935313111557 [NXP]

RISC Microcontroller;
935313111557
型号: 935313111557
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器
文件: 总117页 (文件大小:1622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
KS22P100M120SF0  
Rev. 3, 04/2016  
KS22/KS20 Microcontroller  
MKS22FN256Vxx12  
120 MHz ARM® Cortex®-M4, with up to 256 KB Flash  
MKS22FN128Vxx12  
MKS20FN256Vxx12  
MKS20FN128Vxx12  
The KS2x product family is built on the ARM® Cortex®-M4  
processor with lower power and higher memory densities in  
multiple packages. This device offers 120 MHz performance with  
an integrated single-precision floating point unit (FPU).  
Embedded flash memory sizes range from 128 KB to 256KB.  
This device also includes:  
• USB FS OTG 2.0 with crystal-less functionality  
• FlexCAN, supporting CAN protocol according to the ISO  
11898-1 standard and CAN 2.0 B protocol specifications  
• FlexIO, a highly configurable module providing a wide  
range of protocols including, but not limited to UART,  
LPI2C, SPI, I2S, and PWM/Waveform generation.  
100 & 64 LQFP (LL &  
LH)  
14×14×1.7 mm Pitch 7×7×0.65 mm Pitch 0.5  
48 QFN (FT)  
0.5 mm; 10×10×1.6 mm  
Pitch 0.5 mm  
mm  
Performance  
• 120 MHz ARM Cortex-M4 core with DSP instructions  
Analog modules  
• One 16-bit ADC module with up to 17 single-end  
channels and 4 differential channels, and up to 1.2  
Msps at ≤ 13-bit mode  
delivering 1.25 Dhrystone MIPS per MHz  
Memories and memory interfaces  
• One 12-bit DAC module  
• Up to 256 KB of embedded flash and 64 KB of SRAM  
• Preprogrammed Kinetis Flashloader for one-time, in-  
system factory programming  
• One analog comparator (CMP) module  
Communication interfaces  
• USB full-speed 2.0 device controller  
• One FlexIO module  
• Three UART modules (one supporting ISO7816,  
and the other two operating up to 1.5 Mbit/s)  
• One LPUART module supporting asynchronous  
operation in low-power modes  
• Two LPI2C modules supporting up to 5 Mbit/s,  
asynchronous operation in low-power modes  
supported  
• Two 16-bit SPI modules supporting up to 30 Mbit/s  
• Two FlexCAN modules for KS22, One FlexCAN for  
KS20  
System peripherals  
• Flexible low-power modes, multiple wake up sources  
• 16-channel asynchronous DMA controller  
• Independent external and software watchdog monitor  
Clocks  
• Two crystal oscillators: 32 kHz (RTC), and 32-40 kHz  
or 3-32 MHz  
• Three internal oscillators: 32 kHz, 4 MHz, and 48 MHz  
• Multi-purpose clock generator (MCG) with PLL and FLL  
Security and integrity modules  
• Hardware CRC module  
• Two I2S modules  
• 128-bit unique identification (UID) number per chip  
• Hardware random-number generator  
• Flash access control (FAC) to protect proprietary  
software  
Timers  
• Three 16-bit low-power timer PWM modules (TPM)  
• One low-power timer (LPTMR)  
• Periodic interrupt timer (PIT)  
• Real time clock (RTC), with independent power  
domain  
Human-machine interfaces  
• Up to 66 general-purpose input/output pins (GPIO)  
• Programmable delay block (PDB)  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products. © 2015–2016 NXP B.V.  
Operating characteristics  
• Voltage range (including flash writes): 1.71 to 3.6 V  
• Temperature range (ambient): –40 to 105 °C  
Related Resources  
Type  
Description  
Resource  
Selector Guide The Freescale Solution Advisor is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Solution Advisor  
Product Brief  
The Product Brief contains concise overview/summary information to KS22PB 1  
enable quick evaluation of a device for design suitability.  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the KS22P100M120SF0RM1  
structure and function (operation) of a device.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
This document:  
KS22P100M120SF01  
Chip Errata  
The chip mask set Errata provides additional or corrective  
information for a particular device mask set.  
KINETIS_K_0N87R 1  
Package  
drawing  
Package dimensions are provided in package drawings.  
LQFP 100-pin: 98ASS23308W  
LQFP 64-pin: 98ASS23234W  
QFN 48-pin: 98ASA00616D  
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.  
2
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
ARM® Cortex™-M4  
Core  
System  
Memories and Memory Interfaces  
Clocks  
Phase-  
locked loop  
Program  
RAM  
eDMA (16ch)  
flash  
DMAMUX  
Debug  
Frequency-  
locked loop  
DSP  
FPU  
Flash cache  
interfaces  
Low-leakage  
wake-up unit  
Low/high  
frequency  
oscillators  
Interrupt  
controller  
WDOG  
EWM  
Internal  
reference  
clocks  
Security  
and Integrity  
Communication Interfaces  
Human-Machine  
Interface (HMI)  
Analog  
Timers  
I2S  
x2  
TPM  
x1 (6ch)  
x2 (2ch)  
Up to  
16-bit  
ADC x1  
LPI2C  
x2  
CRC  
66 GPIOs  
Comparator  
Random-  
number  
generator  
Programmable  
delay block  
UART  
x3  
USB full-  
speed OTG  
with 6-bit DAC  
x1  
12-bit DAC  
x1  
Flash access  
control  
LPUART  
x1  
PIT (4ch)  
FlexIO  
16-bit  
low-power  
timer  
PMC  
SPI  
x2  
FlexCAN *  
Note:  
for KS22, CAN x2;  
for KS20, CAN x1.  
Independent  
real-time  
clock  
Figure 1. Functional block diagram  
NOTE  
DAC0 and I2S1 are NOT supported in the 48-QFN package. For more details, see  
the "Signal Multiplexing and Pin Assignments" section.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
3
NXP Semiconductors  
Table of Contents  
1 Ordering information............................................................... 5  
4.3.7  
Human-Machine Interfaces (HMI).....................47  
2 Overview................................................................................. 6  
2.1 System features...............................................................7  
4.4 Pinouts.............................................................................47  
4.5 Package dimensions....................................................... 50  
5 Electrical characteristics..........................................................56  
5.1 Terminology and guidelines.............................................56  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.1.8  
2.1.9  
ARM Cortex-M4 core........................................ 7  
NVIC..................................................................7  
AWIC.................................................................7  
Memory............................................................. 8  
Reset and boot..................................................9  
Clock options.....................................................10  
Security............................................................. 13  
Power management..........................................14  
LLWU................................................................ 16  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
Definitions......................................................... 56  
Examples.......................................................... 57  
Typical-value conditions....................................58  
Relationship between ratings and operating  
requirements..................................................... 58  
Guidelines for ratings and operating  
5.1.5  
requirements..................................................... 59  
2.1.10 Debug controller................................................17  
2.1.11 Computer operating properly (COP) watchdog  
timer.................................................................. 17  
5.2 Ratings............................................................................ 59  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
Thermal handling ratings...................................59  
Moisture handling ratings..................................60  
ESD handling ratings........................................ 60  
Voltage and current operating ratings...............60  
2.2 Peripheral features.......................................................... 17  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
eDMA and DMAMUX........................................ 18  
TPM...................................................................18  
ADC...................................................................19  
DAC...................................................................19  
CMP.................................................................. 20  
RTC...................................................................21  
PIT.....................................................................21  
PDB...................................................................21  
LPTMR..............................................................22  
5.3 General............................................................................60  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
AC electrical characteristics..............................61  
Nonswitching electrical specifications...............61  
Switching specifications.................................... 72  
Thermal specification........................................ 74  
5.4 Peripheral operating requirements and behaviors...........75  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
Debug modules.................................................75  
System modules................................................80  
Clock modules...................................................80  
Memories and memory interfaces.....................86  
Security and integrity modules..........................87  
Analog...............................................................87  
Timers............................................................... 97  
Communication interfaces.................................97  
2.2.10 CRC.................................................................. 22  
2.2.11 UART................................................................ 23  
2.2.12 LPUART............................................................23  
2.2.13 SPI.................................................................... 24  
2.2.14 FlexCAN............................................................24  
2.2.15 LPI2C................................................................ 26  
2.2.16 USB...................................................................26  
2.2.17 I2S.....................................................................27  
2.2.18 FlexIO................................................................27  
2.2.19 Port control and GPIO.......................................28  
3 Memory map........................................................................... 30  
4 Pinouts.................................................................................... 31  
4.1 Signal Multiplexing and Pin Assignments........................31  
4.2 Pin properties.................................................................. 34  
4.3 Module Signal Description Tables................................... 39  
6 Design considerations.............................................................108  
6.1 Hardware design considerations..................................... 108  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Printed circuit board recommendations.............108  
Power delivery system...................................... 108  
Analog design................................................... 109  
Digital design.....................................................110  
Crystal oscillator................................................112  
6.2 Software considerations.................................................. 114  
7 Part identification.....................................................................114  
7.1 Description.......................................................................114  
7.2 Format............................................................................. 115  
7.3 Fields............................................................................... 115  
7.4 Example...........................................................................115  
8 Revision history.......................................................................116  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
Core Modules....................................................39  
System Modules................................................40  
Clock Modules...................................................40  
Analog...............................................................41  
Timer Modules.................................................. 42  
Communication Interfaces................................ 43  
4
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Ordering information  
1 Ordering information  
The following chips are available for ordering.  
Table 1. Ordering information  
Product  
Memory  
Package  
IO and ADC channel  
GPIOs ADC  
Commu  
nication  
Part  
number  
Marking  
(Line1/Line2)  
Flash  
SRAM  
(KB)  
Pin Package GPIOs  
count  
FlexCAN  
(KB)  
(INT/HD) channel  
1
s
(SE/DP)  
2
MKS22F MKS22FN256 /  
256  
256  
256  
128  
128  
128  
256  
256  
256  
128  
128  
128  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
100  
64  
LQFP  
LQFP  
QFN  
66  
40  
35  
66  
40  
35  
66  
40  
35  
66  
40  
35  
66/8  
40/8  
35/8  
66/8  
40/8  
35/8  
66/8  
40/8  
35/8  
66/8  
40/8  
35/8  
17/4  
14/2 3  
13/—  
17/4  
2
2
2
2
2
2
1
1
1
1
1
1
N256VLL  
12  
VLL12  
MKS22F MKS22FN256 /  
N256VLH  
12  
VLH12  
MKS22F MKS22FN256 /  
48  
N256VFT  
12  
VFT12  
MKS22F MKS22FN128 /  
100  
64  
LQFP  
LQFP  
QFN  
N128VLL  
12  
VLL12  
MKS22F MKS22FN128 /  
14/2 3  
13/—  
17/4  
N128VLH  
12  
VLH12  
MKS22F MKS22FN128 /  
48  
N128VFT  
12  
VFT12  
MKS20F MKS20FN256 /  
100  
64  
LQFP  
LQFP  
QFN  
N256VLL  
12  
VLL12  
MKS20F MKS20FN256 /  
14/2 3  
13/—  
17/4  
N256VLH  
12  
VLH12  
MKS20F MKS20FN256 /  
48  
N256VFT  
12  
VFT12  
MKS20F MKS20FN128 /  
100  
64  
LQFP  
LQFP  
QFN  
N128VLL  
12  
VLL12  
MKS20F MKS20FN128 /  
14/2 3  
13/—  
N128VLH  
12  
VLH12  
MKS20F MKS20FN128 /  
48  
N128VFT  
12  
VFT12  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
5
NXP Semiconductors  
Overview  
1. INT: interrupt pin numbers; HD: high drive pin numbers  
2. SE: single-ended; DP: differential pair  
3. ADC0_DP1 is for single-ended (SE) mode only in 64-LQFP.  
2 Overview  
The following figure shows the system diagram of this device.  
GPIOA  
GPIOB  
Slave  
Master  
GPIOC  
Cortex M4  
GPIOD  
M0  
GPIOE  
IOPORT  
ADC (16-bit)  
code bus  
CMP (with 6-bit DAC)  
DAC (12-bit)  
Flash  
128-256 KB  
Debug  
(SWD/JTAG)  
CM4 core  
M1  
PDB  
TPM0 (6-channel)  
TPM1 (2-channel)  
TPM2 (2-channel)  
S0  
S1  
NVIC  
system bus  
FMC  
Low Power Timer  
Periodic Interrupt Timer  
RTC  
SRAM_L and _U,  
64 KB in total  
M2  
M4  
CAN x2 (KS22), x1 (KS20)  
UART x3  
DMA  
MUX  
S2  
S3  
eDMA  
LPUART  
DSPI x2  
MUX  
LPI2C x2  
FlexIO  
USB FS  
I2S x2  
CRC  
RNG  
Clock Source  
EWM  
4 MHz IRC  
FLL  
Watchdog (COP)  
Register File (32 Bytes)  
32 kHz IRC  
OSC  
PLL  
Low Leakage Wakeup Unit  
Reset Control Module  
IRC48M  
System Mode Control  
RTC  
Oscillator  
LPO  
Power Management Control  
Figure 2. System diagram  
The crossbar switch connects bus masters and slaves using a crossbar switch structure.  
This structure allows up to four bus masters to access different bus slaves  
simultaneously, while providing arbitration among the bus masters when they access  
the same slave.  
6
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
2.1 System features  
The following sections describe the high-level system features.  
2.1.1 ARM Cortex-M4 core  
The ARM Cortex-M4 is the member of the Cortex M Series of processors targeting  
microcontroller cores focused on very cost sensitive, deterministic, interrupt driven  
environments. The Cortex M4 processor is based on the ARMv7 Architecture and  
Thumb®-2 ISA and is upward compatible with the Cortex M3, Cortex M1, and  
Cortex M0 architectures. Cortex M4 improvements include an ARMv7 Thumb-2 DSP  
(ported from the ARMv7-A/R profile architectures) providing 32-bit instructions with  
SIMD (single instruction multiple data) DSP style multiply-accumulates and  
saturating arithmetic.  
2.1.2 NVIC  
The Nested Vectored Interrupt Controller supports nested interrupts and 16 priority  
levels for interrupts. In the NVIC, each source in the IPR registers contains 4 bits. It  
also differs in number of interrupt sources and supports 240 interrupt vectors.  
The Cortex-M family uses a number of methods to improve interrupt latency . It also  
can be used to wake the MCU core from Wait and VLPW modes.  
2.1.3 AWIC  
The asynchronous wake-up interrupt controller (AWIC) is used to detect  
asynchronous wake-up events in Stop mode and signal to clock control logic to  
resume system clocking. After clock restarts, the NVIC observes the pending interrupt  
and performs the normal interrupt or event processing. The AWIC can be used to  
wake MCU core from Partial Stop, Stop and VLPS modes.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
7
NXP Semiconductors  
Overview  
Wake-up sources for this SoC are listed as below:  
Table 2. AWIC Partial Stop, Stop and VLPS Wake-up Sources  
Wake-up source  
Available system resets  
Low voltage detect  
Low voltage warning  
High voltage detect  
Pin interrupts  
Description  
RESET pin and WDOG when LPO is its clock source, and JTAG  
Power Mode Controller  
Power Mode Controller  
Power Mode Controller  
Port Control Module - Any enabled pin interrupt is capable of waking the system  
The ADC is functional when using internal clock source  
ADC  
CMP  
Since no system clocks are available, functionality is limited, trigger mode provides wakeup  
functionality with periodic sampling  
LPI2C  
Functional when using clock source which is active in Stop and VLPS modes  
Functional when using clock source which is active in Stop and VLPS modes  
Functional when using clock source which is active in Stop and VLPS modes  
Active edge on RXD  
FlexIO  
TPM  
UART  
LPUART  
USB FS/LS Controller  
LPTMR  
RTC  
Functional when using clock source which is active in Stop and VLPS modes  
Wakeup  
Functional when using clock source which is active in Stop and VLPS modes  
Functional in Stop/VLPS modes  
I2S (SAI)  
TPM  
Functional when using an external bit clock or external master clock  
Functional when using clock source which is active in Stop and VLPS modes  
Wakeup on edge (CANx_RX)  
CAN  
NMI  
Non-maskable interrupt  
2.1.4 Memory  
This device has the following features:  
• 64 KB of embedded RAM accessible (read/write) at CPU clock speed with 0 wait  
states.  
• The non-volatile memory is divided into  
• 128/256 KB of embedded program memory  
The program flash memory contains a 16-byte flash configuration field that stores  
default protection settings and security information. The page size of program flash  
is 2 KB.  
The protection setting can protect 32 regions of the program flash memory from  
unintended erase or program operations.  
8
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
The security circuitry prevents unauthorized access to RAM or flash contents  
from debug port.  
• System register file  
This device contains a 32-byte register file that is powered in all power modes.  
Also, it retains contents during low power modes and is reset only during a  
power-on reset.  
2.1.5 Reset and boot  
The following table lists all the reset sources supported by this device.  
NOTE  
In the following table, Y means the specific module, except  
for the registers, bits or conditions mentioned in the  
footnote, is reset by the corresponding Reset source. N  
means the specific module is not reset by the corresponding  
Reset source.  
Table 3. Reset source  
Reset  
Descriptions  
Modules  
sources  
PMC SIM SMC RCM LLWU Reset  
RTC LPTM Others  
R
pin is  
negated  
POR reset  
Power-on reset (POR)  
Y
Y1  
N
Y
Y
Y2  
Y
Y
N
Y
Y
Y
Y
Y
N
Y
Y
Y3  
Y
N
N
Y
Y
N
Y
Y
Y
System resets Low-voltage detect (LVD)  
Low leakage wakeup  
(LLWU) reset  
External pin reset  
(RESET)  
Y1  
Y2  
Y4  
Y
Y
Y
N
N
Y
Watchdog (WDOG) reset  
Y1  
Y1  
Y2  
Y2  
Y4  
Y4  
Y5  
Y5  
Y
Y
Y
Y
N
N
N
N
Y
Y
Multipurpose clock  
generator loss of clock  
(LOC) reset  
Multipurpose clock  
generator loss of lock  
(LOL) reset  
Y1  
Y1  
Y2  
Y2  
Y4  
Y4  
Y5  
Y5  
Y
Y
Y
Y
N
N
N
N
Y
Y
Stop mode acknowledge  
error (SACKERR)  
Software reset (SW)  
Y1  
Y1  
Y2  
Y2  
Y4  
Y4  
Y5  
Y5  
Y
Y
Y
Y
N
N
N
N
Y
Y
Lockup reset (LOCKUP)  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
9
NXP Semiconductors  
Overview  
Table 3. Reset source (continued)  
Reset  
Descriptions  
Modules  
sources  
PMC SIM SMC RCM LLWU  
Reset  
pin is  
RTC LPTM Others  
R
negated  
MDM DAP system reset  
Y1  
Y1  
Y2  
Y2  
Y4  
Y4  
Y5  
Y5  
Y
Y
Y
Y
N
N
N
N
Y
Y
Debug reset Debug reset  
1. Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV]  
2. Except SIM_SOPT1  
3. Only if RESET is used to wake from VLLS mode.  
4. Except SMC_PMCTRL, SMC_STOPCTRL, SMC_PMSTAT  
5. Except RCM_RPFC, RCM_RPFW, RCM_FM  
This device supports booting from:  
• internal flash  
2.1.6 Clock options  
The MCG module controls which clock source is used to derive the system clocks. The  
clock generation logic divides the selected clock source into a variety of clock domains,  
including the clocks for the system bus masters, system bus slaves, and flash memory .  
The clock generation logic also implements module-specific clock gating to allow  
granular shutoff of modules.  
The primary clocks for the system are generated from the MCGOUTCLK clock. The  
clock generation circuitry provides several clock dividers that allow different portions  
of the device to be clocked at different frequencies. This allows for trade-offs between  
performance and power dissipation.  
Various modules, such as the USB OTG Controller, have module-specific clocks that  
can be generated from the IRC48MCLK or MCGPLLCLK or MCGFLLCLK clock. In  
addition, there are various other module-specific clocks that have other alternate  
sources. Clock selection for most modules is controlled by the SOPT registers in the  
SIM module.  
For more details on the clock operations and configurations, see the Clock Distribution  
chapter in the Reference Manual.  
The following figure is a high level block diagram of the clock generation.  
10  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
MCG  
SIM  
FCRDIV  
4 MHz IRC  
32 kHz IRC  
Clock options for  
some peripherals  
(see note)  
MCGIRCLK  
MCGFFCLK  
CG  
FLL  
OUTDIV1  
CG  
CG  
Core / system clocks  
Bus clock  
OUTDIV2  
MCGOUTCLK  
PLL  
OUTDIV4  
Flash clock  
CG  
MCGFLLCLK  
MCGPLLCLK  
FRDIV  
MCGPLLCLK/  
MCGFLLCLK/  
IRC48MCLK  
PRDIV  
System oscillator  
IRC48MCLK  
EXTAL0  
XTAL0  
OSCCLK  
OSCERCLK_UNDIV  
OSCERCLK  
XTAL_CLK  
OSC  
logic  
DIV  
OSC32KCLK  
ERCLK32K  
PMC  
RTC oscillator  
32.768 kHz  
LPO  
EXTAL32  
XTAL32  
PMC logic  
OSC logic  
1 Hz  
RTC_CLKOUT  
IRC48M internal oscillator  
IRC48MCLK  
IRC48M logic  
CG — Clock gate  
Note: See subsequent sections for details on where these clocks are used.  
Figure 3. Clock block diagram  
In order to provide flexibility, many peripherals can select the clock source to use for  
operation. This enables the peripheral to select a clock that will always be available  
during operation in various operational modes.  
The following table summarizes the clocks associated with each module.  
Table 4. Module clocks  
Module  
Bus interface clock  
Core modules  
Internal clocks  
I/O interface clocks  
ARM Cortex-M4 core  
System clock  
System clock  
System clock  
Core clock  
NVIC  
DAP  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
11  
NXP Semiconductors  
Overview  
Table 4. Module clocks (continued)  
Module  
Bus interface clock  
System clock  
Internal clocks  
I/O interface clocks  
ITM  
cJTAG, JTAGC  
JTAG_CLK  
System modules  
DMA  
DMA Mux  
System clock  
Bus clock  
Port control  
Bus clock  
LPO  
Crossbar Switch  
Peripheral bridges  
LLWU, PMC, SIM, RCM  
Mode controller  
MCM  
System clock  
System clock  
Flash clock  
Flash clock  
System clock  
Bus clock  
Bus clock, Flash clock  
LPO  
EWM  
LPO  
LPO  
Watchdog timer  
Bus clock  
Clocks  
MCG  
Flash clock  
MCGOUTCLK,  
MCGPLLCLK, MCGFLLCLK,  
MCGIRCLK, OSCCLK, RTC  
OSC, IRC48MCLK  
OSC  
Bus clock  
OSCERCLK, OSCCLK,  
OSCERCLK_UNDIV,  
OSC32KCLK  
IRC48M  
IRC48MCLK  
Memory and memory interfaces  
Flash Controller  
Flash memory  
System clock  
Flash clock  
Flash clock  
Security  
CRC  
Bus clock  
Bus clock  
RNGA  
Analog  
ADC  
CMP  
DAC  
Bus clock  
Bus clock  
Bus clock  
OSCERCLK , IRC48MCLK  
Timers  
TPM  
PDB  
Bus clock  
Bus clock  
Bus clock  
Flash clock  
TPM clock  
TPM_CLKIN0, TPM_CLKIN1  
PIT  
LPTMR  
LPO, OSCERCLK,  
MCGIRCLK, ERCLK32K  
RTC  
Flash clock  
EXTAL32  
Communication interfaces  
Table continues on the next page...  
12  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Overview  
Table 4. Module clocks (continued)  
Module  
USB FS OTG  
DSPI  
Bus interface clock  
System clock  
Bus clock  
Internal clocks  
USB FS clock  
I/O interface clocks  
DSPI_SCK  
I2C_SCL  
LPI2C  
Bus clock  
LPI2C clock  
UART0, UART1  
UART2  
System clock  
Bus clock  
LPUART0  
I2S  
Bus clock  
LPUART0 clock  
I2S master clock  
Bus clock  
I2S_TX_BCLK,  
I2S_RX_BCLK  
FlexCAN  
FlexIO  
Bus clock  
Bus clock  
FlexCAN clock  
FlexIO clock  
Human-machine interfaces  
GPIO  
Platform clock  
2.1.7 Security  
Security state can be enabled via programming flash configure field (0x40e). After  
enabling device security, the SWD/JTAG port cannot access the memory resources of  
the MCU.  
External interface  
SWD/JTAG port  
Security  
Unsecure  
Can't access memory source by SWD/ the debugger can write to the Flash  
JTAG interface  
Mass Erase in Progress field of the  
MDM-AP Control register to trigger a  
mass erase (Erase All Blocks)  
command  
2.1.7.1 Flash Access Control (FAC)  
The FAC is a native or third-party configurable memory protection scheme optimized  
to allow end users to utilize software libraries while offering programmable  
restrictions to these libraries. The flash memory is divided into equal size segments  
that provide protection to proprietary software libraries. The protection of these  
segments is controlled as the FAC provides a cycle-by-cycle evaluation of the access  
rights for each transaction routed to the on-chip flash memory. Configurability allows  
an increasing number of protected segments while supporting two levels of vendors  
adding their proprietary software to a device.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
13  
NXP Semiconductors  
Overview  
2.1.8 Power management  
The Power Management Controller (PMC) expands upon ARM’s operational modes of  
Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can  
be used to optimize current consumption for a wide range of applications. The WFI or  
WFE instruction invokes a Wait or a Stop mode, depending on the current  
configuration. For more information on ARM’s operational modes, See the ARM®  
Cortex® User Guide.  
The PMC provides High Speed Run (HSRUN), Normal Run (RUN), and Very Low  
Power Run (VLPR) configurations in ARM’s Run operation mode. In these modes, the  
MCU core is active and can access all peripherals. The difference between the modes is  
the maximum clock frequency of the system and therefore the power consumption. The  
configuration that matches the power versus performance requirements of the  
application can be selected.  
The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in  
ARM’s Sleep operation mode. In these modes, even though the MCU core is inactive,  
all of the peripherals can be enabled and operate as programmed. The difference  
between the modes is the maximum clock frequency of the system and therefore the  
power consumption.  
The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop  
(LLS), and Very Low Leakage Stop (VLLS) configurations in ARM’s Deep Sleep  
operational mode. In these modes, the MCU core and most of the peripherals are  
disabled. Depending on the requirements of the application, different portions of the  
analog, logic, and memory can be retained or disabled to conserve power.  
The Battery Backup mode allows the VBAT voltage domain to operate while the rest of  
the device is disabled to conserve power. All modules in the VBAT domain are  
functional in this mode of operation.  
The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up  
Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are  
used to wake up the MCU from low power states. The NVIC is used to wake up the  
MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU  
core from STOP and VLPS modes. The LLWU is used to wake up the MCU core from  
LLS and VLLSx modes.  
For additional information regarding operational modes, power management, the NVIC,  
AWIC, or the LLWU, please refer to the Reference Manual.  
14  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
The following table provides information about the state of the peripherals in the  
various operational modes and the modules that can wake MCU from low power  
modes.  
Table 6. Peripherals states in different operational modes  
Core mode  
Device mode  
Descriptions  
Run mode  
High Speed Run  
In HSRun mode, MCU is able to operate at a faster frequency, and all device  
modules are operational.  
Run  
In Run mode, all device modules are operational.  
Very Low Power Run  
In VLPR mode, all device modules are operational at a reduced frequency  
except the Low Voltage Detect (LVD) monitor, which is disabled.  
Sleep mode  
Deep sleep  
Wait  
In Wait mode, all peripheral modules are operational. The MCU core is  
placed into Sleep mode.  
Very Low Power Wait  
In VLPW mode, all peripheral modules are operational at a reduced  
frequency except the Low Voltage Detect (LVD) monitor, which is disabled.  
The MCU core is placed into Sleep mode.  
Stop  
In Stop mode, most peripheral clocks are disabled and placed in a static  
state. Stop mode retains all registers and SRAMs while maintaining Low  
Voltage Detection protection. In Stop mode, the ADC, DAC, CMP, LPTMR,  
RTC, and pin interrupts are operational. The NVIC is disabled, but the AWIC  
can be used to wake up from an interrupt.  
Very Low Power Stop  
In VLPS mode, the contents of the SRAM are retained. The CMP (low  
speed), ADC, OSC, RTC, LPTMR, TPM, FlexIO, LPUART, LPI2C,USB, and  
DMA are operational, LVD and NVIC are disabled, AWIC is used to wake up  
from interrupt.  
Low Leakage Stop  
(LLS3/LLS2)  
State retention power mode. Most peripherals are in state retention mode  
(with clocks stopped), but LLWU, LPTimer, RTC, CMP, DAC can be used.  
NVIC is disabled; LLWU is used to wake up.  
NOTE: The LLWU interrupt must not be masked by the interrupt controller  
to avoid a scenario where the system does not fully exit stop mode  
on an LLS recovery.  
In LLS3 mode, all SRAM is operating (content retained and I/O  
states held). In LLS2 mode, a portion of SRAM_U remains powered  
on (content retained and I/O states held).  
Very Low Leakage Stop Most peripherals are disabled (with clocks stopped), but LLWU, LPTimer,  
(VLLSx)  
RTC, CMP, DAC can be used. NVIC is disabled; LLWU is used to wake up.  
In VLLS3, SRAM_U and SRAM_L remain powered on (content retained and  
I/O states held).  
In VLLS2, SRAM_L is powered off. A portion of SRAM_U remains powered  
on (content retained and I/O states held).  
In VLLS1 and VLLS0, all of SRAM_U and SRAM_L are powered off. The 32-  
byte system register file and 32-byte VBAT register file remain powered for  
customer-critical data.  
In VLLS0, The POR detect circuit can be optionally powered off.  
Powered Off  
Battery Backup  
The RTC and 32-byte VBAT register file are powered from the VBAT domain  
and is fully functional. The rest of the device is powered down.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
15  
NXP Semiconductors  
Overview  
2.1.9 LLWU  
The LLWU module is used to wake MCU from low leakage power mode (LLS and  
VLLSx) and functional only on entry into a low-leakage power mode. After recovery  
from LLS, the LLWU is immediately disabled. After recovery from VLLSx, the LLWU  
continues to detect wake-up events until the user has acknowledged the wake-up event.  
The following is internal peripheral and external pin inputs as wakeup sources to the  
LLWU module.  
Table 7. Wakeup sources for LLWU inputs  
Input  
Wakeup source  
PTE1/LLWU_P0 pin  
PTE2/LLWU_P1 pin  
PTE4/LLWU_P2 pin  
PTA4/LLWU_P3 pin1  
PTA13/LLWU_P4 pin  
PTB0/LLWU_P5 pin  
PTC1/LLWU_P6 pin  
PTC3/LLWU_P7 pin  
PTC4/LLWU_P8 pin  
PTC5/LLWU_P9 pin  
PTC6/LLWU_P10 pin  
PTC11/LLWU_P11 pin  
PTD0/LLWU_P12 pin  
PTD2/LLWU_P13 pin  
PTD4/LLWU_P14 pin  
PTD6/LLWU_P15 pin  
Reserved  
LLWU_P0  
LLWU_P1  
LLWU_P2  
LLWU_P3  
LLWU_P4  
LLWU_P5  
LLWU_P6  
LLWU_P7  
LLWU_P8  
LLWU_P9  
LLWU_P10  
LLWU_P11  
LLWU_P12  
LLWU_P13  
LLWU_P14  
LLWU_P15  
LLWU_P16  
LLWU_P17  
LLWU_P18  
LLWU_P19  
LLWU_P20  
LLWU_P21  
LLWU_P22  
LLWU_P23  
LLWU_P24  
LLWU_P25  
LLWU_P26  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
USBVDD  
Table continues on the next page...  
16  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
Table 7. Wakeup sources for LLWU inputs (continued)  
Input  
Wakeup source  
USB0_DP  
USB0_DM2  
Reserved  
Reserved  
Reserved  
LPTMR3  
LLWU_P27  
LLWU_P28  
LLWU_P29  
LLWU_P30  
LLWU_P31  
LLWU_M0IF  
LLWU_M1IF  
LLWU_M2IF  
LLWU_M3IF  
LLWU_M4IF  
LLWU_M5IF  
LLWU_M6IF  
LLWU_M7IF  
CMP0  
Reserved  
Reserved  
Reserved  
RTC Alarm3  
Reserved  
RTC Seconds3  
1. If NMI was enabled on entry to LLS/VLLS, asserting the NMI pin generates an NMI interrupt on exit from the low  
power mode. NMI can also be disabled via the FOPT[NMI_DIS] bit.  
2. As a wakeup source of LLWU, USB0_DP and USB0_DM are only available when the chip is in USB host mode.  
3. It requires the peripheral and the peripheral interrupt to be enabled. The LLWU's WUME bit enables the internal  
module flag as a wakeup input. After wakeup, the flags are cleared based on the peripheral clearing mechanism.  
2.1.10 Debug controller  
This device has extensive debug capabilities including run control and tracing  
capabilities. The standard ARM debug port supports SWD/JTAG interface. Also the  
cJTAG interface is supported on this device.  
2.1.11 Computer operating properly (COP) watchdog timer  
The computer operating properly (COP) watchdog timer (WDOG) monitors the  
operation of the system by expecting periodic communication from the software. This  
communication is generally known as servicing (or refreshing) the COP watchdog. If  
this periodic refreshing does not occur, the watchdog issues a system reset.  
2.2 Peripheral features  
The following sections describe the features of each peripherals of the chip.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
17  
NXP Semiconductors  
Overview  
2.2.1 eDMA and DMAMUX  
The eDMA is a highly programmable data-transfer engine optimized to minimize any  
required intervention from the host processor. It is intended for use in applications  
where the data size to be transferred is statically known and not defined within the  
transferred data itself. The DMA controller in this device implements 16 channels  
which can be routed from up to 63 DMA request sources through DMA MUX module.  
Main features of eDMA are listed below:  
• All data movement via dual-address transfers: read from source, write to  
destination  
• 16-channel implementation that performs complex data transfers with minimal  
intervention from a host processor  
• Transfer control descriptor (TCD) organized to support two-deep, nested transfer  
operations  
• Channel activation via one of three methods  
• Fixed-priority and round-robin channel arbitration  
• Channel completion reported via programmable interrupt requests  
• Programmable support for scatter/gather DMA processing  
• Support for complex data structures  
2.2.2 TPM  
This device contains three low power Timer/PWM Modules (TPM), one with 6  
channels and the other two with 2 channels. All TPM modules are functional in Stop/  
VLPS mode if the clock source is enabled.  
The TPM features are as follows:  
• TPM clock mode is selectable (can increment on every edge of the asynchronous  
counter clock, or only on on rising edge of an external clock input synchronized to  
the asynchronous counter clock)  
• Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128  
• Include a 16-bit counter  
• Include 6 or 2 channels (1×6ch, 2×2ch) that can be configured for input capture,  
output compare, edge-aligned PWM mode, or center-aligned PWM mode  
• Support the generation of an interrupt and/or DMA request per channel or counter  
overflow  
18  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
• Support selectable trigger input to optionally reset or cause the counter to start or  
stop incrementing  
• Support the generation of hardware triggers when the counter overflows and per  
channel  
2.2.3 ADC  
This device contains one ADC module. This ADC module supports hardware triggers  
from TPM, LPTMR, PIT, RTC, external trigger pin and CMP output. It supports  
wakeup of MCU in low power mode when using internal clock source or external  
crystal clock.  
ADC module has the following features:  
• Linear successive approximation algorithm with up to 16-bit resolution  
• Up to four pairs of differential and 17 single-ended external analog inputs  
• Support selectable 16-bit, 13-bit, 11-bit, and 9-bit differential output mode, or 16-  
bit, 12-bit, 10-bit, and 8-bit single-ended output modes  
• Single or continuous conversion  
• Configurable sample time and conversion speed/power  
• Selectable clock source up to three  
• Operation in low-power modes for lower noise  
• Asynchronous clock source for lower noise operation with option to output the  
clock  
• Selectable hardware conversion trigger  
• Automatic compare with interrupt for less-than, greater-than or equal-to, within  
range, or out-of-range, programmable value  
• Temperature sensor  
• Hardware average function up to 32×  
• Voltage reference: from external  
• Self-calibration mode  
2.2.3.1 Temperature sensor  
This device contains one temperature sensor internally connected to the input channel  
of AD26, see Table 66 for details of the linearity factor.  
The sensor must be calibrated to gain good accuracy, so as to provide good linearity,  
see also AN3031.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
19  
NXP Semiconductors  
Overview  
2.2.4 DAC  
The 12-bit digital-to-analog converter (DAC) is a low-power, general-purpose DAC.  
The output of the DAC can be placed on an external pin or set as one of the inputs to  
the analog comparator, or ADC.  
DAC module has the following features:  
• On-chip programmable reference generator output. The voltage output range is  
from 1⁄4096 Vin to Vin, and the step is 1⁄4096 Vin, where Vin is the input voltage.  
• Vin can be selected from the reference source VDDA  
• Static operation in Normal Stop mode  
• 16-word data buffer supported with multiple operation modes  
• DMA support  
2.2.5 CMP  
The device contains one high-speed comparator and two 8-input multiplexers for both  
the inverting and non-inverting inputs of the comparator. Each CMP input channel  
connects to both muxes.  
The CMP includes one 6-bit DAC, which provides a selectable voltage reference for  
various user application cases. Besides, the CMP also has several module-to-module  
interconnects in order to facilitate ADC triggering, TPM triggering, and interfaces.  
The CMP has the following features:  
• Inputs may range from rail to rail  
• Programmable hysteresis control  
• Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of  
the comparator output  
• Selectable inversion on comparator output  
• Capability to produce a wide range of outputs such as sampled, digitally filtered  
• External hysteresis can be used at the same time that the output filter is used for  
internal functions  
• Two software selectable performance levels: shorter propagation delay at the  
expense of higher power and Low power with longer propagation delay  
• DMA transfer support  
• Functional in all modes of operation except in VLLS0 mode  
• The filter functions are not available in Stop, VLPS, LLS, or VLLSx modes  
• Integrated 6-bit DAC with selectable supply reference source and can be power  
down to conserve power  
• Two 8-to-1 channel mux  
20  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
2.2.6 RTC  
The RTC is an always powered-on block that remains active in all low power modes.  
The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an  
external crystal using the RTC oscillator.  
RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all  
RTC registers.  
The RTC module has the following features  
• 32-bit seconds counter with roll-over protection and 32-bit alarm  
• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and  
3906 ppm  
• Register write protection with register lock mechanism  
• 1 Hz square wave or second pulse output with optional interrupt  
2.2.7 PIT  
The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It  
has four independent channels and each channel has a 32-bit counter. Both channels  
can be chained together to form a 64-bit counter.  
Channel 0 can be used to periodically trigger DMA channel 0, and channel 1 can be  
used to periodically trigger DMA channel 1. Either channel can be programmed as an  
ADC trigger source, or TPM trigger source. Channel 0 can be programmed to trigger  
DAC.  
The PIT module has the following features:  
• Each 32-bit timers is able to generate DMA trigger  
• Each 32-bit timers is able to generate timeout interrupts  
• Two timers can be cascaded to form a 64-bit timer  
• Each timer can be programmed as ADC/TPM trigger source  
2.2.8 PDB  
The Programmable Delay Block (PDB) provides controllable delays from either an  
internal or an external trigger, or a programmable interval tick, to the hardware trigger  
inputs of ADCs and/or generates the interval triggers to DACs, so that the precise  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
21  
NXP Semiconductors  
Overview  
timing between ADC conversions and/or DAC updates can be achieved. The PDB can  
optionally provide pulse outputs (Pulse-Out's) that are used as the sample window in the  
CMP block.  
The PIT module has the following features:  
• Up to 15 trigger input sources and one software trigger source  
• Up to 8 configurable PDB channels for ADC hardware trigger  
• Up to 8 pulse outputs (pulse-out's)  
2.2.9 LPTMR  
The low-power timer (LPTMR) can be configured to operate as a time counter with  
optional prescaler, or as a pulse counter with optional glitch filter, across all power  
modes, including the low-leakage modes. It can also continue operating through most  
system reset events, allowing it to be used as a time of day counter.  
The LPTMR module has the following features:  
• 16-bit time counter or pulse counter with compare  
• Optional interrupt can generate asynchronous wakeup from any low-power  
mode  
• Hardware trigger output  
• Counter supports free-running mode or reset on compare  
• Configurable clock source for prescaler/glitch filter  
• Configurable input source for pulse counter  
2.2.10 CRC  
This device contains one cyclic redundancy check (CRC) module which can generate  
16/32-bit CRC code for error detection.  
The CRC module provides a programmable polynomial, WAS, and other parameters  
required to implement a 16-bit or 32-bit CRC standard.  
The CRC module has the following features:  
• Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift  
register  
• Programmable initial seed value and polynomial  
• Option to transpose input data or output data (the CRC result) bitwise or bytewise.  
• Option for inversion of final CRC result  
• 32-bit CPU register programming interface  
22  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
2.2.11 UART  
This device contains 3 basic universal asynchronous receiver/transmitter (UART)  
modules with DMA function supported. Generally, this module is used in RS-232,  
RS-485, and other communications. It also supports LIN slave operation and  
ISO7816.  
The UART module has the following features:  
• Full-duplex operation  
• 13-bit baud rate selection with /32 fractional divide, based on the module clock  
frequency  
• Programmable 8-bit or 9-bit data format  
• Programmable transmitter output polarity  
• Programmable receive input polarity  
• Up to 14-bit break character transmission.  
• 11-bit break character detection option  
• Two receiver wakeup methods with idle line or address mark wakeup  
• Address match feature in the receiver to reduce address mark wakeup ISR  
overhead  
• Ability to select MSB or LSB to be the first bit on wire  
• UART0 supporting ISO-7816 protocol to interface with SIM cards and smart  
cards  
• Receiver framing error detection  
• Hardware parity generation and checking  
• 1/16 bit-time noise detection  
• DMA interface  
2.2.12 LPUART  
This device contains one Low-Power UART module, and can work in Stop and VLPS  
modes. The module also supports 4× to 32× data oversampling rate to meet different  
applications.  
The LPUART module has the following features:  
• Programmable baud rates (13-bit modulo divider) with configurable oversampling  
ratio from 4× to 32×  
• Transmit and receive baud rate can operate asynchronous to the bus clock and can  
be configured independently of the bus clock frequency, support operation in Stop  
mode  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
23  
NXP Semiconductors  
Overview  
• Interrupt, DMA or polled operation  
• Hardware parity generation and checking  
• Programmable 8-bit, 9-bit or 10-bit character length  
• Programmable 1-bit or 2-bit stop bits  
• Three receiver wakeup methods  
• Idle line wakeup  
• Address mark wakeup  
• Receive data match  
• Automatic address matching to reduce ISR overhead:  
• Address mark matching  
• Idle line address matching  
• Address match start, address match end  
• Optional 13-bit break character generation / 11-bit break character detection  
• Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle  
characters  
• Selectable transmitter output and receiver input polarity  
2.2.13 SPI  
This device contains two SPI modules. The SPI module provides a synchronous serial  
bus for communication between a chip and an external peripheral device.  
The SPI modules have the following features:  
• Full-duplex, three-wire synchronous transfers  
• Master mode, or slave mode  
• Data streaming operation in Slave mode with continuous slave selection  
• Buffered transmit/receive operation using the transmit/receive first in first out  
(TX/RX FIFO) with depth of 4 entries  
• Programmable transfer attributes on a per-frame basis  
• Multiple peripheral chip select (PCS) (6 PCS available for SPI0 and 4 PCS for  
SPI1), expandable to 64 with external demultiplexer  
• Deglitching support for up to 32 peripheral chip selects (PCSes) with external  
demultiplexer  
• DMA support for adding entries to TX FIFO and removing entries from RX FIFO  
• Global interrupt request line  
• Modified SPI transfer formats for communication with slower peripheral devices  
• Power-saving architectural features  
24  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
2.2.14 FlexCAN  
For KS22, the device contains two FlexCAN modules. For KS20, it has only one  
FlexCAN module. The FlexCAN module is a communication controller implementing  
the CAN protocol according to the ISO 11898-1 standard and CAN 2.0 B protocol  
specifications.  
The FlexCAN module contains 16 message buffers. Each message buffer is 16 bytes.  
The FlexCAN module has the following features:  
• Flexible mailboxes of zero to eight bytes data length  
• Each mailbox configurable as receive or transmit, all supporting standard and  
extended messages  
• Individual Rx Mask registers per mailbox  
• Full-featured Rx FIFO with storage capacity for up to six frames and automatic  
internal pointer handling with DMA support  
• Transmission abort capability  
• Programmable clock source to the CAN Protocol Interface, either peripheral clock  
or oscillator clock  
• RAM not used by reception or transmission structures can be used as general  
purpose RAM space  
• Listen-Only mode capability  
• Programmable Loop-Back mode supporting self-test operation  
• Programmable transmission priority scheme: lowest ID, lowest buffer number, or  
highest priority  
• Time stamp based on 16-bit free-running timer  
• Global network time, synchronized by a specific message  
• Maskable interrupts  
• Independence from the transmission medium (an external transceiver is assumed)  
• Short latency time due to an arbitration scheme for high-priority messages  
• Low power modes, with programmable wake up on bus activity  
• Remote request frames may be handled automatically or by software  
• CAN bit time settings and configuration bits can only be written in Freeze mode  
• Tx mailbox status (Lowest priority buffer or empty buffer)  
• Identifier Acceptance Filter Hit Indicator (IDHIT) register for received frames  
• SYNCH bit available in Error in Status 1 register to inform that the module is  
synchronous with CAN bus  
• CRC status for transmitted message  
• Rx FIFO Global Mask register  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
25  
NXP Semiconductors  
Overview  
• Selectable priority between mailboxes and Rx FIFO during matching process  
• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either  
128 extended, 256 standard, or 512 partial (8 bit) IDs, with up to 32 individual  
masking capability  
2.2.15 LPI2C  
This device contains two LPI2C modules. The LPI2C is a low power Inter-Integrated  
Circuit (I2C) module that supports an efficient interface to an I2C bus as a master  
and/or a slave. The LPI2C can continue operating in stop modes provided an  
appropriate clock is available and is designed for low CPU overhead with DMA  
offloading of FIFO register accesses. The LPI2C implements logic support for standard-  
mode, fast-mode, fast-mode plus and ultra-fast modes of operation. The LPI2C module  
also complies with the System Management Bus (SMBus) Specification, version 2.  
The LPI2C modules have the following features:  
• Standard, Fast, Fast+ and Ultra Fast modes are supported  
• HS-mode supported in slave mode  
• Multi-master support including synchronization and arbitration  
• Clock stretching  
• General call, 7-bit and 10-bit addressing  
• Software reset, START byte and Device ID require software support  
• For master mode:  
• command/transmit FIFO of 4 words  
• receive FIFO of 4 words  
• For slave mode:  
• separate I2C slave registers to minimize software overhead due to master/slave  
switching  
• support for 7-bit or 10-bit addressing, address range, SMBus alert and general  
call address  
• transmit/receive data register supporting interrupt or DMA requests  
2.2.16 USB  
This device contains one USB module which implements a USB2.0 full-speed  
compliant peripheral and interfaces to the on-chip USBFS transceiver. It enables  
IRC48M to allow crystal-less USB operation.  
The USBFS has the following features:  
26  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
• USB 1.1 and 2.0 compliant full-speed device controller  
• 16 bidirectional end points  
• DMA or FIFO data stream interfaces  
• Low-power consumption  
• IRC48M with clock-recovery is supported to eliminate the 48 MHz crystal. It is  
used for USB device-only implementation.  
2.2.17 I2S  
The I2S module provides a synchronous audio interface (SAI), which can be clocked  
by bus clock, PLL/FLL output clock or external oscillator clock. The module supports  
asynchronous bit clocks (BCLKs) that can be generated internally from the audio  
master clock or supplied externally. And also supports the option for synchronous  
operation between the receiver and transmitter. And it can be functional in stop or  
very low power mode.  
I2S module has the following features:  
• Transmitter with independent bit clock and frame sync supporting 1 data channel  
• Receiver with independent bit clock and frame sync supporting 1 data channel  
• Maximum frame size of 16 words  
• Word size of between 8-bits and 32-bits  
• Word size configured separately for first word and remaining words in frame  
• Asynchronous 8 × 32-bit FIFO for each transmit and receive channels  
• Supports graceful restart after FIFO error  
• Supports automatic restart after FIFO error without software intervention  
• Supports packing of 8-bit and 16-bit data into each 32-bit FIFO word  
2.2.18 FlexIO  
The FlexIO is a highly configurable module providing a wide range of protocols  
including, but not limited to UART, I2C, SPI, I2S, and PWM/Waveform generation.  
The module supports programmable baud rates independent of bus clock frequency,  
with automatic start/stop bit generation.  
The FlexIO module has the following features:  
• Functional in VLPR/VLPW/Stop/VLPS mode provided the clock it is using  
remains enabled  
• Four 32-bit double buffered shift registers with transmit, receive, and data match  
modes, and continuous data transfer  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
27  
NXP Semiconductors  
Overview  
• The timing of the shifter's shift, load and store events are controlled by the highly  
flexible 16-bit timer assigned to the shifter  
• Two or more shifters can be concatenated to support large data transfer sizes  
• Each 16-bit timers operates independently, supports for reset, enable and disable on  
a variety of internal or external trigger conditions with programmable trigger  
polarity  
• Flexible pin configuration supporting output disabled, open drain, bidirectional  
output data and output mode  
• Supports interrupt, DMA or polled transmit/receive operation  
2.2.19 Port control and GPIO  
The Port Control and Interrupt (PORT) module provides support for port control, digital  
filtering, and external interrupt functions. The GPIO data direction and output data  
registers control the direction and output data of each pin when the pin is configured for  
the GPIO function. The GPIO input data register displays the logic value on each pin  
when the pin is configured for any digital function, provided the corresponding Port  
Control and Interrupt module for that pin is enabled.  
The following figure shows the basic I/O pad structure. This diagram applies to all I/O  
pins except RESET_b and those configured as pseudo open-drain outputs. RESET_b is  
a true open-drain pin without p-channel output driver or diode to the ESD bus. Pseudo  
open-drain pins have the p-channel output driver disabled when configured for open-  
drain operation. None of the I/O pins, including open-drain and pseudo open-drain pins,  
are allowed to go above VDD.  
28  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Overview  
Digital input  
IBE=1 whenever  
MUX000  
PFE  
IBE  
ESD  
Bus  
VDD  
RPULL  
PE  
PS  
Analog input  
Digital output  
DSE  
SRE  
Figure 4. I/O simplified block diagram  
The PORT module has the following features:  
• all PIN support interrupt enable  
• Configurable edge (rising, falling, or both) or level sensitive interrupt type  
• Support DMA request  
• Asynchronous wake-up in low-power modes  
• Configurable pullup, pulldown, and pull-disable on select pins  
• Configurable high and low drive strength on selected pins  
• Configurable fast and slow slew rates on selected pins  
• Configurable passive filter on selected pins  
• Individual mux control field supporting analog or pin disabled, GPIO, and up to  
chip-specific digital functions  
• Pad configuration fields are functional in all digital pin muxing modes.  
The GPIO module has the following features:  
• Port Data Input register visible in all digital pin-multiplexing modes  
• Port Data Output register with corresponding set/clear/toggle registers  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
29  
NXP Semiconductors  
Memory map  
• Port Data Direction register  
• GPIO support single-cycle access via fast GPIO.  
3 Memory map  
This device contains various memories and memory-mapped peripherals which are  
located in a 4 GB memory space. For more details of the system memory and peripheral  
locations, see the Memory Map chapter in the Reference Manual.  
0x4000_0000  
Reserved  
0x4000_8000  
DMA controller  
0x4000_9000  
DMA controller transfer control descriptors  
0x4000_A000  
Reserved  
Flash memory controller (FMC)  
Flash memory  
DMA channel mutiplexer  
Reserved  
FlexCAN 0  
FlexCAN 1 (only for KS22)  
0x4001_F000  
0x4002_0000  
0x0000_0000  
0x4002_1000  
0x4002_2000  
0x4002_4000  
0x4002_5000  
0x4002_6000  
Flash  
0x0000_0000  
0x0800_0000  
0x1C00_0000  
Reserved  
Random Number Generator (RNGA)  
0x4002_9000  
0x4002_A000  
0x4002_B000  
0x4002_C000  
0x07FF_FFFF  
Code space  
Reserved  
note:  
take 256 KB flash memory as an example  
LPUART 0  
Reserved  
SPI 0  
0x4002_D000  
0x4002_E000  
0x4002_F000  
0x4003_0000  
0x4003_1000  
0x4003_2000  
0x4003_3000  
0x4003_6000  
0x4003_7000  
SPI 1  
Reserved  
I2S 0  
I2S 1  
Reserved  
CRC  
Reserved  
0x1C00_0000  
SRAM_L  
SRAM_U  
Data space  
Reserved *  
0x2000_0000  
Programmable delay block (PDB)  
Periodic interrupt timers (PIT)  
TPM 0  
0x2010_0000  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_B000  
0x4003_C000  
0x4003_D000  
TPM 1  
TPM 2  
ADC 0  
0x200F_FFFF  
note:  
0x2200_0000–0x23FF_FFFF: Aliased to SRAM_U bitband  
0x3000_0000–0x33FF_FFF: Program Flash and read only data  
Reserved  
Real-time clock (RTC)  
VBAT register file  
0x4003_E000  
0x4003_F000  
0x4004_0000  
0x4004_1000  
0x4004_2000  
0x4004_7000  
0x4000_0000  
0x4010_0000  
DAC 0  
Low-power timer (LPTMR)  
System register file  
Reserved  
SIM low-power logic  
System integration module (SIM)  
Port A multiplexing control  
Port B multiplexing control  
Port C multiplexing control  
Port D multiplexing control  
Port E multiplexing control  
Public  
peripherals  
0x4000_0000  
AIPS  
peripherals  
0x4007_FFFF  
0x4008_0000  
0x4004_8000  
0x4004_9000  
0x4004_A000  
Reserved  
0x400F_EFFF  
0x4004_B000  
0x4004_C000  
Reserved *  
note:  
0x400F_F000  
0x400F_FFFF  
0x4200_0000–0x42FF_FFFF  
: Aliased to peripheral bridge (AIPS-lite) bitband  
0x43FE_0000–0x43FF_FFFF  
GPIO  
0x4004_D000  
0x4004_E000  
0x4005_2000  
Reserved  
Software watchdog  
: Aliased to general purpose input/output(GPIO) bitband  
0xE000_0000  
0x4005_3000  
0x4005_F000  
0x4006_0000  
0x4006_1000  
0x4006_2000  
0x4006_4000  
0x4006_5000  
0x4006_6000  
0x4006_7000  
0x4006_8000  
0x4006_A000  
0x4006_B000  
0x4006_C000  
0x4006_D000  
0x4007_2000  
0x4007_3000  
0x4007_4000  
0x4007_C000  
Reserved  
FlexIO  
Reserved  
note:  
Private  
Peripheral  
Bus  
0xE000_0000–0xE000_0FFF: Instrumentation Trace Macrocell (ITM)  
0xE000_1000–0xE000_1FFF: Data Watchpoint and Trace (DWT)  
0xE000_2000–0xE000_2FFF: Flash Patch and Breakpoint (FPB)  
0xE000_3000–0xE000_DFFF: Reserved  
0xE000_E000–0xE000_EFFF: System Control Space (SCS) (for NVIC and FPU)  
0xE000_F000–0xE003_FFFF: Reserved  
0xE004_0000–0xE004_0FFF: Trace Port Interface Unit (TPIU)  
0xE004_1000–0xE004_1FFF: Reserved  
0xE004_2000–0xE004_2FFF: Reserved  
0xE004_3000–0xE004_3FFF: Reserved  
0xE004_4000–0xE007_FFFF: Reserved  
0xE008_0000–0xE008_0FFF: Miscellaneous Control Module (MCM)  
0xE008_1000–0xE008_1FFF: Reserved  
0xE008_2000–0xE00F_EFFF: Reserved  
External watchdog  
Reserved  
Multi-purpose Clock Generator (MCG)  
System oscillator (OSC)  
LPI2C 0  
(PPB) *  
LPI2C 1  
Reserved  
UART 0  
UART 1  
UART 2  
Reserved  
0xFFFF_FFFF  
USB Full Speed OTG Controller  
0xE00F_F000–0xE00F_FFFF: ROM Table - allows auto-detection of debug components  
0xE010_0000–0xFFFF_FFFF: Reserved  
CMP (with 6-bit DAC)  
Reserved  
Low-leakage wakeup unit (LLWU)  
Power management controller (PMC)  
System Mode controller (SMC)  
Reset Control Module (RCM)  
0x4007_D000  
0x4007_E000  
0x4007_F000  
0x4007_FFFF  
Figure 5. Memory map  
30  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Pinouts  
4 Pinouts  
4.1 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is  
responsible for selecting which ALT functionality is available on each pin.  
NOTE  
For KS20, only CAN0 exists. For KS22, there are two  
instances of CAN module (CAN0 and CAN1).  
100  
64  
48  
Pin Name  
Default  
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE6a  
ADC0_SE7a  
DISABLED  
DISABLED  
DISABLED  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
1
2
3
4
5
6
7
1
1
2
PTE0/  
CLKOUT32K  
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE6a  
ADC0_SE7a  
PTE0/  
CLKOUT32K  
SPI1_PCS1  
SPI1_SOUT  
SPI1_SCK  
SPI1_SIN  
UART1_TX  
UART1_RX  
LPI2C1_SDA  
LPI2C1_SCL  
RTC_  
CLKOUT  
2
PTE1/  
LLWU_P0  
PTE1/  
LLWU_P0  
SPI1_SIN  
3
PTE2/  
LLWU_P1  
PTE2/  
LLWU_P1  
UART1_  
CTS_b  
4
PTE3  
PTE3  
UART1_  
RTS_b  
SPI1_SOUT  
LPI2C1_SDA  
LPI2C1_SCL  
5
PTE4/  
LLWU_P2  
PTE4/  
LLWU_P2  
SPI1_PCS0  
SPI1_PCS2  
SPI1_PCS3  
LPUART0_  
TX  
6
PTE5  
PTE5  
LPUART0_  
RX  
PTE6  
PTE6  
LPUART0_  
CTS_b  
I2S0_MCLK  
USB_SOF_  
OUT  
8
3
4
7
VDD  
VDD  
VDD  
9
8
VSS  
VSS  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
5
9
USB0_DP  
USB0_DM  
USBVDD  
NC  
USB0_DP  
USB0_DM  
USBVDD  
NC  
USB0_DP  
USB0_DM  
USBVDD  
NC  
6
10  
11  
7
8
ADC0_DP1  
ADC0_DM1  
ADC0_DP2  
ADC0_DM2  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
ADC0_DP1  
ADC0_DM1  
ADC0_DP2  
ADC0_DM2  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
ADC0_DP1  
ADC0_DM1  
ADC0_DP2  
ADC0_DM2  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
9
10  
11  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
31  
NXP Semiconductors  
Pinouts  
100  
64  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
21  
22  
23  
24  
25  
26  
27  
12  
13  
14  
15  
16  
17  
18  
12  
12  
13  
13  
ADC0_DM3  
VDDA  
ADC0_DM3  
VDDA  
ADC0_DM3  
VDDA  
VREFH  
VREFL  
VREFH  
VREFL  
VREFH  
VREFL  
VSSA  
VSSA  
VSSA  
CMP0_IN5  
CMP0_IN5  
CMP0_IN5  
DAC0_OUT/  
ADC0_SE23  
DAC0_OUT/  
ADC0_SE23  
DAC0_OUT/  
ADC0_SE23  
28  
29  
30  
31  
32  
19  
20  
21  
14  
15  
16  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
XTAL32  
EXTAL32  
VBAT  
EXTAL32  
VBAT  
PTE24  
PTE25  
ADC0_SE17  
ADC0_SE18  
ADC0_SE17  
ADC0_SE18  
PTE24  
CAN1_TX  
CAN1_RX  
TPM0_CH0  
TPM0_CH1  
I2S1_TX_FS  
LPI2C0_SCL  
LPI2C0_SDA  
EWM_OUT_b  
EWM_IN  
PTE25  
I2S1_TX_  
BCLK  
33  
34  
35  
36  
22  
23  
24  
17  
18  
19  
PTE26/  
CLKOUT32K  
DISABLED  
PTE26/  
CLKOUT32K  
I2S1_TXD0  
RTC_  
CLKOUT  
USB_CLKIN  
PTA0  
PTA1  
PTA2  
JTAG_TCLK/  
SWD_CLK  
PTA0  
PTA1  
PTA2  
UART0_  
CTS_b  
TPM0_CH5  
EWM_IN  
JTAG_TCLK/  
SWD_CLK  
JTAG_TDI  
UART0_RX  
CMP0_OUT  
LPI2C1_  
HREQ  
TPM1_CH1  
TPM1_CH0  
JTAG_TDI  
JTAG_TDO/  
TRACE_  
SWO  
UART0_TX  
JTAG_TDO/  
TRACE_  
SWO  
37  
38  
39  
25  
26  
27  
20  
21  
PTA3  
JTAG_TMS/  
SWD_DIO  
PTA3  
UART0_  
RTS_b  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
EWM_OUT_b  
JTAG_TMS/  
SWD_DIO  
PTA4/  
LLWU_P3  
NMI_b  
PTA4/  
LLWU_P3  
I2S0_MCLK  
NMI_b  
PTA5  
DISABLED  
PTA5  
USB_CLKIN  
I2S0_TX_  
BCLK  
JTAG_TRST_  
b
40  
41  
42  
43  
28  
29  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTA12  
DISABLED  
DISABLED  
PTA12  
CAN0_TX  
CAN0_RX  
TPM1_CH0  
TPM1_CH1  
I2S0_TXD0  
PTA13/  
PTA13/  
I2S0_TX_FS  
LLWU_P4  
LLWU_P4  
44  
PTA14  
DISABLED  
PTA14  
SPI0_PCS0  
UART0_TX  
UART0_RX  
I2S0_RX_  
BCLK  
45  
46  
PTA15  
PTA16  
DISABLED  
DISABLED  
PTA15  
PTA16  
SPI0_SCK  
I2S0_RXD0  
SPI0_SOUT  
UART0_  
CTS_b  
I2S0_RX_FS  
47  
PTA17  
DISABLED  
PTA17  
SPI0_SIN  
UART0_  
RTS_b  
I2S0_MCLK  
48  
49  
50  
30  
31  
32  
22  
23  
24  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTA18  
EXTAL0  
EXTAL0  
PTA18  
TPM_CLKIN0  
32  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Pinouts  
100  
64  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
51  
33  
25  
PTA19  
XTAL0  
XTAL0  
PTA19  
TPM_CLKIN1  
LPTMR0_  
ALT1  
52  
53  
34  
35  
26  
27  
RESET_b  
RESET_b  
RESET_b  
PTB0/  
LLWU_P5  
ADC0_SE8  
ADC0_SE8  
PTB0/  
LLWU_P5  
LPI2C0_SCL  
TPM1_CH0  
TPM1_CH1  
FXIO0_D4  
UART0_RX  
54  
55  
36  
37  
28  
29  
PTB1  
PTB2  
ADC0_SE9  
ADC0_SE9  
PTB1  
PTB2  
LPI2C0_SDA  
LPI2C0_SCL  
EWM_IN  
FXIO0_D5  
FXIO0_D6  
UART0_TX  
CAN1_RX  
ADC0_SE12  
ADC0_SE12  
UART0_  
RTS_b  
56  
57  
58  
59  
38  
30  
PTB3  
ADC0_SE13  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE13  
PTB3  
LPI2C0_SDA  
SPI1_PCS1  
SPI1_PCS0  
SPI1_SCK  
UART0_  
CTS_b  
FXIO0_D7  
CAN1_TX  
PTB9  
PTB9  
LPUART0_  
CTS_b  
PTB10  
PTB11  
PTB10  
PTB11  
LPUART0_  
RX  
I2S1_TX_  
BCLK  
LPUART0_  
TX  
I2S1_TX_FS  
60  
61  
62  
39  
31  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
PTB16  
DISABLED  
PTB16  
SPI1_SOUT  
UART0_RX  
TPM_CLKIN0  
TPM_CLKIN1  
EWM_IN  
I2S1_TXD0  
(Note:  
100LQFP  
only)  
63  
64  
40  
41  
PTB17  
PTB18  
DISABLED  
DISABLED  
PTB17  
PTB18  
SPI1_SIN  
CAN0_TX  
UART0_TX  
TPM2_CH0  
EWM_OUT_b FXIO0_D0  
FXIO0_D1  
32  
I2S0_TX_  
BCLK  
65  
66  
67  
68  
69  
70  
42  
43  
33  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE14  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
CAN0_RX  
TPM2_CH1  
I2S0_TX_FS  
FXIO0_D2  
CMP0_OUT  
FXIO0_D5  
FXIO0_D6  
FXIO0_D7  
FXIO0_D3  
FXIO0_D4  
SPI0_PCS5  
ADC0_SE14  
ADC0_SE15  
ADC0_SE4b  
SPI0_PCS4  
SPI0_PCS3  
SPI0_PCS2  
SPI0_PCS1  
PDB0_  
EXTRG  
USB_SOF_  
OUT  
SPI0_PCS0  
71  
72  
73  
44  
45  
46  
34  
35  
36  
PTC1/  
LLWU_P6  
ADC0_SE15  
ADC0_SE4b  
DISABLED  
PTC1/  
LLWU_P6  
UART1_  
RTS_b  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
I2S0_TXD0  
LPUART0_  
RTS_b  
PTC2  
PTC2  
UART1_  
CTS_b  
I2S0_TX_FS  
LPUART0_  
CTS_b  
PTC3/  
LLWU_P7  
PTC3/  
LLWU_P7  
UART1_RX  
CLKOUT  
I2S0_TX_  
BCLK  
LPUART0_  
RX  
74  
75  
76  
47  
48  
49  
37  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
PTC4/  
LLWU_P8  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
UART1_TX  
TPM0_CH3  
I2S0_RXD0  
LPI2C0_  
HREQ  
LPUART0_  
TX  
77  
50  
38  
PTC5/  
LLWU_P9  
DISABLED  
PTC5/  
LLWU_P9  
LPTMR0_  
ALT2  
CMP0_OUT  
TPM0_CH2  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
33  
NXP Semiconductors  
Pinouts  
100  
64  
48  
Pin Name  
Default  
CMP0_IN0  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
ALT0  
CMP0_IN0  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
ALT1  
ALT2  
SPI0_SOUT  
SPI0_SIN  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
78  
79  
80  
81  
51  
52  
53  
54  
39  
40  
PTC6/  
LLWU_P10  
PTC6/  
LLWU_P10  
PDB0_  
EXTRG  
I2S0_RX_  
BCLK  
I2S0_MCLK  
LPI2C0_SCL  
LPI2C0_SDA  
I2S1_RXD0  
PTC7  
PTC7  
USB_SOF_  
OUT  
I2S0_RX_FS  
PTC8  
PTC9  
PTC10  
PTC8  
PTC9  
PTC10  
LPI2C0_  
SCLS  
I2S0_MCLK  
FXIO0_D0  
FXIO0_D1  
LPI2C0_  
SDAS  
I2S0_RX_  
BCLK  
I2S1_RX_  
BCLK  
82  
83  
55  
56  
DISABLED  
DISABLED  
LPI2C1_SCL  
LPI2C1_SDA  
I2S0_RX_FS  
FXIO0_D2  
FXIO0_D3  
I2S1_RX_FS  
I2S1_MCLK  
PTC11/  
PTC11/  
LLWU_P11  
LLWU_P11  
84  
85  
86  
87  
PTC12  
PTC13  
PTC14  
PTC15  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTC12  
PTC13  
PTC14  
PTC15  
LPI2C1_  
SCLS  
TPM_CLKIN0  
TPM_CLKIN1  
FXIO0_D0  
FXIO0_D1  
FXIO0_D2  
FXIO0_D3  
LPI2C1_  
SDAS  
LPUART0_  
RTS_b  
LPUART0_  
CTS_b  
88  
89  
90  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
PTC16  
DISABLED  
PTC16  
PTC17  
PTC18  
CAN1_RX  
CAN1_TX  
LPUART0_  
RX  
FXIO0_D4  
FXIO0_D5  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
57  
58  
59  
60  
61  
62  
63  
64  
41  
42  
43  
44  
45  
46  
47  
48  
PTC17  
PTC18  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE5b  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE6b  
ADC0_SE7b  
DISABLED  
LPUART0_  
TX  
LPUART0_  
RTS_b  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART2_  
RTS_b  
LPUART0_  
RTS_b  
FXIO0_D6  
PTD1  
ADC0_SE5b  
PTD1  
UART2_  
CTS_b  
LPUART0_  
CTS_b  
FXIO0_D7  
PTD2/  
LLWU_P13  
PTD2/  
LLWU_P13  
UART2_RX  
LPUART0_  
RX  
LPI2C0_SCL  
LPI2C0_SDA  
SPI1_PCS0  
PTD3  
PTD3  
UART2_TX  
LPUART0_  
TX  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
SPI0_PCS1  
SPI0_PCS2  
SPI0_PCS3  
UART0_  
RTS_b  
TPM0_CH4  
TPM0_CH5  
EWM_IN  
PTD5  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
UART0_  
CTS_b  
EWM_OUT_b SPI1_SCK  
SPI1_SOUT  
PTD6/  
LLWU_P15  
PTD6/  
LLWU_P15  
UART0_RX  
PTD7  
PTD7  
UART0_TX  
SPI1_SIN  
34  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Pinouts  
4.2 Pin properties  
The following table lists the pin properties.  
100LQF 64LQFP 48QFN  
P
Pin  
Driver  
Default Pull-up/  
Slew  
Rate  
after  
POR  
Passive  
Pin  
Filter  
after  
Open  
Drain  
Pin  
Interrupt  
Name Strength Status  
pull-  
down  
Setting  
after  
after  
POR  
POR  
POR  
1
2
3
1
2
1
2
3
PTE0/  
CLKOUT  
32K  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
-
-
-
FS  
N
N
N
N
Y
PTE1/  
LLWU_P  
0
FS  
FS  
N
N
Y
Y
PTE2/  
LLWU_P  
1
4
5
4
5
PTE3  
ND  
ND  
Hi-Z  
Hi-Z  
-
-
FS  
FS  
N
N
N
N
Y
Y
PTE4/  
LLWU_P  
2
6
6
PTE5  
PTE6  
VDD  
VSS  
ND  
Hi-Z  
-
-
-
-
-
-
FS  
N
N
-
N
N
-
Y
Y
-
7
ND  
Hi-Z  
FS  
8
3
4
4
5
7
-
-
-
-
-
-
-
-
-
9
8
-
-
-
-
9
9
VSS  
-
-
-
-
10  
10  
USB0_D  
P
Hi-Z  
-
-
-
11  
6
7
11  
USB0_D  
M
-
Hi-Z  
-
-
-
-
-
12  
13  
14  
USBVDD -  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NC  
-
-
-
8
ADC0_D  
P1  
Hi-Z  
15  
16  
17  
18  
19  
ADC0_D  
M1  
-
-
-
-
-
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ADC0_D  
P2  
ADC0_D  
M2  
9
ADC0_D  
P0  
10  
ADC0_D  
M0  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
35  
NXP Semiconductors  
Pinouts  
100LQF 64LQFP 48QFN  
P
Pin  
Driver  
Default Pull-up/  
Slew  
Rate  
after  
POR  
Passive  
Pin  
Filter  
after  
Open  
Drain  
Pin  
Interrupt  
Name Strength Status  
pull-  
down  
Setting  
after  
after  
POR  
POR  
POR  
20  
21  
11  
12  
ADC0_D  
P3  
-
-
Hi-Z  
Hi-Z  
-
-
-
-
-
-
-
-
-
ADC0_D  
M3  
-
22  
23  
24  
25  
26  
13  
14  
15  
16  
17  
12  
12  
13  
13  
VDDA  
VREFH  
VREFL  
VSSA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
CMP0_IN -  
5
27  
18  
DAC0_O  
UT/  
-
Hi-Z  
-
-
-
-
-
ADC0_S  
E23  
28  
29  
30  
31  
32  
33  
19  
20  
21  
14  
15  
16  
XTAL32  
-
Hi-Z  
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EXTAL32 -  
-
-
VBAT  
-
-
-
PTE24  
PTE25  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
N
N
N
N
N
N
Y
Y
Y
PTE26/  
CLKOUT  
32K  
34  
35  
36  
37  
38  
22  
23  
24  
25  
26  
17  
18  
19  
20  
21  
PTA0  
PTA1  
PTA2  
PTA3  
ND  
ND  
ND  
ND  
ND  
L
PD  
PU  
PU  
PU  
PU  
FS  
FS  
FS  
FS  
FS  
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
H
H
H
H
PTA4/  
LLWU_P  
3
39  
40  
41  
42  
43  
27  
PTA5  
VDD  
ND  
-
Hi-Z  
-
-
-
-
-
-
FS  
-
N
-
N
-
Y
-
VSS  
-
-
-
-
-
-
28  
29  
PTA12  
ND  
ND  
Hi-Z  
Hi-Z  
FS  
FS  
N
N
N
N
Y
Y
PTA13/  
LLWU_P  
4
44  
45  
46  
PTA14  
PTA15  
PTA16  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
-
-
-
FS  
FS  
FS  
N
N
N
N
N
N
Y
Y
Y
Table continues on the next page...  
36  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Pinouts  
100LQF 64LQFP 48QFN  
P
Pin  
Driver  
Default Pull-up/  
Slew  
Rate  
after  
POR  
Passive  
Pin  
Filter  
after  
Open  
Drain  
Pin  
Interrupt  
Name Strength Status  
pull-  
down  
Setting  
after  
after  
POR  
POR  
POR  
47  
PTA17  
VDD  
ND  
-
Hi-Z  
-
-
-
-
-
-
FS  
N
N
-
Y
48  
49  
50  
51  
52  
30  
31  
32  
33  
34  
22  
23  
24  
25  
26  
-
-
-
VSS  
-
-
-
-
-
-
PTA18  
PTA19  
ND  
ND  
-
Hi-Z  
Hi-Z  
H
FS  
FS  
-
N
N
Y
N
N
N
Y
Y
-
RESET_  
b
PU  
53  
35  
27  
PTB0/  
LLWU_P  
5
HD  
Hi-Z  
-
FS  
N
N
Y
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
36  
37  
38  
28  
29  
30  
PTB1  
HD  
ND  
ND  
ND  
ND  
ND  
-
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FS  
FS  
FS  
FS  
FS  
FS  
-
N
N
N
N
N
N
-
N
N
N
N
N
N
-
Y
Y
Y
Y
Y
Y
-
PTB2  
PTB3  
PTB9  
PTB10  
PTB11  
VSS  
VDD  
-
-
-
-
-
-
39  
40  
41  
42  
31  
PTB16  
PTB17  
PTB18  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
32  
33  
43  
44  
34  
PTC1/  
LLWU_P  
6
72  
73  
45  
46  
35  
36  
PTC2  
ND  
HD  
Hi-Z  
Hi-Z  
-
-
FS  
FS  
N
N
N
N
Y
Y
PTC3/  
LLWU_P  
7
74  
75  
47  
48  
VSS  
VDD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
37  
NXP Semiconductors  
Pinouts  
100LQF 64LQFP 48QFN  
P
Pin  
Driver  
Default Pull-up/  
Slew  
Rate  
after  
POR  
Passive  
Pin  
Filter  
after  
Open  
Drain  
Pin  
Interrupt  
Name Strength Status  
pull-  
down  
Setting  
after  
after  
POR  
POR  
POR  
76  
77  
78  
49  
50  
51  
37  
38  
39  
40  
PTC4/  
LLWU_P  
8
HD  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
-
-
-
FS  
N
N
N
N
Y
PTC5/  
LLWU_P  
9
FS  
FS  
N
N
Y
Y
PTC6/  
LLWU_P  
10  
79  
80  
81  
82  
83  
52  
53  
54  
55  
56  
PTC7  
PTC8  
PTC9  
PTC10  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
-
-
-
-
-
FS  
FS  
FS  
FS  
FS  
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
PTC11/  
LLWU_P  
11  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
PTC12  
PTC13  
PTC14  
PTC15  
VSS  
ND  
ND  
ND  
ND  
-
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
-
-
-
-
-
-
-
-
-
-
-
FS  
FS  
FS  
FS  
-
N
N
N
N
-
N
N
N
N
-
Y
Y
Y
Y
-
VDD  
-
-
-
-
-
-
PTC16  
PTC17  
PTC18  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
N
N
N
N
N
N
N
N
Y
Y
Y
Y
57  
41  
PTD0/  
LLWU_P  
12  
94  
95  
58  
59  
42  
43  
PTD1  
ND  
ND  
Hi-Z  
Hi-Z  
-
-
FS  
FS  
N
N
N
N
Y
Y
PTD2/  
LLWU_P  
13  
96  
97  
60  
61  
44  
45  
PTD3  
ND  
HD  
Hi-Z  
Hi-Z  
-
-
FS  
FS  
N
N
N
N
Y
Y
PTD4/  
LLWU_P  
14  
98  
99  
62  
63  
46  
47  
PTD5  
HD  
HD  
Hi-Z  
Hi-Z  
-
-
FS  
FS  
N
N
N
N
Y
Y
PTD6/  
LLWU_P  
15  
Table continues on the next page...  
38  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Pinouts  
100LQF 64LQFP 48QFN  
P
Pin  
Driver  
Default Pull-up/  
Slew  
Rate  
after  
POR  
Passive  
Pin  
Filter  
after  
Open  
Drain  
Pin  
Interrupt  
Name Strength Status  
pull-  
down  
Setting  
after  
after  
POR  
POR  
POR  
100  
64  
48  
PTD7  
HD  
Hi-Z  
-
FS  
N
N
Y
Properties  
Abbreviation Descriptions  
Driver strength  
ND  
HD  
Hi-Z  
H
Normal drive  
High drive  
High impendence  
High level  
Low level  
Pull-up  
Default status after POR  
L
Pull-up/pull-down setting  
after POR  
PU  
PD  
FS  
SS  
N
Pull-down  
Fast slew rate  
Slow slew rate  
Disabled  
Slew rate after POR  
Passive Pin Filter after  
POR  
Y
Enabled  
Open drain  
N
Disabled1  
Y
Enabled  
Pin interrupt  
Y
Yes  
1. When UART or LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open  
drain configurable.  
4.3 Module Signal Description Tables  
The following sections correlate the chip-level signal name with the signal name used  
in the module's chapter. They also briefly describe the signal function and direction.  
4.3.1 Core Modules  
Table 9. JTAG Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
JTAG_TMS  
JTAG_TMS/  
SWD_DIO  
JTAG Test Mode Selection  
I
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
39  
NXP Semiconductors  
Pinouts  
Table 9. JTAG Signal Descriptions  
(continued)  
Chip signal name  
Module signal  
name  
Description  
I/O  
JTAG_TCLK  
JTAG_TCLK/  
SWD_CLK  
JTAG Test Clock  
I
JTAG_TDI  
JTAG_TDI  
JTAG Test Data Input  
JTAG Test Data Output  
I
JTAG_TDO  
JTAG_TDO/  
O
TRACE_SWO  
JTAG_TRST  
JTAG_TRST_b  
JTAG Reset  
I
Table 10. SWD Signal Descriptions  
Chip signal name  
SWD_DIO  
Module signal  
Description  
I/O  
name  
JTAG_TMS/  
SWD_DIO  
Serial Wire Data  
Serial Wire Clock  
I
I
SWD_CLK  
JTAG_TCLK/  
SWD_CLK  
Table 11. TPIU Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TRACE_SWO  
JTAG_TDO/  
TRACE_SWO  
Trace output data from the ARM CoreSight debug block over a  
single pin  
O
4.3.2 System Modules  
Table 12. EWM Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EWM_IN  
EWM_in  
EWM input for safety status of external safety circuits. The polarity  
of EWM_in is programmable using the EWM_CTRL[ASSIN] bit.  
The default polarity is active-low.  
I
EWM_OUT  
EWM_out  
EWM reset out signal  
O
40  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Pinouts  
4.3.3 Clock Modules  
Table 13. OSC Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
EXTAL0  
XTAL0  
EXTAL  
XTAL  
External clock/Oscillator input  
Oscillator output  
I
O
Table 14. RTC OSC Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EXTAL32  
XTAL32  
EXTAL32  
XTAL32  
32.768 kHz oscillator input  
32.768 kHz oscillator output  
I
O
4.3.4 Analog  
Table 15. ADC 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
ADC0_DP[3:0]  
ADC0_DM[3:0]  
ADC0_SEn  
VREFH  
DADP3–DADP0  
Differential Analog Channel Inputs  
I
I
I
I
I
I
I
DADM3–DADM0 Differential Analog Channel Inputs  
ADn  
VREFSH  
VREFSL  
VDDA  
Single-Ended Analog Channel Inputs  
Voltage Reference Select High  
Voltage Reference Select Low  
Analog Power Supply  
VREFL  
VDDA  
VSSA  
VSSA  
Analog Ground  
Table 16. CMP 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
IN[5:0]  
CMPO  
CMP0_IN[5:0]  
CMP0_OUT  
Analog voltage inputs  
Comparator output  
I
O
Table 17. DAC 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
DAC0_OUT  
DAC output  
O
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
41  
NXP Semiconductors  
Pinouts  
4.3.5 Timer Modules  
Table 18. PDB 0 Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
PDB0_EXTRG  
EXTRG  
External Trigger Input Source  
I
If the PDB is enabled and external trigger input source is selected,  
a positive edge on the EXTRG signal resets and starts the  
counter.  
Table 19. LPTMR 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPTMR0_ALT[2:1]  
LPTMR0_ALTn  
Pulse Counter Input pin  
I
Table 20. RTC Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
VBAT  
Backup battery supply for RTC and VBAT register file  
1 Hz square-wave output or OSCERCLK  
I
RTC_CLKOUT  
RTC_CLKOUT  
O
Table 21. TPM 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the counter  
clock.  
I
TPM0_CH[5:0]  
TPM_CHn  
TPM channel (n = 5 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
Table 22. TPM 1 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the counter  
clock.  
I
Table continues on the next page...  
42  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Pinouts  
Table 22. TPM 1 Signal Descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
I/O  
TPM1_CH[1:0]  
TPM_CHn  
TPM channel (n = 5 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
Table 23. TPM 2 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the  
counter clock.  
I
TPM2_CH[1:0]  
TPM_CHn  
TPM channel (n = 5 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
4.3.6 Communication Interfaces  
Table 24. USB FS OTG Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
usb_dm  
usb_dp  
USB0_DM  
USB0_DP  
USB D- analog data signal on the USB bus.  
USB D+ analog data signal on the USB bus.  
Alternate USB clock input  
I/O  
I/O  
I
USB_CLKIN  
USB_SOF_OUT  
USB start of frame signal. Can be used to make the USB start of  
frame available for external synchronization.  
O
Table 25. CAN 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
CAN Rx  
CAN Tx  
CAN0_RX  
CAN0_TX  
CAN Receive Pin  
CAN Transmit Pin  
Input  
Output  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
43  
NXP Semiconductors  
Pinouts  
Table 26. CAN 1 (for KS22 only) Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
CAN1_RX  
CAN1_TX  
CAN Rx  
CAN Tx  
CAN Receive Pin  
CAN Transmit Pin  
Input  
Output  
Table 27. SPI 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
PCS0/SS  
PCS[1:3]  
PCS4  
SPI0_PCS0  
SPI0_PCS[3:1]  
SPI0_PCS4  
SPI0_PCS5  
SPI0_SIN  
Peripheral Chip Select 0 (O)  
Peripheral Chip Selects 1–3  
Peripheral Chip Select 4  
Peripheral Chip Select 5 /Peripheral Chip Select Strobe  
Serial Data In  
I/O  
O
O
PCS5/ PCSS  
SIN  
O
I
SPI0_SOUT  
SPI0_SCK  
SOUT  
Serial Data Out  
O
SCK  
Serial Clock (O)  
I/O  
Table 28. SPI 1 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
PCS0/SS  
PCS[1:3]  
SIN  
SPI1_PCS0  
SPI1_PCS[3:1]  
SPI1_SIN  
Peripheral Chip Select 0 (O)  
Peripheral Chip Selects 1–3  
Serial Data In  
I/O  
O
I
SPI1_SOUT  
SPI1_SCK  
SOUT  
SCK  
Serial Data Out  
O
Serial Clock (O)  
I/O  
Table 29. LPI2C 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPI2C0_SCL  
LPI2C0_SDA  
LPI2C0_HREQ  
SCL  
LPI2C clock line.  
LPI2C data line.  
I/O  
I/O  
I
SDA  
HREQ  
Host request, can initiate an LPI2C master transfer if asserted and  
the I2C bus is idle.  
LPI2C0_SCLS  
LPI2C0_SDAS  
SCLS  
SDAS  
Secondary I2C clock line. If LPI2C master/slave are configured to  
use separate pins, this the LPI2C slave SCL pin.  
I/O  
I/O  
Secondary I2C data line. If LPI2C master/slave are configured to  
use separate pins, this the LPI2C slave SDA pin.  
44  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Pinouts  
I/O  
Table 30. LPI2C 1 Signal Descriptions  
Chip signal name  
Module signal  
Description  
name  
LPI2C1_SCL  
LPI2C1_SDA  
LPI2C1_HREQ  
SCL  
LPI2C clock line.  
LPI2C data line.  
I/O  
I/O  
I
SDA  
HREQ  
Host request, can initiate an LPI2C master transfer if asserted  
and the I2C bus is idle.  
LPI2C1_SCLS  
LPI2C1_SDAS  
SCLS  
SDAS  
Secondary I2C clock line. If LPI2C master/slave are configured to  
use separate pins, this the LPI2C slave SCL pin.  
I/O  
I/O  
Secondary I2C data line. If LPI2C master/slave are configured to  
use separate pins, this the LPI2C slave SDA pin.  
Table 31. LPUART Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUART0_TX  
LPUART_TX  
Transmit data. This pin is normally an output, but is an input  
(tristated) in single wire mode whenever the transmitter is  
disabled or transmit direction is configured for receive data.  
O/I  
LPUART0_RX  
LPUART0_CTS  
LPUART0_CTS  
LPUART_RX  
LPUART_CTS  
LPUART_RTS  
Receive data  
Clear to send  
Request to send  
I
I
I
Table 32. UART 0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
CTS  
RTS  
TXD  
RXD  
UART0_CTS  
UART0_RTS  
UART0_TX  
UART0_RX  
Clear to send  
Request to send  
Transmit data  
Receive data  
I
O
O
I
Table 33. UART 1 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
CTS  
RTS  
TXD  
RXD  
UART1_CTS  
UART1_RTS  
UART1_TX  
UART1_RX  
Clear to send  
Request to send  
Transmit data  
Receive data  
I
O
O
I
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
45  
NXP Semiconductors  
Pinouts  
Table 34. UART 2 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
CTS  
RTS  
TXD  
RXD  
UART2_CTS  
UART2_RTS  
UART2_TX  
UART2_RX  
Clear to send  
Request to send  
Transmit data  
Receive data  
I
O
O
I
Table 35. I2S0 Signal Descriptions  
Chip signal name  
I2S0_MCLK  
Module signal  
name  
Description  
I/O  
I/O  
I/O  
I/O  
SAI_MCLK  
Audio Master Clock. The master clock is an input when externally  
generated and an output when internally generated.  
I2S0_RX_BCLK  
I2S0_RX_FS  
SAI_RX_BCLK  
SAI_RX_SYNC  
Receive Bit Clock. The bit clock is an input when externally  
generated and an output when internally generated.  
Receive Frame Sync. The frame sync is an input sampled  
synchronously by the bit clock when externally generated and an  
output generated synchronously by the bit clock when internally  
generated.  
I2S0_RXD  
I2S0_TX_BCLK  
I2S0_TX_FS  
SAI_RX_DATA  
SAI_TX_BCLK  
SAI_TX_SYNC  
Receive Data. The receive data is sampled synchronously by the  
bit clock.  
I
Transmit Bit Clock. The bit clock is an input when externally  
generated and an output when internally generated.  
I/O  
I/O  
Transmit Frame Sync. The frame sync is an input sampled  
synchronously by the bit clock when externally generated and an  
output generated synchronously by the bit clock when internally  
generated.  
I2S0_TXD  
SAI_TX_DATA  
Transmit Data. The transmit data is generated synchronously by  
the bit clock and is tristated whenever not transmitting a word.  
O
Table 36. I2S1 Signal Descriptions  
Chip signal name  
I2S1_MCLK  
Module signal  
Description  
I/O  
I/O  
I/O  
I/O  
name  
SAI_MCLK  
Audio Master Clock. The master clock is an input when externally  
generated and an output when internally generated.  
I2S1_RX_BCLK  
I2S1_RX_FS  
SAI_RX_BCLK  
SAI_RX_SYNC  
Receive Bit Clock. The bit clock is an input when externally  
generated and an output when internally generated.  
Receive Frame Sync. The frame sync is an input sampled  
synchronously by the bit clock when externally generated and an  
output generated synchronously by the bit clock when internally  
generated.  
I2S1_RXD  
SAI_RX_DATA  
Receive Data. The receive data is sampled synchronously by the  
bit clock.  
I
Table continues on the next page...  
46  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Pinouts  
Table 36. I2S1 Signal Descriptions (continued)  
Chip signal name  
I2S1_TX_BCLK  
I2S1_TX_FS  
Module signal  
name  
Description  
I/O  
I/O  
I/O  
SAI_TX_BCLK  
Transmit Bit Clock. The bit clock is an input when externally  
generated and an output when internally generated.  
SAI_TX_SYNC  
Transmit Frame Sync. The frame sync is an input sampled  
synchronously by the bit clock when externally generated and an  
output generated synchronously by the bit clock when internally  
generated.  
I2S1_TXD  
SAI_TX_DATA  
Transmit Data. The transmit data is generated synchronously by  
the bit clock and is tristated whenever not transmitting a word.  
O
Table 37. FlexIO Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
FXIO0_Dn  
FXIO_Dn (n=0...7) Bidirectional FlexIO Shifter and Timer pin inputs/outputs  
I/O  
4.3.7 Human-Machine Interfaces (HMI)  
Table 38. GPIO Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
PTA[31:0]1  
PTB[31:0]1  
PTC[31:0]1  
PTD[31:0]1  
PTE[31:0]1  
PORTA31–PORTA0 General-purpose input/output  
PORTB31–PORTB0 General-purpose input/output  
PORTC31–PORTC0 General-purpose input/output  
PORTD31–PORTD0 General-purpose input/output  
PORTE31–PORTE0 General-purpose input/output  
I/O  
I/O  
I/O  
I/O  
I/O  
1. The available GPIO pins depends on the specific package. See the signal multiplexing section for which exact GPIO  
signals are available.  
4.4 Pinouts  
The following figure shows the pinout diagram for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see the previous "signal multiplexing and pin  
assignments" section.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
47  
NXP Semiconductors  
Pinouts  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PTE0/CLKOUT32K  
VDD  
2
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
5
PTC1/LLWU_P6  
PTC0  
PTE4/LLWU_P2  
PTE5  
6
7
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
VDD  
PTE6  
8
VDD  
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
USB0_DP  
USB0_DM  
USBVDD  
NC  
ADC0_DP1  
ADC0_DM1  
ADC0_DP2  
ADC0_DM2  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
ADC0_DM3  
VDDA  
VSS  
PTB11  
PTB10  
PTB9  
PTB3  
PTB2  
PTB1  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFH  
VREFL  
VSSA  
Figure 6. 100 LQFP Pinout Diagram  
48  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Pinouts  
PTE0/CLKOUT32K  
PTE1/LLWU_P0  
VDD  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
VSS  
3
PTC3/LLWU_P7  
PTC2  
VSS  
4
USB0_DP  
USB0_DM  
USBVDD  
ADC0_DP1  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
ADC0_DM3  
VDDA  
5
PTC1/LLWU_P6  
PTC0  
6
7
PTB19  
8
PTB18  
9
PTB17  
10  
11  
12  
13  
14  
15  
16  
PTB16  
PTB3  
PTB2  
PTB1  
VREFH  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFL  
VSSA  
Figure 7. 64 LQFP Pinout Diagram  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
49  
NXP Semiconductors  
Pinouts  
PTC3/LLWU_P7  
PTC2  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTE0/CLKOUT32K  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
1
2
PTC1/LLWU_P6  
PTB19  
3
4
PTB18  
PTE4/LLWU_P2  
PTE5  
5
PTB16  
6
VDD  
PTB3  
7
VSS  
PTB2  
8
USB0_DP  
USB0_DM  
USBVDD  
PTB1  
9
PTB0/LLWU_P5  
RESET_b  
PTA19  
10  
11  
12  
VDDA VREFH  
Figure 8. 48 QFN Pinout Diagram  
4.5 Package dimensions  
The following figures show the dimensions of the package options for the devices  
supported by this document.  
50  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Pinouts  
Figure 9. 100-pin LQFP package dimensions 1  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
51  
NXP Semiconductors  
Pinouts  
Figure 10. 100-pin LQFP package dimensions 2  
52  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Pinouts  
Figure 11. 64-pin LQFP package dimensions 1  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
53  
NXP Semiconductors  
Pinouts  
Figure 12. 64-pin LQFP package dimensions 2  
54  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Pinouts  
Figure 13. 48-pin QFN package dimension 1  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
55  
NXP Semiconductors  
Electrical characteristics  
45°  
0.25  
(0.05)  
0.95  
1.13  
DETAIL F  
// 0.1 C  
48X  
0.65  
0.50  
0.08 C  
4
0.05  
0.00  
(0.2)  
C
SEATING PLANE  
(0.5)  
DETAIL G  
VIEW ROTATED 90℃W  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
3. THIS IS A NON-JEDEC REGISTERED PACKAGE.  
4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.  
5. MIN. METAL GAP SHOULD BE 0.2 MM.  
Figure 14. 48-pin QFN package dimension 2  
5 Electrical characteristics  
5.1 Terminology and guidelines  
56  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
5.1.1 Definitions  
Key terms are defined in the following table:  
Term  
Definition  
Rating  
A minimum or maximum value of a technical characteristic that, if exceeded, may cause  
permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic  
begins to exceed one of its operating ratings.  
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during  
operation to avoid incorrect operation and possibly decreasing the useful life of the chip  
Operating behavior  
A specified value or range of values for a technical characteristic that are guaranteed during  
operation if you meet the operating requirements and any other specified conditions  
Typical value  
A specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Is representative of that characteristic during operation when you meet the typical-value  
conditions or other specified conditions  
NOTE: Typical values are provided as design guidelines and are neither tested nor  
guaranteed.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
57  
NXP Semiconductors  
Electrical characteristics  
5.1.2 Examples  
Operating rating:  
EXAMPLE  
EXAMPLE  
Operating requirement:  
Operating behavior that includes a typical value:  
EXAMPLE  
5.1.3 Typical-value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
Supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
58  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
5.1.4 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
5.1.5 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
5.2 Ratings  
5.2.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
59  
NXP Semiconductors  
Electrical characteristics  
5.2.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.2.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105°C  
-100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
5.2.4 Voltage and current operating ratings  
Table 39. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
VUSB_DP  
VUSB_DM  
VBAT  
Analog supply voltage  
USB_DP input voltage  
USB_DM input voltage  
RTC battery supply voltage  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
V
V
V
V
–0.3  
3.63  
–0.3  
3.8  
5.3 General  
60  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
5.3.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 15. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
5.3.2 Nonswitching electrical specifications  
5.3.2.1 Voltage and current operating requirements  
Table 40. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
Max.  
3.6  
3.6  
0.1  
0.1  
3.6  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
1.71  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
–0.1  
V
–0.1  
V
VBAT  
RTC battery supply voltage  
1.71  
V
USBVDD USB Transceiver supply voltage  
3.0  
V
1
VIH  
Input high voltage  
0.7 × VDD  
0.75 × VDD  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
V
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
61  
NXP Semiconductors  
Electrical characteristics  
Table 40. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Notes  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
Analog and I/O pin DC injection current — single pin  
• VIN < VSS-0.3V (Negative current injection)  
2
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
V
3
VDD voltage required to retain RAM  
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT  
1. USB nominal operating voltage is 3.3 V.  
2. All analog and I/O pins are internally clamped to VSS through ESD protection diodes. If VIN is less than VIO_MIN or greater  
than VIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as  
R=(VIO_MIN-VIN)/|IICIO|.  
3. Open drain outputs must be pulled to VDD.  
5.3.2.2 HVD, LVD and POR operating requirements  
Table 41. VDD supply HVD, LVD and POR operating requirements  
Symbol Description  
Min.  
Typ.  
3.72  
3.46  
1.1  
Max.  
Unit  
V
Notes  
VHVDH  
VHVDL  
VPOR  
High Voltage Detect (High Trip Point)  
High Voltage Detect (Low Trip Point)  
Falling VDD POR detect voltage  
V
0.8  
2.48  
1.5  
2.64  
V
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.56  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
1
Table continues on the next page...  
62  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
Table 41. VDD supply HVD, LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
• Level 1 falling (LVWV=00)  
1.74  
1.80  
1.86  
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
1.84  
1.94  
2.04  
1.90  
2.00  
2.10  
1.96  
2.06  
2.16  
V
V
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising threshold is the sum of falling threshold and hysteresis voltage  
Table 42. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
5.3.2.3 Voltage and current operating behaviors  
Table 43. Voltage and current operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VOH Output high voltage — Normal drive pad except  
RESET_B  
2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA  
1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA  
VDD – 0.5  
VDD – 0.5  
V
V
1
VOH  
Output high voltage — High drive pad except  
RESET_B  
2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA  
1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA  
Output high current total for all ports  
VDD – 0.5  
VDD – 0.5  
V
V
1
IOHT  
VOL  
100  
mA  
Output low voltage — Normal drive pad except  
RESET_B  
2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
0.5  
0.5  
V
V
1
1
VOL  
Output low voltage — High drive pad except  
RESET_B  
2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
Output low voltage — RESET_B  
2.7 V ≤ VDD ≤ 3.6 V, IOL = 3 mA  
0.5  
0.5  
V
V
VOL  
0.5  
V
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
63  
NXP Semiconductors  
Electrical characteristics  
Table 43. Voltage and current operating behaviors (continued)  
Symbol Description  
1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA  
Min.  
Typ.  
Max.  
0.5  
Unit  
V
Notes  
IOLT  
IIN  
Output low current total for all ports  
100  
mA  
Input leakage current (per pin) for full  
temperature range  
All pins other than high drive port pins  
High drive port pins  
0.002  
0.004  
0.5  
0.5  
1.0  
μA  
μA  
μA  
1, 2  
2
IIN  
Input leakage current (total all pins) for full  
temperature range  
RPU  
RPD  
Internal pullup resistors  
20  
20  
50  
50  
kΩ  
kΩ  
3
4
Internal pulldown resistors  
1. PTB0, PTB1, PTD4, PTD5, PTD6, PTD7, PTC3, and PTC4 I/O have both high drive and normal drive capability selected  
by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. Measured at VDD=3.6V  
3. Measured at VDD supply voltage = VDD min and Vinput = VSS  
4. Measured at VDD supply voltage = VDD min and Vinput = VDD  
5.3.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSx RUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 80 MHz  
• Bus clock = 40 MHz  
• Flash clock = 20 MHz  
• MCG mode: FEI  
Table 44. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the  
300  
μs  
1
point VDD reaches 1.71 V to execution of the  
first instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
140  
140  
80  
μs  
μs  
μs  
μs  
80  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
64  
NXP Semiconductors  
Electrical characteristics  
Table 44. Power mode transition operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• LLS2 RUN  
6
μs  
• LLS3 RUN  
• VLPS RUN  
• STOP RUN  
6
μs  
5.7  
5.7  
μs  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=1)  
5.3.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent the characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
NOTE  
The while(1) test is executed with flash cache enabled.  
Table 45. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
IDD_HSRUN High Speed Run mode current - all peripheral  
clocks disabled, CoreMark benchmark code  
executing from flash  
@ 1.8V  
@ 3.0V  
24.17  
24.20  
26.215  
26.292  
mA  
mA  
2, 3, 4  
IDD_HSRUN High Speed Run mode current - all peripheral  
clocks disabled, code executing from flash  
@ 1.8V  
@ 3.0V  
20.97  
20.97  
23.015  
23.062  
mA  
mA  
2
5
IDD_HSRUN High Speed Run mode current — all peripheral  
clocks enabled, code executing from flash  
@ 1.8V  
@ 3.0V  
27.77  
27.79  
30.028  
30.083  
mA  
mA  
IDD_RUN Run mode current in Compute operation —  
CoreMark benchmark code executing from  
flash  
@ 1.8V  
@ 3.0V  
15.58  
16.19  
16.790  
17.457  
mA  
mA  
3, 4, 6  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
65  
NXP Semiconductors  
Electrical characteristics  
Table 45. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current in Compute operation —  
code executing from flash  
@ 1.8V  
@ 3.0V  
13.38  
13.42  
14.590  
14.687  
mA  
mA  
6
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
@ 1.8V  
13.81  
15.087  
mA  
7
8
9
@ 3.0V  
• @ 25°C  
13.87  
13.72  
14.03  
14.12  
14.31  
15.158  
15.050  
15.267  
15.347  
15.529  
mA  
mA  
mA  
mA  
mA  
• @ -40°C  
• @ 70°C  
• @ 85°C  
• @ 105°C  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
@ 1.8V  
18.00  
20.042  
mA  
@ 3.0V  
• @ 25°C  
18.08  
17.88  
18.27  
18.35  
18.55  
20.145  
20.022  
20.229  
20.321  
20.544  
mA  
mA  
mA  
mA  
mA  
• @ -40°C  
• @ 70°C  
• @ 85°C  
• @ 105°C  
IDD_RUN Run mode current — Compute operation, code  
executing from flash  
@ 1.8V  
12.68  
13.763  
mA  
@ 3.0V  
• @ 25°C  
12.62  
12.53  
12.76  
12.84  
13.02  
6.56  
13.714  
13.652  
13.827  
13.895  
14.078  
7.022  
mA  
mA  
mA  
mA  
mA  
mA  
• @ -40°C  
• @ 70°C  
• @ 85°C  
• @ 105°C  
IDD_WAIT Wait mode high frequency current at 3.0 V —  
all peripheral clocks disabled  
7
IDD_WAIT Wait mode reduced frequency current at 3.0 V  
— all peripheral clocks disabled  
3.80  
4.118  
mA  
10  
Table continues on the next page...  
66  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
Table 45. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPR Very-low-power run mode current in Compute  
operation — CoreMark benchmark code  
executing from flash  
@ 1.8V  
@ 3.0V  
967.09  
973.06  
1031.341  
1040.294  
μA  
μA  
3, 4, 11  
IDD_VLPR Very-low-power run mode current in Compute  
operation, code executing from flash  
@ 1.8V  
@ 3.0V  
449.10  
462.61  
520.34  
513.351  
529.844  
592.022  
μA  
μA  
μA  
11  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
12  
13  
14  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
845.46  
240.81  
1005.706  
269.275  
μA  
μA  
IDD_VLPW Very-low-power wait mode current at 3.0 V —  
all peripheral clocks disabled  
IDD_STOP Stop mode current at 3.0 V  
@ 25°C  
269.63  
253.73  
309.98  
347.88  
450.05  
292.223  
280.001  
346.335  
401.693  
565.013  
μA  
μA  
μA  
μA  
μA  
@ -40°C  
@ 70°C  
@ 85°C  
@ 105°C  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
@ 25°C  
3.48  
2.47  
6.005  
3.740  
µA  
µA  
µA  
µA  
µA  
@ -40°C  
@ 70°C  
15.20  
28.62  
65.48  
30.384  
52.396  
115.129  
@ 85°C  
@ 105°C  
IDD_LLS3 Low leakage stop mode 3 current at 3.0 V  
@ 25°C  
2.78  
2.14  
3.778  
2.881  
µA  
µA  
µA  
µA  
µA  
@ -40°C  
@ 70°C  
7.72  
12.481  
21.607  
47.202  
@ 85°C  
13.30  
29.50  
@ 105°C  
IDD_LLS2 Low leakage stop mode 2 current at 3.0 V  
@ 25°C  
2.56  
2.10  
3.293  
2.802  
µA  
µA  
µA  
µA  
µA  
@ -40°C  
@ 70°C  
6.14  
8.758  
@ 85°C  
10.34  
22.68  
15.242  
33.393  
@ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
@ 25°C  
2.01  
2.769  
µA  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
67  
NXP Semiconductors  
Electrical characteristics  
Table 45. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
1.55  
Max.  
2.485  
Unit  
µA  
Notes  
@ -40°C  
@ 70°C  
5.81  
9.658  
µA  
@ 85°C  
10.06  
22.30  
16.695  
35.783  
µA  
@ 105°C  
µA  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
@ 25°C  
1.76  
1.51  
3.73  
6.12  
13.22  
2.298  
1.963  
5.221  
8.624  
18.408  
µA  
µA  
µA  
µA  
µA  
@ -40°C  
@ 70°C  
@ 85°C  
@ 105°C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
@ 25°C  
@ -40°C  
@ 70°C  
@ 85°C  
@ 105°C  
0.64  
0.55  
1.88  
3.52  
8.62  
0.835  
0.795  
2.427  
4.640  
11.273  
µA  
µA  
µA  
µA  
µA  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit enabled  
@ 25°C  
@ -40°C  
@ 70°C  
@ 85°C  
@ 105°C  
0.36  
0.29  
1.58  
3.19  
8.20  
0.525  
0.513  
2.108  
4.289  
10.838  
µA  
µA  
µA  
µA  
µA  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit disabled  
@ 25°C  
@ -40°C  
@ 70°C  
@ 85°C  
@ 105°C  
0.093  
0.016  
1.30  
0.249  
0.145  
1.821  
3.994  
10.501  
µA  
µA  
µA  
µA  
µA  
2.91  
7.92  
IDD_VBAT Average current with RTC and 32kHz disabled  
at 3.0 V  
VDD is off.  
@ 25°C  
@ -40°C  
@ 70°C  
@ 85°C  
@ 105°C  
0.21  
0.14  
1.15  
2.44  
6.49  
0.245  
0.163  
1.498  
3.596  
9.557  
µA  
µA  
µA  
µA  
µA  
IDD_VBAT Average current when CPU is not accessing  
RTC registers at 3.0 V  
VDD is off.  
• @ 25°C  
0.76  
0.899  
µA  
Table continues on the next page...  
68  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
Table 45. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• @ -40°C  
0.63  
0.745  
µA  
• @ 70°C  
• @ 85°C  
• @ 105°C  
1.80  
3.11  
7.24  
2.346  
4.575  
µA  
µA  
µA  
10.653  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. 120MHz core and system clock, 60MHz bus clock, and 24MHz flash clock. MCG configured for PEE mode. All  
peripheral clocks disabled.  
3. Cache on and prefetch on, low compiler optimization.  
4. Coremark benchmark compiled using IAR 7.2 with optimization level high.  
5. 120MHz core and system clock, 60MHz bus clock, and 24MHz flash clock. MCG configured for PEE mode. All  
peripheral clocks enabled.  
6. 80 MHz core and system clock, 40 MHz bus clock, and 26.67 MHz flash clock. MCG configured for PEE mode.  
Compute operation.  
7. 80MHz core and system clock, 40MHz bus clock, and 26.67MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks disabled.  
8. 80MHz core and system clock, 40MHz bus clock, and 26.67MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks enabled.  
9. 80MHz core and system clock, 40MHz bus clock, and 26.67MHz flash clock. MCG configured for FEI mode. Compute  
operation.  
10. 25MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode.  
11. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. Compute operation.  
Code executing from flash.  
12. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
disabled. Code executing from flash.  
13. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
enabled but peripherals are not in active operation. Code executing from flash.  
14. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
disabled.  
5.3.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at  
frequencies between 50 MHz and 100MHz.  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
69  
NXP Semiconductors  
Electrical characteristics  
Figure 16. Run mode supply current vs. core frequency  
70  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
Figure 17. VLPR mode supply current vs. core frequency  
5.3.2.6 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components, and MCU software  
operation play a significant role in the EMC performance. The system designer can  
consult the following Freescale applications notes, available on freescale.com for  
advice and guidance specifically targeted at optimizing EMC performance.  
• AN2321: Designing for Board Level Electromagnetic Compatibility  
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS  
Microcontrollers  
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip  
Microcontrollers  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
71  
NXP Semiconductors  
Electrical characteristics  
• AN2764: Improving the Transient Immunity Performance of Microcontroller-  
Based Applications  
• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-  
Based Systems  
5.3.2.6.1 EMC radiated emissions operating behaviors  
Table 46. EMC radiated emissions operating behaviors for 64 LQFP package  
Parame Conditions  
ter  
Clocks  
Frequency range  
Level  
(Typ.)  
Unit  
Notes  
VEME  
Device configuration, test FSYS = 120 MHz  
150 kHz–50 MHz  
50 MHz–150 MHz  
150 MHz–500 MHz  
500 MHz–1000 MHz  
IEC level  
14  
23  
23  
9
dBuV  
1, 2  
conditions and EM  
testing per standard IEC  
FBUS = 60 MHz  
External crystal = 8 MHz  
61967-2.  
Supply voltages:  
• VDD = 3.3 V  
L
3
Temp = 25°C  
1. Measurements were made per IEC 61967-2 while the device was running typical application code.  
2. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,  
from among the measured orientations in each frequency range.  
3. IEC Level Maximums: M ≤ 18dBmV, L ≤ 24dBmV, K ≤ 30dBmV, I ≤ 36dBmV, H ≤ 42dBmV .  
5.3.2.6.2 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.3.2.7 Capacitance attributes  
Table 47. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
5.3.3 Switching specifications  
72  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
5.3.3.1 Device clock specifications  
Table 48. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
High Speed run mode  
Normal run mode  
fSYS  
fBUS  
System and core clock  
Bus clock  
120  
60  
MHz  
MHz  
fSYS  
fSYS_USB  
fBUS  
System and core clock  
20  
80  
MHz  
MHz  
MHz  
MHz  
MHz  
System and core clock when Full Speed USB in operation  
Bus clock  
50  
fFLASH  
fLPTMR  
Flash clock  
26.67  
25  
LPTMR clock  
VLPR and VLPS modes1  
System and core clock  
Bus clock  
fSYS  
fBUS  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fERCLK  
fLPTMR_pin  
Flash clock  
1
External reference clock  
LPTMR clock  
16  
25  
16  
12.5  
4
fLPTMR_ERCLK LPTMR external reference clock  
fI2S_MCLK  
fI2S_BCLK  
fFlexIO  
I2S master clock  
I2S bit clock  
FlexIO clock  
LPI2C clock  
16  
16  
4
fLPI2C  
fFlexCAN  
FlexCAN clock  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
5.3.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
and timers.  
Table 49. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
3
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
73  
NXP Semiconductors  
Electrical characteristics  
Table 49. General switching specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, passive filter disabled) — Asynchronous  
path  
50  
ns  
4
Port rise and fall time  
• Slew disabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
10  
5
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
30  
16  
ns  
ns  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may  
or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can  
be recognized in that case.  
2. The greater of synchronous and asynchronous timing must be met.  
3. These pins have a passive filter enabled on the inputs. This is the shortest pulse width that is guaranteed to be  
recognized.  
4. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be  
recognized.  
5. 25 pF load  
5.3.4 Thermal specification  
5.3.4.1 Thermal operating requirements  
Table 50. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to  
determine TJ is: TJ = TA + RΘJA × chip power dissipation.  
5.3.4.2 Thermal attributes  
Table 51. Thermal attributes  
Board type  
Symbol  
Description  
100  
64 LQFP 48 QFN  
Unit  
Notes  
LQFP  
Single-layer (1s)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
58  
61 81  
°C/W  
1, 2, 3  
Table continues on the next page...  
74  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
Table 51. Thermal attributes (continued)  
Board type  
Symbol  
Description  
100  
LQFP  
64 LQFP 48 QFN  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
1, 2, 3,4  
1, 4, 5  
1, 4, 5  
6
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
46  
48  
40  
31  
16  
2
43  
49  
36  
25  
13  
2
28  
66  
23  
11  
1.3  
2
Single-layer (1s)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Four-layer (2s2p)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to  
board  
Thermal resistance, junction to  
case  
7
Thermal characterization  
parameter, junction to package  
top outside center (natural  
convection)  
8
ΨJB  
Thermal characterization  
-
-
-
°C/W  
9
parameter, junction to package  
bottom (natural convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for  
1s or 2s2p board, respectively.  
4. Per JEDEC JESD51-6 with the board horizontal.  
5. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for  
1s or 2s2p board, respectively.  
6. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
7. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
8. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
9. Thermal characterization parameter indicating the temperature difference between package bottom center and the  
junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JB.  
5.4 Peripheral operating requirements and behaviors  
5.4.1 Debug modules  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
75  
NXP Semiconductors  
Electrical characteristics  
5.4.1.1 SWD electricals  
Table 52. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
S1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
33  
MHz  
ns  
S2  
S3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/S1  
15  
ns  
S4  
S9  
SWD_CLK rise and fall times  
8
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
25  
S10  
S11  
S12  
1.4  
5
S2  
S4  
S3  
S3  
SWD_CLK (input)  
S4  
Figure 18. Serial wire clock input timing  
76  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
S9  
S10  
Input data valid  
S11  
Output data valid  
S12  
S11  
Output data valid  
Figure 19. Serial wire data timing  
5.4.1.2 JTAG electricals  
Table 53. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
TCLK frequency of operation  
• Boundary Scan  
2.7  
3.6  
J1  
MHz  
0
0
10  
20  
• JTAG and CJTAG  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
• JTAG and CJTAG  
J4  
J5  
TCLK rise and fall times  
20  
1
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
25  
25  
J6  
J7  
8
J8  
J9  
J10  
1
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
77  
NXP Semiconductors  
Electrical characteristics  
Table 53. JTAG limited voltage range electricals (continued)  
Symbol  
J11  
Description  
Min.  
Max.  
19  
Unit  
ns  
TCLK low to TDO data valid  
TCLK low to TDO high-Z  
TRST assert time  
J12  
19  
ns  
J13  
100  
8
ns  
J14  
TRST setup time (negation) to TCLK high  
ns  
Table 54. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
10  
15  
• JTAG and CJTAG  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
33  
ns  
ns  
• JTAG and CJTAG  
J4  
J5  
TCLK rise and fall times  
20  
1.4  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
27  
27  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1.4  
100  
8
26.2  
26.2  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 20. Test clock input timing  
78  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 21. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 22. Test Access Port timing  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
79  
NXP Semiconductors  
Electrical characteristics  
TCLK  
TRST  
J14  
J13  
Figure 23. TRST timing  
5.4.2 System modules  
There are no specifications necessary for the device's system modules.  
5.4.3 Clock modules  
5.4.3.1 MCG specifications  
Table 55. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft  
Δfints_t  
fints_t  
Internal reference frequency (slow clock) —  
factory trimmed at nominal VDD and 25 °C  
32.768  
kHz  
Total deviation of internal reference frequency  
(slow clock) over voltage and temperature  
31.25  
+0.5/-0.7  
2
39.0625  
0.6  
%
Internal reference frequency (slow clock) —  
user trimmed  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.3  
2
%fdco  
%fdco  
1, 2  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
1.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
4
5
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage —  
factory trimmed at nominal VDD and 25 °C  
+1/-2  
%fintf_ft  
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
Table continues on the next page...  
80  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
Table 55. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
20.97  
MHz  
3, 4  
frequency range  
640 × ffll_ref  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
5, 6  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fVCO = 48 MHz  
• fVCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
120  
MHz  
µA  
PLL operating current  
8
8
1060  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 48)  
=
Ipll  
PLL operating current  
600  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 24)  
=
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
9
9
120  
75  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
1350  
600  
ps  
ps  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
81  
NXP Semiconductors  
Electrical characteristics  
Symbol Description  
Table 55. MCG specifications (continued)  
Min.  
Typ.  
Max.  
Unit  
Notes  
• fvco = 48 MHz  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
150 × 10-6  
+ 1075(1/  
%
%
s
tpll_lock  
10  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. 2.0 V <= VDD <= 3.6 V.  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this  
specification assumes it is already running.  
5.4.3.2 IRC48M specifications  
Table 56. IRC48M specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
IDD48M  
firc48m  
Supply current  
400  
48  
500  
μA  
Internal reference frequency  
MHz  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
high voltage (VDD=1.89V-3.6V) over 0°C to 70°C  
Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
0.2  
0.4  
0.4  
0.5  
1.0  
1.0  
%firc48m  
%firc48m  
%firc48m  
1
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
high voltage (VDD=1.89V-3.6V) over full temperature  
Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
1
1
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low  
voltage (VDD=1.71V-1.89V) over full temperature  
Regulator disable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=0)  
Table continues on the next page...  
82  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
Table 56. IRC48M specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Regulator enable  
0.5  
1.5  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_cl Closed loop total deviation of IRC48M frequency over  
0.1  
%fhost  
2
3
voltage and temperature  
Jcyc_irc48m Period Jitter (RMS)  
35  
2
150  
3
ps  
μs  
tirc48mst  
Startup time  
1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard  
deviation (mean 3 sigma).  
2. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation.  
It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover  
function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1,  
USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).  
3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable  
the clock by one of the following settings:  
• USB_CLK_RECOVER_IRC_EN[IRC_EN]=1 or  
• MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10 or MCG_C5[PLLCLKEN0]=1, or  
• SIM_SOPT2[PLLFLLSEL]=11  
5.4.3.3 Oscillator electrical specifications  
5.4.3.3.1 Oscillator DC electrical specifications  
Table 57. Oscillator DC electrical specifications  
Symbol Description  
VDD Supply voltage  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
IDDOSC Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC Supply current — high-gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
83  
NXP Semiconductors  
Electrical characteristics  
Table 57. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• 24 MHz  
4
mA  
• 32 MHz  
Cx  
Cy  
RF  
EXTAL load capacitance  
2, 3  
2, 3  
2, 4  
XTAL load capacitance  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-  
power mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx and Cy can be provided by using either integrated capacitors or external components.  
4. When low-power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other device.  
84  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
5.4.3.3.2 Oscillator frequency specifications  
Table 58. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency —  
high-frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency —  
high frequency mode (high range)  
(MCG_C2[RANGE]=1x)  
32  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
5.4.3.4 32 kHz oscillator electrical characteristics  
5.4.3.4.1 32 kHz oscillator DC electrical specifications  
Table 59. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
100  
5
MΩ  
pF  
Cpara  
Parasitical capacitance of EXTAL32 and  
XTAL32  
7
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
85  
NXP Semiconductors  
Electrical characteristics  
5.4.3.4.2 32 kHz oscillator frequency specifications  
Table 60. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
32.768  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
2
fec_extal32 Externally provided input clock frequency  
vec_extal32 Externally provided input clock amplitude  
kHz  
mV  
700  
VBAT  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VBAT  
.
5.4.4 Memories and memory interfaces  
5.4.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
5.4.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 61. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
1
thversscr Sector Erase high-voltage time  
13  
113  
904  
ms  
ms  
thversall  
Erase All high-voltage time  
104  
1
1. Maximum time based on expectations at cycling end-of-life.  
5.4.4.1.2 Flash timing specifications — commands  
Table 62. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec2k Read 1s Section execution time (flash sector)  
1
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
45  
μs  
30  
μs  
Table continues on the next page...  
86  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
Table 62. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
65  
Max.  
145  
114  
1.8  
Unit  
μs  
Notes  
tpgm4  
tersscr  
trd1all  
Program Longword execution time  
2
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
14  
ms  
ms  
μs  
1
trdonce  
30  
1
tpgmonce Program Once execution time  
100  
175  
μs  
2
tersall  
Erase All Blocks execution time  
1300  
30  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
5.4.4.1.3 Flash high voltage current behaviors  
Table 63. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
5.4.4.1.4 Reliability specifications  
Table 64. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
5.4.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
87  
NXP Semiconductors  
Electrical characteristics  
5.4.6 Analog  
5.4.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 65 and Table 66 are achievable on the  
differential pins ADCx_DPx, ADCx_DMx.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
5.4.6.1.1 16-bit ADC operating conditions  
Table 65. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Absolute  
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
Ground voltage Delta to VSS (VSS – VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 *  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
3
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
24.0  
12.0  
MHz  
MHz  
4
4
5
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20  
37  
1200  
461  
Ksps  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
rate  
5
No ADC hardware averaging  
88  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
Table 65. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 24. ADC input impedance equivalency diagram  
5.4.6.1.2 16-bit ADC electrical characteristics  
Table 66. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
2.4  
3.9  
MHz  
tADACK = 1/  
fADACK  
fADACK  
Table continues on the next page...  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
89  
NXP Semiconductors  
Electrical characteristics  
Table 66. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
• ADLPC = 1, ADHSC = 1  
2.4  
4.0  
6.1  
MHz  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
3.0  
4.4  
5.2  
6.2  
7.3  
9.5  
MHz  
MHz  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-linearity  
• 12-bit modes  
• <12-bit modes  
1.0  
0.5  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
0.5  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
Signal-to-noise plus See ENOB  
SINAD  
6.02 × ENOB + 1.76  
distortion  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
dB  
dB  
-94  
-85  
16-bit single-ended mode  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
Table continues on the next page...  
90  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
Table 66. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
EIL Input leakage error  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's  
voltage and  
current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 25. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
91  
NXP Semiconductors  
Electrical characteristics  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 26. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
5.4.6.2 CMP and 6-bit DAC electrical specifications  
Table 67. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
92  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
00  
0.04  
01  
10  
11  
0.03  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 27. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
93  
NXP Semiconductors  
Electrical characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 28. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
5.4.6.3 12-bit DAC electrical characteristics  
5.4.6.3.1 12-bit DAC operating requirements  
Table 68. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH.  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
94  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
5.4.6.3.2 12-bit DAC operating behaviors  
Table 69. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
330  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
1200  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-  
speed mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC  
set to 0x800, temperature range is across the full range of the device  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
95  
NXP Semiconductors  
Electrical characteristics  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 29. Typical INL error vs. digital code  
96  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Electrical characteristics  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 30. Offset at half scale vs. temperature  
5.4.7 Timers  
See General switching specifications.  
5.4.8 Communication interfaces  
5.4.8.1 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-  
date standards, visit usb.org.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
97  
NXP Semiconductors  
Electrical characteristics  
NOTE  
The MCGPLLCLK meets the USB jitter and signaling rate  
specifications for certification with the use of an external  
clock/crystal for both Device and Host modes.  
The MCGFLLCLK does not meet the USB jitter or signaling  
rate specifications for certification.  
The IRC48M meets the USB jitter and signaling rate  
specifications for certification in Device mode when the USB  
clock recovery mode is enabled. It does not meet the USB  
signaling rate specifications for certification in Host mode  
operation.  
5.4.8.2 DSPI switching specifications (limited voltage range)  
The Deserial Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to  
the SPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 70. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
30  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-2  
8.5  
ns  
ns  
ns  
ns  
16.2  
0
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
98  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 31. DSPI classic SPI timing — master mode  
Table 71. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
15  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
1
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
21.4  
ns  
ns  
2.6  
7
ns  
ns  
17  
17  
ns  
ns  
1. The maximum operating frequency is measured with noncontinuous CS and SCK. When DSPI is configured with  
continuous CS and SCK, the SPI clock must not be greater than 1/6 of the bus clock. For example, when the bus  
clock is 60 MHz, the SPI clock must not be greater than 10 MHz.  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 32. DSPI classic SPI timing — slave mode  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
99  
NXP Semiconductors  
Electrical characteristics  
5.4.8.3 DSPI switching specifications (full voltage range)  
The Deserial Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer  
to the SPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 72. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
15  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
24.6  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 33. DSPI classic SPI timing — master mode  
100  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
Table 73. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
Frequency of operation  
7.5  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
29.5  
ns  
ns  
3.2  
7
ns  
ns  
25  
25  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 34. DSPI classic SPI timing — slave mode  
Table 74. LPI2C specifications  
5.4.8.4 LPI2C  
Symbol Description  
Min.  
Max.  
100  
Unit  
Notes  
1
fSCL  
SCL clock frequency  
Standard mode (Sm)  
Fast mode (Fm)  
0
0
0
0
0
kHz  
400  
1, 2  
1, 3  
1, 4  
1, 5  
Fast mode Plus (Fm+)  
Ultra Fast mode (UFm)  
High speed mode (Hs-mode)  
1000  
5000  
3400  
1. See General switching specifications, measured at room temperature.  
2. Measured with the maximum bus loading of 400pF at 3.3V VDD with pull-up Rp = 220Ω , and at 1.8V VDD with Rp =  
880Ω. For all other cases, select appropriate Rp per I2C Bus Specification and the pin drive capability.  
3. Fm+ is only supported on high drive pin with high drive enabled. It is measured with the maximum bus loading of  
400pF at 3.3V VDD with Rp = 220Ω. For all other cases, select appropriate Rp per I2C Bus Specification and the pin  
drive capability.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
101  
NXP Semiconductors  
Electrical characteristics  
4. UFm is only supported on high drive pin with high drive enabled and push-pull output only mode. It is measured at 3.3V  
VDD with the maximum bus loading of 400pF. For 1.8V VDD, the maximum speed is 4Mbps.  
5. Hs-mode is only supported in slave mode and on the high drive pins with high drive enabled.  
5.4.8.5 UART switching specifications  
See General switching specifications.  
5.4.8.6 I2S/SAI switching specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial  
clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync  
(TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync  
have been inverted, all the timing remains valid by inverting the bit clock signal  
(BCLK) and/or the frame sync (FS) signal shown in the following figures.  
5.4.8.6.1 Normal Run, Wait and Stop mode performance over a limited  
operating voltage range  
This section provides the operating performance over a limited operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 75. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage  
range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
18  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
102  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 35. I2S/SAI timing — master modes  
Table 76. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage  
range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
2.7  
80  
3.6  
V
S11  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
4.5  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
2
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
20  
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
4.5  
2
25  
ns  
ns  
ns  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
103  
NXP Semiconductors  
Electrical characteristics  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 36. I2S/SAI timing — slave modes  
5.4.8.6.2 Normal Run, Wait and Stop mode performance over the full operating  
voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 77. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage  
range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
-1.0  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
27  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
104  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 37. I2S/SAI timing — master modes  
Table 78. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage  
range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.71  
80  
3.6  
V
S11  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
5.8  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
2
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
28.5  
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
5.8  
2
ns  
ns  
ns  
26.3  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
105  
NXP Semiconductors  
Electrical characteristics  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 38. I2S/SAI timing — slave modes  
5.4.8.6.3 VLPR, VLPW, and VLPS mode performance over the full operating  
voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 79. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
45%  
250  
45%  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
-1  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
106  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Electrical characteristics  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 39. I2S/SAI timing — master modes  
Table 80. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.71  
250  
3.6  
V
S11  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
7
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
30  
4
72  
ns  
ns  
ns  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
107  
NXP Semiconductors  
Design considerations  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 40. I2S/SAI timing — slave modes  
6 Design considerations  
6.1 Hardware design considerations  
This device contains protective circuitry to guard against damage due to high static  
voltage or electric fields. However, take normal precautions to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit.  
6.1.1 Printed circuit board recommendations  
• Place connectors or cables on one edge of the board and do not place digital circuits  
between connectors.  
• Drivers and filters for I/O functions must be placed as close to the connectors as  
possible. Connect TVS devices at the connector to a good ground. Connect filter  
capacitors at the connector to a good ground.  
• Physically isolate analog circuits from digital circuits if possible.  
• Place input filter capacitors as close to the MCU as possible.  
• For best EMC performance, route signals as transmission lines; use a ground plane  
directly under LQFP packages; and solder the exposed pad (EP) to ground directly  
under QFN packages.  
108  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Design considerations  
6.1.2 Power delivery system  
Consider the following items in the power delivery system:  
• Use a plane for ground.  
• Use a plane for MCU VDD supply if possible.  
• Always route ground first, as a plane or continuous surface, and never as  
sequential segments.  
• Route power next, as a plane or traces that are parallel to ground traces.  
• Place bulk capacitance, 10 μF or more, at the entrance of the power plane.  
• Place bypass capacitors for MCU power domain as close as possible to each  
VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.  
• The minimum bypass requirement is to place 0.1 μF capacitors positioned as near  
as possible to the package supply pins.  
• The USB_VDD voltage range is 3.0 V to 3.6 V. It is recommended to include a  
filter circuit with one bulk capacitor (no less than 2.2 μF) and one 0.1 μF capacitor  
at the USB_VDD pin to improve USB performance.  
6.1.3 Analog design  
Each ADC input must have an RC filter as shown in the following figure. The  
maximum value of R must be RAS max if fast sampling and high resolution are  
required. The value of C must be chosen to ensure that the RC time constant is very  
small compared to the sample period.  
MCU  
1
2
Input signal  
ADCx  
R
C
Figure 41. RC circuit for ADC input  
High voltage measurement circuits require voltage division, current limiting, and  
over-voltage protection as shown the following figure. The voltage divider formed by  
R1 – R4 must yield a voltage less than or equal to VREFH. The current must be  
limited to less than the injection current limit. Since the ADC pins do not have diodes  
to VDD, external clamp diodes must be included to protect against transient over-  
voltages.  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
109  
NXP Semiconductors  
Design considerations  
MCU  
R1  
R2  
R3  
VDD  
1
1
1
2
2
2
R5  
1
2
ADCx  
High voltage input  
R4  
1
2
C
BAT54SW  
Figure 42. High voltage measurement with an ADC input  
6.1.4 Digital design  
Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).  
CAUTION  
Do not provide power to I/O pins prior to VDD, especially the  
RESET_b pin.  
• RESET_b pin  
The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An  
external RC circuit is recommended to filter noise as shown in the following figure.  
The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the recommended  
capacitance value is 0.1 μF. The RESET_b pin also has a selectable digital filter to  
reject spurious noise.  
VDD  
MCU  
10k  
RESET_b  
RESET_b  
0.1uF  
Figure 43. Reset circuit  
110  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Design considerations  
When an external supervisor chip is connected to the RESET_b pin, a series  
resistor must be used to avoid damaging the supervisor chip or the RESET_b pin,  
as shown in the following figure. The series resistor value (RS below) must be in  
the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength.  
The supervisor chip must have an active high, open-drain output.  
VDD  
Supervisor Chip  
MCU  
10k  
1
2
OUT  
RESET_b  
RS  
Active high,  
open drain  
0.1uF  
Figure 44. Reset signal connection to external reset chip  
• NMI pin  
Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low  
level on this pin will trigger non-maskable interrupt. When this pin is enabled as  
the NMI function, an external pull-up resistor (10 kΩ) as shown in the following  
figure is recommended for robustness.  
If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is  
required to disable the NMI function by remapping to another function. The NMI  
function is disabled by programming the FOPT[NMI_DIS] bit to zero.  
VDD  
MCU  
10k  
NMI_b  
Figure 45. NMI pin biasing  
• Debug interface  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
111  
NXP Semiconductors  
Design considerations  
This MCU uses the standard ARM SWD interface protocol as shown in the  
following figure. While pull-up or pull-down resistors are not required (SWD_DIO  
has an internal pull-up and SWD_CLK has an internal pull-down), external 10 kΩ  
pull resistors are recommended for system robustness. The RESET_b pin  
recommendations mentioned above must also be considered.  
VDD  
10k  
VDD  
J1  
SWD_DIO  
SWD_CLK  
1
3
5
7
9
2
4
6
8
RESET_b  
10k  
10  
0.1uF  
HDR_5X2  
Figure 46. SWD debug interface  
• Low leakage stop mode wakeup  
Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the  
low leakage stop modes (LLS/VLLSx). See the pinout table for pin selection.  
• Unused pin  
Unused GPIO pins must be left floating (no electrical connections) with the MUX  
field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the digital  
input path to the MCU.  
If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM)  
floating. Connect USB_VDD to ground through a 10 kΩ resistor if the USB module  
is not used.  
6.1.5 Crystal oscillator  
When using an external crystal or ceramic resonator as the frequency reference for the  
MCU clock system, refer to the following table and diagrams.  
The feedback resistor, RF, is incorporated internally with the low power oscillators. An  
external feedback is required when using high gain (HGO=1) mode.  
112  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Design considerations  
Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786 kHz)  
mode. Use the SCxP bits in the OSC0_CR register to adjust the load capacitance for  
the crystal. Typically, values of 10pf to 16 pF are sufficient for 32.768 kHz crystals  
that have a 12.5 pF CL specification. The internal load capacitor selection must not be  
used for high frequency crystals and resonators.  
Table 81. External crystal/resonator connections  
Oscillator mode  
Low frequency (32.768 kHz), low power  
Low frequency (32.768 kHz), high gain  
High frequency (3-32 MHz), low power  
High frequency (3-32 MHz), high gain  
Oscillator mode  
Diagram 1  
Diagram 2, Diagram 4  
Diagram 3  
Diagram 4  
OSCILLATOR  
EXTAL  
XTAL  
1
2
CRYSTAL  
Figure 47. Crystal connection – Diagram 1  
OSCILLATOR  
EXTAL  
XTAL  
1
2
RF  
RS  
1
2
CRYSTAL  
Figure 48. Crystal connection – Diagram 2  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 49. Crystal connection – Diagram 3  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
113  
NXP Semiconductors  
Part identification  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
2
RF  
RF  
RS  
RS  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 50. Crystal connection – Diagram 4  
6.2 Software considerations  
All Kinetis MCUs are supported by comprehensive Freescale and third-party hardware  
and software enablement solutions, which can reduce development costs and time to  
market. Featured software and tools are listed below. Visit http://www.freescale.com/  
kinetis/sw for more information and supporting collateral.  
Evaluation and Prototyping Hardware  
• MAPS Development Kit: http://www.freescale.com/KS  
IDEs for Kinetis MCUs  
• Kinetis Design Studio IDE: http://www.freescale.com/kds  
• Partner IDEs: http://www.freescale.com/kide  
Run-time Software  
• Kinetis SDK: http://www.freescale.com/ksdk  
• Kinetis Bootloader: http://www.freescale.com/kboot  
• ARM mbed Development Platform: http://www.freescale.com/mbed  
For all other partner-developed software and tools, visit http://www.freescale.com/  
partners.  
7 Part identification  
114  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
NXP Semiconductors  
Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q KS## A FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 82. Part number fields description  
Field  
Description  
Values  
Q
Qualification status  
Kinetis family  
• M = Fully qualified, general market flow  
• P = Prequalification  
KS##  
• KS20  
• KS22  
A
Key attribute  
• F = Cortex-M4 with DSP and FPU  
FFF  
Program flash memory size  
• 128 = 128 KB  
• 256 = 256 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• FT = 48 QFN (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 12 = 120 MHz  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
MKS22FN256VLL12  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
115  
NXP Semiconductors  
Revision history  
8 Revision history  
The following table provides a revision history for this document.  
Table 83. Revision history  
Rev. No.  
Date  
Substantial Changes  
Initial public release.  
2
3
12/2015  
04/2016  
Added 48-pin QFN package.  
116  
NXP Semiconductors  
KS22/KS20 Microcontroller, Rev. 3, 04/2016  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customer's technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, Freescale, the Freescale logo and Kinetis are trademarks of  
NXP B.V.All other product or service names are the property of their respective  
owners. ARM and Cortex are registered trademarks of ARM Limited (or its  
subsidiaries) in the EU and/or elsewhere. All rights reserved.  
©2016 NXP B.V.  
Document Number KS22P100M120SF0  
Revision 3, 04/2016  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY