 0x0F  
Name  
Bit #  
R/W  
Default  
Description  
SWBSTFAULTM  
UNUSED  
0
6:1  
7
R/W  
1
0x00  
1
SWBST overcurrent limit interrupt mask bit  
Unused  
OTP_ECCM  
R/W  
OTP error interrupt mask bit  
Table 109. Register INTSENSE3 - ADDR 0x10  
Name  
Bit #  
R/W  
Default  
Description  
SWBST overcurrent limit sense bit  
0 = Normal operation  
SWBSTFAULTS  
UNUSED  
0
6:1  
7
R
0
0x00  
0
1 = Above current limit  
Unused  
OTP error sense bit  
0 = No error detected  
1 = OTP error detected  
OTP_ECCS  
R
PF0200  
86  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 110. Register INTSTAT4 - ADDR 0x11  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1FAULTI  
VGEN2FAULTI  
VGEN3FAULTI  
VGEN4FAULTI  
VGEN5FAULTI  
VGEN6FAULTI  
UNUSED  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
VGEN1 Overcurrent interrupt bit  
VGEN2 Overcurrent interrupt bit  
VGEN3 Overcurrent interrupt bit  
VGEN4 Overcurrent interrupt bit  
VGEN5 Overcurrent interrupt bit  
VGEN6 Overcurrent interrupt bit  
Unused  
2
0
3
0
4
0
5
0
7:6  
00  
Table 111. Register INTMASK4 - ADDR 0x12  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1FAULTM  
VGEN2FAULTM  
VGEN3FAULTM  
VGEN4FAULTM  
VGEN5FAULTM  
VGEN6FAULTM  
UNUSED  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
VGEN1 Overcurrent interrupt mask bit  
VGEN2 Overcurrent interrupt mask bit  
VGEN3 Overcurrent interrupt mask bit  
VGEN4 Overcurrent interrupt mask bit  
VGEN5 Overcurrent interrupt mask bit  
VGEN6 Overcurrent interrupt mask bit  
Unused  
2
1
3
1
4
1
5
1
7:6  
00  
Table 112. Register INTSENSE4 - ADDR 0x13  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1 Overcurrent sense bit  
0 = Normal operation  
VGEN1FAULTS  
0
R
0
1 = Above current limit  
VGEN2 Overcurrent sense bit  
0 = Normal operation  
VGEN2FAULTS  
VGEN3FAULTS  
VGEN4FAULTS  
VGEN5FAULTS  
1
2
3
4
R
R
R
R
0
0
0
0
1 = Above current limit  
VGEN3 Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
VGEN4 Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
VGEN5 Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
VGEN6 Overcurrent sense bit  
0 = Normal operation  
VGEN6FAULTS  
UNUSED  
5
R
0
1 = Above current limit  
7:6  
00  
Unused  
PF0200  
NXP Semiconductors  
87  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.5.5 Specific registers  
6.5.5.1  
ic and Version Identification  
The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Tables 113 to 115.  
Table 113. Register DEVICEID - ADDR 0x00  
Name  
DEVICEID  
UNUSED  
Bit #  
R/W  
Default  
Description  
Die version.  
0001 = PF0200  
3:0  
7:4  
R
0x01  
0x01  
Unused  
Table 114. Register SILICON REV- ADDR 0x03  
Name  
Bit #  
R/W  
Default  
Description  
Represents the metal mask revision  
Pass 0.0 = 0000  
METAL_LAYER_REV  
3:0  
R
XX  
.
.
Pass 0.15 = 1111  
Represents the full mask revision  
Pass 1.0 = 0001  
FULL_LAYER_REV  
Notes  
7:4  
R
XX  
.
.
Pass 15.0 = 1111  
75.  
Default value depends on the silicon revision.  
Table 115. Register FABID - ADDR 0x04  
Name  
Bit #  
R/W  
Default  
Description  
Allows for characterizing different options within  
the same reticule  
FIN  
1:0  
R
0x00  
FAB  
3:2  
7:0  
R
R
0x00  
0x00  
Represents the wafer manufacturing facility  
Unused  
Unused  
6.5.5.2  
Embedded memory  
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0], MEMB[7:0],  
MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced. The  
contents of the embedded memory are reset by COINPORB. The banks can be used for any system need for bit retention with coin cell  
backup.  
Table 116. Register MEMA ADDR 0x1C  
Name  
Bit #  
R/W  
Default  
Description  
MEMA  
7:0  
R/W  
0
Memory bank A  
Memory bank B  
Table 117. Register MEMB ADDR 0x1D  
Name  
Bit #  
R/W  
Default  
Description  
MEMB  
7:0  
R/W  
0
PF0200  
88  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 118. Register MEMC ADDR 0x1E  
Name  
Bit #  
R/W  
Default  
Description  
MEMC  
7:0  
R/W  
0
Memory bank C  
Table 119. Register MEMD ADDR 0x1F  
Name  
Bit #  
R/W  
Default  
Description  
MEMD  
7:0  
R/W  
0
Memory bank D  
6.5.6 Register bitmap  
The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can  
be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page,  
the functional registers are the same, but the extended registers are different. To access registers on Extended page 1, one must first  
write 0x01 to the page register at address 0x7F, and to access registers Extended page 2, one must first write 0x02 to the page register  
at address 0x7F. To access the Functional page from one of the extended pages, no write to the page register is necessary.  
Registers that are missing in the sequence are reserved; reading from them will return a value 0x00, and writing to them will have no effect.  
The contents of all registers are given in the tables defined in this chapter; each table is structure as follows:  
Name: Name of the bit.  
Bit #: The bit location in the register (7-0)  
R/W: Read / Write access and control  
• R is read-only access  
• R/W is read and write access  
• RW1C is read and write access with write 1 to clear  
Reset: Reset signals are color coded based on the following legend.  
Bits reset by SC and VCOREDIG_PORB  
Bits reset by PWRON or loaded default or OTP configuration  
Bits reset by DIGRESETB  
Bits reset by PORB or RESETBMCU  
Bits reset by VCOREDIG_PORB  
Bits reset by POR or OFFB  
Default: The value after reset, as noted in the Default column of the memory map.  
• Fixed defaults are explicitly declared as 0 or 1.  
• “X” corresponds to Read / Write bits that are initialized at start-up, based on the OTP fuse settings or default if VDDOTP = 1.5 V.  
Bits are subsequently I2C modifiable, when their reset has been released. “X” may also refer to bits that may have other  
dependencies. For example, some bits may depend on the version of the IC, or a value from an analog block, for instance the sense  
bits for the interrupts.  
PF0200  
NXP Semiconductors  
89  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.5.6.1  
Register map  
Table 120. Functional page  
BITS[7:0]  
Add Register name R/W  
Default  
7
0
6
0
5
0
4
1
3
2
1
0
DEVICE ID [3:0]  
00  
DeviceID  
R
8'b0001_0001  
0
0
0
1
FULL_LAYER_REV[3:0]  
METAL_LAYER_REV[3:0]  
03  
04  
05  
06  
07  
08  
09  
0A  
SILICONREVID  
FABID  
R
R
8'b0001_0000  
8'b0000_0000  
X
X
X
X
0
X
0
X
X
X
FAB[1:0]  
FIN[1:0]  
0
0
0
0
0
0
THERM130I  
THERM125I  
THERM120I  
THERM110I  
LOWVINI  
PWRONI  
INTSTAT0  
INTMASK0  
INTSENSE0  
INTSTAT1  
INTMASK1  
INTSENSE1  
RW1C 8'b0000_0000  
0
0
0
0
0
0
0
0
THERM130M  
THERM125M  
THERM120M  
THERM110M  
LOWVINM  
PWRONM  
R/W  
R
8'b0011_1111  
8'b00xx_xxxx  
0
0
RSVD  
0
1
1
1
1
1
1
VDDOTPS  
THERM130S  
THERM125S  
THERM120S  
THERM110S  
LOWVINS  
PWRONS  
x
0
0
0
0
x
x
x
x
RSVD  
0
x
RSVD  
0
SW3BFAULTI  
0
SW3AFAULTI  
0
SW2FAULTI  
SW1BFAULTI  
SW1AFAULTI  
RW1C 8'b0000_0000  
0
0
0
RSVD  
1
SW3BFAULTM SW3AFAULTM  
SW2FAULTM  
RSVD  
1
SW1BFAULTM  
SW1AFAULTM  
R/W  
R
8'b0111_1111  
8'b0xxx_xxxx  
1
1
1
1
1
RSVD  
x
SW3BFAULTS  
x
SW3AFAULTS  
x
SW2FAULTS  
x
RSVD  
x
SW1BFAULTS  
x
SW1AFAULTS  
x
OTP_ECCI  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SWBSTFAULTI  
0E  
0F  
10  
11  
INTSTAT3  
INTMASK3  
INTSENSE3  
INTSTAT4  
RW1C 8'b0000_0000  
0
0
OTP_ECCM  
SWBSTFAULTM  
R/W  
R
8'b1000_0001  
8'b0000_000x  
1
1
OTP_ECCS  
SWBSTFAULTS  
0
0
x
VGEN6FAULTI VGEN5FAULTI VGEN4FAULTI VGEN3FAULTI VGEN2FAULTI  
VGEN1FAULTI  
0
RW1C 8'b0000_0000  
0
0
0
0
0
VGEN6  
FAULTM  
VGEN5  
FAULTM  
VGEN4  
FAULTM  
VGEN3  
FAULTM  
VGEN2  
FAULTM  
VGEN1  
FAULTM  
0
0
0
0
12  
13  
INTMASK4  
R/W  
R
8'b0011_1111  
8'b00xx_xxxx  
1
1
1
1
1
1
VGEN6  
FAULTS  
VGEN5  
FAULTS  
VGEN4  
FAULTS  
VGEN3  
FAULTS  
VGEN2  
FAULTS  
VGEN1  
FAULTS  
INTSENSE4  
x
x
x
x
x
x
0
0
0
0
COINCHEN  
0
VCOIN[2:0]  
0
1A  
COINCTL  
R/W  
8'b0000_0000  
0
0
PF0200  
90  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 120. Functional page (continued)  
BITS[7:0]  
Add Register name R/W  
Default  
7
6
5
0
0
0
0
0
x
x
x
4
1
0
0
0
0
x
3
2
1
0
REGSCPEN  
0
STANDBYINV  
0
STBYDLY[1:0]  
PWRONBDBNC[1:0]  
PWRONRSTEN  
0
RESTARTEN  
0
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
PWRCTL  
MEMA  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0001_0000  
0
0
0
0
0
x
x
x
1
0
0
0
0
0
x
MEMA[7:0]  
MEMB[7:0]  
MEMC[7:0]  
MEMD[7:0]  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
x
x
x
0
0
0
0
x
x
x
MEMB  
MEMC  
MEMD  
0
0
0
0
0
0
0
0
0
0
SW1AB[5:0]  
SW1ABVOLT  
SW1ABSTBY  
SW1ABOFF  
SW1ABMODE  
SW1ABCONF  
R/W/M 8'b00xx_xxxx  
SW1ABSTBY[5:0]  
R/W  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b00xx_xxxx  
8'b0000_1000  
8'bxx00_xx00  
x
x
SW1ABOFF[5:0]  
x
x
0
SW1ABOMODE  
0
SW1ABMODE[3:0]  
0
0
0
SW1ABDVSSPEED[1:0]  
SW1BAPHASE[1:0]  
SW1ABFREQ[1:0]  
SW1ABILIM  
0
x
x
0
0
x
x
0
0
0
0
0
SW2[6:0]  
35  
36  
37  
38  
39  
SW2VOLT  
SW2STBY  
SW2OFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_1000  
8'bxx01_xx00  
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
SW2STBY[6:0]  
x
SW2OFF[6:0]  
x
x
0
x
x
0
SW2OMODE  
0
SW2MODE[3:0]  
SW2MODE  
SW2CONF  
1
0
0
SW2ILIM  
0
SW2DVSSPEED[1:0]  
SW2PHASE[1:0]  
SW2FREQ[1:0]  
x
x
0
1
x
0
0
0
0
SW3A[6:0]  
3C  
3D  
3E  
SW3AVOLT  
SW3ASTBY  
SW3AOFF  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SW3ASTBY[6:0]  
x
SW3AOFF[6:0]  
x
PF0200  
NXP Semiconductors  
91  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 120. Functional page (continued)  
BITS[7:0]  
Add Register name R/W  
Default  
7
6
5
4
0
3
2
0
x
1
0
SW3AOMODE  
0
SW3AMODE[3:0]  
3F  
40  
SW3AMODE  
SW3ACONF  
R/W  
R/W  
8'b0000_1000  
0
0
1
0
0
0
SW3AILIM  
0
SW3ADVSSPEED[1:0]  
SW3APHASE[1:0]  
SW3AFREQ[1:0]  
8'bxx10_xx00  
x
x
1
0
x
0
0
0
0
SW3B[6:0]  
43  
44  
45  
46  
47  
SW3BVOLT  
SW3BSTBY  
SW3BOFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_1000  
8'bxx10_xx00  
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
SW3BSTBY[6:0]  
x
SW3BOFF[6:0]  
x
x
0
x
x
0
x
SW3BOMODE  
0
SW3BMODE[3:0]  
SW3BMODE  
SW3BCONF  
1
x
0
0
0
SW3BILIM  
0
SW3BDVSSPEED[1:0]  
SW3BPHASE[1:0]  
SW3BFREQ[1:0]  
x
x
1
0
x
0
SWBST1STBYMODE[1:0]  
0
SWBST1MODE[1:0]  
SWBST1VOLT[1:0]  
66  
SWBSTCTL  
R/W  
8'b0xx0_10xx  
x
x
1
0
x
x
0
0
0
0
0
0
0
0
VREFDDREN  
0
0
0
0
0
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
VREFDDRCTL  
VSNVSCTL  
VGEN1CTL  
VGEN2CTL  
VGEN3CTL  
VGEN4CTL  
VGEN5CTL  
VGEN6CTL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b000x_0000  
8'b0000_0xxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
0
0
x
VSNVSVOLT[2:0]  
0
0
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
VGEN1LPWR  
VGEN1STBY  
VGEN1EN  
VGEN1[3:0]  
VGEN2[3:0]  
VGEN3[3:0]  
VGEN4[3:0]  
VGEN5[3:0]  
VGEN6[3:0]  
0
0
x
x
x
x
x
x
x
VGEN2LPWR  
VGEN2STBY  
VGEN2EN  
0
0
x
VGEN3LPWR  
VGEN3STBY  
VGEN3EN  
0
0
x
VGEN4LPWR  
VGEN4STBY  
VGEN4EN  
0
0
x
VGEN5LPWR  
VGEN5STBY  
VGEN5EN  
0
0
x
VGEN6LPWR  
0
VGEN6STBY  
0
VGEN6EN  
x
0
0
0
PAGE[4:0]  
0
7F  
Page Register  
R/W  
8'b0000_0000  
0
0
0
0
PF0200  
92  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 121. Extended page 1  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
0
6
0
5
0
4
x
3
x
2
x
1
x
0
OTP FUSE  
READ EN  
OTP FUSE READ  
80  
84  
R/W  
R/W  
8'b000x_xxx0  
EN  
0
RL TRIM  
FUSE  
START  
0
RL PWBRTN FORCE PWRCTL RL PWRCTL  
RL OTP  
0
RL OTP ECC RL OTP FUSE  
OTP LOAD MASK  
8'b0000_0000  
0
0
0
0
0
0
x
x
x
x
x
x
x
x
x
x
x
x
ECC5_SE  
ECC4_SE  
ECC3_SE  
ECC2_SE  
ECC1_SE  
8A  
8B  
8C  
8D  
OTP ECC SE1  
OTP ECC SE2  
OTP ECC DE1  
OTP ECC DE2  
R
R
R
R
8'bxxx0_0000  
8'bxxx0_0000  
8'bxxx0_0000  
8'bxxx0_0000  
0
0
0
0
0
ECC10_SE  
ECC9_SE  
ECC8_SE  
ECC7_SE  
ECC6_SE  
0
0
0
0
0
ECC5_DE  
ECC4_DE  
ECC3_DE  
ECC2_DE  
ECC1_DE  
0
0
ECC9_DE  
0
0
ECC8_DE  
0
0
ECC7_DE  
0
0
ECC6_DE  
0
ECC10_DE  
0
0
0
0
0
SW1AB_VOLT[5:0]  
x
A0  
A1  
A2  
OTP SW1AB VOLT  
OTP SW1AB SEQ  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b000x_xxXx  
8'b0000_xxxx  
x
x
x
x
X
x
x
x
SW1AB_SEQ[4:0]  
x
0
0
0
0
x
0
x
SW1_CONFIG[1:0]  
SW1AB_FREQ[1:0]  
OTP SW1AB  
CONFIG  
x
x
x
0
0
0
SW2_VOLT[5:0]  
x
AC  
AD  
AE  
OTP SW2 VOLT  
OTP SW2 SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
0
0
x
x
x
x
x
x
x
x
SW2_SEQ[4:0]  
0
0
x
0
x
0
x
0
SW2_FREQ[1:0]  
OTP SW2 CONFIG  
x
0
0
0
SW3A_VOLT[6:0]  
x
B0  
B1  
B2  
OTP SW3A VOLT  
OTP SW3A SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_xxxx  
x
0
0
x
x
x
x
x
x
x
SW3A_SEQ[4:0]  
x
0
0
x
0
x
SW3_CONFIG[1:0]  
SW3A_FREQ[1:0]  
OTP SW3A  
CONFIG  
x
x
x
x
PF0200  
NXP Semiconductors  
93  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 121. Extended page 1 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
0
0
0
6
5
4
3
2
1
x
x
0
x
x
SW3B_VOLT[6:0]  
x
B4  
B5  
B6  
OTP SW3B VOLT  
OTP SW3B SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
0
0
x
x
x
SW3B_SEQ[4:0]  
0
0
x
0
x
0
x
0
SW3B_CONFIG[1:0]  
OTP SW3B  
CONFIG  
x
x
0
0
0
0
0
0
0
0
SWBST_VOLT[1:0]  
BC  
BD  
OTP SWBST VOLT  
OTP SWBST SEQ  
R/W  
R/W  
8'b0000_00xx  
8'b0000_xxxx  
0
x
x
SWBST_SEQ[4:0]  
x
0
x
x
x
0
0
0
0
0
VSNVS_VOLT[2:0]  
x
C0  
C4  
OTP VSNVS VOLT  
R/W  
R/W  
8'b0000_0xxx  
8'b000x_x0xx  
0
x
x
0
0
0
VREFDDR_SEQ[4:0]  
0
OTP VREFDDR  
SEQ  
x
x
x
0
0
0
0
0
0
0
VGEN1_VOLT[3:0]  
C8  
C9  
OTP VGEN1 VOLT  
OTP VGEN1 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN1_SEQ[4:0]  
x
x
x
0
0
0
0
0
0
0
VGEN2_VOLT[3:0]  
CC  
CD  
OTP VGEN2 VOLT  
OTP VGEN2 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN2_SEQ[4:0]  
x
x
x
0
0
0
0
0
0
0
VGEN3_VOLT[3:0]  
D0  
D1  
OTP VGEN3 VOLT  
OTP VGEN3 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN3_SEQ[4:0]  
x
x
x
0
0
0
0
0
0
0
VGEN4_VOLT[3:0]  
D4  
D5  
OTP VGEN4 VOLT  
OTP VGEN4 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN4_SEQ[4:0]  
x
x
x
PF0200  
94  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 121. Extended page 1 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
0
0
6
0
0
5
0
0
4
0
3
x
x
2
1
0
x
x
VGEN5_VOLT[3:0]  
D8  
D9  
OTP VGEN5 VOLT  
OTP VGEN5 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
VGEN5_SEQ[4:0]  
x
x
0
0
0
0
0
0
0
VGEN6_VOLT[3:0]  
DC  
DD  
OTP VGEN6 VOLT  
OTP VGEN6 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN6_SEQ[4:0]  
x
x
x
PWRON_  
CFG1  
0
0
0
0
0
0
0
0
0
SWDVS_CLK1[1:0]  
SEQ_CLK_SPEED1[1:0]  
E0  
E1  
E2  
OTP PU CONFIG1  
OTP PU CONFIG2  
OTP PU CONFIG3  
R/W  
R/W  
R/W  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
x
x
x
x
x
PWRON_  
CFG2  
SWDVS_CLK2[1:0]  
SEQ_CLK_SPEED2[1:0]  
x
x
x
x
x
PWRON_  
CFG3  
SWDVS_CLK3[1:0]  
SEQ_CLK_SPEED3[1:0]  
x
x
x
x
x
PWRON_CFG  
_XOR  
0
SWDVS_CLK3_XOR  
SEQ_CLK_SPEED_XOR  
OTP PU CONFIG  
XOR  
E3  
R
8'b000x_xxxx  
8'b0000_00x0  
0
0
x
x
x
x
x
SOFT_FUSE_  
POR  
TBB_POR  
FUSE_POR1  
(76)  
E4  
OTP FUSE POR1  
R/W  
0
RSVD  
0
0
RSVD  
0
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
FUSE_POR2  
(76)  
E5  
E6  
OTP FUSE POR1  
OTP FUSE POR1  
R/W  
R/W  
8'b0000_00x0  
8'b0000_00x0  
x
RSVD  
0
RSVD  
0
FUSE_POR3  
x
(76)  
FUSE_POR_X  
OR  
RSVD  
RSVD  
OTP FUSE POR  
XOR  
E7  
R
8'b0000_00x0  
0
0
0
0
0
0
0
0
0
0
0
0
x
x
0
OTP_PG_EN  
0
E8  
OTP PWRGD EN  
R/W/M 8'b0000_000x  
EN_ECC_  
BANK5  
EN_ECC_  
BANK4  
EN_ECC_  
BANK3  
EN_ECC_  
BANK2  
EN_ECC_  
BANK1  
0
0
0
0
0
0
F0  
F1  
OTP EN ECCO  
OTP EN ECC1  
R/W  
R/W  
8'b000x_xxxx  
8'b000x_xxxx  
x
x
x
x
x
EN_ECC_  
BANK10  
EN_ECC_  
BANK9  
EN_ECC_  
BANK8  
EN_ECC_  
BANK7  
EN_ECC_  
BANK6  
x
x
x
x
x
PF0200  
NXP Semiconductors  
95  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 121. Extended page 1 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
0
0
0
0
6
0
0
0
0
5
0
0
0
0
4
0
0
0
0
3
2
1
0
x
x
RSVD  
F4  
F5  
F6  
F7  
OTP SPARE2_4  
OTP SPARE4_3  
OTP SPARE6_2  
OTP SPARE7_1  
R/W  
R/W  
R/W  
R/W  
8'b0000_xxxx  
8'b0000_0xxx  
8'b0000_00xx  
8'b0000_0xxx  
x
0
0
0
x
x
RSVD  
x
x
0
x
RSVD  
x
x
x
RSVD  
x
0
0
0
0
0
0
0
OTP_DONE  
x
FE  
FF  
OTP DONE  
R/W  
R/W  
8'b0000_000x  
8'b0000_0xxx  
I2C_SLV  
ADDR[3]  
0
0
0
0
I2C_SLV ADDR[2:0]  
x
OTP I2C ADDR  
1
x
x
Notes  
76.  
In PF0200 It is required to set all of the FUSE_PORx bits to be able to load the fuses.  
Table 122. Extended page 2  
BITS[7:0]  
Address  
Register Name  
TYPE  
Default  
7
6
5
4
3
2
1
0
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW1AB_PWRSTG[2:0]  
1
81  
SW1AB PWRSTG  
R/W  
8'b1111_1111  
1
1
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SW2_PWRSTG[2:0]  
84  
85  
86  
SW2 PWRSTG  
SW3A PWRSTG  
SW3B PWRSTG  
R
R
R
8'b1111_1111  
8'b1111_1111  
8'b1111_1111  
1
RSVD  
1
1
RSVD  
1
1
RSVD  
1
1
RSVD  
1
1
RSVD  
1
1
1
1
1
1
1
1
SW3A_PWRSTG[2:0]  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW3B_PWRSTG[2:0]  
1
FSLEXT_  
THERM_  
DISABLE  
PWRGD_  
SHDWN_  
DISABLE  
RSVD  
RSVD  
RSVD  
RSVD  
87  
88  
PWRCTRL  
R
R
8'b0111_1111  
8'b0000_0001  
0
0
0
0
1
0
1
0
1
0
1
0
1
1
OTP_  
SHDWN_EN  
PWRGD_EN  
PWRCTRL OTP  
CTRL  
0
0
1
I2C_WRITE_ADDRESS_TRAP[7:0]  
I2C WRITE  
ADDRESS TRAP  
8D  
R/W  
8'b0000_0000  
0
0
0
0
0
0
0
PF0200  
96  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 122. Extended page 2 (continued)  
BITS[7:0]  
Address  
Register Name  
I2C TRAP PAGE  
I2C TRAP CNTR  
IO DRV  
TYPE  
R/W  
Default  
7
6
RSVD  
0
5
RSVD  
0
4
3
2
1
0
0
0
0
0
LET_IT_ ROLL  
0
I2C_TRAP_PAGE[4:0]  
0
8E  
8F  
90  
8'b0000_0000  
8'b0000_0000  
8'b00xx_xxxx  
0
0
I2C_WRITE_ADDRESS_COUNTER[7:0]  
R/W  
0
0
0
0
0
x
0
x
0
x
SDA_DRV[1:0]  
SDWNB_DRV[1:0]  
INTB_DRV[1:0]  
RESETBMCU_DRV[1:0]  
R/W  
0
x
x
x
AUTO_ECC  
_BANK5  
AUTO_ECC AUTO_ECC_B AUTO_ECC AUTO_ECC_B  
0
0
0
0
0
0
_BANK4  
ANK3  
_BANK2  
ANK1  
DO  
D1  
OTP AUTO ECC0  
OTP AUTO ECC1  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
AUTO_ECC_B AUTO_ECC AUTO_ECC_B AUTO_ECCBA AUTO_ECC_B  
ANK10  
_BANK9  
ANK8  
NK7  
ANK6  
0
0
0
0
0
RSVD  
RSVD  
(77)  
D8  
Reserved  
Reserved  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(77)  
D9  
ECC1_EN_  
TBB  
ECC1_CALC_  
CIN  
ECC1_CIN_TBB[5:0]  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
OTP ECC CTRL1  
OTP ECC CTRL2  
OTP ECC CTRL3  
OTP ECC CTRL4  
OTP ECC CTRL5  
OTP ECC CTRL6  
OTP ECC CTRL7  
OTP ECC CTRL8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ECC2_EN_  
TBB  
ECC2_CALC_  
CIN  
ECC2_CIN_TBB[5:0]  
0
0
0
0
ECC3_EN_  
TBB  
ECC3_CALC_  
CIN  
ECC3_CIN_TBB[5:0]  
0
0
0
0
ECC4_EN_  
TBB  
ECC4_CALC_  
CIN  
ECC4_CIN_TBB[5:0]  
0
0
0
0
ECC5_EN_  
TBB  
ECC5_CALC_  
CIN  
ECC5_CIN_TBB[5:0]  
0
0
0
0
ECC6_EN_  
TBB  
ECC6_CALC_  
CIN  
ECC6_CIN_TBB[5:0]  
0
0
0
0
ECC7_EN_  
TBB  
ECC7_CALC_  
CIN  
ECC7_CIN_TBB[5:0]  
0
0
0
0
ECC8_EN_  
TBB  
ECC8_CALC_  
CIN  
ECC8_CIN_TBB[5:0]  
0
0
0
0
PF0200  
NXP Semiconductors  
97  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 122. Extended page 2 (continued)  
BITS[7:0]  
Address  
Register Name  
TYPE  
Default  
7
6
5
0
0
4
0
0
3
2
1
0
0
0
0
0
ECC9_EN_  
TBB  
ECC9_CALC_  
CIN  
ECC9_CIN_TBB[5:0]  
E9  
OTP ECC CTRL9  
R/W  
8'b0000_0000  
0
0
0
0
ECC10_EN_T ECC10_CALC  
ECC10_CIN_TBB[5:0]  
BB  
_CIN  
EA  
OTP ECC CTRL10  
R/W  
8'b0000_0000  
0
0
0
0
ANTIFUSE1_E ANTIFUSE1_L ANTIFUSE1_R  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BYPASS1  
N
OAD  
W
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
OTP FUSE CTRL1  
OTP FUSE CTRL2  
OTP FUSE CTRL3  
OTP FUSE CTRL4  
OTP FUSE CTRL5  
OTP FUSE CTRL6  
OTP FUSE CTRL7  
OTP FUSE CTRL8  
OTP FUSE CTRL9  
OTP FUSE CTRL10  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
ANTIFUSE2_E ANTIFUSE2_L ANTIFUSE2_R  
BYPASS2  
N
OAD  
W
0
0
0
0
ANTIFUSE3_E ANTIFUSE3_L ANTIFUSE3_R  
BYPASS3  
N
OAD  
W
0
0
0
0
ANTIFUSE4_E ANTIFUSE4_L ANTIFUSE4_R  
BYPASS4  
N
OAD  
W
0
0
0
0
ANTIFUSE5_E ANTIFUSE5_L ANTIFUSE5_R  
BYPASS5  
N
OAD  
W
0
0
0
0
ANTIFUSE6_E ANTIFUSE6_L ANTIFUSE6_R  
BYPASS6  
N
OAD  
W
0
0
0
0
ANTIFUSE7_E ANTIFUSE7_L ANTIFUSE7_R  
BYPASS7  
N
OAD  
W
0
0
0
0
ANTIFUSE8_E ANTIFUSE8_L ANTIFUSE8_R  
BYPASS8  
N
OAD  
W
0
0
0
0
ANTIFUSE9_E ANTIFUSE99_ ANTIFUSE9_R  
BYPASS9  
N
LOAD  
W
0
0
0
0
ANTIFUSE10_ ANTIFUSE10_ ANTIFUSE10_  
BYPASS10  
0
EN  
LOAD  
RW  
FA  
0
0
0
Notes  
77.  
Do not write in reserved registers.  
PF0200  
98  
NXP Semiconductors  
TYPICAL APPLICATIONS  
7
Typical applications  
7.1  
Introduction  
Figure 24 provides a typical application diagram of the PF0200 PMIC together with its functional components. For details on component  
references and additional components such as filters, refer to the individual sections.  
7.1.1 Application diagram  
SW1AB  
output  
VIN1  
SW1FB  
1.0uF  
2.2uF  
4.7uF  
VIN1  
VGEN1  
VGEN2  
Vin  
4.7uF  
PF0200  
VGEN1  
100mA  
SW1AIN  
SW1ALX  
O/P  
Drive  
1.0uH  
SW1A/B  
Single  
2500 mA  
Buck  
VGEN2  
250mA  
4 x 22uF  
SW1BLX  
SW1BIN  
O/P  
Drive  
VIN2  
1.0uF  
2.2uF  
VIN2  
4.7uF  
Vin  
VGEN3  
100mA  
SW1VSSSNS  
VGEN3  
VGEN4  
350mA  
SW2  
output  
4.7uF  
VGEN4  
VIN3  
VIN3  
1.0uH  
SW2LX  
SW2IN  
Core Control logic  
1.0uF  
2.2uF  
O/P  
Drive  
SW2  
1500 mA  
Buck  
VGEN5  
100mA  
SW2IN  
2 x 22uF  
4.7uF  
Vin  
SW2FB  
GNDREF1  
VGEN5  
VGEN6  
Initialization State Machine  
VGEN6  
200mA  
2.2uF  
SW3A  
output  
SW3AFB  
OTP  
Supplies  
Control  
Vin  
4.7uF  
SW3AIN  
SW3ALX  
VDDOTP  
VDDIO  
2 x 22uF  
O/P  
Drive  
VDDOTP  
VDDIO  
1.0uH  
1.0uH  
SW3A/B  
Single Phase  
2500 mA  
Buck  
CONTROL  
SW3BLX  
SW3BIN  
I2C  
Interface  
0.1uF  
O/P  
Drive  
2 x 22uF  
SCL  
SDA  
To  
MCU  
4.7uF  
Vin  
SW3BFB  
SW3B  
Output  
DVS CONTROL  
SW3VSSSNS  
DVS Control  
Vin  
10uF  
I2C  
Register  
map  
2.2uH  
1uF  
Trim-In-Package  
VCOREDIG  
VCOREREF  
SWBSTLX  
SWBSTIN  
SWBSTFB  
SWBST  
Output  
SWBST  
600 mA  
Boost  
220nF  
1uF  
O/P  
Drive  
Vin  
Reference  
Generation  
Clocks and  
resets  
2 x 22uF  
VCORE  
GNDREF  
1uF  
VREFDDR  
SW3A  
VINREFDDR  
100nF  
100nF  
Vin  
Clocks  
32kHz and 16MHz  
Package Pin Legend  
VHALF  
Output Pin  
Input Pin  
Bi-directional Pin  
VIN  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
+
-
100nF  
VSNVS  
Coin Cell  
Battery  
SW2  
SW2  
SW2  
0.47uF  
To/From  
AP  
Figure 24. PF0200 typical application schematic  
PF0200  
NXP Semiconductors  
99  
TYPICAL APPLICATIONS  
7.1.2 Bill of materials  
The following table provides a complete list of the recommended components on a full featured system using the PF0200 Device. Critical  
components such as inductors, transistors, and diodes are provided with a recommended part number, but equivalent components may  
be used.  
Table 123. Bill of materials (78)  
Value  
PMIC  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
1
Power management IC  
PF0200  
NXP  
Buck, SW1AB - (0.300-1.875 V), 2.5 A  
4 x 4 x 2.1  
1.0 μH  
1.0 μH  
1
XFL4020-102MEB  
LPS5015_102ML  
Coilcraft  
Coilcraft  
Output Inductor  
ISAT = 4.5 A for 10% drop, DCRMAX = 11.9 mΩ  
5 x 5 x 1.5  
Output Inductor  
(Alternate)  
ISAT = 3.6 A for 10% drop, DCRMAX = 50 mΩ  
4 x 4 x 1.2  
ISAT = 6.2 A, DCR = 37 mΩ  
Output inductor  
(Alternate)  
1.0 μH  
FDSD0412-H-1R0M  
Toko  
Output Inductor  
(Alternate)  
0.1 μF  
22 μF  
22 μF  
4
2
3 x 3 x 1.5, ISAT = 4.5 A, DCR = 39 mΩ  
10 V X5R 0805  
74438335010  
Wurth Elektronik  
Taiyo Yuden  
Murata  
LMK212BJ226MG-T  
GRM21BR61A226ME44L  
Output capacitance  
Output capacitance  
(alternate)  
10V, X5R 0805  
4.7 μF  
2
10 V X5R 0603  
LMK107BJ475KA-T  
Taiyo Yuden  
Input capacitance  
Input capacitance  
(alternate)  
4.7 μF  
0.1 μF  
1
1
10V X5R 0603  
10 V X5R 0402  
GRM155R61A104KA01D  
C0402C104K8PAC  
Murata  
Kemet  
Input capacitance  
Buck, SW2- (0.400-3.300 V), 1.5 A  
4 x 4 x 1.2  
1.0 μH  
1.0 μH  
1
LPS4012-102NL  
XFL3012-102ML  
Coilcraft  
Coilcraft  
Output Inductor  
ISAT = 2.8 A for 10% drop, DCRMAX = 60 mΩ  
3x 3 1.2  
Output Inductor  
(Alternate)  
ISAT = 2.5 A for 10% drop, DCRMAX = 42 mΩ  
4 x 4 x 1.2  
ISAT = 6.2 A, DCR = 37 mΩ  
Output inductor  
(Alternate)  
1.0 μH  
0.1 μF  
FDSD0412-H-1R0M  
74438335010  
Toko  
Output Inductor  
(Alternate)  
3 x 3 x 1.5, ISAT = 4.5 A, DCR = 39 mΩ  
Wurth Elektronik  
22 μF  
4.7 μF  
0.1 μF  
2
1
1
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW3AB - (0.400-3.300 V), 2.5 A  
4 x 4 x 2.1  
1.0 μH  
1.0 μH  
1
XFL4020-102MEB  
LPS5015_102ML  
Coilcraft  
Coilcraft  
Output Inductor  
ISAT = 4.5 A for 10% drop, DCRMAX = 11.9 mΩ  
5 x 5 x 1.5  
Output Inductor  
(Alternate)  
ISAT = 3.6 A for 10% drop, DCRMAX = 50 mΩ  
PF0200  
100  
NXP Semiconductors  
TYPICAL APPLICATIONS  
Table 123. Bill of materials (78) (continued)  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
4 x 4 x 1.2  
ISAT = 6.2 A, DCR = 37 mΩ  
Output inductor  
(Alternate)  
1.0 μH  
FDSD0412-H-1R0M  
Toko  
Output Inductor  
(Alternate)  
0.1 μF  
3 x 3 x 1.5, ISAT = 4.5 A, DCR = 39 mΩ  
74438335010  
Wurth Elektronik  
22 μF  
4.7 μF  
0.1 μF  
4
2
1
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
BOOST, SWBST - 5.0 V, 600 mA  
3 x 3 x 1.5  
2.2 μH  
1
LPS3015-222ML  
Coilcraft  
Output Inductor  
ISAT = 2.0 A for 10% drop, DCRMAX = 110 mΩ  
3 x 3 x 1.2  
ISAT = 3.1 A, DCR = 105 mΩ  
Output inductor  
(Alternate)  
2.2 μH  
2.2 μH  
FDSD0312-H-2R2M  
74438335022  
Toko  
Output Inductor  
(Alternate)  
3 x 3 x 1.5, ISAT = 3.5 A, DCR = 94 mΩ  
Wurth Elektronik  
22 μF  
10 μF  
2.2 μF  
0.1 μF  
1.0 A  
2
1
1
1
1
10 V X5R 0805  
10 V X5R 0805  
6.3 V X5R 0402  
10 V X5R 0402  
20 V SOD-123FL  
LMK212BJ226MG-T  
C2012X5R1A106MT  
C0402C225M9PACTU  
C0402C104K8PAC  
MBR120VLSFT1G  
Taiyo Yuden  
TDK  
Output capacitance  
Input capacitance  
Input capacitance  
Input capacitance  
Schottky Diode  
Kemet  
Kemet  
ON Semiconductor  
LDO, VGEN1 - (0.80-1.55), 100 mA  
2.2 μF  
1.0 μF  
1
1
6.3 V X5R 0402  
10 V X5R 0402  
C0402C225M9PACTU  
CC0402KRX5R6BB105  
Kemet  
Output capacitance  
Input capacitance  
Yageo America  
LDO, VGEN2 - (0.80-1.55), 250 mA  
4.7 μF 6.3 V X5R 0402  
LDO, VGEN3 - (1.80-3.30), 100 mA  
1
C0402X5R6R3-475MNP  
Venkel  
Output capacitance  
2.2 μF  
1.0 μF  
1
1
6.3 V X5R 0402  
10 V X5R 0402  
C0402C225M9PACTU  
CC0402KRX5R6BB105  
Kemet  
Output capacitance  
Input capacitance  
Yageo America  
LDO, VGEN4 - (1.80-3.30), 350 mA  
4.7 μF 6.3 V X5R 0402  
LDO, VGEN5 - (1.80-3.30), 150 mA  
1
C0402X5R6R3-475MNP  
Venkel  
Output capacitance  
2.2 μF  
1.0 μF  
1
1
6.3 V X5R 0402  
10 V X5R 0402  
C0402C225M9PACTU  
CC0402KRX5R6BB105  
Kemet  
Output capacitance  
Input capacitance  
Yageo America  
LDO, VGEN6 - (1.80-3.30), 200 mA  
2.2 μF 6.3 V X5R 0402  
LDO/Switch VSNVS - (1.1-3.3), 200 mA  
0.47 μF 6.3 V X5R 0402  
Reference, VREFDDR - (0.20-1.65V), 10 mA  
1
C0402C225M9PACTU  
C1005X5R0J474K  
Kemet  
TDK  
Output capacitance  
Output capacitance  
Output capacitance  
1
1.0 μF  
0.1 μF  
1
2
10 V X5R 0402  
10 V X5R 0402  
CC0402KRX5R6BB105  
C0402C104K8PAC  
Yageo America  
Kemet  
VHALF,  
VINREFDDR  
PF0200  
NXP Semiconductors  
101  
TYPICAL APPLICATIONS  
Table 123. Bill of materials (78) (continued)  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
Internal references, VCOREDIG, VCOREREF, VCORE  
1.0 μF  
1.0 μF  
1
1
1
10 V X5R 0402  
10 V X5R 0402  
10 V X5R 0402  
CC0402KRX5R6BB105  
CC0402KRX5R6BB105  
GRM155R61A224KE19D  
Yageo America  
VCOREDIG  
VCORE  
Yageo America  
Murata  
0.22 μF  
VCOREREF  
Coin cell  
0.1 μF  
1
10 V X5R 0402  
C0402C104K8PAC  
Kemet  
LICELL  
Miscellaneous  
0.1 μF  
1.0 μF  
1
1
1
1
1
1
10 V X5R 0402  
10 V X5R 0402  
1/16 W 0402  
1/16 W 0402  
1/16 W 0402  
1/16 W 0402  
C0402C104K8PAC  
CC0402KRX5R6BB105  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
Kemet  
VDDIO  
VIN  
Yageo America  
KOA SPEER  
KOA SPEER  
KOA SPEER  
KOA SPEER  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
Notes  
PWRON  
RESETBMCU  
SDWN  
INTB  
78.  
NXP does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or tables.  
While NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
7.2  
PF0200 layout guidelines  
7.2.1 General board recommendations  
1. It is recommended to use an eight layer board stack-up arranged as follows:  
• High current signal  
• GND  
• Signal  
• Power  
• Power  
• Signal  
• GND  
• High current signal  
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high-current signals), copper-pour the unused area.  
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.  
7.2.2 Component placement  
It is desirable to keep all component related to the power stage as close to the PMIC as possible, specially decoupling input and output  
capacitors.  
7.2.3 General routing requirements  
1. Some recommended things to keep in mind for manufacturability:  
Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than the hole  
Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
Minimum allowed spacing between line and hole pad is 3.5 mils  
Minimum allowed spacing between line and line is 3.0 mils  
PF0200  
102  
NXP Semiconductors  
TYPICAL APPLICATIONS  
2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from power,  
clock, or high power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins. They could be  
also shielded.  
3. Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and power  
planes shield these traces).  
4. Avoid coupling traces between important signal/low noise supplies (like REFCORE, VCORE, VCOREDIG) from any switching node  
(i.e. SW1ALX, SW1BLX, SW2LX, SW3ALX, SW3BLX, and SWBSTLX).  
5. Make sure that all components related to a specific block are referenced to the corresponding ground.  
7.2.4 Parallel routing requirements  
1. I2C signal routing  
CLK is the fastest signal of the system, so it must be given special care.  
To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to  
shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole  
signal trace length.  
Figure 25. Recommended shielding for critical signals  
These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground plane.  
Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals. Another good  
practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.  
7.2.5 Switching regulator layout recommendations  
1. Per design, the switching regulators in PF0200 are designed to operate with only one input bulk capacitor. However, it is  
recommended to add a high-frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor  
should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.  
2. Make high-current ripple traces low-inductance (short, high W/L ratio).  
3. Make high-current traces wide or copper islands.  
PF0200  
NXP Semiconductors  
103  
TYPICAL APPLICATIONS  
VIN  
SWxIN  
CIN_HF  
CIN  
SWx  
SWxLX  
Driver Controller  
L
COUT  
SWxFB  
Compensation  
Figure 26. Generic buck regulator architecture  
Figure 27. Recommended layout for buck regulators  
7.3  
Thermal information  
7.3.1 Rating data  
The thermal rating data of the packages has been simulated with the results listed in Table 4.  
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for  
junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-JMA) will be used for  
both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and  
2s2p test boards. It is anticipated that the generic name, Theta-JA, will continue to be commonly used.  
The JEDEC standards can be consulted at http://www.jedec.org.  
PF0200  
104  
NXP Semiconductors  
TYPICAL APPLICATIONS  
7.3.2 Estimation of junction temperature  
An estimation of the chip junction temperature TJ can be obtained from the equation:  
TJ = TA + (RθJA x PD)  
with:  
TA = Ambient temperature for the package in °C  
RθJA = Junction to ambient thermal resistance in °C/W  
PD = Power dissipation in the package in W  
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance.  
Unfortunately, there are two values in common usage: the value determined on a single layer board RθJA and the value obtained on a four  
layer board RθJMA. Actual application PCBs show a performance close to the simulated four layer board value although this may be  
somewhat degraded in case of significant power dissipated by other components placed close to the device.  
At a known board temperature, the junction temperature TJ is estimated using the following equation  
TJ = TB + (RθJB x PD) with  
TB = Board temperature at the package perimeter in °C  
RθJB = Junction to board thermal resistance in °C/W  
PD = Power dissipation in the package in W  
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
See Functional block requirements and behaviors for more details on thermal management.  
PF0200  
NXP Semiconductors  
105  
PACKAGING  
8
Packaging  
8.1  
Packaging dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number. See the Thermal characteristics section for specific thermal characteristics  
for each package.  
Table 124. Package drawing information  
Package  
Suffix  
Package outline drawing number  
56 QFN 8x8 mm - 0.5 mm pitch. E-Type (full lead)  
EP  
ES  
98ASA00405D  
98ASA00589D  
56 QFN 8x8 mm - 0.5 mm pitch. WF-Type (wettable flank)  
PF0200  
106  
NXP Semiconductors  
PACKAGING  
PF0200  
NXP Semiconductors  
107  
PACKAGING  
PF0200  
108  
NXP Semiconductors  
PACKAGING  
PF0200  
NXP Semiconductors  
109  
PACKAGING  
PF0200  
110  
NXP Semiconductors  
PACKAGING  
PF0200  
NXP Semiconductors  
111  
PACKAGING  
PF0200  
112  
NXP Semiconductors  
REVISION HISTORY  
9
Revision History  
Revision  
Date  
Description of changes  
Initial release  
3.0  
2/2014  
Corrected VDDOTP maximum rating  
Corrected SWBSTFB maximum rating  
Added note to clarify SWBST default operation in Auto mode  
Changed VSNVS current limit  
Noted that voltage settings 0.6 V and below are not supported  
VSNVS Turn On Delay (tD1) spec corrected from 15 ms to 5.0 ms  
4.0  
5/2014  
Updated VTL1, VTH1 and VSNVSCROSS threshold specifications  
Updated per GPCN 16369  
5.0  
6.0  
7.0  
7/2014  
Added new part number MMPF0200F6AEP to the Orderable Parts table  
Added alternative capacitors in Bill of Materials  
3/2015  
8/2016  
7/2019  
Updated to NXP document form and style  
Updated 98ASA00405D drawing as per PCN 201906034F01  
Changed document status from Advance Information to Technical Data  
PF0200  
NXP Semiconductors  
113  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo, and SMARTMOS, are trademarks of NXP B.V. All other product  
or service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2019.  
Document Number: MMPF0200  
Rev. 7  
7/2019  

相关型号:

935311459528

Microcontroller
NXP

935311459557

Microcontroller
NXP

935311468528

Power Supply Support Circuit
NXP

935311468557

Power Supply Support Circuit
NXP

935311488518

RISC Microcontroller
NXP

935311488557

RISC Microcontroller
NXP

935311518518

Microcontroller
NXP

935311518557

Microcontroller
NXP

935311522574

Buffer/Inverter Based Peripheral Driver
NXP

935311526557

RISC Microcontroller
NXP

935311532557

Microcontroller
NXP

935311533557

Microcontroller
NXP