935316769518 [NXP]

Switching Regulator;
935316769518
型号: 935316769518
厂家: NXP    NXP
描述:

Switching Regulator

开关
文件: 总24页 (文件大小:1252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC34670  
Rev. 3.0, 12/2006  
escale Semiconductor  
Advance Information  
IEEE 802.3af PD With Current  
Mode Switching Regulator  
34670  
The 34670 combines a Power Interface Port for IEEE 802.3af  
Powered Devices (PD) and a high performance current mode  
switching regulator. It allows a designer to build PDs with a minimum  
of external components by means of integrating the required IEEE  
802.3af functions and all functions necessary to build a high  
efficiency DC/DC converter.  
POWER OVER ETHERNET  
On the PD side the 34670 fully supports the IEEE802.3af standard  
and provides complete signature and power classification functions.  
It controls inrush current limiting and incorporates adjustable  
undervoltage lockout. The switching regulator provides excellent line  
and load regulation. It drives an external Power MOSFET with sense  
resistor.  
EG SUFFIX (PB-FREE)  
98ASB42343B  
20-PIN SOICW  
Features  
• Integrated IEEE 802.3af Compliant Interface  
• Signature Detection and Classification Functionality  
• Integrated Isolation Switch  
• Programmable Inrush Current Limiting Control  
• Adjustable Undervoltage Lockout  
• Input Voltage Range up to 80 V  
• Current Mode Control  
ORDERING INFORMATION  
Temperature  
Device  
Package  
Range (T )  
A
MCZ34670EG/R2  
-40°C to 85°C  
20 SOICW  
• Adjustable Oscillator  
• Leading Edge Blanking  
• Internal Slope Compensation Circuitry  
• Input Overvoltage Protection  
• 50% Duty Cycle Limitation  
• Pb-Free Packaging Designated by Suffix Code EG  
RJ-45  
PSE HUB OR SWITCH  
ETHERNET APPLIANCE (PD)  
TX  
RX  
PHY  
PHY  
RX  
TX  
HOST  
CONTROLLER  
PSE POWER  
CONTROLLER  
HOST  
PROCESSOR  
CAT 5  
CABLE  
SWITCH  
-48V  
GND  
48 V POWER  
SUPPLY  
34670  
PD POWER  
CONTROLLER  
ISOLATION SWITCH  
-48V  
DC/DC  
Figure 1. 34670 Simplified Application Diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
RNAL BLOCK DIAGRAM  
INTERNAL BLOCK DIAGRAM  
FREQ  
HIGH VOLTAGE  
REGULATOR  
VPWR  
VDD  
2.5V  
8V  
INTERNAL  
SUPPLY  
5.7V  
0.8R  
R
S
R
R
POR  
OSC  
Q
GATE  
SS  
RCLA  
EN  
3.5V  
UV or UVLO  
UNDERVOLTAGE  
UV or UVLO  
5µA  
LOCKOUT  
+
OVERVOLTAGE  
DETECTION  
0.3V  
S
R
CONTROL LOGIC  
Q
4.5V  
5k  
PWM  
COMPARATOR  
0.6 - 2.6V  
CS  
BLANK  
0.4V  
1.4V  
0.6V  
+
3
CURRENT  
LIMITATION  
ILIM  
SLOPE  
COMP  
GATE  
DRIVE  
COMP  
FB  
UVLO  
TEMP  
SENSOR  
1.2V  
REG  
DETECT  
R
SENSE  
+
250mV  
VIN  
VOUT  
RESET  
Figure 2. 34670 Simplified Internal Block Diagram  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
2
PIN CONNECTIONS  
PIN CONNECTIONS  
1
VPWR  
20  
19  
18  
17  
16  
15  
14  
VDD  
2
3
GATE  
VPWR  
RCLA  
UVLO  
TEST1  
TEST2  
FREQ  
CS  
FB  
4
5
COMP  
SS  
6
7
RESET  
8
13  
12  
11  
ILIM  
VIN  
VIN  
VOUT  
VOUT  
VOUT  
9
10  
Figure 3. 34670 Pin Connections  
Table 1. 34670 Pin Definitions  
Pin Number  
Pin Name  
Formal Name  
Definition  
This is the most positive power supply input. The load connects between this pin  
and the VOUT pin.  
1, 2  
VPWR  
Positive Supply  
Voltage Input  
Connect a resistor between RCLA and VIN to select the class of the PD.  
3
4
RCLA  
UVLO  
Classification Resistor  
Undervoltage Lookout  
Used to adjust the undervoltage lookout threshold voltage, connected to VIN to use  
the default threshold voltage.  
Connect to VIN in application mode.  
5
6
7
TEST1  
TEST2  
FREQ  
Test pins  
Adjusts the internal oscillator frequency by connecting a resistor between FREQ  
Frequency Adjustment  
Inrush Current Limit  
and VIN  
.
Used to adjust the inrush current limit of the isolation switch, add a resistor  
8
ILIM  
between ILIM and VIN  
.
This is the most negative power supply input.  
9
10  
VIN  
VIN  
Negative Supply Voltage  
This pin is the drain of the internal Power MOSFET (high current path).  
This pin is the drain of the internal Power MOSFET (low current path).  
This is an active-low RESET output signal. This pin is referenced to VOUT  
11, 12  
13  
VOUT  
VOUT  
RESET  
Output Voltage  
Output Voltage  
.
14  
RESET Output  
(active low)  
Connect an external capacitor to SS. The internal current source charges the  
capacitor and generates a soft-start ramp.  
15  
16  
17  
18  
19  
20  
SS  
COMP  
FB  
Soft Start Input  
Compensation Pin  
Feedback Input  
Current Sense  
COMP is the output of the error amplifier and is available for feedback  
compensation. COMP is pulled-up by an internal 5.0 kresistor to 5.0 V.  
This is the inverting input of the error amplifier. In non-isolated applications it’s  
connected to the secondary output through a resistor divider.  
The current sense pin CS senses a voltage that is proportional to the current  
through the sense resistor.  
CS  
GATE drives the gate of the external power MOSFET. GATE sources and sinks  
up to 1.0 A.  
GATE  
VDD  
Gate Driver Output  
VDD Output  
VDD mainly supplies the gate of the external power MOSFET. Connect a capacitor  
from VDD to VOUT  
.
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
CTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 2. Maximum Ratings  
All voltages are with respect to VIN unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Ratings  
Symbol  
Value  
Unit  
ELECTRICAL RATINGS  
Power Supply Voltage  
Supply Current  
V
-0.3 to 80  
18  
V
mA  
V
PWR  
I
PWR  
VOUT Pins Voltage  
UVLO Voltage  
V
-0.3 to (V  
+ 0.3)  
OUT  
PWR  
V
-0.3 to 10  
V
UVLO  
RCLA  
RCLA Voltage  
V
-0.3 to 5.0  
-0.3 to 5.0  
-0.3 to 5.0  
V
ILIM Voltage  
V
V
ILIM  
FREQ Voltage  
VFREQ  
V
With respect to:  
(2)  
(3)  
VOUT  
VIN  
FB, COMP Voltage  
VFB, VCOMP  
-0.3 to 5.0  
-0.3 to 5.0  
-0.3 to 16  
-0.3 to 80  
-0.3 to 80  
-0.3 to 80  
-0.3 to 80  
-0.3 to 80  
-0.3 to 80  
V
V
V
V
V
V
SS Voltage  
SS  
VDD Voltage  
V
DD  
GATE Voltage  
CS Voltage  
V
-0.3 to (V  
+ 0.3)  
DD  
GATE  
V
-0.3 to 5.0  
CS  
RESET Voltage  
V
-0.3 to 15  
RESET  
ESD Voltage (1)  
Human Body Model  
Machine Model  
V
V
ESD1  
±2000  
±200  
V
ESD2  
Output Clamp Energy  
E
12  
mJ  
CL  
NotesNotes  
1. ESD1 testing is performed in accordance with the Human Body Model (C  
= 100 pF, R  
= 1500 Ω). ESD2 testing is performed in  
ZAP  
ZAP  
accordance with the Machine Model (C  
2. Measured value relative to VOUT  
= 200 pF, R  
= 0 Ω).  
ZAP  
ZAP  
3. Measured value relative to V  
IN  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 2. Maximum Ratings (continued)  
All voltages are with respect to VIN unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Ratings  
Symbol  
Value  
Unit  
THERMAL RATINGS  
Operating Temperature  
Ambient (4)  
°C  
-40 to 85  
120  
T
A
Junction (8), (9)  
T
J
Storage Temperature  
TSTG  
-65 to 150  
800  
°C  
Power Dissipation (T = 25 °C) (7)  
P
D
mW  
°C/W  
A
Thermal Resistance  
Rθ  
JA  
103  
47  
Junction to Ambient  
20LD SOIC W/B Package (9)  
RθJB  
(6)  
Peak Package Reflow Temperature During Reflow (5)  
Thermal Shutdown Temperature  
Thermal Shutdown Recovery Temperature  
NotesNotes  
,
TPPRT  
Note 6  
180  
°C  
°C  
°C  
T
T
SHUT  
150  
HYST  
4. The limiting factor is junction temperature; taking into account the power dissipation, thermal resistance, and heat sinking.  
5. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause malfunction or permanent damage to the device.  
6. Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow  
Temperature and Moisture Sensitivity Levels (MSL),  
Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e.  
MC33xxxD enter 33xxx), and review parametrics.  
7. Maximum power dissipation at indicated ambient temperature in free air with no heatsink used.  
8. For T = 85°C and P = 700 mW and R = 47°C/W.  
θJB  
A
D
9. Measured with 4 layers 2s2p JEDEC std. PCB.  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
CTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics  
Characteristics noted under conditions 30 V VPWR 60 V, -40°C TA 85°C, VIN = 0 V unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SIGNATURE DETECTION  
Input Offset Current (1.4 V V  
9.5 V)  
I
10  
µA  
kΩ  
PORT  
OFFSET  
Differential Input Resistance (1.4 V V  
9.5 V)  
R
600  
PORT  
DIFF  
CLASSIFICATION  
Classification Current (13.5 V V  
20 V)  
I
mA  
PORT  
CLASS  
Class 0: R  
Class 1: R  
Class 2: R  
Class 3: R  
Class 4: R  
= 4.42 kΩ  
= 475 Ω  
= 261 Ω  
= 169 Ω  
= 113 Ω  
0
4.0  
12  
20  
30  
44  
CLASS  
CLASS  
CLASS  
CLASS  
CLASS  
9.0  
17  
26  
36  
Classification Current Limit  
I
50  
mA  
V
CLASS(LIM)  
RCLA Reference Voltage (13.5 V V  
20 V)  
V
4.0  
4.5  
5.0  
PORT  
RCLA  
INRUSH CURRENT LIMITATION (37 V V  
60 V) (RLIM)  
PORT  
Input Inrush Current, ILIM connected to VIN  
I
I
350  
mA  
INRUSH  
INRUSH  
Input Inrush Current, ILIM connected via resistor R  
to VIN  
ILIM  
R
R
R
= 12.1 kΩ  
= 42.2 kΩ  
= 191 kΩ  
130  
70  
180  
110  
65  
250  
165  
100  
ILIM  
ILIM  
ILIM  
30  
NORMAL OPERATION (VPWR, UVLO)  
Supply Voltage  
V
4.5  
60  
7.3  
40  
V
mA  
V
PWR  
Supply Current (10)  
I
PWR  
Default Turn-On Voltage (UVLO = VIN  
Default Turn-Off Voltage (UVLO = VIN  
UVLO Hysteresis when set internally  
External UVLO Programming Range  
UVLO Reference Voltage  
)
)
V
UVLO(ON)  
V
30  
6.0  
25  
1.96  
V
UVLO(OFF)  
V
V
HYST(INT)  
V
50  
V
UVLO(PR)  
V
2.0  
15  
2.04  
V
UVLO(REF)  
UVLO Hysteresis when set externally  
UVLO Bias Current  
V
%
µA  
HYST(EXT)  
I
1.0  
UVLO(B)  
ISOLATION SWITCH (ILIM)  
On-Resistance (V  
= 48 V, I  
= 350 mA) (11)  
PORT  
R
500  
700  
mΩ  
PORT  
DS(ON)  
Isolation Switch Current Limit in Normal Operation Mode  
I
380  
mA  
LIM  
Notes  
10. GATE pin open, PWM controller running.  
11. Measured across VIN and VOUT  
.
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
6
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics(continued)  
Characteristics noted under conditions 30 V VPWR 60 V, -40°C TA 85°C, VIN = 0 V unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
PWM COMPARATOR (COMP)  
Symbol  
Min  
Typ  
Max  
Unit  
COMP Control Voltage Range  
COMP Input Bias Current  
V
1.3  
4.0  
1.8  
V
COMP  
I
mA  
COMP(B)  
HIGH VOLTAGE REGULATOR  
Regulator Output Voltage  
VDD  
8.0  
9.0  
10  
V
V
REG  
Regulator Turn-Off Voltage (12)  
V
VDD  
Reg  
REG(OFF)  
+0.5  
Regulator Current Limitation (13)  
Regulator Continuous Current  
GATE DRIVER (UVLO)  
Gate Driver UVLO, Rising  
Gate Driver UVLO, Falling  
CURRENT LIMIT (CS)  
CS Threshold Voltage  
CS Bias Current  
I
7.0  
15  
mA  
mA  
REGLIM  
I
5.0  
REGDC  
V
VDD-0.5  
V
V
GATE(R)  
V
6.5  
GATE(F)  
V
320  
400  
480  
30  
mV  
CS  
I
µA  
CS(B)  
ERROR AMPLIFIER  
Reference Voltage  
V
1.164  
1.2  
1.236  
V
REF  
OVERVOLTAGE SHUTDOWN  
OVLO Threshold, Rising  
OVLO Threshold, Falling  
OVLO Hysteresis  
V
66  
63  
72  
69  
V
V
V
OV(R)  
V
OV(F)  
V
3.0  
OV(HYS)  
SOFT-START (SS)  
SS Output Voltage  
V
3.25  
2.0  
5.0  
2.0  
V
µA  
mA  
V
SS  
SS Source Current  
I
6.75  
2.25  
SS(OUT)  
SS Sink Current  
I
SS(IN)  
Shutdown Threshold Voltages  
V
0.48  
0.24  
0.6  
0.3  
0.72  
0.40  
SS(R)  
V
SS(F)  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature  
Thermal Hysteresis  
T
150  
165  
30  
180  
°C  
°C  
SHUTDOWN  
T
HYS  
Notes  
12. An external voltage has to be applied.  
13. Thermal limitations of the device might derate usable current range.  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
CTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Table 4. Dynamic Electrical Characteristics  
Characteristics noted under conditions 30 V VPWR 60 V, -40°C TA 85°C, VIN = 0 V unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
NORMAL OPERATION  
Turn-On Filter Time  
Turn-Off Filter Time  
PWM COMPARATOR  
t
200  
200  
µs  
µs  
FILT(ON)  
t
FILT(OFF)  
Slope Compensation Ramp as a Function of Switching Frequency  
mV/µs  
f
f
f
= 100 kHz  
= 250 kHz  
= 400 kHz  
m
10  
25  
40  
PWM  
PWM  
PWM  
100  
m
250  
m
400  
Duty Cycle Limit (14)  
GATE DRIVER  
D
48  
%
MAX  
Rise Time (10% - 90%), C  
Fall Time (90% - 10%), C  
= 2.0 nF, VDD  
= 9.0 V  
REG  
t
50  
30  
ns  
ns  
Load  
R
= 2.0 nF, VDD  
= 9.0 V  
REG  
t
Load  
F
CURRENT LIMIT  
Blanking Time (14)  
PWM OSCILLATOR  
t
40  
50  
60  
ns  
BLANK  
Default Clock Frequency (FREQ connected to VIN  
Oscillator Frequency Adjusting Resistor Range  
)
f
175  
121  
320  
80  
225  
325  
499  
480  
120  
kHz  
kΩ  
PWM  
R
FREQ  
Oscillator Frequency Range, R  
Oscillator Frequency Range, R  
ERROR AMPLIFIER  
= 121 kΩ  
= 499 kΩ  
fRANGE  
fRANGE  
kHz  
kHz  
FREQ  
FREQ  
Gain Bandwidth (14)  
GBW  
1.0  
MHz  
dB  
DC Open Loop Gain  
A
80  
VOL  
RESET OUTPUT  
RESET Output Low Voltage (I  
= 20 mA)  
V
0.8  
V
RESET, SINK  
RESET,LOW  
tRESET  
RESET Output Filter Time  
20  
µs  
Notes  
14. Guaranteed by design. Not production tested.  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
8
ELECTRICAL CHARACTERISTICS  
TYPICAL SWITCHING WAVEFORMS  
TYPICAL SWITCHING WAVEFORMS  
w/o snubber  
w/ snubber  
w/ snubber  
w/o snubber  
Figure 4. Drain Voltage of Switching MOSFET  
Figure 6. Secondary Voltage before Diode  
Figure 5. Secondary and Output Voltage  
Figure 7. Gate Voltage and Voltage at CS pin  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
CTRICAL CHARACTERISTICS  
ELECTRICAL PERFORMANCE CURVES  
ELECTRICAL PERFORMANCE CURVES  
MC34670 Efficiency Plot: Vo = 5V, w/o bias winding, Coilcraft  
DA2142-AL  
90.00  
85.00  
80.00  
75.00  
70.00  
65.00  
60.00  
55.00  
50.00  
57V  
48V  
36V  
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00  
IO [A]  
MC34670 Efficiency Plot: Vo = 5V, w/ bias winding, Coilcraft  
DA2362-AL  
90.00  
85.00  
80.00  
75.00  
70.00  
65.00  
60.00  
55.00  
50.00  
57V  
48V  
36V  
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00  
IO [A]  
Figure 8. Efficiency Plot  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
10  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
The 34670 combines a Power Interface Port for IEEE  
802.3af Powered Devices (PD) and a high performance  
current mode switching regulator. It allows a designer to build  
PDs with a minimum of external components by means of  
integrating the required IEEE 802.3af functions and all  
functions necessary to build a high efficiency DC/DC  
converter. Thus 34670 gives the system designer a device  
that drastically reduces cost and board space.  
The 34670 also offers an input overvoltage detection to  
protect the external switching MOSFET by disabling the gate  
driver in case of input line overvoltage.  
The switching regulator provides excellent line and load  
regulation. It drives an external power MOSFET with sense  
resistor. The switching frequency is adjustable between  
100 kHz and 400 kHz. The output voltage feedback  
information can be accomplished by an optocoupler, if  
isolation is required.  
On the PD side the 34670 fully supports the IEEE802.3af  
standard and provides complete signature detection and  
power classification functions. It controls inrush current  
limiting and incorporates an adjustable undervoltage lockout.  
The 34670 includes thermal protection circuitry to protect the  
device in case of high power dissipation.  
An internal logic control block manages the sequencing of  
signature detection, classification and proper turn on and turn  
off of the DC/DC converter.  
FUNCTIONAL PIN DESCRIPTION  
POSITIVE SUPPLY VOLTAGE INPUT (VPWR)  
RESET OUTPUT (RESET)  
This is the most positive power supply input. The load  
connects between this pin and the VOUT pin.  
This is an active-low RESET output signal. This pin is  
referenced to VOUT  
.
CLASSIFICATION RESISTOR (RCLA)  
SOFT START INPUT (SS)  
Connect a resistor between RCLA and VIN to select the  
class of the PD.  
Connect an external capacitor to SS. The internal current  
source charges the capacitor and generates a soft-start  
ramp.  
UNDERVOLTAGE LOOKOUT (UVLO)  
COMPENSATION PIN (COMP)  
Used to adjust the undervoltage lookout threshold voltage,  
connected to VIN to use the default threshold voltage.  
COMP is the output of the error amplifier and is available  
for feedback compensation. COMP is pulled-up by an  
internal 5.0 kresistor to 5.0 V.  
TEST PINS (TEST1, TEST2)  
Connect to VIN in application mode.  
FEEDBACK INPUT (FB)  
This is the inverting input of the error amplifier. In non-  
isolated applications it’s connected to the secondary output  
through a resistor divider.  
FREQUENCY ADJUSTMENT (FREQ)  
Adjusts the internal oscillator frequency by connecting a  
resistor between FREQ and VIN.  
CURRENT SENSE (CS)  
INRUSH CURRENT LIMIT (ILIM)  
The current sense pin CS senses a voltage that is  
proportional to the current through the sense resistor.  
Used to adjust the inrush current limit of the isolation  
switch, add a resistor between ILIM and VIN.  
GATE DRIVER OUTPUT (GATE)  
NEGATIVE SUPPLY VOLTAGE (VIN)  
GATE drives the gate of the external power MOSFET.  
GATE sources and sinks up to 1.0 A.  
This is the most negative power supply input.  
OUTPUT VOLTAGE (VOUT)  
VDD OUTPUT (VDD)  
This pin is the drain of the internal Power MOSFET (high  
current path and low current path).  
VDD mainly supplies the gate of the external power  
MOSFET. Connect a capacitor from VDD to VOUT  
.
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
CTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
POWER DEVICES (PD) INTERFACE  
The PD interface of the 34670 has been designed to  
comply with the requirements of the IEEE standard 802.3af.  
The device operates in three different modes, depending on  
the input voltage.  
I
PD OPERATING MODES  
The IEEE 802.3af standard defines three operating modes  
in general. These modes are summarized in Table 5.  
I2  
I1  
Table 5. PD Operating Modes  
Operating Mode  
Voltage at PD Input Connector  
Signature Resistor Detection  
Classification  
2.7 V - 10.1 V  
14.5 V - 20.5 V  
37 V - 57 V  
Normal Operation Mode  
V
V1  
V2  
SIGNATURE RESISTOR DETECTION  
A PD shall present a valid detection signature at the PD  
input connector to get properly detected as a power over LAN  
enabled pin. Valid and non-valid detection signature regions  
are separated by guard bands. See Figure 9 for valid and  
non-valid signature regions.  
V
V  
2
1
dR = --------------------  
I  
I
2
1
Figure 10. dR Measurement  
It can be seen in Figure 11, that a signature resistor of  
25 kas defined in IEEE 802.3af and two diodes in series  
would lead to an effective resistance out of the valid region  
specified in Figure 9. At low voltages the effective resistance  
is above the maximum allowed value of 26.25 k, as  
illustrated in Figure 11. Therefore one has to adjust the  
signature resistor RSIG (R1 and R2, see UVLO Adjustment  
on page 13) to a value below 25 kto stay within the valid  
region.  
valid region  
non-valid region  
non-valid region  
Signature [k]  
12  
23.75 26.25  
45  
Figure 9. Signature Resistance Guard Bands  
The effective resistance across the input pins is calculated  
by two subsequent voltage-current measurements made  
during the detection process by the PSE.  
VALID PD DETECTION SIGNATURE  
CHARACTERISTICS  
During signature detection phase the Power Sourcing  
Equipment (PSE) applies a voltage in the range 2.7 V -  
10.1 V on the PI connector and looks for the 25 ksignature  
resistor. Since the PD circuitry includes bridge rectifiers, the  
PD has to compensate for the voltage drop across the diodes  
and the diodes serial resistance. The effective signature  
resistance dR is obtained by the V-I-Slope measurement of  
the PSE (Figure 10).  
Figure 11. dR at Low Input Voltages  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
12  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
CLASSIFICATION  
CLASSIFICATION SIGNATURE LOAD CURRENT  
A PD may optionally be classified by the PSE. The intent  
of classification is to provide a method for more efficient  
power allocation through the PSE. The PD classification  
allows the PSE to identify four different (power) classes  
depending on the required power that the PD will draw during  
normal operation. The classes and the corresponding  
maximum power drawn by the PD is shown in Table 6.  
The implementation for the classification circuitry is shown  
in Figure 12.  
+VPORT  
34670  
VPWR  
Table 6. PD Classes  
Maximum Power  
Vref  
+
-
Class  
Usage  
EN  
[W]  
0
1
2
3
4
Default  
Optional  
Optional  
Optional  
Reserved  
0.44 - 12.95  
0.44 - 3.84  
3.84 - 6.49  
6.49 - 12.95  
RCLA  
ICLASS  
VIN  
RCLASS  
-VPORT  
PD CLASSES  
Figure 12. Classification Circuitry  
During classification probing by the PSE, the PD applies  
the appropriate load current onto the line. The PSE measures  
the load current and can determine the classification as  
described in Table 7.  
A constant voltage is applied at pin RCLA and depending  
on the resistor RCLASS, a current from +VPORT to -VPORT is  
flowing with the following relation:  
VRCLA  
ICLASS = --------------------  
RCLASS  
.
Table 7. PD Class vs. Classification Current  
ICLASS is the classification current that is measured by the  
PSE. The values for the RCLASS resistor corresponding to the  
appropriate class are listed in Table 8.  
Classification Current [mA]  
Class  
Condition  
Min  
Max  
Table 8. PD Class vs. Classification Resistor RCLASS  
14.5 - 20.5 Volts  
measured at PD  
input connector  
0
1
2
3
4
0
4
RCLASS []  
4.42k  
475  
Class  
Classification Current [mA]  
9
12  
20  
30  
44  
0
1
2
3
4
2.0  
10.5  
18.5  
28  
17  
26  
36  
261  
169  
40  
113  
UVLO ADJUSTMENT  
The 34670 has default UVLO settings that corresponds to  
the IEEE 802.3af standard. Nevertheless the user can adjust  
the UVLO by an external resistor divider as sketched in  
Figure 13. Since the UVLO resistor divider replaces the  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
CTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
signature resistor, the total resistance of R1+R2 must equal  
25 k.  
R
= R  
R  
SIG  
1
2
VUVLO(OFF) = VUVLO(ON) 0.85  
+VPORT  
The typical turn-off voltage VUVLO(OFF) is 85% of the turn  
VPWR  
on voltage VUVLO(ON)  
.
RCLA  
INRUSH CURRENT LIMITATION  
The 34670 has been designed to interface also with legacy  
PoE-PSEs which do not meet the inrush current requirement  
of the IEEE 802.3af specification. By setting the initial inrush  
current limit to a low level, a PD using the 34670 minimizes  
the current drawn from the PSE during start-up. The  
maximum inrush current level can be set by connecting a  
resistor from ILIM to VIN as illustrated in Figure 15.  
R1  
UVLO  
R2  
ILIM  
VIN  
-VPORT  
+VPORT  
Figure 13. UVLO Adjustment by External  
Resistor Divider  
VPWR  
To use the default settings for UVLO, the pin UVLO must  
be connected to VIN. In this case, a valid signature resistor  
has to be placed between -VPORT and +VPORT. This  
configuration can be seen in Figure 14.  
RCLASS  
RCLA  
RSIG  
25kΩ  
+VPORT  
UVLO  
RILIM  
ILIM  
VPWR  
VIN  
RCLA  
-VPORT  
RSIG  
25kΩ  
Figure 15. Inrush Current Limitation by External  
Resistor RILIM  
UVLO  
ILIM  
The following table shows the selectable current limits and  
the corresponding resistor value that has to be connected  
between pins ILIM and VIN:  
VIN  
-VPORT  
Table 9. Inrush Current Limit vs. RILIM  
Figure 14. Default UVLO Settings  
Inrush Current Limit [mA]  
R
Value [k]  
ILIM  
To calculate the values for R1 and R2 the following  
equations should be used:  
180  
110  
65  
12.1  
42.2  
191  
R
+ R = R  
SIG  
1
2
VUVLO(REF)  
---------------------------------  
VUVLO(ON)  
R
=
R  
SIG  
2
After powering up, the 34670 switches to the high level  
current limit, thereby allowing the PD to consume up to  
12.95 W if a 802.3af PSE is present.  
where VUVLO(ON) is the desired turn-on voltage threshold and  
UVLO(ref) the UVLO reference voltage.  
V
PULSE WITH MODULATOR CONTROLLER  
diode reverse recovery current of the power circuit. The  
leading-edge blanking of the CS signal prevents the PWM  
comparator from premature termination of the on cycle.  
CURRENT-MODE CONTROL OPERATION  
The 34670 offers current-mode control operation with  
leading-edge blanking. The current-limit comparator monitors  
the CS pin at all times and provides cycle-by-cycle current  
limit.  
The 34670 limits the duty cycle to 50%. This is  
advantageous for applications which are not allowed to  
exceed an on-time of 50 % of the switching period TS. Beside  
the duty-cycle limit, slope compensation is provided to  
stabilize the inner current loop and avoid oscillations for  
The CS signal contains a leading-edge spike that is the  
result of the MOSFET gate charge current, capacitive and  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
14  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
converters running in continuos conduction mode (CCM).  
The value of the slope compensation depends on the  
switching frequency. See Table 10.  
T1  
NP  
NS  
Table 10. Slope Compensation Values  
Switching Frequency [kHz]  
Slope Compensation [mV/µs]  
100  
250  
400  
10  
25  
50  
RV  
ISOLATED OPTOCOUPLER FEEDBACK  
Isolated voltage feedback can be accomplished by using  
an optocoupler and a shunt regulator (see Figure 19). The  
output voltage accuracy is a function of the accuracy of the  
shunt regulator and feedback resistor divider tolerance,  
therefore the feedback resistors should have an appropriate  
accuracy.  
R1  
R2  
Since the error amplifier function is implemented on the  
secondary side by the optocoupler and a 3-pin adjustable  
shunt regulator, the internal error amplifier of the 34670 is not  
used. The FB pin is connected to VOUT, thus disabling the  
internal open-drain error amplifier.  
TLV431  
Figure 16. Isolated Optocoupler Feedback  
The bias voltage for the optocoupler is accomplished  
through the internal 5.0 kpull-up resistor between COMP  
and an internal 5.0 V reference.  
ISOLATED PRIMARY CONTROL FEEDBACK  
Another option to accomplish isolated feedback is the use  
of a tertiary winding (see Figure 21). The advantage of this  
solution without optocoupler and shunt regulator is clearly the  
cost effectiveness. Nevertheless the line and load regulation  
is worse than with optocoupler feedback.  
When a TL431 or TLV431 shunt regulator is used for  
output voltage regulation, the output voltage is set by the ratio  
of resistors R1 and R2, see Figure 16 for details. The output  
voltage is given by the following equation:  
When isolated primary feedback is used, the loop  
compensation components are connected between pins  
COMP and FB.  
R
1
V
= V  
1 + -------  
O
REF  
R
2
where VREF = 1.24 V for the TLV431 (VREF = 2.5 V for the  
TL431).  
INTERNAL REGULATORS  
The internal high voltage regulator of the 34670 regulates  
from the input voltage across VPWR and VIN down to the  
VDD voltage. During start-up the high voltage regulator  
provides the necessary voltage for the internal gate driver to  
commence switching. If the external MOSFET gate drive  
pulls less than 3.0 mA under all circumstances, an auxiliary  
transformer winding that usually provides the bias voltage for  
the chip and the gate driver is not required.  
In cases where the external MOSFET gate drive pulls  
more than 5.0 mA, an auxiliary winding is needed to reduce  
the power dissipation in the internal high voltage LDO. See  
Figure 18 for an application drawing. It is recommended to  
add a 0.1 µF ceramic capacitor in parallel with the existing  
load capacitor. This reduces noise at the VDD pin caused by  
the auxiliary winding.  
The high voltage regulator is disabled when the VDD pin is  
forced by an external voltage above the VDD regulation point.  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
CTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
This reduces power dissipation in the device and improves  
overall efficiency.  
When the overvoltage protection is triggered  
(VPWR > VOV(R)), the gate driver is immediately disabled. At  
the same time, the slow discharge of CSS is initiated. While  
the soft-start capacitor is discharging, the gate driver remains  
disabled. Once VSS = 0.3 V and the overvoltage  
(VPWR < VOV(F)) condition disappears, operation resumes  
through a regular soft-start.  
12  
VREG(OFF)  
10  
VGATE(R)  
CURRENT-SENSE COMPARATOR  
8
The current-sense (CS) comparators and its associated  
circuitry limits the peak current through the MOSFET. Current  
is sensed at CS pin as a voltage across the sense resistor  
VGATE(F)  
6
4
2
RCS between the source of the MOSFET and VOUT  
.
The CS input has two voltage trip levels, a 600mV high  
limit and a 400 mV low limit. When the voltage on CS  
produced by a current through the current sense resistor  
exceeds the high limit threshold, the current ON-cycle is  
immediately terminated and the GATE output is pulled low.  
t
GATE enable  
If the low limit threshold is exceeded for longer than 50 ns  
(typical blanking time), the current ON-cycle is also  
terminated. The blanking time ensures a false termination of  
the switching cycle caused by the leading-edge spike on the  
sense waveform.  
HVReg enable  
Figure 17. VDD and MOSFET Driver Output Behavior  
A load capacitor connected to VDD ensures a proper  
filtering of the VDD voltage. The minimum capacitance value  
for this load capacitor should be at least 10 µF. An electrolytic  
type capacitor is sufficient.  
The current-sense resistor RCS is selected according to  
the following equation:  
400mV  
R
= ----------------------------------------  
CS  
I
LIM(primary)  
Please refer to application note A/N3279 for further  
information about the size of the capacitor.  
where ILIM(primary) is the maximum peak primary-side  
current.  
If VDD falls below the UVLO threshold, the voltage  
regulator is disabled and the MOSFET driver output (GATE)  
is held low.  
In case of an overcurrent in the external MOSFET the  
current switching cycle is terminated and GATE is pulled low.  
The soft-start capacitor CSS is discharged and after removal  
of the faulty condition the PWM is re-started through a regular  
soft start.  
PWM CONTROLLER UVLO, SOFT-START, AND  
SHUTDOWN FUNCTION  
The soft-start function provided by the 34670 allows the  
output voltage to ramp up in a controlled way, thus  
eliminating output voltage overshoot.  
PWM OSCILLATOR  
A default 250 kHz oscillator sets the switching frequency  
of the PWM controller. The frequency of the oscillator can be  
adjusted between 100 kHz and 400 kHz by an optional  
external resistor RFREQ connected from the FREQ pin of the  
integrated circuit to VIN.  
While the PWM controller is in undervoltage lockout, the  
capacitor CSS connected to the SS pin is fully discharged.  
After coming out of undervoltage lockout, an internal current  
source starts charging the capacitor CSS to initiate soft-start.  
When VSS has reached 0.6 V, the gate driver is enabled and  
PWM operation begins. The duty cycle during soft-start is  
primarily controlled by the internal sawtooth voltage and the  
voltage at the SS pin. If the voltage at the SS pin is above  
2.6 V, the regular PWM control through pins CS, COMP, and  
FB takes over and soft-start is finished.  
The appropriate switching frequency fPWM can be  
calculated as shown below:  
47920  
f
[kHz] = ----------------------------------- + 4  
PWM  
R
[kΩ]  
FREQ  
where fPWM is the PWM switching frequency and RFREQ is the  
frequency adjusting resistor.  
The following equation calculates the total soft-start time:  
t
[ms] = 0.4 C  
[nF]  
To use the default frequency of 250 kHz the FREQ pin can  
be connected to VIN or can be left open.  
SS  
SS  
OVERVOLTAGE SHUTDOWN  
RESET OUTPUT  
The 34670 includes an overvoltage protection (OVP)  
feature that turns off the external MOSFET when the input  
voltage exceeds the overvoltage threshold.  
The RESET pin is an open drain output. The reset control  
circuit supervises the FB voltage and recognizes if the output  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
voltage is out of regulation. In this case the RESET pin is  
pulled low.  
N-CHANNEL MOSFET GATE DRIVER  
GATE drives an N-channel MOSFET. GATE sources and  
sinks large transient currents up to 1.0 A to charge and  
discharge the MOSFET gate. The GATE output is supplied  
by the internal generated VDD voltage, which is internally set  
to approximately 9.0 V.  
The RESET output can only be used in non-isolated  
applications.  
There is a 20 µs delay filter preventing erroneous RESET  
output pulses. During soft-start, RESET is held low. RESET  
is released when the PWM controller is in regulation.  
For Power-over-Ethernet applications, the used MOSFET  
must be able to withstand a DC level of ~60 V plus the  
reflected voltage at the primary side of the transformer. This  
requires a MOSFET rated at 150 V or 200 V.  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
CAL APPLICATIONS  
TYPICAL APPLICATIONS  
Please refer to application note AN3279 for further information of PD design and layout recommendations.  
T1  
NAUX  
+VPORT  
VOUT = 5V@2A  
3
NP  
NS  
34670  
RX  
VPWR  
RCLA  
6
1
RESET  
VDD  
TX  
RV  
CDD 0.1  
F
2
CPORT  
M1  
R1  
R2  
GATE  
CS  
RCLASS  
CIN  
UVLO  
ILIM  
RCS  
4
5
VIN SS  
FREQ COMP FB VOUT  
-VPORT  
CSS  
7
8
Figure 18. Isolated Flyback Converter with Bias Winding  
+VPORT  
VOUT = 5V@2A  
D1  
T1  
RX+  
3
NP  
NS  
34670  
RX  
TX  
RX-  
TX+  
VPWR  
RESET  
RCLA  
VDD  
6
1
TX-  
RV  
2
CDD  
CPORT  
M1  
R1  
R2  
GATE  
CS  
RCLASS  
CIN  
UVLO  
ILIM  
RCS  
4
5
VIN SS  
FREQ COMP FB VOUT  
SPARE+  
SPARE-  
-VPORT  
CSS  
7
8
Figure 19. Isolated Flyback Converter without Bias Winding  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
18  
TYPICAL APPLICATIONS  
T1  
+VPORT  
NR  
NP  
3
NS  
34670  
RX  
TX  
VPWR  
RCLA  
6
1
RESET  
VDD  
RV  
2
CDD  
CPORT  
M1  
R1  
R2  
GATE  
CS  
RCLASS  
CIN  
UVLO  
ILIM  
RCS  
4
5
Rv1  
Rv2  
VIN SS  
FREQ COMP FB VOUT  
-VPORT  
CSS  
7
8
Figure 20. Isolated Forward Converter  
T1  
CAUX  
NAUX  
+VPORT  
VOUT = 5V@2A  
3
NP  
NS  
34670  
RX  
TX  
VPWR  
RESET  
RCLA  
VDD  
6
1
2
CDD  
CPORT  
M1  
R1  
GATE  
RCLASS  
CIN  
UVLO  
ILIM  
CS  
R2  
RCS  
4
5
VIN SS  
FREQ COMP FB VOUT  
-VPORT  
C2  
CSS  
R2  
7
8
C1  
Figure 21. Isolated Flyback with Primary Control  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
CAL APPLICATIONS  
+VPORT  
VOUT = 5V@2A  
T1  
3
D1  
NP  
NS  
CO  
34670  
RX  
VPWR  
RCLA  
6
RESET  
VDD  
1
TX  
2
CDD  
CPORT  
M1  
R3  
R4  
GATE  
CS  
RCLASS  
CIN  
UVLO  
ILIM  
RCS  
4
5
VIN SS  
FREQ COMP FB VOUT  
R1  
Rb  
-VPORT  
C2  
CSS  
R2  
7
8
C1  
Figure 22. Non-Isolated Flyback Converter  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
20  
REFERENCE DOCUMENTS  
REFERENCE DOCUMENTS  
Table 11. Reference Documents  
Title  
LIterature Order Number  
Publication Date  
IEEE Std 802.3af-2003  
IEEE Std 802.3af-2003  
AN3279  
18 June 2003  
MC34670 Usage and Configuration  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
21  
KAGING  
PACKAGE DIMENSIONS  
PACKAGING  
PACKAGE DIMENSIONS  
For the most current package revision, visit www.freescale.com and perform a keyword search using the “98A” listed below.  
EG SUFFIX (PB-FREE)  
20-PIN  
PLASTIC PACKAGE  
98ASB42343B  
ISSUE J  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
22  
REVISION HISTORY  
REVISION HISTORY  
Revision  
Date  
8/2006  
Description of Changes  
• Initial release  
1.0  
2.0  
• Change to UVLO Hysteresis when set internally on page 6, Regulator Current Limitation  
(13) on page 7, OVLO Threshold, Rising on page 7, OVLO Threshold, Falling on page 7,  
Shutdown Threshold Voltages on page 7, and Default Clock Frequency (FREQ  
connected to VIN) on page 8  
9/2006  
• Changed Data Sheet category to “Advanced Information*”  
• Typ and Max change to RCLA Reference Voltage (13.5 V VPORT 20 V) on page 6  
• Deleted Oscillator Frequency Adjusting Resistor Range in Static Electrical  
Characteristics  
12/2006  
3.0  
• Split Oscillator Frequent Range into two parameters, Oscillator Frequency Range,  
RFREQ = 121 kon page 8 and Oscillator Frequency Range, RFREQ = 499 kon page 8  
• Added note to Duty Cycle Limit (14) on page 8, Blanking Time (14) on page 8, and Gain  
Bandwidth (14) on page 8  
• Changed nomenclature for Peak Package Reflow Temperature During Reflow (5) (6)  
on  
,
page 5  
• Changed name and value for Thermal Shutdown Recovery Temperature on page 5  
34670  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
23  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
MC34670  
Rev. 3.0  
12/2006  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY