935313028518 [NXP]

RISC Microcontroller;
935313028518
型号: 935313028518
厂家: NXP    NXP
描述:

RISC Microcontroller

时钟 微控制器 外围集成电路
文件: 总133页 (文件大小:1493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: KL82P121M72SF0  
Rev. 4, 12/2016  
Kinetis KL82 Microcontroller  
MKL82Z128Vxx7(R)  
72 MHz ARM® Cortex®-M0+ with 128 KB Flash and 96 KB  
SRAM  
The KL82 MCU family's high performance, encryption features  
and ultra-low power capabilities extend its reach beyond  
traditional mPOS pin pads and terminals into more power-  
restricted payment applications, such as smartphone and tablet  
attach readers, as well as those embedded in wearable  
technology.  
100 & 80 & 64 LQFP  
(LL&LK&LH)  
14x14 x1.7 mm Pitch  
121 & 64 MAPBGA  
(MC&MP)  
8x8x1.43 mm Pitch 0.5mm 12x12x1.6 mm  
0.65 mm 5x5x1.23 mm  
Pitch 0.5 mm  
Pitch 0.5 mm  
10x10x1.6 mm Pitch  
0.5 mm  
The product offers:  
• Hardware asymmetric cryptography – high-speed, code-  
and power-efficient data authentication with support for  
latest encryption protocols  
• EMV®-compatible with ISO7816-3 SIM interfaces – architected for EMV compliance and supported by  
an EMV Level 1 software stack  
• QSPI interface to expand program memory  
• Sleep mode power consumption from 2.5 µA with the SRAM content retained and RTC enabled  
• Crystal-less USB OTG controller, 16-bit ADC and multiple serial communication interfaces can all  
function autonomously in low-power modes with minimal CPU intervention  
• FlexIO to support any standard and customized serial peripheral emulation  
Core Processor  
Peripherals  
• USB full-speed 2.0 OTG controller supporting  
• 72 MHz ARM® Cortex®-M0+ core ( up to 96 MHz for high-  
speed run)  
crystal-less operation and keeping connection  
alive under ultra-low power  
Memories  
• Three low-power UART modules supporting  
asynchronous operation in low-power modes  
• Two I2C modules supporting up to 1 Mbps  
• Two 16-bit SPI modules supporting up to  
24Mbps  
• 128 KB program flash memory  
• 96 KB SRAM  
• 32 KB ROM with built-in boot loader  
• 32 B backup register  
• QSPI to expand program code in external high-speed serial  
NOR flash memory  
• One FlexIO module supporting emulation of  
additional UART, SPI, I2C, I2S, PWM and  
other serial modules, etc. up to 32 channels  
• One 16-bit ADC module with high accurate  
internal voltage reference and up to 16  
channels  
System  
• 8-channel asynchronous enhanced DMA controller  
• Watchdog  
• Low-leakage wakeup unit  
• Two-pin serial wire debug (SWD) programming and  
debugging interface  
• Micro trace buffer  
• Bit manipulation engine  
• Interrupt controller  
• High-speed analog comparator containing a 6-  
bit DAC for programmable reference input  
• One 12-bit DAC module  
• Two EMVSIM modules supporting EMV L1  
compatible interface  
• Touch sensing interface up to 16 channels  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Memory protection unit  
• SRAM bit-banding  
I/O  
• Up to 85 General-purpose input/output pins  
(GPIO)  
Clocks  
• 48 MHz high accuracy (up to 0.5%) internal reference clock Operating Characteristics  
for high-speed run  
• Voltage range: 1.71 to 3.6 V  
• 4 MHz high accuracy (up to 2%) internal reference clock for  
low-speed run  
• Flash write voltage range: 1.71 to 3.6 V  
• Temperature range (ambient): -40 to 105°C  
• 32 kHz internal reference clock  
• 1 kHz internal reference clock  
• 32–40 kHz and 3–32 MHz crystal oscillator  
• PLL/FLL  
Low Power  
• Down to 125 µA/MHz in Run mode  
• Down to 272 nA in Stop mode (RAM and RTC  
retained)  
Timers  
• Six flexible static modes  
• One 6-channel Timer/PWM module  
• Two 2-channel Timer/PWM modules  
• Two low-power timers  
• 4-channel periodic interrupt timer  
• Independent real time clock  
Packages  
• 121 MAPBGA 8mm x 8mm, 0.65mm pitch,  
1.43mm max thickness  
• 80 LQFP 12mm x 12mm, 0.5mm pitch, 1.6mm  
max thickness  
Security  
• 100 LQFP 14mm x 14mm, 0.5mm pitch,  
1.7mm max thickness (Package Your Way)  
• 64 MAPBGA 5mm x 5mm, 0.5mm pitch,  
1.23mm max thickness (Package Your Way)  
• 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm  
max thickness (Package Your Way)  
• 128-bit unique identification number per chip  
• Advanced flash security and access control  
• Hardware CRC module  
• Low-power trusted crypto engine supporting AES128/256,  
DES, 3DES, SHA256, RSA and ECC, with hardware DPA  
• True random number generator  
NOTE  
The 100-, 64-pin LQFP and 64-pin MAPBGA packages supporting  
MKL82Z128VLL7, MKL82Z128VLH7 and MKL82Z128VMP7 part numbers for this  
product are not yet available. However, these packages are included in Package Your  
Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details.  
Related resources  
Type  
Description  
Resource  
Solution Advisor  
Selector Guide The NXP Solution Advisor is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the KL82P121M72SF0RM1  
structure and function (operation) of a device.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
KL82P121M72SF01  
Chip Errata  
The chip mask set Errata provides additional or corrective information xN51R2  
for a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
MAPBGA 121-pin: 98ASA00423D  
MAPBGA 64-pin: 98ASA00420D  
LQFP 100-pin: 98ASS23308W  
LQFP 80-pin: 98ASS23174W  
LQFP 64-pin: 98ASS23234W  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
2. To find the associated resource, go to http://www.nxp.com and perform a search using this term with the "x" replaced  
by the revision of the device you are using.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
3
NXP Semiconductors  
Table of Contents  
1 Ordering information............................................................... 5  
4.3.7  
4.3.8  
Communication interfaces.................................48  
Human-machine interfaces (HMI)..................... 51  
2 Overview................................................................................. 5  
2.1 System features...............................................................7  
4.4 KL82 Pinouts................................................................... 51  
4.5 Package dimensions....................................................... 57  
5 Electrical characteristics..........................................................64  
5.1 Terminology and guidelines.............................................64  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.1.8  
2.1.9  
ARM Cortex-M0+ core...................................... 7  
NVIC..................................................................7  
AWIC.................................................................7  
Memory............................................................. 8  
Reset and boot..................................................9  
Clock options.....................................................11  
Security............................................................. 14  
Power management..........................................15  
LLWU................................................................ 16  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
Definitions......................................................... 65  
Examples.......................................................... 65  
Typical-value conditions....................................66  
Relationship between ratings and operating  
requirements..................................................... 66  
Guidelines for ratings and operating  
5.1.5  
2.1.10 Debug controller................................................18  
2.1.11 INTMUX............................................................ 18  
2.1.12 Watch dog.........................................................18  
2.2 Peripheral features.......................................................... 19  
requirements..................................................... 67  
5.2 Ratings............................................................................ 67  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
Thermal handling ratings...................................67  
Moisture handling ratings..................................68  
ESD handling ratings........................................ 68  
Voltage and current operating ratings...............68  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
BME.................................................................. 19  
eDMA and DMAMUX........................................ 19  
TPM...................................................................20  
ADC...................................................................21  
VREF.................................................................21  
CMP.................................................................. 22  
RTC...................................................................22  
PIT.....................................................................23  
LPTMR..............................................................23  
5.3 General............................................................................69  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
AC electrical characteristics..............................69  
Nonswitching electrical specifications...............69  
Switching specifications.................................... 83  
Thermal specifications...................................... 84  
5.4 Peripheral operating requirements and behaviors...........86  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
Core modules....................................................86  
Clock modules...................................................88  
Memories and memory interfaces.....................95  
Security and integrity modules..........................101  
Analog...............................................................101  
Timers............................................................... 112  
Communication interfaces.................................112  
Human-machine interfaces (HMI)..................... 123  
2.2.10 CRC.................................................................. 24  
2.2.11 LPUART............................................................24  
2.2.12 SPI.................................................................... 25  
2.2.13 I2C.....................................................................25  
2.2.14 USB...................................................................26  
2.2.15 FlexIO................................................................27  
2.2.16 DAC...................................................................27  
2.2.17 EMV-SIM...........................................................28  
2.2.18 LTC................................................................... 29  
2.2.19 TRNG................................................................29  
2.2.20 TSI.....................................................................29  
2.2.21 QuadSPI............................................................30  
3 Memory map........................................................................... 30  
4 Pinouts.................................................................................... 32  
4.1 KL82 signal multiplexing and pin assignments................32  
4.2 Pin properties.................................................................. 37  
4.3 Module signal description tables..................................... 42  
6 Design considerations.............................................................124  
6.1 Hardware design considerations..................................... 124  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Printed circuit board recommendations.............124  
Power delivery system...................................... 124  
Analog design................................................... 125  
Digital design.....................................................126  
Crystal oscillator................................................128  
6.2 Software considerations.................................................. 130  
6.3 Soldering temperature..................................................... 131  
7 Part identification.....................................................................131  
7.1 Description.......................................................................131  
7.2 Format............................................................................. 131  
7.3 Fields............................................................................... 131  
7.4 Example...........................................................................132  
8 Revision history.......................................................................132  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
Core Modules....................................................42  
System modules................................................42  
Clock Modules...................................................44  
Memories and memory interfaces.....................44  
Analog...............................................................45  
Timer Modules.................................................. 46  
4
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Ordering information  
1 Ordering information  
The following chips are available for ordering.  
Table 1. Ordering information  
Product  
Part number  
Memory  
Package  
IO and ADC channel  
Marking  
Flash  
SRAM  
(KB)  
Pin Package GPIOs  
count  
GPIOs  
(INT/  
ADC  
channels  
(SE/DP)  
(KB)  
(Line1/Line2)  
HD)1  
MKL82Z128VMC7(R)  
MKL82  
128  
96  
121  
MAPBGA  
85  
85/0  
16/2  
Z128VMC7  
MKL82Z128VLL7(R)  
MKL82Z128VLK7(R)  
MKL82Z128VL  
L7  
128  
128  
96  
96  
100  
80  
LQFP  
LQFP  
66  
56  
66/0  
56/0  
14/1  
12/1  
MKL82Z128  
VLK7  
MKL82Z128VMP7(R)  
MKL82Z128VLH7(R)  
M82N7V  
MKL82Z128V  
LH7  
128  
128  
96  
96  
64  
64  
MAPBGA  
LQFP  
41  
41  
41/0  
41/0  
11/1  
11/1  
1. INT: interrupt pin numbers; HD: high drive pin numbers  
NOTE  
The 100-, 64-pin LQFP and 64-pin MAPBGA packages supporting  
MKL82Z128VLL7, MKL82Z128VLH7 and MKL82Z128VMP7 part  
numbers for this product are not yet available. However, these packages  
are included in Package Your Way program for Kinetis MCUs. Visit  
nxp.com/KPYW for more details.  
2 Overview  
The following figure shows the system diagram of this device  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
5
NXP Semiconductors  
Overview  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
128 KB  
Flash  
FMC  
Slave  
Master  
Cortex M0+  
TSI0  
S0  
S1  
ADC0(16-bit 16-ch)  
CMP0  
IOPORT  
32 KB ROM  
M0  
1.2V Voltage reference  
Debug  
(SWD)  
CM0+ core  
TPM0(6-channel)  
TPM1(2-channel)  
TPM2(2-channel)  
LPTMR0  
96 KB  
RAM  
Bit  
Band  
NVIC  
S3  
LPTMR1  
QSPI0  
2 KB  
PIT0  
M2  
RTC  
DMA  
MUX  
DMA  
S2a  
LPUART0  
LPUART1  
LPUART2  
SPI0  
USB SRAM  
M3  
S2b  
SPI1  
USB FS/LS  
BME  
I2C0  
I2C1  
FlexIO0  
EMVSIM0  
EMVSIM1  
MCG  
VBAT Register File(128B)  
LP Trusted Cryptographic 0  
TRNG0  
IRC 4MHz  
IRC 32kHz  
PLL  
Watchdog  
EWM  
IRC 48M  
OSC  
Register File(32 Bytes)  
CRC  
RTC OSC  
FLL  
LLWU  
RCM  
SMC  
PMC  
INTMUX0  
Figure 1. System diagram  
The crossbar switch connects bus masters and slaves using a crossbar switch structure.  
This structure allows up to four bus masters to access different bus slaves  
simultaneously, while providing arbitration among the bus masters when they access  
the same slave.  
6
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
2.1 System features  
The following sections describe the high-level system features.  
2.1.1 ARM Cortex-M0+ core  
The enhanced ARM Cortex M0+ is the member of the Cortex-M series of processors  
targeting microcontroller cores focused on very cost sensitive, low power  
applications. It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC  
component. It also has hardware debug functionality including support for simple  
program trace capability. The processor supports the ARMv6-M instruction set  
(Thumb) architecture including all but three 16-bit Thumb opcodes (52 total) plus  
seven 32-bit instructions. It is upward compatible with other Cortex-M profile  
processors.  
2.1.2 NVIC  
The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority  
levels for interrupts. In the NVIC, each source in the IPR registers contains two bits. It  
also differs in number of interrupt sources and supports 32 interrupt vectors.  
The Cortex-M family uses a number of methods to improve interrupt latency to up to  
15 clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait  
and VLPW modes.  
2.1.3 AWIC  
The asynchronous wake-up interrupt controller (AWIC) is used to detect  
asynchronous wake-up events in Stop mode and signal to clock control logic to  
resume system clocking. After clock restarts, the NVIC observes the pending interrupt  
and performs the normal interrupt or event processing. The AWIC can be used to  
wake MCU core from Stop and VLPS modes.  
Wake-up sources are listed as below:  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
7
NXP Semiconductors  
Overview  
Table 2. AWIC Partial Stop, Stop and VLPS wake-up sources  
Wake-up source  
Description  
RESET_b pin and WDOG when LPO is its clock source, and Debug  
Power mode controller  
Available system resets  
Low-voltage detect  
Low-voltage warning  
Pin interrupts  
Power mode controller  
Port control module - any enabled pin interrupt is capable of waking the system  
The ADC is functional when using internal clock source  
ADC0  
CMPx  
Since no system clocks are available, functionality is limited, trigger mode provides wakeup  
functionality with periodic sampling  
I2Cx  
Address match wakeup  
LPUARTx  
Functional when using clock source which is active in Stop and VLPS modes  
USB FS/LS Controller  
Wakeup  
FlexIO0  
LPTMR  
RTC  
Functional when using clock source which is active in Stop and VLPS modes  
Functional when using clock source which is active in Stop, VLPS and LLS/VLLS modes  
Functional in Stop/VLPS modes  
TPM  
Functional when using clock source which is active in Stop and VLPS modes  
Wakeup  
TSI0  
NMI  
Non-maskable interrupt  
2.1.4 Memory  
This device has the following features:  
• 96 KB of embedded RAM accessible (read/write) at CPU clock speed with 0 wait  
states.  
• The non-volatile memory is divided into two arrays  
• 128 KB of embedded program memory  
• 32 KB ROM (built-in bootloader to support UART, I2C, USB, and SPI  
interfaces)  
The program flash memory contains a 16-byte flash configuration field that stores  
default protection settings and security information. The page size of program flash  
is 1 KB.  
The protection setting can protect 32 regions of the program flash memory from  
unintended erase or program operations.  
The security circuitry prevents unauthorized access to RAM or flash contents from  
debug port.  
• System register file  
8
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
This device contains a 32-byte register file that is powered in all power modes.  
Also, it retains contents during low power modes and is reset only during a  
power-on reset.  
2.1.5 Reset and boot  
The following table lists all the reset sources supported by this device.  
NOTE  
In the following table, Y means the specific module, except  
for the registers, bits or conditions mentioned in the  
footnote, is reset by the corresponding Reset source. N  
means the specific module is not reset by the corresponding  
Reset source.  
Table 3. Reset source  
Reset  
Descriptions  
Modules  
sources  
PMC SIM SMC RCM LLWU Reset  
RTC1 LPTMR Other  
s
pin is  
negated  
POR reset  
Power-on reset (POR)  
Y
N
Y
Y2  
Y
N
Y
Y
Y
N
Y
Y3  
N
N
Y
N
Y
Y
System reset Low leakage wakeup  
(LLWU) reset  
External pin reset (RESET)  
Y
Y
Y2  
Y2  
Y4  
Y4  
Y
Y5  
Y
Y
Y
Y
N
N
N
N
Y
Y
Computer operating  
properly (COP) watchdog  
reset  
Stop mode acknowledge  
error (SACKERR)  
Y
Y2  
Y4  
Y5  
Y
Y
N
N
Y
Software reset (SW)  
Lockup reset (LOCKUP)  
Y
Y
Y
Y
Y2  
Y2  
Y2  
Y2  
Y4  
Y4  
Y4  
Y4  
Y5  
Y5  
Y5  
Y5  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
Y
Y
Y
MDM DAP system reset  
Debug reset Debug reset  
1. The VBAT POR asserts on a VBAT POR reset source. It affects only the modules withinthe VBAT power domain: RTC  
and VBAT Register File. These modules are notaffected by the other reset types.  
2. Except SIM_SOPT1  
3. Only if RESET is used to wake from VLLS mode.  
4. Except SMC_PMCTRL, SMC_STOPCTRL, SMC_PMSTAT  
5. Except RCM_RPFC, RCM_RPFW, RCM_FM  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
9
NXP Semiconductors  
Overview  
The CM0+ core adds support for a programmable Vector Table Offset Register  
(VTOR) to relocate the exception vector table after reset. This device supports booting  
from:  
• internal flash  
• ROM  
The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows  
the user to customize the operation of the MCU at boot time. The register contains read-  
only bits that are loaded from the NVM's option byte in the flash configuration field.  
Below is boot flow chart for this device.  
POWER ON  
Power On Reset(POR)  
Reset to Processor  
FOPT [BOOTSRC_SEL]:  
BOOTPIN_OPT=0?  
No  
00 = Internal Flash  
01 = Reserved  
10 = ROM -> QSPI Yes  
11 = ROM -> QSPI No  
Yes  
[BOOTSRC_SEL] = 0x  
Configure and boot  
from internal flash.  
Boot from On-  
Chip Flash?  
BOOTCFG  
Pin assert?  
No  
Yes  
[BOOTSRC_SEL] =1x  
RESET module  
BOOT ROM module  
Load BCA  
(Boot Configuration Area)  
No  
[BOOTSRC_SEL] =11  
Configure  
QSPI ?  
Yes  
[BOOTSRC_SEL] =10  
No  
Peripheral  
detect mode or boot pin  
No  
QSPI  
present?  
asserted?  
Yes  
Yes  
Config Failure  
Image Download with timeout  
Configure QSPI  
Jump to PC in vector table  
Figure 2. Boot Flow For Devices with QSPI  
The blank chip is default to boot from ROM and remaps the vector table to ROM base  
address, otherwise, it remaps to flash address.  
10  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
If booting from ROM, the device executes in boot loader mode or proceeds with a  
secondary boot to a QSPI device connected to QSPI0.  
2.1.6 Clock options  
This chip provides a wide range of sources to generate the internal clocks. These  
sources include internal resistor capacitor (IRC) oscillators, external oscillators,  
external clock sources, ceramic resonators, phase-locked loop (PLL) and frequency-  
locked loop (FLL). These sources can be configured to provide the required  
performance and optimize the power consumption.  
The IRC oscillators include the 48 MHz internal resister capacitor (IRC48M)  
oscillator, the 4 MHz internal resister capacitor (4 MHz IRC) oscillator, the 32 kHz  
internal resister capacitor (32 kHz IRC) oscillator, and the low power oscillator  
(LPO).  
The 48 MHz internal resister capacitor (IRC48M) oscillator generates a 48 MHz clock  
and synchronizes with the USB clock in full speed mode to achieve the required  
accuracy.  
The 4 MHz internal resister capacitor (4 MHz IRC) oscillator generates a 4 MHz  
clock. It can serve as the low power, low speed system clock under very low power  
run (VLPR) mode or very low power wait (VLPW) mode. It can also be provided as  
clock source for other on-chip modules. The 4 MHz IRC cannot be used in any VLLS  
modes.  
The 32 kHz internal resister capacitor (32 kHz IRC) oscillator generates a 32 kHz  
clock. It can be used as FLL internal reference clock or can be provided as low power  
clock source to other on-chip modules. The 32 kHz IRC cannot be used in any VLLS  
modes.  
The LPO generates a 1 kHz clock and cannot be used in VLLS0 mode.  
The system oscillator supports low frequency crystals (32 kHz to 40 kHz), high  
frequency crystals (1 MHz to 32 MHz), and ceramic resonators (1 MHz to 32 MHz).  
An external clock source, DC to 48 MHz, can be used as the system clock through the  
EXTAL0 pin. The external oscillator also supports a low speed external clock (32.768  
kHz) on the RTC_CLKIN pin for use with the RTC.  
The frequency-locked loop (FLL) can generate clock up to four programmable  
different frequency ranges (20–25 MHz, 40–50 MHz, 60–75 MHz or 80–100 MHz)  
with low speed (31.25–39.0625 kHz) internal or external reference clock. The FLL  
can be used as the system clock or clock source for other on-chip modules.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
11  
NXP Semiconductors  
Overview  
The phase-locked loop (PLL) can generate up to 144 MHz high speed, low jitter clock  
with 8–16 MHz internal or external reference clock. The PLL can be used as the system  
clock or clock source for other on-chip modules.  
For more details on the clock operations and configurations, see Reference Manual.  
MCG  
SIM  
FCRDIV  
4 MHz IRC  
32 kHz IRC  
Clock options for  
some peripherals  
(see note)  
MCGIRCLK  
MCGFFCLK  
CG  
FLL  
OUTDIV1  
CG  
CG  
CG  
CG  
Core / system clocks  
Bus clock  
OUTDIV2  
OUTDIV4  
OUTDIV5  
MCGOUTCLK  
Flash clock  
PLL  
QSPI bus interface clock  
MCGFLLCLK  
MCGPLLCLK  
FRDIV  
MCGPLLCLK/  
MCGFLLCLK/  
PRDIV  
IRC48MCLK/  
System oscillator  
EXTAL0  
XTAL0  
OSCCLK  
DIV_OSCERCLK  
DIV  
XTAL_CLK  
OSCERCLK  
CG  
OSC  
logic  
OSC32KCLK  
ERCLK32K  
PMC  
RTC oscillator  
LPO  
32.768 kHz  
1Hz  
EXTAL32  
XTAL32  
PMC logic  
OSC logic  
RTC_CLKOUT  
IRC48M  
IRC48MCLK  
IRC48M logic  
IRC48MCLK  
CG — Clock gate  
Note: See subsequent sections for details on where these clocks are used.  
Figure 3. Clocking diagram  
In order to provide flexibility, many peripherals can select from multiple clock sources  
for operation. This enables the peripheral to select a clock that will always be available  
during operation in various operational modes.  
12  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
The following table summarizes the clocks associated with each module.  
Table 4. Module clocks  
Module  
Bus interface clock  
Internal clocks  
I/O interface clocks  
Core modules  
ARM Cortex-M0+ core  
System clock  
System clock  
System clock  
Core clock  
NVIC  
DAP  
SWD_CLK  
System modules  
DMA  
System clock  
Bus clock  
DMAMUX  
Port control  
Bus clock  
LPO  
Crossbar Switch  
Peripheral bridges  
System clock  
System clock  
Bus clock  
Bus clock  
LPO  
LLWU, PMC, SIM,  
RCM  
Mode controller  
INTMUX  
Bus clock  
Bus clock  
MCM  
System clock  
Bus clock  
EWM  
LPO  
LPO  
Watchdog timer  
Bus clock  
Clocks  
MCG  
Flash clock  
MCGOUTCLK,  
MCGPLLCLK, MCGFLLCLK,  
MCGIRCLK, OSCERCLK  
OSC  
Bus clock  
OSCERCLK  
IRC48MCLK  
IRC48M  
Memory and memory interfaces  
Flash controller  
Flash memory  
QSPI controller  
System clock  
Flash clock  
Flash clock  
QSPI bus interface clock  
QSPI clock  
QSPIx_SCK  
Security  
CRC  
TRNG  
Bus clock  
Bus clock  
LTC Encryption Engine  
System clock  
Analog  
ADC  
CMP  
DAC  
Bus clock  
Bus clock  
Bus clock  
Flash clock  
OSCERCLK, IRC48MCLK  
VREF  
Timers  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
13  
NXP Semiconductors  
Overview  
Table 4. Module clocks (continued)  
Module  
Bus interface clock  
Bus clock  
Internal clocks  
I/O interface clocks  
TPM  
PDB  
TPM clock  
TPM_CLKIN0, TPM_CLKIN1  
Bus clock  
PIT  
Bus clock  
LPTMR  
Bus clock  
LPO, OSCERCLK,  
MCGIRCLK, ERCLK32K  
RTC  
Bus clock  
EXTAL32  
Communication interfaces  
USB FS OTG  
USB DCD  
SPI  
System clock  
Bus clock  
USB FS clock  
DSPI_SCK  
I2C_SCL  
System clock  
Bus clock  
I2C  
LPUART  
EMVSIM  
FlexIO  
Bus clock  
LPUART clock  
EMVSIM clock  
FlexIO clock  
Bus clock  
Bus clock  
Human-machine interfaces  
GPIO  
TSI  
Platform clock  
Bus clock  
LPO, ERCLK32K,  
MCGIRCLK  
2.1.7 Security  
Security state can be enabled via programming flash configuration field (0x40e). After  
enabling device security, the SWD port cannot access the memory resources of the  
MCU, and ROM boot loader is also limited to access flash and not allowed to read out  
flash information via ROM boot loader commands.  
Access interface  
Secure state  
Unsecure operation  
SWD port  
Cannot access memory source by SWD The debugger can write to the Flash  
interface  
Mass Erase in Progress field of the  
MDM-AP Control register to trigger a  
mass erase (Erase All Blocks)  
command  
ROM boot loader Interface  
(UART/I2C/SPI/USB)  
Limit access to the flash, cannot read  
out flash content  
Send “FlashEraseAllUnsecureh"  
command or attempt to unlock flash  
security using the backdoor key  
This device features 128-bit unique identification number, which is programmed in  
factory and loaded to SIM register after power-on reset.  
14  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
2.1.8 Power management  
The Power Management Controller (PMC) expands upon ARM’s operational modes  
of Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes  
can be used to optimize current consumption for a wide range of applications. The  
WFI or WFE instruction invokes a Wait or a Stop mode, depending on the current  
configuration. For more information on ARM’s operational modes, See the ARM®  
Cortex User Guide.  
The PMC provides High Speed Run (HSRUN), Run (Run), and Very Low Power Run  
(VLPR) configurations in ARM’s Run operation mode. In these modes, the MCU core  
is active and can access all peripherals. The difference between the modes is the  
maximum clock frequency of the system and therefore the power consumption. The  
configuration that matches the power versus performance requirements of the  
application can be selected.  
The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in  
ARM’s Sleep operation mode. In these modes, even though the MCU core is inactive,  
all of the peripherals can be enabled and operate as programmed. The difference  
between the modes is the maximum clock frequency of the system and therefore the  
power consumption.  
The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop  
(LLS), and Very Low Leakage Stop (VLLS) configurations in ARM’s Deep Sleep  
operational mode. In these modes, the MCU core and most of the peripherals are  
disabled. Depending on the requirements of the application, different portions of the  
analog, logic, and memory can be retained or disabled to conserve power.  
The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up  
Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are  
used to wake up the MCU from low power states. The NVIC is used to wake up the  
MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU  
core from STOP and VLPS modes. The LLWU is used to wake up the MCU core  
from LLS and VLLSx modes.  
For additional information regarding operational modes, power management, the  
NVIC, AWIC, or the LLWU, please refer to the Reference Manual.  
The following table provides information about the state of the peripherals in the  
various operational modes and the modules that can wake MCU from low power  
modes.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
15  
NXP Semiconductors  
Overview  
Table 6. Peripherals states in different operational modes  
Core mode  
Device mode  
Descriptions  
Run mode  
High Speed Run  
In HSRun mode, MCU is able to operate at a faster frequency, all device  
modules are operational.  
Run  
In Run mode, all device modules are operational.  
Very Low Power Run  
In VLPR mode, all device modules are operational at a reduced frequency  
except the Low Voltage Detect (LVD) monitor, which is disabled.  
Sleep mode  
Deep sleep  
Wait  
In Wait mode, all peripheral modules are operational. The MCU core is placed  
into Sleep mode.  
Very Low Power Wait  
In VLPW mode, all peripheral modules are operational at a reduced frequency  
except the Low Voltage Detect (LVD) monitor, which is disabled. The MCU  
core is placed into Sleep mode.  
Stop  
In Stop mode, most peripheral clocks are disabled and placed in a static state.  
Stop mode retains all registers and SRAMs while maintaining Low Voltage  
Detection protection. In Stop mode, the ADC, DAC, CMP, LPTimer, RTC,  
TPM, LPUART, TSI and pin interrupts are operational. The NVIC is disabled,  
but the AWIC can be used to wake up from an interrupt.  
Very Low Power Stop  
Low Leakage Stop  
In VLPS mode, the contents of the SRAM are retained. The CMP (low speed),  
ADC, OSC, RTC, LPTMR, TPM, FlexIO, LPUART, USB, TSI and DMA are  
operational, LVD and NVIC are disabled, AWIC is used to wake up from  
interrupt.  
In LLS mode, the contents of the SRAM and the 32-byte system register file  
are retained. The CMP (low speed), LLWU, LPTMR, and RTC are operational.  
The ADC, CRC, DMA, FlexIO, I2C, LPUART, MCG-Lite, NVIC, PIT, SPI, TPM,  
UART, USB, and WDOGCOP are static, but retain their programming. The  
DAC, GPIO, and VREF are static, retain their programming, and continue to  
drive their previous values.  
Very Low Leakage Stop In VLLS modes, most peripherals are powered off and will resume operation  
from their reset state when the device wakes up. The LLWU, LPTMR, and  
RTC are operational in all VLLS modes.  
In VLLS3, the contents of the SRAM and the 32-byte system register file are  
retained. The CMP (low speed), and PMC are operational. The DAC, GPIO,  
and VREF are not operational but continue driving.  
In VLLS1, the contents of the 32-byte system register file are retained. The  
CMP (low speed), and PMC are operational. The DAC, GPIO, and VREF are  
not operational but continue driving.  
In VLLS0, the contents of the 32-byte system register file are retained. The  
PMC is operational. The GPIO is not operational but continues driving. The  
POR detection circuit can be enabled or disabled.  
2.1.9 LLWU  
The LLWU module is used to wake MCU from low leakage power mode (LLS and  
VLLSx) and functional only on entry into a low-leakage power mode. After recovery  
from LLS, the LLWU is immediately disabled. After recovery from VLLSx, the LLWU  
continues to detect wake-up events until the user has acknowledged the wake-up event.  
16  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
This device uses 25 external wakeup pin inputs and five internal modules as wakeup  
sources to the LLWU module.  
The following is internal peripheral and external pin inputs as wakeup sources to the  
LLWU module.  
Table 7. Wakeup sources for LLWU inputs  
LLWU pins  
LLWU_P0  
LLWU_P1  
LLWU_P2  
LLWU_P3  
LLWU_P4  
LLWU_P5  
LLWU_P6  
LLWU_P7  
LLWU_P8  
LLWU_P9  
LLWU_P10  
LLWU_P11  
LLWU_P12  
LLWU_P13  
LLWU_P14  
LLWU_P15  
LLWU_P16  
LLWU_P17  
LLWU_P18  
LLWU_P19  
LLWU_P20  
LLWU_P21  
LLWU_P22  
LLWU_P23  
LLWU_P24  
LLWU_P25  
LLWU_P26  
LLWU_P27  
LLWU_P28  
LLWU_P29  
LLWU_P30  
LLWU_P31  
LLWU_M0IF  
Module sources or pin names  
PTE1  
PTE2  
PTE4  
PTA4  
PTA13  
PTB0  
PTC1  
PTC3  
PTC4  
PTC5  
PTC6  
PTC11  
PTD0  
PTD2  
PTD4  
PTD6  
PTE6  
PTE9  
PTE10  
Reserved  
Reserved  
Reserved  
PTA10  
PTA11  
PTD8  
PTD11  
Reserved  
USB0_DP  
USB0_DM1  
Reserved  
Reserved  
Reserved  
LPTMR0 or LPTMR12  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
17  
NXP Semiconductors  
Overview  
Table 7. Wakeup sources for LLWU inputs (continued)  
LLWU pins  
LLWU_M1IF  
LLWU_M2IF  
LLWU_M3IF  
LLWU_M4IF  
LLWU_M5IF  
LLWU_M6IF  
LLWU_M7IF  
Module sources or pin names  
CMP0  
Reserved  
Reserved  
TSI02  
RTC alarm  
Reserved  
RTC second  
1. A wakeup source of LLWU, USB0_DP or USB0_DM is available only when the chip is in USB host mode.  
2. Requires the peripheral and the peripheral interrupt to be enabled. The LLWU_ME[WUMEn] (n=0-7) bit enables the  
internal module flag a wakeup inputs. After wakeup, the flags are cleared based on the peripheral clearing mechanism.  
2.1.10 Debug controller  
This device supports standard ARM 2-pin SWD debug port. It provides register and  
memory accessibility from the external debugger interface, basic run/halt control plus 2  
breakpoints and 2 watchpoints.  
It also supports trace function with the Micro Trace Buffer (MTB), which provides a  
simple execution trace capability for the Cortex-M0+ processor.  
2.1.11 INTMUX  
The Interrupt Multiplexer (INTMUX) routes the interrupt sources to the interrupt  
outputs. It provides interrupt status registers to monitor interrupt pending status and  
vector numbers and implements the ability to logical AND or OR enabled interrupts on  
a given channel.  
The INTMUX has the following features:  
• Supports 4 multiplex channels  
• Each channel receives 32 interrupt sources and has one interrupt output  
• Each interrupt source can be enabled or disabled  
• Each channel supports logic AND or logic OR of all enabled interrupt sources  
18  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
2.1.12 Watch dog  
The Watchdog Timer (WDOG) keeps a watch on the system functioning and resets it  
in case of its failure.  
The WDOG has the following features:  
• Clock source input independent from CPU/bus clock. Choice between low-power  
oscillator (LPO) and external system clock.  
• Unlock sequence for allowing updates to write-once WDOG control/configuration  
bits.  
• All WDOG control/configuration bits are writable once only within 256 bus clock  
cycles of being unlocked.  
• Programmable time-out period specified in terms of number of WDOG clock  
cycles.  
• Ability to test WDOG timer and reset with a flag indicating watchdog test.  
• Windowed refresh option.  
• Robust refresh mechanism.  
• Count of WDOG resets as they occur.  
• Configurable interrupt on time-out to provide debug breadcrumbs. This is  
followed by a reset after 256 bus clock cycles.  
2.2 Peripheral features  
The following sections describe the features of each peripherals of the chip.  
2.2.1 BME  
The Bit Manipulation Engine (BME) provides hardware support for atomic read-  
modify-write memory operations to the peripheral address space in Cortex-M0+ based  
microcontrollers. It reduces up to 30% of the code size and up to 9% of the cycles for  
bit-oriented operations to peripheral registers.  
The BME supports unsigned bit field extract, load-and-set 1-bit, load-and-clear 1-bit,  
bit field insert, logical AND/OR/XOR operations with byte, halfword or word-sized  
data type.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
19  
NXP Semiconductors  
Overview  
2.2.2 eDMA and DMAMUX  
The eDMA controller module enables fast transfers of data, which provides an efficient  
way to move blocks of data with minimal processor interaction. The eDMA controller  
in this device implements eight channels which can be routed from up to 63 DMA  
request sources through DMA MUX module. Some of the peripheral request sources  
have asynchronous eDMA capability which can be used to wake MCU from Stop  
mode. The peripherals which have such capability include FlexIO, LPUART0,  
LPUART1, LPUART2, TPM0, TPM1, TPM2, PORTA-PORTE, ADC0, and CMP0.  
The DMA channel 0 t0 3 can be periodically triggered by PIT via DMA MUX.  
Main features are listed below:  
• Dual-address transfers via 32-bit master connection to the system bus and data  
transfers in 8-, 16-, or 32-bit blocks  
• 8-channel implementation that performs complex data transfers with minimal  
intervention from a host processor  
• Transfer control descriptor (TCD) organized to support two-deep, nested transfer  
operations  
• Provide the selectable channel activation methods.  
• Fixed-priority and round-robin channel arbitration  
• Channel completion reported via programmable interrupt requests  
• Programmable support for scatter/gather DMA processing  
• Support for complex data structures  
2.2.3 TPM  
This device contains three low power TPM modules (TPM). All TPM modules are  
functional in Stop/VLPS mode if the clock source is enabled.  
The TPM features include:  
• TPM clock mode is selectable from external clock input or internal clock source,  
HIRC48M clock, external crystal input clock, MCGIRCLK, MCGPLLCLK, or  
MCGFLLCLK.  
• Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128  
• TPM includes a 16-bit counter  
• Includes 6 channels that can be configured for input capture, output compare, edge-  
aligned PWM mode, or center-aligned PWM mode  
• Support the generation of an interrupt and/or DMA request per channel or counter  
overflow  
20  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
• Support selectable trigger input to optionally reset or cause the counter to start or  
stop incrementing  
• Support the generation of hardware triggers when the counter overflows and per  
channel  
2.2.4 ADC  
this device contains one ADC module. This ADC module supports hardware triggers  
from TPM, LPTMR, PIT, RTC, external trigger pin and CMP output. It supports  
wakeup of MCU in low power mode when using internal clock source or external  
crystal clock.  
ADC module has the following features:  
• Linear successive approximation algorithm with up to 16-bit resolution  
• Up to four pairs of differential and 17 single-ended external analog inputs  
• Support selectable 16-bit, 13-bit, 11-bit, and 9-bit differential output mode, or 16-  
bit, 12-bit, 10-bit, and 8-bit single-ended output modes  
• Single or continuous conversion  
• Configurable sample time and conversion speed/power  
• Selectable clock source up to four  
• Operation in low-power modes for lower noise  
• Asynchronous clock source for lower noise operation with option to output the  
clock  
• Selectable hardware conversion trigger  
• Automatic compare with interrupt for less-than, greater-than or equal-to, within  
range, or out-of-range, programmable value  
• Temperature sensor  
• Hardware average function up to 32x  
• Selectable voltage reference: external or alternate  
• Self-Calibration mode  
2.2.5 VREF  
The Voltage Reference (VREF) can supply an accurate voltage output (1.2V typically)  
trimmed in 0.5 mV steps. It can be used in applications to provide a reference voltage  
to external devices or used internally as a reference to analog peripherals such as the  
ADC, DAC or CMP.  
The VREF supports the following programmable buffer modes:  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
21  
NXP Semiconductors  
Overview  
• Bandgap on only, used for stabilization and startup  
• High power buffer mode  
• Low-power buffer mode  
• Buffer disabled  
A 100 nF capacitor must always be connected between VERF output (VREFO) pin and  
VSSA if the VREF is used. This capacitor must be as close to VREFO pin as possible.  
2.2.6 CMP  
The device contains one high-speed comparator and two 8-input multiplexers for both  
the inverting and non-inverting inputs of the comparator. Each CMP input channel  
connects to both muxes.  
The CMP includes one 6-bit DAC, which provides a selectable voltage reference for  
various user application cases. Besides, the CMP also has several module-to-module  
interconnects in order to facilitate ADC triggering, TPM triggering, and interfaces.  
The CMP has the following features:  
• Inputs may range from rail to rail  
• Programmable hysteresis control  
• Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of  
the comparator output  
• Selectable inversion on comparator output  
• Capability to produce a wide range of outputs such as sampled, digitally filtered  
• External hysteresis can be used at the same time that the output filter is used for  
internal functions  
• Two software selectable performance levels: shorter propagation delay at the  
expense of higher power and Low power with longer propagation delay  
• DMA transfer support  
• Functional in all modes of operation except in VLLS0 mode  
• The window and filter functions are not available in Stop, VLPS, LLS, or VLLSx  
modes  
• Integrated 6-bit DAC with selectable supply reference source and can be power  
down to conserve power  
• Two 8-to-1 channel mux  
22  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
2.2.7 RTC  
The RTC is an always powered-on block that remains active in all low power modes.  
The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an  
external crystal using the oscillator or clock directly from RTC_CLKIN pin.  
RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all  
RTC registers. During chip power-down, RTC is powered from the backup power  
supply (VBAT), electrically isolated from the rest of the chip, continues to increment  
the time counter (if enabled) and retain the state of the RTC registers. The RTC  
registers are not accessible.  
The RTC module has the following features  
• 32-bit seconds counter with roll-over protection and 32-bit alarm  
• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and  
3906 ppm  
• Register write protection with register lock mechanism  
• 1 Hz square wave or second pulse output with optional interrupt  
• 64-bit monotonic counter with roll-over protection  
2.2.8 PIT  
The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It  
has four independent channels and each channel has a 32-bit counter. Two channels  
can be chained together to form a 64-bit counter.  
The PIT module can trigger a DMA transfer on the first four DMA channels. and also  
can be selected as ADC, TPM, and DAC trigger source.  
The PIT module has the following features:  
• Each 32-bit timers is able to generate DMA trigger  
• Each 32-bit timers is able to generate timeout interrupts  
• Two timers can be cascaded to form a 64-bit timer  
• Each timer can be programmed as ADC/TPM trigger source  
• Timer 0 is able to trigger DAC  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
23  
NXP Semiconductors  
Overview  
2.2.9 LPTMR  
The low-power timer (LPTMR) can be configured to operate as a time counter with  
optional prescaler, or as a pulse counter with optional glitch filter, across all power  
modes, including the low-leakage modes. It can also continue operating through most  
system reset events, allowing it to be used as a time of day counter.  
The LPTMR module has the following features:  
• 16-bit time counter or pulse counter with compare  
• Optional interrupt can generate asynchronous wakeup from any low-power  
mode  
• Hardware trigger output  
• Counter supports free-running mode or reset on compare  
• Configurable clock source for prescaler/glitch filter  
• Configurable input source for pulse counter  
2.2.10 CRC  
This device contains one cyclic redundancy check (CRC) module which can generate  
16/32-bit CRC code for error detection.  
The CRC module provides a programmable polynomial, WAS, and other parameters  
required to implement a 16-bit or 32-bit CRC standard.  
The CRC module has the following features:  
• Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift  
register  
• Programmable initial seed value and polynomial  
• Option to transpose input data or output data (the CRC result) bitwise or bytewise.  
• Option for inversion of final CRC result  
• 32-bit CPU register programming interface  
2.2.11 LPUART  
This product contains three Low-Power UART modules, both of their clock sources are  
selectable fromIRC48M, MCGFLLCLK, MCGPLLCLK, MCGIRCCLK or external  
crystal clock, and can work in Stop and VLPS modes. They also support 4x to 32x data  
oversampling rate to meet different applications.  
The LPUART module has the following features:  
• Full-duplex, standard non-return-to-zero (NRZ) format  
24  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
• Programmable baud rates (13-bit modulo divider) with configurable oversampling  
ratio from 4x to 32x  
• Transmit and receive baud rate can operate asynchronous to the bus clock  
• Interrupt, DMA or polled operation  
• Hardware parity generation and checking  
• Programmable 8-bit, 9-bit or 10-bit character length  
• Programmable 1-bit or 2-bit stop bits  
• Three receiver wakeup methods: idle line wakeup, address mark wakeup, receive  
data match  
• Automatic address matching to reduce ISR overhead  
• Optional 13-bit break character generation / 11-bit break character detection  
• Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle  
characters  
• Selectable transmitter output and receiver input polarity  
• Hardware flow control support for request to send (RTS) and clear to send (CTS)  
signals  
• Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable  
pulse width  
2.2.12 SPI  
This device contains two SPI modules. SPI modules support 8-bit and 16-bit modes.  
FIFO function is available only on SPI1 module.  
The SPI modules have the following features:  
• Full-duplex or single-wire bidirectional mode  
• Programmable transmit bit rate  
• Double-buffered transmit and receive data register  
• Serial clock phase and polarity options  
• Slave select output  
• Mode fault error flag with CPU interrupt capability  
• Control of SPI operation during wait mode  
• Selectable MSB-first or LSB-first shifting  
• Programmable 8- or 16-bit data transmission length  
• Receive data buffer hardware match feature  
• 64-bit FIFO mode for high speed/large amounts of data transfers  
• Support DMA  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
25  
NXP Semiconductors  
Overview  
2.2.13 I2C  
This device contains two I2C modules, which support up to 1 Mbits/s by dual buffer  
features, and address match to wake MCU from the low power mode.  
I2C modules support DMA transfer, and the interrupt condition can trigger DMA  
request when DMA function is enabled.  
The I2C modules have the following features:  
• Support for system management bus (SMBus) Specification, version 2  
• Software programmable for one of 64 different serial clock frequencies  
• Software-selectable acknowledge bit  
• Arbitration-lost interrupt with automatic mode switching from master to slave  
• Calling address identification interrupt  
• START and STOP signal generation and detection  
• Repeated START signal generation and detection  
• Acknowledge bit generation and detection  
• Bus busy detection  
• General call recognition  
• 10-bit address extension  
• Programmable input glitch filter  
• Low power mode wakeup on slave address match  
• Range slave address support  
• DMA support  
• Double buffering support to achieve higher baud rate  
2.2.14 USB  
This device contains one USB module which implements a USB2.0 full-speed  
compliant peripheral and interfaces to the on-chip USBFS transceiver. It implements  
keep-alive feature to avoid re-enumerating when exiting from low power modes and  
enables HIRC48M to allow crystal-less USB operation.  
The USBFS has the following features:  
• USB 1.1 and 2.0 compatible FS device controller  
• 16 bidirectional endpoints  
• DMA or FIFO data stream interfaces  
• Low-power consumption  
26  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
• IRC48M with clock-recovery is supported to eliminate the 48 MHz crystal. It is  
used for USB device-only implementation.  
• Keep-alive feature is supported to power down system bus and CPU. USB can  
respond to IN with NAK and wake up for SETUP/OUT.  
2.2.15 FlexIO  
The FlexIO is a highly configurable module providing a wide range of protocols  
including, but not limited to LPUART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/  
Waveform generation. The module supports programmable baud rates independent of  
bus clock frequency, with automatic start/stop bit generation. It also supports to work  
in VLPR, VLPW, Stop, and VLPS modes when clock source remains enabled.  
The FlexIO module has the following features:  
• Array of 32-bit shift registers with transmit, receive and data match modes  
• Double buffered shifter operation for continuous data transfer  
• Shifter concatenation to support large transfer sizes  
• Automatic start/stop bit generation  
• 1, 2, 4, 8, 16 or 32 multi-bit shift widths for parallel interface support  
• Interrupt, DMA or polled transmit/receive operation  
• Programmable baud rates independent of bus clock frequency, with support for  
asynchronous operation during stop modes  
• Highly flexible 16-bit timers with support for a variety of internal or external  
trigger, reset, enable and disable conditions  
• Programmable logic mode for integrating external digital logic functions on-chip  
or combining pin/shifter/timer functions to generate complex outputs  
• Programmable state machine for offloading basic system control functions from  
CPU with support for up to 8 states, 8 outputs and 3 selectable inputs per state  
2.2.16 DAC  
The 12-bit digital-to-analog converter (DAC) is a low-power, general-purpose DAC.  
The output of the DAC can be placed on an external pin or set as one of the inputs to  
the analog comparator, OPAMPS or ADC.  
DAC module has the following features:  
• On-chip programmable reference generator output. The voltage output range is  
from 1⁄4096 Vin to Vin, and the step is 1⁄4096 Vin, where Vin is the input voltage.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
27  
NXP Semiconductors  
Overview  
• Vin can be selected from two reference sources  
• Static operation in Normal Stop mode  
• 16-word data buffer supported with configurable watermark and multiple operation  
modes  
• DMA support  
2.2.17 EMV-SIM  
The EMV_SIM (Euro/Mastercard/Visa/SIM Serial Interface Module) is designed to  
facilitate communication to Smart Cards compatible to the EMV ver4.3 standard (Book  
1) and Smart Cards compatible with ISO/IEC 7816-3 Standard.  
EMV-SIM module has the following features:  
• Supports Smart Cards based on the EMV Standard v4.3 and ISO 7816-3 standard  
• Independent clock for SIM logic (transmitter + receiver) and independent clock for  
register read-write interface  
• 16 byte deep FIFO for transmitter and receiver  
• Automatic NACK generation on parity error and receiver FIFO overflow error  
• Support for both Inverse and Direct conventions  
• Re-transmission of byte upon Smart Card NACK request with programmable  
threshold of re-transmissions  
• Auto detection of Initial Character in receiver and setting of data format (inverse or  
direct)  
• NACK detection in receiver  
• Independent timers to measure character wait time, block wait time and block guard  
time  
• Two general purpose counters available for use by software application with  
programmable clock selection for the counters  
• DMA support available to transfer data to/from FIFOs. Programmable option  
available to select interrupt or DMA feature  
• Programmable Prescaler to generate the desired frequency for Card Clock and Baud  
Rate Divisor to generate the internal ETU clocks for transmitter and receiver for  
any F/D ratio  
• Deep sleep wake-up via Smart Card presence detect interrupt  
• Manual control of all Smart Card interface signals  
28  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Overview  
• Automatic power down of port logic on Smart Card presence detect  
• Support for 8-bit LRC and 16-bit CRC generation for bytes sent out from  
transmitter and checking incoming message checksum for receiver  
2.2.18 LTC  
LP Trusted Cryptography (LTC) is a hardware accelerate module dedicate for the  
popular encryption algorithm.  
LTC module has the following features:  
• Cryptographic authentication  
• Authenticated encryption algorithms  
• AES-CCM (counter with CBC-MAC)  
• AES-GCM (Galois counter mode)  
• Symmetric key block ciphers  
• Public key cryptography  
• Secure Scan  
2.2.19 TRNG  
The Standalone True Random Number Generator (SA-TRNG) is hardware accelerator  
module that generates a 512-bit entropy as needed by an entropy consuming module  
or by other post processing functions.  
2.2.20 TSI  
The touch sensing input (TSI) module provides capacitive touch sensing detection  
with high sensitivity and enhanced robustness.  
TSI module has the following features:  
• Support up to 16 external electrodes  
• Automatic detection of electrode capacitance across all operational power modes  
• Internal reference oscillator for high-accuracy measurement  
• Configurable software or hardware scan trigger  
• Fully support NXP touch sensing software (TSS) library, see www.nxp.com/  
touchsensing.  
• Capability to wake MCU from low power modes  
• Compensate for temperature and supply voltage variations  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
29  
NXP Semiconductors  
Memory map  
• High sensitivity change with 16-bit resolution register  
• Configurable up to 4096 scan times.  
• Support DMA data transfer  
2.2.21 QuadSPI  
The Quad Serial Peripheral Interface (QuadSPI) block acts as an interface to one single  
or two external serial flash devices, each with up to eight bidirectional data lines. This  
device contains one QSPI module, which supports singles, dual, quad or octal data lines  
in single (SDR) or double (DDR) data rate configurations. The QuadSPI clock  
frequencies support up to 96 MHz in SDR mode and up to 72 MHz in DDR mode.  
The QuadSPI has the following features:  
• Flexible sequence engine to support various flash vendor devices.  
• Single, dual, quad and octal modes of operation.  
• DDR/DTR mode wherein the data is generated on every edge of the serial flash  
clock.  
• Support for flash data strobe signal for data sampling in DDR and SDR mode.  
• Support for parallel writes via register mapped interface in single I/O mode.  
• Two identical serial flash devices can be connected and accessed in parallel for data  
read operations, forming one (virtual) flash memory with doubled readout  
bandwidth.  
• DMA support to read RX Buffer data via AMBA AHB bus (64-bit width interface)  
or IP registers space (32-bit access) and DMA support to fill TX Buffer via IPS  
register space (32-bit access).  
• Multimaster accesses with priority  
• Multiple interrupt conditions  
• Memory mapped read access to connected flash devices.  
• Programmable sequence engine to cater to future command/protocol changes and  
able to support all existing vendor commands and operations.  
3 Memory map  
This device contains various memories and memory-mapped peripherals which are  
located in a 4 GB memory space. The following figure shows the system memory and  
peripheral locations  
30  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Memory map  
0x4000_0000  
Reserved  
0x4000_8000  
0x4000_9000  
DMA controller  
DMA TCD  
0x4000_A000  
Reserved  
0x4000_D000  
0x4000_E000  
System MPU  
Reserved  
GPIO controller(alias to 0x400F_F00)  
Reserved  
0x4000_F000  
0x4001_0000  
0x4002_0000  
0x4002_1000  
Flash memory unit  
DMAMUX  
Reserved  
INTMUX0  
TRNG  
0x4002_2000  
0x4002_4000  
0x4002_5000  
0x4002_6000  
Reserved  
SPI0  
0x4002_C000  
0x4002_D000  
0x4002_E000  
0x4003_2000  
SPI1  
Reserved  
CRC  
Reserved  
0x0000_0000  
0x4003_3000  
0x4003_7000  
0x4003_8000  
0x4003_9000  
Flash  
ROM  
PIT  
TPM0  
0x0000_0000  
0x03FF_FFFF  
0x1C00_0000  
TPM1  
0x4003_A000  
Code space  
Reserved  
TPM2  
ADC0  
0x4003_B000  
0x4003_C000  
0x4003_D000  
0x4003_E000  
0x4003_F000  
0x0400_0000  
0x1C00_0000  
Reserved  
RTC  
Boot ROM  
Reserved  
VBAT Register File  
0x1C00_7FFF  
0x1FFF_A000  
DAC0  
0x1C00_8000  
0x1FFF_A000  
0x4004_0000  
0x4004_1000  
LPTMR0  
System register file  
Reserved  
0x4004_2000  
0x4004_4000  
0x4004_5000  
0x4004_6000  
0x4004_7000  
SRAM_L  
SRAM_U  
Data Space  
Reserved  
LPTMR1  
TSI0  
Reserved  
0x2000_0000  
0x2001_FFFF  
0x4000_0000  
0x2002_0000  
0x4000_0000  
SIM low power logic  
SIM  
0x4004_8000  
0x4004_9000  
0x4004_A000  
Public  
peripheral  
PORT A  
AIPS  
peripherals  
PORT B  
PORT C  
PORT D  
0x4004_B000  
0x4004_C000  
0x400F_F000  
0x4400_0000  
Reserved  
BME  
0x4007_FFFF  
0x400F_F000  
0x4004_D000  
0x4004_E000  
PORT E  
EMVSIM0  
EMVSIM1  
Reserved  
LTC  
GPIO  
0x4004_F000  
0x4010_0000  
0x4010_07FF  
0x6000_0000  
0x6700_0000  
0x7000_0000  
0xE000_0000  
USB RAM  
Reserved  
QSPI  
0x4005_0000  
0x4005_1000  
0x4005_2000  
0x4005_3000  
WDOG  
Reserved  
0xE000_0000  
0xE000_E000  
Reserved  
Reserved  
0x4005_4000  
0x4005_5000  
LPUART0  
LPUART1  
LPUART2  
Reserved  
QSPI0  
System  
control  
space  
0x4005_6000  
0x4005_7000  
Private  
peripheral  
0xE000_F000  
0xE00F_F000  
Reserved  
0x4005_A000  
0x4005_B000  
0x4005_F000  
0x4006_0000  
Reserved  
FlexIO0  
Core  
ROM table  
0xE010_0000  
0xF000_0000  
0xE00F_FFFF  
0xF000_0000  
Reserved  
Reserved  
EWM  
MTB  
0x4006_1000  
0x4006_2000  
0xF000_1000  
0xF000_2000  
0xF000_3000  
Reserved  
MCG  
MTBDWT  
0x4006_4000  
0x4006_5000  
OSC  
I2C0  
ROM Table  
MCM  
0x4006_6000  
0x4006_7000  
Private  
peripheral  
bus  
I2C1  
Reserved  
USB FS  
CMP0  
0x4006_8000  
0x4007_2000  
0x4007_3000  
0xF000_4000  
0xF800_0000  
Reserved  
IOPORT  
0xFFFF_FFFF  
0x4007_4000  
0x4007_5000  
VREF  
Reserved  
LLWU  
PMC  
0xFFFF_FFFF  
0x4007_C000  
0x4007_D000  
0x4007_E000  
0x4007_F000  
SMC  
RCM  
0x400F_F000  
eGPIO  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016Figure 4. Memory map  
31  
NXP Semiconductors  
Pinouts  
4 Pinouts  
4.1 KL82 signal multiplexing and pin assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
121  
100  
80  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP LQFP MAP LQFP  
BGA  
BGA  
B1  
1
2
3
4
1
2
3
4
A1  
1
2
3
4
PTE0  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTE0  
SPI1_PCS1  
SPI1_SCK  
LPUART1_  
TX  
QSPI0A_  
DATA3  
I2C1_SDA  
I2C1_SCL  
RTC_  
CLKOUT  
C2  
C1  
D2  
B1  
C5  
D2  
PTE1/  
LLWU_P0  
PTE1/  
LLWU_P0  
LPUART1_  
RX  
QSPI0A_  
SCLK  
SPI1_SIN  
PTE2/  
LLWU_P1  
PTE2/  
LLWU_P1  
SPI1_SOUT LPUART1_  
CTS_b  
QSPI0A_  
DATA0  
SPI1_SCK  
PTE3  
PTE3  
SPI1_PCS2  
LPUART1_  
RTS_b  
QSPI0A_  
DATA2  
SPI1_SOUT  
F7  
E5  
D1  
5
6
7
5
6
7
C4  
D3  
E2  
5
6
7
VSS  
VSS  
VSS  
VDDIO_E  
VDDIO_E  
DISABLED  
VDDIO_E  
PTE4/  
LLWU_P2  
PTE4/  
LLWU_P2  
SPI1_SIN  
QSPI0A_  
DATA1  
E2  
E1  
F3  
F2  
F1  
G2  
G1  
8
8
D1  
8
PTE5  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTE5  
SPI1_PCS0  
SPI1_PCS3  
QSPI0A_  
SS0_B  
USB0_  
SOF_OUT  
9
9
PTE6/  
LLWU_P16  
PTE6/  
LLWU_P16  
QSPI0B_  
DATA3  
10  
11  
12  
13  
14  
PTE7  
PTE8  
PTE7  
PTE8  
QSPI0B_  
SCLK  
QSPI0A_  
SS1_B  
10  
11  
QSPI0B_  
DATA0  
PTE9/  
LLWU_P17  
PTE9/  
LLWU_P17  
QSPI0B_  
DATA2  
PTE10/  
LLWU_P18  
PTE10/  
LLWU_P18  
QSPI0B_  
DATA1  
PTE11  
PTE11  
QSPI0B_  
SS0_B  
QSPI0A_  
DQS  
15  
16  
17  
18  
12  
13  
14  
15  
9
VDDIO_E  
VSS  
VDDIO_E  
VSS  
VDDIO_E  
VSS  
H3  
H2  
H1  
F3  
E1  
F1  
10  
11  
VSS  
VSS  
VSS  
USB0_DP  
USB0_DM  
USB0_DP  
USB0_DM  
USB0_DP  
USB0_DM  
32  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
121  
100  
80  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP LQFP MAP LQFP  
BGA  
J1  
BGA  
F2  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
16  
17  
18  
19  
20  
21  
22  
23  
12  
13  
14  
15  
16  
17  
18  
19  
USB_VDD  
NC  
USB_VDD  
NC  
USB_VDD  
NC  
J2  
NC  
K2  
K1  
F5  
G5  
G6  
F6  
L2  
ADC0_DP0  
ADC0_DM0  
VDDA  
ADC0_DP0  
ADC0_DM0  
VDDA  
ADC0_DP0  
ADC0_DM0  
VDDA  
G2  
H3  
H2  
G1  
H1  
G3  
F4  
VREFH  
VREFL  
VREFH  
VREFH  
VREFL  
VREFL  
VSSA  
VSSA  
VSSA  
ADC0_DP1  
ADC0_DM1  
ADC0_DP1  
ADC0_DM1  
ADC0_DP1  
ADC0_DM1  
L1  
L3  
VREF_OUT/ VREF_OUT/ VREF_OUT/  
CMP0_IN5/ CMP0_IN5/ CMP0_IN5/  
ADC0_SE22 ADC0_SE22 ADC0_SE22  
K4  
29  
24  
G4  
20  
DAC0_OUT/ DAC0_OUT/ DAC0_OUT/  
ADC0_SE23 ADC0_SE23 ADC0_SE23  
H6  
K5  
NC  
NC  
NC  
30  
25  
F5  
21  
RTC_  
RTC_  
RTC_  
WAKEUP_B WAKEUP_B WAKEUP_B  
L4  
L5  
K6  
31  
32  
33  
34  
35  
36  
26  
27  
28  
29  
H4  
H5  
G5  
22  
23  
24  
25  
XTAL32  
EXTAL32  
VBAT  
VDD  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
VDD  
VDD  
VSS  
VSS  
VSS  
L7  
D4  
PTA0  
SWD_CLK  
TSI0_CH1  
PTA0  
LPUART0_  
CTS_b  
TPM0_CH5  
FXIO0_D10  
FXIO0_D11  
FXIO0_D12  
FXIO0_D13  
FXIO0_D14  
FXIO0_D15  
EMVSIM0_  
CLK  
SWD_CLK  
H8  
J7  
37  
38  
39  
40  
41  
30  
31  
32  
33  
D5  
E5  
H6  
G6  
26  
27  
28  
29  
PTA1  
PTA2  
PTA3  
TSI0_CH2  
TSI0_CH3  
SWD_DIO  
NMI_b  
TSI0_CH2  
TSI0_CH3  
TSI0_CH4  
TSI0_CH5  
PTA1  
PTA2  
PTA3  
LPUART0_  
RX  
EMVSIM0_  
IO  
LPUART0_  
TX  
EMVSIM0_  
PD  
H9  
J8  
LPUART0_  
RTS_b  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
EMVSIM0_  
RST  
SWD_DIO  
NMI_b  
PTA4/  
LLWU_P3  
PTA4/  
LLWU_P3  
EMVSIM0_  
VCCEN  
K7  
PTA5  
DISABLED  
PTA5  
USB0_  
CLKIN  
L10  
K10  
J9  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTA10/  
LLWU_P22  
DISABLED  
PTA10/  
LLWU_P22  
TPM2_CH0  
TPM2_CH1  
EMVSIM1_  
VCCEN  
FXIO0_D16  
FXIO0_D17  
H7  
PTA11/  
DISABLED  
PTA11/  
LLWU_P23  
LLWU_P23  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
33  
NXP Semiconductors  
Pinouts  
121  
100  
80  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP LQFP MAP LQFP  
BGA  
K8  
BGA  
42  
43  
PTA12  
DISABLED  
DISABLED  
PTA12  
TPM1_CH0  
TPM1_CH1  
FXIO0_D18  
FXIO0_D19  
L8  
PTA13/  
PTA13/  
LLWU_P4  
LLWU_P4  
K9  
L9  
44  
45  
46  
47  
34  
35  
36  
37  
PTA14  
PTA15  
PTA16  
PTA17  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTA14  
PTA15  
PTA16  
PTA17  
SPI0_PCS0  
SPI0_SCK  
LPUART0_  
TX  
FXIO0_D20  
FXIO0_D21  
FXIO0_D22  
FXIO0_D23  
LPUART0_  
RX  
J10  
H10  
SPI0_SOUT LPUART0_  
CTS_b  
SPI0_SIN  
LPUART0_  
RTS_b  
E6  
G7  
48  
49  
50  
38  
39  
40  
H7  
G7  
H8  
30  
31  
32  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
L11  
PTA18  
EXTAL0  
EXTAL0  
PTA18  
PTA19  
TPM_  
CLKIN0  
K11  
51  
41  
G8  
33  
PTA19  
XTAL0  
XTAL0  
TPM_  
CLKIN1  
LPTMR0_  
ALT1/  
LPTMR1_  
ALT1  
J11  
H11  
G11  
52  
53  
42  
43  
F8  
34  
35  
RESET_b  
PTA29  
RESET_b  
RESET_b  
DISABLED  
PTA29  
E6  
PTB0/  
LLWU_P5  
ADC0_SE8/ ADC0_SE8/ PTB0/  
TSI0_CH0 TSI0_CH0 LLWU_P5  
I2C0_SCL  
I2C0_SDA  
I2C0_SCL  
TPM1_CH0  
TPM1_CH1  
FXIO0_D0  
FXIO0_D1  
FXIO0_D2  
G10  
G9  
54  
55  
44  
PTB1  
ADC0_SE9/ ADC0_SE9/ PTB1  
TSI0_CH6  
TSI0_CH6  
PTB2  
ADC0_  
SE12/  
TSI0_CH7  
ADC0_  
SE12/  
TSI0_CH7  
PTB2  
PTB3  
LPUART0_  
RTS_b  
G8  
56  
PTB3  
ADC0_  
SE13/  
ADC0_  
SE13/  
I2C0_SDA  
LPUART0_  
CTS_b  
FXIO0_D3  
TSI0_CH8  
TSI0_CH8  
B11  
C11  
F11  
E11  
D11  
45  
46  
47  
48  
49  
F7  
F6  
E7  
E8  
D7  
36  
37  
38  
39  
40  
PTB4  
PTB5  
PTB6  
PTB7  
PTB8  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTB4  
PTB5  
PTB6  
PTB7  
PTB8  
EMVSIM1_  
IO  
EMVSIM1_  
CLK  
EMVSIM1_  
VCCEN  
EMVSIM1_  
PD  
EMVSIM1_  
RST  
E10  
D10  
C10  
L6  
57  
58  
59  
60  
50  
PTB9  
PTB10  
PTB11  
VSS  
DISABLED  
DISABLED  
DISABLED  
VSS  
PTB9  
SPI1_PCS1  
SPI1_PCS0  
SPI1_SCK  
PTB10  
PTB11  
FXIO0_D4  
FXIO0_D5  
VSS  
34  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
121  
100  
80  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP LQFP MAP LQFP  
BGA  
E7  
BGA  
61  
62  
VDD  
VDD  
VDD  
B10  
51  
PTB16  
TSI0_CH9  
TSI0_CH9  
PTB16  
SPI1_SOUT LPUART0_  
RX  
TPM_  
CLKIN0  
EWM_IN  
E9  
63  
52  
PTB17  
TSI0_CH10  
TSI0_CH10  
PTB17  
SPI1_SIN  
LPUART0_  
TX  
TPM_  
CLKIN1  
EWM_OUT_  
b
D9  
C9  
F10  
F9  
64  
65  
66  
67  
68  
69  
70  
53  
54  
55  
D6  
C7  
41  
42  
43  
PTB18  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
TSI0_CH11  
TSI0_CH12  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
TSI0_CH11  
TSI0_CH12  
PTB18  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
TPM2_CH0  
TPM2_CH1  
FXIO0_D6  
FXIO0_D7  
CMP0_OUT FXIO0_D8  
FXIO0_D9  
F8  
FXIO0_D10  
E8  
B9  
SPI0_PCS5  
EXTRG_IN  
FXIO0_D11  
D8  
ADC0_  
SE14/  
TSI0_CH13  
ADC0_  
SE14/  
TSI0_CH13  
SPI0_PCS4  
SPI0_PCS3  
SPI0_PCS2  
SPI0_PCS1  
USB0_  
SOF_OUT  
FXIO0_D12  
D8  
C8  
B8  
71  
72  
73  
56  
57  
58  
C6  
B7  
C8  
44  
45  
46  
PTC1/  
LLWU_P6  
ADC0_  
SE15/  
TSI0_CH14  
ADC0_  
SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6  
LPUART1_  
RTS_b  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
FXIO0_D13  
PTC2  
ADC0_  
SE4b/  
TSI0_CH15  
ADC0_  
SE4b/  
TSI0_CH15  
PTC2  
LPUART1_  
CTS_b  
PTC3/  
LLWU_P7  
DISABLED  
PTC3/  
LLWU_P7  
LPUART1_  
RX  
CLKOUT  
74  
75  
76  
59  
60  
61  
E3  
E4  
B8  
47  
48  
49  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
A8  
PTC4/  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
LPUART1_  
TX  
TPM0_CH3  
LLWU_P8  
D7  
77  
62  
A8  
50  
PTC5/  
DISABLED  
PTC5/  
LLWU_P9  
LPTMR0_  
ALT2/  
CMP0_OUT TPM0_CH2  
LLWU_P9  
LPTMR1_  
ALT2  
C7  
B7  
78  
79  
63  
64  
A7  
B6  
51  
52  
PTC6/  
LLWU_P10  
CMP0_IN0  
CMP0_IN1  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
SPI0_SOUT EXTRG_IN  
FXIO0_D14  
FXIO0_D15  
PTC7  
PTC7  
SPI0_SIN  
USB0_  
SOF_OUT  
A7  
D6  
C6  
C5  
80  
81  
82  
83  
65  
66  
67  
68  
A6  
B5  
B4  
A5  
53  
54  
55  
56  
PTC8  
PTC9  
PTC10  
CMP0_IN2  
CMP0_IN3  
DISABLED  
DISABLED  
CMP0_IN2  
CMP0_IN3  
PTC8  
PTC9  
PTC10  
FXIO0_D16  
FXIO0_D17  
FXIO0_D18  
FXIO0_D19  
I2C1_SCL  
I2C1_SDA  
PTC11/  
PTC11/  
LLWU_P11  
LLWU_P11  
B6  
A6  
A5  
84  
85  
86  
69  
70  
PTC12  
PTC13  
PTC14  
DISABLED  
DISABLED  
DISABLED  
PTC12  
PTC13  
PTC14  
TPM_  
CLKIN0  
TPM_  
CLKIN1  
FXIO0_D20  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
35  
NXP Semiconductors  
Pinouts  
121  
100  
80  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP LQFP MAP LQFP  
BGA  
B5  
BGA  
87  
88  
89  
90  
91  
71  
72  
73  
57  
PTC15  
VSS  
DISABLED  
VSS  
PTC15  
FXIO0_D21  
VSS  
VDD  
VDD  
VDD  
D5  
C4  
B4  
A4  
D4  
PTC16  
PTC17  
PTC18  
PTC19  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTC16  
PTC17  
PTC18  
PTC19  
C3  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
SPI0_PCS0  
SPI0_SCK  
LPUART2_  
RTS_b  
FXIO0_D22  
FXIO0_D23  
I2C0_SCL  
I2C0_SDA  
SPI1_PCS0  
D3  
C3  
B3  
A3  
A2  
B2  
92  
93  
94  
95  
96  
97  
74  
75  
76  
77  
78  
79  
A4  
C2  
B3  
A3  
C1  
B2  
58  
59  
60  
61  
62  
63  
PTD1  
ADC0_SE5b ADC0_SE5b PTD1  
LPUART2_  
CTS_b  
PTD2/  
LLWU_P13  
DISABLED  
DISABLED  
DISABLED  
PTD2/  
LLWU_P13  
SPI0_SOUT LPUART2_  
RX  
PTD3  
PTD3  
SPI0_SIN  
LPUART2_  
TX  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
SPI0_PCS1  
SPI0_PCS2  
SPI0_PCS3  
LPUART0_  
RTS_b  
TPM0_CH4  
TPM0_CH5  
EWM_IN  
PTD5  
ADC0_SE6b ADC0_SE6b PTD5  
LPUART0_  
CTS_b  
EWM_OUT_ SPI1_SCK  
b
PTD6/  
LLWU_P15  
ADC0_SE7b ADC0_SE7b PTD6/  
LPUART0_  
RX  
SPI1_SOUT  
LLWU_P15  
PTD7  
98  
99  
80  
64  
VSS  
VSS  
VSS  
VDD  
VDD  
PTD7  
VDD  
A1  
100  
A2  
DISABLED  
LPUART0_  
TX  
SPI1_SIN  
A10  
PTD8/  
LLWU_P24  
DISABLED  
PTD8/  
LLWU_P24  
I2C0_SCL  
I2C0_SDA  
FXIO0_D24  
A9  
E4  
E3  
PTD9  
DISABLED  
DISABLED  
DISABLED  
PTD9  
FXIO0_D25  
FXIO0_D26  
FXIO0_D27  
PTD10  
PTD10  
PTD11/  
PTD11/  
LLWU_P25  
LLWU_P25  
F4  
G3  
G4  
H4  
A11  
J6  
PTD12  
PTD13  
PTD14  
PTD15  
NC  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
NC  
PTD12  
PTD13  
PTD14  
PTD15  
FXIO0_D28  
FXIO0_D29  
FXIO0_D30  
FXIO0_D31  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
J4  
NC  
NC  
H5  
J3  
NC  
NC  
NC  
NC  
J5  
NC  
NC  
K3  
NC  
NC  
36  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
121  
100  
80  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP LQFP MAP LQFP  
BGA  
BGA  
121  
100  
80  
64  
64  
4.2 Pin properties  
The following table lists the pin properties.  
B1  
C2  
C1  
D2  
F7  
E5  
D1  
E2  
E1  
F3  
F2  
F1  
G2  
G1  
1
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A1  
B1  
C5  
D2  
C4  
D3  
E2  
D1  
PTE0  
ND  
ND  
ND  
ND  
Hi-Z  
FS  
FS  
FS  
FS  
N
N
Y
2
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
Hi-Z  
Hi-Z  
Hi-Z  
N
N
Y
3
N
N
Y
4
N
N
Y
5
VFS  
N
N
Y
6
VDDIO_E  
PTE4/LLWU_P2  
PTE5  
7
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
8
N
N
Y
9
PTE6/LLWU_P16 ND  
N
N
Y
10  
11  
12  
13  
14  
15  
16  
9
PTE7  
PTE8  
ND  
ND  
N
N
Y
10  
N
N
Y
PTE9/LLWU_P17 ND  
PTE10/LLWU_P18 ND  
N
N
Y
N
N
Y
11  
12  
13  
PTE11  
ND  
N
N
Y
VDDIO_E  
VFS  
9
H3  
H2  
H1  
J1  
F3  
E1  
F1  
F2  
VFS  
17  
18  
19  
14  
15  
16  
10  
11  
12  
USB0_DP  
USB0_DM  
USB_VDD  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
37  
NXP Semiconductors  
Pinouts  
J2  
20  
21  
NC  
N
N
NC  
K2  
K1  
F5  
G5  
G6  
F6  
L2  
L1  
L3  
ADC0_DP0  
ADC0_DM0  
VDDA  
ND  
ND  
Hi-Z  
Hi-Z  
FS  
FS  
N
N
22  
23  
24  
25  
26  
27  
28  
17  
18  
19  
20  
21  
22  
23  
13  
14  
15  
16  
17  
18  
19  
G2  
H3  
H2  
G1  
H1  
G3  
F4  
N
N
VREFH  
VREFL  
VFSA  
ADC0_DP1  
ADC0_DM1  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
N
N
VREF_OUT/  
CMP0_IN5/  
ADC0_SE22  
N
N
K4  
29  
24  
20  
G4  
DAC0_OUT/  
ADC0_SE23  
ND  
Hi-Z  
FS  
N
N
H6  
K5  
L4  
L5  
K6  
NC  
Hi-Z  
Hi-Z  
Hi-Z  
L
N
Y
Y
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
25  
26  
27  
28  
21  
22  
23  
24  
F5  
H4  
H5  
G5  
RTC_WAKEUP_B ND  
FS  
FS  
FS  
XTAL32  
EXTAL32  
VBAT  
ND  
ND  
N
N
N
N
Y
N
N
Y
VDD  
VFS  
L7  
29  
30  
31  
32  
33  
25  
26  
27  
28  
29  
D4  
D5  
E5  
H6  
G6  
PTA0  
ND  
ND  
ND  
ND  
ND  
ND  
PU  
PU  
PU  
PU  
PU  
PU  
FS  
FS  
FS  
FS  
FS  
FS  
H8  
J7  
PTA1  
H
N
N
Y
PTA2  
H
N
N
Y
H9  
J8  
PTA3  
H
N
N
Y
PTA4/LLWU_P3  
PTA5  
H
Y
N
Y
K7  
L10  
K10  
H
N
N
Y
VDD  
VFS  
Table continues on the next page...  
38  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Pinouts  
J9  
PTA10/LLWU_P22 ND  
PTA11/LLWU_P23 ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
PU  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
H7  
K8  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
PTA12  
ND  
L8  
PTA13/LLWU_P4 ND  
K9  
34  
35  
36  
37  
38  
39  
40  
41  
42  
PTA14  
PTA15  
PTA16  
PTA17  
VDD  
ND  
ND  
ND  
ND  
L9  
J10  
H10  
E6  
30  
31  
32  
33  
34  
H7  
G7  
H8  
G8  
F8  
G7  
VFS  
L11  
K11  
J11  
H11  
G11  
G10  
G9  
PTA18  
PTA19  
RESET_b  
PTA29  
PTB0/LLWU_P5  
PTB1  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
H
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
53  
54  
55  
56  
43  
44  
35  
E6  
PTB2  
G8  
PTB3  
B11  
C11  
F11  
E11  
D11  
E10  
D10  
C10  
L6  
45  
46  
47  
48  
49  
36  
37  
38  
39  
40  
F7  
F6  
E7  
E8  
D7  
PTB4  
PTB5  
PTB6  
PTB7  
PTB8  
57  
58  
59  
60  
61  
62  
PTB9  
PTB10  
PTB11  
VFS  
50  
51  
E7  
VDD  
B10  
PTB16  
ND  
Hi-Z  
FS  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
39  
NXP Semiconductors  
Pinouts  
E9  
D9  
C9  
F10  
F9  
F8  
E8  
B9  
D8  
C8  
B8  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
52  
53  
54  
PTB17  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
41  
42  
D6  
C7  
PTB18  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
D8  
C6  
B7  
C8  
E3  
E4  
B8  
A8  
A7  
B6  
A6  
B5  
B4  
A5  
PTC0  
PTC1/LLWU_P6  
PTC2  
PTC3/LLWU_P7  
VFS  
VDD  
A8  
D7  
C7  
B7  
A7  
D6  
C6  
C5  
B6  
A6  
A5  
B5  
PTC4/LLWU_P8  
PTC5/LLWU_P9  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
PTC6/LLWU_P10 ND  
PTC7  
PTC8  
PTC9  
PTC10  
ND  
ND  
ND  
ND  
PTC11/LLWU_P11 ND  
PTC12  
PTC13  
PTC14  
PTC15  
VFS  
ND  
ND  
ND  
ND  
VDD  
D5  
C4  
71  
72  
PTC16  
PTC17  
ND  
ND  
Hi-Z  
Hi-Z  
FS  
FS  
90  
Table continues on the next page...  
40  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Pinouts  
B4  
A4  
D4  
D3  
C3  
B3  
A3  
A2  
B2  
PTC18  
PTC19  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
N
N
Y
N
N
Y
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
73  
74  
75  
76  
77  
78  
79  
57  
58  
59  
60  
61  
62  
63  
C3  
A4  
C2  
B3  
A3  
C1  
B2  
PTD0/LLWU_P12 ND  
PTD1 ND  
PTD2/LLWU_P13 ND  
PTD3 ND  
PTD4/LLWU_P14 ND  
PTD5 ND  
PTD6/LLWU_P15 ND  
N
N
Y
N
N
Y
N
N
Y
N
N
Y
N
N
Y
N
N
Y
N
N
Y
VFS  
N
N
Y
VDD  
PTD7  
A1  
A10  
A9  
E4  
E3  
F4  
G3  
G4  
H4  
A11  
J6  
80  
64  
A2  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
PTD8/LLWU_P24 ND  
N
N
Y
PTD9  
ND  
ND  
N
N
Y
PTD10  
N
N
Y
PTD11/LLWU_P25 ND  
N
N
Y
PTD12  
PTD13  
PTD14  
PTD15  
NC  
ND  
ND  
ND  
ND  
N
N
Y
N
N
Y
N
N
Y
N
N
Y
NC  
J4  
NC  
H5  
J3  
NC  
NC  
J5  
NC  
K3  
NC  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
41  
NXP Semiconductors  
Pinouts  
Properties  
Abbreviation  
Descriptions  
Normal drive  
High drive  
High impendence  
High level  
Low level  
Driver strength  
ND  
HD  
Hi-Z  
H
Default status after POR  
L
Pullup/ pulldown setting  
after POR  
PD  
PU  
FS  
SS  
N
Pulldown  
Pullup  
Slew rate after POR  
Fast slew rate  
Slow slew rate  
Disabled  
Passive Pin Filter after  
POR  
Y
Enabled  
Open drain  
N
Disabled1  
Enabled2  
Y
Pin interrupt  
Y
Yes  
1. When I2C module is enabled and a pin is functional for I2C, this pin is (pseudo-) open drain enabled. When UART or  
LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open drain configurable.  
2. PTA20 is a true open drain pin that must never be pulled above VDD.  
4.3 Module signal description tables  
The following sections correlate the chip-level signal name with the signal name used in  
the module's chapter. They also briefly describe the signal function and direction.  
4.3.1 Core Modules  
Table 9. SWD Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
SWD_DIO  
SWD_CLK  
SWD_DIO  
SWD_CLK  
Serial Wire Data  
Serial Wire Clock  
I/O  
I
42  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
4.3.2 System modules  
Table 10. System signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
NMI_b  
Non-maskable interrupt  
I
NOTE: Driving the NMI signal low forces a non-maskable  
interrupt, if the NMI function is selected on the  
corresponding pin.  
RESET_b  
VDD  
Reset bi-directional signal  
MCU power  
I/O  
I
I
I
I
I
I
VDDIO_E  
VDDA  
PTE  
MCU power for IOs on PTE  
MCU analog power  
VSS  
MCU ground  
VREFH  
VREFL  
MCU analog voltage reference-high  
MCU analog voltage reference--low  
Table 11. EWM signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EWM_IN  
EWM_in  
EWM input for safety status of external safety circuits. The  
polarity of EWM_in is programmable using the  
I
EWM_CTRL[ASSIN] bit. The default polarity is active-low.  
EWM_OUT_ b  
EWM_out  
EWM reset out signal  
O
Table 12. LLWU signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LLWU_Pn  
LLWU_Pn  
Wakeup inputs  
I
Table 13. EMVSIM0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EMVSIM0_CLK  
EMVSIM0_IO  
EMVSIM0_PD  
EMVSIM_SCLK  
EMVSIM_IO  
EMVSIM_PD  
Card Clock. Clock to Smart Card.  
O
I/O  
I
Card Data Line. Bi-directional data line.  
Card Presence Detect. Signal indicating presence or removal of  
card  
EMVSIM0_RST  
EMVSIM_SRST  
Card Reset. Reset signal to Smart Card  
O
O
EMVSIM0_VCCEN EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart  
Card  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
43  
NXP Semiconductors  
Pinouts  
Table 14. EMVSIM1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EMVSIM1_CLK  
EMVSIM1_IO  
EMVSIM1_PD  
EMVSIM_SCLK  
EMVSIM_IO  
EMVSIM_PD  
Card Clock. Clock to Smart Card.  
O
I/O  
I
Card Data Line. Bi-directional data line.  
Card Presence Detect. Signal indicating presence or removal of  
card  
EMVSIM1_RST  
EMVSIM_SRST  
Card Reset. Reset signal to Smart Card  
O
O
EMVSIM1_VCCEN EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart Card  
4.3.3 Clock Modules  
Table 15. OSC signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
EXTAL0  
XTAL0  
EXTAL  
XTAL  
External clock/Oscillator input  
Oscillator output  
I
O
Table 16. RTC OSC signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EXTAL32  
XTAL32  
EXTAL32  
XTAL32  
Analog input of the RTC oscillator  
I
Analog output of the RTC oscillator module  
O
4.3.4 Memories and memory interfaces  
Table 17. QSPI signal description  
Chip signal name  
Module signal  
Description  
I/O  
Name  
QSPI0A_SS0_B  
PCSFA1  
Peripheral Chip Select Flash A1. This  
signal is the chip select for the serial  
flash device A1. A1 represents the  
first device in a dual-die package flash  
A or the first of the two flash devices  
that share IOFA.  
O
QSPI0A_SS1_B  
PCSFA2  
Peripheral Chip Select Flash A2. This  
signal is the chip select for the serial  
flash device A2. A2 represents the  
O
Table continues on the next page...  
44  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
Table 17. QSPI signal description (continued)  
Chip signal name  
Module signal  
Name  
Description  
I/O  
second device in a dual-die package  
flash A or the second of the two flash  
devices that share IOFA.  
QSPI0B_SS0_B  
PCSFB1  
Peripheral Chip Select Flash B1. This  
signal is the chip select for the serial  
flash device B1. B1 represents the  
first device in a dual-die package flash  
B or the first of the two flash devices  
that share IOFB.  
O
QSPI0A_SCLK  
QSPI0B_SCLK  
SCKFA  
SCKFB  
Serial Clock Flash A. This signal is the  
serial clock output to the serial flash  
device A.  
O
O
Serial Clock Flash B. This signal is the  
serial clock output to the serial flash  
device B.  
QSPI0B_DATA3  
QSPI0B_DATA2  
QSPI0B_DATA1  
QSPI0B_DATA0  
QSPI0A_DATA3  
QSPI0A_DATA2  
QSPI0A_DATA1  
QSPI0A_DATA0  
QSPI0B_DATA3  
QSPI0B_DATA2  
QSPI0B_DATA1  
QSPI0B_DATA0  
IOFA[7:0]  
Serial I/O Flash A. These signals are  
the data I/O lines to/from the serial  
flash device A. Note that the signal  
pins of the serial flash device may  
change their function according to the  
SFM Command executed, leaving  
them as control inputs when Single  
and Dual Instructions are executed.  
The module supports driving these  
inputs to dedicated values.  
I/O  
IOFB[3:0]  
Serial I/O Flash B. These signals are  
the data I/O lines to/from the serial  
flash device B. Note that the signal  
pins of the serial flash device may  
change their function according to the  
SFM Command executed, leaving  
them as control inputs when Single  
and Dual Instructions are executed.  
The module supports driving these  
inputs to dedicated values.  
I/O  
QSPI0A_DQS  
DQSFA  
Data Strobe signal Flash A. Data  
strobe signal for port A. Some flash  
vendors provide the DQS signal to  
which the read data is aligned in DDR  
mode.  
I
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
45  
NXP Semiconductors  
Pinouts  
4.3.5 Analog  
Chip signal name  
Table 18. ADC0 Signal Descriptions  
Module signal  
Description  
I/O  
name  
ADC0_DP[1:0]  
ADC0_DM[1:0]  
ADC0_SEn  
VREFH  
DADP1–DADP0  
Differential analog channel inputs  
I
I
I
I
I
I
I
DADM1–DADM0 Differential Analog Channel Inputs  
ADn  
VREFSH  
VREFSL  
VDDA  
Single-Ended Analog Channel Inputs1  
Voltage Reference Select High  
Voltage Reference Select Low  
Analog power supply  
VREFL  
VDDA  
VSSA  
VSSA  
Analog ground  
1. See ADC channel assignment for the n.  
Table 19. CMP0 Signal Descriptions  
Chip signal name  
CMP0_INn, n=[5,3:0]  
CMP0_OUT  
Module signal  
Description  
I/O  
I
name  
INn, n=[5,3:0]  
Analog voltage inputs, see CMP input connection for more details  
about the n.  
CMPO  
Comparator output  
O
NOTE  
There is no CMP0_IN[4] coming from pad.  
Table 20. DAC0 Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
DAC0_OUT  
DAC output  
O
Table 21. VREF Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
VREF_OUT  
VREF_OUT  
Internally-generated Voltage Reference output  
O
46  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
4.3.6 Timer Modules  
Table 22. LPTMR0 Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
LPTMR0_ALT[2:1]  
LPTMR_ALTn  
Pulse Counter Input  
I
Table 23. LPTMR1 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPTMR1_ALT[2:1]  
LPTMR_ALTn  
Pulse Counter Input  
I
Table 24. RTC Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
VBAT  
EXTAL32  
Backup battery supply for RTC and VBAT register file  
32.768 kHz oscillator input  
I
I
EXTAL32  
XTAL32  
XTAL32  
32.768 kHz oscillator output  
O
O
I/O  
RTC_CLKOUT  
RTC_WAKEUP_B  
RTC_CLKOUT  
RTC_WAKEUP  
1 Hz square-wave output or OSCERCLK  
Wakeup for external device  
Table 25. TPM0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the  
counter clock.  
I
TPM0_CH[5:0]  
TPM_CHn  
A TPM channel pin is configured as output when configured in an  
output compare or PWM mode and the TPM counter is enabled,  
otherwise the TPM channel pin is an input.  
I/O  
Table 26. TPM1 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the  
counter clock.  
I
TPM1_CH[1:0]  
TPM_CHn  
A TPM channel pin is configured as output when configured in an  
output compare or PWM mode and the TPM counter is enabled,  
otherwise the TPM channel pin is an input.  
I/O  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
47  
NXP Semiconductors  
Pinouts  
Table 27. TPM2 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM1_CH[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the counter  
clock.  
I
TPM_CHn  
A TPM channel pin is configured as output when configured in an  
output compare or PWM mode and the TPM counter is enabled,  
otherwise the TPM channel pin is an input.  
I/O  
4.3.7 Communication interfaces  
Table 28. USB FS OTG signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
usb_dm  
usb_dp  
USB0_DM  
USB0_DP  
USB D- analog data signal on the USB bus.  
USB D+ analog data signal on the USB bus.  
Alternate USB clock input  
I/O  
I/O  
I
USB0_CLKIN  
USB_VDD  
USB domain power supply, 3.3 V.  
I
USB0_SOF_OUT  
USB start of frame signal. Can be used to make the USB start of  
frame available for external synchronization.  
O
Table 29. SPI0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
SPI0_PCS0  
PCS0/SS  
Peripheral Chip Select 0 (O) in the master mode and Slave Select  
(I) in the slave mode  
I/O  
SPI0_PCS[1:3]  
SPI0_PCS4  
SPI0_PCS5  
PCS[1:3]  
PCS4  
Peripheral Chip Selects 1–3 in the master mode  
Peripheral Chip Select 4 in the master mode  
O
O
O
PCS5  
Peripheral Chip Select 5 /Peripheral Chip Select Strobe in the  
master mode  
SPI0_SIN  
SPI0_SOUT  
SPI0_SCK  
SIN  
SOUT  
SCK  
Serial Data In  
I
Serial Data Out  
O
Serial Clock (O) in the master mode and Serial Clock (I) in the  
slave mode  
I/O  
48  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
Table 30. SPI1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
SPI1_PCS0  
PCS0/SS  
Peripheral Chip Select 0 (O) in the master mode and Slave  
Select (I) in the slave mode  
I/O  
SPI1_PCS[1:3]  
SPI1_SIN  
PCS[1:3]  
SIN  
Peripheral Chip Selects 1–3 in the master mode  
Serial Data In  
O
I
SPI1_SOUT  
SPI1_SCK  
SOUT  
SCK  
Serial Data Out  
O
Serial Clock (O) in the master mode and Serial Clock (I) in the  
slave mode  
I/O  
Table 31. I2C0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
I2C0_SCL  
I2C0_SDA  
SCL  
Bidirectional serial clock line of the I2C system.  
Bidirectional serial data line of the I2C system.  
I/O  
I/O  
SDA  
Table 32. I2C1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
I2C1_SCL  
I2C1_SDA  
SCL  
Bidirectional serial clock line of the I2C system.  
Bidirectional serial data line of the I2C system.  
I/O  
I/O  
SDA  
Table 33. LPUART0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUART0_CTS_b  
LPUART0_RTS_b  
LPUART0_TX  
LPUART_CTS  
LPUART_RTS  
LPUART_TX  
Clear to Send  
I
Request to send  
O
Transmit data. This pin is normally an output, but is an input  
(tristated) in single wire mode whenever the transmitter is  
disabled or transmit direction is configured for receive data.  
I/O  
LPUART0_RX  
LPUART_RX  
Receive Data  
I
Table 34. LPUART1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUART1_CTS_b  
LPUART1_RTS_b  
LPUART_CTS  
LPUART_RTS  
Clear to Send  
I
Request to send  
O
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
49  
NXP Semiconductors  
Pinouts  
Table 34. LPUART1 signal descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
I/O  
LPUART1_TX  
LPUART_TX  
Transmit data. This pin is normally an output, but is an input  
(tristated) in single wire mode whenever the transmitter is  
disabled or transmit direction is configured for receive data.  
I/O  
LPUART1_RX  
LPUART_RX  
Receive Data  
I
Table 35. LPUART2 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUART2_CTS_b  
LPUART2_RTS_b  
LPUART2_TX  
LPUART_CTS  
LPUART_RTS  
LPUART_TX  
Clear to Send  
I
Request to send  
O
Transmit data. This pin is normally an output, but is an input  
(tristated) in single wire mode whenever the transmitter is disabled  
or transmit direction is configured for receive data.  
I/O  
LPUART2_RX  
LPUART_RX  
Receive Data  
I
Table 36. FlexIO signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
FXIO0_Dn(n=0-31) FXIO_Dn (n=0...31) Bidirectional FlexIO Shifter and Timer pin inputs/outputs  
I/O  
Table 37. EMVSIM0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
EMVSIM0_ CLK  
EMVSIM0_ IO  
EMVSIM0_ PD  
EMVSIM_SCLK  
EMVSIM_IO  
Card Clock. Clock to Smart Card.  
O
I/O  
I
Card Data Line. Bi-directional data line.  
EMVSIM_PD  
Card Presence Detect. Signal indicating presence or removal of  
card  
EMVSIM0_ RST  
EMVSIM_SRST  
Card Reset. Reset signal to Smart Card  
O
O
EMVSIM0_ VCCEN EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart Card  
Table 38. EMVSIM1 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
EMVSIM1_ CLK  
EMVSIM1_ IO  
EMVSIM_SCLK  
EMVSIM_IO  
Card Clock. Clock to Smart Card.  
O
Card Data Line. Bi-directional data line.  
I/O  
Table continues on the next page...  
50  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
Table 38. EMVSIM1 signal descriptions (continued)  
Chip signal name  
EMVSIM1_ PD  
Module signal  
name  
Description  
I/O  
EMVSIM_PD  
Card Presence Detect. Signal indicating presence or removal of  
card  
I
EMVSIM1_ RST  
EMVSIM_SRST  
Card Reset. Reset signal to Smart Card  
O
O
EMVSIM1_ VCCEN EMVSIM_VCC_EN Card Power Enable. This signal controls the power to Smart Card  
4.3.8 Human-machine interfaces (HMI)  
Table 39. GPIO signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
PTA[31:0]1  
PTB[31:0]1  
PTC[31:0]1  
PTD[31:0]1  
PTE[31:0]1  
PORTA31–PORTA0 General-purpose input/output  
PORTB31–PORTB0 General-purpose input/output  
PORTC31–PORTC0 General-purpose input/output  
PORTD31–PORTD0 General-purpose input/output  
PORTE31–PORTE0 General-purpose input/output  
I/O  
I/O  
I/O  
I/O  
I/O  
1. The available GPIO pins depends on the specific package. See the signal multiplexing section for which exact GPIO  
signals are available.  
Table 40. TSI0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
TSI0_CH[15:0]  
TSI[15:0]  
TSI capacitive pins. Switches driver that connects directly to the  
electrode pins TSI[15:0] can operate as GPIO pins.  
I/O  
4.4 KL82 Pinouts  
The below figures show the pinout diagrams for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see the previous section.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
51  
NXP Semiconductors  
Pinouts  
1
2
3
4
5
6
7
8
9
10  
11  
PTD4/  
LLWU_P14  
PTC4/  
LLWU_P8  
PTD8/  
LLWU_P24  
A
B
C
D
E
F
G
H
J
PTD7  
PTD5  
PTC19  
PTC14  
PTC13  
PTC8  
PTD9  
NC  
A
B
C
D
E
F
G
H
J
PTD6/  
LLWU_P15  
PTC3/  
LLWU_P7  
PTE0  
PTD3  
PTC18  
PTC17  
PTC15  
PTC12  
PTC10  
PTC9  
VDD  
PTC7  
PTC0  
PTB19  
PTB18  
PTB17  
PTB21  
PTB2  
PTB16  
PTB11  
PTB10  
PTB9  
PTB4  
PTB5  
PTB8  
PTB7  
PTB6  
PTE2/  
PTE1/  
PTD2/  
PTC11/  
LLWU_P11  
PTC6/  
LLWU_P10  
PTC2  
LLWU_P1 LLWU_P0 LLWU_P13  
PTE4/  
LLWU_P2  
PTD0/  
LLWU_P12  
PTC5/  
PTC1/  
LLWU_P9 LLWU_P6  
PTE3  
PTE5  
PTE8  
PTD1  
PTC16  
PTE6/  
LLWU_P16  
PTD11/  
LLWU_P25  
VDDIO_E  
PTD10  
PTD12  
PTD14  
PTD15  
NC  
VDD  
VSS  
VSS  
PTB23  
PTB22  
PTB3  
PTE9/  
LLWU_P17  
PTE7  
PTD13  
VSS  
VDDA  
VREFH  
NC  
VSSA  
VREFL  
NC  
PTB20  
PTB1  
PTE10/  
LLWU_P18  
PTB0/  
LLWU_P5  
PTE11  
PTA11/  
LLWU_P23  
USB0_DM USB0_DP  
PTA1  
PTA3  
PTA17  
PTA16  
VSS  
PTA29  
PTA4/  
LLWU_P3 LLWU_P22  
PTA10/  
USB_VDD  
RESET_b  
NC  
NC  
NC  
NC  
PTA2  
PTA5  
DAC0_OUT/ RTC_WAK  
ADC0_SE23 EUP_B  
ADC0_DM0 ADC0_DP0  
K
L
NC  
VBAT  
PTA12  
PTA14  
PTA19  
K
L
VREF_OUT/  
ADC0_DM1 ADC0_DP1 CMP0_IN5/  
ADC0_SE22  
PTA13/  
LLWU_P4  
XTAL32  
4
EXTAL32  
5
VSS  
6
PTA0  
7
PTA15  
9
VDD  
10  
PTA18  
11  
1
2
3
8
Figure 5. KL82 121-pin MAPBGA pinout diagram  
52  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Pinouts  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PTE0  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
VDD  
VSS  
2
3
PTC3/LLWU_P7  
PTC2  
4
5
PTC1/LLWU_P6  
PTC0  
VSS  
6
VDDIO_E  
PTE4/LLWU_P2  
PTE5  
7
PTB23  
8
PTB22  
9
PTB21  
PTE6/LLWU_P16  
PTE7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PTB20  
PTB19  
PTE8  
PTB18  
PTE9/LLWU_P17  
PTE10/LLWU_P18  
PTE11  
PTB17  
PTB16  
VDD  
VDDIO_E  
VSS  
VSS  
PTB11  
USB0_DP  
USB0_DM  
USB_VDD  
NC  
PTB10  
PTB9  
PTB3  
PTB2  
NC  
PTB1  
VDDA  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFH  
VREFL  
VSSA  
Figure 6. KL82 100-pin LQFP pinout diagram  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
53  
NXP Semiconductors  
Pinouts  
1
PTE0  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VDD  
2
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
5
VSS  
PTC1/LLWU_P6  
PTC0  
6
VDDIO_E  
PTE4/LLWU_P2  
PTE5  
7
PTB19  
8
PTB18  
9
PTE7  
PTB17  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTE8  
PTB16  
PTE11  
PTB11  
VDDIO_E  
VSS  
PTB8  
PTB7  
USB0_DP  
USB0_DM  
USB_VDD  
VDDA  
PTB6  
PTB5  
PTB4  
PTB1  
VREFH  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFL  
VSSA  
Figure 7. KL82 80-pin LQFP pinout diagram  
54  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Pinouts  
1
2
3
4
5
6
7
8
PTD4/  
LLWU_P14  
PTC11/  
LLWU_P11  
PTC6/  
LLWU_P10 LLWU_P9  
PTC5/  
A
B
C
D
E
F
PTE0  
PTD7  
PTD1  
PTC8  
A
B
C
D
E
F
PTE1/  
LLWU_P0 LLWU_P15  
PTD6/  
PTC4/  
LLWU_P8  
PTD3  
PTC10  
VSS  
PTC9  
PTE2/  
PTC7  
PTC2  
PTD2/  
PTD5  
PTD0/  
LLWU_P13 LLWU_P12  
PTC1/  
PTC3/  
LLWU_P7  
PTB19  
LLWU_P1 LLWU_P6  
VDDIO_E  
PTE5  
PTE3  
PTA0  
VDD  
PTA1  
PTA2  
PTB18  
PTB8  
PTB6  
PTB4  
VSS  
PTC0  
PTB7  
PTE4/  
LLWU_P2  
PTB0/  
LLWU_P5  
USB0_DP  
VSS  
VSS  
VREF_OUT/  
CMP0_IN5/  
ADC0_SE22  
RTC_WAK  
EUP_B  
USB0_DM USB_VDD  
RESET_b  
PTA19  
PTB5  
DAC0_OUT/  
ADC0_SE23  
PTA4/  
LLWU_P3  
ADC0_DM1  
G
H
VSSA  
VDDA  
VBAT  
G
H
ADC0_DP1  
1
VREFL  
2
VREFH  
3
XTAL32  
4
EXTAL32  
5
PTA3  
6
VDD  
7
PTA18  
8
Figure 8. KL82 64-pin MAPBGA pinout diagram  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
55  
NXP Semiconductors  
Pinouts  
PTE0  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
VSS  
5
PTC1/LLWU_P6  
PTC0  
VDDIO_E  
PTE4/LLWU_P2  
PTE5  
6
7
PTB19  
8
PTB18  
VSS  
9
PTB8  
USB0_DP  
USB0_DM  
USB_VDD  
VDDA  
10  
11  
12  
13  
14  
15  
16  
PTB7  
PTB6  
PTB5  
PTB4  
VREFH  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFL  
VSSA  
Figure 9. KL82 64-pin LQFP pinout diagram  
NOTE  
The 100-, 64-pin LQFP and 64-pin MAPBGA packages for  
this product are not yet available, however they are included  
in a Package Your Way program for KL MCUs. Please visit  
nxp.com/KPYW for more details.  
56  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Pinouts  
4.5 Package dimensions  
The following figures show the dimensions of the package options for the devices  
supported by this document.  
Figure 10. 64-pin LQFP package dimensions 1  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
57  
NXP Semiconductors  
Pinouts  
Figure 11. 64-pin LQFP package dimensions 2  
58  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Pinouts  
Figure 12. 64-pin MAPBGA package dimension  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
59  
NXP Semiconductors  
Pinouts  
Figure 13. 80-pin LQFP package dimension 1  
60  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Pinouts  
Figure 14. 80-pin LQFP package dimension 2  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
61  
NXP Semiconductors  
Pinouts  
Figure 15. 100-pin LQFP package dimension 1  
62  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Pinouts  
Figure 16. 100-pin LQFP package dimension 2  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
63  
NXP Semiconductors  
Electrical characteristics  
Figure 17. 121-pin MAPBGA package dimension  
5 Electrical characteristics  
64  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
5.1 Terminology and guidelines  
5.1.1 Definitions  
Key terms are defined in the following table:  
Term  
Definition  
Rating  
A minimum or maximum value of a technical characteristic that, if exceeded, may cause  
permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic  
begins to exceed one of its operating ratings.  
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during  
operation to avoid incorrect operation and possibly decreasing the useful life of the chip  
Operating behavior  
A specified value or range of values for a technical characteristic that are guaranteed during  
operation if you meet the operating requirements and any other specified conditions  
Typical value  
A specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Is representative of that characteristic during operation when you meet the typical-value  
conditions or other specified conditions  
NOTE: Typical values are provided as design guidelines and are neither tested nor  
guaranteed.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
65  
NXP Semiconductors  
Electrical characteristics  
5.1.2 Examples  
Operating rating:  
EXAMPLE  
EXAMPLE  
Operating requirement:  
Operating behavior that includes a typical value:  
EXAMPLE  
5.1.3 Typical-value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
66  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
5.1.4 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
5.1.5 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
5.2 Ratings  
5.2.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
67  
NXP Semiconductors  
Electrical characteristics  
5.2.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.2.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105°C  
-100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
5.2.4 Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage 1  
VDDIO  
IDD  
VDDIO is an independent voltage supply for PORTE 2  
–0.3  
3.8  
V
Digital supply current  
300  
mA  
V
VDIO  
Digital input voltage (except RESET, EXTAL, and XTAL)  
Analog3, RESET, EXTAL, and XTAL input voltage  
Maximum current single pin limit (applies to all digital pins)  
Analog supply voltage  
–0.3  
VDD + 0.3  
VDD + 0.3  
25  
VAIO  
–0.3  
V
ID  
–25  
mA  
V
VDDA  
VUSB0_DP  
VUSB0_DM  
VBAT  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
USB0_DP input voltage  
V
USB0_DM input voltage  
–0.3  
3.63  
V
RTC battery supply voltage  
–0.3  
3.8  
V
1. It applies for all port pins.  
2. VDDIO is independent of VDD domain and can operate at a voltage independent of VDD. However, it is required that VDD  
domain be powered up first prior to VDDIO. VDDIO must never be higher than VDD during power ramp up, or power down.  
VDD and VDDIO may ramp together if tied to the same power supply.  
68  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
5.3 General  
5.3.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 18. Input signal measurement reference  
5.3.2 Nonswitching electrical specifications  
5.3.2.1 Voltage and current operating requirements  
Table 41. Voltage and current operating requirements  
Symbol  
Description  
Min.  
1.71  
Max.  
3.6  
3.6  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Notes  
VDD  
Supply voltage  
USB_VDD Supply voltage  
3.0  
V
1
VDDIO_E  
VDDA  
Supply voltage  
VDD  
V
Analog supply voltage  
1.71  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
–0.1  
V
–0.1  
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
1.71  
V
0.7 × VDD  
0.75 × VDD  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
V
VIL  
Input low voltage  
0.35 × VDD  
V
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
69  
NXP Semiconductors  
Electrical characteristics  
Table 41. Voltage and current operating requirements (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V  
Min.  
Max.  
Unit  
Notes  
0.3 × VDD  
V
• 1.7 V ≤ VDD ≤ 2.7 V  
VHYS  
Input hysteresis  
0.06 × VDD  
V
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VRAM  
VDD voltage required to retain RAM  
1.2  
V
V
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT  
1. The ripple limit for USB_VDD is 100 mV.  
5.3.2.2 LVD and POR operating requirements  
Table 42. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
40  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
70  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Electrical characteristics  
1. Rising threshold is the sum of falling threshold and hysteresis voltage  
Table 43. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
5.3.2.3 Voltage and current operating behaviors  
Table 44. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Not  
es  
VOH  
Output high voltage 3.3 V, Iload = -5 mA  
VDD – 0.5  
VDD – 0.5  
V
V
1
— Standard IO  
1.71 V, Iload = -2.5 mA  
IOHT  
Output high current total for all ports  
100  
mA  
V
VOH_RTC_WAKEUP Output high voltage 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -5 mA  
VBAT – 0.5  
VBAT – 0.5  
— normal drive pad  
1.71 V ≤ VBAT ≤ 2.7 V, IOH = -2.5  
V
mA  
IOH_RTC_WAKEUP Output high current total for RTC_WAKEUP pins  
100  
0.5  
0.5  
0.5  
0.5  
100  
0.5  
0.5  
mA  
V
VOL  
VOL  
IOLT  
Output low voltage  
— Standard IO  
3.3 V, Iload = 5 mA  
1.71 V, Iload = 2.5 mA  
3.3 V, Iload = 5 mA  
1.71 V, Iload = 2.5 mA  
1
1
Output low voltage  
— RESET_b  
V
Output low current total for all ports  
mA  
V
VOL_RTC_WAKEUP Output low voltage— 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 5 mA  
normal drive pad  
1.71 V ≤ VBAT ≤ 2.7 V, IOL = 2.5 mA  
VOH  
Output high voltage 3.3 V, Iload = 15 mA  
VDD – 0.5  
V
V
2
2
— Standard fast IO  
1.71V, Iload = 7.5 mA  
VDD – 0.5  
VOL  
Output high voltage 3.3 V, Iload = 15 mA  
20  
20  
0.5  
0.5  
100  
0.5  
0.002  
0.25  
0.25  
50  
— Standard fast IO  
1.71 V, Iload =7.5 mA  
IOL_RTC_WAKEUP Output low current total for RTC_WAKEUP pins  
mA  
µA  
µA  
µA  
µA  
kΩ  
kΩ  
IIN  
IIN  
Input leakage current (per pin) for full temperature range  
Input leakage current (per pin) at 25 °C  
3
3
IOZ  
Hi-Z (off-state) leakage current (per pin)  
IOZ_RTC_WAKEUP Hi-Z (off-state) leakage current (per RTC_WAKEUP pin)  
RPU  
RPD  
Internal pullup resistors  
4
5
Internal pulldown resistors  
50  
1. This is applicanble for all GPIO pins except PTE  
2. This is applicable for PTE pins only.  
3. Measured at VDD=3.6 V  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
5. Measured at VDD supply voltage = VDD min and Vinput = VDD  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
71  
NXP Semiconductors  
Electrical characteristics  
5.3.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSx –> RUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 72 MHz  
• Bus clock = 24 MHz  
• Flash clock = 24 MHz  
• MCG mode=FEI  
Table 45. Power mode transition operating behaviors  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time VDD slew rate ≥ 5.7  
300  
µs  
1
from the point VDD reaches 1.71 V kV/s  
to execution of the first instruction  
across the operating temperature  
range of the chip.  
VDD slew rate < 5.7  
kV/s  
1.7 V/  
(VDD slew  
rate)  
138  
138  
76  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
• VLLS0 –> RUN  
• VLLS1 –> RUN  
• VLLS2 –> RUN  
• VLLS3 –> RUN  
• LLS2 –> RUN  
• LLS3 –> RUN  
• VLPS –> RUN  
• STOP –> RUN  
76  
6.1  
6.1  
5.6  
5.6  
1. Normal boot (FTFA_FOPT[LPBOOT]=1)  
Table 46. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
1051  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC) adder.  
Measured by entering STOP or VLPS mode  
with 4 MHz IRC enabled.  
56  
56  
56  
56  
56  
56  
µA  
IIREFSTEN32KHz  
32 kHz internal reference clock (IRC) adder.  
Measured by entering STOP mode with the  
32 kHz IRC enabled.  
52  
52  
52  
52  
52  
52  
µA  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
72  
NXP Semiconductors  
Electrical characteristics  
Table 46. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
1051  
IEREFSTEN4MHz  
External 4 MHz crystal clock adder.  
Measured by entering STOP or VLPS mode  
with the crystal enabled.  
206  
228  
237  
245  
251  
258  
µA  
IEREFSTEN32KHz  
External 32 kHz crystal clock  
adder by means of the  
OSC0_CR[EREFSTEN and  
EREFSTEN] bits. Measured  
by entering all modes with the  
crystal enabled.  
VLLS1  
VLLS3  
LLS2  
440  
440  
490  
490  
510  
510  
22  
490  
490  
490  
490  
560  
560  
22  
540  
540  
540  
540  
560  
560  
22  
560  
560  
560  
560  
560  
560  
22  
570  
570  
570  
570  
610  
610  
22  
580  
580  
680  
680  
680  
680  
22  
nA  
LLS3  
VLPS  
STOP  
ICMP  
CMP peripheral adder measured by placing  
the device in VLLS1 mode with CMP enabled  
using the 6-bit DAC and a single external  
input for compare. Includes 6-bit DAC power  
consumption.  
µA  
nA  
IRTC  
RTC peripheral adder measured by placing  
the device in VLLS1 mode with external 32  
kHz crystal enabled by means of the  
RTC_CR[OSCE] bit and the RTC ALARM set  
for 1 minute. Includes ERCLK32K (32 kHz  
external crystal) power consumption.  
432  
66  
357  
66  
388  
66  
475  
66  
532  
66  
810  
66  
IUART  
UART peripheral adder  
measured by placing the  
device in STOP or VLPS  
mode with selected clock  
source waiting for RX data at  
115200 baud rate. Includes  
selected clock source power  
consumption.  
MCGIRCLK  
(4 MHz  
internal  
reference  
clock)  
µA  
OSCERCLK  
(4 MHz  
external  
crystal)  
214  
86  
237  
86  
246  
86  
254  
86  
260  
86  
268  
86  
ITPM  
TPM peripheral adder  
MCGIRCLK  
(4 MHz  
internal  
reference  
clock)  
µA  
measured by placing the  
device in STOP or VLPS  
mode with selected clock  
source configured for output  
compare generating 100 Hz  
clock signal. No load is  
placed on the I/O generating  
the clock signal. Includes  
selected clock source and I/O  
switching currents.  
OSCERCLK  
(4 MHz  
external  
crystal)  
235  
256  
265  
274  
280  
287  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, LLS, or VLLSx  
mode.  
45  
45  
45  
45  
45  
45  
µA  
µA  
IADC  
ADC peripheral adder combining the  
366  
366  
366  
366  
366  
366  
measured values at VDD and VDDA by placing  
the device in STOP or VLPS mode. ADC is  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
73  
NXP Semiconductors  
Electrical characteristics  
Table 46. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
50 70  
Unit  
-40  
25  
85  
1051  
configured for low power mode using the  
internal clock and continuous conversions.  
1. Only LQFP and MAPBGA packages support the data in this column.  
5.3.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
NOTE  
The data at 105 °C is for MAPBGA and LQFP packages only.  
Table 47. Power consumption operating behaviors  
Symbol  
IDDA  
Description  
Typ.  
Max.  
See note  
17.32  
Unit  
mA  
mA  
Notes  
Analog supply current  
1
IDD_HSRUN  
Running CoreMark in Flash in  
Compute Operation mode, Core at  
96 MHz, bus at 24 MHz, flash at 24  
MHz, VDD = 3 V  
25 °C  
25 °C  
25 °C  
14.21  
2, 3  
IDD_HSRUN  
IDD_HSRUN  
IDD_RUN  
Running CoreMark in Flash, all  
peripheral clock disabled, Core at 96  
MHz, bus at 24 MHz, flash at 24  
MHz, VDD = 3 V  
15.43  
20.01  
18.54  
23.12  
mA  
mA  
mA  
mA  
mA  
mA  
2, 3  
2, 3  
2, 4  
2, 4  
2, 5  
2, 5  
Running CoreMark in Flash, all  
peripheral clock enabled, Core at 96  
MHz, bus at 24 MHz, flash at 24  
MHz, VDD = 3 V  
Running CoreMark in Flash in  
Compute Operation mode, Core at  
72 MHz, bus at 24 MHz, flash at 24  
MHz, VDD = 3 V  
25 °C  
8.99  
9.43  
10.59  
10.88  
105 °C  
IDD_RUN  
Running CoreMark in Flash all  
peripheral clock disabled, Core at 72  
MHz, bus at 24 MHz,flash at 24  
MHz , VDD = 3 V  
25 °C  
10.1  
11.70  
12.00  
105 °C  
10.55  
IDD_RUN  
Running CoreMark in Flash all  
peripheral clock disabled, Core at 48  
MHz, bus at 24 MHz, flash at 24  
MHz , VDD = 3 V  
25 °C  
9.1  
10.70  
10.99  
105 °C  
9.54  
IDD_RUN  
Running CoreMark in Flash all  
peripheral clock disabled, Core at 24  
MHz, bus at 12 MHz, flash at 12  
MHz , VDD = 3 V  
25 °C  
5.57  
6.02  
7.17  
7.47  
105 °C  
Table continues on the next page...  
74  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Electrical characteristics  
Table 47. Power consumption operating behaviors (continued)  
Symbol  
Description  
Typ.  
2.8  
Max.  
4.40  
4.67  
Unit  
Notes  
IDD_RUN  
Running CoreMark in Flash all  
peripheral clock disabled, Core at 12  
MHz, bus at 6 MHz, flash at 6 MHz ,  
VDD = 3 V  
25 °C  
mA  
2, 5  
105 °C  
3.22  
IDD_RUN  
IDD_RUN  
IDD_RUN  
IDD_RUN  
IDD_RUN  
IDD_RUN  
IDD_RUN  
IDD_RUN  
IDD_WAIT  
IDD_WAIT  
IDD_WAIT  
Running CoreMark in Flash all  
peripheral clock enabled, Core at 72  
MHz, bus at 24 MHz, flash at 24  
MHz , VDD = 3 V  
25 °C  
12.94  
13.35  
14.54  
14.80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
2, 4  
4
105 °C  
Running While(1) loop in Flash, all  
peripheral clock disabled Core at 72  
MHz, bus at 24 MHz, flash at 24  
MHz , VDD = 3 V  
25 °C  
7.6  
9.20  
9.53  
105 °C  
8.08  
Running While(1) loop in Flash, all  
peripheral clock disabled Core at 48  
MHz, bus at 24 MHz, flash at 24  
MHz , VDD = 3 V  
25 °C  
6.3  
7.90  
8.24  
5
105 °C  
6.79  
Running While(1) loop in Flash, all  
peripheral clock disabled Core at 24  
MHz, bus at 12 MHz, flash at 12  
MHz , VDD = 3 V  
25 °C  
4.08  
4.53  
5.68  
5.98  
5
105 °C  
Running While(1) loop in Flash, all  
peripheral clock disabled Core at 12  
MHz, bus at 6 MHz, flash at 6 MHz ,  
VDD = 3 V  
25 °C  
3.03  
3.46  
4.63  
4.91  
5
105 °C  
Running While(1) loop in Flash, all  
peripheral clock enabled Core at 72  
MHz, bus at 24 MHz, flash at 24  
MHz , VDD = 3 V  
25 °C  
10.93  
11.45  
12.53  
12.90  
4
105 °C  
Running CoreMark loop in SRAM all  
peripheral clock disabled, Core at 72  
MHz, bus at 24 MHz, flash at 24  
MHz , VDD = 3 V  
25 °C  
11.64  
12.17  
13.24  
13.62  
2, 4  
2, 4  
4
105 °C  
Running CoreMark loop in SRAM in  
Compute Operation mode, Core at  
72 MHz, bus at 24 MHz, flash at 24  
MHz , VDD = 3 V  
25 °C  
10.52  
11.03  
12.12  
12.48  
105 °C  
Core disabled, system at 72 MHz,  
bus at 24 MHz, flash disabled (flash  
doze enabled), VDD = 3 V, all  
peripheral clocks disabled  
25 °C  
25 °C  
25 °C  
5.11  
4.33  
2.76  
6.47  
5.69  
4.12  
Core disabled, system at 48 MHz,  
bus at 24 MHz, flash disabled (flash  
doze enabled), VDD = 3 V, all  
peripheral clocks disabled  
5
Core disabled, system at 24 MHz,  
bus at 12 MHz, flash disabled (flash  
doze enabled), VDD = 3 V, all  
peripheral clocks disabled  
5
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
75  
NXP Semiconductors  
Electrical characteristics  
Table 47. Power consumption operating behaviors (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_WAIT  
Core disabled, system at 12 MHz,  
bus at 6 MHz, flash disabled (flash  
doze enabled), VDD = 3 V, all  
peripheral clocks disabled  
25 °C  
25 °C  
25 °C  
25 °C  
25 °C  
25 °C  
25 °C  
25 °C  
25 °C  
25 °C  
25 °C  
25 °C  
1.98  
3.34  
mA  
5
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPW  
Very Low Power Run Core Mark in  
Flash in Compute Operation mode:  
Core at 4 MHz, bus at 1 MHz, flash  
at 1 MHz, VDD = 3 V  
845  
1033  
898  
328  
460  
256  
34  
936.88  
1145.32  
995.64  
380.03  
512.03  
308.03  
64.00  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2, 6  
2, 6  
2, 6  
6
Very Low Power Run Core Mark in  
Flash all peripheral clock enabled:  
Core at 4 MHz, bus at 1 MHz, flash  
at 1 MHz, VDD = 3 V  
Very Low Power Run Core Mark in  
Flash all peripheral clock disabled:  
Core at 4 MHz, bus at 1 MHz, flash  
at 1 MHz, VDD = 3 V  
Very Low Power Run While(1) loop  
in Flash all peripheral clock disabled  
mode: Core at 4 MHz, bus at 1 MHz,  
flash at 1 MHz, VDD = 3 V  
Very Low Power Run While(1) loop  
in Flash all peripheral clock enabled:  
Core at 4 MHz, bus at 1 MHz, flash  
at 1 MHz, VDD = 3 V  
6
Very Low Power Run While(1) loop  
in Flash all peripheral clock disabled  
mode: Core at 2 MHz, bus at 0.5  
MHz, flash at 0.5 MHz, VDD = 3 V  
6
Very Low Power Run While(1) loop  
in Flash all peripheral clock disabled  
mode: Core at 125 kHz, bus at 31.25  
kHz, flash at 31.25 kHz, VDD = 3 V  
6
Very Low Power Run Core Mark in  
SRAM in Compute Operation mode:  
Core at 4 MHz, bus at 1 MHz, flash  
at 1 MHz, VDD = 3 V  
591  
777  
643  
297  
655.26  
861.48  
712.91  
349.03  
2, 6  
2, 6  
2, 6  
6
Very Low Power Run Core Mark in  
SRAM all peripheral clock enable:  
Core at 4 MHz, bus at 1 MHz, flash  
at 1 MHz, VDD = 3 V  
Very Low Power Run Core Mark in  
SRAM all peripheral clock disable:  
Core at 4 MHz, bus at 1 MHz, flash  
at 1 MHz, VDD = 3 V  
Very Low Power Run Wait current,  
core disabled, system at 4 MHz, bus  
and flash at 1 MHz, all peripheral  
clocks disabled, VDD = 3 V  
Table continues on the next page...  
76  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Electrical characteristics  
Table 47. Power consumption operating behaviors (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPW  
Very Low Power Run Wait current,  
core disabled, system at 2 MHz, bus  
and flash at 0.5 MHz, all peripheral  
clocks disabled, VDD = 3 V  
25 °C  
225  
277.03  
μA  
6
IDD_VLPW  
Very Low Power Run Wait current,  
core disabled, system at 125 kHz,  
bus and flash at 31.25 kHz, all  
peripheral clocks disabled, VDD = 3  
V
25 °C  
31  
61.00  
μA  
6
7
IIDD_PSTOP2  
Partial stop 2, core and system clock  
disabled, bus and flash at 12 MHz,  
VDD = 3 V  
25 °C  
2.9  
4.26  
mA  
μA  
IDD_STOP  
Stop mode current at 3.0 V  
VLPS current, VDD= 3 V  
VLPS current, VDD= 1.8 V  
25 °C and  
below  
273  
304.31  
50°C  
85 °C  
105 °C  
306  
440  
625  
5.82  
384.47  
589.29  
925.33  
15.42  
IDD_VLPS  
IDD_VLPS  
IDD_LLS3  
25 °C and  
below  
μA  
μA  
μA  
50 °C  
85 °C  
105°C  
14.41  
56.47  
121.54  
5.61  
29.41  
99.67  
223.54  
15.21  
25 °C and  
below  
50 °C  
85 °C  
14.01  
55.8  
29.01  
99.00  
222.14  
7.88  
105 °C  
120.14  
3.68  
LLS3 current, all peripheral disabled, 25 °C and  
VDD = 3 V  
below  
50 °C  
70 °C  
85 °C  
105 °C  
8.28  
13.52  
20.91  
40.27  
5.08  
15.48  
22.52  
39.55  
67.79  
9.28  
IDD_LLS3  
LLS3 with RTC current, VDD = 3 V  
25 °C and  
below  
μA  
μA  
50 °C  
70 °C  
85 °C  
105 °C  
10.31  
15.76  
22.8  
17.51  
24.76  
41.44  
71.02  
9.22  
43.5  
IDD_LLS3  
LLS3 with RTC current, VDD = 1.8 V 25 °C and  
below  
5.02  
50 °C  
10.06  
17.26  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
77  
NXP Semiconductors  
Electrical characteristics  
Table 47. Power consumption operating behaviors (continued)  
Symbol  
Description  
Typ.  
15.15  
21.88  
41.82  
3.37  
Max.  
24.15  
40.52  
69.34  
6.67  
Unit  
Notes  
70 °C  
85 °C  
105 °C  
IDD_LLS2  
LLS2 current, all peripheral disabled, 25 °C and  
μA  
VDD = 3 V  
below  
50 °C  
70 °C  
85 °C  
105 °C  
6.82  
11.13  
16.84  
32.93  
4.49  
13.42  
20.73  
31.46  
48.89  
7.79  
IDD_LLS2  
IDD_LLS2  
IDD_VLLS3  
IDD_VLLS3  
IDD_VLLS3  
LLS2 with RTC current, VDD = 3 V  
25 °C and  
below  
μA  
μA  
μA  
μA  
μA  
50 °C  
70 °C  
85 °C  
105 °C  
9.07  
12.98  
17.88  
35.98  
4.47  
16.27  
22.58  
32.50  
51.94  
7.77  
LLS2 with RTC current, VDD = 1.8 V 25 °C and  
below  
50 °C  
8.79  
12.27  
17.77  
34.31  
2
15.99  
21.87  
32.39  
50.27  
3.80  
70 °C  
85 °C  
105 °C  
VLLS3 current, all peripheral disable, 25 °C and  
VDD = 3 V  
below  
50 °C  
70 °C  
85 °C  
105 °C  
3.76  
7.19  
7.36  
12.82  
21.10  
42.33  
4.63  
12.62  
27.61  
2.83  
VLLS3 with RTC current, VDD = 3 V 25 °C and  
below  
50 °C  
4.62  
8.38  
8.22  
14.01  
21.54  
44.53  
4.39  
70 °C  
85 °C  
105 °C  
14.06  
29.81  
2.59  
VLLS3 with RTC current, VDD = 1.8 25 °C and  
V
below  
50 °C  
70 °C  
85 °C  
105 °C  
4.28  
7.89  
7.88  
13.52  
20.81  
43.06  
13.33  
28.34  
Table continues on the next page...  
78  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Electrical characteristics  
Table 47. Power consumption operating behaviors (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_VLLS2  
VLLS2 current, all peripheral disable, 25 °C and  
1.98  
3.78  
μA  
VDD = 3 V  
below  
50 °C  
70 °C  
85 °C  
105 °C  
2.95  
4.83  
7.95  
16.92  
2.8  
5.71  
9.33  
13.80  
24.26  
4.60  
IDD_VLLS2  
VLLS2 with RTC current, VDD = 3 V 25 °C and  
below  
μA  
μA  
μA  
μA  
μA  
nA  
50 °C  
3.74  
5.96  
9.35  
19.37  
2.56  
6.50  
10.46  
15.20  
26.71  
4.36  
70 °C  
85 °C  
105 °C  
IDD_VLLS2  
VLLS2 with RTC current, VDD = 1.8 25 °C and  
V
below  
50 °C  
70 °C  
85 °C  
105 °C  
3.43  
5.51  
6.19  
10.01  
14.46  
26.21  
1.11  
8.61  
18.87  
0.718  
IDD_VLLS1  
VLLS1 current, all peripheral disable, 25 °C and  
VDD = 3 V  
below  
50 °C  
70 °C  
85 °C  
105 °C  
1.28  
2.4  
2.48  
4.56  
7.62  
15.68  
1.90  
4.38  
10.28  
1.51  
IDD_VLLS1  
VLLS1 with RTC current, VDD = 3 V 25 °C and  
below  
50 °C  
2.13  
3.65  
5.76  
12.89  
1.26  
3.63  
6.29  
9.00  
18.29  
1.65  
70 °C  
85 °C  
105 °C  
IDD_VLLS1  
VLLS1 with RTC current, VDD = 1.8 25 °C and  
V
below  
50 °C  
70 °C  
85 °C  
105 °C  
1.73  
2.93  
4.98  
11.21  
432  
3.23  
5.57  
8.22  
16.61  
835  
IDD_VLLS0  
VLLS0 current, all peripheral  
disabled,  
25 °C and  
below  
(SMC_STOPCTRL[PORPO] = 0),  
VDD = 3 V  
50 °C  
70 °C  
986  
1723  
3270  
2030  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
79  
NXP Semiconductors  
Electrical characteristics  
Table 47. Power consumption operating behaviors (continued)  
Symbol  
Description  
Typ.  
4000  
9760  
272  
Max.  
5546  
12709  
520  
Unit  
Notes  
85 °C  
105 °C  
IDD_VLLS0  
VLLS0 current, all peripheral  
disabled,  
25 °C and  
below  
nA  
(SMC_STOPCTRL[PORPO] = 1),  
VDD = 3 V  
50 °C  
70 °C  
85 °C  
105 °C  
743  
1700  
3650  
9300  
160  
1398  
2927  
5177  
12191  
218.10  
IDD_VBAT  
IDD_VBAT  
IDD_VBAT  
IDD_VBAT  
Average current with RTC and 32  
kHz disabled at 3 V  
25 °C and  
below  
nA  
nA  
nA  
nA  
50 °C  
70 °C  
85 °C  
105 °C  
269  
483  
366.96  
714.32  
1211.88  
2715.16  
195.10  
851  
1870  
137  
Average current with RTC and 32  
kHz disabled at 1.8 V  
25 °C and  
below  
50 °C  
70 °C  
85 °C  
105 °C  
230  
422  
327.96  
653.32  
1106.88  
2505.16  
784.00  
746  
1660  
676  
Average current when CPU is not  
accessing RTC register at 3.0 V  
including 32 kHz  
25 °C and  
below  
50 °C  
70 °C  
85 °C  
105 °C  
809  
1040  
1420  
2460  
556  
1013.00  
1538.08  
2022.17  
3571.81  
664.00  
Average current when CPU is not  
accessing RTC register at 1.8 V  
including 32 kHz  
25 °C and  
below  
50 °C  
70 °C  
85 °C  
105 °C  
674  
880  
878.00  
1378.08  
1822.17  
3271.81  
1220  
2160  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. CoreMark benchmark compiled using IAR 7.40 with optimization level high, optimized for balanced.  
3. MCG configured for PEE mode.  
4. MCG configured for FEE mode.  
5. MCG configured for PBE mode.  
6. MCG configured for BLPE mode.  
7. MCG configured for FEI mode.  
80  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
5.3.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
Temperature=25, VDD=3V  
Cache-- CG  
-- CoreFreq  
--Core:Bus:Flash:QSPI  
Figure 19. Run mode supply current vs. core frequency  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
81  
NXP Semiconductors  
Electrical characteristics  
Temperature=25, VDD=3V  
Cache-- CG  
-- CoreFreq  
--Core:Bus:Flash:QSPI  
Figure 20. VLPR mode supply current vs. core frequency  
5.3.2.6 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components, and MCU software  
operation play a significant role in the EMC performance. The system designer can  
consult the following applications notes, available on nxp.com for advice and guidance  
specifically targeted at optimizing EMC performance.  
• AN2321: Designing for Board Level Electromagnetic Compatibility  
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS  
Microcontrollers  
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip  
Microcontrollers  
• AN2764: Improving the Transient Immunity Performance of Microcontroller-  
Based Applications  
• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-  
Based Systems  
• KL-QRUG (Kinetis L-series Quick Reference).  
82  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
5.3.2.7 EMC Radiated Emissions Web Search Procedure boilerplate  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for "EMC design"  
5.3.2.8 Capacitance attributes  
Table 48. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
5.3.3 Switching specifications  
5.3.3.1 Device clock specifications  
Table 49. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
High Speed run mode  
fSYS  
System and core clock  
96  
MHz  
Normal run mode (and High Speed run mode unless otherwise specified above)  
fSYS  
fBUS  
System and core clock  
Bus clock  
36  
72  
24  
24  
25  
MHz  
MHz  
MHz  
MHz  
MHz  
fFBUS  
fFLASH  
fLPTMR  
Bus interface clock for QSPI  
Flash clock  
LPTMR clock  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
2
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFBUS  
fFLASH  
fERCLK  
fLPTMR  
Bus interface clock for QSPI  
Flash clock  
1
External reference clock  
LPTMR clock  
16  
16  
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for  
any other module.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
83  
NXP Semiconductors  
Electrical characteristics  
5.3.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO,  
LPUART, timers, and I2C signals.  
Table 50. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled) —  
Synchronous path  
1.5  
Bus clock  
cycles  
1
GPIO pin interrupt pulse width (digital glitch filter disabled, analog  
filter enabled) — Asynchronous path  
16 2  
50  
ns  
3
3
GPIO pin interrupt pulse width (digital glitch filter disabled, analog  
filter disabled) — Asynchronous path  
ns  
External reset pulse width (digital glitch filter disabled)  
100  
34  
16  
ns  
ns  
3
Port rise and fall time  
(high drive) — slew  
enabled  
1.71 V < VDDIO_E < 2.7 V  
2.7 V < VDDIO_E ≤ 3.6 V  
4, 5  
Port rise and fall time  
(high drive) — slew  
disabled  
1.71 V < VDDIO_E < 2.7 V  
2.7 V < VDDIO_E ≤ 3.6V  
4.5  
3
ns  
4, 5  
Port rise and fall time (low 1.71 V < VDDIO_E < 2.7 V  
25  
16  
ns  
ns  
6, 5  
6, 5  
drive) — slew enabled  
2.7 V < VDDIO_E ≤ 3.6 V  
Port rise and fall time  
(high drive) — slew  
disabled  
1.71 V < VDDIO_E < 2.7 V  
2.7 V < VDDIO_E ≤ 3.6V  
4.2  
2.5  
Port rise and fall time (low 1.71 < VDDIO_E < 2.7V  
25  
13  
ns  
ns  
6, 7  
6, 7  
drive) — slew enabled  
2.7 < VDDIO_E ≤ 3.6V  
Port rise and fall time (low 1.71 < VDDIO_E < 2.7V  
5.5  
3.5  
drive) — slew disabled  
2.7 < VDDIO_E ≤ 3.6V  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and  
VLLSx modes.  
4. 75 pF load  
5. This is applicable for Port E pins  
6. 25 pF load  
7. This is applicable for Ports A, B, C, and D.  
5.3.4 Thermal specifications  
84  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
5.3.4.1 Thermal operating requirements  
Table 51. Thermal operating requirements  
Symbol  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
TJ  
Die junction temperature  
Ambient temperature  
1
TA  
105  
°C  
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + θJA x chip power dissipation  
5.3.4.2 Thermal attributes  
Board type  
Symbol  
Descriptio  
n
121  
MAPBGA  
80 LQFP  
64  
MAPBGA  
Unit  
Notes  
Single-layer RθJA  
(1s)  
Thermal  
75.5  
55  
92.2  
°C/W  
1
1
1
1
resistance,  
junction to  
ambient  
(natural  
convection)  
Four-layer  
(2s2p)  
RθJA  
Thermal  
43.5  
60.0  
38.3  
40  
44  
34  
45.4  
72.9  
40.1  
°C/W  
°C/W  
°C/W  
resistance,  
junction to  
ambient  
(natural  
convection)  
Single-layer RθJMA  
(1s)  
Thermal  
resistance,  
junction to  
ambient (200  
ft./min. air  
speed)  
Four-layer  
(2s2p)  
RθJMA  
Thermal  
resistance,  
junction to  
ambient (200  
ft./min. air  
speed)  
RθJB  
RθJC  
ΨJT  
Thermal  
resistance,  
junction to  
board  
23.1  
8.2  
24  
12  
2
20.4  
19.4  
0.7  
°C/W  
°C/W  
°C/W  
2
3
4
Thermal  
resistance,  
junction to  
case  
Thermal  
characterizati  
on  
0.5  
parameter,  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
85  
NXP Semiconductors  
Electrical characteristics  
Board type  
Symbol  
Descriptio  
n
121  
MAPBGA  
80 LQFP  
64  
MAPBGA  
Unit  
Notes  
junction to  
package top  
outside  
center  
(natural  
convection)  
RθJB_CSB  
Thermal  
characterizati  
on  
14.6  
19.5  
°C/W  
5
parameter,  
junction to  
package top  
outside  
center  
(natural  
convection)  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
5. Thermal resistance between the die and the central solder balls on the bottom of the package based on simulation.  
5.4 Peripheral operating requirements and behaviors  
5.4.1 Core modules  
5.4.1.1 Debug trace timing specifications  
Table 52. Debug trace operating behaviors  
Symbol  
Tcyc  
Twl  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Clock period  
Frequency dependent  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
Twh  
Tr  
ns  
1.5  
1.0  
ns  
Tf  
3
ns  
Ts  
ns  
Th  
Data hold  
ns  
86  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Electrical characteristics  
5.4.1.2 SWD electricals  
Table 53. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 21. Serial wire clock input timing  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
87  
NXP Semiconductors  
Electrical characteristics  
SWD_CLK  
J9  
J10  
Input data valid  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 22. Serial wire data timing  
5.4.2 Clock modules  
5.4.2.1 MCG specifications  
Table 54. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
kHz  
Iints  
Internal reference (slow clock) current  
20  
32  
0.3  
µA  
µs  
tirefsts  
[O: ] Internal reference (slow clock) startup time  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.6  
%fdco  
1
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
1
0.5  
2
%fdco  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
Table continues on the next page...  
88  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Electrical characteristics  
Table 54. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
0.5  
1
%fdco  
1
fintf_ft  
fintf_t  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
Iintf  
Internal reference (fast clock) current  
25  
10  
15  
µA  
µs  
tirefsts  
floc_low  
[L: ] Internal reference startup time (fast clock)  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
kHz  
ext clk freq: above (3/5)fint never reset  
ext clk freq: between (2/5)fint and (3/5)fint maybe  
reset (phase dependency)  
ext clk freq: below (2/5)fint always reset  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
ext clk freq: above (16/5)fint never reset  
ext clk freq: between (15/5)fint and (16/5)fint  
maybe reset (phase dependency)  
ext clk freq: below (15/5)fint always reset  
FLL  
ffll_ref  
FLL reference frequency range  
31.25  
16.0  
39.0625  
26.66  
kHz  
fdco_ut  
DCO output  
Low range  
23.04  
MHz  
2
frequency range  
— untrimmed  
(DRS=00, DMX32=0)  
640 × fints_ut  
Mid range  
32.0  
48.0  
64.0  
18.3  
36.6  
46.08  
69.12  
92.16  
26.35  
52.70  
53.32  
79.99  
106.65  
30.50  
60.99  
(DRS=01, DMX32=0)  
1280 × fints_ut  
Mid-high range  
(DRS=10, DMX32=0)  
1920 × fints_ut  
High range  
(DRS=11, DMX32=0)  
2560 × fints_ut  
Low range  
(DRS=00, DMX32=1)  
732 × fints_ut  
Mid range  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
89  
NXP Semiconductors  
Electrical characteristics  
Symbol Description  
Table 54. MCG specifications (continued)  
Min.  
Typ.  
Max.  
Unit  
Notes  
(DRS=01, DMX32=1)  
1464 × fints_ut  
Mid-high range  
54.93  
79.09  
91.53  
(DRS=10, DMX32=1)  
2197 × fints_ut  
High range  
73.23  
105.44  
122.02  
(DRS=11, DMX32=1)  
2929 × fints_ut  
fdco  
DCO output  
frequency range  
Low range (DRS=00)  
640 × ffll_ref  
20  
40  
60  
80  
20.97  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
25  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
3, 4  
Mid range (DRS=01)  
1280 × ffll_ref  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
5, 6  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fDCO = 48 MHz  
• fDCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fpll_ref  
fvcoclk_2x VCO output frequency  
fvcoclk PLL output frequency  
fvcoclk_90 PLL quadrature output frequency  
PLL reference frequency range  
8
16  
MHz  
MHz  
MHz  
MHz  
180  
90  
360  
180  
180  
90  
Ipll  
PLL operating current  
8
8
2.8  
mA  
• VCO at 184 MHz (fosc_hi_1 = 32 MHz,  
fpll_ref = 8 MHz, VDIV multiplier = 23)  
Ipll  
PLL operating current  
3.6  
mA  
• VCO at 360 MHz (fosc_hi_1 = 32 MHz,  
fpll_ref = 8 MHz, VDIV multiplier = 45)  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
90  
NXP Semiconductors  
Electrical characteristics  
Table 54. MCG specifications (continued)  
Symbol Description  
Jcyc_pll PLL period jitter (RMS)  
Min.  
Typ.  
Max.  
Unit  
Notes  
9
• fvco = 180 MHz  
• fvco = 360 MHz  
120  
75  
ps  
ps  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 180 MHz  
9
1350  
600  
ps  
ps  
• fvco = 360 MHz  
Dunl  
Lock exit frequency tolerance  
Lock detector detection time  
4.47  
5.97  
150 × 10-6  
+ 1075(1/  
%
s
tpll_lock  
10  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. This applies when SCTRIM at value (0x80) and SCFTRIM control bit at value (0x0).  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this  
specification assumes it is already running.  
5.4.2.2 IRC48M specifications  
Table 55. IRC48M specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
IDD48M  
firc48m  
Supply current  
520  
48  
μA  
Internal reference frequency  
MHz  
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at  
low voltage (VDD=1.71V-1.89V) over temperature  
• Regulator disable  
0.5  
0.5  
1.5  
1.5  
%firc48m  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=0)  
• Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
high voltage (VDD=1.89V-3.6V) over temperature  
0.5  
1.5  
%firc48m  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
91  
NXP Semiconductors  
Electrical characteristics  
Table 55. IRC48M specifications (continued)  
Symbol  
Description  
• Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Min.  
Typ.  
Max.  
Unit  
Notes  
Δfirc48m_cl Closed loop total deviation of IRC48M frequency  
0.1  
%fhost  
1
over voltage and temperature  
Jcyc_irc48m Period Jitter (RMS)  
35  
2
150  
3
ps  
μs  
tirc48mst  
Startup time  
2
1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It  
is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover  
function (USB_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).  
2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the  
clock by one of the following settings:  
• USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or  
• MCG_C7[OSCSEL]=10, or  
• SIM_SOPT2[PLLFLLSEL]=11  
5.4.2.3 Oscillator electrical specifications  
5.4.2.3.1 Oscillator DC electrical specifications  
Table 56. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
600  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
7.5  
500  
650  
2.5  
3.25  
4
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
Cx  
Cy  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
92  
NXP Semiconductors  
Electrical characteristics  
Table 56. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
RF Feedback resistor — low-frequency, low-power  
MΩ  
2, 4  
mode (HGO=0)  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
5.4.2.3.2 Oscillator frequency specifications  
Table 57. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Table continues on the next page...  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
93  
NXP Semiconductors  
Electrical characteristics  
Table 57. Oscillator frequency specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_hi_1 Oscillator crystal or resonator frequency —  
high-frequency mode (low range)  
3
8
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency —  
high frequency mode (high range)  
(MCG_C2[RANGE]=1x)  
8
32  
MHz  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
60  
%
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
1, 2  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
NOTE  
The 32 kHz oscillator works in low power mode by default  
and cannot be moved into high power/gain mode.  
5.4.2.4 32 kHz oscillator electrical characteristics  
5.4.2.4.1 32 kHz oscillator DC electrical specifications  
Table 58. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
100  
5
MΩ  
pF  
Cpara  
Parasitical capacitance of EXTAL32 and  
XTAL32  
7
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
94  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
5.4.2.4.2 32 kHz oscillator frequency specifications  
Table 59. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
32.768  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
2
fec_extal32 Externally provided input clock frequency  
vec_extal32 Externally provided input clock amplitude  
kHz  
mV  
700  
VBAT  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.  
The oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the  
applied clock must be within the range of VSS to VBAT  
.
5.4.3 Memories and memory interfaces  
5.4.3.1 QuadSPI AC specifications  
• All data is based on a negative edge data launch from the device and a positive  
edge data capture, as shown in the timing diagrams in this section.  
• Measurements are with a load of 15pf (1.8V) and 35pf (3V) on output pins. Input  
slew: 1ns  
• Timings assume a setting of 0x0000_000x for QuadSPI _SMPR register (see the  
reference manual for details).  
The following table lists the QuadSPI delay chain read/write settings. Please see the  
device reference manual for register and bit descriptions.  
Table 60. QuadSPI delay chain read/write settings  
Mode  
QuadSPI registers  
Notes  
QuadSPI_MCR[DQ QuadSPI_SOCCR[ QuadSPI_MCR[SC QuadSPI_FLSHC  
S_EN]  
SOCCFG]  
LKCFG]  
R[TDH]  
SDR  
DDR  
Yes  
3Fh  
5
No  
Delay of 63  
buffer and 64  
mux  
Yes  
3Fh  
0h  
1
2
2
Delay of 63  
buffer and 64  
mux  
Hyperflash  
RDS driven from  
Flash  
No  
Delay of 1 mux  
SDR mode  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
95  
NXP Semiconductors  
Electrical characteristics  
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Tis  
Tih  
Data in  
Figure 23. QuadSPI input timing (SDR mode) diagram  
NOTE  
• The below timing values are with default settings for  
sampling registers like QuadSPI_SMPR.  
• A negative time indicates the actual capture edge inside  
the device is earlier than clock appearing at pad.  
• The below timing are for a load of 15pf (1.8V) and 35pf  
(3V) or output pads  
• All board delays need to be added appropriately  
• Input hold time being negative does not have any  
implication or max achievable frequency  
Table 61. QuadSPI input timing (SDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tis  
Tih  
Setup time for incoming data  
4
ns  
ns  
Hold time requirement for incoming data  
1.5  
96  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Toh  
Tov  
Data out  
Figure 24. QuadSPI output timing (SDR mode) diagram  
Table 62. QuadSPI output timing (SDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tov  
Output Data Valid  
Output Data Hold  
SCK clock period  
-1.4  
2
2.8  
ns  
Toh  
Tck  
ns  
96  
MHz  
ns  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
-1  
ns  
NOTE  
For any frequency setup and hold specifications of the  
memory should be met.  
DDR Mode  
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Tih  
Tis  
Data in  
Figure 25. QuadSPI input timing (DDR mode) diagram  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
97  
NXP Semiconductors  
Electrical characteristics  
NOTE  
• Numbers are for a load of 15pf (1.8V) and 35pf (3V)  
• The numbers are for setting of hold condition in register  
QuadSPI_SMPR[DDRSNP]  
Table 63. QuadSPI input timing (DDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tis  
Setup time for incoming data  
4 (Without  
learning)  
ns  
ns  
1 (With  
learning)  
Tih  
Hold time requirement for incoming data  
1.5  
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Tov  
Toh  
Data out  
Figure 26. QuadSPI output timing (DDR mode) diagram  
Table 64. QuadSPI output timing (DDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tov  
Toh  
Tck  
Output Data Valid  
Output Data Hold  
SCK clock period  
1.5  
2
4.5  
ns  
ns  
72 (with learning)  
MHz  
45 (without learning)  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
Clk(sck)  
Clk(sck)  
-1  
Hyperflash mode  
98  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
RDS  
TsMIN  
ThMIN  
DI[7:0]  
Figure 27. QuadSPI input timing (Hyperflash mode) diagram  
Table 65. QuadSPI input timing (Hyperflash mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
TsMIN  
ThMIN  
Setup time for incoming data  
2
2
ns  
ns  
Hold time requirement for incoming data  
CK  
CK 2  
TclkSKMAX  
TclkSKMIN  
THO  
TDVO  
Output Invalid Data  
Figure 28. QuadSPI output timing (Hyperflash mode) diagram  
Table 66. QuadSPI output timing (Hyperflash mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
TdvMAX  
Output Data Valid  
4.3  
ns  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
99  
NXP Semiconductors  
Electrical characteristics  
Table 66. QuadSPI output timing (Hyperflash mode) specifications (continued)  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tho  
Output Data Hold  
1.3  
ns  
TclkSKMAX  
TclkSKMIN  
Ck to Ck2 skew max  
Ck to Ck2 skew min  
T/4 + 0.5 ns  
— ns  
T/4 - 0.5  
NOTE  
Maximum clock frequency = 72 MHz.  
5.4.3.2 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
5.4.3.2.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 67. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
1
thversscr Sector Erase high-voltage time  
13  
113  
904  
ms  
ms  
thversall  
Erase All high-voltage time  
104  
1
1. Maximum time based on expectations at cycling end-of-life.  
5.4.3.2.2 Flash timing specifications — commands  
Table 68. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec2k Read 1s Section execution time (flash sector)  
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
μs  
30  
μs  
1
65  
145  
114  
0.9  
30  
μs  
2
tersscr  
trd1all  
14  
ms  
ms  
μs  
1
trdonce  
1
tpgmonce Program Once execution time  
tersall Erase All Blocks execution time  
100  
140  
μs  
2
1150  
ms  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
100  
NXP Semiconductors  
Electrical characteristics  
Table 68. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tvfykey  
Verify Backdoor Access Key execution time  
30  
μs  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
5.4.3.2.3 Flash high voltage current behaviors  
Table 69. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
5.4.3.2.4 Reliability specifications  
Table 70. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
5.4.4 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
5.4.5 Analog  
5.4.5.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 1 and Table 72 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
101  
NXP Semiconductors  
Electrical characteristics  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
5.4.5.1.1 16-bit ADC operating conditions  
Table 71. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
Ground voltage Delta to VSS (VSS – VSSA  
)
0
2
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 ×  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
3
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
4
4
5
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
ksps  
ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
102  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 29. ADC input impedance equivalency diagram  
5.4.5.1.2 16-bit ADC electrical characteristics  
Table 72. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK = 1/  
fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
103  
NXP Semiconductors  
Electrical characteristics  
Table 72. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
INL  
Integral non-linearity  
• 12-bit modes  
1.0  
–2.7 to  
+1.9  
LSB4  
5
• <12-bit modes  
0.5  
–0.7 to  
+0.5  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
0.5  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
Signal-to-noise plus See ENOB  
SINAD  
6.02 × ENOB + 1.76  
distortion  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
dB  
dB  
-94  
-85  
16-bit single-ended mode  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's  
voltage and  
current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
104  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 30. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 31. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
105  
NXP Semiconductors  
Electrical characteristics  
5.4.5.2 CMP and 6-bit DAC electrical specifications  
Table 73. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
106  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 32. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
107  
NXP Semiconductors  
Electrical characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 33. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
5.4.5.3 12-bit DAC electrical characteristics  
5.4.5.3.1 12-bit DAC operating requirements  
Table 74. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
108  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
5.4.5.3.2 12-bit DAC operating behaviors  
Table 75. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
150  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
700  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-  
speed mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
AC  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Offset aging coefficient  
3.7  
μV/C  
%FSR/C  
μV/yr  
Ω
6
0.000421  
100  
250  
Rop  
SR  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
109  
NXP Semiconductors  
Electrical characteristics  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set  
to 0x800, temperature range is across the full range of the device  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 34. Typical INL error vs. digital code  
110  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Electrical characteristics  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 35. Offset at half scale vs. temperature  
5.4.5.4 Voltage reference electrical specifications  
Table 76. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
1.71  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature  
range of the device.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
111  
NXP Semiconductors  
Electrical characteristics  
Symbol Description  
Table 77. VREF full-range operating behaviors  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
1
1
Low-power buffer current  
High-power buffer current  
Ihp  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 78. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 79. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
5.4.6 Timers  
See General switching specifications.  
5.4.7 Communication interfaces  
112  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
5.4.7.1 EMV SIM specifications  
Each EMV SIM module interface consists of a total of five pins.  
The interface is designed to be used with synchronous Smart cards, meaning the EMV  
SIM module provides the clock used by the Smart card. The clock frequency is  
typically 372 times the Tx/Rx data rate; however, the EMV SIM module can also  
work with CLK frequencies of 16 times the Tx/Rx data rate.  
There is no timing relationship between the clock and the data. The clock that the  
EMV SIM module provides to the Smart card is used by the Smart card to recover the  
clock from the data in the same manner as standard UART data exchanges. All five  
signals of the EMV SIM module are asynchronous with each other.  
There are no required timing relationships between signals in normal mode. The smart  
card is initiated by the interface device; the Smart card responds with Answer to  
Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC  
7816 defines reset and power-down sequences (for detailed information see ISO/IEC  
7816).  
SI10  
EMVSIMn_PD  
EMVSIMn_RST  
SI7  
EMVSIMn_CLK  
SI8  
EMVSIMn_IO  
SI9  
EMVSIMn_VCCEN  
Figure 36. EMV SIM Clock Timing Diagram  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
113  
NXP Semiconductors  
Electrical characteristics  
The following table defines the general timing requirements for the EMV SIM  
interface.  
Table 80. Timing Specifications, High Drive Strength  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
MHz  
SI EMV SIM clock frequency (EMVSIMn_CLK)1  
1
SI EMV SIM clock rise time (EMVSIMn_CLK)2  
2
SI EMV SIM clock fall time (EMVSIMn_CLK)2  
3
Sfreq  
Srise  
Sfall  
0.01  
25  
0.09 × (1/Sfreq)  
ns  
ns  
ns  
ns  
ns  
0.09 × (1/Sfreq)  
SI EMV SIM input transition time (EMVSIMn_IO,  
4
Si EMV SIM I/O rise time / fall time (EMVSIMn_IO)3  
5
Si EMV SIM RST rise time / fall time (EMVSIMn_RST)4  
6
Stran  
Tr/Tf  
Tr/Tf  
20  
25  
1
EMVSIMn_PD)  
1
1. 50% duty cycle clock,  
2. With C = 50 pF  
3. With Cin = 30 pF, Cout = 30 pF,  
4. With Cin = 30 pF,  
5.4.7.1.1 EMV SIM Reset Sequences  
Smart cards may have internal reset, or active low reset. The following subset describes  
the reset sequences in these two cases.  
5.4.7.1.1.1 Smart Cards with Internal Reset  
Following figure shows the reset sequence for Smart cards with internal reset. The reset  
sequence comprises the following steps:  
• After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)  
• After 200 clock cycles, EMVSIMn_IO must be asserted.  
• The card must send a response on EMVSIMn_IO acknowledging the reset between  
400–40000 clock cycles after T0.  
114  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
EMVSIMn_VCCEN  
EMVSIMn_CLK  
EMVSIMn_IO  
RESPONSE  
1
2
T0  
Figure 37. Internal Reset Card Reset Sequence  
The following table defines the general timing requirements for the SIM interface.  
Table 81. Timing Specifications, Internal Reset Card Reset Sequence  
Ref  
Min  
Max  
Units  
1
200  
EMVSIMx_CLK  
clock cycles  
2
400  
40,000  
EMVSIMx_CLK  
clock cycles  
5.4.7.1.1.2 Smart Cards with Active Low Reset  
Following figure shows the reset sequence for Smart cards with active low reset. The  
reset sequence comprises the following steps::  
• After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)  
• After 200 clock cycles, EMVSIMn_IO must be asserted.  
• EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no  
response is to be received on RX during those 40,000 clock cycles)  
• EMVSIMn_RST is asserted (at time T1)  
• EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1,  
and a response must be received on EMVSIMn_IO between 400 and 40,000 clock  
cycles after T1.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
115  
NXP Semiconductors  
Electrical characteristics  
EMVSIMn_VCCEN  
EMVSIMn_RST  
EMVSIMn_CLK  
EMVSIMn_IO  
RESPONSE  
2
1
3
3
T0  
T1  
Figure 38. Active-Low-Reset Smart Card Reset Sequence  
The following table defines the general timing requirements for the EMVSIM  
interface..  
Table 82. Timing Specifications, Internal Reset Card Reset Sequence  
Ref No  
Min  
Max  
200  
Units  
1
2
3
EMVSIMx_CLK clock cycles  
EMVSIMx_CLK clock cycles  
EMVSIMx_CLK clock cycles  
400  
40,000  
40,000  
5.4.7.1.2 EMVSIM Power-Down Sequence  
Following figure shows the EMV SIM interface power-down AC timing diagram.Table  
83 table shows the timing requirements for parameters (SI7–SI10) shown in the figure.  
The power-down sequence for the EMV SIM interface is as follows:  
• EMVSIMn_SIMPD port detects the removal of the Smart Card  
• EMVSIMn_RST is negated  
• EMVSIMn_CLK is negated  
• EMVSIM_IO is negated  
• EMVSIMx_VCCENy is negated  
Each of the above steps requires one RTC CLK period (usually 32 kHz). Power-down  
may be initiated by a Smart card removal detection; or it may be launched by the  
processor.  
116  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
SI10  
EMVSIMn_PD  
EMVSIMn_RST  
SI7  
EMVSIMn_CLK  
EMVSIMn_IO  
SI8  
SI9  
EMVSIMn_VCCEN  
Figure 39. Smart Card Interface Power Down AC Timing  
Table 83. Timing Requirements for Power-down Sequence  
Ref No  
Parameter  
Symbol  
Min  
Max  
Units  
SI7  
EMVSIM reset to SIM clock stop Srst2clk  
0.9 × 1/  
Frtcclk  
1.1 × 1/Frtcclk  
ns  
SI8  
SI9  
EMVSIM reset to SIM Tx data  
low  
Srst2dat  
Srst2ven  
Spd2rst  
1.8 × 1/  
Frtcclk  
2.2 × 1/Frtcclk  
3.3 × 1/Frtcclk  
1.1 × 1/Frtcclk  
ns  
ns  
ns  
EMVSIM reset to SIM voltage  
enable low  
2.7 × 1/  
Frtcclk  
SI10  
EMVSIM presence detect to  
SIM reset low  
0.9 × 1/  
Frtcclk  
NOTE  
Same timing is also followed when auto power down is  
initiated. See Reference Manual for reference.  
5.4.7.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-  
date standards, visit usb.org.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
117  
NXP Semiconductors  
Electrical characteristics  
NOTE  
The MCGPLLCLK meets the USB jitter and signaling rate  
specifications for certification with the use of an external  
clock/crystal for both Device and Host modes.  
The IRC48M meets the USB jitter and signaling rate  
specifications for certification in Device mode when the USB  
clock recovery mode is enabled. It does not meet the USB  
signaling rate specifications for certification in Host mode  
operation.  
5.4.7.3 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to  
the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 84. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
24  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
1
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
1.0  
15.8  
0
15.0  
ns  
ns  
ns  
ns  
1. The SPI can run at a maximum frequency of 24 MHz serial clocks on PORTE interface, and up to 18 MHz on other  
PORT interfaces  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
118  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 40. DSPI classic SPI timing — master mode  
Table 85. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
Frequency of operation  
15 1  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
23.0  
ns  
ns  
2.7  
7.0  
ns  
ns  
13  
13  
ns  
ns  
1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with  
continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of system clock, for  
example, when system clock is 60MHz, SPI clock should not be greater than 10MHz.  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 41. DSPI classic SPI timing — slave mode  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
119  
NXP Semiconductors  
Electrical characteristics  
5.4.7.4 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 86. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
15  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
1.0  
19.1  
0
16  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 42. DSPI classic SPI timing — master mode  
120  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Electrical characteristics  
Table 87. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
1.71  
Frequency of operation  
7.5  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
23.1  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
ns  
ns  
2.6  
7.0  
ns  
ns  
13.0  
13.0  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 43. DSPI classic SPI timing — slave mode  
5.4.7.5 Inter-Integrated Circuit Interface (I2C) timing  
Table 88. I2C timing  
Characteristic  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum  
Minimum Maximum  
SCL Clock Frequency  
fSCL  
0
4
100  
0
4001  
kHz  
µs  
Hold time (repeated) START condition. tHD; STA  
After this period, the first clock pulse is  
generated.  
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.25  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
0.6  
Data hold time for I2C bus devices  
tHD; DAT  
02  
3.453  
04  
0.92  
µs  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
121  
NXP Semiconductors  
Electrical characteristics  
Characteristic  
Table 88. I2C timing (continued)  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum  
Minimum Maximum  
Data set-up time  
tSU; DAT  
2505  
1000  
300  
1003, 6  
20 +0.1Cb  
20 +0.1Cb  
0.6  
300  
300  
ns  
ns  
ns  
µs  
µs  
7
6
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
tr  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the  
normal drive pins and VDD ≥ 2.7 V.  
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
4. Input signal Slew = 10 ns and Output Load = 50 pF  
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;  
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
7. Cb = total capacitance of the one bus line in pF.  
To achieve 1MHz I2C clock rates, consider the following recommendations:  
• To counter the effects of clock stretching, the I2C baud Rate select bits can be  
configured for faster than desired baud rate.  
• Use high drive pad and DSE bit should be set in PORTx_PCRn register.  
• Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the  
SCL line to avoid clock stretching.  
• Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.  
Table 89. I 2C 1Mbit/s timing  
Characteristic  
Symbol  
fSCL  
Minimum  
Maximum  
Unit  
MHz  
µs  
SCL Clock Frequency  
0
1
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
Data set-up time  
tLOW  
tHIGH  
0.5  
0.26  
µs  
µs  
µs  
µs  
ns  
ns  
tSU; STA  
tHD; DAT  
tSU; DAT  
tr  
0.26  
0
50  
Rise time of SDA and SCL signals  
20 +0.1Cb  
120  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
122  
NXP Semiconductors  
Electrical characteristics  
Table 89. I 2C 1Mbit/s timing (continued)  
Characteristic  
Symbol  
tf  
Minimum  
Maximum  
Unit  
ns  
1
Fall time of SDA and SCL signals  
20 +0.1Cb  
120  
Set-up time for STOP condition  
tSU; STO  
tBUF  
0.26  
0.5  
0
µs  
Bus free time between STOP and START condition  
µs  
Pulse width of spikes that must be suppressed by  
the input filter  
tSP  
50  
ns  
1. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 44. Timing definition for devices on the I2C bus  
5.4.7.6 LPUART switching specifications  
See General switching specifications.  
5.4.8 Human-machine interfaces (HMI)  
5.4.8.1 TSI electrical specifications  
Table 90. TSI electrical specifications  
Symbol  
TSI_RUNF  
TSI_RUNV  
Description  
Min.  
Typ.  
100  
Max.  
Unit  
Fixed power consumption in run mode  
µA  
µA  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
123  
NXP Semiconductors  
Design considerations  
6 Design considerations  
6.1 Hardware design considerations  
This device contains protective circuitry to guard against damage due to high static  
voltage or electric fields. However, take normal precautions to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit.  
6.1.1 Printed circuit board recommendations  
• Place connectors or cables on one edge of the board and do not place digital circuits  
between connectors.  
• Drivers and filters for I/O functions must be placed as close to the connectors as  
possible. Connect TVS devices at the connector to a good ground. Connect filter  
capacitors at the connector to a good ground.  
• Physically isolate analog circuits from digital circuits if possible.  
• Place input filter capacitors as close to the MCU as possible.  
• For best EMC performance, route signals as transmission lines; use a ground plane  
directly under LQFP packages; and solder the exposed pad (EP) to ground directly  
under QFN packages.  
6.1.2 Power delivery system  
Consider the following items in the power delivery system:  
• Use a plane for ground.  
• Use a plane for MCU VDD supply if possible.  
• Always route ground first, as a plane or continuous surface, and never as sequential  
segments.  
• Route power next, as a plane or traces that are parallel to ground traces.  
• Place bulk capacitance, 10 μF or more, at the entrance of the power plane.  
• Place bypass capacitors for MCU power domain as close as possible to each  
VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.  
• The minimum bypass requirement is to place 0.1 μF capacitors positioned as near  
as possible to the package supply pins.  
• The USB_VDD voltage range is 3.0 V to 3.6 V. It is recommended to include a  
filter circuit with one bulk capacitor (no less than 2.2 μF) and one 0.1 μF capacitor  
at the USB_VDD pin to improve USB performance.  
124  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Design considerations  
• Take special care to minimize noise levels on the VREFH/VREFL inputs. An  
option is to use the internal reference voltage (output 1.2 V typically) as the ADC  
reference.  
• VDDIO_E, which is dedicated to powering PORTE, must be powered after VDD  
and must be greater than or equal to VDD voltage.  
6.1.3 Analog design  
Each ADC input must have an RC filter as shown in the following figure. The  
maximum value of R must be RAS max if fast sampling and high resolution are  
required. The value of C must be chosen to ensure that the RC time constant is very  
small compared to the sample period.  
MCU  
1
2
Input signal  
ADCx  
R
C
Figure 45. RC circuit for ADC input  
High voltage measurement circuits require voltage division, current limiting, and  
over-voltage protection as shown the following figure. The voltage divider formed by  
R1 – R4 must yield a voltage less than or equal to VREFH. The current must be  
limited to less than the injection current limit. Since the ADC pins do not have diodes  
to VDD, external clamp diodes must be included to protect against transient over-  
voltages.  
MCU  
R1  
R2  
R3  
VDD  
1
1
1
2
2
2
R5  
1
2
ADCx  
High voltage input  
R4  
1
2
C
BAT54SW  
Figure 46. High voltage measurement with an ADC input  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
125  
NXP Semiconductors  
Design considerations  
6.1.4 Digital design  
Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).  
CAUTION  
Do not provide power to I/O pins prior to VDD, especially the  
RESET_b pin.  
• RESET_b pin  
The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An  
external RC circuit is recommended to filter noise as shown in the following figure.  
The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the recommended  
capacitance value is 0.1 μF. The RESET_b pin also has a selectable digital filter to  
reject spurious noise.  
VDD  
MCU  
10k  
RESET_b  
RESET_b  
0.1uF  
Figure 47. Reset circuit  
When an external supervisor chip is connected to the RESET_b pin, a series  
resistor must be used to avoid damaging the supervisor chip or the RESET_b pin,  
as shown in the following figure. The series resistor value (RS below) must be in  
the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength. The  
supervisor chip must have an active high, open-drain output.  
126  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Design considerations  
VDD  
Supervisor Chip  
MCU  
10k  
1
2
OUT  
RESET_b  
RS  
Active high,  
open drain  
0.1uF  
Figure 48. Reset signal connection to external reset chip  
• NMI pin  
Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low  
level on this pin will trigger non-maskable interrupt. When this pin is enabled as  
the NMI function, an external pull-up resistor (10 kΩ) as shown in the following  
figure is recommended for robustness.  
If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is  
required to disable the NMI function by remapping to another function. The NMI  
function is disabled by programming the FOPT[NMI_DIS] bit to zero.  
VDD  
MCU  
10k  
NMI_b  
Figure 49. NMI pin biasing  
• Debug interface  
This MCU uses the standard ARM SWD interface protocol as shown in the  
following figure. While pull-up or pull-down resistors are not required  
(SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down),  
external 10 kΩ pull resistors are recommended for system robustness. The  
RESET_b pin recommendations mentioned above must also be considered.  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
127  
NXP Semiconductors  
Design considerations  
VDD  
10k  
VDD  
J1  
SWD_DIO  
SWD_CLK  
1
3
5
7
9
2
4
6
8
RESET_b  
10k  
10  
0.1uF  
HDR_5X2  
Figure 50. SWD debug interface  
• Low leakage stop mode wakeup  
Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the  
low leakage stop modes (LLS/VLLSx). See for pin selection.  
• Unused pin  
Unused GPIO pins must be left floating (no electrical connections) with the MUX  
field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the digital  
input path to the MCU.  
If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM)  
floating. Connect USB_VDD to ground through a 10 kΩ resistor if the USB module  
is not used.  
6.1.5 Crystal oscillator  
When using an external crystal or ceramic resonator as the frequency reference for the  
MCU clock system, refer to the following table and diagrams.  
The feedback resistor, RF, is incorporated internally with the low power oscillators. An  
external feedback is required when using high gain (HGO=1) mode.  
Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode.  
Use the SCxP bits in the OSC0_CR register to adjust the load capacitance for the  
crystal. Typically, values of 10pf to 16pF are sufficient for 32.768kHz crystals that have  
a 12.5pF CL specification. The internal load capacitor selection must not be used for  
high frequency crystals and resonators.  
128  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Design considerations  
Table 91. External crystal/resonator connections  
Oscillator mode  
Low frequency (32.768kHz), low power  
Low frequency (32.768kHz), high gain  
High frequency (3-32MHz), low power  
High frequency (3-32MHz), high gain  
Oscillator mode  
Diagram 1  
Diagram 2, Diagram 4  
Diagram 3  
Diagram 4  
OSCILLATOR  
EXTAL  
XTAL  
1
2
CRYSTAL  
Figure 51. Crystal connection – Diagram 1  
OSCILLATOR  
EXTAL  
XTAL  
1
2
RF  
RS  
1
2
CRYSTAL  
Figure 52. Crystal connection – Diagram 2  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 53. Crystal connection – Diagram 3  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
129  
NXP Semiconductors  
Design considerations  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
2
RF  
RF  
RS  
RS  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 54. Crystal connection – Diagram 4  
6.2 Software considerations  
All Kinetis MCUs are supported by comprehensive NXP and third-party hardware and  
software enablement solutions, which can reduce development costs and time to market.  
Featured software and tools are listed below. Visit http://www.nxp.com/kinetis/sw for  
more information and supporting collateral.  
Evaluation and Prototyping Hardware  
• NXP Freedom Development Platform: http://www.nxp.com/freedom  
• Tower System Development Platform: http://www.nxp.com/tower  
IDEs for Kinetis MCUs  
• Kinetis Design Studio IDE: http://www.nxp.com/kds  
• Partner IDEs: http://www.nxp.com/kide  
Development Tools  
• PEG Graphics Software: http://www.nxp.com/peg  
• Processor Expert Software and Embedded Components: http://www.nxp.com/  
processorexpert )  
Run-time Software  
• Kinetis SDK: http://www.nxp.com/ksdk  
• Kinetis Bootloader: http://www.nxp.com/kboot  
• ARM mbed Development Platform: http://www.nxp.com/mbed  
• MQX RTOS: http://www.nxp.com/mqx  
130  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
NXP Semiconductors  
Part identification  
For all other partner-developed software and tools, visit http://www.nxp.com/partners.  
6.3 Soldering temperature  
Base on JEDEC/IPC J-STD-020 Industry Standard, refer to AN3298: Solder Joint  
Temperature and Package Peak Temperature for soldering guideline of different  
packages.  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KL##  
A
Kinetis KL family  
Key attribute  
• KL82  
• Z = Cortex-M0+  
• 128 = 128 KB  
FFF  
R
Program flash memory size  
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LH = 64 LQFP (10 mm x 10 mm)  
Table continues on the next page...  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
131  
NXP Semiconductors  
Revision history  
Field  
Description  
Values  
• MP = 64 MAPBGA (5 mm x 5 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 7 = 72 MHz  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
MKL82Z128VMC7  
8 Revision history  
The following table provides a revision history for this document.  
Table 92. Revision history  
Rev. No.  
Date  
Substantial Changes  
2
3
11/2015  
08/2016  
Initial public release  
• Updated the specification of frequency of operation in DSPI switching specifications  
(limited voltage range).  
• Updated USB electrical specifications  
4
12/2016  
• Updated the Pin properties.  
• Added a note to the TA in the Thermal operating requirements  
• Updated the description of RPU and RPD in the Voltage and current operating  
behaviors  
132  
NXP Semiconductors  
Kinetis KL82 Microcontroller, Rev. 4, 12/2016  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customerʼs technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER  
WORLD, Freescale, the Freescale logo, the Energy Efficient Solutions logo, and  
Kinetis are trademarks of NXP B.V. All other product or service names are the  
property of their respective owners. ARM, the ARM powered logo, and Cortex  
are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or  
elsewhere. All rights reserved.  
© 2015 - 2016 NXP B.V.  
Document Number KL82P121M72SF0  
Revision 4, 12/2016  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY