935314697518 [NXP]

Interface Circuit;
935314697518
型号: 935314697518
厂家: NXP    NXP
描述:

Interface Circuit

电信 电信集成电路
文件: 总37页 (文件大小:1387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33663  
Rev. 2.0, 12/2013  
escale Semiconductor  
Advance Information  
LIN 2.1 / SAEJ2602-2 Dual LIN  
Physical Layer  
33663  
The local interconnect network (LIN) is a serial communication  
protocol designed to support automotive networks in conjunction with  
controller area network (CAN). As the lowest level of a hierarchical  
network, LIN enables cost-effective communication with sensors and  
actuators when all the features of CAN are not required.  
DUAL LIN TRANSCEIVER  
The 33663 product line integrates two physical layer LIN bus  
dedicated to automotive LIN sub-bus applications. The MC33663LEF  
and MC33663SEF devices offer normal baud rate (20 kbps) and the  
MC33663JEF slow baud rate (10 kbps). Both devices integrate fast  
baud rate (above 100 kbps) for test and programming modes. They  
present excellent electromagnetic compatibility (EMC) and radiated  
emission performance, electrostatic discharge (ESD) robustness and  
safe behavior, in the event of LIN bus short-to-ground or LIN bus  
leakage during low-power mode.  
EF SUFFIX (PB-FREE)  
98ASB42565B  
14-PIN SOICN  
Features  
ORDERING INFORMATION  
• Operational from VSUP 7.0 to 18 V DC, functional up to 27 V DC,  
and handles 40 V during load dump  
• Compatible with LIN protocol specification 2.1, and SAEJ2602-2  
• Very high immunity against electromagnetic interference  
• Low standby current in Sleep mode  
Device  
(add an R2 suffix for  
Tape and reel orders)  
Temperature  
Range (T )  
A
Package  
MC33663ALEF  
MC33663AJEF  
MC33663ASEF  
-40 to 125°C  
14 SOICN  
• Over-temperature protection  
• Permanent dominant state detection  
• Fast baud rate mode selection reported by RXD  
• Active bus waveshaping offering excellent radiated emission  
performance  
• Sustains ±15.0 kV ESD IEC6100-4-2 on LIN BUS and VSUP pins  
• 5.0 and 3.3 V compatible digital inputs without any external components required  
VBAT  
33663  
VSUP  
WAKE1  
WAKE2  
INH1  
INH2  
EN1  
Regulator  
MCU  
RXD1  
TXD1  
EN2  
VDD  
12 V  
5.0 or  
3.3 V  
RXD2  
TXD2  
1.0 k  
1.0 k  
LIN1  
LIN Interface 1  
LIN Interface 2  
GND LIN2  
Figure 1. 33663 Simplified Application Diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2013. All rights reserved.  
CE VARIATIONS  
DEVICE VARIATIONS  
Table 1. Device Variations  
Freescale Part No.  
(Add an R2 suffix for  
Tape and reel orders)  
Temperature Range (T )  
A
Package  
Maximum Baud Rate  
MC33663ALEF  
MC33663ASEF  
MC33663AJEF  
20 kbps  
20 kbps with restricted limits for transmitter  
and receiver symmetry  
-40 to 125 °C  
14 SOICN  
10 kbps  
33663  
Analog Integrated Circuit Device Data  
2
Freescale Semiconductor  
INTERNAL BLOCK DIAGRAM  
INTERNAL BLOCK DIAGRAM  
VSUP  
INH_ON  
X 1  
INH1  
LIN1  
EN_SLEEP  
EN1  
Control  
Unit  
200 k  
30 k  
725 k  
( LIN Module 1)  
RxD_INT  
RxD1  
Receiver  
EN_RxD  
LIN_EN  
35µA  
Slope  
Control  
TxD_INT  
TxD1  
WAKE1  
INH_ON  
X 1  
INH2  
LIN2  
EN2  
EN_SLEEP  
RxD_INT  
Control  
Unit  
(LIN Module 2)  
200 k  
30 k  
725 k  
RxD2  
Receiver  
EN_RxD  
LIN_EN  
35µA  
Slope  
Control  
TxD_INT  
TxD2  
WAKE2  
GND  
Figure 2. 33663 Simplified Internal Block Diagram  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
CONNECTIONS  
PIN CONNECTIONS  
WAKE1  
TXD1  
LIN1  
1
2
3
4
14  
13  
EN1  
RXD1  
12  
11  
INH1  
LIN2  
VSUP  
10  
5
6
7
TXD2  
INH2  
RXD2  
EN2  
9
8
GND  
WAKE2  
Figure 3. 33663 14-SOIC Pin Connections  
Table 2. 33663 Pin Definitions  
Pin  
Pin Name  
Formal Name  
Definition  
1
2
WAKE1  
TXD1  
Wake Input  
Data Input  
This pin is a high-voltage input used to wake-up the LIN1 from Sleep mode.  
This pin is the transmitter input of the LIN1 interface which controls the state of the bus  
output.  
3
4
5
LIN1  
LIN2  
INH2  
LIN Bus  
LIN Bus  
This bidirectional pin represents the LIN1 single-wire bus transmitter and receiver.  
This bidirectional pin represents the LIN2 single-wire bus transmitter and receiver.  
Inhibit Output  
This pin can have two main functions: controlling an external switchable voltage  
regulator having an inhibit input, or driving an external bus resistor connected to LIN2 in  
the master node application.  
6
RXD2  
Data Output  
This pin is the receiver output of the LIN2 interface, which reports the state of the bus  
voltage to the MCU interface.  
7
8
EN2  
WAKE2  
GND  
Enable Control  
Wake Input  
Ground  
This pin controls the operation mode of the LIN2 interface.  
This pin is a high-voltage input used to wake-up the LIN2 device from Sleep mode.  
This pin is the device ground pin.  
9
10  
TXD2  
Data Input  
This pin is the transmitter input of the LIN2 interface, which controls the state of the bus  
output.  
11  
12  
VSUP  
INH1  
Power Supply  
Inhibit Output  
This pin is device battery level power supply.  
This pin can have two main functions: controlling an external switchable voltage  
regulator having an inhibit input, or driving an external bus resistor connected to LIN1 in  
the master node application.  
13  
14  
RXD1  
EN1  
Data Output  
This pin is the receiver output of the LIN1 interface, which reports the state of the bus  
voltage to the MCU interface.  
Enable Control  
This pin controls the operation mode of the LIN1 interface.  
33663  
Analog Integrated Circuit Device Data  
4
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 3. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
Symbol  
Value  
Unit  
ELECTRICAL RATINGS  
Power Supply Voltage (VSUP)  
Normal Operation (DC)  
V
VSUP(SS)  
-0.3 to 27  
Transient input voltage with external component (according to ISO7637-2 &  
ISO7637-3 & “Hardware Requirements for LIN, CAN, and Flexray Interfaces  
in Automotive Applications” specification Rev. 1.1/December 2nd, 2009) (See  
Table 4 and Figure 4)  
- Pulse 1 (test up to the limit for Damage - Class A(1)  
)
-100  
+75  
VSUP(S1)  
VSUP(S2A)  
VSUP(S3A)  
VSUP(S3B)  
VSUP(S5B)  
- Pulse 2a (test up to the limit for Damage - Class A(1)  
- Pulse 3a (test up to the limit for Damage - Class A(1)  
- Pulse 3b (test up to the limit for Damage - Class A(1)  
- Pulse 5b (Class A)(1)  
)
)
)
-150  
+100  
-0.3 to 40  
Logic Voltage (RXD1,2, TXD1,2, EN1,2 Pins)  
VLOG  
-0.3 to 5.5  
-27 to 40  
V
V
WAKE (VWAKE1,VWAKE2  
)
Normal Operation with in series 2*18 kresistor (DC)  
VWAKE(SS)  
Transient input voltage with external component (according to ISO7637-2 &  
ISO7637-3 & “Hardware Requirements for LIN, CAN and Flexray Interfaces  
in Automotive Applications” specification Rev1.1 / December 2nd, 2009) (See  
Table 4 and Figure 5)  
- Pulse 1 (test up to the limit for Damage - Class D(2)  
)
VWAKE(S1)  
VWAKE(S2A)  
VWAKE(S3A)  
VWAKE(S3B)  
-100  
+75  
- Pulse 2a (test up to the limit for Damage - Class D(2)  
- Pulse 3a (test up to the limit for Damage - Class D(2)  
- Pulse 3b (test up to the limit for Damage - Class D(2)  
)
)
)
-150  
+100  
LIN Bus Voltage (VLIN1, VLIN2  
)
V
Normal Operation (DC)  
VLIN(SS)  
-27 to 40  
Transient (Coupled Through 1.0 nF Capacitor) (according to ISO7637-2 &  
ISO7637-3) (See Table 4 and Figure 6)  
- Pulse 1 (test up to the limit for Damage - Class D(2)  
)
VLIN(S1)  
VLIN(S2A)  
VLIN(S3A)  
VLIN(S3B)  
-100  
+75  
- Pulse 2a (test up to the limit for Damage - Class D(2)  
- Pulse 3a (test up to the limit for Damage - Class D(2)  
- Pulse 3b (test up to the limit for Damage - Class D(2)  
)
)
)
-150  
+100  
Notes  
1. Class A: All functions of a device/system perform as designed during and after exposure to disturbance.  
2. Class D: At least one function of the Transceiver stops working properly during the test and will return into proper operation automatically  
when the exposure to the disturbance has ended. No physical damage of the IC occurs.  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
CTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 3. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
Symbol  
Value  
Unit  
ELECTRICAL RATINGS  
INH Voltage/Current (VINH1, VINH2  
DC Voltage  
)
V
VINH  
-0.3 to VSUP + 0.3  
Transient (Coupled Through 1.0 nF Capacitor, according to ISO7637-2 &  
ISO7637-3 & “Hardware Requirements for LIN, CAN and Flexray Interfaces  
in Automotive Applications” specification Rev1.1 / December 2nd, 2009) (See  
Table 4 and Figure 7)  
- Pulse 1 (test up to the limit for Damage - Class D(3)  
)
VINH(S1)  
VINH(S2a)  
VINH(S3a)  
VINH(S3b)  
-100  
+75  
- Pulse 2a (test up to the limit for Damage - Class D(3)  
- Pulse 3a (test up to the limit for Damage - Class D(3)  
- Pulse 3b (test up to the limit for Damage - Class D(3)  
)
)
)
-150  
+100  
Notes  
3. Class D: At least one function of the Transceiver stops working properly during the test and will return into proper operation automatically  
when the exposure to the disturbance has ended. No physical damage of the IC occurs.  
33663  
Analog Integrated Circuit Device Data  
6
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 3. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
Symbol  
Value  
Unit  
ELECTRICAL RATINGS  
ESD Capability  
AECQ100  
V
Human Body Model - JESD22/A114 (C  
LIN1, LIN2 pins versus GND  
= 100 pF, R  
= 1500 )  
ZAP  
ZAP  
V
V
V
±10.0 k  
±8.0 k  
±4.0 k  
ESD1-1  
ESD1-2  
ESD1-4  
WAKE1, WAKE2 pins versus GND  
All other Pins  
Charge Device Model - JESD22/C101 (C  
= 4.0 pF  
ZAP  
V
V
±750  
±750  
Corner pins (Pins 1, 7, 8 and 14)  
All other pins (Pins 2-6, 9-13)  
ESD2-1  
ESD2-2  
Machine Model - JESD22/A115 (C  
All pins  
= 220 pF, R  
= 0 )  
ZAP  
ZAP  
V
±200  
ESD3-1  
According to “Hardware Requirements for LIN, CAN and Flexray Interfaces in  
Automotive Applications” specification Rev1.1 / December 2nd, 2009  
(C  
= 150 pF, R  
= 330 )  
ZAP  
ZAP  
Contact Discharge, Unpowered  
LIN1, LIN2 pins without capacitor  
±15 k  
±15 k  
±25 k  
±20 k  
±15 k  
V
V
V
V
V
ESD4-1  
ESD4-2  
ESD4-3  
ESD4-4  
ESD4-5  
LIN1, LIN2 pins with 220 pF capacitor  
VSUP (10 µF to ground)  
WAKE1, WAKE2 (2*18 kserial resistor)  
LIN1, LIN2 pins with 220 pF capacitor and indirect ESD coupling  
(according to ISO10605 - Annex F)  
According to ISO10605 - Rev 2008 test specification  
(2.0 k/ 150 pF) - Unpowered - Contact discharge  
LIN1, LIN2 pins without capacitor  
V
V
V
V
±25 k  
±25 k  
±25 k  
±25 k  
ESD5-1  
ESD5-2  
ESD5-3  
ESD5-4  
LIN1, LIN2 pins with 220 pF capacitor  
VSUP (10 µF to ground)  
WAKE1, WAKE2 (2*18 kserial resistor)  
(2.0 k/ 330 pF) - Powered - Contact discharge  
LIN1, LIN2 pins without capacitor  
V
V
V
V
±8 k  
±8 k  
ESD6-1  
ESD6-2  
ESD6-3  
ESD6-4  
LIN1, LIN2 pins with 220 pF capacitor  
±25 k  
±25 k  
VSUP (10 µF to ground)  
WAKE1, WAKE2 (2*18 kserial resistor)  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
CTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 3. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
Symbol  
Value  
Unit  
Thermal Ratings  
Operating Temperature  
Ambient  
C  
T
-40 to 125  
-40 to 150  
A
T
Junction  
J
Storage Temperature  
TSTG  
RJA  
-40 to 150  
150  
C  
°C/W  
C  
Thermal Resistance, Junction to Ambient  
Peak package reflow temperature during reflow(4),(5)  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis Temperature  
Notes  
TPPRT  
Note 5  
150 to 200  
20  
T
°C  
SHUT  
HYST  
T
°C  
4. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause malfunction or permanent damage to the device.  
5. Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020. For Peak Package Reflow  
Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes  
and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.  
Table 4. Limits / Maximum test voltage for transient immunity tests  
Pulse repetition  
Test Pulse  
VS [V]  
Test duration [min]  
Ri []  
Remarks  
frequency [Hz] (1/T1)  
1
-100  
+75  
2
2
1 for function test  
10 for damage test  
10  
2
t2 = 0s  
2a  
3a  
3b  
-150  
+100  
10  
10  
50  
50  
DUT  
Transient Pulse  
Generator  
(Note)  
VSUP  
D1  
10 µF  
GND  
DUT GND  
Note Waveform per ISO 7637-2. Test Pulses 1, 2a, 3a, 3b  
Figure 4. Test Circuit for Transient Test Pulses (VSUP  
)
33663  
Analog Integrated Circuit Device Data  
8
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
DUT  
Transient Pulse  
Generator  
(Note)  
1.0 nF  
WAKE  
18 k  
18 k  
GND  
DUT GND  
Note Waveform per ISO 7637-2. Test Pulses 1, 2a, 3a, 3b.  
Figure 5. Test Circuit for Transient Test Pulses (WAKE1,WAKE2)  
DUT  
Transient Pulse  
Generator  
(Note)  
1.0 nF  
LIN  
GND  
DUT GND  
Note Waveform per ISO 7637-2. Test Pulses 1, 2a, 3a, 3b  
Figure 6. Test Circuit for Transient Test Pulses (LIN1,LIN2)  
DUT  
Transient Pulse  
Generator  
(Note)  
1.0 nF  
INH  
GND  
DUT GND  
Note Waveform per ISO 7637-2. Test Pulses 1, 2a, 3a, 3b.  
Figure 7. Test Circuit for Transient Test Pulses (INH1,INH2)  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
CTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 5. Static Electrical Characteristics  
Characteristics noted under conditions 7.0 V VSUP 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
VSUP PIN (DEVICE POWER SUPPLY)  
Symbol  
Min  
Typ  
Max  
Unit  
Nominal Operating Voltage  
V
7.0  
6.7  
13.5  
18.0  
27  
V
V
V
V
SUP  
Functional Operating Voltage(6)  
Load Dump  
VSUPOP  
VSUPLD  
VPOR  
40  
Power-On Reset (POR) Threshold  
VSUP Ramp Down and INH1, INH2 goes High to Low  
3.5  
5.3  
Power-On Reset (POR) Hysteresis  
VPORHYST  
270  
mV  
V
V
Under-voltage Threshold (positive and negative)  
VUVL, VUVH  
SUP  
Transmission disabled and LIN1,LIN2 bus goes in recessive  
5.8  
6.7  
V
Under-voltage Hysteresis (VUVL - VUVH  
)
VUVHYST  
130  
mV  
SUP  
Supply Current LIN1 and LIN2 in Sleep Mode  
13.5 V, Recessive State  
A  
V
I
12.0  
22  
36  
SUP  
S1  
13.5 V < V  
< 27 V  
I
SUP  
S2  
I
48  
140  
V
13.5 V, Shorted to GND  
S3  
SUP  
Supply Current LIN1 Normal Mode - LIN2 Sleep Mode (and vice versa)  
Bus1 Recessive, BUS2 Sleep, Excluding INH1,INH2  
mA  
mA  
I
4.0  
6.0  
5.0  
8.0  
S_N_REC1,2  
S_N_DOM1,2  
OR (Bus2 Recessive, BUS1 Sleep, Excluding INH1,INH2)  
Bus1 Dominant, BUS2 Sleep, Excluding INH1,INH2  
I
OR (Bus2 Dominant, BUS1 Sleep, Excluding INH1,INH2)  
Supply Current when LIN1 and LIN2 are in Normal or Slow or Fast Mode  
Bus1 Recessive, Bus2 Recessive, Excluding INH1,INH2 Output Current  
Bus1 Recessive, Bus2 Dominant, Excluding INH1,INH2 Output Current  
Bus1 Dominant, Bus2 Recessive, Excluding INH1,INH2 Output Current  
Bus1 Dominant, Bus2 Dominant, Excluding INH1,INH2 Output Current  
I
8.0  
9.0  
S(REC1,REC2)  
I
I
12.0  
12.0  
12.0  
13.0  
13.0  
16.0  
S(REC1,DOM2)  
S(DOM1,REC2)  
I
S(DOM1,DOM2)  
RXD1, RXD2 OUTPUT PINS (LOGIC)  
Low Level Output Voltage  
V
V
V
OL  
I
1.5 mA  
0.0  
0.9  
IN  
High Level Output Voltage  
V
OH  
V
V
= 5.0 V, I  
= 3.3 V, I  
250 A  
250 A  
4.25  
3.0  
5.25  
3.5  
EN  
EN  
OUT  
OUT  
Notes  
6. Device is functional. All features are operating. Electrical parameters are not guaranteed.  
33663  
Analog Integrated Circuit Device Data  
10  
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 5. Static Electrical Characteristics  
Characteristics noted under conditions 7.0 V VSUP 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
TXD1, TXD2 INPUT PINS (LOGIC)  
Symbol  
Min  
Typ  
Max  
Unit  
Low Level Input Voltage  
V
0.8  
V
V
IL  
High Level Input Voltage  
Input Threshold Voltage Hysteresis  
Pull-up Current Source  
V
2.0  
100  
IH  
V
300  
600  
mV  
A  
INHYST  
I
PU  
V
= 5.0 V, 1.0 V < V  
< 3.5 V  
TXD  
-60  
-35  
-20  
EN  
EN1, EN2 INPUT PINS (LOGIC)  
Low Level Input Voltage  
V
0.8  
V
V
IL  
High Level Input Voltage  
V
2.0  
100  
100  
IH  
Input Voltage Threshold Hysteresis  
Pull-down Resistor  
V
400  
230  
600  
350  
mV  
kohm  
INHYST  
RPD  
LIN PHYSICAL LAYER - TRANSCEIVER LIN (LIN1, LIN2)(7)  
Operating Voltage Range(8)  
VBAT  
VSUP  
VSUP_NON_OP  
IBUS_LIM  
8.0  
7.0  
18  
18  
40  
V
V
Supply Voltage Range  
Voltage Range (within which the device is not destroyed)  
-0.3  
V
Current Limitation for Driver Dominant State  
Driver ON, VBUS = 18 V  
mA  
40  
-1.0  
90  
200  
Input Leakage Current at the Receiver  
Driver off; VBUS = 0 V; VBAT = 12 V  
IBUS_PAS_DOM  
mA  
µA  
Leakage Output Current to GND  
IBUS_PAS_REC  
Driver Off; 8.0 V VBAT 18 V; 8.0 V VBUS 18 V; VBUS VBAT;  
VBUS VSUP  
20  
Control Unit Disconnected from Ground(9)  
IBUS_NO_GND  
mA  
GNDDEVICE = VSUP; VBAT = 12 V; 0 < V  
< 18 V  
-1.0  
1.0  
BUS  
V
Disconnected; VSUP_DEVICE = GND; 0 V < V  
< 18 V(10)  
BUS  
IBUSNO_BAT  
VBUSDOM  
VBUSREC  
10  
0.4  
µA  
BAT  
Receiver Dominant State(11)  
Receiver Recessive State(12)  
Notes  
VSUP  
VSUP  
0.6  
7. Parameters guaranteed for 7.0 V VSUP 18 V.  
8. Voltage range at the battery level, including the reverse battery diode.  
9. Loss of local ground must not affect communication in the residual network.  
10. Node has to sustain the current that can flow under this condition. The bus must remain operational under this condition.  
11. LIN threshold for a dominant state.  
12. LIN threshold for a recessive state.  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
CTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 5. Static Electrical Characteristics  
Characteristics noted under conditions 7.0 V VSUP 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Receiver Threshold Center  
(VTH_DOM + VTH_REC)/2  
VBUS_CNT  
VSUP  
0.475  
0.5  
0.525  
Receiver Threshold Hysteresis  
(VTH_REC - VTH_DOM  
VHYS  
VSUP  
)
0.175  
LIN dominant level with 500 680 and 1.0 kload on the LIN bus  
VLINDOM_LEVEL  
VSHIFT_BAT  
VSHIFT_GND  
VBUSWU  
0.0  
0.0  
0.25  
11.5%  
11.5%  
5.3  
VSUP  
VBAT  
VBAT  
V
VBAT_SHIFT  
GND_SHIFT  
LIN Wake-up Threshold from Sleep Mode  
4.3  
30  
LIN Pull-up Resistor to V  
SUP  
RSLAVE  
20  
60  
k  
LIN internal capacitor(13)  
CLIN  
30  
pF  
Over-temperature Shutdown(14)  
Over-temperature Shutdown Hysteresis  
INH1, INH2 OUTPUT PINS  
TLINSD  
150  
160  
20  
200  
°C  
TLINSD_HYS  
°C  
Driver ON Resistance (Normal Mode)  
IINH = 50 mA  
INH  
ON  
50  
30  
Current load capability  
IINH_load  
mA  
A  
From 7.0 V < VSUP < 18 V  
Leakage Current (Sleep Mode)  
I
LEAK  
0 < V  
< V  
SUP  
-5.0  
5.0  
INH  
Over-temperature Shutdown(15)  
Over-temperature Shutdown Hysteresis  
Notes  
TINHSD  
150  
160  
20  
200  
°C  
°C  
TINHSD_HYS  
13. This parameter is guaranteed by process monitoring but not production tested.  
14. When an over-temperature shutdown occurs, the LIN transmitter and receiver are in recessive state and INH switched off. This  
parameter is tested with a test mode on ATE and characterized at laboratory.  
15. When an over-temperature shutdown occurs, the INH1, INH2 high side are switched off and the LIN transmitter and receiver are in  
recessive state. This parameter is tested with a test mode on ATE and characterized at laboratory.  
33663  
Analog Integrated Circuit Device Data  
12  
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 5. Static Electrical Characteristics  
Characteristics noted under conditions 7.0 V VSUP 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
WAKE1, WAKE2 INPUT PINS  
Symbol  
Min  
Typ  
Max  
Unit  
High to Low Detection Threshold (5.5 V < VSUP < 7 V)  
Low to High Detection Threshold (5.5 V < VSUP < 7 V)  
Hysteresis (5.5 V < VSUP < 7 V)  
VWUHL1  
VWULH1  
VWUHYS1  
VWUHL2  
VWULH2  
VWUHYS2  
IWU  
2.0  
2.4  
0.2  
2.4  
2.9  
0.2  
3.9  
4.3  
0.8  
3.9  
4.3  
0.8  
5.0  
V
V
V
High to Low Detection Threshold (7 V VSUP < 27 V)  
Low to High Detection Threshold (7 V VSUP < 27 V)  
Hysteresis (7 V VSUP < 27 V)  
V
V
V
Wake-up Input Current (VWAKE < 27 V)  
µA  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
CTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTIC  
DYNAMIC ELECTRICAL CHARACTERISTIC  
Table 6. Dynamic Electrical Characteristics  
Characteristics noted under conditions 7.0 V VSUP 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LIN1, LIN2 PHYSICAL LAYER  
DRIVERS CHARACTERISTICS FOR NORMAL SLEW RATE - 20.0 KBIT/SEC ACCORDING TO LIN PHYSICAL LAYER  
SPECIFICATION(16)(17)  
33663L AND 33663S DEVICE  
Duty Cycle 1:  
D1  
D2  
THREC(MAX) = 0.744 * VSUP; THDOM(MAX) = 0.581 * VSUP  
0.396  
D1 = tBUS_REC(MIN)/(2 x tBIT), tBIT = 50 µs, 7.0 V VSUP18 V  
Duty Cycle 2:  
THREC(MIN) = 0.422 * VSUP; THDOM(MIN) = 0.284 * VSUP  
0.581  
D2 = tBUS_REC(MAX)/(2 x tBIT), tBIT = 50 µs, 7.6 V VSUP18 V  
LIN1, LIN2 PHYSICAL LAYER  
DRIVERS CHARACTERISTICS FOR SLOW SLEW RATE - 10.4 KBIT/SEC ACCORDING TO LIN PHYSICAL LAYER  
SPECIFICATION(16)(18)  
33663J DEVICE  
Duty Cycle 3:  
D3  
D4  
THREC(MAX) = 0.778 * VSUP; THDOM(MAX) = 0.616 * VSUP  
0.417  
D3 = tBUS_REC(MIN)/(2 x tBIT), tBIT = 96 µs, 7.0 V VSUP18 V  
Duty Cycle 4:  
THREC(MIN) = 0.389 * VSUP; THDOM(MIN) = 0.251 * VSUP  
0.590  
100  
D4 = tBUS_REC(MAX)/(2 x tBIT), tBIT = 96 µs, 7.6 V VSUP18 V  
LIN1, LIN2 PHYSICAL LAYER - DRIVERS CHARACTERISTICS FOR FAST SLEW RATE  
Fast Bit Rate (Programming Mode)  
BRFAST  
kBit/s  
LIN1, LIN2 PHYSICAL LAYER - TRANSMITTER CHARACTERISTICS FOR NORMAL SLEW RATE - 20.0 KBIT/SEC(19)  
33663S DEVICE  
Symmetry of Transmitter delay(20)  
s  
-7.25  
7.25  
tTRAN_SYM  
tTRAN_SYM = MAX (tTRAN_SYM60%, tTRAN_SYM40%  
tTRAN_SYM60% = | tTRAN_PDF60% - tTRAN_PDR60%  
tTRAN_SYM40% = | tTRAN_PDF40% - tTRAN_PDR40%  
)
|
|
Notes  
16. Bus load RBUS and CBUS 1.0 nF / 1.0 k, 6.8 nF / 660, 10 nF / 500 . Measurement thresholds: 50% of TXD signal to LIN signal  
threshold defined at each parameter. See Figure 8.  
17. See Figure 9  
18. See Figure 10  
19. VSUP from 7.0 to 18 V, bus load RBUS and CBUS 1.0 nF / 1.0 k, 6.8 nF / 660 , 10 nF / 500 . Measurement thresholds: 50% of TXD  
signal to LIN signal threshold defined at each parameter. See Figure 8.  
20. See Figure 11  
33663  
Analog Integrated Circuit Device Data  
14  
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTIC  
Table 6. Dynamic Electrical Characteristics  
Characteristics noted under conditions 7.0 V VSUP 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LIN1, LIN2 PHYSICAL LAYER - RECEIVERS CHARACTERISTICS ACCORDING LIN2.1(21)  
33663L AND 33663J AND 33663S  
Propagation Delay and Symmetry(22)  
s  
tREC_PD  
Propagation Delay of Receiver, tREC_PD = MAX (tREC_PDR, tREC_PDF  
Symmetry of Receiver Propagation Delay, tREC_PDF - tREC_PDR  
)
6.0  
2.0  
tREC_SYM  
-2.0  
LIN1, LIN2 PHYSICAL LAYER: RECEIVER CHARACTERISTICS WITH TIGHTEN LIMITS(21)  
33663S DEVICE  
Propagation Delay and Symmetry(22)  
s  
s  
µs  
tREC_PD_S  
Propagation Delay of Receiver, tREC_PD = MAX (tREC_PDR, tREC_PDF  
Symmetry of Receiver Propagation Delay, tREC_PDF - tREC_PDR  
)
5.0  
1.3  
tREC_SYM_S  
-1.3  
LIN1, LIN2 PHYSICAL LAYER: RECEIVER CHARACTERISTICS - LIN SLOPE 1V/ns(21)  
33663S DEVICE  
Propagation Delay and Symmetry(23)  
tREC_PD_FAST  
Propagation Delay of Receiver, tREC_PD _FAST= MAX (tREC_PDR_FAST  
tREC_PDF_FAST  
,
6.0  
1.3  
)
Symmetry of Receiver Propagation Delay, tREC_PDF_FAST - tREC_PDR_FAST  
tREC_SYM_FAST  
-1.3  
SLEEP MODE AND WAKE-UP TIMINGS  
Sleep Mode Delay Time(24)  
t
SD  
after EN High to Low to INH High to Low with 100µA load on INH  
50  
91  
WAKE-UP TIMINGS  
Bus Wake-up Deglitcher (Sleep Mode) (25)  
t
40  
10  
70  
48  
100  
15  
s  
s  
WUF  
EN Wake-up Deglitcher (26)  
EN High to INH Low to High  
t
LWUE  
Wake-up Deglitcher (27)  
t
s  
WF  
Wake state change to INH Low to High  
70  
Notes  
21. VSUP from 7.0 to 18 V, bus load RBUS and CBUS 1.0 nF / 1.0 k, 6.8 nF / 660 , 10 nF / 500 . Measurement thresholds: 50% of TXD  
signal to LIN signal threshold defined at each parameter. See Figure 8.  
22. See Figure 12  
23. See Figure 13  
24. See Figures 22 and 23  
25. See Figures 15 and 17  
26. See Figures 14, 18, 22, and 23  
27. See Figures 16, 22, and 23  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
CTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
Table 6. Dynamic Electrical Characteristics  
Characteristics noted under conditions 7.0 V VSUP 18 V, -40 C TA 125 C, GND = 0 V, unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
3.75  
Typ  
5.0  
50  
Max  
6.25  
80  
Unit  
ms  
ms  
s  
TXD TIMING  
TXD Permanent Dominant State Delay(28)  
FIRST DOMINANT BIT VALIDATION  
tTXDDOM  
First dominant bit validation delay when device in Normal Mode(29)  
FAST BAUD RATE TIMING  
tFIRST_DOM  
EN Low Pulse Duration to Enter in Fast Baud Rate Using Toggle Function (30)  
EN High to Low and Low to High  
t
1
45  
TXD Low Pulse Duration to Enter in Fast Baud Rate Using Toggle Function (30)  
t
t
12.5  
µs  
µs  
2
3
Delay Between EN Falling Edge and TXD Falling Edge to Enter in Fast Baud  
Rate Using Toggle Function (30)  
12.5  
12.5  
Delay Between TXD Rising Edge and EN Rising Edge to Enter in Fast Baud  
Rate Using Toggle Function (30)  
t
t
µs  
µs  
4
5
RXD Low Level duration after EN rising edge to validate the Fast Baud Rate  
entrance(30)  
1.875  
6.25  
Notes  
28. The LIN is in recessive state and the receiver is still active  
29. See Figures 14, 15, 16, and 21  
30. See Figures 19 and 20  
TIMING DIAGRAMS  
V
SUP  
VSUP  
TXD  
R0  
LIN  
RXD  
GND  
C0  
Note R0 and C0: 1.0 k/1.0 nF, 660 /6.8 nF, and 500 /10 nF.  
Figure 8. Test Circuit for Timing Measurements  
33663  
Analog Integrated Circuit Device Data  
16  
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
TXD  
TBIT  
TBIT  
t
(MAX)  
t
(MIN)  
BUS_REC  
BUS_DOM  
VLIN_REC  
REC(MAX)74.4% VSUP  
TH  
Thresholds of  
receiving node 1  
58.1% V  
SUP  
TH  
TH  
DOM(MAX)  
LIN  
Thresholds of  
receiving node 2  
42.2% V  
28.4% V  
SUP  
TH  
REC(MIN)  
SUP  
DOM(MIN)  
t
(MIN)  
BUS_DOM  
t
(MAX)  
BUS_REC  
RXD  
Output of receiving Node 1  
t
REC_PDF(1)  
t
REC_PDR(1)  
RXD  
Output of receiving Node 2  
t
REC_PDF(2)  
t
REC_PDR(2)  
Figure 9. LIN1, LIN2 Timing Measurements for Normal Baud Rate (33663L, 33663S)  
TXD  
TBIT  
TBIT  
t
(MAX)  
t
(MIN)  
BUS_REC  
BUS_DOM  
VLIN_REC  
REC(MAX)77.8% VSUP  
Thresholds of  
receiving node 1  
TH  
61.6% V  
SUP  
TH  
DOM(MAX)  
LIN  
Thresholds of  
receiving node 2  
38.9% V  
25.1% V  
SUP  
SUP  
TH  
REC(MIN)  
TH  
DOM(MIN)  
t
(MIN)  
BUS_DOM  
t
(MAX)  
BUS_REC  
RXD  
Output of receiving Node 1  
t
REC_PDF(1)  
t
REC_PDR(1)  
RXD  
Output of receiving Node 2  
t
REC_PDF(2)  
t
REC_PDR(2)  
Figure 10. LIN1, LIN2 Timing Measurements for Slow Baud Rate (33663J)  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
CTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
TXD  
VLIN_REC  
LIN BUS SIGNAL  
60% V  
40% V  
SUP  
V
BUSREC  
V
SUP  
SUP  
V
BUSDOM  
t
t
t
TRAN_PDR40%  
TRAN_PDF60%  
TRAN_PDF40%  
t
TRAN_PDR60%  
Figure 11. LIN1, LIN2 Transmitter Timing for 33663S  
VLIN_REC  
60% V  
40% V  
SUP  
V
BUSREC  
V
SUP  
LIN BUS SIGNAL  
SUP  
V
BUSDOM  
RXD  
t
t
REC_PDF  
REC_PDR  
Figure 12. LIN1, LIN2 Receiver Timing  
VLIN_REC  
1V/ns  
60% V  
40% V  
SUP  
V
BUSREC  
V
SUP  
LIN BUS SIGNAL  
SUP  
V
BUSDOM  
RXD  
t
t
REC_PDF_FAST  
REC_PDR_FAST  
Figure 13. LIN1, LIN2 Receiver Timing LIN Slope 1.0 V/ns  
33663  
Analog Integrated Circuit Device Data  
18  
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
FUNCTIONAL DIAGRAMS  
EN1  
EN1  
INH1  
INH1  
Normal Mode  
Normal Mode  
tLWUE  
TXD1  
TXD1 (High or Low)  
LIN1  
LIN1  
RXD1  
RXD1  
(High Z)  
WAKE1  
WAKE1  
LIN2  
EN2  
VBUSWU  
tWUF  
INH2  
INH2  
Normal Mode  
Normal Mode  
TXD2  
tFIRST_DOM  
EN2  
LIN2  
TXD2 (High or Low)  
Awake Mode  
RXD2  
(High Z)  
RXD2  
WAKE2  
WAKE2  
Figure 15. LIN Module 1 in Normal Mode & LIN Module 2  
LIN2 Wake-up with TXD2 LOW  
Figure 14. LIN Module 1 EN1 Pin Wake-up with TXD1  
High & LIN Module 2 in Normal Mode  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
CTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
WAKE1  
WAKE after deglitcher  
tWF  
INH1  
EN1  
tFIRST_DOM  
TXD1 (High or Low)  
Normal Mode  
LIN1  
RXD1 RXD2  
(High Z)  
Awake Mode  
WAKE2  
WAKE after deglitcher  
tWF  
INH2  
EN2  
tFIRST_DOM  
TXD2 (High or Low)  
Normal Mode  
LIN2  
RXD2  
Awake Mode  
(High Z)  
Figure 16. LIN Module 1 Wake1 Pin Wake-up with TXD1  
Low & LIN Module 2 Wake2 Pin Wake-up with TXD2 High  
33663  
Analog Integrated Circuit Device Data  
20  
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
INH  
EN  
TXD  
LIN  
No wake-up  
t>tWUF  
RXD  
(High Z)  
WAKE  
Preparation to Sleep Mode  
No communication available  
Sleep Mode  
Awake  
Mode  
No communication available  
Device in  
Communication Mode  
Normal Mode  
Wake & LIN wake-up events not taken into  
Wake & LIN wake-up events  
allowed  
account  
t
SD  
Figure 17. Bus Wake-up with LIN bus in Dominant During the Preparation to Sleep Mode  
(same sequence for LIN1 & LIN2)  
EN pin  
tLWUE  
EN internal signal  
t
LWUE  
EN pin  
t < t  
LWU  
E
EN internal signal  
5V  
5V  
EN pin  
t < t  
LWU  
E
EN internal signal  
Figure 18. EN1, EN2 Pin Deglitcher  
t1 (45 s)  
EN  
Fast Baud Rate entrance  
t2 (12.5 s)  
TXD  
t
(12.5  
s)  
t
4 (12.5 s)  
3
LIN  
Fast Baud Rate validation  
RXD  
t5  
Figure 19. Fast Baud Rate Selection (Toggle Function) for LIN1 or LIN2  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
21  
CTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
t1 (45 s)  
EN  
Exit Fast Baud Rate  
t2 (12.5 s)  
TXD  
t
(12.5  
s)  
t4 (12.5 s)  
3
LIN  
RXD stays High for Normal or Slow Mode validation  
RXD  
Figure 20. Fast Baud Rate Mode Exit (Back to Normal or Slow Slew Rate) for LIN1 or LIN2  
VSUP  
VUVL  
POR (3.5-5.3 V)  
POR (3.5-5.3 V)  
VSUP  
160 µs *  
EN1  
(High or Low)  
INH1  
EN1  
INH1  
LIN1 in Normal Mode  
TXD1  
(High or Low)  
(High or Low)  
TXD1  
LIN1  
LIN1  
Awake Mode  
RXD1  
EN2  
(High Z)  
RXD1  
(High Z)  
(High or Low)  
INH2  
EN2  
LIN2 in Normal Mode  
INH2  
(High or Low)  
TXD2  
(High or Low)  
TXD2  
LIN2  
LIN2  
Awake Mode  
RXD2  
RXD2  
(High Z)  
(High Z)  
*: this parameter is guaranteed by design  
Figure 21. Power Up and Down Sequences  
33663  
Analog Integrated Circuit Device Data  
22  
Freescale Semiconductor  
ELECTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
INH  
t
LWUE  
EN  
TXD  
LIN  
(High Z)  
RXD  
t
WF  
WAKE  
WAKE after deglitcher  
Preparation to Sleep Mode  
Sleep  
Mode  
Device in  
Communication Mode  
No communication allowed  
LIN & Wake wake up events not taken  
into account  
t
SD  
Figure 22. Sleep Mode Sequence for LIN1 or LIN2  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
23  
CTRICAL CHARACTERISTICS  
FUNCTIONAL DIAGRAMS  
INH  
INH  
EN  
t
t
LWUE  
LWUE  
EN  
TXD  
TXD  
No communication  
No communication  
allowed  
LIN  
LIN  
allowed  
(High Z)  
(High Z)  
RXD  
RXD  
WAKE  
(case 1)  
WAKE  
(case 2)  
WAKE after deglitcher  
(case 1)  
WAKE after deglitcher  
(case 2)  
t = tWF  
t tWF  
Awake Mode  
Preparation to  
Sleep Mode  
Awake Mode  
Device in  
Communication Mode  
Device in  
Communication Mode  
t < t  
SD  
Sleep Mode (t < tSD  
)
Preparation to  
The device does not enter in Sleep Mode  
The device does not enter in Sleep Mode  
INH  
EN  
t
LWUE  
TXD  
No communication  
allowed  
LIN  
(High Z)  
RXD  
WAKE  
(case 3)  
t tWF  
WAKE after deglitcher  
(case 3)  
t tSD  
Device in  
Communication Mode  
Sleep  
Mode  
Preparation to  
Sleep Mode  
Awake Mode  
Figure 23. Examples of Sleep Mode Sequences for LIN1 or LIN2  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
The 33663L and 33663J are both a Physical Layer component dedicated to automotive LIN sub-bus applications.  
The 33663L features include a 20 kbps baud rate and the 33663J a 10 kbps baud rate. Both integrate fast baud rate for test  
and programming modes, excellent ESD robustness, immunity against disturbance, and radiated emission performance. They  
have safe behavior, in case of a LIN bus short-to-ground, or a LIN bus leakage during low power mode.  
Digital inputs are 5.0 and 3.3 V compatible without any external required components.  
The INH1 and INH2 outputs may be used to control an external voltage regulator, or to drive a LIN bus pull-up resistor.  
FUNCTIONAL PIN DESCRIPTION  
POWER SUPPLY PIN (VSUP)  
The VSUP supply pin is the power supply pin for the 33663L or 33663J. In an application, the pin is connected to a battery  
through a serial diode, for reverse battery protection. The DC operating voltage is from 7.0 to 18 V. This pin sustains standard  
automotive condition, such as 40 V during load dump. To avoid a false bus message, an under-voltage on VSUP disables the  
transmission path (from TXD to LIN) when VSUP falls below 6.7 V. Supply current in the Sleep mode is typically 6.0 A for one  
LIN Module.  
GROUND PIN (GND)  
In case of a ground disconnection at the module level, the 33663L and 33663J do not have significant current consumption  
on the LIN bus pin when in the recessive state.  
LIN BUS PIN (LIN1, LIN2)  
The LIN1 and LIN2 pins represent the single-wire bus transmitter and receiver. It is suited for automotive bus systems, and is  
compliant to the LIN bus specification 1.3, 2.0, 2.1, and SAEJ2602-2.  
The LIN interface is only active during Normal mode.  
LIN overtemperature  
OR  
INH overtemperature  
INH switched off &  
LIN transmitter and receiver disabled  
VSUP  
LIN Wake up  
INH_ON  
INH  
LIN Driver  
Slope Control  
EN_sleep  
LIN Undervoltage  
TXD Dominant  
30 k  
725 k  
LIN  
X 1  
EN  
35µA  
TXD  
RXD  
Receiver  
Transmitter Characteristics  
The LIN driver is a low side MOSFET with internal over-current thermal shutdown. An internal pull-up resistor with a serial  
diode structure is integrated, so no external pull-up components are required for the application in a slave node. An additional  
pull-up resistor of 1.0 kmust be added when the interface is used in the master node.  
The LIN pin exhibits no reverse current from the LIN bus line to VSUP, even in the event of a GND shift or VSUP disconnection.  
The 33663 is tested according to the application conditions (i.e. in normal mode and recessive state during communication).  
The transmitter has a 20 kbps baud rate (Normal baud rate) for the 33663L and 33663S devices, or 10 kbps baud rate (Slow  
baud rate) for the 33663J device.  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
25  
CTIONAL DESCRIPTION  
FUNCTIONAL PIN DESCRIPTION  
As soon as the device enters Normal mode, the LIN transmitter will be able to send the first dominant bit only after the  
tFIRST_DOM delay. tFIRST_DOM delay has no impact on the receiver. The receiver will be enabled as soon as the device enters  
Normal mode.  
Receiver Characteristics  
The receiver thresholds are ratiometric with the device supply pin.  
If the VSUP voltage goes below the VSUP under-voltage threshold (VUVL, VUVH), the bus LIN1 and bus LIN2 enter into a recessive  
state even if communication is sent to TXD1 or TXD2.  
For the LIN Module 1, in case of LIN1 Thermal Shutdown, the transceiver and receiver are in recessive and INH1 turned off.  
When the temperature is below the TLINSD, INH1 and LIN1 will be automatically enabled. The same behavior is valid for LIN  
Module 2.  
For each LIN Module, the Fast Baud Rate selection is reported by the RXD pin. Fast Baud Rate is activated by the toggle  
function (See Figure 19). At the end of the toggle function, just after EN rising edge, RXD pin is kept low for t5 to flag the Fast  
Baud Rate entry (See Figure 19).  
To exit the Fast Baud Rate and return in Normal or Slow baud rate, a toggle function is needed. At the end the toggle function,  
RXD pin stays high to signal Fast Baud Rate exit (See Figure 20). The device enters into Fast Baud Rate at room and hot  
temperature.  
DATA INPUT PINS (TXD1, TXD2)  
The TXD1 and TXD2 inputs pins are the MCU interface to control the state of the LIN1 and LIN2 outputs. When TXD1 (TXD2)  
is LOW (dominant), LIN1 (LIN2) output is LOW; when TXD1 (TXD2) is HIGH (recessive), the LIN1 (LIN2) output transistor is  
turned OFF. TXD1/TXD2 pins thresholds are 3.3 V and 5.0 V compatible.  
These pins have an internal pull-up current source to force the recessive state if the input pins are left floating.  
If TXD1 (TXD2) stays low (dominant sate) more than 5.0 ms (typical value), the LIN1 (LIN2) transmitter of LIN Module goes  
automatically into recessive state.  
DATA OUTPUT PINS (RXD1, RXD2)  
Each LIN Modules integrate the same RXD output structure and functionality. Both pins are independent. The following  
description is the same for both.  
RXD output pin is the MCU interface, which reports the state of the LIN bus voltage.  
In Normal or Slow baud rate, LIN HIGH (recessive) is reported by a high voltage on RXD; LIN LOW (dominant) is reported by  
a low voltage on RXD. The RXD output structure is a tristate output buffer.  
X 1  
EN  
200 k  
LIN_RXD  
VSUP  
RXD  
EN_RXD  
30 k  
Receiver  
LIN  
Slope  
Control  
Figure 24. RXD interface  
The RXD output pins are the receiver output of the LIN interface. The low level is fixed. The high level is dependent on EN  
voltage. If EN is set at 3.3 V, RXD VOH is 3.3 V. If EN is set at 5.0 V, RXD VOH is 5.0 V. The RXD1 and RXD2 VOH level can be  
defined independently.  
In sleep mode, RXD are high-impedance. When a wake-up event is recognized from the WAKE pin or from the LIN bus pin,  
RXD is pulled LOW to report the wake-up event. An external pull-up resistor may be needed.  
33663  
Analog Integrated Circuit Device Data  
26  
Freescale Semiconductor  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL PIN DESCRIPTION  
ENABLE INPUT PINS (EN1, EN2)  
EN1 (EN2) input pin controls the operation mode of the interface. If EN1 (EN2) = 1, the interface is in Normal mode, TXD1  
(TXD2) to LIN1 (LIN2) after tFIRS_DOM delay and LIN1 (LIN2) to RXD1 (RXD2) paths are both active. EN1 (EN2) pin thresholds are  
3.3 V and 5.0 V compatible. RXD1 (RXD2) VOH level follows EN1 (EN2) pin high level. One LIN Module enters the Sleep Mode  
by setting EN1 (EN2) LOW for a delay higher than tSD (70 µs typ. value) and if the WAKE1 (WAKE2) pin state doesn’t change  
during this delay. (see Figure 22). Both LIN Modules enter Sleep Mode if EN1 & EN2 LOW.  
A combination of the logic levels on EN1 (EN2) and TXD1 (TXD2) pins allows the device to enter in Fast Baud Rate mode of  
operation (see Figure 19).  
INHIBIT OUTPUT PINS (INH1, INH2)  
The INH1 (INH2) output pin is connected to an internal high side power MOSFET. The pin has two possible main functions. It  
can be used to control an external switchable voltage regulator having an inhibit input. It can also be used to drive the LIN bus  
external resistor in the master node application, thanks to its high drive capability. This is illustrated in Figure 26.  
In Sleep mode, INH1 (INH2) is turned OFF. If a voltage regulator inhibit input is connected to INH1 (INH2), the regulator will  
be disabled. If the master node pull-up resistor is connected to INH1 (INH2), the pull-up resistor will be unpowered and left  
floating.  
In case of a INH1 (INH2) thermal shutdown, the high side is turned off and the LIN1 (LIN2) transmitter and receiver are in  
recessive state. An external 10 to 100 pF capacitor on INH1 (INH2) pin is advised in order to improve EMC performances.  
WAKE INPUT PINS (WAKE1, WAKE2)  
The WAKE1 (WAKE2) pin is a high-voltage input used to wake-up the device from the Sleep mode. WAKE1 (WAKE2) is  
usually connected to an external switch in the application.  
The WAKE1 (WAKE2) pin has a special design structure and allows wake-up from both HIGH to LOW or LOW to HIGH  
transitions. When entering into Sleep mode, the corresponded LIN Module monitors the state of its WAKE pin and stores it as a  
reference state. The opposite state of this reference state will be the wake-up event used by the LIN Module to enter again into  
Normal mode.  
If the WAKE1 (WAKE2) pin state changes during the Sleep mode Delay Time (tSD) or before EN1 (EN2) goes low with a  
deglitcher lower than tWF, the LIN Module will not enter in Sleep mode, but will go into Awake mode (See Figure 23).  
An internal filter is implemented to avoid false wake-up event due to parasitic pulses (See Figure 16). WAKE1 (WAKE2) pin  
input structure exhibits a high-impedance, with extremely low input current when voltage at this pin is below 27 V. Two serial  
resistors should be inserted in order to limit the input current mainly during transient pulses and ESD. The total recommended  
resistor value is 33 k. An external 10 to 100 nF capacitor is advised for better EMC and ESD performances.  
Important The WAKE1 (WAKE2) pin should not be left open. If the wake-up function is not used, WAKE1 (WAKE2) should  
be connected to ground to avoid a false wake-up.  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
27  
CTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
As described by the following, the 33663L, 33663J, and 33663S have two operational modes, Normal and Sleep. In addition,  
there are two transitional modes: Awake mode which allows the device to go into Normal mode, and Preparation to Sleep mode  
which allows the device to go into Sleep mode.  
NORMAL OR SLOW BAUD RATE  
In the Normal mode, the LIN bus can transmit and receive information.  
The 33663L and 33663S (20 kbps) have a slew rate and timing compatible with Normal Baud Rate and LIN protocol  
specification 1.3, 2.0, 2.1, and 2.2.  
The 33663J (10 kbps) has a slew rate and timing compatible with Low Baud Rate.  
From Normal mode, the three devices can enter into Fast Baud Rate (Toggle function).  
FAST BAUD RATE  
In fast baud rate, the slew rate is around 10 times faster than the normal baud rate. This allows very fast data transmission  
(>100 kbps) -- for example, electronic control unit (ECU) tests and microcontroller program download. The bus pull-up resistor  
might be adjusted to ensure a correct RC time constant in line with the high baud rate used.  
The following sequence is applicable to both LIN Modules independently.  
Fast baud rate is entered via a special sequence (called toggle function) as follows:  
1. EN1 pin set LOW while TXD1 is HIGH  
2. TXD1 stays HIGH for 12.5 µs min  
3. TXD1 set LOW for 12.5 µs min  
4. TXD1 pulled HIGH for 12.5 µs min  
5. EN1 pin set LOW to HIGH while TXD1 still HIGH  
The LIN Module enters into the fast baud rate if the delay between step 1 to step 5 is 45 µs maximum. The toggle function is  
described in Figures 19. Once in fast baud rate, the same toggle function just described previously is used to bring the LIN Module  
1 back into normal baud rate.  
Fast baud rate selection is reported to the MCU by the RXD1 pin. Once the LIN Module 1 enters in this fast baud rate, the  
RXD1 pin goes at low level for t5. When LIN Module 1 returns to normal baud rate with the same toggle function, the RXD1 pin  
stays high. Both sequences are illustrated in Figures 19 and 20.  
PREPARATION TO SLEEP MODE  
The following sequence is applicable to both LIN Modules simultaneously or separately. Here it is detailed with the LIN Module  
1.  
To enter the Preparation to Sleep mode, EN1 must be low for a delay higher than tLWUE  
.
• If the WAKE1 pin state doesn’t change during tSD and tLWUE, then the LIN Module 1 goes in Sleep Mode.  
• If the WAKE1 pin state changes during tSD and if tWF is reached after end of tSD, then the LIN Module 1 goes into Sleep  
mode after the end of tSD timing.  
• If the WAKE1 pin state changes during tSD and tWF delay has been reached before end of tSD, then the LIN Module 1 goes  
into Awake Mode.  
• If the WAKE1 pin state changes before tSD and the delay tWF ends during tSD, then the LIN Module 1 goes in Awake Mode.  
• If EN1 goes high for a delay higher than tLWUE, the LIN Module 1 returns in Normal mode.  
SLEEP MODE  
The following Sleep mode paragraph is applicable to both LIN Modules simultaneously or separately. LIN Module 1 is an  
example.  
To enter into Sleep mode, EN1 must be low for a delay longer than tSD and the WAKE1 pin must stay in the same state (High  
or Low) during this delay. The LIN Module 1 conditions to not enter Sleep mode, but enter Awake mode are detailed in the  
Preparation into Sleep Mode chapter. See Figure 23.  
33663  
Analog Integrated Circuit Device Data  
28  
Freescale Semiconductor  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
In Sleep mode, the transmission path is disabled and the LIN Module 1 is in Low Power mode. Supply current from VSUP is  
very low. Wake-up can occur from LIN1 bus activity, from the EN1 pin and from the WAKE1 input pin. If during the preparation  
to Sleep mode delay (tSD), the LIN1 bus goes low due to LIN1 network communication, the LIN Module 1 still enters Sleep mode.  
The LIN Module 1 can be awakened by a recessive to dominant start, followed by a dominant to recessive state after t > tWUF  
.
After a wake-up event, the LIN Module 1 enters into Awake mode. In Sleep mode, the LIN Module 1 internal 725 kOhm pull-  
up resistor is connected and the 30 kOhm is disconnected.  
DEVICE POWER-UP (Awake Transitional Mode)  
At power-up (VSUP rises from zero), when VSUP is above the Power-On Reset voltage, both LIN Modules automatically switch  
after a 160 µs delay time to the Awake transitional mode. Both INH pins (INH1 and INH2) go to a HIGH state and RXD1and RXD2  
to a LOW state. See Figure 21.  
DEVICE WAKE-UP EVENTS  
The 33663L, 33663J and 33663S can be awakened from Sleep mode by three wake-up events:  
• Remote wake-up via LIN1 and/or LIN2 bus activity  
• Via the EN1 and/or EN2 pin  
• Toggling the WAKE1 and/or WAKE2 pin  
Remote Wake from LIN1, LIN2 Bus (Awake Transitional Mode)  
Each LIN Transceiver is awakened by its LIN dominant pulse longer than tWUF. Dominant pulse means: a recessive to  
dominant transition, wait for t > tWUF, then a dominant to recessive transition. This is illustrated in Figure 15. Once the wake-up  
is detected (during the dominant to recessive transition), the LIN Module waken up by its LIN enters into Awake mode, with its  
INH HIGH and RXD pulled LOW.  
Once in the Awake mode, its EN pin has to be set to 3.3 V or 5.0 V (depending on the system) to enter into Normal mode.  
Once in Normal mode, the LIN Module has to wait tFIRST_DOM delay before transmitting the first dominant bit.  
Wake-up from EN1, EN2 pins  
Each LIN Module can be awakened by a LOW to HIGH transition of its EN pin. When EN is switched from LOW to HIGH and  
stays HIGH for a delay higher than tLWUE, the LIN Module is awakened and enters into Normal mode. See Figure 14. Once in  
Normal mode, the LIN Module has to wait tFIRST_DOM delay before transmitting the first dominant bit.  
Wake-up from WAKE1, WAKE2 Pins (Awake Transitional Mode)  
Just before entering the Sleep mode, the WAKE pin state of the concerned LIN Module is stored. A change in the level longer  
than the deglitcher time (70 µs maximum) will generate a wake-up, and the LIN Module enters into the Awake Transitional mode,  
with its INH HIGH and RXD pulled LOW. See Figure 16. The LIN Module goes into Normal mode when its EN is switched from  
LOW to HIGH and stays HIGH for a delay higher than tLWUE. Once in Normal mode, the LIN Module has to wait tFIRST_DOM delay  
before transmitting the first dominant bit.  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
29  
CTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
FAIL-SAFE FEATURES  
Tables 7 describes the 33663 protections.  
Table 7. Fail Safe Features  
RECOVERY  
FUNCTIONALITY  
MODE  
FUNCTIONA  
L MODE  
RECOVERY  
CONDITION  
BLOCK  
FAULT  
CONDITION  
FALLOUT  
Device goes in Awake  
mode whatever the  
previous device mode  
Power  
Supply  
Power on Reset  
(POR)  
VSUP < 3.5 V (min) then  
power up  
Condition  
gone  
All modes  
No internal supplies  
INH1 AND/OR  
INH2 Thermal  
Shutdown.  
For the failed  
LIN Module:  
INH high side of the  
failed LIN Moduleturned  
off and its LIN  
transmitter and receiver  
in recessive State  
INH1  
INH2  
Temperature > 160 °C  
(typ)  
Condition  
gone  
LIN Module returns in  
same functional mode  
Normal,  
Awake &  
Preparationto  
Sleep modes  
Each LIN Module  
has its own INH  
Thermal  
Shutdown.  
VSUP under-  
voltage  
Both LIN transmitters in  
recessive state  
Condition  
gone  
Device returns in same  
functional mode  
VSUP < VUVL  
TXD1 AND/OR  
TXD2 Pins  
Permanent  
Dominant  
Normal  
LIN transmitter of the  
failed LIN Module in  
recessive state  
TXD pin low for more than  
5.0 ms (typ)  
Condition  
gone  
LIN Module returns in  
same functional mode  
LIN1  
LIN2  
LIN1 AND/OR  
LIN2 Thermal  
Shutdown.  
LIN transmitter and  
receiver of the failed LIN  
Module in recessive  
state and its INH high  
side turned off  
Normal mode  
Temperature > 160 °C  
(typ)  
Condition  
gone  
LIN Module returns in  
same functional mode  
Each LIN Module  
has its own LIN  
Thermal  
Shutdown.  
33663  
Analog Integrated Circuit Device Data  
30  
Freescale Semiconductor  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
EN1 HIGH TO LOW for t >tLWUE  
Toggle Function (4)  
Fast Baud Rate  
(10x)  
EN1 LOW TO HIGH for t>tLWUE  
EN1 HIGH TO LOW for t>tLWUE  
EN1 LOW TO HIGH for t> tLWUE  
Internal WAKE1 (1)  
State changes during tSD  
LIN1  
Preparation  
to Sleep  
Normal Baud Rate or  
Slow Baud Rate  
Awake  
Toggle Function (4)  
LIN1 bus dominant pulse  
(2)  
for t>tWUF  
Or  
Internal WAKE1 (1)  
state doesn’t change  
during tSD  
WAKE1 pin state changes  
(3)  
for t>tWF  
EN1 LOW TO HIGH for t>tLWUE  
Sleep  
LIN MODULE 1  
VSUP > VPOR  
Power-Up  
EN2 HIGH TO LOW for t >tLWUE  
Fast Baud Rate  
(10x)  
Toggle Function (4)  
EN2 LOW TO HIGH for t >tLWUE  
EN2 HIGH TO LOW for t >tLWUE  
Internal WAKE2 (1)  
State changes during tSD  
LIN2  
Preparation to  
Sleep  
Awake  
Normal Baud Rate or  
Toggle Function (4)  
Slow Baud Rate  
EN2 LOW TO HIGH for t> tLWUE  
LIN2 bus dominant pulse  
(2)  
for t>tWUF  
Or  
WAKE2 pin state changes  
Internal WAKE2 (1)  
State doesn’t change  
during tSD  
(3)  
for t>tWF  
EN2 LOW TO HIGH for t>tLWUE  
Sleep  
LIN MODULE 2  
(1):internal WAKE is the WAKE signal filtered by tWF (WAKE deglitcher)  
(2):see figures 15 and 18  
(3):see figures 14 and 17  
(4):the Toogle Function is guaranteed at ambiant and hot temperature  
Figure 25. Operational and Transitional Modes State  
Table 7. Explanation of Operational and Transitional Modes State Diagram (each transceiver)  
Operational/  
Transitional  
INH1  
INH2  
EN1  
EN2  
LIN1, LIN2  
TXD1, TXD2  
RXD1, RXD2  
Recessive state, driver off with  
725 kpull-up.  
High-impedance. HIGH if  
Sleep Mode  
OFF  
(low)  
LOW  
X
external pull-up to V  
DD.  
Recessive state, driver off.   
725 kpull-up active.  
LOW.  
Awake  
ON  
LOW  
X
X
If external pull-up, HIGH-to-LOW  
transition reports wake-up.  
(high)  
Recessive state, driver off with   
725 kpull-up  
High-impedance. HIGH if  
external pull-up to V  
Preparation  
to Sleep  
Mode  
ON  
LOW  
DD.  
(high)  
Driver active. 30 kpull-up  
active.   
Normal Baud Rate for 33662L  
LOW to drive LIN bus in dominant Report LIN bus state:  
Normal Mode  
ON  
HIGH  
• Low LIN bus dominant  
• High LIN bus recessive  
HIGH to drive LIN bus in  
(high)  
recessive.  
and 33662S  
Slow Baud Rate for 33662J  
Fast Baud Rate (> 100 kbps) for  
33662L, 33662S & 33662J  
X = Don’t care.  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
31  
CTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
COMPATIBILITY WITH LIN1.3  
Following the Consortium LIN specification Package, Revision 2.1, November 24, 2006, Chapter 1.1.7.1 Compatibility with  
LIN1.3 page 15:  
The LIN 2.1 physical layer and is backward compatible with the LIN 1.3 physical layer, but not the other way around. The LIN  
2.1 physical layer sets harder requirements, i.e. a node using the LIN 2.1 physical layer can operate in a LIN 1.3 cluster.  
33663  
Analog Integrated Circuit Device Data  
32  
Freescale Semiconductor  
TYPICAL APPLICATION  
OPERATIONAL MODES  
TYPICAL APPLICATION  
The 33663 can be configured for several applications. The figure below shows LIN2 as a slave node and LIN1 as a master  
node application. An additional pull-up resistor of 1.0 kin series with a diode must be added when the device is used in the  
master node.  
D1  
C1  
47μF  
C2  
100nF  
VBAT  
Regulator  
VSUP  
12V  
R3  
2.2k  
INH2  
EN1  
5V or  
3.3V  
WAKE1  
C3  
R1  
R2  
18k  
33663  
100nF  
18k  
VDD  
I/O  
INH1  
LIN  
MODULE 1  
VDD  
*
D2  
R6  
1kꢀ  
RXD1  
TXD1  
RXD1  
TXD1  
R6  
2.2k  
(LIN 1)  
LIN1  
LIN Bus1  
MCU  
EN2  
I/O_2  
WAKE2  
VDD  
*
LIN  
C4  
R4  
18k  
R5  
18k  
100nF  
MODULE 2  
RXD2  
TXD2  
RXD2  
TXD2  
(LIN 2)  
LIN2  
LIN Bus2  
GND  
*: Optional 2.2k if implemented  
Figure 26. 33663 Typical Application  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
33  
KAGING  
PACKAGE DIMENSIONS  
PACKAGING  
PACKAGE DIMENSIONS  
Important For the most current revision of the package, visit www.Freescale.com and do a keyword search on the 98A.  
Dimensions shown are provided for reference ONLY.  
EF SUFFIX  
14-PIN  
98ASB42565B  
REVISION J  
33663  
Analog Integrated Circuit Device Data  
34  
Freescale Semiconductor  
PACKAGING  
PACKAGE DIMENSIONS  
EF SUFFIX  
14-PIN  
98ASB42565B  
REVISION J  
33663  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
35  
SION HISTORY  
REVISION HISTORY  
REVISION  
1.0  
DATE  
DESCRIPTION OF CHANGES  
7/2012  
12/2013  
Initial Release.  
Removed HBM row: INH1, INH2 pins versus GND - VESD1-3 - 8.0 k  
Changed LIN dominant level with 500 680 and 1.0 kload on the LIN bus Max from 0.3 to  
2.0  
0.25  
33663  
Analog Integrated Circuit Device Data  
36  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software implementers to use Freescale products.  
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no  
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.  
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.  
Off.SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of  
their respective owners.  
© 2013 Freescale Semiconductor, Inc.  
Document Number: MC33663  
Rev. 2.0  
12/2013  

相关型号:

935314697574

Interface Circuit
NXP

935314724528

RF and Baseband Circuit
NXP

935314729557

RISC Microcontroller
NXP

935314733528

RISC Microcontroller
NXP

935314733557

RISC Microcontroller
NXP

935314734557

RISC Microcontroller
NXP

935314737557

RISC Microcontroller
NXP

935314749557

Microcontroller
NXP

935314753574

Microcontroller
NXP

935314758557

Microcontroller
NXP

935314761518

Multifunction Peripheral
NXP

935314765557

RISC Microcontroller
NXP