935319553557 [NXP]

Microcontroller;
935319553557
型号: 935319553557
厂家: NXP    NXP
描述:

Microcontroller

时钟 微控制器 外围集成电路
文件: 总47页 (文件大小:1165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advanced Information  
Document Number: MCF51JE256  
Rev. 4, 08/2012  
An Energy-Efficient Solution from Freescale  
MCF51JE256/128  
MCF51JE256/128  
The MCF51JE256 series devices are members of the low-cost,  
low-power, high-performance ColdFire V1 family of 32-bit  
microcontrollers (MCUs).  
Not all features are available in all devices or packages; see  
Table 1 for a comparison of features by device.  
80-LQFP  
12mm x 12mm  
100-LQFP  
14mm x 14mm  
81-BGA  
10mm x 10mm  
104-BGA  
10mm x 10mm  
Peripherals  
32-Bit ColdFire V1 Central Processor Unit (CPU)  
USB — Dual-role USB On-The-Go (OTG) device, supports USB in either  
Up to 50.33 MHz ColdFire CPU above 2.4 V and 40 MHz CPU above 2.1 V  
and 20 MHz CPU above 1.8 V across temperature range of -40°C to  
105°C.  
ColdFire Instruction Set Revision C (ISA_C).  
32-bit multiply and accumulate (MAC) supports signed or unsigned integer  
or signed fractional inputs.  
device, host or OTG configuration. On-chip transceiver and 3.3V regulator  
help save system cost, fully compliant with USB Specification 2.0. Allows  
control, bulk, interrupt and isochronous transfers.  
SCIx — Two serial communications interfaces with optional 13-bit break;  
option to connect Rx input to PRACMP output on SCI1 and SCI2; High  
current drive on Tx on SCI1 and SCI2; wake-up from stop3 on Rx edge.  
SPI1 — Serial peripheral interface with 32-bit FIFO buffer; 16-bit or 8-bit  
data transfers; full-duplex or single-wire bidirectional; double-buffered  
transmit and receive; master or slave mode; MSB-first or LSB-first shifting.  
SPI2 — Serial peripheral interface with full-duplex or single-wire  
bidirectional; Double-buffered transmit and receive; Master or Slave  
mode; MSB-first or LSB-first shifting.  
IIC — Up to 100 kbps with maximum bus loading; Multi-master operation;  
Programmable slave address; Interrupt driven byte-by-byte data transfer;  
supports broadcast mode and 10-bit addressing.  
CMT — Carrier Modulator timer for remote control communications.  
Carrier generator, modulator and driver for dedicated infrared out (IRO).  
Can be used as an output compare timer.  
TPMx — Two 4-channel Timer/PWM Module; Selectable input capture,  
output compare, or buffered edge- or center-aligned PWM on each  
channel; external clock input/pulse accumulator.  
Mini-FlexBus — Multi-function external bus interface with user  
programmable chip selects and the option to multiplex address and data  
lines.  
On-Chip Memory  
256 K Flash comprised of two independent 128 K flash arrays;  
read/program/erase over full operating voltage and temperature; allows  
interrupt processing while programming.  
32 KB System Random-access memory (RAM).  
Security circuitry to prevent unauthorized access to RAM and Flash  
contents.  
Power-Saving Modes  
Two ultra-low power stop modes. Peripheral clock enable register can  
disable clocks to unused modules to reduce currents.  
Time of Day (TOD) — Ultra low-power 1/4 sec counter with up to 64 sec  
timeout.  
Ultra-low power external oscillator that can be used in stop modes to  
provide accurate clock source to the TOD. 6 µs typical wake up time from  
stop3 mode.  
Clock Source Options  
Oscillator (XOSC1) — Loop-control Pierce oscillator; 32.768 kHz crystal or  
ceramic resonator dedicated for TOD operation.  
PRACMP — Analog comparator with selectable interrupt; compare option  
to programmable internal reference voltage; operation in stop3.  
ADC12 — 12-bit Successive approximation ADC with up to12  
Oscillator (XOSC2) for high frequency crystal input for MCG reference to  
be used for system clock and USB operations.  
Multipurpose Clock Generator (MCG) — PLL and FLL; precision trimming  
of internal reference allows 0.2% resolution and typical +0.5% to -1%  
deviation over temperature and voltage; supports CPU frequencies up to  
50 MHz.  
single-ended channels; internal bandgap reference channel; operation in  
stop3; fully functional from 3.6V to 1.8V.  
PDB — Programmable delay block with 16-bit counter and modulus and  
prescale to set reference clock to bus divided by 1 to bus divided by 2048;  
8 trigger outputs for ADC module provides periodic coordination of ADC  
sampling sequence with sequence completion interrupt; Back-to-Back  
mode and Timed mode.  
System Protection  
Watchdog computer operating properly (COP) reset with option to run from  
dedicated 1 kHz internal clock source or bus clock.  
Low-voltage detection with reset or interrupt; selectable trip points;  
separate low voltage warning with optional interrupt; selectable trip points.  
Illegal opcode and illegal address detection with reset.  
Flash block protection for each array to prevent accidental write/erasure.  
Hardware CRC to support fast cyclic redundancy checks.  
DAC — 12-bit resolution DAC; configurable settling time.  
Input/Output  
Up to 68 GPIOs and 1 output-only pin.  
Voltage Reference output (VREFO).  
Dedicated infrared output pin (IRO)  
withhigh current sink capability.  
Up to 16 KBI pins with selectable  
polarity.  
Development Support  
Integrated ColdFire DEBUG_Rev_B+ interface with single wire BDM  
connection supports same electrical interface used by the S08 family  
debug modules.  
Up to 16 pins of rapid general purpose  
I/O (RGPIO).  
Real-time debug with 6 hardware breakpoints (4 PC, 1 address and 1  
data).  
On-chip trace buffer provides programmable start/stop recording  
conditions.  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2009-2012. All rights reserved.  
Contents  
Figure 13.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table of Contents  
Figure 14.Timer Input Capture Pulse. . . . . . . . . . . . . . . . . . . . . 36  
Figure 15.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 38  
Figure 16.SPI Master Timing (CPHA = 1) . . . . . . . . . . . . . . . . . 38  
Figure 17.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . 39  
Figure 18.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 39  
Figure 19.Typical VREF Output vs Temperature . . . . . . . . . . . . 42  
Figure 20.Typical VREF Output vs VDD . . . . . . . . . . . . . . . . . . . 43  
1
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Pinouts and Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.1 104-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.2 100-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.3 81-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.4 80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . . .15  
3.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .15  
3.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .16  
3.4 ESD Protection Characteristics. . . . . . . . . . . . . . . . . . .18  
3.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .21  
3.7 PRACMP Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.8 12-bit DAC Electricals . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.10 MCG and External Oscillator (XOSC) Characteristics .29  
3.11 Mini-FlexBus Timing Specifications . . . . . . . . . . . . . . .32  
3.12 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
3.12.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .34  
3
List of Tables  
Table 1. MCF51JE Features by MCU and Package. . . . . . . . . . 4  
Table 2. MCF51JE256/128 Functional Units. . . . . . . . . . . . . . . . 5  
Table 2-3.Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . 11  
Table 4. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 16  
Table 6. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 7. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . 18  
Table 8. ESD and Latch-Up Protection Characteristics. . . . . . . 18  
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 10.Supply Current Characteristics . . . . . . . . . . . . . . . . . . 21  
Table 11.Stop Mode Adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 12.PRACMP Electrical Specifications . . . . . . . . . . . . . . . 24  
Table 13.DAC 12LV Operating Requirements . . . . . . . . . . . . . . 24  
Table 14.DAC 12-Bit Operating Behaviors . . . . . . . . . . . . . . . . . 25  
Table 15.12-bit ADC Operating Conditions . . . . . . . . . . . . . . . . 26  
Table 16.12-bit SAR ADC Characteristics full operating range  
(VREFH = VDDAD, VREFL = VSSAD) . . . . . . . . . . . . 28  
3.12.2 TPM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
3.13 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
3.14 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
3.15 USB Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
3.16 VREF Electrical Specifications . . . . . . . . . . . . . . . . . . .41  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
4.1 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
4.2 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
4.3 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
4
5
Table 17.MCG (Temperature Range = –40 to 105×C Ambient). 29  
Table 18.XOSC (Temperature Range = –40 to 105×C Ambient) 31  
Table 19.Mini-FlexBus AC Timing Specifications. . . . . . . . . . . . 32  
Table 20.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 21.TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 22.SPI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 23.Flash Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 24.Internal USB 3.3 V Voltage Regulator Characteristics 40  
Table 25.VREF Electrical Specifications . . . . . . . . . . . . . . . . . . 41  
Table 26.VREF Limited Range Operating Behaviors . . . . . . . . . 42  
Table 27.Orderable Part Number Summary. . . . . . . . . . . . . . . . 44  
Table 28.Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 29.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
List of Figures  
Figure 1.MCF51JE256/128 Block Diagram. . . . . . . . . . . . . . . . . 3  
Figure 2.104-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3.100-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4.81-Pin MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 5.80-Pin LQFP Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 6.Stop IDD versus Temperature. . . . . . . . . . . . . . . . . . . 23  
Figure 7.Offset at Half Scale vs Temperature . . . . . . . . . . . . . . 26  
Figure 8.ADC Input Impedance Equivalency Diagram . . . . . . . 28  
Figure 9.Mini-FlexBus Read Timing . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10.Mini-FlexBus Write Timing . . . . . . . . . . . . . . . . . . . . 33  
Figure 11.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 12.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
MCF51JE256 Datasheet, Rev. 4  
2
Freescale Semiconductor  
COCOx  
VDDA/VSSA  
HWTRS[H:A]  
PDB  
HWTRS[H:A]  
VREFH/VREFL  
DADP[3:0]  
DADM[3:0]  
ADP[11:4]  
DADP/M[3:0]  
PTA7  
PTA6  
PTA5  
Dtrig  
ADC12  
PTA4  
ACMPO  
VDDA/VSSA  
PTA3/KBI1P2/FB_D6/ADP5  
PTA2/KBI1P1/RX1/ADP4  
PTA1/KBI1P0/TX1/FB_D1  
PTA0/FB_D2/SS1  
PTB7/KBI1P4/RGPIOP1/FB_AD0  
PTB6/KBI1P3/RGPIOP0/FB_AD17  
PTB5/XTAL2  
Dtrig  
PRACMP  
VREFH/VREFL  
DACO  
DACO  
ACMPO  
VDDA/VSSA  
PTB4/EXTAL2  
PTB3/XTAL1  
PTB2/EXTAL1  
PTB1/BLMS  
PTB0  
PTC7/KBI2P2CLKOUT/ADP11  
PTC6/KBI2P1/PRACMPO/ADP10  
PTC5/KBI2P0/CMPP1/ADP9  
PTC4/KBI1P7/CMPP0/ADP8  
PTC3/KBI1P6/SS2/ADP7  
RX1  
TX1  
VREFH/VREFL  
SCI1  
SCI2  
RX2  
TX2  
PTC2/KBI1P5/SPSCK2/ADP6  
PTC1/MISO2/FB_D0/FB_AD1  
PTC0/MOSI2/FB_OE_b/FB_CS0  
PTD7/USB_PULLUP(D+)/RX1  
PTD6/USB_ALTCLK/TX1  
VREFO  
SDA  
SCL  
VREF  
IIC  
PTD5/SCL/RGPIOP11/TPM1CH3  
PTD4/SDA/RGPIOP10/TPM1CH2  
PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1  
KBI1 & KBI2 KBI1P[7:0]  
KBI2P[7:0]  
PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0  
IRO  
4 Ch TPM1  
TPM1CH[3:0]  
TPMCLK  
IRO:  
PTE7/USB_VBUSVLD/TPM2CH3  
PTE6/FB_RW_b/USB_SESSEND/RX2  
PTE5/FB_D7/USB_SESSVLD/TX2  
PTE3/KBI2P6/FB_AD8  
PTE2/KBI2P5/RGPIOP14/FB_AD7  
PTE1/KBI2P4/RGPIOP13/FB_AD6  
PTE0/KBI2P3/FB_ALE/FB_CS1  
CMT  
Hardware CRC  
DBG  
4 Ch TPM2  
TPM2CH[3:0]  
TPMCLK  
BDM  
PTD0/BKGD/MS  
INTC  
PTF7/MISO1  
PTF6/MOSI1  
BKGD/MS  
RGPIO  
RGPIO[15:8]  
PTF5/KBI2P7/FB_D3/FB_AD9  
PTF4/SDA/FB_D4/FB_AD10  
PTF3/SCL/FB_D5/FB_AD11  
PTF2/TX2/USB_DM_DOWN/TPM2CH0  
MCG  
RGPIO[7:0]  
REF CLK  
IRCLK  
V1 ColdFire Core  
with MAC  
PTF1/RX2/USB_DP_DOWN/TPM2CH1  
PTF0/USB_ID/TPM2CH2  
PTG7/FB_AD18  
PTG6/FB_AD19  
PTG5/FB_RW_b  
PTG4/USB_SESSVLD  
PTG3/USB_DP_DOWN  
PTG2/USB_DM_DOWN  
PTG1/USB_SESSEND  
PTG0/SPSCK1  
SPI1  
SPI2  
MOSI1 SS1  
MISO1 SPSCK1  
Clock Check  
& Select  
XOSC2  
PTD1/CMPP2/RESET  
MOSI2 SS2  
MISO2 SPSCK2  
SIM  
PTE4/CMPP3/  
TPMCLK/VPP/IRQ  
CLKO  
MINIFLEX  
BUS  
FB_D[7:0]  
PTH7/RGPIOP7/FB_D2  
FB_AD[19:0]  
COP  
LVD  
IRQ  
PTH6/RGPIOP6/FB_D3  
PTH5/RGPIOP5/FB_D4  
PTH4/RGPIOP4/FB_D5  
PTH3/RGPIOP3/FB_D6  
PTH2/RGPIOP2/FB_D7  
PTH1/FB_D0  
FB_AD[19:0]  
XOSC1  
EXTAL1  
XTAL1  
FLASH1  
128/64 KB  
Robust  
USB_DM  
USB_DP  
USB_ALTCLK  
USBOTG  
CLKO  
Update  
PTH0/FB_OE_b  
PTJ7/FB_AD13  
FLASH2  
Manager  
USB_PULLUP(D+)  
128/64 KB  
PTJ6/FB_AD14  
PTJ5/FB_AD15  
PTJ4/RGPIOP15/FB_AD16  
PTJ3/RGPIOP12/FB_AD5  
PTJ2/FB_AD4  
USB_DM_DOWN  
USB_DP_DOWN  
USB_VBUSVLD  
RAM  
32KB  
VREG  
USB_ID  
TOD  
USB_SESSVLD  
USB_SESSEND  
PTJ1/FB_AD3  
PTJ0/FB_AD2  
Green pins not available on the 100, 81 or 80 pin package  
Blue pins not available on the 81 or 80 pin package  
Red pin not available on the 80 pin package  
VSS1,2,3  
VDD1,2,3  
USB_DP  
VBUS  
USB_DM  
VUSB33  
Figure 1. MCF51JE256/128 Block Diagram  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
3
Features  
1
Features  
The following table provides a cross-comparison of the features of the MCF51JE256/128 according to  
package.  
Table 1. MCF51JE Features by MCU and Package  
Feature  
MCF51JE256  
MCF51JE128  
FLASH size (bytes)  
RAM size (bytes)  
Pin quantity  
262144  
32K  
131072  
32K  
104  
100  
81  
80  
81  
80  
Programmable Analog Comparator (PRACMP)  
Debug Module (DBG)  
yes  
yes  
yes  
yes  
yes  
16  
Multipurpose Clock Generator (MCG)  
Inter-Integrated Communication (IIC)  
Interrupt Request Pin (IRQ)  
Keyboard Interrupt (KBI)  
Digital General purpose I/O1  
Power and Ground Pins  
Time Of Day (TOD)  
69  
65  
48  
47  
48  
47  
8
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
4
Serial Communications (SCI1)  
Serial Communications (SCI2)  
Serial Peripheral Interface (SPI1(FIFO))  
Serial Peripheral Interface(SPI2)  
Carrier Modulator Timer pin (IRO)  
Programmable Delay Block (PDB)  
TPM input clock pin (TPMCLK)  
TPM1 channels  
TPM2 channels  
4
XOSC1  
yes  
yes  
yes  
XOSC2  
USBOTG  
MiniFlex Bus  
yes  
16  
DATA  
9
Rapid GPIO  
ADC single-ended channels  
DAC ouput pin (DACO)  
12  
yes  
yes  
Voltage reference output pin (VREFO)  
1
Port I/O count does not include BLMS, BKGD and IRQ. BLMS BKGD are Output only, IRQ is input only.  
The following table describes the functional units of the MCF51JE256/128.  
MCF51JE256 Datasheet, Rev. 4  
4
Freescale Semiconductor  
Features  
Table 2. MCF51JE256/128 Functional Units  
Unit  
Function  
DAC (digital to analog converter)  
Used to output voltage levels.  
12-BIT SAR ADC (analog-to-digital  
converter)  
Measures analog voltages at up to 12 bits of resolution. The ADC has  
up to 12 single-ended inputs.  
PDB (Programmable Delay Block)  
Mini-FlexBus  
Precisely trigger the DAC FIFO buffer.  
Provides expansion capability for off-chip memory and peripherals.  
Supports the USB On-the-Go dual-role controller.  
Infrared output used for the Remote Controller operation.  
USB On-the-Go  
CMT (Carrier Modulator Timer)  
Provides clocking options for the device, including a phase-locked loop  
(PLL) and frequency-locked loop (FLL) for multiplying slower reference  
clock sources.  
MCG (Multipurpose Clock Generator)  
BDM (Background Debug Module)  
CF1 CORE (V1 ColdFire Core)  
Provides single pin debugging interface (part of the V1 ColdFire core).  
Executes programs and interrupt handlers.  
Analog comparators for comparing external analog signals against  
each other, or a variety of reference levels.  
PRACMP  
COP (Computer Operating Properly)  
IRQ (Interrupt Request)  
Software Watchdog.  
Single-pin high-priority interrupt (part of the V1 ColdFire core).  
High-speed CRC calculation.  
CRC (Cyclic Redundancy Check)  
Provides debugging and emulation capabilities (part of the V1 ColdFire  
core).  
DBG (Debug)  
FLASH (Flash Memory)  
IIC (Inter-integrated Circuits)  
INTC (Interrupt Controller)  
KBI1 & KBI2  
Provides storage for program code, constants, and variables.  
Supports standard IIC communications protocol and SMBus.  
Controls and prioritizes all device interrupts.  
Keyboard Interfaces 1 and 2.  
Provides an interrupt to the ColdFire V1 CORE in the event that the  
supply voltage drops below a critical value. The LVD can also be  
programmed to reset the device upon a low voltage event.  
LVD (Low-voltage Detect)  
VREF (Voltage Reference)  
The Voltage Reference output is available for both on- and off-chip use.  
Provides stack and variable storage.  
RAM (Random-Access Memory)  
RGPIO (Rapid General-purpose  
Input/output)  
Allows for I/O port access at CPU clock speeds. RGPIO is used to  
implement GPIO functionality.  
SCI1, SCI2 (Serial Communications  
Interfaces)  
Serial communications UARTs capable of supporting RS-232 and LIN  
protocols.  
SIM (system integration unit)  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
5
Features  
Table 2. MCF51JE256/128 Functional Units (continued)  
Unit  
Function  
SPI1 (FIFO), SPI2 (Serial Peripheral  
Interfaces)  
SPI1 and SPI2 provide standard master/slave capability. SPI contains a  
FIFO buffer in order to increase the throughput for this peripheral.  
Timer/PWM module can be used for a variety of generic timer  
operations as well as pulse-width modulation.  
TPM1, TPM2 (Timer/PWM Module)  
VREG (Voltage Regulator)  
Controls power management across the device.  
These devices incorporate redundant crystal oscillators. One is  
XOSC1 and XOSC2 (Crystal Oscillators) intended primarily for use by the TOD, and the other by the CPU and  
other peripherals.  
MCF51JE256 Datasheet, Rev. 4  
6
Freescale Semiconductor  
Pinouts and Pin Assignments  
2
2.1  
Pinouts and Pin Assignments  
104-Pin MAPBGA  
The following figure shows the 104-pin MAPBGA pinout configuration.  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
PTF6  
PTG0  
IRO  
PTF7  
PTA0  
PTG4  
PTA4  
PTA7  
USB_DP  
PTG3  
PTA6  
USB_DM  
VBUS  
PTG2  
VUSB33  
PTF5  
PTF4  
PTJ6  
PTG5  
VDD2  
PTF3  
PTH0  
PTG7  
FB_AD12  
PTE5  
PTJ7  
PTF0  
PTE4  
PTA1  
PTA2  
PTJ2  
PTD5  
PTD4  
PTC2  
PTC4  
PTD0  
9
PTJ5  
PTF1  
PTE6  
PTE3  
PTJ3  
PTJ0  
PTD7  
PTD3  
PTC0  
PTC5  
PTB5  
10  
PTJ4  
PTF2  
PTE7  
PTE2  
PTE1  
PTJ1  
PTE0  
PTD2  
PTC1  
PTC6  
PTB4  
11  
A
B
C
D
E
F
PTG6  
PTH1  
PTA5  
VSSA  
VREFL  
ADP2  
PTB1  
PTB0  
VDD1  
VDD3  
PTG1  
PTC7  
G
H
J
G
H
J
PTA3  
PTH7  
ADP1  
VSS1  
PTH6  
PTH5  
VREFO  
4
VSS2  
PTH3  
PTB7  
VDDA  
6
VSS3  
PTD6  
PTD1  
PTB2  
8
ADP0  
PTH4  
PTB6  
VREFH  
5
PTH2  
PTC3  
PTB3  
7
K
L
K
L
ADP3  
DACO  
1
2
3
Figure 2. 104-Pin MAPBGA  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
7
Pinouts and Pin Assignments  
2.2  
100-Pin LQFP  
The following figure shows the 100-pin LQFP pinout configuration.  
PTA0/FB_D2/SS1  
IRO  
PTE4/CMPP3/TPMCLK/IRQ  
PTE3/KBI2P6/FB_AD8  
PTE2/KBI2P5/RGPIOP14/FB_AD7  
PTE1/KBI2P4/RGPIOP13/FB_AD6  
PTJ3/RGPIOP12/FB_AD5  
PTJ2/FB_AD4  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
PTG5/FB_RW  
4
PTG6/FB_AD19  
PTG7/FB_AD18  
PTH0/FB_OE  
PTH1/FB_D0  
5
6
7
PTJ1/FB_AD3  
8
PTA1/KBI1P0/TX1/FB_D1  
PTA2/KBI1P1/RX1/ADP4  
PTA3/KBI1P2/FB_D6/ADP5  
PTA4  
PTJ0/FB_AD2  
PTE0/KBI2P3/FB_ALE/FB_CS1  
9
PTD7/USB_PULLUP(D+)/RX1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PTD6/USB_ALTCLK/TX1  
PTA5  
PTD5/SCL/RGPIOP11/TPM1CH3  
PTD4/SDA/RGPIOP10/TPM1CH2  
PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1  
PTA6  
100 LQFP  
PTA7  
PTB0  
PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0  
PTB1/BLMS  
VSSA  
VREFL  
NC  
PTD1/CMPP2/RESET  
PTD0/BKGD/MS  
PTC7/KBI2P2/CLKOUT/ADP11  
PTC6/KBI2P1/PRACMPO/ADP10  
PTC5/KBI2P0/CMPP1/ADP9  
NC  
ADP2  
NC  
PTC4/KBI1P7/CMPP0/ADP8  
PTC3/KBI1P6/SS2/ADP7  
NC  
NC  
NC  
PTC2/KBI1P5/SPSCK2/ADP6  
PTC1/MISO2/FB_D0/FB_AD1  
PTC0/MOSI2/FB_OE/FB_CS0  
Figure 3. 100-Pin LQFP  
MCF51JE256 Datasheet, Rev. 4  
8
Freescale Semiconductor  
Pinouts and Pin Assignments  
2.3  
81-Pin MAPBGA  
The following figure shows the 81-pin MAPBGA pinout configuration.  
1
2
3
4
5
6
VUSB33  
PTE7  
PTE6  
PTA3  
VDD1  
VSS1  
PTB6  
PTC4  
PTB3  
6
7
8
9
A
B
C
D
E
F
IRO  
PTG0  
PTA0  
PTA5  
PTA7  
PTF6  
PTG1  
PTA6  
PTB0  
USB_DP  
USB_DM  
PTA1  
VBUS  
PTF5  
PTF2  
PTA2  
VDD3  
VSS3  
VREFO  
PTC3  
PTB2  
5
PTF4  
PTF1  
PTE5  
PTD5  
PTD2  
PTB7  
PTC0  
PTD0  
PTD1  
7
PTF3  
PTF0  
PTE2  
PTD7  
PTD3  
PTC7  
PTC1  
PTC5  
PTB4  
8
PTE4  
PTE3  
PTE1  
PTE0  
PTD6  
PTD4  
PTC2  
PTC6  
PTB5  
9
A
B
C
D
E
F
PTF7  
PTA4  
PTB1  
VDD2  
ADP2  
VSS2  
G
H
J
ADP0  
DACO  
ADP3  
ADP1  
VREFH  
3
G
H
J
VSSA  
VREFL  
VDDA  
1
2
4
Figure 4. 81-Pin MAPBGA  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
9
Pinouts and Pin Assignments  
2.4  
80-Pin LQFP  
The following figure shows the 80-pin LQFP pinout configuration.  
PTA0/FB_D2/SS1  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PTE4/CMPP3/TPMCLK/IRQ  
PTE3/KBI2P6/FB_AD8  
IRO  
2
PTA1/KBI1P0/TX1/FB_D1  
3
PTE2/KBI2P5/RGPIOP14/FB_AD7  
PTE1/KBI2P4/RGPIOP13/FB_AD6  
PTE0/KBI2P3/FB_ALE/FB_CS1  
PTD7/USB_PULLUP(D+)/RX1  
PTD6/USB_ALTCLK/TX1  
PTA2/KBI1P1/RX1/ADP4  
4
PTA3/KBI1P2/FB_D6/ADP5  
5
PTA4  
PTA5  
PTA6  
PTA7  
PTB0  
PTB1/BLMS  
VSSA  
VREFL  
NC  
6
7
8
PTD5/SCL/RGPIOP11/TPM1CH3  
PTD4/SDA/RGPIOP10/TPM1CH2  
PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1  
PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0  
PTD1/CMPP2/RESET  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
80-Pin LQFP  
PTD0/BKGD/MS  
PTC7/KBI2P2/CLKOUT/ADP11  
PTC6/KBI2P1/PRACMPO/ADP10  
PTC5/KBI2P0/CMPP1/ADP9  
PTC4/KBI1P7/CMPP0/ADP8  
PTC3/KBI1P6/SS2/ADP7  
NC  
ADP2  
NC  
NC  
NC  
PTC2/KBI1P5/SPSCK2/ADP6  
PTC1/MISO2/FB_D0/FB_AD1  
NC  
Figure 5. 80-Pin LQFP Pinout  
MCF51JE256 Datasheet, Rev. 4  
10  
Freescale Semiconductor  
Pinouts and Pin Assignments  
2.5  
Pin Assignments  
Table 3. Package Pin Assignments  
Alternate 1 Alternate 2 Alternate 3  
Package  
Default  
Function  
104  
MAPB  
GA  
81  
MAPB  
GA  
Composite Pin Name  
100  
LQFP  
80  
LQFP  
B2  
C1  
C6  
C5  
C7  
B7  
C8  
D9  
E9  
H3  
D2  
D1  
C3  
E2  
E3  
D3  
E1  
F1  
F2  
G2  
G1  
H1  
H2  
F3  
G3  
L2  
1
B2  
A1  
1
PTA0  
IRO  
FB_D2  
SS1  
PTA0/FB_D2/SS1  
2
2
IRO  
3
3
PTG5  
PTG6  
PTG7  
PTH0  
PTH1  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA6  
PTA7  
PTB0  
PTB1  
VSSA  
VREFL  
FB_RW  
PTG5/FB_RW  
4
FB_AD19  
PTG6/FB_AD19  
5
FB_AD18  
PTG7/FB_AD18  
6
FB_OE  
FB_D0  
KBI1P0  
KBI1P1  
KBI1P2  
PTH0/FB_OE  
7
PTH1/FB_D0  
8
C4  
D5  
D6  
C1  
C2  
C3  
D2  
D3  
D4  
J1  
TX1  
RX1  
FB_D6  
FB_D1  
ADP4  
ADP5  
PTA1/KBI1P0/TX1/FB_D1  
9
4
PTA2/KBI1P1/RX1/ADP4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
5
PTA3/KBI1P2/FB_D6/ADP5  
6
PTA4  
PTA5  
PTA6  
PTA7  
PTB0  
PTB1/BLMS  
VSSA  
VREFL  
NC  
7
8
9
10  
11  
12  
13  
19  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
BLMS  
J2  
D1  
E2  
F2  
F1  
E2  
F3  
E3  
G2  
G3  
H4  
G4  
G1  
H1  
G5  
H3  
H2  
NC  
ADP2  
ADP2  
NC  
NC  
NC  
NC  
NC  
DACO  
ADP3  
DACO  
ADP3  
NC  
L1  
K1  
K2  
J1  
NC  
NC  
ADP0  
ADP0  
NC  
J2  
L4  
VREFO  
ADP1  
NC  
VREFO  
ADP1  
NC  
K3  
L3  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
11  
Pinouts and Pin Assignments  
Package  
Table 3. Package Pin Assignments (continued)  
Default  
104  
MAPB  
GA  
81  
MAPB  
GA  
Alternate 1 Alternate 2 Alternate 3  
Function  
Composite Pin Name  
100  
LQFP  
80  
LQFP  
L5  
L6  
35  
36  
37  
38  
39  
40  
41  
42  
43  
J3  
J4  
F4  
J5  
J6  
E4  
J8  
J9  
G6  
30  
31  
32  
33  
34  
35  
36  
37  
38  
VREFH  
VDDA  
VSS2  
PTB2  
PTB3  
VDD2  
PTB4  
PTB5  
PTB6  
VREFH  
VDDA  
H6  
L8  
VSS2  
EXTAL1  
XTAL1  
PTB2/EXTAL1  
PTB3/XTAL1  
VDD2  
L7  
D6  
L11  
L10  
K5  
EXTAL2  
XTAL2  
KBI1P3  
PTB4/EXTAL2  
PTB5/XTAL2  
RGPIOP0  
FB_AD17  
PTB6/KBI1P3/RGPIOP0/  
FB_AD17  
K6  
44  
F7  
39  
PTB7  
KBI1P4  
RGPIOP1  
FB_AD0  
PTB7/KBI1P4/RGPIOP1/  
FB_AD0  
J7  
J6  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
40  
41  
42  
43  
44  
45  
46  
PTH2  
PTH3  
PTH4  
PTH5  
PTH6  
PTH7  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
RGPIOP2  
RGPIOP3  
RGPIOP4  
RGPIOP5  
RGPIOP6  
RGPIOP7  
MOSI2  
FB_D7  
FB_D6  
FB_D5  
FB_D4  
FB_D3  
FB_D2  
FB_OE  
FB_D0  
SPSCK2  
SS2  
PTH2/RGPIOP2/FB_D7  
PTH3/RGPIOP3/FB_D6  
J5  
PTH4/RGPIOP4/FB_D5  
K4  
J4  
PTH5/RGPIOP5/FB_D4  
PTH6/RGPIOP6/FB_D3  
J3  
PTH7/RGPIOP7/FB_D2  
J10  
J11  
J9  
G7  
G8  
G9  
H5  
H6  
H8  
H9  
FB_CS0  
FB_AD1  
ADP6  
ADP7  
ADP8  
ADP9  
ADP10  
PTC0/MOSI2/FB_OE/ FB_CS0  
PTC1/MISO2/FB_D0/FB_AD1  
PTC2/KBI1P5/SPSCK2/ADP6  
PTC3/KBI1P6/SS2/ADP7  
PTC4/KBI1P7/CMPP0/ADP8  
PTC5/KBI2P0/CMPP1/ADP9  
MISO2  
KBI1P5  
K7  
K9  
K10  
K11  
KBI1P6  
KBI1P7  
CMPP0  
CMPP1  
PRACMPO  
KBI2P0  
KBI2P1  
PTC6/KBI2P1/PRACMPO/  
ADP10  
F8  
L9  
58  
59  
60  
61  
F8  
H7  
J7  
47  
48  
49  
50  
PTC7  
PTD0  
PTD1  
PTD2  
KBI2P2  
BKGD  
CLKOUT  
MS  
ADP11  
PTC7/KBI2P2/CLKOUT/ADP11  
PTD0/BKGD/MS  
K8  
CMPP2  
RESET  
PTD1/CMPP2/RESET  
H11  
E7  
USB_ALTCL RGPIOP8  
K
TPM1CH0 PTD2/USB_ALTCLK/RGPIOP8/  
TPM1CH0  
H10  
H9  
G9  
J8  
62  
63  
64  
65  
E8  
F9  
D7  
E9  
51  
52  
53  
54  
PTD3  
PTD4  
PTD5  
PTD6  
USB_PULL  
UP(D+)  
RGPIOP9  
RGPIOP10  
RGPIOP11  
TX1  
TPM1CH1  
TPM1CH2  
TPM1CH3  
PTD3/USB_PULLUP(D+)/  
RGPIOP9/TPM1CH1  
SDA  
PTD4/SDA/RGPIOP10/  
TPM1CH2  
SCL  
PTD5/SCL/RGPIOP11/  
TPM1CH3  
USB_ALTCL  
K
PTD6/USB_ALTCLK/TX1  
MCF51JE256 Datasheet, Rev. 4  
12  
Freescale Semiconductor  
Pinouts and Pin Assignments  
Table 3. Package Pin Assignments (continued)  
Package  
Default  
104  
MAPB  
GA  
81  
MAPB  
GA  
Alternate 1 Alternate 2 Alternate 3  
Function  
Composite Pin Name  
100  
LQFP  
80  
LQFP  
G10  
66  
67  
D8  
55  
56  
PTD7  
PTE0  
USB_PULL  
UP(D+)  
RX1  
PTD7/USB_PULLUP(D+) /RX1  
G11  
D9  
KBI2P3  
FB_ALE  
FB_CS1  
PTE0/KBI2P3/FB_ALE/  
FB_CS1  
F10  
F11  
F9  
68  
69  
70  
71  
72  
C9  
57  
PTJ0  
PTJ1  
PTJ2  
PTJ3  
PTE1  
FB_AD2  
FB_AD3  
FB_AD4  
RGPIOP12  
KBI2P4  
PTJ0/FB_AD2  
PTJ1/FB_AD3  
PTJ2/FB_AD4  
E10  
E11  
FB_AD5  
RGPIOP13  
PTJ3/RGPIOP12/FB_AD5  
FB_AD6  
PTE1/KBI2P4/RGPIOP13/  
FB_AD6  
D11  
73  
C8  
58  
PTE2  
KBI2P5  
RGPIOP14  
FB_AD7  
PTE2/KBI2P5/RGPIOP14/  
FB_AD7  
D10  
C9  
74  
75  
B9  
A9  
59  
60  
PTE3  
PTE4  
KBI2P6  
CMPP3  
FB_AD8  
TPMCLK  
PTE3/KBI2P6/FB_AD8  
IRQ  
PTE4/CMPP3/TPMCLK/VPP/  
IRQ  
H8  
D8  
B8  
76  
77  
78  
F5  
E5  
C7  
61  
62  
63  
VSS3  
VDD3  
PTE5  
VSS3  
VDD3  
FB_D7  
USB_  
SESSVLD  
TX2  
PTE5/FB_D7/USB_SESSVLD/  
TX2  
C10  
C11  
79  
80  
C6  
B6  
64  
65  
PTE6  
PTE7  
FB_RW  
USB_  
SESSEND  
RX2  
PTE6/FB_RW_b/  
USB_SESSEND/RX2  
USB_VBUS TPM2CH3  
VLD  
PTE7/USB_VBUSVLD/  
TPM2CH3  
B9  
81  
82  
B8  
B7  
66  
67  
PTF0  
PTF1  
USB_ID  
RX2  
TPM2CH2  
PTF0/USB_ID/TPM2CH2  
B10  
USB_DP_  
DOWN  
TPM2CH1  
PTF1/RX2/USB_DP_DOWN/  
TPM2CH1  
B11  
83  
C5  
68  
PTF2  
TX2  
USB_DM_  
DOWN  
TPM2CH0  
PTF2/TX2/USB_DM_DOWN/  
TPM2CH0  
A11  
A10  
B6  
A9  
A8  
A7  
A6  
B5  
A5  
A4  
A3  
B4  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
69  
70  
71  
72  
73  
74  
75  
PTJ4  
PTJ5  
RGPIOP15  
FB_AD15  
FB_AD14  
FB_AD13  
FB_AD16  
PTJ4/RGPIOP15/FB_AD16  
PTJ5/FB_AD15  
PTJ6  
PTJ6/FB_AD14  
PTJ7  
PTJ7/FB_AD13  
FB_AD12  
PTF3  
FB_AD12  
A8  
A7  
B5  
A6  
B4  
A4  
A5  
SCL  
FB_D5  
FB_D4  
FB_D3  
FB_AD11  
FB_AD10  
FB_AD9  
PTF3/SCL/FB_D5/FB_AD11  
PTF4/SDA/FB_D4/FB_AD10  
PTF5/KBI2P7/FB_D3/FB_AD9  
VUSB33  
PTF4  
SDA  
PTF5  
KBI2P7  
VUSB33  
USB_DM  
USB_DP  
VBUS  
USB_DM  
USB_DP  
VBUS  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
13  
Pinouts and Pin Assignments  
Package  
Table 3. Package Pin Assignments (continued)  
Default  
104  
MAPB  
GA  
81  
MAPB  
GA  
Alternate 1 Alternate 2 Alternate 3  
Function  
Composite Pin Name  
100  
LQFP  
80  
LQFP  
H4  
D4  
A1  
A2  
B1  
F4  
96  
97  
F6  
E6  
A3  
B1  
A2  
B3  
76  
77  
78  
79  
80  
VSS1  
VDD1  
PTF6  
PTF7  
PTG0  
PTG1  
VSS1  
VDD1  
98  
MOSI1  
MISO1  
SPSCK1  
PTF6/MOSI1  
PTF7/MISO1  
PTG0/SPSCK1  
PTG1/USB_SESSEND  
99  
100  
USB_SESS  
END  
C4  
B3  
C2  
PTG2  
PTG3  
PTG4  
USB_DM_D  
OWN  
PTG2/USB_DM_DOWN  
PTG3/USB_DP_DOWN  
PTG4/USB_SESSVLD  
USB_DP_D  
OWN  
USB_SESS  
VLD  
MCF51JE256 Datasheet, Rev. 4  
14  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
3
Preliminary Electrical Characteristics  
This section contains electrical specification tables and reference timing diagrams for the  
MCF51JE256/128 microcontroller, including detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications.  
The electrical specifications are preliminary and are from previous designs or design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These  
specifications will, however, be met for production silicon. Finalized specifications will be published after  
complete characterization and device qualifications have been completed.  
NOTE  
The parameters specified in this data sheet supersede any values found in the module  
specifications.  
3.1  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding, the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate:  
Table 4. Parameter Classifications  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.2  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause  
permanent damage to the device. For functional operating conditions, refer to the remaining tables in this  
section.  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
15  
Preliminary Electrical Characteristics  
Table 5. Absolute Maximum Ratings  
#
Rating  
Symbol  
Value  
Unit  
1
2
3
Supply voltage  
V
–0.3 to 3.8  
120  
V
mA  
V
DD  
Maximum current into V  
Digital Input voltage  
IDD  
DD  
V
–0.3 to VDD + 0.3  
In  
Instantaneous maximum current  
4
5
ID  
25  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
T
–55 to 150  
C  
stg  
1
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two  
resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD  
and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater  
than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either V or V ).  
SS  
DD  
3.3  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take  
P
into account in power calculations, determine the difference between actual pin voltage and V or  
I/O  
SS  
V
and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy  
DD  
loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
MCF51JE256 Datasheet, Rev. 4  
16  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 6. Thermal Characteristics  
#
Symbol  
Rating  
Value  
Unit  
Operating temperature range (packaged):  
1
2
TA  
C  
C  
MCF51JE256  
MCF51JE128  
–40 to 105  
–40 to 105  
135  
TJMAX  
Maximum junction temperature  
Thermal resistance1,2,3,4 Single-layer board — 1s  
104-pin MBGA  
67  
53  
67  
53  
3
4
JA  
C/W  
C/W  
100-pin LQFP  
81-pin MBGA  
80-pin LQFP  
Thermal resistance1, 2, 3, 4 Four-layer board — 2s2p  
104-pin MBGA  
100-pin LQFP  
81-pin MBGA  
80-pin LQFP  
39  
41  
39  
39  
JA  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2
3
4
Junction to Ambient Natural Convection  
1s — Single layer board, one signal layer  
2s2p — Four layer board, 2 signal and 2 power layers  
The average chip-junction temperature (T ) in C can be obtained from:  
J
T = T + (P   )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, C  
A
= Package thermal resistance, junction-to-ambient, C/W  
JA  
P = P P  
D
int  
I/O  
P
P
= I V , Watts — chip internal power  
DD DD  
= Power dissipation on input and output pins — user determined  
int  
I/O  
For most applications, P  P and can be neglected. An approximate relationship between P and T  
I/O  
int  
D
J
(if P is neglected) is:  
I/O  
P = K (T + 273C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
2
K = P (T + 273C) +   (P )  
Eqn. 3  
D
A
JA  
D
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
17  
Preliminary Electrical Characteristics  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
3.4  
ESD Protection Characteristics  
Although damage from static discharge is much less common on these devices than on early CMOS  
circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification  
tests are performed to ensure that these devices can withstand exposure to reasonable levels of static  
without suffering any permanent damage.  
All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade  
Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.  
A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the  
device specification requirements. Complete dc parametric and functional testing is performed per the  
applicable device specification at room temperature followed by hot temperature, unless specified  
otherwise in the device specification.  
Table 7. ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
Unit  
Series Resistance  
R1  
C
1500  
100  
3
pF  
Human Body  
Storage Capacitance  
Number of Pulse per pin  
Series Resistance  
R1  
C
0
Machine  
Latch-up  
Storage Capacitance  
200  
3
pF  
V
Number of Pulse per pin  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
Table 8. ESD and Latch-Up Protection Characteristics  
#
Rating  
Symbol  
Minimum  
Maximum  
Unit  
C
1
2
3
4
Human Body Model (HBM)  
Machine Model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
2000  
200  
500  
00  
V
V
T
T
T
T
Charge Device Model (CDM)  
Latch-up Current at TA = 125C  
V
mA  
3.5  
DC Characteristics  
This section includes information about power supply requirements, I/O pin characteristics, and power  
supply current in various operating modes.  
MCF51JE256 Datasheet, Rev. 4  
18  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 9. DC Characteristics  
#
Symbol  
Characteristic  
Operating Voltage  
Condition  
Minimum Typical1 Maximum Unit  
C
1
1.82  
3.6  
V
Output high  
voltage  
2
VOH  
All I/O pins, low-drive strength  
VDD 1.8 V,  
ILoad = –600 A  
VDD – 0.5  
V
C
All I/O pins, high-drive strength  
VDD 2.7 V,  
ILoad = –10 mA  
VDD – 0.5  
VDD – 0.5  
V
V
V
P
T
VDD 2.3 V,  
ILoad = –6 mA  
VDD 1.8V,  
Load = –3 mA  
VDD – 0.5  
C
I
Output high  
current  
3
4
IOHT  
Max total IOH for all ports  
100  
0.5  
mA  
V
D
C
Output low  
voltage  
VOL  
All I/O pins, low-drive strength  
VDD 1.8 V,  
ILoad = 600 A  
All I/O pins, high-drive strength  
VDD 2.7 V,  
ILoad = 10 mA  
0.5  
0.5  
0.5  
V
V
V
P
T
VDD 2.3 V,  
ILoad = 6 mA  
VDD 1.8 V,  
ILoad = 3 mA  
C
Output low  
current  
Max total IOL for all ports  
5
6
IOLT  
100  
mA  
D
VIH  
Input high voltage all digital inputs  
Input low voltage all digital inputs  
VDD 2.7 V  
VDD 1.8 V  
0.70 x VDD  
0.85 x VDD  
V
V
P
C
7
VIL  
VDD 2.7 V  
VDD 1.8 V  
0.35 x VDD  
0.30 x VDD  
V
V
P
C
C
8
9
Vhys Input hysteresis  
all digital inputs  
0.06 x VDD  
mV  
Input leakage  
current  
all input only pins  
(Per pin)  
|IIn|  
VIn = VDD or VSS  
VIn = VDD or VSS  
0.5  
0.5  
A  
A  
P
P
Hi-Z (off-state)  
all input/output  
(per pin)  
10  
|IOZ  
|
0.003  
leakage current3  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
19  
Preliminary Electrical Characteristics  
Table 9. DC Characteristics (continued)  
#
Symbol  
Characteristic  
Condition  
Minimum Typical1 Maximum Unit  
C
all digital inputs, when  
enabled  
11  
RPU  
Pull-up resistors  
17.5  
17.5  
52.5  
52.5  
k  
k  
P
12  
Internal  
RPD  
pull-down  
P
D
resistors4  
13  
Single pin limit  
VSS > VIN > VDD  
–0.2  
–5  
0.2  
5
mA  
mA  
DC injection  
current 5, 6, 7  
IIC  
Total MCU limit, includes  
sum of all stressed pins  
V
SS > VIN > VDD  
14  
CIn  
Input Capacitance, all pins  
0.6  
1.4  
8
pF  
V
C
C
C
D
15 VRAM RAM retention voltage  
16 VPOR POR re-arm voltage8  
1.0  
1.79  
0.9  
10  
V
17  
tPOR POR re-arm time  
s  
18 VLVDH Low-voltage detection threshold — high range9  
VDD falling  
VDD rising  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
V
V
P
P
19 VLVDL Low-voltage detection threshold — low range9  
20 VLVWH Low-voltage warning threshold — high range9  
VDD falling  
VDD rising  
1.80  
1.86  
1.82  
1.90  
1.91  
1.99  
V
V
P
P
VDD falling  
2.56  
2.56  
2.36  
2.36  
2.46  
2.46  
V
V
P
P
VDD rising  
21 VLVWL Low-voltage warning threshold — low range9  
VDD falling  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
V
V
P
P
VDD rising  
Low-voltage inhibit reset/recover  
22  
23  
Vhys  
VBG  
50  
mV  
V
C
P
hysteresis10  
Bandgap Voltage Reference11  
1.145  
1.17  
1.195  
1
2
3
Typical values are measured at 25C. Characterized, not tested  
As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL  
Does not include analog module pins. Dedicated analog pins should not be pulled to VDD or VSS and should be left floating when not used  
to reduce current leakage.  
.
4
5
6
Measured with VIn = VDD.  
All functional non-supply pins are internally clamped to VSS and VDD,except PTD1.  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values  
for positive and negative clamp voltages, then use the larger of the two values.  
7
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive  
injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out  
of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU  
is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power  
consumption).  
MCF51JE256 Datasheet, Rev. 4  
20  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
8
Maximum is highest voltage that POR is guaranteed.  
Run at 1 MHz bus frequency.  
9
10  
11  
Low voltage detection and warning limits measured at 1 MHz bus frequency.  
Factory trimmed at VDD = 3.0 V, Temp = 25C.  
3.6  
Supply Current Characteristics  
Table 10. Supply Current Characteristics  
Bus  
Freq  
VDD  
(V)  
Temperature  
#
Symbol  
Parameter  
Typical1 Maximum Unit  
C
(C)  
Run supply current  
1
RIDD  
FEI mode, all modules ON2  
25.165 MHz  
25.165 MHz  
20 MHz  
3
3
3
3
3
44  
44  
48  
48  
mA  
mA  
mA  
mA  
mA  
–40 to 25  
105  
P
P
T
T
T
32.3  
16.4  
2.9  
–40 to 105  
–40 to 105  
–40 to 105  
8 MHz  
1 MHz  
Run supply current  
2
RIDD  
FEI mode, all modules OFF3  
25.165 MHz  
20 MHz  
8 MHz  
3
3
3
3
29  
29.6  
mA  
mA  
mA  
mA  
–40 to 105  
–40 to 105  
–40 to 105  
–40 to 105  
C
T
T
T
25.4  
12.7  
2.4  
1 MHz  
Run supply current  
3
4
RIDD  
LPR=0, all modules OFF3  
16 kHz FBI  
16 kHz FBE  
3
3
232  
231  
280  
296  
A  
A  
–40 to 105  
–40 to 105  
T
T
Run supply current  
RIDD  
LPR=1, all modules OFF3  
16 kHz  
BLPE  
3
3
74  
74  
75  
A  
A  
0 to 70  
T
T
16 kHz  
BLPE  
120  
–40 to 105  
Wait mode supply current  
5
WIDD  
FEI mode, all modules OFF3  
25.165 MHz  
3
16.5  
mA  
–-40 to 105  
C
20 MHz  
8 MHz  
1 MHz  
3
3
3
10.3  
6.6  
mA  
mA  
mA  
–-40 to 105  
–-40 to 105  
–-40 to 105  
T
T
T
1.7  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
21  
Preliminary Electrical Characteristics  
Table 10. Supply Current Characteristics (continued)  
Bus  
Freq  
VDD  
(V)  
Temperature  
#
Symbol  
Parameter  
Typical1 Maximum Unit  
C
(C)  
Stop2 mode  
6
S2IDD  
supply current4  
N/A  
3
0.410  
1
A  
-40 to 25  
P
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
3
3
3
2
2
2
2
3.7  
10  
10  
20  
A  
A  
A  
A  
A  
A  
A  
70  
85  
C
C
P
C
C
C
C
21  
31.5  
0.640  
9
105  
0.410  
3.4  
9.5  
20  
-40 to 25  
70  
18  
85  
30  
105  
Stop3 mode  
7
S3IDD  
supply current  
No clocks active  
N/A  
3
0.750  
1.3  
A  
-40 to 25  
P
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
3
3
3
2
2
2
2
8.5  
20  
18  
28  
A  
A  
A  
A  
A  
A  
A  
70  
85  
C
C
P
C
C
C
C
53  
63  
105  
0.400  
8.2  
18  
0.900  
16  
-40 to 25  
70  
26  
85  
47  
59  
105  
1
2
3
4
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
ON = System Clock Gating Control registers turn on system clock to the corresponding modules.  
OFF = System Clock Gating Control registers turn off system clock to the corresponding modules.  
All digital pins must be configured to a known state to prevent floating pins from adding current. Smaller packages may have some pins that  
are not bonded out; however, software must still be configured to the largest pin package available so that all pins are in a known state.  
Otherwise, floating pins that are not bonded in the smaller packages may result in a higher current draw. NOTE: I/O pins are configured to  
output low; input-only pins are configured to pullup-enabled. IRO pin connects to ground. FB_AD12 pin is pullup-enabled. DACO, and VREFO pins  
are at reset state and unconnected.  
Table 11. Stop Mode Adders  
Temperature (°C)  
#
Parameter  
Condition  
Units  
C
-40  
25  
70  
85  
105  
1
2
3
4
LPO  
50  
600  
75  
650  
73  
100  
750  
80  
150  
850  
93  
250  
1000  
125  
nA  
nA  
A  
nA  
D
D
T
EREFSTEN  
IREFSTEN1  
TOD  
RANGE = HGO = 0  
Does not include clock source current  
50  
75  
100  
150  
250  
D
MCF51JE256 Datasheet, Rev. 4  
22  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 11. Stop Mode Adders (continued)  
Temperature (°C)  
#
Parameter  
LVD1  
Condition  
Units  
C
-40  
25  
70  
85  
105  
5
6
LVDSE = 1  
116  
17  
117  
18  
126  
24  
132  
35  
172  
74  
A  
A  
T
T
PRACMP1  
Not using the bandgap (BGBE = 0)  
ADLPC = ADLSMP = 1  
Not using the bandgap (BGBE = 0)  
7
8
ADC1  
75  
85  
100  
500  
115  
500  
165  
500  
A  
A  
T
T
DAC1  
High power mode; no load on DACO  
500  
500  
1
Not available in stop2 mode.  
Figure 6. Stop IDD versus Temperature  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
23  
Preliminary Electrical Characteristics  
3.7  
PRACMP Electricals  
Table 12. PRACMP Electrical Specifications  
#
Characteristic  
Supply voltage  
Symbol  
Minimum Typical Maximum  
Unit  
C
1
2
3
VPWR  
IDDACT1  
IDDACT2  
1.8  
3.6  
80  
40  
V
P
D
D
Supply current (active) (PRG enabled)  
Supply current (active) (PRG disabled)  
A  
A  
Supply current (ACMP and PRG all  
disabled)  
4
IDDDIS  
2
nA  
D
5
6
7
8
9
Analog input voltage  
VAIN  
VAIO  
VSS – 0.3  
5
VDD  
40  
V
mV  
mV  
nA  
s  
V
D
D
D
D
D
D
Analog input offset voltage  
Analog comparator hysteresis  
Analog input leakage current  
Analog comparator initialization delay  
3.0  
VH  
20.0  
1
IALKG  
tAINIT  
1.0  
2.75  
10 Programmable reference generator inputs  
VIn2 (VDD25  
)
1.8  
Programmable reference generator setup  
delay  
11  
tPRGST  
Vstep  
1
1
1.25  
Vin  
s  
LSB  
V
D
D
P
Programmable reference generator step  
size  
12  
0.75  
Programmable reference generator voltage  
range  
13  
Vprgout  
VIn/32  
3.8  
12-bit DAC Electricals  
Table 13. DAC 12LV Operating Requirements  
#
1
2
3
4
Characteristic  
Symbol  
VDDA  
VDACR  
TA  
Minimum Maximum  
Unit  
C
P
C
C
C
C
Supply voltage  
1.8  
1.15  
-40  
3.6  
3.6  
105  
100  
1
V
V
Reference voltage  
Temperature  
°C  
pF  
mA  
Output load capacitance1  
Output load current  
CL  
IL  
5
1
A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
MCF51JE256 Datasheet, Rev. 4  
24  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 14. DAC 12-Bit Operating Behaviors  
Symbol Minimum Typical Maximum Unit  
#
Characteristic  
C
Notes  
1
Resolution  
N
12  
12  
bit  
T
IDDA_DAC  
2
3
Supply current low-power mode  
Supply current high-power mode  
50  
100  
A  
T
T
LP  
IDDA_DAC  
345  
500  
200  
A  
HP  
• VDDA = 3 V or 2.2 V  
• VREFSEL = 1  
Full-scale Settling time (1 LSB)  
(0x080 to 0xF7F or 0xF7F to 0x080)  
low-power mode  
TsFSLP  
4
5
s  
T
T
Temperature  
= 25°C  
• VDDA = 3 V or 2.2 V  
• VREFSEL = 1  
Full-scale Settling time (1 LSB)  
(0x080 to 0xF7F or 0xF7F to 0x080)  
high-power mode  
TsFSHP  
TsC-CLP  
30  
5
s  
Temperature  
= 25°C  
• VDDA = 3 V or 2.2 V  
• VREFSEL = 1  
Code-to-code Settling time (1 LSB)  
(0xBF8 to 0xC08 or 0xC08 to  
0xBF8) low-power mode  
6
7
1
s  
s  
T
T
Temperature = 25°C  
• VDDA = 3 V or 2.2 V  
• VREFSEL = 1  
Code-to-code Settling time (1 LSB)  
(0xBF8 to 0xC08 or 0xC08 to  
0xBF8) high-power mode  
TsC-CHP  
Temperature = 25°C  
DAC output voltage range low  
(high-power mode, no load, DAC set  
to 0, 3 V at room temperature)  
100  
Vdacoutl  
8
9
mV  
mV  
T
T
DAC output voltage range high  
(high-power mode, no load, DAC set  
to 0x0FFF)  
Vdacouth VDACR–100  
10 Integral non-linearity error  
INL  
8  
LSB  
LSB  
T
T
Differential non-linearity error  
11  
DNL  
±1  
VDACR is > 2.4 V  
Calculated by a best fit  
curve from VSS +  
100mV to VREFH  
%FSR  
12 Offset error  
EO  
±0.4  
±3  
T
–100mV  
Calculated by a best fit  
curve from VSS +  
100mV to VREFH  
Gain error (VREF = Vext = VDD  
)
%FSR  
13  
14  
EG  
±0.1  
±0.5  
T
T
–100mV  
Power supply rejection ratio  
VDD 2.4 V  
PSRR  
60  
dB  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
25  
Preliminary Electrical Characteristics  
Table 14. DAC 12-Bit Operating Behaviors  
#
Characteristic  
Symbol Minimum Typical Maximum Unit  
C
Notes  
Temperature drift of offset voltage  
(DAC set to 0x0800)1  
2
See Typical Drift figure  
that follows.  
Tco  
AC  
15  
mV  
T
T
16 Offset aging coefficient  
8
V/yr  
1
See Typical Drift figure that follows.  
Figure 7. Offset at Half Scale vs Temperature  
3.9  
ADC Characteristics  
Table 15. 12-bit ADC Operating Conditions  
Minimum Typical1 Maximum Unit  
#
Symb  
VDDAD Supply voltage Absolute  
VDDAD Delta to VDD (VDD-VDDAD  
Characteristic  
Conditions  
C
1
2
3
4
1.8  
3.6  
V
mV  
mV  
V
D
D
D
D
2
)
-100  
-100  
1.13  
0
0
+100  
+100  
VDDAD  
Supply voltage  
2
VSSAD Ground voltage  
Delta to VSS (VSS-VSSAD  
)
VREFH Ref Voltage High  
VDDAD  
MCF51JE256 Datasheet, Rev. 4  
26  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 15. 12-bit ADC Operating Conditions (continued)  
#
Symb  
Characteristic  
Conditions  
Minimum Typical1 Maximum Unit  
C
5
6
VREFL Ref Voltage Low  
VSSAD  
VREFL  
VSSAD  
VSSAD  
VREFH  
V
V
D
D
VADIN  
CADIN  
Input Voltage  
Input  
Capacitance  
7
4
2
5
5
pF  
C
C
8
9
RADIN  
RAS  
Input Resistance  
k  
Analog Source Resistance3  
12 bit mode  
1
k  
C
fADCK > 8 MHz  
4 MHz < fADCK > 8 MHz  
fADCK < 4 MHz  
k  
k  
k  
C
C
C
2
5
10-bit mode  
ADCK > 8MHz  
f
2
5
4 MHz < fADCK < 8 MHz  
fADCK < 4 MHz  
k  
k  
C
C
10  
8-bit mode  
k  
k  
C
C
fADCK > 8 MHz  
5
fADCK < 8 MHz  
10  
10  
fADCK  
ADC Conversion Clock Freq.  
High Speed (ADLPC=0,  
ADHSC=1)  
1.0  
1.0  
1.0  
8.0  
5.0  
2.5  
MHz  
MHz  
MHz  
D
D
D
High Speed (ADLPC=0,  
ADHSC=0)  
Low Power (ADLPC=1,  
ADHSC=1)  
1
Typical values assume VDDAD = 3.0V, Temp = 25C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
DC potential difference.  
External to MCU. Assumes ADLSMP=0.  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
27  
Preliminary Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 8. ADC Input Impedance Equivalency Diagram  
Table 16. 12-bit SAR ADC Characteristics full operating range  
(V = V , V = V  
)
SSAD  
REFH  
DDAD REFL  
#
Symbol Characteristic  
Conditions1  
Minimum Typical2 Maximum  
Unit  
C
ADLPC=1, ADHSC=0  
ADLPC=0, ADHSC=0  
ADLPC=0, ADHSC=1  
Stop, Reset, Module Off  
ADLPC=1, ADHSC=0  
ADLPC=0, ADHSC=0  
215  
470  
610  
0.01  
2.4  
A  
A  
T
T
T
C
P
P
Supply Current  
IDDAD (ADLSMP=0,  
ADCO=1)  
1
A  
A  
ADC  
Asynchronous  
fADACK Clock Source  
(tADACK  
MHz  
MHz  
5.2  
2
ADLPC=0, ADHSC=1  
6.2  
MHz  
P
=1/fADACK  
)
3
4
Sample Time — See Reference Manual for sample times.  
Conversion Time — See Rreference Manual for conversion times.  
Total Unadjusted 12-bit single-ended mode  
1.75  
0.8  
3.5  
LSB3  
LSB3  
T
T
Error  
10-bit single-ended mode  
±1.5  
32x Hardware  
5
6
TUE  
Averaging(AVGE  
= %1 AVGS =  
%11)  
8-bit single-ended mode  
0.5  
±1.0  
LSB3  
T
12-bit single-ended mode  
0.7  
0.5  
0.2  
1  
LSB3  
LSB3  
LSB3  
T
T
T
Differential  
Non-Linearity  
10-bit single-ended mode  
±0.75  
±0.5  
8-bit single-ended mode  
MCF51JE256 Datasheet, Rev. 4  
28  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 16. 12-bit SAR ADC Characteristics full operating range  
(V  
= V  
, V  
= V  
) (continued)  
REFH  
DDAD REFL  
SSAD  
#
Symbol Characteristic  
Conditions1  
Minimum Typical2 Maximum  
Unit  
C
12-bit single-ended mode  
10-bit single-ended mode  
8-bit single-ended mode  
12-bit single-ended mode  
10-bit single-ended mode  
8-bit single-ended mode  
12-bit single-ended mode  
10-bit single-ended mode  
8-bit single-ended mode  
1.0  
0.5  
0.3  
0.7  
0.4  
0.2  
1.0  
0.4  
0.2  
2.5  
±1.0  
±0.5  
2.0  
±1.0  
±0.5  
3.5  
±1.5  
±0.5  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
T
T
T
T
T
T
T
T
T
Integral  
INL  
7
Non-Linearity  
Zero-Scale Error  
EZS  
8
(VADIN = VSSAD  
)
Full-Scale Error  
(VADIN = VDDAD  
9
EFS  
)
Quantization  
Error  
10  
EQ  
All modes  
±0.5  
LSB3  
D
Input Leakage  
Error (IIn  
=
11  
EIL  
leakage current All modes  
(refer to DC  
IIn * RAS  
mV  
D
Characteristics)  
-40C to 25C  
1.646  
1.769  
mV/xC  
mV/xC  
C
C
Temp Sensor  
Slope  
12  
13  
m
25C to 125C  
25C  
Temp Sensor  
Voltage  
VTEMP25  
701.2  
mV  
C
1
All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD  
Typical values assume VDDAD = 3.0V, Temp = 25C, fADCK=2.0MHz unless otherwise stated. Typical values are for reference only  
.
2
and are not tested in production.  
1 LSB = (VREFH - VREFL)/2N  
3
3.10 MCG and External Oscillator (XOSC) Characteristics  
Table 17. MCG (Temperature Range = –40 to 105C Ambient)  
#
Rating  
Internal reference startup time  
Symbol  
Min  
Typical  
Max  
Unit  
C
tirefst  
1
55  
100  
s  
D
factory trimmed at  
VDD=3.0V and  
temp=25C  
31.25  
kHz  
C
Average internal reference  
frequency  
fint_ft  
2
user trimmed  
31.25  
16  
39.0625  
20  
KHz  
MHz  
MHz  
C
C
C
Low range (DRS=00)  
Mid range (DRS=01)  
fdco_t  
DCO output frequency range -  
trimmed  
32  
40  
3
4
High range1  
(DRS=10)  
40  
60  
MHz  
C
Resolution of trimmed DCO output  
frequency at fixed voltage and  
temperature  
%fdco  
%fdco  
with FTRIM  
0.1  
0.2  
0.2  
0.4  
C
C
fdco_res_t  
without FTRIM  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
29  
Preliminary Electrical Characteristics  
Table 17. MCG (Temperature Range = –40 to 105C Ambient) (continued)  
#
Rating  
Symbol  
Min  
Typical  
Max  
Unit  
C
over voltage and  
temperature  
%fdco  
1.0  
2  
P
Total deviation of trimmed DCO  
output frequency over voltage and  
temperature  
fdco_t  
5
over fixed voltage  
and temp range  
of 0 - 70 C  
%fdco  
0.5  
1  
C
FLL2  
PLL3  
1
1
ms  
ms  
C
D
tfll_acquire  
tpll_acquire  
Acquisition time  
6
7
Long term Jitter of DCO output clock (averaged over 2mS  
interval) 4  
CJitter  
%fdco  
0.02  
0.2  
C
fvco  
8
9
VCO operating frequency  
7.0  
1.0  
55.0  
2.0  
MHz  
MHz  
D
D
fpll_ref  
PLL reference frequency range  
0.5664  
Jitter of PLL output clock measured  
Long term  
fpll_jitter_625  
10  
%fpll  
D
over 625 ns  
ns  
Entry5  
Exit6  
1.49  
4.47  
2.98  
5.97  
%
%
D
D
Dlock  
Dunl  
11 Lock frequency tolerance  
12 Lock time  
tfll_acquire+  
1075(1/fint_t)  
tfll_lock  
FLL  
s
D
tpll_acquire+  
tpll_lock  
floc_low  
floc_high  
PLL  
s
D
D
1075(1/fpll_ref)  
(3/5) x  
fint_t  
13 Loss of external clock minimum frequency - RANGE = 0  
kHz  
kHz  
(16/5) x  
fint_t  
14 Loss of external clock minimum frequency - RANGE = 1  
D
1
2
This should not exceed the maximum CPU frequency of 50.33 MHz.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is  
changed, DRS bit is changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is  
being used as the reference, this specification assumes it is already running.  
3
4
This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI)  
to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS. Measurements are  
made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via  
V
DD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given interval.  
5
6
Below Dlock minimum, the MCG is guaranteed to enter lock. Above Dlock maximum, the MCG will not enter lock. But if the MCG is already  
in lock, then the MCG may stay in lock.  
Below Dunl minimum, the MCG will not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock.  
MCF51JE256 Datasheet, Rev. 4  
30  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 18. XOSC (Temperature Range = –40 to 105C Ambient)  
Symbol Minimum Typical1 Maximum Unit  
#
Characteristic  
• Low range (RANGE = 0)  
flo  
32  
1
38.4  
5
kHz  
• High range (RANGE = 1),  
• FEE or FBE mode 2  
fhi-fll  
MHz  
• High range (RANGE = 1),  
• PEE or PBE mode 3  
fhi-pll  
1
1
16  
16  
MHz  
MHz  
Oscillator crystal or resonator  
(EREFS = 1, ERCLKEN = 1)  
1
• High range (RANGE = 1),  
• High gain (HGO = 1),  
• FBELP mode  
fhi-hgo  
• High range (RANGE = 1),  
• Low power (HGO = 0),  
• FBELP mode  
fhi-lp  
1
8
MHz  
C1  
C2  
2
3
Load capacitors  
See Note 4  
Low range  
(32 kHz to 38.4 kHz)  
Feedback resistor  
RF  
10  
1
M  
k  
High range  
(1 MHz to 16 MHz)  
Series resistor — Low range  
Series resistor — High range  
Low Gain (HGO = 0)  
High Gain (HGO = 1)  
• Low Gain (HGO = 0)  
• High Gain (HGO = 1)  
8 MHz  
0
100  
0
4
5
RS  
RS  
0
0
0
0
k  
4 MHz  
10  
20  
1 MHz  
Low range, low gain  
(RANGE=0,HGO=0)  
200  
400  
t
CSTL  
Low range, high gain  
(RANGE=0,HGO=1)  
6
Crystal start-up time 5, 6  
ms  
High range, low gain  
(RANGE=1,HGO=0)  
5
tCSTH  
High range, high gain (RANGE=1,  
HGO=1)  
15  
1
2
Data in Typical column was characterized at 3.0 V, 25C or is typical recommended value.  
When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625  
kHz.  
3
4
5
6
When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.  
See crystal or resonator manufacturer’s recommendation.  
This parameter is characterized and not tested on each device.  
Proper PC board layout procedures must be followed to achieve specifications.  
o
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
31  
Preliminary Electrical Characteristics  
3.11 Mini-FlexBus Timing Specifications  
A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to  
interface to slave-only devices up to a maximum bus frequency of 25.1666 MHz. It can be directly connected  
to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or  
other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple  
chip-select based interface can be used.  
All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect  
to the rising edge of a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus  
frequency.  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the  
Mini-FlexBus output clock (MB_CLK). All other timing relationships can be derived from these values.  
Table 19. Mini-FlexBus AC Timing Specifications  
#
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
C
1
2
3
39.73  
25.1666  
MHz  
ns  
D
T
Clock Period  
Output Valid1  
Output Hold1  
Input Setup2  
Input Hold2  
MB1  
MB2  
20  
ns  
4
5
6
MB3  
MB4  
MB5  
1.0  
22  
10  
ns  
ns  
ns  
D
T
D
1
2
Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE.  
Specification is valid for all MB_D[7:0].  
MCF51JE256 Datasheet, Rev. 4  
32  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Figure 9. Mini-FlexBus Read Timing  
Figure 10. Mini-FlexBus Write Timing  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
33  
Preliminary Electrical Characteristics  
3.12 AC Characteristics  
This section describes ac timing characteristics for each peripheral system.  
3.12.1 Control Timing  
Table 20. Control Timing  
Typica  
l1  
#
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
C
1
Bus frequency (tcyc = 1/fBus)  
VDD 1.8 V  
fBus  
fBus  
fBus  
dc  
dc  
dc  
10  
20  
MHz  
MHz  
MHz  
D
D
V
DD > 2.1 V  
DD > 2.4 V  
V
25.165  
D
P
2
Internal low-power oscillator period  
External reset pulse width2  
tLPO  
700  
1000  
1300  
s  
(tcyc  
1/fSelf_reset  
=
3
4
5
6
textrst  
trstdrv  
tMSSU  
tMSH  
100  
66 x tcyc  
500  
ns  
ns  
ns  
ns  
D
D
D
D
)
Reset low drive  
Active background debug mode  
latch setup time  
latch hold time  
Active background debug mode  
IRQ pulse width  
100  
7
Asynchronous path2  
Synchronous path3  
100  
1.5 x tcyc  
D
D
tILIH, IHIL  
t
ns  
ns  
KBIPx pulse width  
8
9
Asynchronous path2  
Synchronous path3  
100  
1.5 x tcyc  
tILIH, IHIL  
t
Port rise and fall time (load = 50 pF)4, Low Drive  
Slew rate  
controldisabled  
(PTxSE = 0)  
tRise, tFall  
tRise, tFall  
tRise, tFall  
tRise, tFall  
11  
35  
40  
75  
ns  
ns  
ns  
ns  
D
D
D
D
Slew rate  
control enabled  
(PTxSE = 1)  
Slew rate  
controldisabled  
(PTxSE = 0)  
Slew rate  
control enabled  
(PTxSE = 1)  
1
2
Typical values are based on characterization data at VDD = 5.0 V, 25 C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset  
requests from internal sources.  
3
4
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be  
recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 C to 105 C.  
MCF51JE256 Datasheet, Rev. 4  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
textrst  
RESET PIN  
Figure 11. Reset Timing  
tIHIL  
IRQ/KBIPx  
IRQ/KBIPx  
tILIH  
Figure 12. IRQ/KBIPx Timing  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
35  
Preliminary Electrical Characteristics  
3.12.2 TPM Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that  
can be used as the optional external source to the timer counter. These synchronizers operate from the  
current bus rate clock.  
Table 21. TPM Input Timing  
#
C
Function  
Symbol  
Minimum Maximum Unit  
1
2
3
4
5
D
External clock frequency  
External clock period  
fTPMext  
tTPMext  
tclkh  
dc  
4
fBus/4  
MHz  
tcyc  
tcyc  
tcyc  
tcyc  
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
D
tclkl  
D
tICPW  
tTPMext  
tclkh  
TPMxCLK  
tclkl  
Figure 13. Timer External Clock  
tICPW  
TPMxCHn  
TPMxCHn  
tICPW  
Figure 14. Timer Input Capture Pulse  
MCF51JE256 Datasheet, Rev. 4  
36  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
3.13 SPI Characteristics  
The following table and Figure 15 through Figure 18 describe the timing requirements for the SPI system.  
Table 22. SPI Timing  
No.1  
Characteristic2  
Operating frequency  
Symbol  
Minimum  
Maximum  
Unit  
C
1
Master  
Slave  
fop  
fop  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
Hz  
D
SPSCK period  
2
3
4
5
6
7
Master  
Slave  
tSPSCK  
tSPSCK  
2
4
2048  
tcyc  
tcyc  
D
D
D
D
D
D
Enable lead time  
Master  
Slave  
tLead  
tLead  
12  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
tLag  
tLag  
12  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Master  
Slave  
tWSPSCK  
tWSPSCK  
tcyc 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Master  
Slave  
tSU  
tSU  
15  
15  
ns  
ns  
Master  
Slave  
tHI  
tHI  
0
25  
ns  
ns  
8
9
Slave access time3  
ta  
1
1
tcyc  
tcyc  
D
D
Slave MISO disable time4  
tdis  
Data valid (after SPSCK edge)  
10  
11  
12  
13  
Master  
Slave  
tv  
tv  
25  
25  
ns  
ns  
D
D
D
D
Data hold time (outputs)  
Rise time  
Master  
Slave  
tHO  
tHO  
0
0
ns  
ns  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
1
2
Numbers in this column identify elements in Figure 15 through Figure 18.  
All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins. All timing assumes slew  
DD  
DD  
rate control disabled and high drive strength enabled for SPI output pins.  
Time to data active from high-impedance state.  
Hold time to high-impedance state.  
3
4
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
37  
Preliminary Electrical Characteristics  
SS1  
(OUTPUT)  
2
2
3
SCK  
(CPOL = 0)  
(OUTPUT)  
5
4
4
5
SCK  
(CPOL = 1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
MSB IN2  
11  
BIT 6 . . . 1  
11  
LSB IN  
12  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (MODFEN = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 15. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
2
2
3
SCK  
(CPOL = 0)  
(OUTPUT)  
5
4
SCK  
(CPOL = 1)  
5
4
(OUTPUT)  
6
7
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
12  
BIT 6 . . . 1  
LSB IN  
11  
MOSI  
(OUTPUT)  
MSB OUT(2)  
LSB OUT  
NOTES:  
1. SS output mode (MODFEN = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 16. SPI Master Timing (CPHA = 1)  
MCF51JE256 Datasheet, Rev. 4  
38  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
SS  
(INPUT)  
3
2
SCK  
5
4
(CPOL = 0)  
4
5
(INPUT)  
2
SCK  
(CPOL = 1)  
(INPUT)  
9
8
12  
11  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
7
SLAVE  
6
MOSI  
(INPUT)  
MSB IN  
LSB IN  
NOTE:  
1. Not defined, but normally MSB of character just received  
Figure 17. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
2
3
2
SCK  
(CPOL = 0)  
(INPUT)  
5
4
4
5
SCK  
(CPOL = 1)  
(INPUT)  
11  
SLAVE MSB OUT  
12  
9
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
NOTE  
6
7
8
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined, but normally LSB of character just received  
Figure 18. SPI Slave Timing (CPHA = 1)  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
39  
Preliminary Electrical Characteristics  
3.14 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the Flash  
memory.  
Program and erase operations do not require any special power sources other than the normal V supply.  
DD  
For more detailed information about program/erase operations, see the Memory chapter in the Reference  
Manual for this device (MCF51JE256RM).  
Table 23. Flash Characteristics  
#
Characteristic  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
C
Supply voltage for program/erase  
-40C to 105C  
1
D
Vprog/erase  
VRead  
fFCLK  
tFcyc  
1.8  
1.8  
150  
5
3.6  
3.6  
V
2
3
4
5
6
7
8
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
V
D
D
D
P
P
P
P
200  
6.67  
kHz  
s  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
tBurst  
4
tPage  
4000  
20,000  
Mass erase time2  
tMass  
Program/erase endurance3  
TL to TH = –40C to + 105C  
T = 25C  
9
10,000  
100,000  
C
C
cycles  
years  
10 Data retention4  
tD_ret  
15  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating  
approximate time to program and erase.  
3
4
Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines  
typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25C using  
the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618,  
Typical Data Retention for Nonvolatile Memory.  
3.15 USB Electricals  
The USB electricals for the USB On-the-Go module conform to the standards documented by the  
Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.  
If the Freescale USB On-the-Go implementation has electrical characteristics that deviate from the  
standard or require additional information, this space would be used to communicate that information.  
Table 24. Internal USB 3.3 V Voltage Regulator Characteristics  
Maximu  
#
Characteristic  
Symbol  
Minimum  
Typical  
Unit  
C
m
1
2
Regulator operating voltage  
VREG output  
Vregin  
3.9  
3
5.5  
V
V
C
P
Vregout  
3.3  
3.75  
MCF51JE256 Datasheet, Rev. 4  
40  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 24. Internal USB 3.3 V Voltage Regulator Characteristics (continued)  
Maximu  
m
#
Characteristic  
Symbol  
Minimum  
Typical  
Unit  
C
VUSB33 input with internal VREG  
disabled  
3
4
Vusb33in  
IVRQ  
3
3.3  
0.5  
3.6  
V
C
C
VREG Quiescent Current  
mA  
3.16 VREF Electrical Specifications  
Table 25. VREF Electrical Specifications  
#
Characteristic  
Supply voltage  
Symbol  
Minimum  
Maximum  
Unit  
C
1
2
3
4
5
VDDA  
TA  
1.80  
–40  
3.6  
105  
100  
10  
V
C  
nf  
C
C
Temperature  
Output Load Capacitance  
Maximum Load  
CL  
D
mA  
Voltage Reference Output with Factory  
Trim. VDD = 3 V.  
Vout  
1.148  
1.152  
V
P
6
Temperature Drift (Vmin - Vmax across  
the full temperature range)  
Tdrift  
25  
60  
mV1  
V/year  
A  
T
C
C
7
8
Aging Coefficient2  
Ac  
I
Powered down Current (Off Mode,  
VREFEN = 0, VRSTEN = 0)  
0.10  
9
Bandgap only (MODE_LV[1:0] = 00)  
Low-Power buffer (MODE_LV[1:0] = 01)  
I
I
75  
A  
A  
T
T
10  
11  
125  
Tight-Regulation buffer (MODE_LV[1:0]  
= 10)  
I
1.1  
mA  
T
12  
13  
Load Regulation (MODE_LV = 10)  
100  
V/mA  
C
C
Line Regulation MODE = 1:0, Tight  
Regulation VDD < 2.3 V, Delta VDDA =  
100 mV, VREFH = 1.2 V driven  
externally with VREFO disabled.  
(Power Supply Rejection  
DC  
70  
dB  
1
2
See typical chart below.  
Linear reliability model (1008 hours stress at 125oC = 10 years operating life) used to calculate Aging V/year. Vrefo data recorded per  
month.  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
41  
Preliminary Electrical Characteristics  
Table 26. VREF Limited Range Operating Behaviors  
#
Characteristic  
Symbol  
Minimum  
Maximum  
Unit  
C
Voltage Reference Output with  
Factory Trim  
1.149  
1
Vout  
1.152  
mV  
T
Temperature Drift (Vmin – Vmax  
Temperature range from 0° C to  
50° C  
2
Tdrift  
3
mV1  
T
1
See typical chart that follows (Figure 19).  
Figure 19. Typical VREF Output vs Temperature  
MCF51JE256 Datasheet, Rev. 4  
42  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Figure 20. Typical VREF Output vs V  
DD  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
43  
Ordering Information  
4
Ordering Information  
This section contains ordering information for the device numbering system. See Table 1 for feature  
summary by package information.  
4.1  
Part Numbers  
Table 27. Orderable Part Number Summary  
Freescale Part  
Flash / SRAM  
Description  
(Kbytes)  
Package  
Temperature  
Number  
MCF51JE256VML  
MCF51JE256VLL  
MCF51JE256VMB  
MCF51JE256VLK  
MCF51JE128VMB  
MCF51JE256CML  
MCF51JE256CLL  
MCF51JE256CMB  
MCF51JE256CLK  
MCF51JE128CMB  
MCF51JE128CLK  
MCF51JE256 ColdFire Microcontroller  
MCF51JE256 ColdFire Microcontroller  
MCF51JE256 ColdFire Microcontroller  
MCF51JE256 ColdFire Microcontroller  
MCF51JE128 ColdFire Microcontroller  
MCF51JE256 ColdFire Microcontroller  
MCF51JE256 ColdFire Microcontroller  
MCF51JE256 ColdFire Microcontroller  
MCF51JE256 ColdFire Microcontroller  
MCF51JE128 ColdFire Microcontroller  
MCF51JE128 ColdFire Microcontroller  
256K/32K  
256K/32K  
256K/32K  
256K/32K  
128K/32K  
256K/32K  
256K/32K  
256K/32K  
256K/32K  
128K/32K  
128K/32K  
104 MAPBGA  
100 LQFP  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
–40 to 105 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
81 MAPBGA  
80 LQFP  
81 MAPBGA  
104 MAPBGA  
10O LQFP  
81 MAPBGA  
80 LQFP  
81 MAPBGA  
80 LQFP  
4.2  
Package Information  
Table 28. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
100  
80  
Low Quad Flat Package  
Low Quad Flat Package  
MAP BGA Package  
LQFP  
LQFP  
LL  
LK  
983-03  
1418  
98ASS23308W  
98ASS23174W  
98ARH98267A  
98ASA10670D  
104  
81  
MAPBGA  
MAPBGA  
ML  
MB  
1285-02  
1662-01  
MAP BGA Package  
4.3  
Mechanical Drawings  
Table 28 provides the available package types and their document numbers. The latest package  
outline/mechanical drawings are available on the MCF51JE256/128 Product Summary pages at  
http://www.freescale.com.  
To view the latest drawing, either:  
Click on the appropriate link in Table 28, or  
MCF51JE256 Datasheet, Rev. 4  
44  
Freescale Semiconductor  
Revision History  
®
Open a browser to the Freescale website (http://www.freescale.com), and enter the appropriate  
document number (from Table 28) in the “Enter Keyword” search box at the top of the page.  
5
Revision History  
This section lists major changes between versions of the MCF51JE256 Data Sheet.  
Table 29. Revision History  
Revision  
Date  
Description  
0
March/April 09 Initial Draft  
• Revised to follow standard template.  
• Removed extraneous headings from the TOC.  
• Corrected units for Monotoncity to be blank in for the DAC specification.  
• Updated ADC characteristic tables to include 16-Bit SAR in headings.  
1
2
July 2009  
July 2009  
• Changed MCG (XOSC) Electricals Table - Row 2, Average Internal Reference  
Frequency typical value from 32.768 to 31.25  
• Updated Thermal Characteristics table. Reinserted the 81 and 104 MapBGA devices.  
• Revised the ESD and Latch-Up Protection Characeristic description to read: Latch-up  
Current at TA = 125°C.  
• Changed Table 9. DC Characteristics rows 2 and 4, to 1.8 V, ILoad = -600 mA  
conditions to 1.8 V, ILoad = 600A respectively.  
• Corrected the 16-bit SAR ADC Operating Condition table Ref Voltage High Min value  
to be 1.13 instead of 1.15.  
• Updated the ADC electricals.  
• Inserted the Mini-FlexBus Timing Specifications.  
3
April 2010  
• Added a Temp Drift parameter to the VREF Electrical Specifications.  
• Removed the S08 Naming Convention diagram.  
• Updated the Orderable Part Number Summary to include the Freescale Part Number  
suffixes.  
• Completed the Package Description table values.  
• Changed the 80LQFP package drawing from 98ARL10530D to 98ASS23174W.  
• Updated electrical characteristic data.  
MCF51JE256 Datasheet, Rev. 4  
Freescale Semiconductor  
45  
Revision History  
Revision  
Table 29. Revision History  
Description  
Date  
• In Table 1.MCF51JE256/128 Features by MCU and Package, removed the row of  
“12-bit SAR ADCDifferential Channels”.  
• In Table 3, “Package Pin Assignments”, changed from: ‘A1’ — PTG1 USB_  
SESSEND to:’B3’ — PTG1 USB_ SESSEND.  
• In Table 10,Supply Current Characteristics”, for S3IDD changed the max value from  
‘1.2’ to ‘1.3’ and typical value from ‘0.650’ to ‘0.750’ for the first row.  
• In Table 10,Supply Current Characteristics”:  
— For parameter 3 and parameter 4 changed LPS to LPR.  
— For parameter 3,changed “FBILP” to “FBI”.  
— For parameter 4, changed “FBELP” to “BLPE”.  
• Fixed the TBD parameters and added figure"Typical Output vs VDD", following the  
same setup of MM256DS  
4
August 2012  
— Added Figure 7,Offset at Half Scale vs Temperature”.  
— Updated Table 9,DC Characteristics”.  
— Updated Table 10,Supply Current Characteristics”.  
— Updated Table 11,Stop Mode Adders”.  
— Added Figure 20,Typical Output vs. VDD  
.
— Updated Table 14,DAC 12-Bit Operating Behaviors”.  
— Updated Table 20,Control Timing”.  
— Removed “SPI Electrical Characteristics” table.  
— Updated Table 25”VREF Electrical Specifications”.  
— Updated Table 26,VREF Limited Range Operating Behaviors“.  
• Updated Figure 3, Figure 4, and Figure 5.  
MCF51JE256 Datasheet, Rev. 4  
46  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009-2012. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF51JE256  
Rev. 4  
08/2012  

相关型号:

935319569518

Analog Circuit
NXP

935319569574

Analog Circuit
NXP

935319586557

RISC Microcontroller
NXP

935319611574

Analog Circuit
NXP

935319668528

RISC Microcontroller
NXP

935319668557

RISC Microcontroller
NXP

935319695528

Microcontroller
NXP

935319718528

RISC Microcontroller
NXP

935319718557

RISC Microcontroller
NXP

935319719557

RISC Microcontroller
NXP

935319738528

Microcontroller
NXP

935319753518

Power Supply Management Circuit
NXP