935318642557 [NXP]

RISC Microcontroller;
935318642557
型号: 935318642557
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总83页 (文件大小:1557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MPC5602D  
Rev. 6, 01/2013  
MPC5602D  
100 LQFP  
14 mm x 14 mm  
64 LQFP  
10 mm x 10 mm  
MPC5602D Microcontroller  
Data Sheet  
Up to 79 configurable general purpose pins  
supporting input and output operations (package  
dependent)  
Single issue, 32-bit CPU core complex (e200z0h)  
®
— Compliant with the Power Architecture  
embedded category  
Real Time Counter (RTC) with clock source from  
128 kHz or 16 MHz internal RC oscillator  
supporting autonomous wakeup with 1 ms  
resolution with max timeout of 2 seconds  
— Includes an instruction set enhancement  
allowing variable length encoding (VLE) for  
code size footprint reduction. With the optional  
encoding of mixed 16-bit and 32-bit  
Up to 4 periodic interrupt timers (PIT) with 32-bit  
counter resolution  
instructions, it is possible to achieve significant  
code size footprint reduction.  
1 System Timer Module (STM)  
Up to 256 KB on-chip Code Flash supported with  
Flash controller and ECC  
Nexus development interface (NDI) per IEEE-ISTO  
5001-2003 Class 1 standard  
64 KB on-chip Data Flash with ECC  
Up to 16 KB on-chip SRAM with ECC  
Device/board boundary Scan testing supported with  
per Joint Test Action Group (JTAG) of IEEE (IEEE  
1149.1)  
Interrupt controller (INTC) with multiple interrupt  
vectors, including 20 external interrupt sources and  
18 external interrupt/wakeup sources  
On-chip voltage regulator (VREG) for regulation of  
input supply for all internal levels  
Frequency modulated phase-locked loop (FMPLL)  
Crossbar switch architecture for concurrent access to  
peripherals, Flash, or SRAM from multiple bus  
masters  
Boot assist module (BAM) supports internal Flash  
programming via a serial link (CAN or SCI)  
Timer supports input/output channels providing a  
range of 16-bit input capture, output compare, and  
pulse width modulation functions (eMIOS-lite)  
Up to 33 channel 12-bit analog-to-digital converter  
(ADC)  
2 serial peripheral interface (DSPI) modules  
3 serial communication interface (LINFlex) modules  
— LINFlex 1 and 2: Master capable  
— LINFlex 0: Master capable and slave capable;  
connected to eDMA  
1 enhanced full CAN (FlexCAN) module with  
configurable buffers  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2009–2013. All rights reserved.  
Table of Contents  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1
4.10 Power consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.11 Flash memory electrical characteristics. . . . . . . . . . . . 42  
4.11.1 Program/Erase characteristics. . . . . . . . . . . . . 42  
4.11.2 Flash power supply DC characteristics . . . . . . 44  
4.11.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . 45  
4.12 Electromagnetic compatibility (EMC) characteristics. . 45  
4.12.1 Designing hardened software to avoid  
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .7  
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3.2 Pad configuration during reset phases . . . . . . . . . . . . . .9  
3.3 Voltage supply pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .21  
4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.3.1 NVUSRO[PAD3V5V] field description . . . . . . . .22  
4.3.2 NVUSRO[OSCILLATOR_MARGIN] field  
2
3
noise problems. . . . . . . . . . . . . . . . . . . . . . . . . 45  
4.12.2 Electromagnetic interference (EMI) . . . . . . . . . 46  
4.12.3 Absolute maximum ratings (electrical sensitivity)46  
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 51  
4.15 Fast internal RC oscillator (16 MHz) electrical  
4
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4.16 Slow internal RC oscillator (128 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 54  
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
4.17.2 Input impedance and ADC accuracy . . . . . . . . 55  
4.17.3 ADC electrical characteristics . . . . . . . . . . . . . 60  
4.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4.18.1 Current consumption . . . . . . . . . . . . . . . . . . . . 62  
4.18.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 63  
4.18.3 JTAG characteristics . . . . . . . . . . . . . . . . . . . . 70  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 70  
5.1.1 100 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.1.2 64 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.3.3 NVUSRO[WATCHDOG_EN] field description . .22  
4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .22  
4.5 Recommended operating conditions . . . . . . . . . . . . . .23  
4.6 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .26  
4.6.1 Package thermal characteristics . . . . . . . . . . . .26  
4.6.2 Power considerations . . . . . . . . . . . . . . . . . . . .26  
4.7 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .27  
4.7.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.7.2 I/O input DC characteristics. . . . . . . . . . . . . . . .27  
4.7.3 I/O output DC characteristics. . . . . . . . . . . . . . .28  
4.7.4 Output pin transition times. . . . . . . . . . . . . . . . .31  
4.7.5 I/O pad current specification . . . . . . . . . . . . . . .31  
4.8 RESET electrical characteristics. . . . . . . . . . . . . . . . . .35  
4.9 Power management electrical characteristics. . . . . . . .37  
4.9.1 Voltage regulator electrical characteristics . . . .37  
4.9.2 Low voltage detector electrical characteristics .40  
5
6
7
MPC5602D Microcontroller Data Sheet, Rev. 6  
2
Freescale Semiconductor  
Introduction  
1
Introduction  
1.1  
Document overview  
This document describes the device features and highlights the important electrical and physical characteristics.  
1.2  
Description  
These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices designed to be central to the  
development of the next wave of central vehicle body controller, smart junction box, front module, peripheral body, door control  
and seat control applications.  
This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture  
technology and designed specifically for embedded applications.  
The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power  
Architecture technology and only implements the VLE (variable-length encoding) APU (auxiliary processing unit), providing  
improved code density. It operates at speeds of up to 48 MHz and offers high performance processing optimized for low power  
consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported  
with software drivers, operating systems and configuration code to assist with the user’s implementations.  
The device platform has a single level of memory hierarchy and can support a wide range of on-chip static random access  
memory (SRAM) and internal flash memory.  
Table 1. MPC5602D device comparison  
Device  
Feature  
MPC5601DxLH  
MPC5601DxLL  
MPC5602DxLH  
MPC5602DxLL  
CPU  
e200z0h  
Execution speed  
Code flash memory  
Data flash memory  
SRAM  
Static – up to 48 MHz  
64 KB (4 × 16 KB)  
16 ch  
128 KB  
12 KB  
256 KB  
16 KB  
eDMA  
ADC (12-bit)  
CTU  
16 ch  
33 ch  
16 ch  
33 ch  
16 ch  
Total timer I/O1  
eMIOS  
14 ch, 16-bit  
28 ch, 16-bit  
14 ch, 16-bit  
28 ch, 16-bit  
• Type X2  
• Type Y3  
• Type G4  
• Type H5  
SCI (LINFlex)  
SPI (DSPI)  
CAN (FlexCAN)  
GPIO6  
2 ch  
5 ch  
9 ch  
7 ch  
7 ch  
2 ch  
5 ch  
9 ch  
7 ch  
7 ch  
7 ch  
4 ch  
7 ch  
4 ch  
3
2
1
45  
79  
45  
79  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
3
Block diagram  
Table 1. MPC5602D device comparison (continued)  
Device  
Feature  
MPC5601DxLH  
MPC5601DxLL  
MPC5602DxLH  
MPC5602DxLL  
Debug  
JTAG  
Package  
64 LQFP  
100 LQFP  
64 LQFP  
100 LQFP  
1
Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions.  
Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC  
Type Y = OPWMT + OPWMB + SAIC + SAOC  
2
3
4
5
6
Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC  
Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC  
I/O count based on multiplexing with peripherals  
2
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5602D device series.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
4
Freescale Semiconductor  
Block diagram  
SRAM  
16 KB  
Code Flash  
256 KB  
Data Flash  
64 KB  
JTAG  
JTAG Port  
Instructions  
(Master)  
SRAM  
Controller  
Flash  
Controller  
Nexus 1  
e200z0h  
Data  
NMI  
(Slave)  
(Master)  
SIUL  
Voltage  
Regulator  
(Slave)  
Interrupt requests  
from peripheral  
blocks  
(Slave)  
NMI  
(Master)  
eDMA  
INTC  
Clocks  
CMU  
FMPLL  
RTC  
MC_RGM MC_CGM MC_ME MC_PCU  
SSCM  
STM  
PIT  
BAM  
SWT  
ECSM  
Peripheral Bridge  
SIUL  
1 x  
eMIOS  
3 x  
LINFlex  
2 x  
DSPI  
1 x  
FlexCAN  
33 ch.  
ADC  
WKPU  
CTU  
Reset Control  
Interrupt  
Request  
External  
Interrupt  
Request  
IMUX  
Interrupt  
Request  
GPIO &  
Pad Control  
. . .  
. . .  
. . .  
. . .  
I/O  
Legend:  
ADC  
BAM  
Analog-to-Digital Converter  
Boot Assist Module  
MC_CGM Clock Generation Module  
MC_ME Mode Entry Module  
CMU  
CTU  
Clock Monitor Unit  
Cross Triggering Unit  
MC_PCU Power Control Unit  
MC_RGM Reset Generation Module  
DSPI  
ECSM  
eDMA  
eMIOS  
Flash  
Deserial Serial Peripheral Interface  
Error Correction Status Module  
Enhanced Direct Memory Access  
Enhanced Modular Input Output System  
Flash memory  
NMI  
PIT  
RTC  
SIUL  
SRAM  
SSCM  
STM  
SWT  
WKPU  
XBAR  
Non-Maskable Interrupt  
Periodic Interrupt Timer  
Real-Time Clock  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
Software Watchdog Timer  
Wakeup Unit  
Crossbar switch  
FlexCAN Controller Area Network (FlexCAN)  
FMPLL  
IMUX  
INTC  
JTAG  
Frequency-Modulated Phase-Locked Loop  
Internal Multiplexer  
Interrupt Controller  
JTAG controller  
LINFlex  
Serial Communication Interface (LIN support)  
Figure 1. MPC5602D series block diagram  
Table 2 summarizes the functions of all blocks present in the MPC5602D series of microcontrollers. Please note that the  
presence and number of blocks varies by device and package.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
5
Block diagram  
Table 2. MPC5602D series block summary  
Function  
Block  
Analog-to-digital converter (ADC) Multi-channel, 12-bit analog-to-digital converter  
Boot assist module (BAM)  
A block of read-only memory containing VLE code which is executed according  
to the boot mode of the device  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Clock monitor unit (CMU)  
Cross triggering unit (CTU)  
Monitors clock source (internal and external) integrity  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Crossbar switch (XBAR)  
Supports simultaneous connections between two master ports and three slave  
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus  
width.  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Enhanced direct memory access Performs complex data transfers with minimal intervention from a host processor  
(eDMA)  
via “n” programmable channels.  
Enhanced modular input output  
system (eMIOS)  
Provides the functionality to generate or measure events  
Error correction status module  
(ECSM)  
Provides a myriad of miscellaneous control functions for the device including  
program-visible information about configuration and revision levels, a reset  
status register, wakeup control for exiting sleep modes, and optional features  
such as information on memory errors reported by error-correcting codes  
Flash memory  
Provides non-volatile storage for program code, constants and variables  
FlexCAN (controller area network) Supports the standard CAN communications protocol  
Frequency-modulated  
Generates high-speed system clocks and supports programmable frequency  
phase-locked loop (FMPLL)  
modulation  
Internal multiplexer (IMUX) SIU  
subblock  
Allows flexible mapping of peripheral interface on the different pins of the device  
Interrupt controller (INTC)  
JTAG controller (JTAGC)  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
LINFlex controller  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with a minimum of CPU load  
Mode entry module (MC_ME)  
Provides a mechanism for controlling the device operational mode and mode  
transition sequences in all functional states; also manages the power control unit,  
reset generation module and clock generation module, and holds the  
configuration, control and status registers accessible for applications  
Non-maskable interrupt (NMI)  
Handles external events that must produce an immediate response, such as  
power down detection  
Periodic interrupt timer (PIT)  
Power control unit (MC_PCU)  
Produces periodic interrupts and triggers  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
MPC5602D Microcontroller Data Sheet, Rev. 6  
6
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 2. MPC5602D series block summary (continued)  
Block  
Function  
Real-time counter (RTC)  
Provides a free-running counter and interrupt generation capability that can be  
used for timekeeping applications  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the device  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
System status and configuration Provides system configuration and status data (such as memory size and status,  
module (SSCM)  
device mode and security status), device identification data, debug status port  
enable and selection, and bus and peripheral abort enable/disable  
System timer module (STM)  
Provides a set of output compare events to support AUTOSAR (Automotive  
Open System Architecture) and operating system tasks  
Software watchdog timer (SWT) Provides protection from runaway code  
Wakeup unit (WKPU) Supports up to 18 external sources that can generate interrupts or wakeup  
events, of which 1 can cause non-maskable interrupt requests or wakeup events.  
3
Package pinouts and signal descriptions  
3.1  
Package pinouts  
The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please refer to Table 5.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
7
Package pinouts and signal descriptions  
Figure 2 shows the MPC5602D in the 100 LQFP package.  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
VDD_HV  
VSS_HV  
PA[3]  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC  
VSS_HV_ADC  
9
PE[9]  
PE[10]  
PA[0]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
100 LQFP  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[11]  
PC[10]  
PB[0]  
PB[1]  
PC[6]  
Figure 2. 100 LQFP pin configuration (top view)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
8
Freescale Semiconductor  
Package pinouts and signal descriptions  
Figure 3 shows the MPC5602D in the 64 LQFP package.  
PB[3]  
PC[9]  
PA[2]  
PA[1]  
PA[0]  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[10]  
PB[0]  
PA[3]  
PB[15]  
PB[14]  
PB[13]  
PB[12]  
PB[11]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC  
VSS_HV_ADC  
64 LQFP  
9
10  
11  
12  
13  
14  
15  
16  
PB[1]  
PC[6]  
Figure 3. 64 LQFP pin configuration (top view)  
3.2  
Pad configuration during reset phases  
All pads have a fixed configuration under reset.  
During the power-up phase, all pads are forced to tristate.  
After power-up phase, all pads are forced to tristate with the following exceptions:  
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.  
PA[8] (ABS[0]) is pull-up.  
RESET pad is driven low. This is pull-up only after PHASE2 reset completion.  
JTAG pads (TCK, TMS and TDI) are pull-up while TDO remains tristate.  
Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).  
Main oscillator pads (EXTAL, XTAL) are tristate.  
3.3  
Voltage supply pins  
Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
9
Package pinouts and signal descriptions  
Table 3. Voltage supply pin descriptions  
Pin number  
Port pin  
Function  
64 LQFP  
100 LQFP  
VDD_HV Digital supply voltage  
VSS_HV Digital ground  
7, 28, 34, 56  
6, 8, 26, 33, 55  
11, 23, 57  
15, 37, 52, 70, 84  
14, 16, 35, 51, 69, 83  
19, 32, 85  
VDD_LV 1.2V decoupling pins. Decoupling capacitor must be  
connected between these pins and the nearest VSS_LV pin.1  
VSS_LV 1.2V decoupling pins. Decoupling capacitor must be  
connected between these pins and the nearest VDD_LV pin.1  
10, 24, 58  
18, 33, 86  
VDD_BV Internal regulator supply voltage  
12  
20  
1
A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable  
voltage (see the recommended operating conditions in the device datasheet for details).  
3.4  
Pad types  
In the device the following types of pads are available for system pins and functional port pins:  
1
S = Slow  
1 2  
M = Medium  
1 2  
F = Fast  
1
I = Input only with analog feature  
J = Input/Output (‘S’ pad) with analog feature  
X = Oscillator  
3.5  
System pins  
The system pins are listed in Table 4.  
Table 4. System pin descriptions  
Pin number  
I/O  
RESET  
configuration  
Port pin  
Function  
Pad type  
direction  
64 LQFP 100 LQFP  
RESET Bidirectional reset with Schmitt-Trigger  
characteristics and noise filter.  
I/O  
I/O  
M
Input, weak  
pull-up only  
after PHASE2  
9
17  
EXTAL Analog output of the oscillator amplifier circuit,  
when the oscillator is not in bypass mode.  
Analog input for the clock generator when the  
oscillator is in bypass mode.1  
X
Tristate  
27  
36  
XTAL Analog input of the oscillator amplifier circuit.  
Needs to be grounded if oscillator is used in  
bypass mode.1  
I
X
Tristate  
25  
34  
1
Refer to the relevant section of the device datasheet.  
1. See the I/O pad electrical characteristics in the device datasheet for details.  
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see the  
PCR[SRC] description in the device reference manual).  
MPC5602D Microcontroller Data Sheet, Rev. 6  
10  
Freescale Semiconductor  
Package pinouts and signal descriptions  
3.6  
Functional ports  
The functional port pins are listed in Table 5.  
Table 5. Functional port pin descriptions  
Pin number  
Alternate  
I/O  
Pad  
Port pin  
PA[0]  
PCR  
Function  
Peripheral  
function1  
direction2 type  
64 LQFP 100 LQFP  
Port A  
PCR[0]  
PCR[1]  
AF0  
AF1  
AF2  
AF3  
GPIO[0]  
E0UC[0]  
CLKOUT  
E0UC[13]  
WKPU[19]3  
SIUL  
eMIOS_0  
CGL  
eMIOS_0  
WKPU  
I/O  
I/O  
O
I/O  
I
M
S
Tristate  
Tristate  
5
4
12  
7
PA[1]  
AF0  
AF1  
AF2  
AF3  
GPIO[1]  
E0UC[1]  
SIUL  
eMIOS_0  
WKPU  
WKPU  
I/O  
I/O  
I
NMI4  
WKPU[2]3  
I
PA[2]  
PA[3]  
PCR[2]  
PCR[3]  
AF0  
AF1  
AF2  
AF3  
GPIO[2]  
E0UC[2]  
SIUL  
eMIOS_0  
ADC  
WKPU  
I/O  
I/O  
O
S
S
Tristate  
Tristate  
3
5
MA[2]  
WKPU[3]3  
I
AF0  
AF1  
AF2  
AF3  
GPIO[3]  
E0UC[3]  
CS4_0  
EIRQ[0]  
ADC1_S[0]  
SIUL  
eMIOS_0  
DSPI_0  
SIUL  
I/O  
I/O  
I/O  
I
43  
68  
ADC  
I
PA[4]  
PCR[4]  
AF0  
AF1  
AF2  
AF3  
GPIO[4]  
E0UC[4]  
SIUL  
eMIOS_0  
DSPI_1  
WKPU  
I/O  
I/O  
I/O  
I
S
Tristate  
20  
29  
CS0_1  
WKPU[9]3  
PA[5]  
PA[6]  
PCR[5]  
PCR[6]  
AF0  
AF1  
AF2  
AF3  
GPIO[5]  
E0UC[5]  
SIUL  
eMIOS_0  
I/O  
I/O  
M
S
Tristate  
Tristate  
51  
52  
79  
80  
AF0  
AF1  
AF2  
AF3  
GPIO[6]  
E0UC[6]  
CS1_1  
EIRQ[1]  
SIUL  
eMIOS_0  
DSPI_1  
SIUL  
I/O  
I/O  
I/O  
I
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
11  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
PA[7]  
PCR[7]  
AF0  
AF1  
AF2  
AF3  
GPIO[7]  
E0UC[7]  
SIUL  
eMIOS_0  
SIUL  
ADC  
I/O  
I/O  
I
S
S
Tristate  
44  
45  
71  
72  
EIRQ[2]  
ADC1_S[1]  
I
PA[8]  
PA[9]  
PCR[8]  
PCR[9]  
AF0  
AF1  
AF2  
AF3  
GPIO[8]  
E0UC[8]  
E0UC[14]  
EIRQ[3]  
ABS[0]  
SIUL  
eMIOS_0  
eMIOS_0  
SIUL  
BAM  
I/O  
I/O  
I
Input, weak  
pull-up  
N/A5  
I
AF0  
AF1  
AF2  
AF3  
N/A5  
GPIO[9]  
E0UC[9]  
CS2_1  
FAB  
SIUL  
eMIOS_0  
DSPI_1  
BAM  
I/O  
I/O  
I/O  
I
S
S
S
Pull-down  
Tristate  
46  
47  
48  
73  
74  
75  
PA[10] PCR[10]  
PA[11] PCR[11]  
AF0  
AF1  
AF2  
AF3  
GPIO[10]  
E0UC[10]  
LIN2TX  
ADC1_S[2]  
SIUL  
eMIOS_0  
LINFlex_2  
ADC  
I/O  
I/O  
O
I
AF0  
AF1  
AF2  
AF3  
GPIO[11]  
E0UC[11]  
SIUL  
eMIOS_0  
SIUL  
I/O  
I/O  
I
Tristate  
EIRQ[16]  
ADC1_S[3]  
LIN2RX  
ADC  
LINFlex_2  
I
I
PA[12] PCR[12]  
AF0  
AF1  
AF2  
AF3  
GPIO[12]  
SIUL  
SIUL  
DSPI_0  
I/O  
I
S
Tristate  
22  
31  
EIRQ[17]  
SIN_0  
I
PA[13] PCR[13]  
PA[14] PCR[14]  
AF0  
AF1  
AF2  
AF3  
GPIO[13]  
SOUT_0  
SIUL  
DSPI_0  
I/O  
O
M
M
Tristate  
Tristate  
21  
19  
30  
28  
CS3_1  
DSPI_1  
I/O  
AF0  
AF1  
AF2  
AF3  
GPIO[14]  
SCK_0  
CS0_0  
E0UC[0]  
EIRQ[4]  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0  
SIUL  
I/O  
I/O  
I/O  
I/O  
I
MPC5602D Microcontroller Data Sheet, Rev. 6  
12  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
PA[15] PCR[15]  
AF0  
AF1  
AF2  
AF3  
GPIO[15]  
CS0_0  
SCK_0  
SIUL  
DSPI_0  
DSPI_0  
eMIOS_0  
WKPU  
I/O  
I/O  
I/O  
I/O  
I
M
Tristate  
18  
27  
E0UC[1]  
WKPU[10]3  
Port B  
PB[0] PCR[16]  
PB[1] PCR[17]  
AF0  
AF1  
AF2  
AF3  
GPIO[16]  
CAN0TX  
SIUL  
FlexCAN_0  
I/O  
O
O
M
S
Tristate  
Tristate  
14  
15  
23  
24  
LIN2TX  
LINFlex_2  
AF0  
AF1  
AF2  
AF3  
GPIO[17]  
SIUL  
I/O  
I
LIN0RX  
LINFlex_0  
WKPU  
WKPU[4]3  
I
CAN0RX FlexCAN_0  
I
PB[2] PCR[18]  
PB[3] PCR[19]  
AF0  
AF1  
AF2  
AF3  
GPIO[18]  
LIN0TX  
SIUL  
LINFlex_0  
I/O  
O
M
S
Tristate  
Tristate  
64  
1
100  
1
AF0  
AF1  
AF2  
AF3  
GPIO[19]  
SIUL  
I/O  
I
WKPU[11]3  
LIN0RX  
WKPU  
LINFlex_0  
I
PB[4] PCR[20]  
PB[5] PCR[21]  
PB[6] PCR[22]  
AF0  
AF1  
AF2  
AF3  
GPIO[20]  
SIUL  
ADC  
I
I
I
I
Tristate  
Tristate  
Tristate  
32  
35  
36  
50  
53  
54  
I
ADC1_P[0]  
AF0  
AF1  
AF2  
AF3  
GPIO[21]  
SIUL  
ADC  
I
I
ADC1_P[1]  
AF0  
AF1  
AF2  
AF3  
GPIO[22]  
SIUL  
ADC  
I
I
ADC1_P[2]  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
13  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
PB[7] PCR[23]  
PB[8] PCR[24]  
AF0  
AF1  
AF2  
AF3  
GPIO[23]  
SIUL  
ADC  
I
I
I
Tristate  
Tristate  
37  
30  
55  
39  
I
ADC1_P[3]  
AF0  
AF1  
AF2  
AF3  
GPIO[24]  
SIUL  
ADC  
WKPU  
I
I
ADC1_S[4]  
WKPU[25]3  
I
PB[9] PCR[25]  
PB[10] PCR[26]  
AF0  
AF1  
AF2  
AF3  
GPIO[25]  
SIUL  
ADC  
WKPU  
I
I
I
Tristate  
Tristate  
29  
31  
38  
40  
ADC1_S[5]  
WKPU[26]3  
I
AF0  
AF1  
AF2  
AF3  
GPIO[26]  
SIUL  
ADC  
WKPU  
I/O  
I
J
ADC1_S[6]  
WKPU[8]3  
I
PB[11] PCR[27]  
PB[12] PCR[28]  
PB[13] PCR[29]  
PB[14] PCR[30]  
AF0  
AF1  
AF2  
AF3  
GPIO[27]  
E0UC[3]  
CS0_0  
ADC1_S[12]  
SIUL  
eMIOS_0  
DSPI_0  
ADC  
I/O  
I/O  
I/O  
I
J
J
J
J
Tristate  
Tristate  
Tristate  
Tristate  
38  
39  
40  
41  
59  
61  
63  
65  
AF0  
AF1  
AF2  
AF3  
GPIO[28]  
E0UC[4]  
CS1_0  
ADC1_X[0]  
SIUL  
eMIOS_0  
DSPI_0  
ADC  
I/O  
I/O  
O
I
AF0  
AF1  
AF2  
AF3  
GPIO[29]  
E0UC[5]  
CS2_0  
ADC1_X[1]  
SIUL  
eMIOS_0  
DSPI_0  
ADC  
I/O  
I/O  
O
I
AF0  
AF1  
AF2  
AF3  
GPIO[30]  
E0UC[6]  
CS3_0  
ADC1_X[2]  
SIUL  
eMIOS_0  
DSPI_0  
ADC  
I/O  
I/O  
O
I
MPC5602D Microcontroller Data Sheet, Rev. 6  
14  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
PB[15] PCR[31]  
AF0  
AF1  
AF2  
AF3  
GPIO[31]  
E0UC[7]  
CS4_0  
ADC1_X[3]  
SIUL  
eMIOS_0  
DSPI_0  
ADC  
I/O  
I/O  
O
J
Tristate  
42  
67  
I
Port C  
PC[0]6 PCR[32]  
PC[1]6 PCR[33]  
PC[2] PCR[34]  
AF0  
AF1  
AF2  
AF3  
GPIO[32]  
SIUL  
JTAGC  
I/O  
I
M
F
Input, weak  
pull-up  
59  
54  
50  
87  
82  
78  
TDI  
AF0  
AF1  
AF2  
AF3  
GPIO[33]  
TDO  
SIUL  
JTAGC  
I/O  
O
Tristate  
Tristate  
AF0  
AF1  
AF2  
AF3  
GPIO[34]  
SCK_1  
EIRQ[5]  
SIUL  
DSPI_1  
SIUL  
I/O  
I/O  
I
M
PC[3] PCR[35]  
PC[4] PCR[36]  
AF0  
AF1  
AF2  
AF3  
GPIO[35]  
CS0_1  
MA[0]  
EIRQ[6]  
SIUL  
DSPI_1  
ADC  
SIUL  
I/O  
I/O  
O
I
S
Tristate  
Tristate  
49  
62  
77  
92  
AF0  
AF1  
AF2  
AF3  
GPIO[36]  
SIUL  
DSPI_1  
SIUL  
I/O  
I
M
SIN_1  
EIRQ[18]  
I
PC[5] PCR[37]  
PC[6] PCR[38]  
AF0  
AF1  
AF2  
AF3  
GPIO[37]  
SOUT_1  
EIRQ[7]  
SIUL  
DSPI_1  
SIUL  
I/O  
O
I
M
S
Tristate  
Tristate  
61  
16  
91  
25  
AF0  
AF1  
AF2  
AF3  
GPIO[38]  
LIN1TX  
SIUL  
LINFlex_1  
I/O  
O
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
15  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
PC[7] PCR[39]  
AF0  
AF1  
AF2  
AF3  
GPIO[39]  
SIUL  
I/O  
I
S
Tristate  
17  
26  
LIN1RX  
LINFlex_1  
WKPU  
WKPU[12]3  
I
PC[8] PCR[40]  
PC[9] PCR[41]  
AF0  
AF1  
AF2  
AF3  
GPIO[40]  
LIN2TX  
E0UC[3]  
SIUL  
LINFlex_2  
eMIOS_0  
I/O  
O
I/O  
S
S
Tristate  
Tristate  
63  
2
99  
2
AF0  
AF1  
AF2  
AF3  
GPIO[41]  
E0UC[7]  
SIUL  
eMIOS_0  
LINFlex_2  
WKPU  
I/O  
I/O  
I
LIN2RX  
WKPU[13]3  
I
PC[10] PCR[42]  
PC[11] PCR[43]  
AF0  
AF1  
AF2  
AF3  
GPIO[42]  
MA[1]  
SIUL  
I/O  
O
M
S
Tristate  
Tristate  
13  
22  
21  
ADC  
AF0  
AF1  
AF2  
AF3  
GPIO[43]  
SIUL  
ADC  
WKPU  
I/O  
O
MA[2]  
WKPU[5]3  
I
PC[12] PCR[44]  
AF0  
AF1  
AF2  
AF3  
GPIO[44]  
E0UC[12]  
SIUL  
eMIOS_0  
SIUL  
I/O  
I/O  
I
M
Tristate  
97  
EIRQ[19]  
PC[13] PCR[45]  
PC[14] PCR[46]  
AF0  
AF1  
AF2  
AF3  
GPIO[45]  
E0UC[13]  
SIUL  
eMIOS_0  
I/O  
I/O  
S
S
Tristate  
Tristate  
98  
3
AF0  
AF1  
AF2  
AF3  
GPIO[46]  
E0UC[14]  
EIRQ[8]  
SIUL  
eMIOS_0  
SIUL  
I/O  
I/O  
I
PC[15] PCR[47]  
AF0  
AF1  
AF2  
AF3  
GPIO[47]  
E0UC[15]  
SIUL  
eMIOS_0  
SIUL  
I/O  
I/O  
I
M
Tristate  
4
EIRQ[20]  
MPC5602D Microcontroller Data Sheet, Rev. 6  
16  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
Port D  
PD[0] PCR[48]  
AF0  
AF1  
AF2  
AF3  
GPIO[48]  
SIUL  
WKPU  
ADC  
I
I
I
I
Tristate  
Tristate  
41  
42  
WKPU[27]3  
ADC1_P[4]  
I
PD[1] PCR[49]  
AF0  
AF1  
AF2  
AF3  
GPIO[49]  
SIUL  
WKPU  
ADC  
I
I
WKPU[28]3  
ADC1_P[5]  
I
PD[2] PCR[50]  
PD[3] PCR[51]  
PD[4] PCR[52]  
PD[5] PCR[53]  
PD[6] PCR[54]  
PD[7] PCR[55]  
AF0  
AF1  
AF2  
AF3  
GPIO[50]  
SIUL  
ADC  
I
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
43  
44  
45  
46  
47  
48  
I
ADC1_P[6]  
AF0  
AF1  
AF2  
AF3  
GPIO[51]  
SIUL  
ADC  
I
I
ADC1_P[7]  
AF0  
AF1  
AF2  
AF3  
GPIO[52]  
SIUL  
ADC  
I
I
ADC1_P[8]  
AF0  
AF1  
AF2  
AF3  
GPIO[53]  
SIUL  
ADC  
I
I
ADC1_P[9]  
AF0  
AF1  
AF2  
AF3  
GPIO[54]  
SIUL  
ADC  
I
I
ADC1_P[10]  
AF0  
AF1  
AF2  
AF3  
GPIO[55]  
SIUL  
ADC  
I
I
ADC1_P[11]  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
17  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
PD[8] PCR[56]  
PD[9] PCR[57]  
PD[10] PCR[58]  
PD[11] PCR[59]  
PD[12] PCR[60]  
PD[13] PCR[61]  
PD[14] PCR[62]  
PD[15] PCR[63]  
AF0  
AF1  
AF2  
AF3  
GPIO[56]  
SIUL  
ADC  
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
49  
56  
57  
58  
60  
62  
64  
66  
I
ADC1_P[12]  
AF0  
AF1  
AF2  
AF3  
GPIO[57]  
SIUL  
ADC  
I
I
ADC1_P[13]  
AF0  
AF1  
AF2  
AF3  
GPIO[58]  
SIUL  
ADC  
I
I
I
ADC1_P[14]  
AF0  
AF1  
AF2  
AF3  
GPIO[59]  
SIUL  
ADC  
I
I
I
ADC1_P[15]  
AF0  
AF1  
AF2  
AF3  
GPIO[60]  
CS5_0  
E0UC[24]  
SIUL  
DSPI_0  
eMIOS_0  
I/O  
O
I/O  
I
J
J
J
J
ADC1_S[8]  
ADC  
AF0  
AF1  
AF2  
AF3  
GPIO[61]  
CS0_1  
E0UC[25]  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
I/O  
I/O  
I
ADC1_S[9]  
ADC  
AF0  
AF1  
AF2  
AF3  
GPIO[62]  
CS1_1  
E0UC[26]  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
O
I/O  
I
ADC1_S[10]  
ADC  
AF0  
AF1  
AF2  
AF3  
GPIO[63]  
CS2_1  
E0UC[27]  
SIUL  
DSPI_1  
eMIOS_0  
I/O  
O
I/O  
I
ADC1_S[11]  
ADC  
Port E  
MPC5602D Microcontroller Data Sheet, Rev. 6  
18  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
PE[0] PCR[64]  
AF0  
AF1  
AF2  
AF3  
GPIO[64]  
E0UC[16]  
SIUL  
eMIOS_0  
WKPU  
I/O  
I/O  
I
S
Tristate  
6
WKPU[6]3  
PE[1] PCR[65]  
PE[2] PCR[66]  
AF0  
AF1  
AF2  
AF3  
GPIO[65]  
E0UC[17]  
SIUL  
eMIOS_0  
I/O  
I/O  
M
M
Tristate  
Tristate  
8
AF0  
AF1  
AF2  
AF3  
GPIO[66]  
E0UC[18]  
SIUL  
eMIOS_0  
SIUL  
I/O  
I/O  
I
89  
EIRQ[21]  
SIN_1  
DSPI_1  
I
PE[3] PCR[67]  
PE[4] PCR[68]  
AF0  
AF1  
AF2  
AF3  
GPIO[67]  
E0UC[19]  
SOUT_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
M
M
Tristate  
Tristate  
90  
93  
AF0  
AF1  
AF2  
AF3  
GPIO[68]  
E0UC[20]  
SCK_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
I/O  
I
EIRQ[9]  
SIUL  
PE[5] PCR[69]  
PE[6] PCR[70]  
AF0  
AF1  
AF2  
AF3  
GPIO[69]  
E0UC[21]  
CS0_1  
SIUL  
eMIOS_0  
DSPI_1  
ADC  
I/O  
I/O  
I/O  
O
M
M
Tristate  
Tristate  
94  
95  
MA[2]  
AF0  
AF1  
AF2  
AF3  
GPIO[70]  
E0UC[22]  
CS3_0  
MA[1]  
EIRQ[22]  
SIUL  
eMIOS_0  
DSPI_0  
ADC  
I/O  
I/O  
O
O
I
SIUL  
PE[7] PCR[71]  
PE[8] PCR[72]  
AF0  
AF1  
AF2  
AF3  
GPIO[71]  
E0UC[23]  
CS2_0  
MA[0]  
EIRQ[23]  
SIUL  
eMIOS_0  
DSPI_0  
ADC  
I/O  
I/O  
O
O
I
M
M
Tristate  
Tristate  
96  
9
SIUL  
AF0  
AF1  
AF2  
AF3  
GPIO[72]  
E0UC[22]  
SIUL  
eMIOS_0  
I/O  
I/O  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
19  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
Alternate  
function1  
I/O  
Pad  
Port pin  
PCR  
Function  
Peripheral  
direction2 type  
64 LQFP 100 LQFP  
PE[9] PCR[73]  
PE[10] PCR[74]  
PE[11] PCR[75]  
PE[12] PCR[76]  
AF0  
AF1  
AF2  
AF3  
GPIO[73]  
SIUL  
eMIOS_0  
I/O  
I/O  
I
S
S
S
S
Tristate  
Tristate  
Tristate  
Tristate  
10  
11  
13  
76  
E0UC[23]  
WKPU[7]3  
WKPU  
AF0  
AF1  
AF2  
AF3  
GPIO[74]  
CS3_1  
SIUL  
DSPI_1  
I/O  
O
I
EIRQ[10]  
SIUL  
AF0  
AF1  
AF2  
AF3  
GPIO[75]  
E0UC[24]  
CS4_1  
SIUL  
eMIOS_0  
DSPI_1  
I/O  
I/O  
O
I
WKPU[14]3  
WKPU  
AF0  
AF1  
AF2  
AF3  
GPIO[76]  
SIUL  
ADC  
SIUL  
I/O  
I
ADC1_S[7]  
EIRQ[11]  
I
Port H  
PH[9]6 PCR[121]  
PH[10]6 PCR[122]  
AF0  
AF1  
AF2  
AF3  
GPIO[121]  
SIUL  
JTAGC  
I/O  
I
S
S
Input, weak  
pull-up  
60  
53  
88  
81  
TCK  
AF0  
AF1  
AF2  
AF3  
GPIO[122]  
SIUL  
JTAGC  
I/O  
I
Input, weak  
pull-up  
TMS  
1
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.  
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select  
the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the  
values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is  
reported as “—”.  
2
3
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by  
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.  
All WKPU pins also support external interrupt capability. See “wakeup unit” chapter of the device reference manual  
for further details.  
4
5
NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.  
“Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of  
the device reference manual for details.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
20  
Freescale Semiconductor  
Electrical characteristics  
Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.  
6
PC[0:1] are available as JTAG pins (TDI and TDO respectively).  
PH[9:10] are available as JTAG pins (TCK and TMS respectively).  
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001.  
4
Electrical characteristics  
4.1  
Introduction  
This section contains electrical characteristics of the device as well as temperature and power considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take  
precautions to avoid application of any voltage higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This can be done by the  
DD  
SS  
internal pull-up or pull-down, which is provided by the product for most general purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
4.2  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding, the classifications listed in Table 6 are used and the parameters are tagged accordingly in the tables where  
appropriate.  
Table 6. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
4.3  
NVUSRO register  
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical  
parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after  
reset).  
For a detailed description of the NVUSRO register, please refer to the device reference manual.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
21  
Electrical characteristics  
4.3.1  
NVUSRO[PAD3V5V] field description  
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 7 shows how NVUSRO[PAD3V5V] controls  
the device configuration.  
Table 7. PAD3V5V field description  
Value1  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
4.3.2  
NVUSRO[OSCILLATOR_MARGIN] field description  
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 8 shows how  
NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.  
Table 8. OSCILLATOR_MARGIN field description  
Value1  
Description  
0
1
Low consumption configuration (4 MHz/8 MHz)  
High margin configuration (4 MHz/16 MHz)  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
4.3.3  
NVUSRO[WATCHDOG_EN] field description  
The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 8 shows how  
NVUSRO[WATCHDOG_EN] controls the device configuration.  
Table 9. WATCHDOG_EN field description  
Value1  
Description  
0
1
Disable after reset)  
Enable after reset  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
4.4  
Absolute maximum ratings  
Table 10. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
VDD  
SR Digital ground on VSS_HV pins  
0
0
V
V
SR Voltage on VDD_HV pins with respect to  
0.3  
6.0  
ground (VSS  
)
VSS_LV SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground (VSS  
VSS 0.1 VSS + 0.1  
V
)
MPC5602D Microcontroller Data Sheet, Rev. 6  
22  
Freescale Semiconductor  
Electrical characteristics  
Table 10. Absolute maximum ratings (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Max  
VDD_BV SR Voltage on VDD_BV (regulator supply) pin  
with respect to ground (VSS  
0.3  
6.0  
V
)
Relative to VDD  
VDD 0.3 VDD + 0.3  
VSS 0.1 VSS + 0.1  
VSS_ADC SR Voltage on VSS_HV_ADC (ADC  
reference) pin with respect to ground (VSS  
V
V
)
)
VDD_ADC SR Voltage on VDD_HV_ADC (ADC  
reference) pin with respect to ground (VSS  
0.3  
VDD 0.3 VDD + 0.3  
0.3 6.0  
VDD 0.3 VDD + 0.3  
6.0  
Relative to VDD  
Relative to VDD  
VIN  
SR Voltage on any GPIO pin with respect to  
ground (VSS  
V
)
IINJPAD SR Injected input current on any pin during  
overload condition  
10  
10  
mA  
mA  
mA  
IINJSUM SR Absolute sum of all injected input currents  
during overload condition  
50  
50  
IAVGSEG SR Sum of all the static I/O current within a  
supply segment1  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
70  
64  
V
DD = 3.3 V ± 10%, PAD3V5V = 1  
ICORELV SR Low voltage static current sink through  
VDD_BV  
150  
mA  
°C  
TSTORAGE SR Storage temperature  
55  
150  
1
Supply segments are described in Section 4.7.5, I/O pad current specification.  
NOTE  
Stresses exceeding the recommended absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification are not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. During overload conditions (V > V or  
IN  
DD  
V
< V ), the voltage on pins with respect to ground (V ) must not exceed the  
IN  
SS SS  
recommended values.  
4.5  
Recommended operating conditions  
Table 11. Recommended operating conditions (3.3 V)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR — Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR — Voltage on VDD_HV pins with respect to ground  
3.0  
3.6  
(VSS  
)
2
VSS_LV SR — Voltage on VSS_LV (low voltage digital supply)  
VSS 0.1 VSS + 0.1  
V
pins with respect to ground (VSS  
)
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
23  
Electrical characteristics  
Table 11. Recommended operating conditions (3.3 V) (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
3
VDD_BV SR — Voltage on VDD_BV pin (regulator supply) with  
3.0  
3.6  
V
respect to ground (VSS  
)
Relative to VDD VDD 0.1 VDD + 0.1  
VSS_ADC SR — Voltage on VSS_HV_ADC (ADC reference) pin  
with respect to ground (VSS  
VSS 0.1 VSS + 0.1  
V
V
)
VDD_ADC SR — Voltage on VDD_HV_ADC pin (ADC reference)  
with respect to ground (VSS  
3.05  
3.6  
4
)
Relative to VDD VDD 0.1 VDD + 0.1  
VIN  
SR — Voltage on any GPIO pin with respect to ground  
(VSS  
Relative to VDD  
VSS 0.1  
VDD + 0.1  
5
V
)
IINJPAD SR — Injected input current on any pin during overload  
condition  
5  
mA  
mA  
IINJSUM SR — Absolute sum of all injected input currents during  
overload condition  
50  
50  
TVDD  
SR — VDD slope to ensure correct power up6  
0.25  
85  
V/µs  
°C  
TA C-Grade SR — Ambient temperature under bias  
fCPU 48 MHz  
40  
Part  
TJ C-Grade SR — Junction temperature under bias  
40  
40  
40  
40  
40  
110  
105  
130  
125  
150  
Part  
TA V-Grade SR — Ambient temperature under bias  
Part  
TJ V-Grade SR — Junction temperature under bias  
Part  
TA M-Grade SR — Ambient temperature under bias  
Part  
TJ M-Grade SR — Junction temperature under bias  
Part  
1
100 nF capacitance needs to be provided between each VDD/VSS pair.  
2
3
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics).  
4
5
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL  
device is reset.  
,
6
Guaranteed by device validation  
Table 12. Recommended operating conditions (5.0 V)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR — Digital ground on VSS_HV pins  
0
0
V
MPC5602D Microcontroller Data Sheet, Rev. 6  
24  
Freescale Semiconductor  
Electrical characteristics  
Table 12. Recommended operating conditions (5.0 V) (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
1
VDD  
SR — Voltage on VDD_HV pins with respect to ground  
(VSS  
Voltage drop2  
4.5  
3.0  
5.5  
5.5  
V
)
3
VSS_LV SR — Voltage on VSS_LV (low voltage digital supply) pins  
VSS 0.1 VSS + 0.1  
V
V
with respect to ground (VSS  
)
4
VDD_BV SR — Voltage on VDD_BV pin (regulator supply) with  
4.5  
3.0  
5.5  
5.5  
respect to ground (VSS  
)
Voltage drop(2)  
Relative to VDD VDD 0.1 VDD + 0.1  
VSS_ADC SR — Voltage on VSS_HV_ADC (ADC reference) pin with  
respect to ground (VSS  
VSS 0.1 VSS + 0.1  
V
V
5
VDD_ADC SR — Voltage on VDD_HV_ADC pin (ADC reference) with  
4.5  
3.0  
5.5  
5.5  
respect to ground (VSS  
)
Voltage drop(2)  
Relative to VDD VDD 0.1 VDD + 0.1  
VIN  
SR — Voltage on any GPIO pin with respect to ground  
(VSS  
Relative to VDD  
VSS 0.1  
VDD + 0.1  
5
V
)
IINJPAD SR — Injected input current on any pin during overload  
condition  
5  
mA  
mA  
IINJSUM SR — Absolute sum of all injected input currents during  
overload condition  
50  
50  
TVDD  
SR — VDD slope to ensure correct power up6  
0.25  
85  
V/µs  
°C  
TA C-Grade SR — Ambient temperature under bias  
fCPU 48 MHz  
40  
Part  
TJ C-Grade SR — Junction temperature under bias  
40  
40  
40  
40  
40  
110  
105  
130  
125  
150  
Part  
TA V-Grade SR — Ambient temperature under bias  
Part  
TJ V-Grade SR — Junction temperature under bias  
Part  
TA M-Grade SR — Ambient temperature under bias  
Part  
TJ M-Grade SR — Junction temperature under bias  
Part  
1
100 nF capacitance needs to be provided between each VDD/VSS pair.  
2
Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.6 V. However, certain  
analog electrical characteristics will not be guaranteed to stay within the stated limits.  
3
4
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics).  
5
6
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Guaranteed by device validation  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
25  
Electrical characteristics  
NOTE  
SRAM data retention is guaranteed with V  
not below 1.08 V.  
DD_LV  
4.6  
Thermal characteristics  
4.6.1  
Package thermal characteristics  
1
Table 13. LQFP thermal characteristics  
Conditions2  
Symbol C  
Parameter  
Value Unit  
RJA CC D Thermal resistance, junction-to-ambient natural Single-layer board —1s LQFP64  
72.1 °C/W  
65.2  
convection3  
LQFP100  
Four-layer board — 2s2p LQFP64  
LQFP100  
57.3  
51.8  
RJB CC D Thermal resistance, junction-to-board4  
RJC CC D Thermal resistance, junction-to-case5  
Four-layer board — 2s2p LQFP64  
LQFP100  
44.1 °C/W  
41.3  
Single-layer board — 1s LQFP64  
LQFP100  
26.5 °C/W  
23.9  
Four-layer board — 2s2p LQFP64  
LQFP100  
26.2  
23.7  
JB CC D Junction-to-board thermal characterization  
Single-layer board — 1s LQFP64  
LQFP100  
41  
41.6  
43  
°C/W  
parameter, natural convection  
Four-layer board — 2s2p LQFP64  
LQFP100  
43.4  
JC CC D Junction-to-case thermal characterization  
Single-layer board — 1s LQFP64  
LQFP100  
11.5 °C/W  
10.4  
parameter, natural convection  
Four-layer board — 2s2p LQFP64  
LQFP100  
11.1  
10.2  
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C  
2
3
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board  
meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA  
.
4
5
Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package. When Greek letters are not available, the symbols are typed as RthJB  
.
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
When Greek letters are not available, the symbols are typed as RthJC  
.
4.6.2  
Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using Equation 1:  
J
MPC5602D Microcontroller Data Sheet, Rev. 6  
26  
Freescale Semiconductor  
Electrical characteristics  
T = T + (P x R )  
JA  
Eqn. 1  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
JA  
P is the sum of P  
and P (P = P  
+ P ).  
D
INT  
I/O  
D
INT I/O  
P
P
is the product of I and V , expressed in watts. This is the chip internal power.  
DD DD  
INT  
I/O  
represents the power dissipation on input and output pins; user determined.  
Most of the time for the applications, P < P  
and may be neglected. On the other hand, P may be significant, if the device  
I/O  
INT  
I/O  
is configured to continuously drive external modules and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
Eqn. 2  
Eqn. 3  
D
J
Therefore, solving equations 1 and 2:  
Where:  
2
K = P x (T + 273 °C) + R  
x P  
D
D
A
JA  
K is a constant for the particular part, which may be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T Using this value of K, the values of P and T may be obtained by solving equations 1 and 2  
A.  
D
J
iteratively for any value of T .  
A
4.7  
I/O pad electrical characteristics  
I/O pad types  
4.7.1  
The device provides four main I/O pad types depending on the associated alternate functions:  
Slow pads—These pads are the most common pads, providing a good compromise between transition time and low  
electromagnetic emission.  
Medium pads—These pads provide transition fast enough for the serial communication channels with controlled  
current to reduce electromagnetic emission.  
Input only pads—These pads are associated to ADC channels (ADC_P[X]) providing low input leakage.  
Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost  
of reducing AC performance.  
4.7.2  
I/O input DC characteristics  
Table 14 provides input DC electrical characteristics as described in Figure 4.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
27  
Electrical characteristics  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1’  
(GPDI register of SIUL)  
PDIx = ‘0’  
Figure 4. Input DC electrical characteristics definition  
Table 14. I/O input DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input high level CMOS (Schmitt  
Trigger)  
0.65VDD  
VDD+0.4  
V
V
VIL SR P Input low level CMOS (Schmitt  
Trigger)  
0.4  
0.35VDD  
VHYS CC C Input hysteresis CMOS (Schmitt  
Trigger)  
0.1VDD  
V
ILKG CC D Digital input leakage  
No injection  
on adjacent  
pin  
TA = 40 °C  
TA = 25 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
2
2
200  
200  
300  
500  
1000  
40  
nA  
D
D
D
5
12  
70  
P
2
WFI  
SR P Digital input filtered pulse  
ns  
ns  
(2)  
WNFI SR P Digital input not filtered pulse  
1000  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and  
voltage.  
4.7.3  
I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 15 provides weak pull figures. Both pull-up and pull-down resistances are supported.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
28  
Freescale Semiconductor  
Electrical characteristics  
Table 16 provides output driver characteristics for I/O pads when in SLOW configuration.  
Table 17 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 15. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
|IWPU| CC P Weak pull-up current  
VIN = VIL, VDD = 5.0 V ± 10% PAD3V5V = 0  
PAD3V5V = 12  
10  
10  
10  
10  
150 µA  
250  
absolute value  
C
P
VIN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1  
VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0  
150  
|IWPD| CC P Weak pull-down current  
150 µA  
250  
absolute value  
C
PAD3V5V = 1(2) 10  
P
VIN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10  
150  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET are configured in input or in high impedance state.  
2
Table 16. SLOW configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ Max  
VOH CC P Output high level  
SLOW configuration  
Push Pull IOH = 2 mA,  
0.8VDD  
V
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 12  
IOH = 1 mA,  
VDD 0.8  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
SLOW configuration  
Push Pull IOL = 2 mA,  
0.1VDD  
V
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OL = 2 mA,  
0.1VDD  
0.5  
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)  
IOL = 1 mA,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET are configured in input or in high impedance state.  
2
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
29  
Electrical characteristics  
Table 17. MEDIUM configuration output buffer electrical characteristics  
Value  
Typ Max  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
VOH CC C Output high level  
MEDIUM configuration  
Push Pull IOH = 3.8 mA,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
0.8VDD  
V
P
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 1 mA,  
0.8VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 12  
I
OH = 1 mA,  
DD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
VDD 0.8  
V
C
I
OH = 100 µA,  
0.8VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
VOL CC C Output low level  
Push Pull IOL = 3.8 mA,  
— 0.2VDD  
— 0.1VDD  
V
MEDIUM configuration  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
P
IOL = 2 mA,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
C
C
IOL = 1 mA,  
— 0.1VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)  
IOL = 1 mA,  
0.5  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
C
I
OL = 100 µA,  
— 0.1VDD  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET are configured in input or in high impedance state.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
30  
Freescale Semiconductor  
Electrical characteristics  
4.7.4  
Output pin transition times  
Table 18. Output pin transition times  
Value  
Unit  
Symbol C  
Parameter  
Conditions1  
Min Typ Max  
ttr CC D Output transition time output pin2 CL = 25 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 —  
SLOW configuration  
50 ns  
100  
125  
50  
T
CL = 50 pF  
D
CL = 100 pF  
D
CL = 25 pF VDD = 3.3 V ± 10%, PAD3V5V = 1 —  
T
CL = 50 pF  
100  
125  
10 ns  
20  
D
CL = 100 pF  
ttr CC D Output transition time output  
CL = 25 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 —  
SIUL.PCRx.SRC = 1  
pin(2)  
T
CL = 50 pF  
MEDIUM configuration  
D
D
T
CL = 100 pF  
40  
CL = 25 pF VDD = 3.3 V ± 10%, PAD3V5V = 1 —  
SIUL.PCRx.SRC = 1  
12  
CL = 50 pF  
25  
D
CL = 100 pF  
40  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
CL includes device and package capacitances (CPKG < 5 pF).  
4.7.5  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V /V supply pair as  
DD SS  
described in Table 19.  
Table 20 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I  
maximum value.  
AVGSEG  
Table 19. I/O supply segment  
Supply segment  
Package  
1
2
3
4
100 LQFP  
64 LQFP  
pin 16 – pin 35  
pin 8 – pin 26  
pin 37 – pin 69  
pin 28 – pin 55  
pin 70 – pin 83  
pin 56 – pin 7  
pin 84 – pin 15  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
31  
Electrical characteristics  
Table 20. I/O consumption  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min Typ Max  
,2  
ISWTSLW  
CC D Dynamic I/O current CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
20  
16  
29  
17  
mA  
for SLOW  
configuration  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
(2)  
ISWTMED  
CC D Dynamic I/O current CL = 25 pF  
for MEDIUM  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
mA  
configuration  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
IRMSSLW  
CC D Root mean square  
I/O current for SLOW  
configuration  
CL = 25 pF, 2 MHz  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
2.3 mA  
3.2  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
6.6  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
1.6  
2.3  
4.7  
IRMSMED CC D Root mean square  
I/O current for  
CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,  
6.6 mA  
13.4  
18.3  
5
PAD3V5V = 0  
CL = 25 pF, 40 MHz  
MEDIUM  
configuration  
CL = 100 pF, 13 MHz  
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
CL = 25 pF, 40 MHz  
8.5  
CL = 100 pF, 13 MHz  
11  
IAVGSEG  
SR D Sum of all the static VDD = 5.0 V ± 10%, PAD3V5V = 0  
I/O current within a  
70  
65  
mA  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
supply segment  
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
1
2
Table 21 provides the weight of concurrent switching I/Os.  
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain  
below 100%.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
32  
Freescale Semiconductor  
Electrical characteristics  
1
Table 21. I/O weight  
100 LQFP/64 LQFP  
Pad  
Weight 5 V  
Weight 3.3 V  
SRC2 = 0  
SRC = 1  
SRC = 0  
SRC = 1  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PA[2]  
9%  
8%  
8%  
8%  
8%  
7%  
7%  
7%  
6%  
6%  
6%  
5%  
5%  
7%  
8%  
8%  
8%  
8%  
8%  
8%  
7%  
7%  
7%  
7%  
1%  
1%  
5%  
1%  
1%  
1%  
1%  
1%  
9%  
8%  
8%  
11%  
8%  
7%  
7%  
10%  
9%  
6%  
6%  
7%  
5%  
7%  
11%  
11%  
8%  
8%  
8%  
11%  
11%  
7%  
10%  
7%  
1%  
1%  
5%  
1%  
1%  
1%  
1%  
1%  
10%  
10%  
10%  
9%  
9%  
9%  
8%  
8%  
8%  
7%  
7%  
6%  
6%  
9%  
9%  
9%  
10%  
10%  
10%  
9%  
9%  
8%  
8%  
8%  
1%  
1%  
6%  
1%  
1%  
1%  
1%  
1%  
10%  
10%  
10%  
10%  
9%  
PE[0]  
PA[1]  
9%  
8%  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
8%  
8%  
7%  
7%  
7%  
PE[11]  
PC[11]  
PC[10]  
PB[0]  
PB[1]  
PC[6]  
PC[7]  
PA[15]  
PA[14]  
PA[4]  
6%  
9%  
10%  
10%  
10%  
10%  
10%  
10%  
9%  
8%  
PA[13]  
PA[12]  
PB[9]  
PB[8]  
PB[10]  
PD[0]  
PD[1]  
PD[2]  
PD[3]  
PD[4]  
9%  
8%  
1%  
1%  
6%  
1%  
1%  
1%  
1%  
1%  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
33  
Electrical characteristics  
1
Table 21. I/O weight (continued)  
100 LQFP/64 LQFP  
Weight 5 V  
Pad  
Weight 3.3 V  
SRC = 0 SRC = 1  
SRC2 = 0  
SRC = 1  
PD[5]  
PD[6]  
PD[7]  
PD[8]  
PB[4]  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
9%  
8%  
8%  
8%  
8%  
7%  
7%  
7%  
6%  
6%  
4%  
4%  
4%  
5%  
5%  
5%  
5%  
5%  
5%  
4%  
5%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
9%  
8%  
8%  
8%  
8%  
7%  
7%  
7%  
6%  
6%  
4%  
4%  
4%  
5%  
5%  
5%  
5%  
7%  
6%  
4%  
17%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
11%  
10%  
10%  
9%  
9%  
9%  
8%  
8%  
7%  
7%  
5%  
5%  
5%  
6%  
6%  
6%  
6%  
6%  
5%  
5%  
4%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
11%  
10%  
10%  
9%  
9%  
9%  
8%  
8%  
7%  
7%  
5%  
5%  
5%  
6%  
6%  
6%  
6%  
6%  
6%  
5%  
12%  
PB[5]  
PB[6]  
PB[7]  
PD[9]  
PD[10]  
PD[11]  
PB[11]  
PD[12]  
PB[12]  
PD[13]  
PB[13]  
PD[14]  
PB[14]  
PD[15]  
PB[15]  
PA[3]  
PA[7]  
PA[8]  
PA[9]  
PA[10]  
PA[11]  
PE[12]  
PC[3]  
PC[2]  
PA[5]  
PA[6]  
PC[1]  
MPC5602D Microcontroller Data Sheet, Rev. 6  
34  
Freescale Semiconductor  
Electrical characteristics  
1
Table 21. I/O weight (continued)  
100 LQFP/64 LQFP  
Weight 5 V  
Pad  
Weight 3.3 V  
SRC2 = 0  
SRC = 1  
SRC = 0  
SRC = 1  
PC[0]  
PE[2]  
PE[3]  
PC[5]  
PC[4]  
PE[4]  
PE[5]  
PE[6]  
PE[7]  
PC[12]  
PC[13]  
PC[8]  
PB[2]  
6%  
7%  
7%  
8%  
8%  
8%  
8%  
9%  
9%  
9%  
9%  
9%  
9%  
9%  
10%  
10%  
11%  
11%  
12%  
12%  
12%  
12%  
13%  
9%  
7%  
8%  
8%  
9%  
9%  
9%  
9%  
10%  
10%  
10%  
11%  
11%  
11%  
11%  
11%  
11%  
12%  
9%  
10%  
10%  
10%  
10%  
11%  
11%  
11%  
11%  
9%  
13%  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
SRC: “Slew Rate Control” bit in SIU_PCR  
4.8  
RESET electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
V
DD  
V
DDMIN  
RESET  
V
IH  
V
IL  
device reset forced by RESET  
device start-up phase  
Figure 5. Start-up reset requirements  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
35  
Electrical characteristics  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 6. Noise filtering on reset signal  
Table 22. Reset electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH  
VIL  
SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD + 0.4  
V
V
V
V
SR P Input low Level CMOS  
(Schmitt Trigger)  
0.4  
0.1VDD  
0.35VDD  
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
VOL CC P Output low level  
Push Pull, IOL = 2 mA,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
0.1VDD  
Push Pull, IOL = 1 mA,  
0.1VDD  
0.5  
VDD = 5.0 V ± 10%, PAD3V5V = 12  
Push Pull, IOL = 1 mA,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
36  
Freescale Semiconductor  
Electrical characteristics  
Table 22. Reset electrical characteristics (continued)  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
ttr  
CC D Output transition time  
output pin3  
CL = 25 pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
10  
ns  
MEDIUM configuration  
CL = 50 pF,  
20  
40  
12  
25  
40  
40  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 100 pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 25 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 50 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 100 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
WFRST SR P RESET input filtered  
pulse  
ns  
ns  
µA  
WNFRST SR P RESET input not filtered  
pulse  
1000  
|IWPU  
|
CC P Weak pull-up current  
absolute value  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
VDD = 5.0 V ± 10%, PAD3V5V = 14  
10  
10  
10  
150  
150  
250  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of  
the device reference manual).  
3
4
CL includes device and package capacitance (CPKG < 5 pF).  
The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET  
are configured in input or in high impedance state.  
4.9  
Power management electrical characteristics  
Voltage regulator electrical characteristics  
4.9.1  
The device implements an internal voltage regulator to generate the low voltage core supply V  
from the high voltage  
DD_LV  
ballast supply V  
. The regulator itself is supplied by the common I/O supply V . The following supplies are involved:  
DD_BV  
DD  
HV: High voltage external power supply for voltage regulator module. This must be provided externally through V  
power pin.  
DD  
BV: High voltage external power supply for internal ballast module. This must be provided externally through V  
DD_BV  
power pin. Voltage values should be aligned with V  
.
DD  
LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal  
voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure  
noise isolation between critical LV modules within the device:  
LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
37  
Electrical characteristics  
LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.  
C
(LV_COR/LV_CFLA)  
REG2  
V
DD  
V
V
DD_LV  
SS_LV  
V
DD_BV  
DD_LVn  
SS_LVn  
V
REF  
V
DD_BV  
V
DD_LV  
DEVICE  
V
Voltage Regulator  
I
V
SS_LV  
V
V
V
V
V
DD  
SS_LV  
DD_LV  
SS  
DEVICE  
C
C
DEC2  
REG3  
(LV_COR/LV_PLL)  
(supply/IO decoupling)  
Figure 7. Voltage regulator capacitance connection  
The internal voltage regulator requires external capacitance (C ) to be connected to the device in order to provide a stable  
REGn  
low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins.  
Care should also be taken to limit the serial inductance of the board to less than 5 nH.  
Each decoupling capacitor must be placed between each of the three V  
/V  
supply pairs to ensure stable voltage (see  
DD_LV SS_LV  
Section 4.5, Recommended operating conditions).  
Table 23. Voltage regulator electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CREGn  
RREG  
SR — Internal voltage regulator external  
capacitance  
200  
500  
nF  
SR — Stability capacitor equivalent serial  
resistance  
Range:  
10 kHz to 20 MHz  
0.2  
MPC5602D Microcontroller Data Sheet, Rev. 6  
38  
Freescale Semiconductor  
Electrical characteristics  
Table 23. Voltage regulator electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CDEC1  
SR — Decoupling capacitance2 ballast  
VDD_BV/VSS_LV pair:  
1003  
4704  
nF  
VDD_BV = 4.5 V to 5.5 V  
V
V
DD_BV/VSS_LV pair:  
DD_BV = 3 V to 3.6 V  
400  
10  
CDEC2  
SR — Decoupling capacitance regulator  
supply  
VDD/VSS pair  
100  
nF  
V
VMREG CC T Main regulator output voltage  
P
Before exiting from reset  
1.16  
1.32  
1.28  
After trimming  
IMREG  
SR — Main regulator current provided to  
DD_LV domain  
150  
mA  
mA  
V
IMREGINT CC D Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
2
1
VLPREG CC P Low-power regulator output voltage After trimming  
1.16  
1.28  
15  
V
ILPREG SR — Low power regulator current provided  
mA  
to VDD_LV domain  
ILPREGINT CC D Low-power regulator module current ILPREG = 15 mA;  
5
600  
µA  
consumption  
TA = 55 °C  
ILPREG = 0 mA;  
TA = 55 °C  
VULPREG CC P Ultra low power regulator output  
voltage  
After trimming  
1.16  
1.28  
2
V
IULPREG SR — Ultra low power regulator current  
provided to VDD_LV domain  
5
mA  
µA  
IULPREGINT CC D Ultra low power regulator module  
current consumption  
IULPREG = 5 mA;  
TA = 55 °C  
100  
IULPREG = 0 mA;  
TA = 55 °C  
IDD_BV CC D In-rush average current on VDD_BV  
during power-up5  
3006 mA  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage.  
A typical value is in the range of 470 nF.  
3
4
This value is acceptable to guarantee operation from 4.5 V to 5.5 V.  
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV  
in operating range.  
5
6
In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs,  
depending on external capacitances to be loaded).  
The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must  
be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
39  
Electrical characteristics  
4.9.2  
Low voltage detector electrical characteristics  
The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage  
detectors (LVDs) to monitor the V and the V  
voltage while device is supplied:  
DD  
DD_LV  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM  
DD  
Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)  
LVDHV3 monitors V to ensure device reset below minimum functional supply (refer to RGM Destructive Event  
DD  
Status (RGM_DES) Register flag F_LVD27 in device reference manual)  
LVDHV3B monitors V  
to ensure device reset below minimum functional supply (refer to RGM Destructive  
DD_BV  
Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)  
LVDHV5 monitors V when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status  
DD  
(RGM_FES) Register flag F_LVD45 in device reference manual)  
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag  
F_LVD12_PD1 in device reference manual)  
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag  
F_LVD12_PD0 in device reference manual)  
V
DD  
V
V
LVDHVxH  
LVDHVxL  
RESET  
Figure 8. Low voltage detector vs reset  
MPC5602D Microcontroller Data Sheet, Rev. 6  
40  
Freescale Semiconductor  
Electrical characteristics  
Table 24. Low voltage detector electrical characteristics  
Value  
Unit  
Symbol  
C
Parameter  
Conditions1  
Min  
Typ  
Max  
VPORUP  
VPORH  
SR P Supply for functional POR module  
CC P Power-on reset threshold  
TA = 25 °C,  
after trimming  
1.0  
1.5  
5.5  
2.6  
V
V
V
V
V
V
V
V
V
V
VLVDHV3H CC T LVDHV3 low voltage detector high threshold  
VLVDHV3L CC P LVDHV3 low voltage detector low threshold  
VLVDHV3BH CC P LVDHV3B low voltage detector high threshold  
VLVDHV3BL CC P LVDHV3B low voltage detector low threshold  
VLVDHV5H CC T LVDHV5 low voltage detector high threshold  
VLVDHV5L CC P LVDHV5 low voltage detector low threshold  
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold  
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold  
2.95  
2.9  
2.6  
2.95  
2.9  
2.6  
4.5  
3.8  
1.08  
1.08  
4.4  
1.16  
1.16  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
4.10 Power consumption  
Table 25 provides DC electrical characteristics for significant application modes. These values are indicative values; actual  
consumption depends on the application.  
Table 25. Power consumption on VDD_BV and VDD_HV  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
1303 mA  
Min Typ Max  
2
IDDMAX  
CC D RUN mode maximum  
average current  
90  
4
IDDRUN  
CC T RUN mode typical  
fCPU = 8 MHz  
fCPU = 16 MHz  
CPU = 32 MHz  
7
mA  
average current5  
T
18  
29  
40  
8
T
f
P
fCPU = 48 MHz  
100  
15  
25  
IDDHALT  
CC C HALT mode current6  
Slow internal RC oscillator TA = 25 °C  
(128 kHz) running  
mA  
P
TA = 125 °C  
14  
IDDSTOP CC P STOP mode current7  
Slow internal RC oscillator TA = 25 °C  
(128 kHz) running  
180 7008 µA  
D
D
D
P
TA = 55 °C  
500  
1
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
6(8) mA  
9(8)  
2
4.5  
12(8)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
41  
Electrical characteristics  
Table 25. Power consumption on VDD_BV and VDD_HV (continued) (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
IDDSTDBY CC P STANDBY mode current9 Slow internal RC oscillator TA = 25 °C  
(128 kHz) running  
30  
75  
100  
µA  
D
D
D
P
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
180  
700  
315 1000  
560 1700  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
Running consumption does not include I/Os toggling which is highly dependent on the application. The given value  
is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify  
operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used  
peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions,  
use low power mode when possible.  
3
Higher current may be sinked by device during power-up and standby exit. Please refer to in-rush average current  
on Table 23.  
4
5
RUN current measured with typical application with accesses on both flash memory and SRAM.  
Only for the “P” classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master,  
PLL as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic  
SW/WDG timer reset enabled.  
6
Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock.  
FlexCAN: 0 ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception  
or transmission), instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15])  
with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON.  
STM ON. ADC ON but no conversion except 2 analog watchdogs.  
7
8
Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off,  
ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.  
When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main  
regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction  
temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the  
maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to  
the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.  
9
Only for the “P” classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum  
consumption, all possible modules switched off.  
4.11 Flash memory electrical characteristics  
The data flash operation depends strongly on the code flash operation. If code flash is switched-off, the data flash is disabled.  
4.11.1 Program/Erase characteristics  
Table 26 shows the program and erase characteristics.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
42  
Freescale Semiconductor  
Electrical characteristics  
Table 26. Program and erase specifications (code flash)  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
Min  
Typ1  
Max3  
max2  
tdwprogram CC C Double word (64 bits) program time4  
t16Kpperase CC C 16 KB block preprogram and erase time  
t32Kpperase CC C 32 KB block preprogram and erase time  
t128Kpperase CC C 128 KB block preprogram and erase time  
22  
300  
400  
800  
50  
500  
600  
1300  
30  
500  
5000  
5000  
7500  
30  
µs  
ms  
ms  
ms  
µs  
tesus  
CC C Erase suspend latency  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
Actual hardware programming times. This does not include software overhead.  
Table 27. Program and erase specifications (data flash)  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
max2  
Min  
Typ1  
Max3  
tswprogram CC C Single word (32 bits) program time4  
t16Kpperase CC C 16 KB block preprogram and erase time  
30  
70  
300  
1500  
4800  
µs  
ms  
ms  
700  
800  
tBank_D  
CC C 64 KB block preprogram and erase time  
1900  
2300  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
Actual hardware programming times. This does not include software overhead.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
43  
Electrical characteristics  
Table 28. Flash module life  
Conditions  
Value  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
P/E  
CC C Number of program/erase  
cycles per block over the  
operating temperature range  
(TJ)  
16 KB blocks  
32 KB blocks  
128 KB blocks  
100,000  
cycles  
cycles  
cycles  
years  
10,000 100,000  
1,000 100,000  
Retention CC C Minimum data retention at 85 °C Blocks with  
average ambient temperature1 0–1,000 P/E cycles  
20  
10  
5
Blocks with  
1,001–10,000 P/E cycles  
Blocks with  
10,001–100,000 P/E cycles  
1
Ambient temperature averaged over application duration. It is recommended not to exceed the product operating  
temperature range.  
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units  
will experience single bit corrections throughout the life of the product with no impact to product reliability.  
Table 29. Flash memory read access timing  
Symbol  
C
Parameter  
Conditions1 Max Unit  
fCFREAD CC P Maximum working frequency for reading code flash memory at given  
2 wait states 48 MHz  
0 wait states 20  
number of wait states in worst conditions  
C
fDFREAD CC P Maximum working frequency for reading data flash memory at given  
number of wait states in worst conditions  
6 wait states 48 MHz  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
4.11.2 Flash power supply DC characteristics  
Table 30 shows the power supply DC characteristics on external supply.  
NOTE  
Power supply for data flash is actually provided by code flash; this means that data flash  
cannot work if code flash is not powered.  
Table 30. Flash power supply DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
ICFREAD CC D Sum of the current consumption on Flash module read  
Code flash  
Data flash  
Code flash  
Data flash  
33 mA  
mA  
33 mA  
mA  
VDDHV and VDDBV on read access fCPU = 48 MHz  
IDFREAD CC D  
4
ICFMOD CC D Sum of the current consumption on Program/Erase on-going  
VDDHV and VDDBV on matrix  
modification (program/erase)  
while reading flash registers,  
fCPU = 48 MHz  
IDFMOD CC D  
6
MPC5602D Microcontroller Data Sheet, Rev. 6  
44  
Freescale Semiconductor  
Electrical characteristics  
Table 30. Flash power supply DC electrical characteristics  
Conditions1  
Value  
Unit  
Symbol  
C
Parameter  
Min Typ Max  
IFLPW CC D Sum of the current consumption on  
VDDHV and VDDBV during  
Code flash  
910 µA  
flash low-power mode  
ICFPWD CC D Sum of the current consumption on  
Code flash  
Data flash  
125 µA  
25 µA  
VDDHV and VDDBV during  
IDFPWD CC D  
flash power-down mode  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
4.11.3 Start-up/Switch-off timings  
Table 31. Start-up time/Switch-off time  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
tFLARSTEXIT CC T Delay for flash module to exit reset mode Code flash  
Data flash  
125  
150  
0.5  
µs  
µs  
µs  
tFLALPEXIT CC T Delay for flash module to exit low-power Code flash  
mode2  
tFLAPDEXIT CC T Delay for flash module to exit power-down Code flash  
30  
303  
0.5  
µs  
µs  
µs  
mode  
Data flash  
tFLALPENTRY CC T Delay for flash module to enter low-power Code flash  
mode  
tFLAPDENTRY CC T  
Code flash  
Data flash  
1.5  
µs  
µs  
Delay for flash module to enter  
power-down mode  
4(3)  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
Data flash does not support low-power mode  
If code flash is already switched-on.  
4.12 Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
4.12.1 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical application environment and simplified  
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in  
particular.  
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC  
level requested for his application.  
Software recommendations The software flowchart must include the management of runaway conditions such as:  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
45  
Electrical characteristics  
— Corrupted program counter  
— Unexpected reset  
— Critical data corruption (control registers...)  
Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the  
software can be hardened to prevent unrecoverable errors occurring.  
4.12.2 Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1  
standard, which specifies the general conditions for EMI measurements.  
1 2  
Table 32. EMI radiated emission measurement  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
SR — Scan range  
0.150  
48  
1000 MHz  
fCPU SR — Operating frequency  
VDD_LV SR — LV operating voltages  
SEMI CC T Peak level  
MHz  
V
1.28  
VDD = 5 V, TA = 25 °C,  
100 LQFP package  
No PLL frequency  
modulation  
18 dBµ  
V
Test conforming to IEC 61967-2,  
fOSC = 8 MHz/fCPU = 48 MHz  
± 2% PLL frequency  
modulation  
14 dBµ  
V
1
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4  
2
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your  
local marketing representative.  
4.12.3 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine  
its performance in terms of electrical sensitivity.  
4.12.3.1 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according  
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n + 1) supply pin).  
This test conforms to the AEC-Q100-002/-003/-011 standard.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
46  
Freescale Semiconductor  
Electrical characteristics  
1 2  
Table 33. ESD absolute maximum ratings  
Symbol  
C
Ratings  
Conditions  
TA = 25 °C  
Class Max value  
Unit  
VESD(HBM) CC T Electrostatic discharge voltage  
(Human Body Model)  
H1C  
2000  
V
conforming to AEC-Q100-002  
VESD(MM) CC T Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
M2  
200  
V
VESD(CDM) CC T Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
C3A  
500  
V
V
750 (corners)  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
2
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
4.12.3.2 Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 34. Latch-up results  
Symbol  
LU CC  
C
Parameter  
Conditions  
Class  
T Static latch-up class  
TA = 125 °C  
II level A  
conforming to JESD 78  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
47  
Electrical characteristics  
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure 9 describes a simple model of the internal oscillator driver and  
provides an example of a connection for an oscillator or a resonator.  
Table 35 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.  
EXTAL  
C1  
EXTAL  
XTAL  
C2  
DEVICE  
V
DD  
I
R
EXTAL  
XTAL  
DEVICE  
XTAL  
DEVICE  
Notes:  
1. XTAL/EXTAL must not be directly used to drive external circuits  
2. A series resistor may be required, according to crystal oscillator supplier recommendations.  
Figure 9. Crystal oscillator and resonator connection scheme  
MPC5602D Microcontroller Data Sheet, Rev. 6  
48  
Freescale Semiconductor  
Electrical characteristics  
Table 35. Crystal description  
Crystal  
equivalent  
series  
resistance  
(ESR)   
Shunt  
capacitance  
xtalin/xtalout betweenxtalout  
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Nominal  
frequency  
(MHz)  
Load on  
NDK crystal  
reference  
C1 = C2 (pF)1  
and xtalin  
C02 (pF)  
4
NX8045GB  
NX5032GA  
300  
300  
150  
120  
120  
2.68  
2.46  
2.93  
3.11  
3.90  
591.0  
160.7  
86.6  
21  
17  
15  
15  
10  
2.93  
3.01  
2.91  
2.93  
3.00  
8
10  
12  
16  
56.5  
25.3  
1
2
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing  
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,  
package, etc.).  
S_MTRANS bit (ME_GS register)  
‘1’  
‘0’  
V
XTAL  
1/f  
FXOSC  
V
FXOSC  
90%  
10%  
V
FXOSCOP  
T
valid internal clock  
FXOSCSU  
Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
49  
Electrical characteristics  
Table 36. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFXOSC  
SR — Fast external crystal  
oscillator frequency  
4.0  
16.0  
MHz  
gmFXOSC CC C Fast external crystal  
VDD = 3.3 V ± 10%,  
2.2  
2.0  
2.7  
2.5  
8.2  
7.4  
9.7  
9.2  
mA/V  
oscillator transconductance PAD3V5V = 1  
OSCILLATOR_MARGIN = 0  
CC P  
CC C  
CC C  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 0  
V
DD = 3.3 V ± 10%,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 1  
V
DD = 5.0 V ± 10%,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 1  
VFXOSC  
CC T Oscillation amplitude at  
EXTAL  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
1.3  
1.3  
V
f
OSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
VFXOSCOP CC P Oscillation operating point  
0.95  
2
V
2
IFXOSC  
CC T Fast external crystal  
oscillator consumption  
3
6
mA  
tFXOSCSU CC T Fast external crystal  
oscillator start-up time  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
ms  
fOSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
1.8  
VIH  
VIL  
SR P Input high level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
Oscillator bypass mode  
0.65VDD  
0.4  
VDD+0.4  
0.35VDD  
V
V
SR P Input low level CMOS  
(Schmitt Trigger)  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
Stated values take into account only analog module consumption but not the digital contributor (clock tree and  
enabled peripherals)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
50  
Freescale Semiconductor  
Electrical characteristics  
4.14 FMPLL electrical characteristics  
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main  
oscillator driver.  
Table 37. FMPLL electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fPLLIN SR — FMPLL reference clock2  
4
48  
60  
MHz  
%
PLLIN SR — FMPLL reference clock duty  
40  
cycle(2)  
fPLLOUT CC D FMPLL output clock frequency  
16  
48  
MHz  
3
fVCO  
CC P VCO frequency without  
frequency modulation  
256  
512 MHz  
VCO frequency with frequency  
modulation  
245  
533  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
tLOCK CC P FMPLL lock time  
20  
40  
48  
MHz  
150 MHz  
Stable oscillator (fPLLIN = 16 MHz)  
100  
10  
µs  
ns  
tLTJIT CC — FMPLL long term jitter  
fPLLIN = 16 MHz (resonator),  
fPLLCLK at 48 MHz, 4,000 cycles  
IPLL  
CC C FMPLL consumption  
TA = 25 °C  
4
mA  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in  
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN  
Frequency modulation is considered ±4%.  
.
3
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device.  
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value  
Symbol  
fFIRC  
2,  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CC P Fast internal RC oscillator high TA = 25 °C, trimmed  
frequency  
12  
16  
20  
MHz  
SR —  
IFIRCRUN  
CC T Fast internal RC oscillator high TA = 25 °C, trimmed  
200  
µA  
µA  
frequency current in running  
mode  
IFIRCPWD CC D Fast internal RC oscillator high TA = 25 °C  
frequency current in power  
10  
down mode  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
51  
Electrical characteristics  
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C sysclk = off  
frequency and system clock  
500  
600  
700  
900  
1250  
1.1  
2.0  
µA  
sysclk = 2 MHz  
current in stop mode  
sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
tFIRCSU CC C Fast internal RC oscillator  
start-up time  
VDD = 5.0 V ± 10%  
µs  
%
FIRCPRE CC C Fast internal RC oscillator  
precision after software  
TA = 25 °C  
TA = 25 °C  
1  
1
trimming of fFIRC  
FIRCTRIM CC C Fast internal RC oscillator  
1.6  
%
%
trimming step  
FIRCVAR CC C Fast internal RC oscillator  
variation in temperature and  
supply with respect to fFIRC at  
TA = 55 °C in high-frequency  
configuration  
5  
5
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
4.16 Slow internal RC oscillator (128 kHz) electrical characteristics  
The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module.  
Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fSIRC  
CC P Slow internal RC oscillator low  
TA = 25 °C, trimmed  
100  
128  
150  
5
kHz  
frequency  
SR —  
2,  
ISIRC  
CC C Slow internal RC oscillator low  
frequency current  
TA = 25 °C, trimmed  
µA  
µs  
%
tSIRCSU  
CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10%  
time  
2  
8
12  
2
SIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C  
after software trimming of fSIRC  
SIRCTRIM CC C Slow internal RC oscillator trimming  
2.7  
step  
MPC5602D Microcontroller Data Sheet, Rev. 6  
52  
Freescale Semiconductor  
Electrical characteristics  
Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
SIRCVAR CC P Slow internal RC oscillator variation High frequency configuration  
in temperature and supply with  
10  
10  
%
respect to fSIRC at TA = 55 °C in high  
frequency configuration  
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
53  
Electrical characteristics  
4.17 ADC electrical characteristics  
4.17.1 Introduction  
The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital converter.  
Offset Error (E )  
Gain Error (E )  
G
O
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
4
3
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error (E )  
O
Figure 11. ADC characteristics and error definitions  
MPC5602D Microcontroller Data Sheet, Rev. 6  
54  
Freescale Semiconductor  
Electrical characteristics  
4.17.2 Input impedance and ADC accuracy  
In the following analysis, the input circuit corresponding to the precise channels is considered.  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor  
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as  
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources  
charge during the sampling phase, when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC  
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to  
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal  
(bandwidth) and the equivalent input impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being C and C  
S
p2  
substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive  
path to ground. For instance, assuming a conversion rate of 1 MHz, with C +C equal to 3 pF, a resistance of 330 kis  
S
p2  
obtained (R = 1 / (f × (C +C )), where f represents the conversion rate at the considered channel). To minimize the error  
EQ  
c
S
p2  
c
induced by the voltage partitioning between this resistance (sampled voltage on C +C ) and the sum of R + R , the external  
S
p2  
S
F
circuit must be designed to respect the Equation 4:  
Eqn. 4  
R + R  
S
F
1
2
--------------------  
V
-- LSB  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on a resistive path.  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
55  
Electrical characteristics  
EXTERNAL CIRCUIT  
Filter  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R : Source impedance  
S
R : Filter resistance  
F
C : Filter capacitance  
F
R : Current limiter resistance  
L
R
R
: Channel selection switch impedance  
SW1  
: Sampling switch impedance  
AD  
C : Pin capacitance (two contributions, C and C )  
P2  
P
P1  
C : Sampling capacitance  
S
Figure 12. Input equivalent circuit (precise channels)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
56  
Freescale Semiconductor  
Electrical characteristics  
EXTERNAL CIRCUIT  
Filter  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Current Limiter  
R
R
R
F
R
L
R
AD  
SW2  
S
SW1  
C
S
C
V
C
F
C
C
P2  
A
P1  
P3  
R : Source impedance  
S
R : Filter resistance  
F
C : Filter capacitance  
F
R : Current limiter resistance  
L
R
R
: Channel selection switch impedance (two contributions, R  
and R  
)
SW1  
SW1  
SW2  
: Sampling switch impedance  
AD  
C : Pin capacitance (two contributions, C , C and C )  
P3  
P
P1  
P2  
C : Sampling capacitance  
S
Figure 13. Input equivalent circuit (extended channels)  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C , C and C are  
F
P1  
P2  
initially charged at the source voltage V (refer to the equivalent circuit in Figure 13): A charge sharing phenomenon is installed  
A
when the sampling phase is started (A/D switch close).  
Voltage transient on CS  
V
CS  
V
A
V <0.5 LSB  
V
A2  
1
2
1 < (RSW + RAD) CS << ts  
V
A1  
2 = RL (CS + CP1 + CP2)  
t
t
s
Figure 14. Transient behavior during sampling phase  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
57  
Electrical characteristics  
In particular two different transient periods can be distinguished:  
1. A first and quick charge transfer from the internal capacitance C and C to the sampling capacitance C occurs (C  
S
P1  
P2  
S
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be  
faster) in which C is reported in parallel to C (call C = C + C ), the two capacitances C and C are in series,  
P2  
P1  
P
P1  
P2  
P
S
and the time constant is  
Eqn. 5  
C C  
P
S
--------------------  
   
= R  
+ R  
1
SW  
AD  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality, the transient is  
S
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t  
is always much longer than the internal time constant:  
s
Eqn. 6  
R  
+ R  
C « ts  
1
SW  
AD  
S
The charge of C and C is redistributed also on C , determining a new value of the voltage V on the capacitance  
P1  
P2  
S
A1  
according to Equation 7:  
Eqn. 7  
V
C + C + C = V C + C  
A1  
S
P1  
P2  
A
P1  
P2  
2. A second charge transfer involves also C (that is typically bigger than the on-chip capacitance) through the resistance  
F
R : again considering the worst case in which C and C were in parallel to C (since the time constant in reality  
L
P2  
S
P1  
would be faster), the time constant is:  
Eqn. 8  
R C + C + C  
P1 P2  
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed  
well before the end of sampling time t , a constraints on R sizing is obtained:  
s
L
Eqn. 9  
10 = 10 R C + C + C ts  
P1 P2  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in combination with R (source  
L
S
impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the final voltage V  
F
F
P1 P2  
S
A2  
(at the end of the charge transfer transient) will be much higher than V . Equation 10 must be respected (charge  
A1  
balance assuming now C already charged at V ):  
S
A1  
Eqn. 10  
V
C + C + C + C = V C + V C + C + C   
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C filter, is not able to  
F
F
provide the extra charge to compensate the voltage drop on C with respect to the ideal source V ; the time constant R C of  
S
A
F F  
the filter is very high with respect to the sampling time (t ). The filter is typically designed to act as anti-aliasing.  
s
MPC5602D Microcontroller Data Sheet, Rev. 6  
58  
Freescale Semiconductor  
Electrical characteristics  
Analog source bandwidth (VA)  
Noise  
tc < 2 RFCF (conversion rate vs. filter pole)  
fF = f0 (anti-aliasing filtering condition)  
2 f0 < fC (Nyquist)  
f0  
f
Anti-aliasing filter (fF = RC filter pole)  
Sampled signal spectrum (fC = conversion rate)  
fF  
f0  
fC  
f
f
Figure 15. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f ),  
0
F
according to the Nyquist theorem the conversion rate f must be at least 2f ; it means that the constant time of the filter is greater  
C
0
than or at least equal to twice the conversion period (t ). Again the conversion period t is longer than the sampling time t ,  
c
c
s
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a  
specific channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F
F
sampling time t , so the charge level on C cannot be modified by the analog signal source during the time in which the sampling  
s
S
switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage  
drop on C ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled  
S
voltage on C :  
S
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A2  
P1  
F
V
C
+ C + C + C  
A
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept a maximum error of  
A
half a count, a constraint is evident on C value:  
F
Eqn. 12  
C
2048 C  
F
S
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
59  
Electrical characteristics  
4.17.3 ADC electrical characteristics  
Table 40. ADC input leakage current  
Value  
Typ  
Symbol C  
Parameter  
Conditions  
Unit  
Min  
Max  
ILKG CC C Input leakage current TA = 40 °C No current injection on adjacent pin  
1
1
nA  
C
C
P
TA = 25 °C  
TA = 105 °C  
TA = 125 °C  
8
200  
400  
45  
Table 41. ADC conversion characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
0.1  
VSS_ADC SR — Voltage on  
VSS_HV_ADC (ADC  
0.1  
V
reference) pin with  
respect to ground  
2
(VSS  
)
VDD_ADC SR — Voltage on  
VDD_HV_ADC pin  
VDD 0.1  
VDD + 0.1  
V
(ADC reference) with  
respect to ground  
(VSS  
)
VAINx SR — Analog input voltage3  
VSS_ADC 0.1  
VDD_ADC + 0.1  
32 + 4%  
20 + 4%  
55  
V
fADC SR — ADC analog frequency VDD = 5.0 V  
VDD = 3.3 V  
3.33  
3.33  
45  
MHz  
ADC_SYS SR — ADC clock duty cycle ADCLKSEL = 14  
(ipg_clk)  
%
tADC_PU SR — ADC power up delay  
1.5  
µs  
ns  
ts  
CC  
T
Sampling time5  
VDD = 3.3 V  
f
ADC = 20 MHz,  
INPSAMP = 12  
600  
f
ADC = 3.33 MHz,  
500  
76.2  
µs  
ns  
µs  
INPSAMP = 255  
T
Sampling time(5)  
VDD = 5.0 V  
fADC = 24 MHz,  
INPSAMP = 13  
fADC = 3.33 MHz,  
INPSAMP = 255  
76.2  
MPC5602D Microcontroller Data Sheet, Rev. 6  
60  
Freescale Semiconductor  
Electrical characteristics  
Table 41. ADC conversion characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
tc  
CC  
P
Conversion time6  
VDD = 3.3 V  
f
ADC = 20 MHz,  
2.4  
µs  
INPCMP = 0  
f
ADC = 13.33 MHz,  
1.5  
5
3.6  
INPCMP = 0  
P
Conversion time(6)  
VDD = 5.0 V  
fADC = 32 MHz,  
INPCMP = 0  
µs  
fADC = 13.33 MHz,  
INPCMP = 0  
3.6  
CS  
CC D ADC input sampling  
capacitance  
pF  
pF  
pF  
pF  
k  
k  
k  
mA  
CP1  
CP2  
CP3  
CC D ADC input pin  
capacitance 1  
3
CC D ADC input pin  
capacitance 2  
1
CC D ADC input pin  
capacitance 3  
1.5  
RSW1 CC D Internal resistance of  
analog source  
5  
5  
1
2
RSW2 CC D Internal resistance of  
analog source  
RAD CC D Internal resistance of  
analog source  
0.3  
5
IINJ  
SR — Input current Injection Current  
VDD  
3.3 V ± 10%  
=
injection on  
one ADC input,  
different from  
the converted  
one  
VDD  
5.0 V ± 10%  
=
5
INLP CC  
INLX CC  
DNL CC  
T
T
T
Absolute Integral  
non-linearity-precise  
channels  
No overload  
1
3
5
1
LSB  
LSB  
LSB  
Absolute Integral  
non-linearity-extended  
channels  
No overload  
1.5  
0.5  
Absolute Differential No overload  
non-linearity  
EO  
EG  
CC  
CC  
T
T
P
T
Absolute Offset error  
Absolute Gain error  
–6  
–8  
2
2
6
LSB  
LSB  
LSB  
TUEP7 CC  
Total unadjusted error Without current injection  
for precise channels,  
With current injection  
input only pins  
8
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
61  
Electrical characteristics  
Table 41. ADC conversion characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
TUEX(7) CC  
T
T
Total unadjusted error Without current injection  
–10  
–12  
10  
12  
LSB  
for extended channel  
With current injection  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0xFFF.  
4
5
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured  
by internal divider by 2.  
During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of  
the sampling time tS, changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock tS depend on programming.  
6
7
This parameter does not include the sampling time tS, but only the time for determining the digital result and the  
time to load the result’s register with the conversion result.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
4.18 On-chip peripherals  
4.18.1 Current consumption  
1
Table 42. On-chip peripherals current consumption  
Parameter Conditions  
CC T CAN (FlexCAN) supply 500 Kbyte/s Total (static + dynamic)  
Symbol  
C
Typical value2 Unit  
IDD_BV(CAN)  
8 × fperiph + 85 µA  
8 × fperiph + 27 µA  
current on VDD_BV consumption:  
125 Kbyte/s  
• FlexCAN in loop-back  
mode  
• XTAL at 8 MHz used as  
CAN engine clock source  
• Message sending period  
is 580 µs  
IDD_BV(eMIOS) CC T eMIOS supply current Static consumption:  
29 × fperiph  
µA  
µA  
on VDD_BV  
• eMIOS channel OFF  
• Global prescaler enabled  
Dynamic consumption:  
3
• It does not change varying the  
frequency (0.003 mA)  
IDD_BV(SCI)  
CC T SCI (LINFlex) supply  
current on VDD_BV  
Total (static + dynamic) consumption:  
• LIN mode  
5 × fperiph + 31 µA  
• Baudrate: 20 Kbyte/s  
MPC5602D Microcontroller Data Sheet, Rev. 6  
62  
Freescale Semiconductor  
Electrical characteristics  
Table 42. On-chip peripherals current consumption (continued)  
1
Symbol  
C
Parameter  
Conditions  
Typical value2 Unit  
IDD_BV(SPI)  
CC T SPI (DSPI) supply  
current on VDD_BV  
Ballast static consumption (only clocked)  
1
µA  
µA  
Ballast dynamic consumption (continuous  
communication):  
16 × fperiph  
• Baudrate: 2 Mbit/s  
• Transmission every 8 µs  
• Frame: 16 bits  
IDD_BV(ADC)  
CC T ADC supply current on VDD = 5.5 V Ballast static consumption  
41 × fperiph  
5 × fperiph  
µA  
µA  
VDD_BV  
(no conversion)  
Ballast dynamic  
consumption (continuous  
conversion)3  
IDD_HV_ADC(ADC) CC T ADC supply current on VDD = 5.5 V Analog static consumption  
2 × fperiph  
µA  
VDD_HV_ADC  
(no conversion)  
Analog dynamic  
consumption (continuous  
conversion)  
75 × fperiph + 32 µA  
IDD_HV(FLASH) CC T CFlash + DFlash supply VDD = 5.5 V  
current on VDD_HV  
8.21  
mA  
µA  
IDD_HV(PLL)  
CC T PLL supply current on VDD = 5.5 V  
VDD_HV  
30 × fperiph  
1
2
3
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 48 MHz  
fperiph is an absolute value.  
During the conversion, the total current consumption is given from the sum of the static and dynamic consumption,  
i.e., (41 + 5) × fperiph  
.
4.18.2 DSPI characteristics  
1
Table 43. DSPI characteristics  
DSPI0/DSPI1  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
1
tSCK  
SR D SCK cycle time  
Master mode  
(MTFE = 0)  
125  
125  
83  
ns  
D
D
D
Slave mode  
(MTFE = 0)  
Master mode  
(MTFE = 1)  
Slave mode  
(MTFE = 1)  
83  
fDSPI  
SR D DSPI digital controller frequency  
fCPU MHz  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
63  
Electrical characteristics  
1
Table 43. DSPI characteristics (continued)  
DSPI0/DSPI1  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
tCSC  
CC D Internal delay between pad  
associated to SCK and pad  
associated to CSn in master  
mode  
Master mode  
Master mode  
1302  
ns  
tASC  
CC D Internal delay between pad  
associated to SCK and pad  
associated to CSn in master  
mode for CSn11  
130(2) ns  
3
4
2
3
4
tCSCext  
tASCext  
tSDC  
SR D CS to SCK delay  
SR D After SCK delay  
CC D SCK duty cycle  
Slave mode  
Slave mode  
Master mode  
Slave mode  
32  
32  
52  
ns  
ns  
ns  
1/fDSPI + 5  
tSCK/2  
SR  
D
tSCK/2  
5
6
7
8
9
tA  
SR D Slave access time  
1/fDSPI + 70  
ns  
ns  
ns  
ns  
ns  
tDI  
SR D Slave SOUT disable time  
SR D PCSx to PCSS time  
SR D PCSS to PCSx time  
SR D Data setup time for inputs  
7
0
tPCSC  
tPASC  
tSUI  
0
Master mode  
Slave mode  
Master mode  
Slave mode  
Master mode  
Slave mode  
Master mode  
Slave mode  
43  
5
10  
11  
12  
tHI  
SR D Data hold time for inputs  
CC D Data valid after SCK edge  
CC D Data hold time for outputs  
0
ns  
ns  
ns  
25  
0
6
tSUO  
(6)  
tHO  
8
1
2
3
Operating conditions: COUT = 10 to 50 pF, SlewIN = 3.5 to 15 ns  
Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad  
The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields  
in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than tCSC to ensure  
positive tCSCext  
.
4
The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in  
DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than tASC to ensure positive  
tASCext  
.
5
6
This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR.  
SCK and SOUT configured as MEDIUM pad  
MPC5602D Microcontroller Data Sheet, Rev. 6  
64  
Freescale Semiconductor  
Electrical characteristics  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 43.  
Figure 16. DSPI classic SPI timing – master, CPHA = 0  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
65  
Electrical characteristics  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
Data  
12  
Data  
Last Data  
First Data  
SIN  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 43.  
Figure 17. DSPI classic SPI timing – master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 43.  
Figure 18. DSPI classic SPI timing – slave, CPHA = 0  
MPC5602D Microcontroller Data Sheet, Rev. 6  
66  
Freescale Semiconductor  
Electrical characteristics  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 43.  
Figure 19. DSPI classic SPI timing – slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 43.  
Figure 20. DSPI modified transfer format timing – master, CPHA = 0  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
67  
Electrical characteristics  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 43.  
Figure 21. DSPI modified transfer format timing – master, CPHA = 1  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 43.  
Figure 22. DSPI modified transfer format timing – slave, CPHA = 0  
MPC5602D Microcontroller Data Sheet, Rev. 6  
68  
Freescale Semiconductor  
Electrical characteristics  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 43.  
Figure 23. DSPI modified transfer format timing – slave, CPHA = 1  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 43.  
Figure 24. DSPI PCS strobe (PCSS) timing  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
69  
Package characteristics  
4.18.3 JTAG characteristics  
Table 44. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
3
4
5
6
7
tJCYC  
tTDIS  
CC D TCK cycle time  
CC D TDI setup time  
CC D TDI hold time  
83.33  
15  
5
49  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTDIH  
tTMSS  
tTMSH  
tTDOV  
tTDOI  
CC D TMS setup time  
CC D TMS hold time  
CC D TCK low to TDO valid  
CC D TCK low to TDO invalid  
15  
5
6
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
DATA OUTPUTS  
OUTPUT DATA VALID  
7
Note: Numbers shown reference Table 44.  
Figure 25. Timing diagram – JTAG boundary scan  
5
Package characteristics  
Package mechanical data  
100 LQFP  
5.1  
5.1.1  
MPC5602D Microcontroller Data Sheet, Rev. 6  
70  
Freescale Semiconductor  
Package characteristics  
Figure 26. 100 LQFP package mechanical drawing (Part 1 of 3)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
71  
Package characteristics  
Figure 27. 100 LQFP package mechanical drawing (Part 2 of 3)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
72  
Freescale Semiconductor  
Package characteristics  
Figure 28. 100 LQFP package mechanical drawing (Part 3 of 3)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
73  
Package characteristics  
5.1.2  
64 LQFP  
Figure 29. 64 LQFP mechanical drawing (part 1 of 3)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
74  
Freescale Semiconductor  
Package characteristics  
Figure 30. 64 LQFP mechanical drawing (part 2 of 3)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
75  
Package characteristics  
Figure 31. 64 LQFP mechanical drawing (part 3 of 3)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
76  
Freescale Semiconductor  
Ordering information  
6
Ordering information  
Example code:  
M
PC  
56  
0
2
D
F1  
M
LL  
4
R
Qualification Status  
Power Architecture Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Optional fields  
Temperature spec.  
Package Code  
Frequency  
R = Tape & Reel (blank if Tray)  
Qualification Status  
M = MC status  
S = Auto qualified  
P = PC status  
Flash Size (z0 core)  
1= 128 KB  
2 = 256 KB  
Temperature spec.  
C = –40 to 85 °C  
V = –40 to 105 °C  
M = –40 to 125 °C  
Automotive Platform  
56 = Power Architecture in 90 nm  
Product  
D = Access family  
Package Code  
LH = 64 LQFP  
LL = 100 LQFP  
Core Version  
0 = e200z0h  
Optional fields  
F = ATMC  
1 = Maskset revision  
Frequency  
4 = Up to 48 MHz  
3 = Up to 32 MHz  
Figure 32. Commercial product code structure  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
77  
Document revision history  
7
Document revision history  
Table 45 summarizes revisions to this document.  
Table 45. Revision history  
Description of Changes  
Revision  
Date  
1
2
30 Sep 2009 Initial release  
18 Feb 2010 Updated the following tables:  
- Absolute maximum ratings  
- Low voltage power domain electrical characteristics;  
- On-chip peripherals current consumption  
- DSPI characteristics;  
- JTAG characteristics;  
- ADC conversion characteristics;  
Inserted a note on “Flash power supply DC characteristics” section.  
3
10 Aug 2010 “Features” section: Updated information concerning eMIOS, ADC, LINFlex, Nexus and  
low power capabilities  
“MPC5602D device comparison” table: updated the “Execution speed” row  
“MPC5602D series block diagram” figure:  
• updated max number of Crossbar Switches  
• updated Legend  
“MPC5602D series block summary” table: added contents concernig the eDMA block  
“100 LQFP pin configuration (top view)” figure:  
• removed alternate functions  
• updated supply pins  
“64 LQFP pin configuration (top view)” figure: removed alternate functions  
Added “Pin muxing” section  
“NVUSRO register” section: Deleted “NVUSRO[WATCHDOG_EN] field description“  
section  
“Recommended operating conditions (3.3 V)” table:  
• TVDD: deleted min value  
• In footnote No. 3, changed capacitance value between VDD_BV and VSS_LV  
“Recommended operating conditions (5.0 V)” table: deleted TVDD min value  
“LQFP thermal characteristics” table: changed RJC values  
“I/O input DC electrical characteristics” table:  
• WFI: updated max value  
• WNFI: updated min value  
“I/O consumption” table: removed IDYNSEG row  
Added “I/O weight” table  
“Program and erase specifications (Code Flash)” table: deleted TBank_C row  
Updated the following tables:  
• “Voltage regulator electrical characteristics”  
• “Low voltage monitor electrical characteristics”  
• “Low voltage power domain electrical characteristics”  
• “Start-up time/Switch-off time”  
• “Fast external crystal oscillator (4 to 16 MHz) electrical characteristics”  
• “FMPLL electrical characteristics”  
• “Fast internal RC oscillator (16 MHz) electrical characteristics”  
• “ADC conversion characteristics”  
• “On-chip peripherals current consumption”  
• “DSPI characteristics”  
“DSPI characteristics” section: removed “DSPI PCS strobe (PCSS) timing” figure  
3
10 Aug 2010 “Ordering information” section: removed “Orderable part number summary“ table  
(continued)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
78  
Freescale Semiconductor  
Document revision history  
Table 45. Revision history (continued)  
Description of Changes  
Revision  
Date  
3.1  
23 Feb 2011 Deleted the “Freescale Confidential Proprietary” label (the document is public)  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
79  
Document revision history  
Table 45. Revision history (continued)  
Description of Changes  
Revision  
Date  
4
14 Jul 2011 Formatting and editorial changes throughout  
Device comparison table: for the “Total timer I/O eMIOS”, changed “13 ch” to “14 ch”  
Features: Replaced “e200z0“ with “e200z0h”; added an explanation of which LINFlex  
modules support master mode and slave  
MPC5601D/MPC5602D series block summary:  
• added definition for “AUTOSAR” acronym  
changed “System watchdog timer” to “Software watchdog timer”64 LQFP pin  
configuration (top view): changed pin 6 from VPP_TEST to VSS_HV  
Added section “Pad configuration during reset phases”  
Added section “Voltage supply pins”  
Added section “Pad types”  
Added section “System pins”  
Renamed and updated section “Functional ports” (was previously section “Pin muxing”);  
update includes replacing all instances of WKUP with WKPU (WKPU is the correct  
abbreviation for Wakeup Unit)  
Section “NVUSRO register”: edited content to separate configuration into electrical  
parameters and digital functionality  
Added section “NVUSRO[WATCHDOG_EN] field description”  
Absolute maximum ratings: Removed “C” column from table  
Replaced “TBD” with “—” in TVDD min value cell of 3.3 V and 5 V recommended  
operating conditions tables  
LQFP thermal characteristics: removed RJB single layer board conditions; updated  
footnote 4  
I/O input DC electrical characteristics: removed footnote “All values need to be  
confirmed during device validation”; updated ILKG characteristics  
MEDIUM configuration output buffer electrical characteristics: changed “IOH = 100 µA”  
to “IOL = 100 µA” in VOL conditions  
I/O consumption: replaced instances of “Root medium square” with “Root mean square”  
Updated section “Voltage regulator electrical characteristics”  
Section “Low voltage detector electrical characteristics”: changed title (was “Voltage  
monitor electrical characteristics”); added a fifth LVD (LVDHV3B); added event status  
flag names found in RGM chapter of device reference manual to POR module and  
LVD descriptions; replaced instances of “Low voltage monitor” with “Low voltage  
detector”; deleted note referencing power domain No. 2 (this domain is not present  
on the device); updated electrical characteristics table  
Updated and renamed section “Power consumption” (was previously section “Low  
voltage domain power consumption”)  
Program and erase specifications (code flash): updated symbols; updated tesus values  
Updated Flash memory read access timing  
EMI radiated emission measurement: updated SEMI values  
Updated FMPLL electrical characteristics  
Crystal oscillator and resonator connection scheme: inserted footnote about possibly  
requiring a series resistor  
Fast internal RC oscillator (16 MHz) electrical characteristics: updated tFIRCSU values  
Section “Input impedance and ADC accuracy”: changed “VA/VA2” to “VA2/VA” in  
Equation 13  
ADC conversion characteristics:  
• updated conditions for sampling time VDD = 5.0 V  
• updated conditions for conversion time VDD = 5.0 V  
Commercial product code structure: added character for frequency; updated optional  
fields character and description  
Restored the revision history table and added an entry for Rev. 3.1  
Updated Abbreviations  
MPC5602D Microcontroller Data Sheet, Rev. 6  
80  
Freescale Semiconductor  
Abbreviations  
Table 45. Revision history (continued)  
Description of Changes  
Revision  
Date  
5
6
Rev. 5 not published.  
29 Jan 2013 Removed all instances of table footnote “All values need to be confirmed during device  
validation”  
Section 4.1, “Introduction, removed Caution note.  
In Table 42, On-chip peripherals current consumption, replaced “TBD” with “8.21 mA” in  
IDD_HV(FLASH) cell.  
Updated Section 4.17.2, “Input impedance and ADC accuracy  
In Table 24, changed VLVDHV3L, VLVDHV3BL from 2.7 V to 2.6 V.  
Revised the Table 28 (Flash module life)  
Updated Table 43, DSPI characteristics, to add specifications 7 and 8, tPCSC and tPASC  
Inserted Figure 24, DSPI PCS strobe (PCSS) timing.  
.
Appendix A Abbreviations  
Table A-1 lists abbreviations used in this document.  
Table A-1. Abbreviations  
Meaning  
Abbreviation  
APU  
CMOS  
CPHA  
CPOL  
CS  
Auxilliary processing unit  
Complementary metal–oxide–semiconductor  
Clock phase  
Clock polarity  
Peripheral chip select  
DAOC  
ECC  
Double action output compare  
Error code correction  
EVTO  
GPIO  
IPM  
Event out  
General purpose input/output  
Input period measurement  
Input pulse width measurement  
Message buffer  
IPWM  
MB  
MC  
Modulus counter  
MCB  
Modulus counter buffered (up / down)  
Message clock out  
MCKO  
MDO  
Message data out  
MSEO  
MTFE  
NVUSRO  
OPWFMB  
OPWMB  
Message start/end out  
Modified timing format enable  
Non-volatile user options register  
Output pulse width and frequency modulation buffered  
Output pulse width modulation buffered  
MPC5602D Microcontroller Data Sheet, Rev. 6  
Freescale Semiconductor  
81  
Abbreviations  
Table A-1. Abbreviations (continued)  
Meaning  
Abbreviation  
OPWMCB  
OPWMT  
PWM  
SAIC  
SAOC  
SCK  
Center aligned output pulse width modulation buffered with dead time  
Output pulse width modulation trigger  
Pulse width modulation  
Single action input capture  
Single action output compare  
Serial communications clock  
Serial data out  
SOUT  
TBD  
To be defined  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
MPC5602D Microcontroller Data Sheet, Rev. 6  
82  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
© Freescale Semiconductor, Inc. 2009–2013. All rights reserved.  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MPC5602D  
Rev. 6  
01/2013  

相关型号:

935318648096

RISC Microcontroller
NXP

935318654528

Power Supply Support Circuit
NXP

935318654557

Power Supply Support Circuit
NXP

935318678557

Switching Regulator
NXP

935318682557

RISC Microcontroller
NXP

935318688557

Interface Circuit
NXP

935318691557

Microprocessor
NXP

935318707564

RF Power Field-Effect Transistor
NXP

935318711557

RISC Microcontroller
NXP

935318712528

Interface Circuit
NXP

935318712557

Interface Circuit
NXP

935318713557

RISC Microcontroller
NXP