935319668557 [NXP]

RISC Microcontroller;
935319668557
型号: 935319668557
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总126页 (文件大小:1934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC5634M  
Rev. 9.2, 01/2015  
Freescale Semiconductor  
MPC5634M Microcontroller  
Datasheet  
This is the MPC5634M Datasheet set consisting of the following files:  
MPC5634M Datasheet Addendum (MPC5634M_AD), Rev. 1  
MPC5634M Datasheet (MPC5634M), Rev. 9  
© Freescale Semiconductor, Inc., 2015. All rights reserved.  
MPC5634M_AD  
Rev. 1.0, 01/2015  
Freescale Semiconductor  
Datasheet Addendum  
MPC5634M Microcontroller  
Datasheet Addendum  
Table of Contents  
Addendum List for Revision 9. . . . . . . . . . . . . . . . 2  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
This addendum describes corrections to the MPC5634M  
Microcontroller Datasheet, order number MPC5634M.  
For convenience, the addenda items are grouped by  
revision. Please check our website at  
1
2
http://www.freescale.com/powerarchitecture for the  
latest updates.  
The current version available of the MPC5634M  
Microcontroller Datasheet is Revision 9.  
© Freescale Semiconductor, Inc., 2015. All rights reserved.  
1 Addendum List for Revision 9  
4
Table 1. MPC5634M Rev 9 Addendum  
Location  
Description  
Section 4.11, “Temperature In “Temperature Sensor Electrical Characteristics” table, update the Min and Max value of  
Sensor Electrical  
Characteristics”,  
Page 81  
“Accuracy” parameter to -20oC and +20oC, respectively.  
2 Revision History  
Table 2 provides a revision history for this datasheet addendum document.  
Table 2. Revision History Table  
Rev. Number  
Substantive Changes  
Date of Release  
1.0  
Initial release.  
12/2014  
MPC5634M_AD, Rev. 1.0  
2
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address:freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire,  
C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor  
Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of  
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack,  
ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge,  
QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic  
are trademarks of Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© 2014 Freescale Semiconductor, Inc.  
Document Number: MPC5634M_AD  
Rev. 1.0  
01/2015  
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MPC5634M  
Rev. 9, 05/2012  
MPC5634M  
144 LQFP  
208 MAPBGA  
20 mm x 20 mm  
17 mm x 17 mm  
MPC5634M Microcontroller  
Data Sheet  
176 LQFP  
24 mm x 24 mm  
Operating Parameters  
High performance e200z335 core processor  
— Fully static operation, 0 MHz – 80 MHz (plus  
2% frequency modulation - 82 MHz)  
— 32-bit Power Architecture Book E  
programmer’s model  
— –40 C to 150 C junction temperature  
Variable Length Encoding Enhancements  
operating range  
Allows Power Architecture instruction set to  
be optionally encoded in a mixed 16 and  
32-bit instructions  
— Low power design  
Less than 400 mW power dissipation  
(nominal)  
Results in smaller code size  
Designed for dynamic power management  
of core and peripherals  
— Single issue, 32-bit Power Architecture  
technology compliant CPU  
Software controlled clock gating of  
peripherals  
— In-order execution and retirement  
— Precise exception handling  
— Branch processing unit  
Low power stop mode, with all clocks  
stopped  
Dedicated branch address calculation adder  
— Fabricated in 90 nm process  
— 1.2 V internal logic  
Branch acceleration using Branch  
Lookahead Instruction Buffer  
— Single power supply with  
5.0 V   5% (4.5 V to 5.25 V) with  
internal regulator to provide 3.3 V and 1.2 V for  
the core  
— Load/store unit  
One-cycle load latency  
Fully pipelined  
— Input and output pins with  
Big and Little Endian support  
Misaligned access support  
Zero load-to-use pipeline bubbles  
5.0 V   5% (4.5 V to 5.25 V) range  
35%/65% V  
hysteresis)  
CMOS switch levels (with  
DDE  
— Thirty-two 64-bit general purpose registers  
(GPRs)  
Selectable hysteresis  
Selectable slew rate control  
— Memory management unit (MMU) with  
16-entry fully-associative translation look-aside  
buffer (TLB)  
— Nexus pins powered by 3.3 V supply  
— Designed with EMI reduction techniques  
Phase-locked loop  
— Separate instruction bus and load/store bus  
Vectored interrupt support  
Frequency modulation of system clock  
frequency  
— Interrupt latency < 120 ns @ 80 MHz  
(measured from interrupt request to execution of  
first instruction of interrupt exception handler)  
On-chip bypass capacitance  
Selectable slew rate and drive strength  
This document contains information on a product under development. Freescale reserves  
the right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008-2012. All rights reserved.  
Table of Contents  
1
2
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
4.2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
4.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 58  
4.3.1 General notes for specifications at maximum  
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.1 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.2 MPC5634M feature details . . . . . . . . . . . . . . . . . . . . . . .9  
2.2.1 e200z335 core. . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.2.2 Crossbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.2.3 eDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.2.4 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . .12  
2.2.5 FMPLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.2.6 Calibration EBI. . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.2.7 SIU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.2.8 ECSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.2.9 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.2.10 SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.2.11 BAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.2.12 eMIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.2.13 eTPU2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.2.14 eQADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.2.15 DSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.2.16 eSCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.2.17 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
2.2.18 System timers . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.2.19 Software Watchdog Timer (SWT) . . . . . . . . . . .24  
2.2.20 Debug features . . . . . . . . . . . . . . . . . . . . . . . . .24  
2.3 MPC5634M series architecture. . . . . . . . . . . . . . . . . . .26  
2.3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . .26  
2.3.2 Block summary . . . . . . . . . . . . . . . . . . . . . . . . .27  
Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . .29  
3.1 144 LQFP pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
3.2 176 LQFP pinout (MPC5634M) . . . . . . . . . . . . . . . . . .30  
3.3 176 LQFP pinout (MPC5633M) . . . . . . . . . . . . . . . . . .32  
3.4 208 MAPBGA ballmap (MPC5634M) . . . . . . . . . . . . . .33  
3.5 208 MAPBGA ballmap (MPC5633M only) . . . . . . . . . .34  
3.6 Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
3.7 Signal details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
4.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .56  
junction temperature . . . . . . . . . . . . . . . . . . . . 60  
4.4 Electromagnetic Interference (EMI) characteristics. . . 62  
4.5 Electromagnetic static discharge (ESD) characteristics62  
4.6 Power Management Control (PMC)  
and Power On Reset (POR) electrical specifications . 63  
4.6.1 Regulator example. . . . . . . . . . . . . . . . . . . . . . 67  
4.6.2 Recommended power transistors . . . . . . . . . . 69  
4.7 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . 69  
4.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . 70  
4.9 I/O Pad current specifications . . . . . . . . . . . . . . . . . . . 77  
4.9.1 I/O pad VRC33 current specifications . . . . . . . 78  
4.9.2 LVDS pad specifications. . . . . . . . . . . . . . . . . . 79  
4.10 Oscillator and PLLMRFM electrical characteristics . . . 80  
4.11 Temperature sensor electrical characteristics . . . . . . . 82  
4.12 eQADC electrical characteristics. . . . . . . . . . . . . . . . . 82  
4.13 Platform flash controller electrical characteristics . . . . 85  
4.14 Flash memory electrical characteristics. . . . . . . . . . . . 85  
4.15 AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
4.15.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . 87  
4.16 AC timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
4.16.1 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 90  
4.16.2 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
4.16.3 Calibration bus interface timing . . . . . . . . . . . . 96  
4.16.4 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
4.16.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
4.16.6 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . 105  
Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . 106  
5.1.1 144 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.1.2 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
5.1.3 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . 113  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . 117  
3
4
5
6
7
MPC5634M Microcontroller Data Sheet, Rev. 9  
2
Freescale Semiconductor  
— Non-maskable interrupt (NMI) input for handling external events that must produce an immediate response, e.g.,  
power down detection. On this device, the NMI input is connected to the Critical Interrupt Input. (May not be  
recoverable)  
— Critical Interrupt input. For external interrupt sources that are higher priority than provided by the Interrupt  
Controller. (Always recoverable)  
— New ‘Wait for Interrupt’ instruction, to be used with new low power modes  
— Reservation instructions for implementing read-modify-write accesses  
— Signal processing extension (SPE) APU  
Operating on all 32 GPRs that are all extended to 64 bits wide  
Provides a full compliment of vector and scalar integer and floating point arithmetic operations (including  
integer vector MAC and MUL operations) (SIMD)  
Provides rich array of extended 64-bit loads and stores to/from extended GPRs  
Fully code compatible with e200z6 core  
— Floating point (FPU)  
IEEE 754 compatible with software wrapper  
Scalar single precision in hardware, double precision with software library  
Conversion instructions between single precision floating point and fixed point  
Fully code compatible with e200z6 core  
— Long cycle time instructions, except for guarded loads, do not increase interrupt latency  
— Extensive system development support through Nexus debug port  
Advanced microcontroller bus architecture (AMBA) crossbar switch (XBAR)  
— Three master ports, four slave ports  
Masters: CPU Instruction bus; CPU Load/store bus (Nexus); eDMA  
Slave: Flash; SRAM; Peripheral Bridge; calibration EBI  
— 32-bit internal address bus, 64-bit internal data bus  
Enhanced direct memory access (eDMA) controller  
— 32 channels support independent 8-bit, 16-bit, or 32-bit single value or block transfers  
— Supports variable sized queues and circular queues  
— Source and destination address registers are independently configured to post-increment or remain constant  
— Each transfer is initiated by a peripheral, CPU, or eDMA channel request  
— Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block  
transfer  
Interrupt controller (INTC)  
— 191 peripheral interrupt request sources  
— 8 software setable interrupt request sources  
— 9-bit vector  
Unique vector for each interrupt request source  
Provided by hardware connection to processor or read from register  
— Each interrupt source can be programmed to one of 16 priorities  
— Preemption  
Preemptive prioritized interrupt requests to processor  
ISR at a higher priority preempts ISRs or tasks at lower priorities  
Automatic pushing or popping of preempted priority to or from a LIFO  
Ability to modify the ISR or task priority. Modifying the priority can be used to implement the Priority Ceiling  
Protocol for accessing shared resources.  
— Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
3
Frequency Modulating Phase-locked loop (FMPLL)  
— Reference clock pre-divider (PREDIV) for finer frequency synthesis resolution  
— Reduced frequency divider (RFD) for reducing the FMPLL output clock frequency without forcing the FMPLL  
to re-lock  
— System clock divider (SYSDIV) for reducing the system clock frequency in normal or bypass mode  
— Input clock frequency range from 4 MHz to 20 MHz before the pre-divider, and from 4 MHz to 16 MHz at the  
FMPLL input  
Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz  
— VCO free-running frequency range from 25 MHz to 125 MHz  
— Four bypass modes: crystal or external reference with PLL on or off  
— Two normal modes: crystal or external reference  
— Programmable frequency modulation  
Triangle wave modulation  
Register programmable modulation frequency and depth  
— Lock detect circuitry reports when the FMPLL has achieved frequency lock and continuously monitors lock status  
to report loss of lock conditions  
User-selectable ability to generate an interrupt request upon loss of lock  
User-selectable ability to generate a system reset upon loss of lock  
— Clock quality monitor (CQM) module provides loss-of-clock detection for the FMPLL reference and output  
clocks  
User-selectable ability to generate an interrupt request upon loss of clock  
User-selectable ability to generate a system reset upon loss of clock  
Backup clock (reference clock or FMPLL free-running) can be applied to the system in case of loss of clock  
Calibration bus interface (EBI)  
— Available only in the calibration package (496 CSP package)  
— 1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)  
— Memory controller with support for various memory types  
— 16-bit data bus, up to 22-bit address bus  
— Selectable drive strength  
— Configurable bus speed modes  
— Bus monitor  
— Configurable wait states  
System integration unit (SIU)  
— Centralized GPIO control of 80 I/O pins  
— Centralized pad control on a per-pin basis  
Pin function selection  
Configurable weak pull-up or pull-down  
Drive strength  
Slew rate  
Hysteresis  
— System reset monitoring and generation  
— External interrupt inputs, filtering and control  
— Critical Interrupt control  
— Non-Maskable Interrupt control  
— Internal multiplexer subblock (IMUX)  
Allows flexible selection of eQADC trigger inputs (eTPU, eMIOS and external signals)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
4
Freescale Semiconductor  
Allows selection of interrupt requests between external pins and DSPI  
Error correction status module (ECSM)  
— Configurable error-correcting codes (ECC) reporting  
— Single-bit error correction reporting  
On-chip flash memory  
— Up to 1.5 MB flash memory, accessed via a 64-bit wide bus interface  
— 16 KB shadow block  
— Fetch Accelerator  
Provide single cycle flash access at 80 MHz  
Quadruple 128-bit wide prefetch/burst buffers  
Prefetch buffers can be configured to prefetch code or data or both  
— Censorship protection scheme to prevent flash content visibility  
— Flash divided into two independent arrays, allowing reading from one array while erasing/programming the other  
array (used for EEPROM emulation)  
— Memory block:  
For MPC5634M: 18 blocks (4 16 KB, 2 32 KB, 2 64 KB, 10 128 KB)  
For MPC5633M: 14 blocks (4 16 KB, 2 32 KB, 2 64 KB, 6 128 KB)  
For MPC5632M: 12 blocks (4 16 KB, 2 32 KB, 2 64 KB, 4 128 KB)  
— Hardware programming state machine  
On-chip static RAM  
— For MPC5634M: 94 KB general purpose RAM of which 32 KB are on standby power supply  
— For MPC5633M: 64 KB general purpose RAM of which 32 KB are on standby power supply  
— For MPC5632M: 48 KB general purpose RAM of which 24 KB are on standby power supply  
Boot assist module (BAM)  
— Enables and manages the transition of MCU from reset to user code execution in the following configurations:  
Execution from internal flash memory  
Execution from external memory on the calibration bus  
Download and execution of code via FlexCAN or eSCI  
Periodic interrupt timer (PIT)  
— 32-bit wide down counter with automatic reload  
— Four channels clocked by system clock  
— One channel clocked by crystal clock  
— Each channel can produce periodic software interrupt  
— Each channel can produce periodic triggers for eQADC queue triggering  
— One channel out of the five can be used as wake-up timer to wake device from low power stop mode  
System timer module (STM)  
— 32-bit up counter with 8-bit prescaler  
— Clocked from system clock  
— Four-channel timer compare hardware  
— Each channel can generate a unique interrupt request  
— Designed to address AUTOSAR task monitor function  
Software watchdog timer (SWT)  
— 32-bit timer  
— Clock by system clock or crystal clock  
— Can generate either system reset or non-maskable interrupt followed by system reset  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
5
— Enabled out of reset  
Enhanced modular I/O system (eMIOS)  
— 16 timer channels (up to 14 channels in 144 LQFP)  
— 24-bit timer resolution  
— Supports a subset of the timer modes found in eMIOS on MPC5554  
— 3 selectable time bases plus shared time or angle counter bus from eTPU2  
— DMA and interrupt request support  
— Motor control capability  
Second-generation enhanced time processor unit (eTPU2)  
— Object-code compatible with eTPU—no changes are required to hardware or software if only eTPU features are  
used  
— Intelligent co-processor designed for timing control  
— High level tools, assembler and compiler available  
— 32 channels (each channel has dedicated I/O pin in all packages)  
— 24-bit timer resolution  
— 14 KB code memory and 3 KB data memory  
— Double match and capture on all channels  
— Angle clock hardware support  
— Shared time or angle counter bus with eMIOS  
— DMA and interrupt request support  
— Nexus Class 1 debug support  
— eTPU2 enhancements  
Counters and channels can run at full system clock speed  
Software watchdog  
Real-time performance monitor  
Instruction set enhancements for smaller more flexible code generation  
Programmable channel mode for customization of channel operation  
Enhanced queued A/D converter (eQADC)  
— Two independent on-chip redundant signed digit (RSD) cyclic ADCs  
8-, 10-, and 12-bit resolution  
Differential conversions  
Targets up to 10-bit accuracy at 500 KSample/s (ADC_CLK = 7.5 MHz) and 8-bit accuracy at 1 MSample/s  
(ADC_CLK = 15 MHz) for differential conversions  
Differential channels include variable gain amplifier (VGA) for improved dynamic range (1; 2; 4)  
Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics  
(200 k; 100 k; low value of 5 k)  
Single-ended signal range from 0 to 5 V  
Sample times of 2 (default), 8, 64 or 128 ADC clock cycles  
Provides time stamp information when requested  
Parallel interface to eQADC command FIFOs (CFIFOs) and result FIFOs (RFIFOs)  
Supports both right-justified unsigned and signed formats for conversion results  
Temperature sensor to enable measurement of die temperature  
Ability to measure all power supply pins directly  
— Automatic application of ADC calibration constants  
Provision of reference voltages (25% VREF and 75% VREF) for ADC calibration purposes  
1
— Up to 34 input channels available to the two on-chip ADCs  
MPC5634M Microcontroller Data Sheet, Rev. 9  
6
Freescale Semiconductor  
— Four pairs of differential analog input channels  
— Full duplex synchronous serial interface to an external device  
Has a free-running clock for use by the external device  
Supports a 26-bit message length  
Transmits a null message when there are no triggered CFIFOs with commands bound for external CBuffers,  
or when there are triggered CFIFOs with commands bound for external CBuffers but the external CBuffers are  
full  
— Parallel Side Interface to communicate with an on-chip companion module  
— Zero jitter triggering for queue 0. (Queue 0 trigger causes current conversion to be aborted and the queued  
conversions in the CBUFFER to be bypassed. Delay from Trigger to start of conversion is 13 system clocks + 1  
ADC clock.)  
— eQADC Result Streaming. Generation of a continuous stream of ADC conversion results from a single eQADC  
command word. Controlled by two different trigger signals; one to define the rate at which results are generated  
and the other to define the beginning and ending of the stream. Used to digitize waveforms during specific  
time/angle windows, e.g., engine knock sensor sampling.  
— Angular Decimation. The ability of the eQADC to sample an analog waveform in the time domain, perform Finite  
Impulse Response (FIR) or Infinite Impulse Response (IIR) filtering also in the time domain, but to down sample  
the results in the angle domain. Resulting in a time domain filtered result at a given engine angle.  
— Priority Based CFIFOs  
Supports six CFIFOs with fixed priority. The lower the CFIFO number, the higher its priority. When  
commands of distinct CFIFOs are bound for the same CBuffer, the higher priority CFIFO is always served  
first.  
Supports software and several hardware trigger modes to arm a particular CFIFO  
Generates interrupt when command coherency is not achieved  
— External Hardware Triggers  
Supports rising edge, falling edge, high level and low level triggers  
Supports configurable digital filter  
1
— Supports four external 8-to-1 muxes which can expand the input channel number from 34 to 59  
Two deserial serial peripheral interface modules (DSPI)  
— SPI  
Full duplex communication ports with interrupt and DMA request support  
Supports all functional modes from QSPI subblock of QSMCM (MPC5xx family)  
Support for queues in RAM  
6 chip selects, expandable to 64 with external demultiplexers  
Programmable frame size, baud rate, clock delay and clock phase on a per frame basis  
Modified SPI mode for interfacing to peripherals with longer setup time requirements  
LVDS option for output clock and data to allow higher speed communication  
— Deserial serial interface (DSI)  
Pin reduction by hardware serialization and deserialization of eTPU, eMIOS channels and GPIO  
32 bits per DSPI module  
Triggered transfer control and change in data transfer control (for reduced EMI)  
Compatible with Microsecond Channel Version 1.0 downstream  
Two enhanced serial communication interface (eSCI) modules  
— UART mode provides NRZ format and half or full duplex interface  
— eSCI bit rate up to 1 Mbps  
1. 176-pin and 208-pin packages have 34 input channels; 144-pin package has 32.  
1. 176-pin and 208-ball packages.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
7
— Advanced error detection, and optional parity generation and detection  
— Word length programmable as 8, 9, 12 or 13 bits  
— Separately enabled transmitter and receiver  
— LIN support  
— DMA support  
— Interrupt request support  
— Programmable clock source: system clock or oscillator clock  
— Support Microsecond Channel (Timed Serial Bus - TSB) upstream Version 1.0  
Two FlexCAN  
— One with 32 message buffers; the second with 64 message buffers  
— Full implementation of the CAN protocol specification, Version 2.0B  
— Based on and including all existing features of the Freescale TouCAN module  
— Programmable acceptance filters  
— Short latency time for high priority transmit messages  
— Arbitration scheme according to message ID or message buffer number  
— Listen only mode capabilities  
— Programmable clock source: system clock or oscillator clock  
— Message buffers may be configured as mailboxes or as FIFO  
Nexus port controller (NPC)  
— Per IEEE-ISTO 5001-2003  
— Real time development support for Power Architecture core and eTPU engine through Nexus class 2/1  
— Read and write access (Nexus class 3 feature that is supported on this device)  
Run-time access of entire memory map  
Calibration  
— Support for data value breakpoints / watchpoints  
Run-time access of entire memory map  
Calibration  
Table constants calibrated using MMU and internal and external RAM  
Scalar constants calibrated using cache line locking  
— Configured via the IEEE 1149.1 (JTAG) port  
IEEE 1149.1 JTAG controller (JTAGC)  
— IEEE 1149.1-2001 Test Access Port (TAP) interface  
— 5-bit instruction register that supports IEEE 1149.1-2001 defined instructions  
— 5-bit instruction register that supports additional public instructions  
— Three test data registers: a bypass register, a boundary scan register, and a device identification register  
— Censorship disable register. By writing the 64-bit serial boot password to this register, Censorship may be disabled  
until the next reset  
— TAP controller state machine that controls the operation of the data registers, instruction register and associated  
circuitry  
On-chip Voltage Regulator for single 5 V supply operation  
On-chip regulator 5 V to 3.3 V for internal supplies  
On-chip regulator controller 5 V to 1.2 V (with external bypass transistor) for core logic  
Low-power modes  
SLOW Mode. Allows device to be run at very low speed (approximately 1 MHz), with modules (including the PLL) selectively  
disabled in software  
— STOP Mode. System clock stopped to all modules including the CPU. Wake-up timer used to restart the system  
clock after a predetermined time  
MPC5634M Microcontroller Data Sheet, Rev. 9  
8
Freescale Semiconductor  
Introduction  
1
Introduction  
1.1  
Document overview  
This document provides an overview and describes the features of the MPC5634M series of microcontroller units (MCUs). For  
functional characteristics, refer to the device reference manual. Electrical specifications and package mechanical drawings are  
included in this device data sheet. Pin assignments can be found in both the reference manual and data sheet.  
1.2  
Description  
These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices that contain all the features of the  
MPC5500 family and many new features coupled with high performance 90 nm CMOS technology to provide substantial  
reduction of cost per feature and significant performance improvement. The advanced and cost-efficient host processor core of  
®
this automotive controller family is built on Power Architecture technology. This family contains enhancements that improve  
the architecture’s fit in embedded applications, includes additional instruction support for digital signal processing (DSP),  
integrates technologies—such as an enhanced time processor unit, enhanced queued analog-to-digital converter, Controller  
Area Network, and an enhanced modular input-output system—that are important for today’s lower-end powertrain  
applications. This device family is a completely compatible extension to Freescale’s MPC5500 family. The device has a single  
level of memory hierarchy consisting of up to 94 KB on-chip SRAM and up to 1.5 MB of internal flash memory. The device  
also has an external bus interface (EBI) for ‘calibration’. This external bus interface has been designed to support most of the  
standard memories used with the MPC5xx and MPC55xx families.  
2
Overview  
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5634M series of  
microcontroller units (MCUs). For functional characteristics, refer to the MPC5634M Microcontroller Reference Manual.  
®
The MPC5634M series microcontrollers are system-on-chip devices that are built on Power Architecture technology and:  
Are 100% user-mode compatible with the Power Architecture instruction set  
Contain enhancements that improve the architecture’s fit in embedded applications  
Include additional instruction support for digital signal processing (DSP)  
Integrate technologies such as an enhanced time processor unit, enhanced queued analog-to-digital converter,  
Controller Area Network, and an enhanced modular input-output system  
2.1  
Device comparison  
2.2  
MPC5634M feature details  
e200z335 core  
2.2.1  
The e200z335 processor utilizes a four stage pipeline for instruction execution. The Instruction Fetch (stage 1), Instruction  
Decode/Register file Read/Effective Address Calculation (stage 2), Execute/Memory Access (stage 3), and Register Writeback  
(stage 4) stages operate in an overlapped fashion, allowing single clock instruction execution for most instructions.  
The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel shifter (Shifter), a  
Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a Count-Leading-Zeros unit (CLZ), a 3232  
Hardware Multiplier array, result feed-forward hardware, and support hardware for division.  
Most arithmetic and logical operations are executed in a single cycle with the exception of the divide instructions. A  
Count-Leading-Zeros unit operates in a single clock cycle. The Instruction Unit contains a PC incrementer and a dedicated  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
9
Overview  
Branch Address adder to minimize delays during change of flow operations. Sequential prefetching is performed to ensure a  
supply of instructions into the execution pipeline. Branch target prefetching is performed to accelerate taken branches.  
Prefetched instructions are placed into an instruction buffer capable of holding six instructions.  
Branches can also be decoded at the instruction buffer and branch target addresses calculated prior to the branch reaching the  
instruction decode stage, allowing the branch target to be prefetched early. When a branch is detected at the instruction buffer,  
a prediction may be made on whether the branch is taken or not. If the branch is predicted to be taken, a target fetch is initiated  
and its target instructions are placed in the instruction buffer following the branch instruction. Many branches take zero cycle  
to execute by using branch folding. Branches are folded out from the instruction execution pipe whenever possible. These  
include unconditional branches and conditional branches with condition codes that can be resolved early.  
Conditional branches which are not taken and not folded execute in a single clock. Branches with successful target prefetching  
which are not folded have an effective execution time of one clock. All other taken branches have an execution time of two  
clocks. Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic zero or sign  
extension of byte and halfword load data as well as optional byte reversal of data. These instructions can be pipelined to allow  
effective single cycle throughput. Load and store multiple word instructions allow low overhead context save and restore  
operations. The load/store unit contains a dedicated effective address adder to allow effective address generation to be  
optimized. Also, a load-to-use dependency does not incur any pipeline bubbles for most cases.  
The Condition Register unit supports the condition register (CR) and condition register operations defined by the Power  
Architecture. The condition register consists of eight 4-bit fields that reflect the results of certain operations, such as move,  
integer and floating-point compare, arithmetic, and logical instructions, and provide a mechanism for testing and branching.  
Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to allow multiple  
interrupt sources to have unique interrupt handlers invoked with no software overhead.  
The hardware floating-point unit utilizes the IEEE-754 single-precision floating-point format and supports single-precision  
floating-point operations in a pipelined fashion. The general purpose register file is used for source and destination operands,  
thus there is a unified storage model for single-precision floating-point data types of 32 bits and the normal integer type.  
Single-cycle floating-point add, subtract, multiply, compare, and conversion operations are provided. Divide instructions are  
multi-cycle and are not pipelined.  
The Signal Processing Extension (SPE) Auxiliary Processing Unit (APU) provides hardware SIMD operations and supports a  
full complement of dual integer arithmetic operation including Multiply Accumulate (MAC) and dual integer multiply (MUL)  
in a pipelined fashion. The general purpose register file is enhanced such that all 32 of the GPRs are extended to 64 bits wide  
and are used for source and destination operands, thus there is a unified storage model for 3232 MAC operations which  
generate greater than 32-bit results.  
The majority of both scalar and vector operations (including MAC and MUL) are executed in a single clock cycle. Both scalar  
and vector divides take multiple clocks. The SPE APU also provides extended load and store operations to support the transfer  
of data to and from the extended 64-bit GPRs. This SPE APU is fully binary compatible with e200z6 SPE APU used in  
MPC5554 and MPC5553.  
The CPU includes support for Variable Length Encoding (VLE) instruction enhancements. This enables the classic Power  
Architecture instruction set to be represented by a modified instruction set made up from a mixture of 16- and 32-bit  
instructions. This results in a significantly smaller code size footprint without noticeably affecting performance. The Power  
Architecture instruction set and VLE instruction set are available concurrently. Regions of the memory map are designated as  
PPC or VLE using an additional configuration bit in each of Table Look-aside Buffers (TLB) entries in the MMU.  
The CPU core is enhanced by the addition of two additional interrupt sources; Non-Maskable Interrupt and Critical Interrupt.  
These two sources are routed directly from package pins, via edge detection logic in the SIU to the CPU, bypassing completely  
the Interrupt Controller. Once the edge detection logic is programmed, it cannot be disabled, except by reset. The non-maskable  
Interrupt is, as the name suggests, completely un-maskable and when asserted will always result in the immediate execution of  
the respective interrupt service routine. The non-maskable interrupt is not guaranteed to be recoverable. The Critical Interrupt  
is very similar to the non-maskable interrupt, but it can be masked by other exceptional interrupts in the CPU and is guaranteed  
to be recoverable (code execution may be resumed from where it stopped).  
MPC5634M Microcontroller Data Sheet, Rev. 9  
10  
Freescale Semiconductor  
Overview  
The CPU core has an additional ‘Wait for Interrupt’ instruction that is used in conjunction with low power STOP mode. When  
Low Power Stop mode is selected, this instruction is executed to allow the system clock to be stopped. An external interrupt  
source or the system wake-up timer is used to restart the system clock and allow the CPU to service the interrupt.  
2.2.2  
Crossbar  
The XBAR multi-port crossbar switch supports simultaneous connections between three master ports and four slave ports. The  
crossbar supports a 32-bit address bus width and a 64-bit data bus width.  
The crossbar allows three concurrent transactions to occur from the master ports to any slave port; but each master must access  
a different slave. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher  
priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher  
priority master completes its transactions. Requesting masters are treated with equal priority and are granted access to a slave  
port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following  
features:  
3 master ports:  
— e200z335 core complex Instruction port  
— e200z335 core complex Load/Store port  
— eDMA  
4 slave ports  
— FLASH  
— calibration bus  
— SRAM  
— Peripheral bridge A/B (eTPU2, eMIOS, SIU, DSPI, eSCI, FlexCAN, eQADC, BAM, decimation filter, PIT, STM  
and SWT)  
32-bit internal address, 64-bit internal data paths  
2.2.3  
eDMA  
The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data  
movements via 32 programmable channels, with minimal intervention from the host processor. The hardware micro architecture  
includes a DMA engine which performs source and destination address calculations, and the actual data movement operations,  
along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation  
is utilized to minimize the overall block size. The eDMA module provides the following features:  
All data movement via dual-address transfers: read from source, write to destination  
Programmable source and destination addresses, transfer size, plus support for enhanced addressing modes  
Transfer control descriptor organized to support two-deep, nested transfer operations  
An inner data transfer loop defined by a “minor” byte transfer count  
An outer data transfer loop defined by a “major” iteration count  
Channel activation via one of three methods:  
— Explicit software initiation  
— Initiation via a channel-to-channel linking mechanism for continuous transfers  
— Peripheral-paced hardware requests (one per channel)  
Support for fixed-priority and round-robin channel arbitration  
Channel completion reported via optional interrupt requests  
1 interrupt per channel, optionally asserted at completion of major iteration count  
Error termination interrupts are optionally enabled  
Support for scatter/gather DMA processing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
11  
Overview  
Channel transfers can be suspended by a higher priority channel  
2.2.4  
Interrupt controller  
The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically  
scheduled hard real-time systems. The INTC allows interrupt request servicing from up to 191 peripheral interrupt request  
sources, plus 165 sources reserved for compatibility with other family members).  
For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor  
is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt  
request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that  
lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of  
interrupt request, the priority of each interrupt request is software configurable.  
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority  
ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that  
all tasks which share the resource can not preempt each other.  
Multiple processors can assert interrupt requests to each other through software setable interrupt requests. These same software  
setable interrupt requests also can be used to break the work involved in servicing an interrupt request into a high priority portion  
and a low priority portion. The high priority portion is initiated by a peripheral interrupt request, but then the ISR asserts a  
software setable interrupt request to finish the servicing in a lower priority ISR. Therefore these software setable interrupt  
requests can be used instead of the peripheral ISR scheduling a task through the RTOS.  
The INTC provides the following features:  
356 peripheral interrupt request sources  
8 software setable interrupt request sources  
9-bit vector addresses  
Unique vector for each interrupt request source  
Hardware connection to processor or read from register  
Each interrupt source can be programmed to one of 16 priorities  
Preemptive prioritized interrupt requests to processor  
ISR at a higher priority preempts executing ISRs or tasks at lower priorities  
Automatic pushing or popping of preempted priority to or from a LIFO  
Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing shared resources  
Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor  
This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing logic.  
2.2.5  
FMPLL  
The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 20 MHz crystal oscillator or external clock  
generator. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication  
factor, output clock divider ratio are all software configurable. The PLL has the following major features:  
Input clock frequency from 4 MHz to 20 MHz  
Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz, resulting in system clock frequencies from  
16 MHz to 80 MHz with granularity of 4 MHz or better  
Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock  
3 modes of operation  
— Bypass mode with PLL off  
— Bypass mode with PLL running (default mode out of reset)  
— PLL normal mode  
MPC5634M Microcontroller Data Sheet, Rev. 9  
12  
Freescale Semiconductor  
Overview  
Each of the three modes may be run with a crystal oscillator or an external clock reference  
Programmable frequency modulation  
— Modulation enabled/disabled through software  
— Triangle wave modulation up to 100 kHz modulation frequency  
— Programmable modulation depth (0% to 2% modulation depth)  
— Programmable modulation frequency dependent on reference frequency  
Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors lock status to  
report loss of lock conditions  
Clock Quality Module  
— detects the quality of the crystal clock and cause interrupt request or system reset if error is detected  
— detects the quality of the PLL output clock. If an error is detected, causes a system reset or switches the system  
clock to the crystal clock and causes an interrupt request  
Programmable interrupt request or system reset on loss of lock  
2.2.6  
Calibration EBI  
The Calibration EBI controls data transfer across the crossbar switch to/from memories or peripherals attached to the VertiCal  
connector in the calibration address space. The Calibration EBI is only available in the VertiCal Calibration System. The  
Calibration EBI includes a memory controller that generates interface signals to support a variety of external memories. The  
Calibration EBI memory controller supports legacy flash, SRAM, and asynchronous memories. In addition, the calibration EBI  
supports up to three regions via chip selects (two chip selects are multiplexed with two address bits), along with programmed  
region-specific attributes. The calibration EBI supports the following features:  
22-bit address bus (two most significant signals multiplexed with two chip selects)  
16-bit data bus  
Multiplexed mode with addresses and data signals present on the data lines  
NOTE  
The calibration EBI must be configured in multiplexed mode when the extended Nexus  
trace is used on the VertiCal Calibration System. This is because Nexus signals and address  
lines of the calibration bus share the same balls in the calibration package.  
Memory controller with support for various memory types:  
— Asynchronous/legacy flash and SRAM  
— Most standard memories used with the MPC5xx or MPC55xx family  
Bus monitor  
— User selectable  
— Programmable timeout period (with 8 external bus clock resolution)  
Configurable wait states (via chip selects)  
3 chip-select (Cal_CS[0], Cal_CS[2:3]) signals (Multiplexed with 2 most significant address signals)  
2 write/byte enable (WE[0:1]/BE[0:1]) signals  
Configurable bus speed modes  
— system frequency  
— 1/2 of system frequency  
— 1/4 of system frequency  
Optional automatic CLKOUT gating to save power and reduce EMI  
Compatible with MPC5xx external bus (with some limitations)  
Selectable drive strengths; 10 pF, 20 pF, 30 pF, 50 pF  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
13  
Overview  
2.2.7  
SIU  
The MPC5634MSIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO),  
internal peripheral multiplexing, and the system reset operation. The reset configuration block contains the external pin boot  
configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block  
provides uniform and discrete input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring  
of internal and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z335 CPU  
core is via the crossbar switch. The SIU provides the following features:  
System configuration  
— MCU reset configuration via external pins  
— Pad configuration control for each pad  
— Pad configuration control for virtual I/O via DSPI serialization  
System reset monitoring and generation  
— Power-on reset support  
— Reset status register provides last reset source to software  
— Glitch detection on reset input  
— Software controlled reset assertion  
External interrupt  
— 11 interrupt requests  
— Rising or falling edge event detection  
— Programmable digital filter for glitch rejection  
— Critical Interrupt request  
— Non-Maskable Interrupt request  
GPIO  
— GPIO function on 80 I/O pins  
— Virtual GPIO on 64 I/O pins via DSPI serialization (requires external deserialization device)  
— Dedicated input and output registers for setting each GPIO and Virtual GPIO pin  
Internal multiplexing  
— Allows serial and parallel chaining of DSPIs  
— Allows flexible selection of eQADC trigger inputs  
— Allows selection of interrupt requests between external pins and DSPI  
2.2.8  
ECSM  
The error correction status module provides status information regarding platform memory errors reported by error-correcting  
codes.  
2.2.9  
Flash  
Devices in the MPC5634M family provide up to 1.5 MB of programmable, non-volatile, flash memory. The non-volatile  
memory (NVM) can be used for instruction and/or data storage. The flash module includes a Fetch Accelerator, that optimizes  
the performance of the flash array to match the CPU architecture and provides single cycle random access to the flash @  
80 MHz. The flash module interfaces the system bus to a dedicated flash memory array controller. For CPU ‘loads’, DMA  
transfers and CPU instruction fetch, it supports a 64-bit data bus width at the system bus port, and a 128-bit read data interface  
to flash memory. The module contains a four-entry, 128-bit prefetch buffer and a prefetch controller which prefetches sequential  
lines of data from the flash array into the buffer. Prefetch buffer hits allow no-wait responses. Normal flash array accesses are  
registered and are forwarded to the system bus on the following cycle, incurring three wait-states. Prefetch operations may be  
automatically controlled, and are restricted to instruction fetch.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
14  
Freescale Semiconductor  
Overview  
The flash memory provides the following features:  
Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword  
reads are supported. Only aligned word and doubleword writes are supported.  
Fetch Accelerator  
— Architected to optimize the performance of the flash with the CPU to provide single cycle random access to the  
flash up to 80 MHz system clock speed  
— Configurable read buffering and line prefetch support  
— Four line read buffers (128 bits wide) and a prefetch controller  
Hardware and software configurable read and write access protections on a per-master basis  
Interface to the flash array controller is pipelined with a depth of one, allowing overlapped accesses to proceed in  
parallel for interleaved or pipelined flash array designs  
Configurable access timing allowing use in a wide range of system frequencies  
Multiple-mapping support and mapping-based block access timing (0-31 additional cycles) allowing use for emulation  
of other memory types  
Software programmable block program/erase restriction control  
Erase of selected block(s)  
Read page size of 128 bits (four words)  
ECC with single-bit correction, double-bit detection  
Program page size of 64 bits (two words)  
ECC single-bit error corrections are visible to software  
Minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC  
Embedded hardware program and erase algorithm  
Erase suspend  
Shadow information stored in non-volatile shadow block  
Independent program/erase of the shadow block  
2.2.10 SRAM  
The MPC5634M SRAM module provides a general-purpose up to 94 KB memory block. The SRAM controller includes these  
features:  
Supports read/write accesses mapped to the SRAM memory from any master  
32 KB or 24 KB block powered by separate supply for standby operation  
Byte, halfword, word and doubleword addressable  
ECC performs single-bit correction, double-bit detection on 32-bit data element  
2.2.11 BAM  
The BAM (Boot Assist Module) is a block of read-only memory that is programmed once by Freescale and is identical for all  
MPC5634M MCUs. The BAM program is executed every time the MCU is powered-on or reset in normal mode. The BAM  
supports different modes of booting. They are:  
Booting from internal flash memory  
Serial boot loading (A program is downloaded into RAM via eSCI or the FlexCAN and then executed)  
Booting from external memory on calibration bus  
The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the MPC5634M  
hardware accordingly. The BAM provides the following features:  
Sets up MMU to cover all resources and mapping all physical address to logical addresses with minimum address  
translation  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
15  
Overview  
Sets up the MMU to allow user boot code to execute as either Power Architecture code (default) or as Freescale VLE  
code  
Detection of user boot code  
Automatic switch to serial boot mode if internal flash is blank or invalid  
Supports user programmable 64-bit password protection for serial boot mode  
Supports serial bootloading via FlexCAN bus and eSCI using Freescale protocol  
Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing  
Supports serial bootloading of either Power Architecture code (default) or Freescale VLE code  
Supports booting from calibration bus interface  
Supports censorship protection for internal flash memory  
Provides an option to enable the core watchdog timer  
Provides an option to disable the software watchdog timer  
2.2.12 eMIOS  
The eMIOS (Enhanced Modular Input Output System) module provides the functionality to generate or measuretime events.  
The channels on this module provide a range of operating modes including the capability to perform dual input capture or dual  
output compare as well as PWM output.  
The eMIOS provides the following features:  
16 channels (24-bit timer resolution)  
For compatibility with other family members selected channels and timebases are implemented:  
— Channels 0 to 6, 8 to 15, and 23  
— Timebases A, B and C  
Channels 1, 3, 5 and 6 support modes:  
— General Purpose Input/Output (GPIO)  
— Single Action Input Capture (SAIC)  
— Single Action Output Compare (SAOC)  
Channels 2, 4, 11 and 13 support all the modes above plus:  
— Output Pulse Width Modulation Buffered (OPWMB)  
Channels 0, 8, 9, 10, 12, 14, 15, 23 support all the modes above plus:  
— Input Period Measurement (IPM)  
— Input Pulse Width Measurement (IPWM)  
— Double Action Output Compare (set flag on both matches) (DAOC)  
— Modulus Counter Buffered (MCB)  
— Output Pulse Width and Frequency Modulation Buffered (OPWFMB)  
Three 24-bit wide counter buses  
— Counter bus A can be driven by channel 23 or by the eTPU2 and all channels can use it as a reference  
— Counter bus B is driven by channel 0 and channels 0 to 6 can use it as a reference  
— Counter bus C is driven by channel 8 and channels 8 to 15 can use it as a reference  
Shared time bases with the eTPU2 through the counter buses  
Synchronization among internal and external time bases  
2.2.13 eTPU2  
The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host CPU, eTPU2 processes  
instructions and real-time input events, performs output waveform generation, and accesses shared data without host  
MPC5634M Microcontroller Data Sheet, Rev. 9  
16  
Freescale Semiconductor  
Overview  
intervention. Consequently, for each timer event, the host CPU setup and service times are minimized or eliminated. A powerful  
timer subsystem is formed by combining the eTPU2 with its own instruction and data RAM. High-level assembler/compiler  
and documentation allows customers to develop their own functions on the eTPU2.  
The eTPU2 includes these distinctive features:  
The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer clock input  
[TCRCLK]) now have an option to run at full system clock speed or system clock / 2.  
Channels support unordered transitions: transition 2 can now be detected before transition 1. Related to this  
enhancement, the transition detection latches (TDL1 and TDL2) can now be independently negated by microcode.  
A new User Programmable Channel Mode has been added: the blocking, enabling, service request and capture  
characteristics of this channel mode can be programmed via microcode.  
Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by channel. They can  
also be requested simultaneously at the same instruction.  
Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point.  
Channel digital filters can be bypassed.  
The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer clock input  
[TCRCLK]) now have an option to run at full system clock speed or system clock / 2.  
Channels support unordered transitions: transition 2 can now be detected before transition 1. Related to this  
enhancement, the transition detection latches (TDL1 and TDL2) can now be independently negated by microcode.  
A new User Programmable Channel Mode has been added: the blocking, enabling, service request and capture  
characteristics of this channel mode can be programmed via microcode.  
Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by channel. They can  
also be requested simultaneously at the same instruction.  
Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point.  
Channel digital filters can be bypassed.  
32 channels, each channel is associated with one input and one output signal  
— Enhanced input digital filters on the input pins for improved noise immunity.  
— Identical, orthogonal channels: each channel can perform any time function. Each time function can be assigned  
to more than one channel at a given time, so each signal can have any functionality.  
— Each channel has an event mechanism which supports single and double action functionality in various  
combinations. It includes two 24-bit capture registers, two 24-bit match registers, 24-bit greater-equal and  
equal-only comparators  
— Input and output signal states visible from the host  
2 independent 24-bit time bases for channel synchronization:  
— First time base clocked by system clock with programmable prescale division from 2 to 512 (in steps of 2), or by  
output of second time base prescaler  
— Second time base counter can work as a continuous angle counter, enabling angle based applications to match  
angle instead of time  
— Both time bases can be exported to the eMIOS timer module  
— Both time bases visible from the host  
Event-triggered microengine:  
— Fixed-length instruction execution in two-system-clock microcycle  
— 14 KB of code memory (SCM)  
— 3 KB of parameter (data) RAM (SPRAM)  
— Parallel execution of data memory, ALU, channel control and flow control sub-instructions in selected  
combinations  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
17  
Overview  
— 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction, absolute value,  
bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit manipulation, shift operations, sign  
extension and conditional execution  
— Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned Multiply/MAC combinations,  
and unsigned 24-bit divide. The MAC/Divide unit works in parallel with the regular microcode commands  
Resource sharing features support channel use of common channel registers, memory and microengine time:  
— Hardware scheduler works as a “task management” unit, dispatching event service routines by predefined,  
host-configured priority  
— Automatic channel context switch when a “task switch” occurs, i.e., one function thread ends and another begins  
to service a request from other channel: channel-specific registers, flags and parameter base address are  
automatically loaded for the next serviced channel  
— SPRAM shared between host CPU and eTPU2, supporting communication either between channels and host or  
inter-channel  
— Dual-parameter coherency hardware support allows atomic access to two parameters by host  
Test and development support features:  
— Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution, hardware  
breakpoints and watchpoints on several conditions  
— Software breakpoints  
— SCM continuous signature-check built-in self test (MISC — multiple input signature calculator), runs  
concurrently with eTPU2 normal operation  
System enhancements  
— Software watchdog with programmable timeout  
— Real-time performance information  
Channel enhancements  
— Channels 1 and 2 can optionally drive angle clock hardware  
Programming enhancements  
— Engine relative addressing mode  
2.2.14 eQADC  
The enhanced queued analog to digital converter (eQADC) block provides accurate and fast conversions for a wide range of  
applications. The eQADC provides a parallel interface to two on-chip analog to digital converters (ADC), and a single master  
to single slave serial interface to an off-chip external device. Both on-chip ADCs have access to all the analog channels.  
The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the on-chip ADCs or to  
the external device. The block can also receive data from the on-chip ADCs or from an off-chip external device into the six  
result queues, in parallel, independently of the command queues. The six command queues are prioritized with Queue_0 having  
the highest priority and Queue_5 the lowest. Queue_0 also has the added ability to bypass all buffering and queuing and abort  
a currently running conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a  
deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing when the trigger  
occurred. The eQADC supports software and external hardware triggers from other blocks to initiate transfers of commands  
from the queues to the on-chip ADCs or to the external device. It also monitors the fullness of command queues and result  
queues, and accordingly generates DMA or interrupt requests to control data movement between the queues and the system  
memory, which is external to the eQADC.  
The ADCs also support features designed to allow the direct connection of high impedance acoustic sensors that might be used  
in a system for detecting engine knock. These features include differential inputs; integrated variable gain amplifiers for  
increasing the dynamic range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics.  
The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results at a high rate,  
passing them through a hardware low pass filter, then down-sampling the output of the filter and feeding the lower sample rate  
MPC5634M Microcontroller Data Sheet, Rev. 9  
18  
Freescale Semiconductor  
Overview  
results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of out-of-band  
noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully  
process the digitized waveform.  
The eQADC provides the following features:  
Dual on-chip ADCs  
— 2 12-bit ADC resolution  
— Programmable resolution for increased conversion speed (12 bit, 10 bit, 8 bit)  
12-bit conversion time – 1 s (1M sample/sec)  
10-bit conversion time – 867 ns (1.2M sample/second)  
8-bit conversion time – 733 ns (1.4M sample/second)  
— Up to 10-bit accuracy at 500 KSample/s and 9-bit accuracy at 1 MSample/s  
— Differential conversions  
— Single-ended signal range from 0 to 5 V  
Variable gain amplifiers on differential inputs (1, 2, 4)  
— Sample times of 2 (default), 8, 64 or 128 ADC clock cycles  
— Provides time stamp information when requested  
— Parallel interface to eQADC CFIFOs and RFIFOs  
— Supports both right-justified unsigned and signed formats for conversion results  
1
Up to 34 input channels (accessible by both ADCs)  
23 additional internal channels for measuring control and monitoring voltages inside the device  
— Including Core voltage, I/O voltage, LVI voltages, etc.  
An internal bandgap reference to allow absolute voltage measurements  
4 pairs of differential analog input channels  
— Programmable pull-up/pull-down resistors on each differential input for biasing and sensor diagnostic (200 k,  
100 k, 5 k)  
Silicon die temperature sensor  
— provides temperature of silicon as an analog value  
— read using an internal ADC analog channel  
— may be read with either ADC  
Decimation Filter  
— Programmable decimation factor (2 to 16)  
— Selectable IIR or FIR filter  
— Up to 4th order IIR or 8th order FIR  
— Programmable coefficients  
— Saturated or non-saturated modes  
— Programmable Rounding (Convergent; Two’s Complement; Truncated)  
— Pre-fill mode to pre-condition the filter before the sample window opens  
Full duplex synchronous serial interface to an external device  
— Free-running clock for use by an external device  
— Supports a 26-bit message length  
Priority based Queues  
— Supports six Queues with fixed priority. When commands of distinct Queues are bound for the same ADC, the  
higher priority Queue is always served first  
1. 176-pin and 208-pin packages have 34 input channels; 144-pin package has 32.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
19  
Overview  
— Queue_0 can bypass all prioritization, buffering and abort current conversions to start a Queue_0 conversion a  
deterministic time after the queue trigger  
— Streaming mode operation of Queue_0 to execute some commands several times  
— Supports software and hardware trigger modes to arm a particular Queue  
— Generates interrupt when command coherency is not achieved  
External hardware triggers  
— Supports rising edge, falling edge, high level and low level triggers  
— Supports configurable digital filter  
Supports four external 8-to-1 muxes which can expand the input channels to 56 channels total  
2.2.15 DSPI  
The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for communication between the  
MPC5634M MCU and external devices. The DSPI supports pin count reduction through serialization and deserialization of  
eTPU and eMIOS channels and memory-mapped registers. The channels and register content are transmitted using a SPI-like  
protocol. This SPI-like protocol is completely configurable for baud rate, polarity and phase, frame length, chip select assertion,  
etc. Each bit in the frame may be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI  
can be configured to serialize data to an external device that supports the Microsecond Channel protocol. There are two identical  
DSPI blocks on the MPC5634M MCU. The DSPI output pins support 5 V logic levels or Low Voltage Differential Signalling  
(LVDS) according to the Microsecond Channel specification.  
The DSPIs have three configurations:  
Serial peripheral interface (SPI) configuration where the DSPI operates as an up to 16-bit SPI with support for queues  
Enhanced deserial serial interface (DSI) configuration where DSPI serializes up to 32 bits with three possible sources  
per bit  
— eTPU, eMIOS, new virtual GPIO registers as possible bit source  
— Programmable inter-frame gap in continuous mode  
— Bit source selection allows microsecond channel downstream with command or data frames up to 32 bits  
— Microsecond channel dual receiver mode  
Combined serial interface (CSI) configuration where the DSPI operates in both SPI and DSI configurations  
interleaving DSI frames with SPI frames, giving priority to SPI frames  
For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers between the memory and  
the DSPI FIFOs are accomplished through the use of the eDMA controller or through host software.  
The DSPI supports these SPI features:  
Full-duplex, synchronous transfers  
Selectable LVDS Pads working at 40 MHz for SOUT and SCK pins  
Master and Slave Mode  
Buffered transmit operation using the TX FIFO with parameterized depth of 4 entries  
Buffered receive operation using the RX FIFO with parameterized depth of 4 entries  
TX and RX FIFOs can be disabled individually for low-latency updates to SPI queues  
Visibility into the TX and RX FIFOs for ease of debugging  
FIFO Bypass Mode for low-latency updates to SPI queues  
Programmable transfer attributes on a per-frame basis:  
— Parameterized number of transfer attribute registers (from two to eight)  
— Serial clock with programmable polarity and phase  
Various programmable delays:  
PCS to SCK delay  
MPC5634M Microcontroller Data Sheet, Rev. 9  
20  
Freescale Semiconductor  
Overview  
SCK to PCS delay  
Delay between frames  
— Programmable serial frame size of 4 to 16 bits, expandable with software control  
— Continuously held chip select capability  
6 Peripheral Chip Selects, expandable to 64 with external demultiplexer  
Deglitching support for up to 32 Peripheral Chip Selects with external demultiplexer  
DMA support for adding entries to TX FIFO and removing entries from RX FIFO:  
— TX FIFO is not full (TFFF)  
— RX FIFO is not empty (RFDF)  
6 Interrupt conditions:  
— End of queue reached (EOQF)  
— TX FIFO is not full (TFFF)  
— Transfer of current frame complete (TCF)  
— Attempt to transmit with an empty Transmit FIFO (TFUF)  
— RX FIFO is not empty (RFDF)  
— FIFO Underrun (slave only and SPI mode, the slave is asked to transfer data when the TxFIFO is empty)  
— FIFO Overrun (serial frame received while RX FIFO is full)  
Modified transfer formats for communication with slower peripheral devices  
Continuous Serial Communications Clock (SCK)  
Power savings via support for Stop Mode  
Enhanced DSI logic to implement a 32-bit Timed Serial Bus (TSB) configuration, supporting the Microsecond  
Channel downstream frame format  
The DSPIs also support these features unique to the DSI and CSI configurations:  
2 sources of the serialized data:  
— eTPU_A and eMIOS output channels  
— Memory-mapped register in the DSPI  
Destinations for the deserialized data:  
— eTPU_A and eMIOS input channels  
— SIU External Interrupt Request inputs  
— Memory-mapped register in the DSPI  
Deserialized data is provided as Parallel Output signals and as bits in a memory-mapped register  
Transfer initiation conditions:  
— Continuous  
— Edge sensitive hardware trigger  
— Change in data  
Pin serialization/deserialization with interleaved SPI frames for control and diagnostics  
Continuous serial communications clock  
Support for parallel and serial chaining of up to four DSPI blocks  
2.2.16 eSCI  
The enhanced serial communications interface (eSCI) allows asynchronous serial communications with peripheral devices and  
other MCUs. It includes special support to interface to Local Interconnect Network (LIN) slave devices. The eSCI block  
provides the following features:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
21  
Overview  
13-bit baud rate selection  
Programmable 8-bit or 9-bit, data format  
Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond  
Channel upstream  
Automatic parity generation  
LIN support  
— Autonomous transmission of entire frames  
— Configurable to support all revisions of the LIN standard  
— Automatic parity bit generation  
— Double stop bit after bit error  
— 10- or 13-bit break support  
Separately enabled transmitter and receiver  
Programmable transmitter output parity  
2 receiver wake up methods:  
— Idle line wake-up  
— Address mark wake-up  
Interrupt-driven operation with flags  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
DMA support for both transmit and receive data  
— Global error bit stored with receive data in system RAM to allow post processing of errors  
2.2.17 FlexCAN  
The MPC5634M MCU contains two controller area network (FlexCAN) blocks. The FlexCAN module is a communication  
controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to  
be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable  
operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. FlexCAN module ‘Acontains 64  
message buffers (MB); FlexCAN module ‘C’ contains 32 message buffers.  
The FlexCAN module provides the following features:  
Based on and including all existing features of the Freescale TouCAN module  
Full Implementation of the CAN protocol specification, Version 2.0B  
— Standard data and remote frames  
— Extended data and remote frames  
— Zero to eight bytes data length  
— Programmable bit rate up to 1 Mbit/s  
Content-related addressing  
64 / 32 message buffers of zero to eight bytes data length  
Individual Rx Mask Register per message buffer  
Each message buffer configurable as Rx or Tx, all supporting standard and extended messages  
Includes 1056 / 544 bytes of embedded memory for message buffer storage  
Includes a 256-byte and a 128-byte memories for storing individual Rx mask registers  
Full featured Rx FIFO with storage capacity for six frames and internal pointer handling  
Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard or 32 partial (8 bits)  
IDs, with individual masking capability  
MPC5634M Microcontroller Data Sheet, Rev. 9  
22  
Freescale Semiconductor  
Overview  
Selectable backwards compatibility with previous FlexCAN versions  
Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock  
Listen only mode capability  
Programmable loop-back mode supporting self-test operation  
3 programmable Mask Registers  
Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority  
Time Stamp based on 16-bit free-running timer  
Global network time, synchronized by a specific message  
Maskable interrupts  
Warning interrupts when the Rx and Tx Error Counters reach 96  
Independent of the transmission medium (an external transceiver is assumed)  
Multi master concept  
High immunity to EMI  
Short latency time due to an arbitration scheme for high-priority messages  
Low power mode, with programmable wake-up on bus activity  
2.2.18 System timers  
The system timers provide two distinct types of system timer:  
Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT)  
Operating system task monitors using the System Timer Module (STM)  
2.2.18.1 Periodic Interrupt Timer (PIT)  
The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has  
no external input or output pins and is intended to be used to provide system ‘tick’ signals to the operating system, as well as  
periodic triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock, one is clocked by  
the crystal clock. This one channel is also referred to as Real Time Interrupt (RTI) and is used to wakeup the device from low  
power stop mode.  
The following features are implemented in the PIT:  
5 independent timer channels  
Each channel includes 32-bit wide down counter with automatic reload  
4 channels clocked from system clock  
1 channel clocked from crystal clock (wake-up timer)  
Wake-up timer remains active when System STOP mode is entered. Used to restart system clock after predefined  
timeout period  
Each channel can optionally generate an interrupt request or a trigger event (to trigger eQADC queues) when the timer  
reaches zero  
2.2.18.2 System Timer Module (STM)  
The System Timer Module (STM) is designed to implement the software task monitor as defined by AUTOSAR (see  
http://www.autosar.org). It consists of a single 32-bit counter, clocked by the system clock, and four independent timer  
comparators. These comparators produce a CPU interrupt when the timer exceeds the programmed value.  
The following features are implemented in the STM:  
One 32-bit up counter with 8-bit prescaler  
Four 32-bit compare channels  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
23  
Overview  
Independent interrupt source for each channel  
Counter can be stopped in debug mode  
2.2.19 Software Watchdog Timer (SWT)  
The Software Watchdog Timer (SWT) is a second watchdog module to complement the standard Power Architecture watchdog  
integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can  
provide a system reset or interrupt request when the correct software key is not written within the required time window.  
The following features are implemented:  
32-bit modulus counter  
Clocked by system clock or crystal clock  
Optional programmable watchdog window mode  
Can optionally cause system reset or interrupt request on timeout  
Reset by writing a software key to memory mapped register  
Enabled out of reset  
Configuration is protected by a software key or a write-once register  
2.2.20 Debug features  
2.2.20.1 Nexus port controller  
The NPC (Nexus Port Controller) block provides real-time development support capabilities for the MPC5634MPower  
Architecture-based MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied for  
MCUs without requiring external address and data pins for internal visibility. The NPC block is an integration of several  
individual Nexus blocks that are selected to provide the development support interface for MPC5634M. The NPC block  
interfaces to the host processor (e200z335), eTPU, and internal buses to provide development support as per the IEEE-ISTO  
5001-2003 standard. The development support provided includes program trace and run-time access to the MCUs internal  
memory map and access to the Power Architecture and eTPU internal registers during halt. The Nexus interface also supports  
a JTAG only mode using only the JTAG pins. MPC5634Min the production 144 LQFP supports a 3.3 V reduced (4-bit wide)  
Auxiliary port. These Nexus port pins can also be used as 5 V I/O signals to increase usable I/O count of the device. When using  
this Nexus port as IO, Nexus trace is still possible using VertiCal calibration. In the VertiCal calibration package, the full 12-bit  
Auxiliary port is available.  
NOTE  
In the VertiCal package, the full Nexus Auxiliary port shares balls with the addresses of the  
calibration bus. Therefore multiplexed address/data bus mode must be used for the  
calibration bus when using full width Nexus trace in VertiCal assembly.  
The following features are implemented:  
5-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK)  
— Always available in production package  
— Supports both JTAG Boundary Scan and debug modes  
— 3.3 V interface  
— Supports Nexus class 1 features  
— Supports Nexus class 3 read/write feature  
9-pin Reduced Port interface in 144 LQFP production package  
— Alternate function as IO  
— 5 V (in GPIO or alternate function mode), 3.3 V (in Nexus mode) interface  
MPC5634M Microcontroller Data Sheet, Rev. 9  
24  
Freescale Semiconductor  
Overview  
— Auxiliary Output port  
1 MCKO (message clock out) pin  
4 MDO (message data out) pins  
2 MSEO (message start/end out) pins  
1 EVTO (event out) pin  
— Auxiliary input port  
1 EVTI (event in) pin  
17-pin Full Port interface in calibration package used on VertiCal boards  
— 3.3 V interface  
— Auxiliary Output port  
1 MCKO (message clock out) pin  
4 (reduced port mode) or 12 (full port mode) MDO (message data out) pins; 8 extra full port pins shared with  
calibration bus  
2 MSEO (message start/end out) pins  
1 EVTO (event out) pin  
— Auxiliary input port  
1 EVTI (event in) pin  
Host processor (e200) development support features  
— IEEE-ISTO 5001-2003 standard class 2 compliant  
— Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow discontinuities  
(direct branches, indirect branches, exceptions, etc.), allowing the development tool to interpolate what transpires  
between the discontinuities. Thus, static code may be traced.  
— Watchpoint trigger enable of program trace messaging  
— Data Value Breakpoints (JTAG feature of the e200z335 core): allows CPU to be halted when the CPU writes a  
specific value to a memory location  
4 data value breakpoints  
CPU only  
Detects ‘equal’ and ‘not equal’  
Byte, half word, word (naturally aligned)  
NOTE  
This feature is imprecise due to CPU pipelining.  
— Subset of Power Architecture software debug facilities with OnCE block (Nexus class 1 features)  
eTPU development support features  
— IEEE-ISTO 5001-2003 standard class 1 compliant for the eTPU  
— Nexus based breakpoint configuration and single step support (JTAG feature of the eTPU)  
Run-time access to the on-chip memory map via the Nexus read/write access protocol. This feature supports accesses  
for run-time internal visibility, calibration variable acquisition, calibration constant tuning, and external rapid  
prototyping for powertrain automotive development systems.  
All features are independently configurable and controllable via the IEEE 1149.1 I/O port  
Power-on-reset status indication during reset via MDO[0] in disabled and reset modes  
2.2.20.2 JTAG  
The JTAGC (JTAG Controller) block provides the means to test chip functionality and connectivity while remaining transparent  
to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
25  
Overview  
standard. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant  
with the IEEE 1149.1-2001 standard and supports the following features:  
IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO)  
A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:  
— BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP  
A 5-bit instruction register that supports the additional following public instructions:  
— ACCESS_AUX_TAP_NPC  
— ACCESS_AUX_TAP_ONCE  
— ACCESS_AUX_TAP_eTPU  
— ACCESS_CENSOR  
3 test data registers to support JTAG Boundary Scan mode  
— Bypass register  
— Boundary scan register  
— Device identification register  
A TAP controller state machine that controls the operation of the data registers, instruction register and associated  
circuitry  
Censorship Inhibit Register  
— 64-bit Censorship password register  
— If the external tool writes a 64-bit password that matches the Serial Boot password stored in the internal flash  
shadow row, Censorship is disabled until the next system reset.  
2.3  
MPC5634M series architecture  
Block diagram  
2.3.1  
Figure 1 shows a top-level block diagram of the MPC5634M series.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
26  
Freescale Semiconductor  
Overview  
JTAG  
Calibration  
Bus  
Interface  
S
S
JTAG Port  
Nexus Port  
e200z335  
Instructions  
Data  
M
M
Flash  
1.5 MB  
Nexus  
SPE  
NMI  
Nexus 2+  
eTPU  
SRAM  
62 KB  
S
S
NMI  
MMU  
SIU  
critical  
M
Interrupt  
eDMA  
Requests from  
Peripheral  
Voltage  
Regulator  
V
stby  
Blocks & eDMA  
Interrupt  
Controller  
(INTC)  
(1.2V, 3.3V,  
STB RAM)  
DMA  
Requests  
from  
Peripheral  
Blocks  
Clocks  
CQM  
STM  
PLL  
eDMA, FLASH, Bridge B,  
crossbar, SRAM  
PIT  
SWT  
Configuration  
BAM  
Peripheral Bridge  
Nexus  
eQADC  
SIU  
16 Ch.  
eMIOS  
2x  
DSPIs  
2x  
eSCIs  
2x  
CANs  
eTPU  
Reset Control  
ADCI  
Interrupt  
Request  
NEXUS 1  
Serial  
Analog IF  
External  
Interrupt  
Request  
32 Ch.+  
Engine  
IMUX  
ADC ADC  
RAM  
14 KB/3 KB  
Analog  
GPIO &  
AMUX  
Pad Control  
Decimation  
Filter  
Temp. Sensor  
. . .  
. . .  
. . .  
. . .  
I/O  
Figure 1. MPC5634M series block diagram  
2.3.2  
Block summary  
Table 1 summarizes the functions of the blocks present on the MPC5634M series microcontrollers.  
Table 1. MPC5634M series block summary  
Block  
Function  
e200z3 core  
Executes programs and interrupt handlers.  
Flash memory  
Provides storage for program code, constants, and variables  
Provides storage for program code, constants, and variables  
RAM (random-access memory)  
Calibration bus  
Transfers data across the crossbar switch to/from peripherals attached to the  
VertiCal connector  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
27  
Overview  
Table 1. MPC5634M series block summary (continued)  
Function  
Block  
DMA (direct memory access)  
DSPI (deserial serial peripheral interface)  
Performs complex data movements with minimal intervention from the core  
Provides a synchronous serial interface for communication with external  
devices  
eMIOS (enhanced modular input-output system) Provides the functionality to generate or measure events  
eQADC (enhanced queued analog-to-digital  
converter)  
Provides accurate and fast conversions for a wide range of applications  
eSCI (serial communication interface)  
eTPU (enhanced time processor unit)  
FlexCAN (controller area network)  
Allows asynchronous serial communications with peripheral devices and  
other microcontroller units  
Processes real-time input events, performs output waveform generation, and  
accesses shared data without host intervention  
Supports the standard CAN communications protocol  
FMPLL (frequency-modulated phase-locked  
loop)  
Generates high-speed system clocks and supports the programmable  
frequency modulation of these clocks  
INTC (interrupt controller)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
NPC (Nexus Port Controller)  
Provides real-time development support capabilities in compliance with the  
IEEE-ISTO 5001-2003 standard  
PIT (peripheral interrupt timer)  
Temperature sensor  
Produces periodic interrupts and triggers  
Provides the temperature of the device as an analog value  
Provides protection from runaway code  
SWT (Software Watchdog Timer)  
STM (System Timer Module)  
Timer providing a set of output compare events to support AutoSAR and  
operating system tasks  
MPC5634M Microcontroller Data Sheet, Rev. 9  
28  
Freescale Semiconductor  
Pinout and signal description  
3
Pinout and signal description  
This section contains the pinouts for all production packages for the MPC5634M family of devices. Please note the following:  
Pins labeled “NC” are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable  
device behavior or damage.  
Pins labeled “NIC” have no internal connection.  
3.1  
144 LQFP pinout  
Figure 2 shows the pinout for the 144-pin LQFP.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
29  
Pinout and signal description  
1
2
3
4
5
6
7
8
108 TMS  
107 TDI / eMIOS[5] / GPIO[232]  
AN[18]  
AN[17]  
AN[16]  
106  
EVTO / eTPU_A[4] / GPIO[227]  
105 TCK  
104 VSS  
AN[11] / ANZ  
AN[9] / ANX  
103  
EVTI / eTPU_A[2] / GPIO[231]  
VDDA  
VSSA  
AN[39] / AN[10] / ANY  
AN[38] / AN[8] / ANW  
VDDREG  
102 VDDEH7  
101 MSEO[1] / eTPU_A[29] / GPIO[225]  
9
100  
TDO / eMIOS[6] / GPIO[228]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
99 MCKO / GPIO[219]  
98 JCOMP  
VRCCTL  
VSTBY  
VRC33  
97  
DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108]  
96 DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104]  
95 DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103]  
94 DSPI_B_PCS[0] / GPIO[105]  
93 VDDEH6B  
92 DSPI_B_PCS[1] / GPIO[106]  
91 VSS  
90 DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107]  
89 DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102]  
88 DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109]  
87 DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110]  
86 VDD  
(see signal details, pin 14)  
(see signal details, pin 15)  
eTPU_A[29] / DSPI_C_PCS[2] / GPIO[143]  
eTPU_A[28] / DSPI_C_PCS[1] / GPIO[142]  
(see signal details, pin 18)  
(see signal details, pin 19)  
(see signal details, pin 20)  
(see signal details, pin 21)  
VSS  
144-Pin  
LQFP  
signal details:  
pin 14: eTPU_A[31] / DSPI_C_PCS[4] / eTPU_A[13] / GPIO[145]  
pin 15: eTPU_A[30] / DSPI_C_PCS[3] / eTPU_A[11] / GPIO[144]  
pin 18: eTPU_A[27] / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141]  
pin 19: eTPU_A[26] / IRQ[14] / DSPI_C_SOUT_LVDS– / GPIO[140]  
pin 20: eTPU_A[25] / IRQ[13] / SCK_C_LVDS+ / GPIO[139]  
pin 21: eTPU_A[24] / IRQ[12] / SCK_C_LVDS– / GPIO[138]  
pin 23: eTPU_A[23] / IRQ[11] / eTPU_A[21] / GPIO[137]  
(see signal details, pin 23)  
VDDEH1A  
(see signal details, pin 25)  
VDD  
85 RSTOUT  
84 CAN_C_TX / GPIO[87]  
83 SCI_A_TX / eMIOS[13] / GPIO[89]  
82 SCI_A_RX / eMIOS[15] / GPIO[90]  
81 CAN_C_RX / GPIO[88]  
80 RESET  
79 VSS  
78 VDDEH6A  
77 VSSPLL  
76 XTAL  
eTPU_A[21] / IRQ[9] / GPIO[135]  
eTPU_A[20] / IRQ[8] / GPIO[134]  
eTPU_A[19] / GPIO[133]  
eTPU_A[18] / GPIO[132]  
eTPU_A[17] / GPIO[131]  
eTPU_A[16] / GPIO[130]  
eTPU_A[15] / DSPI_B_PCS[5] / GPIO[129]  
VDDEH1B  
pin 25: eTPU_A[22] / IRQ[10] / eTPU_A[17] / GPIO[136]  
pin 35: eTPU_A[14] / DSPI_B_PCS[4] / eTPU_A[9] / GPIO[128]  
75 EXTAL / EXTCLK  
74 VDDPLL  
73 VSS  
(see signal details, pin 35)  
VSS  
Figure 2. 144-pin LQFP pinout (top view; all 144-pin devices)  
3.2  
176 LQFP pinout (MPC5634M)  
Figure 3 shows the 176-pin LQFP pinout for the MPC5634M (1536 KB flash memory).  
MPC5634M Microcontroller Data Sheet, Rev. 9  
30  
Freescale Semiconductor  
Pinout and signal description  
AN[18]  
AN[17]  
NIC  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
TMS  
2
AN[16]  
TDI / eMIOS[5] / GPIO[232]  
eTPU_A[4] / GPIO[227]  
3
AN[11] / ANZ  
4
AN[9] / ANX  
TCK  
VSS  
5
VDDA  
6
VSSA  
eTPU_A[2] / GPIO[231]  
7
AN[39] / AN[10] / ANY  
AN[38] / AN[8] / ANW  
VDDREG  
VDDEH7  
8
eTPU_A[29] / GPIO[225]  
9
TDO / eMIOS[6] / GPIO[228]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VRCCTL  
GPIO[219]  
VSTBY  
JCOMP  
VRC33  
ALT_EVTO  
ALT_MCKO  
VDDE12  
VSS  
ALT_MSEO[0]  
VDDE12  
ALT_MSEO[1]  
ALT_MDO[0]  
ALT_EVTI  
176 - Pin  
LQFP  
ALT_MDO[1]  
VSS  
ALT_MDO[2]  
DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108]  
ALT_MDO[3]  
DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104]  
(see signal details, pin 21)  
(see signal details, pin 22)  
(see signal details, pin 23)  
(see signal details, pin 24)  
(see signal details, pin 25)  
(see signal details, pin 26)  
(see signal details, pin 27)  
(see signal details, pin 28)  
VSS  
DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103]  
DSPI_B_PCS[0] / GPIO[105]  
signal details:  
VDDEH6B  
DSPI_B_PCS[1] / GPIO[106]  
pin 21: eTPU_A[31] / DSPI_C_PCS[4] / eTPU_A[13] / GPIO[145]  
pin 22: eTPU_A[30] / DSPI_C_PCS[3] / eTPU_A[11] / GPIO[144]  
pin 23: eTPU_A[29] / DSPI_C_PCS[2] / GPIO[143]  
VSS  
DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107]  
DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102]  
DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109]  
pin 24: eTPU_A[28] / DSPI_C_PCS[1] / GPIO[142]  
DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110]  
(see signal details, pin 30)  
VDDEH1A  
(see signal details, pin 32)  
VDD  
VDD  
RSTOUT  
pin 25: eTPU_A[27] / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141]  
CAN_C_TX / GPIO[87]  
pin 26: eTPU_A[26] / IRQ[14] / DSPI_C_SOUT_LVDS– / GPIO[140]  
pin 27: eTPU_A[25] / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139]  
pin 28: eTPU_A[24] / IRQ[12] / DSPI_C_SCK_LVDS– / GPIO[138]  
pin 30: eTPU_A[23] / IRQ[11] / eTPU_A[21] / GPIO[137]  
pin 32: eTPU_A[22] / IRQ[10] / eTPU_A[17] / GPIO[136]  
pin 40: eTPU_A[15] / DSPI_B_PCS[5] / GPIO[129]  
SCI_A_TX / eMIOS[13] / GPIO[89]  
eTPU_A[21] / IRQ[9] / GPIO[135]  
eTPU_A[20] / IRQ[8] / GPIO[134]  
eTPU_A[19] / GPIO[133]  
eTPU_A[18] / GPIO[132]  
eTPU_A[17] / GPIO[131]  
eTPU_A[16] / GPIO[130]  
(see signal details, pin 40)  
VDDEH1B  
SCI_A_RX / eMIOS[15] / GPIO[90]  
CAN_C_RX / GPIO[88]  
RESET  
98  
97  
VSS  
96  
VDDEH6A  
VSSPLL  
95  
94  
XTAL  
93  
EXTAL / EXTCLK  
VDDPLL  
VSS  
92  
(see signal details, pin 42)  
VSS  
91  
pin 42: eTPU_A[14] / DSPI_B_PCS[4] / eTPU_A[9] / GPIO[128]  
90  
NIC  
NIC  
89  
Note: Pins marked “NIC” have no internal connection.  
Figure 3. 176-pin LQFP pinout (MPC5634M; top view)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
31  
Pinout and signal description  
3.3  
176 LQFP pinout (MPC5633M)  
Figure 4 shows the pinout for the 176-pin LQFP for the MPC5633M (1024 KB flash memory).  
AN[18]  
AN[17]  
NIC  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
TMS  
2
AN[16]  
TDI / eMIOS[5] / GPIO[232]  
3
AN[11] / ANZ  
AN[9] / ANX  
eTPU_A[4] / GPIO[227]  
4
TCK  
VSS  
5
VDDA  
VSSA  
6
eTPU_A[2] / GPIO[231]  
7
AN[39] / AN[10] / ANY  
AN[38] / AN[8] / ANW  
VDDREG  
VDDEH7  
8
eTPU_A[29] / GPIO[225]  
9
TDO / eMIOS[6] / GPIO[228]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VRCCTL  
GPIO[219]  
VSTBY  
JCOMP  
VRC33  
ALT_EVTO  
ALT_MCKO  
VDDE12  
VSS  
ALT_MSEO[0]  
VDDE12  
ALT_MSEO[1]  
ALT_MDO[0]  
ALT_EVTI  
176-Pin  
LQFP  
ALT_MDO[1]  
VSS  
ALT_MDO[2]  
DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108]  
ALT_MDO[3]  
DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104]  
(see signal details, pin 21)  
(see signal details, pin 22)  
(see signal details, pin 23)  
(see signal details, pin 24)  
(see signal details, pin 25)  
(see signal details, pin 26)  
(see signal details, pin 27)  
(see signal details, pin 28)  
VSS  
DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103]  
DSPI_B_PCS[0] / GPIO[105]  
signal details:  
VDDEH6B  
DSPI_B_PCS[1] / GPIO[106]  
Pin 21: eTPU_A[31] / DSPI_C_PCS[4] / eTPU_A[13] / GPIO[145]  
Pin 22: eTPU_A[30] / DSPI_C_PCS[3] / eTPU_A[11] / GPIO[144]  
Pin 23: eTPU_A[29] / DSPI_C_PCS[2] / GPIO[143]  
VSS  
DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107]  
DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102]  
DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109]  
DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110]  
Pin 24: eTPU_A[28]/ DSPI_C_PCS[1] / GPIO[142]  
(see signal details, pin 30)  
VDDEH1A  
(see signal details, pin 32)  
VDD  
VDD  
RSTOUT  
Pin 25: eTPU_A[27] / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141]  
CAN_C_TX / GPIO[87]  
Pin 26: eTPU_A[26] / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140]  
Pin 27: eTPU_A[25] / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139]  
Pin 28: eTPU_A[24] / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138]  
Pin 30: eTPU_A[23] / IRQ[11] / eTPU_A[21] / GPIO[137]  
Pin 32: eTPU_A[22] / IRQ[10] / eTPU_A[17] / GPIO[136]  
Pin 40: eTPU_A[15] / DSPI_B_PCS[5] / GPIO[129]  
SCI_A_TX / eMIOS[13] / GPIO[89]  
eTPU_A[21] / IRQ[9] / GPIO[135]  
eTPU_A[20] / IRQ[8] / GPIO[134]  
eTPU_A[19] / GPIO[133]  
eTPU_A[18] / GPIO[132]  
eTPU_A[17] / GPIO[131]  
eTPU_A[16] / GPIO[130]  
(see signal details, pin 40)  
VDDEH1B  
SCI_A_RX / eMIOS[15] / GPIO[90]  
CAN_C_RX / GPIO[88]  
RESET  
98  
97  
VSS  
96  
VDDEH6A  
VSSPLL  
95  
94  
XTAL  
93  
EXTAL / EXTCLK  
VDDPLL  
VSS  
92  
(see signal details, pin 42)  
VSS  
91  
90  
Pin 42: eTPU_A[14] / DSPI_B_PCS[4] / eTPU_A[9] / GPIO[128]  
NIC  
NIC  
89  
Notes:  
1. Pins marked “NIC” have no internal connection.  
2. Pins marked “NC” are not functional pins but may be connected to internal circuitry. Connections to external  
circuits or other pins on this device can result in unpredictable system behavior or damage.  
Figure 4. 176-pin LQFP pinout (MPC5633M; top view)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
32  
Freescale Semiconductor  
3.4  
208 MAPBGA ballmap (MPC5634M)  
Figure 5 shows the 208-pin MAPBGA ballmap for the MPC5634M (1536 KB flash memory) as viewed from above.  
1
2
3
4
5
6
7
AN5  
8
9
10  
11  
12  
13  
14  
15  
16  
ALT_  
MDO2  
ALT_  
MDO0  
A
B
C
D
E
F
VSS  
AN9  
AN11  
VDDA1  
AN21  
VSSA1  
AN0  
AN1  
AN4  
AN16  
AN2  
VRH  
AN22  
AN7  
AN24  
VRL  
AN27  
AN28  
AN32  
AN31  
VSSA0  
VDDA0  
AN33  
AN35  
AN12- SDS  
AN13-SDO  
AN14-SDI  
VDDEH7  
VRC33  
VSS  
VSS  
VDD  
TCK  
ALT_  
MDO3  
ALT_  
MDO1  
VDD  
VSS  
AN38  
REFBYPC  
AN3  
AN25  
AN23  
AN30  
AN15  
FCK  
ALT_  
MSEO0  
VSTBY  
VDD  
VSS  
AN17  
AN34  
AN18  
VSS  
TMS  
TDI  
1
VRC33  
AN39  
VDD  
VSS  
AN6  
VSS  
ALT_EVTO  
ALT_EVTI  
NIC  
ALT_  
MSEO1  
ETPUA30  
ETPUA28  
ETPUA24  
ETPUA23  
ETPUA20  
ETPUA16  
ETPUA12  
ETPUA10  
ETPUA8  
ETPUA3  
ETPUA31  
ETPUA29  
ETPUA27  
ETPUA22  
ETPUA19  
ETPUA15  
ETPUA11  
ETPUA9  
ETPUA4  
ETPUA2  
VSS  
AN37  
VDD  
VDDE7  
VDDEH6  
ETPUA26  
ETPUA25  
ETPUA17  
ETPUA14  
ETPUA7  
ETPUA6  
ETPUA1  
ETPUA0  
VSS  
AN36  
TDO  
ALT_MCKO  
JCOMP  
DSPI_B_  
SOUT  
DSPI_B_  
PCS3  
DSPI_B_  
SIN  
DSPI_B_  
PCS0  
G
H
J
ETPUA21  
ETPUA18  
ETPUA13  
VDDEH1  
ETPUA0  
ETPUA5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DSPI_B_  
PCS4  
DSPI_B_  
PCS2  
DSPI_B_  
PCS1  
GPIO99  
DSPI_B_  
PCS5  
DSPI_B_  
SCK  
SCI_A_TX  
SCI_A_RX  
GPIO98  
RSTOUT  
CAN_C_  
TX  
K
L
VDDREG  
RESET  
CAN_C_  
RX  
SCI_B_TX  
SCI_B_RX  
VSS  
WKPCFG  
BOOTCFG1  
M
N
P
R
T
PLLREF  
VRCCTL  
VSS  
VSSPLL  
EXTAL  
XTAL  
2
3
3
3
1
VDD  
VRC33  
VDDE7  
EMIOS2  
EMIOS10  
EMIOS8  
VDDEH1/6  
eTPU_A29  
EMIOS14  
EMIOS15  
EMIOS12  
eTPU_A19  
eTPU_A21  
EMIOS23  
eTPU_A13  
VRC33  
NIC  
CAN_A_  
TX  
1
3
1
VDD  
GPIO207  
EMIOS4  
EMIOS1  
NIC  
eTPU_A2  
VDD  
NIC  
CAN_A_  
RX  
1
1
3
1
NIC  
VDD  
GPIO206  
EMIOS0  
NIC  
EMIOS9  
EMIOS11  
EMIOS13  
eTPU_A27  
NIC  
VDD  
VSS  
VDD  
VDDPLL  
VSS  
1
3
3
3
1
VSS  
VDD  
NIC  
GPIO219  
eTPU_A25  
eTPU_A4  
NIC  
VDDE5  
CLKOUT  
1
2
3
Pins marked “NIC” have no internal connection.  
This ball may be changed to “NC” (no connection) in a future revision.  
eTPU output only channel.  
Figure 5. 208-pin MAPBGA ballmap (MPC5634M; top view)  
3.5  
208 MAPBGA ballmap (MPC5633M only)  
Figure 6 shows the 208-pin MAPBGA ballmap for the MPC5633M (1024 KB flash memory) as viewed from above.  
1
2
3
4
5
6
7
AN5  
8
9
10  
11  
12  
13  
14  
15  
16  
ALT_  
MDO2  
ALT_  
MDO0  
A
B
C
D
E
F
VSS  
AN9  
AN11  
AN38  
VSS  
VDD  
VDDA1  
AN21  
AN17  
VSS  
VSSA1  
AN0  
AN1  
AN4  
AN16  
AN2  
VRH  
AN22  
AN7  
AN24  
VRL  
AN27  
AN28  
AN32  
AN31  
VSSA0  
VDDA0  
AN33  
AN35  
AN12-SDS  
AN13-SDO  
AN14-SDI  
VDDEH7  
VRC33  
VSS  
VSS  
VDD  
TCK  
ALT_  
MDO3  
ALT_  
MDO1  
VDD  
VSS  
REFBYPC  
AN3  
AN25  
AN23  
AN30  
AN15  
FCK  
ALT_  
MSEO0  
VSTBY  
VDD  
AN34  
AN18  
VSS  
TMS  
TDI  
1
VRC33  
AN39  
AN6  
VSS  
ALT_EVTO  
NIC  
ALT_  
EVTI  
ALT_  
MSEO1  
2
ETPUA30  
ETPUA28  
ETPUA24  
ETPUA23  
ETPUA20  
ETPUA16  
ETPUA12  
ETPUA10  
ETPUA8  
ETPUA3  
ETPUA31  
ETPUA29  
ETPUA27  
ETPUA22  
ETPUA19  
ETPUA15  
ETPUA11  
ETPUA9  
ETPUA4  
ETPUA2  
VSS  
NC  
VDD  
VDDE7  
VDDEH6  
2
ETPUA26  
ETPUA25  
ETPUA17  
ETPUA14  
ETPUA7  
ETPUA6  
ETPUA1  
ETPUA0  
VSS  
NC  
TDO  
ALT_MCKO  
JCOMP  
DSPI_B_  
SOUT  
DSPI_B_  
PCS3  
DSPI_B_  
SIN  
DSPI_B_  
PCS0  
G
H
J
ETPUA21  
ETPUA18  
ETPUA13  
VDDEH1  
ETPUA0  
ETPUA5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DSPI_B_  
PCS4  
DSPI_B_  
PCS2  
DSPI_B_  
PCS1  
2
NC  
DSPI_B_  
PCS5  
DSPI_B_  
SCK  
2
SCI_A_TX  
SCI_A_RX  
NC  
CAN_C_  
TX  
K
L
RSTOUT  
WKPCFG  
VDDREG  
RESET  
VSSPLL  
EXTAL  
XTAL  
CAN_C_  
RX  
SCI_B_TX  
SCI_B_RX  
VSS  
M
N
P
R
T
PLLREF  
VRCCTL  
VSS  
BOOTCFG1  
3
4
3
1
VDD  
VRC33  
VDDE7  
EMIOS2  
EMIOS10  
EMIOS8  
EMIOS11  
VDDEH1/6  
EMIOS12  
eTPUA19  
eTPUA21  
VRC33  
NIC  
3
3
eTPUA29  
eTPUA2  
CAN_A_  
TX  
2
1
1
VDD  
NC  
NIC  
VDD  
NIC  
3
eTPUA27  
CAN_A_  
RX  
1
2
1
2
NIC  
VDD  
NC  
EMIOS4  
NIC  
EMIOS9  
EMIOS14  
EMIOS23  
NC  
VDD  
VSS  
VDD  
VDDPLL  
VSS  
3
eTPUA4  
1
2
3
2
2
3
1
VSS  
VDD  
NIC  
EMIOS0  
NC  
GPIO219  
eTPUA25  
NC  
NC  
eTPUA13  
NIC  
VDDE5  
CLKOUT  
1
2
3
4
Pins marked “NIC” have no internal connection.  
Pins marked “NC” may be connected to internal circuitry. Connections to external circuits or other pins on this device can result in unpredictable system behavior or damage.  
This ball may be changed to “NC” (no connection) in a future revision.  
eTPU output only channel.  
Figure 6. 208-pin MAPBGA ballmap (MPC5633M; top view)  
3.6  
Signal summary  
t
Table 2. MPC563xM signal properties  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
Dedicated GPIO  
GPIO[98]  
GPIO  
GPIO  
GPIO  
GPIO  
PCR[98]  
PCR[99]  
PCR[206]  
PCR[207]  
I/O  
I/O  
I/O  
I/O  
VDDEH7  
Slow  
– / Up  
– / Up  
– / Up  
– / Up  
GPIO[98]/Up  
GPIO[99]/Up  
GPIO[206]/Up  
GPIO[207]/Up  
1417  
1427  
1437  
1447  
J158  
H138  
R48  
GPIO[99]  
VDDEH7  
Slow  
GPIO[206]9  
GPIO[207]9  
VDDEH7  
Slow  
VDDEH7  
Slow  
P58  
Reset / Configuration  
RESET  
External Reset Input  
External Reset Output  
I
VDDEH6a  
Slow  
I / Up  
RESET /  
Up  
80  
85  
68  
97  
102  
83  
L16  
K15  
M14  
RSTOUT  
PCR[230]  
PCR[208]  
O
VDDEH6a  
Slow  
RSTOUT/  
Low  
RSTOUT/  
High  
PLLREF  
IRQ[4]  
ETRIG[2]  
GPIO[208]  
FMPLL Mode Selection  
External Interrupt Request  
eQADC Trigger Input  
GPIO  
011  
010  
100  
000  
I
I
I
VDDEH6a  
Slow  
PLLREF / Up  
– / Up  
– / Down  
– / Up  
I/O  
BOOTCFG1  
IRQ[3]  
ETRIG[3]  
GPIO[212]  
Boot Config. Input  
External Interrupt Request  
eQADC Trigger Input  
GPIO  
PCR[212]  
PCR[213]  
011  
010  
100  
000  
I
I
I
VDDEH6a BOOTCFG1 /  
Slow  
70  
71  
85  
86  
M15  
L15  
Down  
I/O  
WKPCFG  
NMI  
DSPI_B_SOUT  
GPIO[213]  
Weak Pull Config. Input  
Non-Maskable Interrupt  
DSPI_B Data Output  
GPIO  
01  
11  
10  
00  
I
I
VDDEH6a  
Slow  
WKPCFG /  
Up  
O
I/O  
Calibration10  
CAL_ADDR[12:15]11  
Calibration Address Bus  
PCR[340]  
O
VDDE12  
Fast  
O / Low  
CAL_ADDR /  
Low  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
CAL_ADDR[16]21  
ALT_MDO[0]12  
Calibration Address Bus  
Nexus Msg Data Out  
PCR[345]  
PCR[345]  
PCR[345]  
PCR[345]  
PCR[345]  
PCR[345]  
PCR[345]  
PCR[345]  
PCR[344]  
PCR[344]  
O
O
VDDE1213  
VDDE714  
Fast  
O / Low15  
MDO /  
17  
18  
A14  
B14  
A13  
B13  
ALT_ADDR12  
Low  
/
CAL_ADDR[17]21  
ALT_MDO[1]12  
Calibration Address Bus  
Nexus Msg Data Out  
O
O
VDDE1213  
VDDE714  
Fast  
O / Low15  
O / Low15  
O / Low15  
O / Low  
ALT_MDO /  
CAL_ADDR12  
Low  
/
CAL_ADDR[18]21  
ALT_MDO[2]12  
Calibration Address Bus  
Nexus Msg Data Out  
O
O
VDDE1213  
VDDE714  
Fast  
ALT_MDO /  
CAL_ADDR12  
Low  
19  
/
/
CAL_ADDR[19]21  
ALT_MDO[3]12  
Calibration Address Bus  
Nexus Msg Data Out  
O
O
VDDE1213  
VDDE714  
Fast  
ALT_MDO /  
CAL_ADDR12  
Low  
20  
CAL_ADDR[20:27]  
ALT_MDO[4:11]  
Calibration Address Bus  
Nexus Msg Data Out  
O
O
VDDE1213  
Fast  
ALT_MDO /  
CAL_ADDR16  
Low  
/
/
CAL_ADDR[28]21  
ALT_MSEO[0]12  
Calibration Address Bus  
Nexus Msg Start/End Out  
O
O
VDDE1213  
VDDE714  
Fast  
O / Low17  
O / Low17  
ALT_MSEO16  
CAL_ADDR17  
Low  
118  
117  
116  
120  
14  
C15  
E16  
E15  
D15  
F15  
/
CAL_ADDR[29]21  
ALT_MSEO[1]12  
Calibration Address Bus  
Nexus Msg Start/End Out  
O
O
VDDE1213  
VDDE714  
Fast  
ALT_MSEO16  
CAL_ADDR17  
Low  
/
/
CAL_ADDR[30]21  
ALT_EVTI12  
Calibration Address Bus  
Nexus Event In  
O
I
VDDE1213  
VDDE714  
Fast  
ALT_EVTI /  
18  
CAL_ADDR19  
ALT_EVTO  
ALT_MCKO  
Nexus Event Out  
O
O
VDDE1213  
VDDE714  
Fast  
O / Low  
O / Low  
ALT_EVTO /  
High  
Nexus Msg Clock Out  
VDDE1213  
VDDE714  
Fast  
ALT_MCKO /  
Enabled  
NEXUSCFG11  
CAL_CS[0]11  
Nexus/Calibration bus  
selector  
I
VDDE12  
Fast  
I / Down  
O / High  
O / High  
NEXUSCFG /  
Down  
Calibration Chip Selects  
PCR[336]  
PCR[338]  
O
VDDE12  
Fast  
CAL_CS / High  
CAL_CS[2]11  
CAL_ADDR[10]  
Calibration Chip Selects  
Calibration Address Bus  
11  
10  
O
O
VDDE12  
Fast  
CAL_CS / High  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
CAL_CS[3]11  
CAL_ADDR[11]  
Calibration Chip Selects  
Calibration Address Bus  
PCR[339]  
PCR[341]  
PCR[341]  
PCR[342]  
PCR[342]  
PCR[343]  
PCR[342]  
11  
10  
O
O
VDDE12  
Fast  
O / High  
– / Up  
CAL_CS / High  
– / Up  
CAL_DATA[0:9]11  
Calibration Data Bus  
Calibration Data Bus  
Calibration Output Enable  
Calibration Read/Write  
I/O  
I/O  
O
VDDE12  
Fast  
CAL_DATA[10:15]11  
CAL_OE11  
VDDE12  
Fast  
– / Up  
– / Up  
VDDE12  
Fast  
O / High  
O / High  
O / High  
O / High  
CAL_OE / High  
CAL_RD_WR11  
CAL_TS_ALE11  
CAL_WE_BE[0:1]11  
O
VDDE12  
Fast  
CAL_RD_WR  
/High  
Calibration Transfer Start  
Address Latch Enable  
TS=0b1  
ALE=0b0  
O
O
VDDE12  
Fast  
CAL_TS / High  
Calibration Write Enable  
Byte Enable  
O
VDDE12  
Fast  
CAL_WE /  
High  
NEXUS20  
EVTI21  
eTPU_A[2]  
GPIO[231]  
Nexus Event In  
eTPU A Ch.  
GPIO  
PCR[231]  
PCR[227]  
01  
10  
00  
I
O
I/O  
VDDEH7  
Multi-V  
– / –  
– / –  
103  
106  
126  
129  
P10  
T10  
EVTO 21  
eTPU_A[4]  
GPIO[227]  
Nexus Event Out  
eTPU A Ch.  
GPIO  
0122  
10  
00  
O
O
I/O  
VDDEH7  
Multi-V  
I / Up  
I / Up  
MCKO21  
GPIO[219]  
Nexus Msg Clock Out  
GPIO  
PCR[219]  
PCR[220]  
N/A22  
00  
O
I/O  
VDDEH7  
Multi-V  
– / –  
– / –  
– / –  
– / –  
99  
122  
135  
T6  
MDO[0]21  
eTPU_A[13]  
GPIO[220]  
Nexus Msg Data Out  
eTPU A Ch.  
GPIO  
01  
10  
00  
O
O
I/O  
VDDEH7  
Multi-V  
110  
T11  
MDO[1]21  
eTPU_A[19]  
GPIO[221]  
Nexus Msg Data Out  
eTPU A Ch.  
GPIO  
PCR[221]  
PCR[222]  
0122  
10  
00  
O
O
I/O  
VDDEH7  
Multi-V  
– / –  
– / –  
– / –  
– / –  
111  
112  
136  
137  
N11  
P11  
MDO[2]21  
eTPU_A[21]  
GPIO[222]  
Nexus Msg Data Out  
eTPU A Ch.  
GPIO  
0122  
10  
00  
O
O
I/O  
VDDEH7  
Multi-V  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
MDO[3]21  
eTPU_A[25]  
GPIO[223]  
Nexus Msg Data Out  
eTPU A Ch.  
GPIO  
PCR[223]  
PCR[224]  
PCR[225]  
0122  
10  
00  
O
O
I/O  
VDDEH7  
Multi-V  
– / –  
– / –  
– / –  
– / –  
114  
109  
101  
139  
134  
124  
T7  
R10  
P9  
MSEO[0]21  
eTPU_A[27]  
GPIO[224]  
Nexus Msg Start/End Out  
eTPU A Ch.  
GPIO  
0122  
10  
00  
O
O
I/O  
VDDEH7  
Multi-V  
– / –  
– / –  
MSEO[1]21  
eTPU_A[29]  
GPIO[225]  
Nexus Msg Start/End Out  
eTPU A Ch.  
GPIO  
0122  
10  
00  
O
O
I/O  
VDDEH7  
Multi-V  
JTAG / TEST  
TCK  
JTAG Test Clock Input  
I
VDDEH7  
Multi-V  
TCK / Down  
– / –  
TCK / Down  
– / –  
105  
107  
128  
130  
C16  
E14  
TDI23  
eMIOS[5]  
GPIO[232]  
JTAG Test Data Input  
eMIOS Ch.  
GPIO  
PCR[232]  
0124  
10  
00  
I
O
I/O  
VDDEH7  
Multi-V  
TDO23  
eMIOS[6]  
GPIO[228]  
JTAG Test Data Output  
eMIOS Ch.  
GPIO  
PCR[228]  
0124  
10  
00  
O
O
I/O  
VDDEH7  
Multi-V  
– / –  
– / –  
100  
123  
F14  
TMS  
JTAG Test Mode Select Input  
JTAG TAP Controller Enable  
I
I
VDDEH7  
Multi-V  
TMS / Up  
TMS / Up  
108  
98  
131  
121  
D14  
F16  
JCOMP  
VDDEH7  
Multi-V  
JCOMP /  
Down  
JCOMP / Down  
CAN  
CAN_A_TX  
SCI_A_TX  
GPIO[83]  
CAN_A Transmit  
eSCI_A Transmit  
GPIO  
PCR[83]  
PCR[84]  
01  
10  
00  
O
O
I/O  
VDDEH6a  
Slow  
– / Up  
– / Up  
– / Up25  
– / Up  
66  
67  
81  
82  
P12  
R12  
CAN_A_RX  
SCI_A_RX  
GPIO[84]  
CAN_A Receive  
eSCI_A Receive  
GPIO  
01  
10  
00  
I
I
VDDEH6a  
Slow  
I/O  
CAN_C_TX  
GPIO[87]  
CAN_C Transmit  
GPIO  
PCR[87]  
PCR[88]  
01  
00  
O
I/O  
VDDEH6a  
Medium  
– / Up  
– / Up  
– / Up  
– / Up  
84  
81  
101  
98  
K13  
L14  
CAN_C_RX  
GPIO[88]  
CAN_C Receive  
GPIO  
01  
00  
I
VDDEH6a  
Slow  
I/O  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
eSCI  
SCI_A_TX  
eMIOS[13]  
GPIO[89]  
eSCI_A Transmit  
eMIOS Ch.  
GPIO  
PCR[89]  
PCR[90]  
01  
10  
00  
O
O
I/O  
VDDEH6a  
Slow  
– / Up  
– / Up  
– / Up  
– / Up  
83  
82  
100  
99  
J14  
SCI_A_RX26  
eMIOS[15]  
GPIO[90]  
eSCI_A Receive  
eMIOS Ch.  
GPIO  
01  
10  
00  
I
O
I/O  
VDDEH6a  
Slow  
K14  
SCI_B_TX  
GPIO[91]  
eSCI_B Transmit  
GPIO  
PCR[91]  
PCR[92]  
01  
00  
I/O  
I/O  
VDDEH6a  
Slow  
– / Up  
– / Up  
– / Up  
– / Up  
72  
69  
87  
84  
L13  
SCI_B_RX  
GPIO[92]  
eSCI_B Receive  
GPIO  
01  
00  
I
VDDEH6a  
Slow  
M13  
I/O  
DSPI  
DSPI_B_SCK  
DSPI_C_PCS[1]  
GPIO[102]  
DSPI_B Clock  
DSPI_C Periph Chip Select  
GPIO  
PCR[102]  
PCR[103]  
PCR[104]  
01  
10  
00  
I/O  
O
I/O  
VDDEH6b  
Medium  
– / Up  
– / Up  
– / Up  
– / Up  
– / Up  
– / Up  
89  
95  
96  
106  
112  
113  
J16  
G15  
G13  
DSPI_B_SIN  
DSPI_C_PCS[2]  
GPIO[103]  
DSPI_B Data Input  
DSPI_C Periph Chip Select  
GPIO  
01  
10  
00  
I
O
I/O  
VDDEH6b  
Medium  
DSPI_B_SOUT  
DSPI_C_PCS[5]  
GPIO[104]  
DSPI_B Data Output  
DSPI_C Periph Chip Select  
GPIO  
01  
10  
00  
O
O
I/O  
VDDEH6b  
Medium  
DSPI_B_PCS[0]  
GPIO[105]  
DSPI_B Periph Chip Select  
GPIO  
PCR[105]  
PCR[106]  
PCR[107]  
01  
00  
O
I/O  
VDDEH6b  
Medium  
– / Up  
– / Up  
– / Up  
– / Up  
– / Up  
– / Up  
94  
92  
90  
111  
109  
107  
G16  
H16  
H15  
DSPI_B_PCS[1]  
GPIO[106]  
DSPI_B Periph Chip Select  
GPIO  
01  
00  
O
I/O  
VDDEH6b  
Medium  
DSPI_B_PCS[2]  
DSPI_C_SOUT  
GPIO[107]  
DSPI_B Periph Chip Select  
DSPI_C Data Output  
GPIO  
01  
10  
00  
O
O
I/O  
VDDEH6b  
Medium  
DSPI_B_PCS[3]  
DSPI_C_SIN  
GPIO[108]  
DSPI_B Periph Chip Select  
DSPI_C Data Input  
GPIO  
PCR[108]  
PCR[109]  
01  
10  
00  
O
I
I/O  
VDDEH6b  
Medium  
– / Up  
– / Up  
– / Up  
– / Up  
97  
88  
114  
105  
G14  
H14  
DSPI_B_PCS[4]  
DSPI_C_SCK  
GPIO[109]  
DSPI_B Periph Chip Select  
DSPI_C Clock  
GPIO  
01  
10  
00  
O
I/O  
I/O  
VDDEH6b  
Medium  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
DSPI_B_PCS[5]  
DSPI_C_PCS[0]  
GPIO[110]  
DSPI_B Periph Chip Select  
DSPI_C Periph Chip Select  
GPIO  
PCR[110]  
01  
10  
00  
O
O
I/O  
VDDEH6b  
Medium  
– / Up  
– / Up  
87  
104  
J13  
eQADC  
AN[0]27  
DAN0+  
Single Ended Analog Input  
Positive Terminal Diff. Input  
I
I
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
AN[0] / –  
AN[1] / –  
AN[2] / –  
AN[3] / –  
AN[4] / –  
AN[5] / –  
AN[6] / –  
AN[7] / –  
143  
142  
141  
140  
139  
138  
137  
136  
172  
171  
170  
169  
168  
167  
166  
165  
B5  
A6  
D6  
C7  
B6  
A7  
D7  
C8  
AN[1]27  
DAN0-  
Single Ended Analog Input  
Negative Terminal Diff. Input  
I
I
AN[2]27  
DAN1+  
Single Ended Analog Input  
Positive Terminal Diff. Input  
I
I
AN[3]27  
DAN1-  
Single Ended Analog Input  
Negative Terminal Diff. Input  
I
I
AN[4]27  
DAN2+  
Single Ended Analog Input  
Positive Terminal Diff. Input  
I
I
AN[5]27  
DAN2-  
Single Ended Analog Input  
Negative Terminal Diff. Input  
I
I
AN[6]27  
DAN3+  
Single Ended Analog Input  
Positive Terminal Diff. Input  
I
I
AN[7]27  
DAN3-  
Single Ended Analog Input  
Negative Terminal Diff. Input  
I
I
AN[8]  
See AN[38]-AN[8]-ANW  
AN[9]  
ANX  
Single Ended Analog Input  
External Multiplexed Analog  
Input  
I
I
VDDA  
I / –  
AN[9] / –  
5
5
A2  
AN[10]  
See AN[39]-AN[10]-ANY  
AN[11]  
ANZ  
Single Ended Analog Input  
External Multiplexed Analog  
Input  
I
I
VDDA  
I / –  
I / –  
AN[11] / –  
AN[12] / –  
4
4
A3  
AN[12]  
MA[0]  
ETPU_A[19]  
SDS  
Single Ended Analog Input  
Mux Address  
ETPU_A Ch.  
PCR[215]  
011  
010  
100  
000  
I
VDDEH7  
119  
148  
A12  
O
O
O
eQADC Serial Data Strobe  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
AN[13]  
MA[1]  
ETPU_A[21]  
SDO  
Single Ended Analog Input  
Mux Address  
ETPU_A Ch.  
PCR[216]  
PCR[217]  
PCR[218]  
011  
010  
100  
000  
I
VDDEH7  
VDDEH7  
VDDEH7  
I / –  
AN[13] / –  
AN[14] / –  
AN[15] / –  
118  
117  
116  
147  
146  
145  
B12  
C12  
C13  
O
O
O
eQADC Serial Data Out  
AN[14]  
MA[2]  
ETPU_A[27]  
SDI  
Single Ended Analog Input  
Mux Address  
ETPU_A Ch.  
011  
010  
100  
000  
I
I / –  
I / –  
O
O
I
eQADC Serial Data In  
AN[15]  
FCK  
ETPU_A[29]  
Single Ended Analog Input  
eQADC Free Running Clock  
ETPU_A Ch.  
011  
010  
000  
I
O
O
AN[16]  
AN[17]  
AN[18]  
AN[21]  
AN[22]  
AN[23]  
AN[24]  
AN[25]  
AN[27]  
AN[28]  
AN[30]  
AN[31]  
AN[32]  
AN[33]  
AN[34]  
AN[35]  
AN[36]  
AN[37]  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
Single Ended Analog Input  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
AN[x] / –  
3
3
C6  
C4  
2
2
1
1
D5  
144  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
173  
161  
160  
159  
158  
157  
156  
155  
154  
153  
152  
151  
150  
1747  
1757  
B4  
B8  
C9  
D8  
B9  
A10  
B10  
D9  
D10  
C10  
C11  
C5  
D11  
F48  
E38  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
AN[38]-AN[8]-  
ANW  
Single Ended Analog Input  
Multiplexed Analog Input  
I
I
VDDA  
VDDA  
I / –  
I / –  
AN[38] / –  
AN[39] / –  
9
8
9
8
B3  
D2  
AN[39]-AN[10]-  
ANY  
Single Ended Analog Input  
Multiplexed Analog Input  
VRH  
Voltage Reference High  
Voltage Reference Low  
Bypass Capacitor Input  
I
I
I
VDDA  
VSSA0  
VRL  
– / –  
– / –  
– / –  
VRH  
VRL  
134  
133  
135  
163  
162  
164  
A8  
A9  
B7  
VRL  
REFBYPC  
REFBYPC  
eTPU2  
eTPU_A[0]  
eTPU_A[12]  
eTPU_A[19]  
GPIO[114]  
eTPU_A Ch.  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
PCR[114]  
011  
010  
100  
000  
I/O  
O
O
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
52  
61  
L4, N3  
I/O  
eTPU_A[1]  
eTPU_A[13]  
GPIO[115]  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
PCR[115]  
PCR[116]  
PCR[117]  
PCR[118]  
PCR[119]  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
51  
50  
49  
47  
45  
60  
59  
58  
56  
54  
M3  
P2  
P1  
N2  
M4  
eTPU_A[2]  
eTPU_A[14]  
GPIO[116]  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
eTPU_A[3]  
eTPU_A[15]  
GPIO[117]  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
eTPU_A[4]  
eTPU_A[16]  
GPIO[118]  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
eTPU_A[5]  
eTPU_A[17]  
DSPI_B_SCK_LVDS-  
GPIO[119]  
eTPU_A Ch.  
eTPU_A Ch.  
DSPI_B CLOCK LVDS-  
GPIO  
001  
010  
100  
000  
I/O  
O
O
VDDEH1b  
Slow  
I/O  
eTPU_A[6]  
eTPU_A[18]  
DSPI_B_SCK_LVDS+  
GPIO[120]  
eTPU_A Ch.  
eTPU_A Ch.  
DSPI_B Clock LVDS+  
GPIO  
PCR[120]  
001  
010  
100  
000  
I/O  
O
O
VDDEH1b  
Medium  
– / WKPCFG  
– / WKPCFG  
44  
53  
L3  
I/O  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
eTPU_A[7]  
eTPU_A[19]  
DSPI_B_SOUT_LVDS- DSPI_B Data Output LVDS-  
eTPU_A Ch.  
eTPU_A Ch.  
PCR[121]  
PCR[122]  
0001  
0010  
0100  
1000  
0000  
I/O  
O
O
O
I/O  
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
43  
52  
K3  
eTPU_A[6]  
GPIO[121]  
eTPU_A Ch.  
GPIO  
eTPU_A[8]  
eTPU_A[20]  
eTPU_A Ch.  
eTPU_A Ch.  
001  
010  
100  
000  
I/O  
O
O
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
42  
51  
N1  
DSPI_B_SOUT_LVDS+ DSPI_B Data Output LVDS+  
GPIO[122]  
GPIO  
I/O  
eTPU_A[9]  
eTPU_A[21]  
GPIO[123]  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
PCR[123]  
PCR[124]  
PCR[125]  
PCR[126]  
PCR[127]  
PCR[128]  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
41  
40  
39  
38  
37  
35  
50  
49  
48  
47  
46  
42  
M2  
M1  
L2  
L1  
J4  
eTPU_A[10]  
eTPU_A[22]  
GPIO[124]  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
eTPU_A[11]  
eTPU_A[23]  
GPIO[125]  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
eTPU_A[12]  
DSPI_B_PCS[1]  
GPIO[126]  
eTPU_A Ch.  
DSPI_B Periph Chip Select  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Medium  
– / WKPCFG – / WKPCFG  
eTPU_A[13]  
DSPI_B_PCS[3]  
GPIO[127]  
eTPU_A Ch.  
DSPI_B Periph Chip Select  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Medium  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
eTPU_A[14]  
DSPI_B_PCS[4]  
eTPU_A[9]  
eTPU_A Ch.  
DSPI_B Periph Chip Select  
eTPU_A Ch.  
001  
010  
100  
000  
I/O  
O
O
VDDEH1b  
Medium  
J3  
GPIO[128]  
GPIO  
I/O  
eTPU_A[15]  
DSPI_B_PCS[5]  
GPIO[129]  
eTPU_A Ch.  
DSPI_B Periph Chip Select  
GPIO  
PCR[129]  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Medium  
– / WKPCFG  
– / WKPCFG  
33  
40  
K2  
eTPU_A[16]  
GPIO[130]  
eTPU_A Ch.  
GPIO  
PCR[130]  
PCR[131]  
01  
00  
I/O  
I/O  
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
32  
31  
39  
38  
K1  
H3  
eTPU_A[17]  
GPIO[131]  
eTPU_A Ch.  
GPIO  
01  
00  
I/O  
I/O  
VDDEH1b  
Slow  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
eTPU_A[18]  
GPIO[132]  
eTPU_A Ch.  
GPIO  
PCR[132]  
PCR[133]  
PCR[134]  
01  
00  
I/O  
I/O  
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
30  
29  
28  
37  
36  
35  
H4  
J2  
J1  
eTPU_A[19]  
GPIO[133]  
eTPU_A Ch.  
GPIO  
01  
00  
I/O  
I/O  
VDDEH1b  
Slow  
eTPU_A[20]  
IRQ[8]  
GPIO[134]  
eTPU_A Ch.  
External Interrupt Request  
GPIO  
01  
10  
00  
I/O  
I
I/O  
VDDEH1b  
Slow  
eTPU_A[21]  
IRQ[9]  
GPIO[135]  
eTPU_A Ch.  
External Interrupt Request  
GPIO  
PCR[135]  
PCR[136]  
01  
10  
00  
I/O  
I
I/O  
VDDEH1a  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
27  
25  
34  
32  
G4  
H2  
eTPU_A[22]  
IRQ[10]  
eTPU_A[17]  
GPIO[136]  
eTPU_A Ch.  
001  
010  
100  
000  
I/O  
I
O
VDDEH1a  
Slow  
External Interrupt Request  
eTPU_A Ch. External  
GPIO  
I/O  
eTPU_A[23]  
IRQ[11]  
eTPU_A[21]  
GPIO[137]  
eTPU_A Ch.  
PCR[137]  
PCR[138]  
PCR[139]  
PCR[140]  
PCR[141]  
001  
010  
100  
000  
I/O  
I
O
VDDEH1a  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
23  
21  
20  
19  
18  
30  
28  
27  
26  
25  
H1  
G1  
G3  
F3  
External Interrupt Request  
eTPU_A Ch. External  
GPIO  
I/O  
eTPU_A[24]28  
IRQ[12]  
DSPI_C_SCK_LVDS-  
GPIO[138]  
eTPU_A Ch.  
001  
010  
100  
000  
I/O  
I
O
VDDEH1a  
Slow  
External Interrupt Request  
DSPI_C Clock LVDS-  
GPIO  
I/O  
eTPU_A[25]28  
IRQ[13]  
DSPI_C_SCK_LVDS+  
GPIO[139]  
eTPU_A Ch.  
001  
010  
100  
000  
I/O  
I
O
VDDEH1a  
Medium  
External Interrupt Request  
DSPI _C Clock LVDS+  
GPIO  
I/O  
eTPU_A[26]28  
IRQ[14]  
DSPI_C_SOUT_LVDS- DSPI_C Data Output LVDS-  
eTPU_A Ch.  
External Interrupt Request  
001  
010  
100  
000  
I/O  
I
O
VDDEH1a  
Slow  
GPIO[140]  
GPIO  
I/O  
eTPU_A[27]28  
IRQ[15]  
DSPI_C_SOUT_LVDS+ DSPI_C Data Output LVDS+  
DSPI_B_SOUT  
GPIO[141]  
eTPU_A Ch.  
External Interrupt Request  
0001  
0010  
0100  
1000  
0000  
I/O  
I
O
O
I/O  
VDDEH1a  
Slow  
G2  
DSPI_B Data Output  
GPIO  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
eTPU_A[28]28  
DSPI_C_PCS[1]  
GPIO[142]  
eTPU_A Ch. (Input and  
Output)  
DSPI_C Periph Chip Select  
GPIO  
PCR[142]  
PCR[143]  
PCR[144]  
PCR[145]  
10  
01  
00  
I/O  
O
I/O  
VDDEH1a  
Medium  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
17  
16  
15  
14  
24  
23  
22  
21  
F1  
F2  
E1  
E2  
eTPU_A[29]28  
DSPI_C_PCS[2]  
GPIO[143]  
eTPU_A Ch. (Input and  
Output)  
DSPI_C Periph Chip Select  
GPIO  
10  
01  
00  
I/O  
O
I/O  
VDDEH1a  
Medium  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
eTPU_A[30]  
DSPI_C_PCS[3]  
eTPU_A[11]  
GPIO[144]  
eTPU_A Ch.  
DSPI_C Periph Chip Select  
eTPU_A Ch.  
011  
010  
001  
000  
I/O  
O
O
VDDEH1a  
Medium  
GPIO  
I/O  
eTPU_A[31]  
DSPI_C_PCS[4]  
eTPU_A[13]  
GPIO[145]  
eTPU_A Ch.  
DSPI_C Periph Chip Select  
eTPU_A Ch.  
011  
010  
001  
000  
I/O  
O
O
VDDEH1a  
Medium  
GPIO  
I/O  
eMIOS  
eMIOS[0]  
eMIOS Ch.  
eTPU_A Ch.  
eTPU_A Ch.  
GPIO  
PCR[179]  
001  
010  
100  
000  
I/O  
O
O
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
54  
63  
T4  
eTPU_A[0]  
eTPU_A[25]29  
GPIO[179]  
I/O  
eMIOS[1]  
eTPU_A[1]  
GPIO[180]  
eMIOS Ch.  
eTPU_A Ch.  
GPIO  
PCR[180]  
PCR[181]  
PCR[183]  
PCR[187]  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
55  
56  
57  
647  
65  
T58  
N7  
R5  
P8  
eMIOS[2]  
eTPU_A[2]  
GPIO[181]  
eMIOS Ch.  
eTPU_A Ch.  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH1b  
Slow  
eMIOS[4]  
eTPU_A[4]  
GPIO[183]  
eMIOS Ch.  
eTPU_A Ch.  
GPIO  
01  
10  
00  
I/O  
O
I/O  
VDDEH6a  
Slow  
67  
eMIOS[8]  
eMIOS Ch.  
eTPU_A Ch.  
eSCI_B Transmit  
GPIO  
001  
010  
100  
000  
I/O  
O
O
VDDEH6a  
Slow  
70  
eTPU_A[8]30  
SCI_B_TX  
GPIO[187]  
I/O  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
eMIOS[9]  
eMIOS Ch.  
PCR[188]  
001  
010  
100  
000  
I/O  
O
I
VDDEH6a  
Slow  
– / WKPCFG  
– / WKPCFG  
58  
71  
R7  
eTPU_A[9]30  
SCI_B_RX  
GPIO[188]  
eTPU_A Ch.  
eSCI_B Receive  
GPIO  
I/O  
eMIOS[10]  
GPIO[189]  
eMIOS Ch.  
GPIO  
PCR[189]  
PCR[190]  
PCR[191]  
01  
00  
I/O  
I/O  
VDDEH6a  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
60  
62  
63  
73  
75  
76  
N8  
R8  
eMIOS[11]  
GPIO[190]  
eMIOS Ch.  
GPIO  
01  
00  
I/O  
I/O  
VDDEH6a  
Slow  
eMIOS[12]  
eMIOS Ch.  
001  
010  
100  
000  
I/O  
O
O
VDDEH6a  
Medium  
N10  
DSPI_C_SOUT  
eTPU_A[27]  
GPIO[191]  
DSPI C Data Output  
eTPU_A Ch.  
GPIO  
I/O  
eMIOS[13]  
GPIO[192]  
eMIOS Ch.  
GPIO  
PCR[192]  
PCR[193]  
01  
00  
I/O  
I/O  
VDDEH6a  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
777  
78  
T88  
R9  
eMIOS[14]  
IRQ[0]  
eTPU_A[29]  
GPIO[193]  
eMIOS Ch.  
External Interrupt Request  
eTPU_A Ch.  
001  
010  
100  
000  
O
I
O
VDDEH6a  
Slow  
64  
GPIO  
I/O  
eMIOS[15]  
IRQ[1]  
GPIO[194]  
eMIOS Ch.  
External Interrupt Request  
GPIO  
PCR[194]  
PCR[202]  
01  
10  
00  
O
I
I/O  
VDDEH6a  
Slow  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
– / WKPCFG  
797  
80  
T98  
R11  
eMIOS[23]  
GPIO[202]  
eMIOS Ch.  
GPIO  
01  
00  
I/O  
I/O  
VDDEH6a  
Slow  
65  
Clock Synthesizer  
XTAL  
Crystal Oscillator Output  
O
I
VDDEH6a  
O / –  
I / –  
XTAL31 / –  
76  
75  
93  
92  
P16  
N16  
EXTAL  
EXTCLK  
Crystal Oscillator Input  
External Clock Input  
VDDEH6a  
EXTAL32/ –  
CLKOUT  
System Clock Output  
PCR[229]  
O
VDDE5  
Fast  
CLKOUT /  
Enabled  
CLKOUT /  
Enabled  
T14  
Power / Ground  
VDDPLL  
PLL Supply Voltage  
PLL Ground  
I
I
VDDPLL  
(1.2V)  
I / –  
I / –  
74  
77  
91  
94  
R16  
M16  
VSSPLL33  
VSSPLL  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
VSTBY  
VRC33  
VRCCTL  
VDDA34  
VDDA0  
VSSA0  
VDDA1  
VSSA1  
VSSA35  
VDDREG  
VDD  
Power Supply for Standby  
RAM  
I
O
O
I
VSTBY  
VRC33  
NA  
I / –  
O / –  
O / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
I / –  
12  
13  
11  
6
12  
13  
11  
6
C1  
3.3V Voltage Regulator  
Bypass Capacitor  
A15, D1,  
N6, N12  
Voltage Regulator Control  
Output  
N14  
Analog Power Input for  
eQADC  
VDDA (5.0 V)  
VDDA  
Analog Power Input for  
eQADC  
I
7
7
B11  
A11  
A4  
Analog Ground Input for  
eQADC  
I
VSSA  
Analog Power Input for  
eQADC  
I
VDDA  
Analog Ground Input for  
eQADC  
I
VSSA  
A5  
Analog Ground Input for  
eQADC  
I
VSSA  
Voltage Regulator Supply  
I
VDDREG  
(5.0 V)  
10  
10  
K16  
Internal Logic Supply Input  
I
VDD (1.2 V)  
26, 53, 33, 62, B1,B16,C2,  
86, 120 103, D3, E4, N5,  
149 P4,P13,R3,  
R14, T2,  
T15  
Table 2. MPC563xM signal properties (continued)  
Pad  
Pin No.  
176  
Config.  
Register  
(PCR)2  
PCR PA  
Field3  
I/O  
Type  
Voltage4 /  
Pad Type  
Function / State  
After Reset6  
Name  
Function1  
Reset State5  
144  
208 MAPB  
GA  
LQFP LQFP  
VSS  
Ground  
VSS0  
I / –  
22, 36, 15, 29, A1, A16, B2,  
48, 59, 43, 57,  
73, 79, 72, 90,  
B15, C3,  
C14, D4,  
D13, G7,  
G8, G9,  
G10, H7,  
H8, H9,  
91,  
104,  
115  
96,  
108,  
1157,  
127,  
133, H10, J7, J8,  
140 J9, J10, K7,  
K8, K9, K10,  
N4, N13,  
P3,P14,R2,  
R15, T1,  
T16  
VDDEH1A36  
VDDEH1B36  
I/O Supply Input  
I
VDDEH137  
(3.3V – 5.0V)  
I / –  
24, 34, 31, 41  
K4  
46  
55  
VDDE5  
I/O Supply Input  
I/O Supply Input  
I
I
VDDE5  
I / –  
I / –  
T13  
VDDEH6a38, 39  
VDDEH6b39  
VDDEH6  
(3.3V – 5.0V)  
78, 93,  
61  
95,  
110, 74  
VDDEH6  
VDDEH7  
I/O Supply Input  
I/O Supply Input  
I
I
VDDEH6  
I / –  
I / –  
F13  
D12  
VDDEH740  
(3.3V – 5.0V)  
102,  
113  
125,  
138  
VDDE741  
I/O Supply Input  
I
VDDE7  
(3.3V)  
I / –  
16,  
E13, P6  
1197  
1
2
For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or secondary  
function or GPIO is done in the SIU except where explicitly noted.  
Values in this column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR number. For example,  
PCR[190] refers to the SIU register named SIU_PCR190.  
3
4
The Pad Configuration Register (PCR) PA field is used by software to select pin function.  
The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3 V to 5.0 V  
range (10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/10%).  
5
Terminology is O — output, I — input, Up — weak pull up enabled, Down — weak pull down enabled, Low — output driven low, High — output driven high.  
A dash for the function in this column denotes that both the input and output buffer are turned off.  
6
7
8
Function after reset of GPI is general purpose input. A dash for the function in this column denotes that both the input and output buffer are turned off.  
Not available on 1 MB version of 176-pin package.  
Not available on 1 MB version of 208-pin package.  
9
The GPIO functions on GPIO[206] and GPIO[207] can be selected as trigger functions in the SIU for the ADC by making the proper selections in the  
SIU_ETISR and SIU_ISEL3 registers in the SIU.  
10 Some signals in this section are available only on calibration package.  
11 These pins are only available in the 496 CSP/MAPBGA calibration/development package.  
12 On the calibration package, the Nexus function on this pin is enabled when the NEXUSCFG pin is high and Nexus is configured to full port mode. On the  
176-pin and 208-pin packages, the Nexus function on this pin is enabled permanently. Do not connect the Nexus MDO or MSEO pins directly to a power  
supply or ground.  
13 In the calibration package, the I/O segment containing this pin is called VDDE12.  
14 208-ball BGA package only  
15 When configured as Nexus (208-pin package or calibration package with NEXUSCFG=1), and JCOMP is asserted during reset, MDO[0] is driven high until  
the crystal oscillator becomes stable, at which time it is then negated.  
16 The function of this pin is Nexus when NEXUSCFG is high.  
17 High when the pin is configured to Nexus, low otherwise.  
18 O/Low for the calibration with NEXUSCFG=0; I/Up otherwise.  
19 ALT_ADDR/Low for the calibration package with NEXUSCFG=0; EVTI/Up otherwise.  
20 In 176-pin and 208-pin packages, the Nexus function is disabled and the pin/ball has the secondary function  
21 This signal is not available in the 176-pin and 208-pin packages.  
22 The primary function is not selected via the PA field when the pin is a Nexus signal. Instead, it is activated by the Nexus controller.  
23 TDI and TDO are required for JTAG operation.  
24 The primary function is not selected via the PA field when the pin is a JTAG signal. Instead, it is activated by the JTAG controller.  
25 The function and state of the CAN_A and eSCI_A pins after execution of the BAM program is determined by the BOOTCFG1 pin.  
26 Connect an external 10K pull-up resistor to the SCI_A_RX pin to ensure that the pin is driven high during CAN serial boot.  
27 For pins AN[0:7], during and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors  
are disabled when the system clock propagates through the device.  
28 ETPUA[24:29] are input and output. The input muxing is controlled by SIU_ISEL8 register.  
29 eTPU_A[25] is an output only function.  
30 Only the output channels of eTPU[8:9] are connected to pins.  
31 The function after reset of the XTAL pin is determined by the value of the signal on the PLLCFG[1] pin. When bypass mode is chosen XTAL has no function  
and should be grounded.  
32 The function after reset of the EXTAL_EXTCLK pin is determined by the value of the signal on the PLLCFG[1] pin. If the EXTCLK function is chosen, the valid  
operating voltage for the pin is 1.62 V to 3.6 V. If the EXTAL function is chosen, the valid operating voltage is 3.3 V.  
33 VSSPLL and VSSREG are connected to the same pin.  
34 This pin is shared by two pads: VDDA_AN, using pad_vdde_hv, and VDDA_DIG, using pad_vdde_int_hv.  
35 This pin is shared by two pads: VSSA_AN, using pad_vsse_hv, and VSSA_DIG, using pad_vsse_int_hv.  
36 VDDEH1A, VDDEH1B, and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support legacy  
naming, however they should be considered as the same signal in this document.  
37 LVDS pins will not work at 3.3 V.  
38 The VDDEH6 segment may be powered from 3.0 V to 5.0 V for mux address or SSI functions, but must meet the VDDA specifications of 4.5 V to 5.25 V for  
analog input function.  
39 VDDEH6A and VDDEH6B are shorted together in all production packages. The separation of the signal names is present to support legacy naming, however  
they should be considered as the same signal in this document.  
40 If using JTAG or Nexus, the I/O segment that contains the JTAG and Nexus pins must be powered by a 5 V supply. The 3.3 V Nexus/JTAG signals are derived  
from the 5 volt power supply.  
41 In the calibration package this signal is named VDDE12.  
Table 3. Pad types  
Pad Type  
Name  
Supply Voltage  
Slow  
Medium  
Fast  
pad_ssr_hv  
pad_msr_hv  
pad_fc  
3.0 V – 5.25 V  
3.0 V – 5.25 V  
3.0 V – 3.6 V  
MultiV  
pad_multv_hv  
3.0 V – 5.25 V (high swing mode)  
4.5 V – 5.25 V (low swing mode)  
Analog  
LVDS  
pad_ae_hv  
pad_lo_lv  
0.0 – 5.25 V  
Pinout and signal description  
3.7  
Signal details  
Table 4 contains details on the multiplexed signals that appear in Table 2, “MPC563xM signal properties”.  
Table 4. Signal details  
Signal  
Module or Function  
Description  
CLKOUT  
EXTAL  
Clock Generation  
MPC5634M clock output for the external/calibration bus  
interface  
Clock Generation  
Input pin for an external crystal oscillator or an external clock  
source based on the value driven on the PLLREF pin at reset.  
EXTCLK  
PLLREF  
Clock Generation  
Clock Generation  
External clock input  
PLLREF is used to select whether the oscillator operates in xtal  
mode or external reference mode from reset. PLLREF=0 selects  
external reference mode.  
XTAL  
Clock Generation  
DSPI  
Crystal oscillator input  
SCK_B_LVDS–  
SCK_B_LVDS+  
LVDS pair used for DSPI_B TSB mode transmission  
SOUT_B_LVDS–  
SOUT_B_LVDS+  
DSPI  
LVDS pair used for DSPI_B TSB mode transmission  
LVDS pair used for DSPI_C TSB mode transmission  
LVDS pair used for DSPI_C TSB mode transmission  
SCK_C_LVDS–  
SCK_C_LVDS+  
DSPI  
SOUT_C_LVDS–  
SOUT_C_LVDS+  
DSPI  
PCS_B[0]  
PCS_C[0]  
DSPI_B – DSPI_C  
DSPI_B – DSPI_C  
DSPI_B – DSPI_C  
DSPI_B – DSPI_C  
DSPI_B – DSPI_C  
Calibration Bus  
Calibration Bus  
Peripheral chip select when device is in master mode—slave  
select when used in slave mode  
PCS_B[1:5]  
PCS_C[1:5]  
Peripheral chip select when device is in master mode—not used  
in slave mode  
SCK_B  
SCK_C  
DSPI clock—output when device is in master mode; input when  
in slave mode  
SIN_B  
SIN_C  
DSPI data in  
SOUT_B  
SOUT_C  
DSPI data out  
CAL_ADDR[12:30]  
The CAL_ADDR[12:30] signals specify the physical address of  
the bus transaction.  
CAL_CS[0:3]  
CSx is asserted by the master to indicate that this transaction is  
targeted for a particular memory bank on the Primary external  
bus.  
CAL_DATA[0:15]  
CAL_OE  
Calibration Bus  
Calibration Bus  
The CAL_DATA[0:15] signals contain the data to be transferred  
for the current transaction.  
OE is used to indicate when an external memory is permitted to  
drive back read data. External memories must have their data  
output buffers off when OE is negated. OE is only asserted for  
chip-select accesses.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
51  
Pinout and signal description  
Table 4. Signal details (continued)  
Signal  
Module or Function  
Description  
CAL_RD_WR  
Calibration Bus  
RD_WR indicates whether the current transaction is a read  
access or a write access.  
CAL_TS_ALE  
Calibration Bus  
The Transfer Start signal (TS) is asserted by the MPC5634M to  
indicate the start of a transfer.  
The Address Latch Enable (ALE) signal is used to demultiplex  
the address from the data bus.  
CAL_EVTO  
CAL_MCKO  
NEXUSCFG  
eMIOS[0:23]  
AN[0:39]  
Calibration Bus  
Calibration Bus  
Nexus Event Out  
Nexus Message Clock Out  
Nexus/Calibration Bus Nexus/Calibration Bus selector  
eMIOS  
eQADC  
eQADC  
eQADC  
eMIOS I/O channels  
Single-ended analog inputs for analog-to-digital converter  
eQADC free running clock for eQADC SSI.  
FCK  
MA[0:2]  
These three control bits are output to enable the selection for an  
external Analog Mux for expansion channels.  
REFBYPC  
SDI  
eQADC  
Bypass capacitor input  
Serial data in  
eQADC  
SDO  
eQADC  
Serial data out  
SDS  
eQADC  
Serial data select  
VRH  
eQADC  
Voltage reference high input  
Voltage reference low input  
eSCI receive  
VRL  
eQADC  
SCI_A_RX  
SCI_B_RX  
eSCI_A – eSCI_B  
SCI_A_TX  
SCI_B_TX  
eSCI_A – eSCI_B  
eSCI transmit  
ETPU_A[0:31]  
eTPU  
eTPU I/O channel  
FlexCAN transmit  
CAN_A_TX  
CAN_C_TX  
FlexCan_A –  
FlexCAN_C  
CAN_A_RX  
CAN_C_RX  
FlexCAN_A –  
FlexCAN_C  
FlexCAN receive  
JCOMP  
TCK  
JTAG  
JTAG  
JTAG  
Enables the JTAG TAP controller.  
Clock input for the on-chip test and debug logic.  
TDI  
Serial test instruction and data input for the on-chip test and  
debug logic.  
TDO  
TMS  
JTAG  
JTAG  
Serial test data output for the on-chip test logic.  
Controls test mode operations for the on-chip test and debug  
logic.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
52  
Freescale Semiconductor  
Pinout and signal description  
Table 4. Signal details (continued)  
Signal  
Module or Function  
Description  
EVTI  
Nexus  
EVTI is an input that is read on the negation of RESET to enable  
or disable the Nexus Debug port. After reset, the EVTI pin is  
used to initiate program synchronization messages or generate  
a breakpoint.  
EVTO  
Nexus  
Nexus  
Nexus  
Output that provides timing to a development tool for a single  
watchpoint or breakpoint occurrence.  
MCKO  
MCKO is a free running clock output to the development tools  
which is used for timing of the MDO and MSEO signals.  
MDO[3:0]  
Trace message output to development tools. This pin also  
indicates the status of the crystal oscillator clock following a  
power-on reset, when MDO[0] is driven high until the crystal  
oscillator clock achieves stability and is then negated.  
MSEO[1:0]  
Nexus  
Output pin—Indicates the start or end of the variable length  
message on the MDO pins  
BOOTCFG[1]  
SIU – Configuration  
The BOOTCFG1 pin is sampled during the assertion of the  
RSTOUT signal, and the value is used to update the RSR and  
the BAM boot mode  
The following values are for BOOTCFG[0:1}:  
0 Boot from internal flash memory  
1 FlexCAN/eSCI boot  
WKPCFG  
SIU – Configuration  
The WKPCFG pin is applied at the assertion of the internal reset  
signal (assertion of RSTOUT), and is sampled 4 clock cycles  
before the negation of the RSTOUT pin.  
The value is used to configure whether the eTPU and eMIOS  
pins are connected to internal weak pull up or weak pull down  
devices after reset. The value latched on the WKPCFG pin at  
reset is stored in the Reset Status Register (RSR), and is  
updated for all reset sources except the Debug Port Reset and  
Software External Reset.  
0: Weak pulldown applied to eTPU and eMIOS pins at reset  
1: Weak pullup applied to eTPU and eMIOS pins at reset.  
ETRIG[2:3]  
IRQ[0:15]  
SIU – eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx  
SIU – External  
Interrupts  
The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX Select  
Register 1 is used to select the IRQ[0:15] pins as inputs to the  
IRQs.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
53  
Pinout and signal description  
Table 4. Signal details (continued)  
Module or Function Description  
Signal  
NMI  
SIU – External  
Interrupts  
Non-Maskable Interrupt  
GPIO[n]  
SIU – GPIO  
Configurable general purpose I/O pins. Each GPIO input and  
output is separately controlled by an 8-bit input (GPDI) or output  
(GPDO) register. Additionally, each GPIO pins is configured  
using a dedicated SIU_PCR register.  
The GPIO pins are generally multiplexed with other I/O pin  
functions.  
RESET  
SIU – Reset  
The RESET pin is an active low input. The RESET pin is  
asserted by an external device during a power-on or external  
reset. The internal reset signal asserts only if the RESET pin  
asserts for 10 clock cycles. Assertion of the RESET pin while the  
device is in reset causes the reset cycle to start over.  
The RESET pin has a glitch detector which detects spikes  
greater than two clock cycles in duration that fall below the  
switch point of the input buffer logic of the VDDEH input pins.  
The switch point lies between the maximum VIL and minimum  
VIH specifications for the VDDEH input pins.  
RSTOUT  
SIU – Reset  
The RSTOUT pin is an active low output that uses a push/pull  
configuration. The RSTOUT pin is driven to the low state by the  
MCU for all internal and external reset sources. There is a delay  
between initiation of the reset and the assertion of the RSTOUT  
pin.  
Table 5 gives the power/ground segmentation of the MPC563x MCU. Each segment provides the power and ground for the  
given set of I/O pins, and can be powered by any of the allowed voltages regardless of the power on the other segments.  
.
Table 5. MPC563x Power/Ground Segmentation  
144-LQFP 176-LQFP 208-BGA  
Power  
Segment  
Voltage  
Range1  
I/O Pins Powered  
by Segment  
Pin  
Pin  
Pin  
Number  
Number  
Number  
VDDA0  
6
6
B11  
5.0 V  
AN[0:7], AN[9], AN[11],  
AN[16:18], AN[21:25],  
AN[27:28], AN[30:37],  
AN38, AN39, VRL,  
REFBYPC,  
VRH  
VDDE5  
T13  
K4  
1.8 V –  
3.3 V  
CLKOUT  
VDDEH1  
(a,b)  
24, 34  
31, 41  
3.3 V –  
5.0 V  
PCKCFG[2],  
eTPU_A[0:31],  
eMIOS[0:2]  
MPC5634M Microcontroller Data Sheet, Rev. 9  
54  
Freescale Semiconductor  
Pinout and signal description  
Table 5. MPC563x Power/Ground Segmentation (continued)  
144-LQFP 176-LQFP 208-BGA  
Power  
Segment  
Voltage  
Range1  
I/O Pins Powered  
by Segment  
Pin  
Pin  
Pin  
Number  
Number  
Number  
VDDEH6  
(a,b)  
78, 93  
95, 110  
F13  
3.3 V –  
5.0 V  
RESET, RSTOUT,  
WKPCFG, BOOTCFG1,  
PLLREF, SCK_B,  
PCKCFG[0],  
CAN_A_TX, CAN_A_RX,  
CAN_C_TX, CAN_C_RX,  
SCI_A_TX, SCI_A_RX,  
SCI_B_TX, SCI_B_RX,  
SCK_B, SIN_B, SOUT_B,  
DSPI_B_PCS_B[0:5],  
eMIOS[4],  
eMIOS[8:15], eMIOS[23],  
XTAL, EXTAL  
VDDEH72  
102, 113  
125, 138  
D12  
3.3 V –  
5.0 V  
PCKCFG[1],  
MDO[0:3], EVTI, EVTO,  
MCKO, MSEO[0:1], TDO,  
TDI, TMS, TCK, JCOMP,  
AN[12:15]  
(GPIO[98:99],  
GPIO[206:207])  
VDDE123  
VDDE7  
16, 119  
E13, P6  
1.8 V –  
3.3 V  
CAL_ADDR[12:30],  
CAL_DATA[0:15],  
CAL_CS[0], CAL_CS[2:3],  
CAL_RD_WR,  
CAL_WE[0:1], CAL_OE,  
CAL_TS, ALT_MCKO,  
ALT_EVTO, NEXUSCFG  
1
These are nominal voltages. All VDDE and VDDEH voltages are –5%, +10% (VDDE 1.62 V to 3.6 V,  
VDDEH 3.0 V to 5.5 V). VDDA is +5%, –10%.  
2
3
The VDDEH7 segment may be powered from 3.0 V to 5.0 V for mux address or SSI functions, but  
must meet the VDDA specifications of 4.5 V to 5.25 V for analog input function.  
In the calibration package this signal is named VDDE12; it is named VDDE7 in all other packages.  
,
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
55  
Electrical characteristics  
4
Electrical characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications for the MPC5634M series of MCUs.  
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon  
these specifications will be met. Finalized specifications will be published after complete characterization and device  
qualifications have been completed.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
4.1  
Parameter classification  
The electrical parameters shown in this document are guaranteed by various methods. To provide a better understanding, the  
classifications listed in Table 6 are used and the parameters are tagged accordingly in the tables. Note that only controller  
characteristics (“CC”) are classified. System requirements (“SR”) are operating conditions that must be provided to ensure  
normal device operation.  
Table 6. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
4.2  
Maximum ratings  
1
Table 7. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
min  
max  
VDD  
VFLASH  
VSTBY  
SR 1.2 V core supply voltage2  
SR Flash core voltage3  
– 0.3  
– 0.3  
– 0.3  
– 0.3  
– 0.3  
1.32  
5.5  
V
V
V
V
V
SR SRAM standby voltage4  
5.5  
VDDPLL  
SR Clock synthesizer voltage  
1.32  
3.6  
5
VRC33  
SR Voltage regulator control  
input voltage  
MPC5634M Microcontroller Data Sheet, Rev. 9  
56  
Freescale Semiconductor  
Electrical characteristics  
1
Table 7. Absolute maximum ratings (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
min  
max  
VDDA  
SR Analog supply voltage4  
SR I/O supply voltage6  
SR I/O supply voltage4  
Reference to VSSA  
– 0.3  
– 0.3  
– 0.3  
5.5  
3.6  
5.5  
V
V
V
VDDE  
VDDEH  
VIN  
SR DC input voltage7  
VDDEH powered I/O  
pads  
–1.08  
VDDEH + 0.3 V9  
V
VDDE powered I/O pads –1.010  
VDDE + 0.3 V10  
VDDA + 0.3 V  
5.5  
VDDA powered I/O pads  
–1.0  
VDDREG  
VRH  
SR Voltage regulator supply  
voltage6  
– 0.3  
V
V
SR Analog reference high  
voltage  
Reference to VRL  
– 0.3  
5.5  
VSS – VSSA  
SR VSS differential voltage  
SR VREF differential voltage6  
– 0.1  
– 0.3  
– 0.3  
0.1  
5.5  
0.3  
V
V
V
VRH – VRL  
VRL – VSSA  
SR VRL to VSSA differential  
voltage  
V
SSPLL – VSS SR VSSPLL to VSS differential  
– 0.1  
– 3  
0.1  
3
V
voltage  
IMAXD  
IMAXA  
TJ  
SR Maximum DC digital input  
current11  
Per pin, applies to all  
digital pins  
mA  
mA  
oC  
SR Maximum DC analog input Per pin, applies to all  
5
current12  
analog pins  
SR Maximum operating  
temperature range13 – die  
junction temperature  
– 40.0  
150.0  
TSTG  
TSDR  
SR Storage temperature range  
– 55.0  
150.0  
260.0  
oC  
oC  
SR Maximum solder  
temperature14  
MSL  
SR Moisture sensitivity level15  
3
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress  
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect  
device reliability or cause permanent damage to the device.  
2
3
4
5
Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V +10%.  
The VFLASH supply is connected to VDDEH1  
.
Allowed 6.8 V for 10 hours cumulative time, remaining time at 5 V +10%.  
The pin named as VRC33 is internally connected to the pads VFLASH and VRC33 in the 144 LQFP package. These  
limits apply when the internal regulator is disabled and VRC33 power is supplied externally.  
6
7
All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH  
.
AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of  
60 hours over the complete lifetime of the device (injection current not limited for this duration).  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
57  
Electrical characteristics  
8
Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met.  
9
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH supplies, if  
the maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage  
specifications.  
10 Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the  
maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage  
specifications.  
11 Total injection current for all pins (including both digital and analog) must not exceed 25 mA.  
12 Total injection current for all analog input pins must not exceed 15 mA.  
13 Lifetime operation at these specification limits is not guaranteed.  
14 Solder profile per CDF-AEC-Q100.  
15 Moisture sensitivity per JEDEC test method A112.  
4.3  
Thermal characteristics  
Table 8. Thermal characteristics for 144-pin LQFP  
Symbol  
RJA  
C
Parameter  
Conditions  
Value  
Unit  
CC D Junction-to-Ambient, Natural Convection1  
CC D Junction-to-Ambient, Natural Convection2  
CC D Junction-to-Ambient (@200 ft/min)2  
CC D Junction-to-Ambient (@200 ft/min)2  
CC D Junction-to-Board2  
Single layer board – 1s  
Four layer board – 2s2p  
Single layer board –1s  
Four layer board – 2s2p  
43  
35  
34  
29  
22  
8
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RJA  
RJMA  
RJMA  
RJB  
RJCtop  
JT  
CC D Junction-to-Case (Top)3  
CC D Junction-to-Package Top, Natural  
Convection4  
2
1
2
3
4
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package.  
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JT.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
58  
Freescale Semiconductor  
Electrical characteristics  
1
Table 9. Thermal characteristics for 176-pin LQFP  
Symbol  
RJA  
C
Parameter  
Conditions  
Value  
Unit  
CC D Junction-to-Ambient, Natural Convection2  
CC D Junction-to-Ambient, Natural Convection2  
CC D Junction-to-Moving-Air, Ambient2  
Single layer board - 1s  
Four layer board - 2s2p  
38  
31  
30  
°C/W  
°C/W  
°C/W  
RJA  
RJMA  
@200 ft./min., single layer  
board - 1s  
RJMA  
CC D Junction-to-Moving-Air, Ambient2  
@200 ft./min., four layer  
board - 2s2p  
25  
°C/W  
RJB  
RJCtop  
JT  
CC D Junction-to-Board3  
CC D Junction-to-Case4  
20  
5
°C/W  
°C/W  
°C/W  
CC D Junction-to-Package Top, Natural  
Convection5  
2
1
2
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package.  
3
4
5
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JT.  
1
Table 10. Thermal characteristics for 208-pin MAPBGA  
Symbol  
RJA  
C
Parameter  
Conditions  
Value  
Unit  
CC D Junction-to-ambient, natural convection2,3 One layer board - 1s  
39  
24  
31  
20  
13  
6
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RJMA  
RJA  
RJMA  
RJB  
RJC  
JT  
CC D Junction-to-ambient natural convection2,4  
CC D Junction-to-ambient (@200 ft/min)2,4  
CC D Junction-to-ambient (@200 ft/min)2,4  
CC D Junction-to-board5  
Four layer board - 2s2p  
Single layer board  
Four layer board 2s2p  
Four layer board - 2s2p  
CC D Junction-to-case6  
CC D Junction-to-package top natural convection7  
2
1
2
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
3
4
5
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
6
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate  
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
59  
Electrical characteristics  
7
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written as Psi-JT.  
4.3.1  
General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
JA  
D
where:  
o
T = ambient temperature for the package ( C)  
A
o
R
= junction-to-ambient thermal resistance ( C/W)  
JA  
P = power dissipation in the package (W)  
D
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for  
estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a  
four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance  
is not a constant. The thermal resistance depends on the:  
Construction of the application board (number of planes)  
Effective size of the board which cools the component  
Quality of the thermal and electrical connections to the planes  
Power dissipated by adjacent components  
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package  
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance  
between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.  
As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit  
board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:  
One oz. (35 micron nominal thickness) internal planes  
Components are well separated  
Overall power dissipation on the board is less than 0.02 W/cm2  
The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the  
ambient temperature varies widely within the application. For many natural convection and especially closed box applications,  
the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the  
device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
* P )  
Eqn. 2  
J
B
JB  
D
where:  
o
T = board temperature for the package perimeter ( C)  
B
o
R
= junction-to-board thermal resistance ( C/W) per JESD51-8S  
JB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction  
temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to  
a board with internal planes.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
60  
Freescale Semiconductor  
Electrical characteristics  
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal  
resistance:  
R
= R  
+ R  
CA  
Eqn. 3  
JA  
JC  
where:  
o
R
R
R
= junction-to-ambient thermal resistance ( C/W)  
JA  
JC  
CA  
o
= junction-to-case thermal resistance ( C/W)  
o
= case to ambient thermal resistance ( C/W)  
R
is device related and is not affected by other factors. The thermal environment can be controlled to change the  
JC  
case-to-ambient thermal resistance, R  
. For example, change the air flow around the device, add a heat sink, change the  
CA  
mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding  
the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat  
sink to ambient. For most packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the  
junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a  
substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the  
thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple  
estimations and for computational fluid dynamics (CFD) thermal models.  
To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization  
parameter () to determine the junction temperature by measuring the temperature at the top center of the package case using  
JT  
the following equation:  
T = T + (x P )  
Eqn. 4  
J
T
JT  
D
where:  
o
T
= thermocouple temperature on top of the package ( C)  
T
o
= thermal characterization parameter ( C/W)  
JT  
P
= power dissipation in the package (W)  
D
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests  
on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from  
the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling  
effects of the thermocouple wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
San Jose, CA 95134  
USA  
(408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or  
303-397-7956.  
JEDEC specifications are available on the web at http://www.jedec.org.  
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine  
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications”, Electronic  
Packaging and Production, pp. 53-58, March 1998.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
61  
Electrical characteristics  
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application  
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
4.4  
Electromagnetic Interference (EMI) characteristics  
1
Table 11. EMI testing specifications  
Level  
(Typ)  
Symbol  
Parameter  
Conditions  
Device  
Configuration, test  
conditions and EM  
testing per standard  
IEC61967-2;Supply Frequency = 80  
Voltage = 5.0V DC,  
Ambient  
fOSC/fBUS  
Frequency  
Unit  
Radiated  
Emissions  
VEME  
Oscillator  
Frequency = 8  
MHz;  
150 kHz – 50 MHz  
50–150 MHz  
150–500 MHz  
500–1000 MHz  
IEC Level  
26  
24  
24  
21  
K
dBV  
System Bus  
MHz;  
No PLL  
Frequency  
Modulation  
Temperature =  
25°C, Worst-case  
Orientation  
Oscillator  
Frequency = 8  
MHz;  
System Bus  
Frequency = 80  
MHz;  
1% PLL  
Frequency  
Modulation  
150 kHz – 50 MHz  
50–150 MHz  
150–500 MHz  
500–1000 MHz  
IEC Level  
20  
19  
14  
7
dBV  
L
1
IEC Classification Level: L = 24dBuV; K = 30dBuV.  
4.5  
Electromagnetic static discharge (ESD) characteristics  
1,2  
Table 12. ESD ratings  
Symbol  
Parameter  
Conditions  
Value  
Unit  
SR ESD for Human Body Model (HBM)  
SR HBM circuit description  
2000  
1500  
100  
500  
750  
1
V
R1  
C
SR  
pF  
V
SR ESD for field induced charge Model (FCDM) All pins  
Corner pins  
SR Number of pulses per pin  
SR Number of pulses  
Positive pulses (HBM)  
Negative pulses (HBM)  
1
1
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification  
requirements, which includes the complete DC parametric and functional testing at room temperature and hot  
temperature.”  
MPC5634M Microcontroller Data Sheet, Rev. 9  
62  
Freescale Semiconductor  
Electrical characteristics  
4.6  
Power Management Control (PMC) and Power On Reset (POR)  
electrical specifications  
Table 13. PMC Operating conditions and external regulators supply voltage  
ID  
Name  
Jtemp  
C
Parameter  
Min  
Typ  
Max  
Unit  
1
2
3
SR — Junction temperature  
–40  
27  
5
150  
5.25  
1.32  
°C  
V
Vddreg  
Vdd  
SR — PMC 5 V supply voltage VDDREG  
4.751  
1.263  
SR — Core supply voltage 1.2 V VDD when external  
regulator is used without disabling the internal  
regulator (PMC unit turned on, LVI monitor  
active)2  
1.3  
V
3a  
SR — Core supply voltage 1.2 V VDD when external  
regulator is used with a disabled internal  
regulator (PMC unit turned-off, LVI monitor  
disabled)  
1.14  
1.2  
1.32  
V
4
5
Ivdd  
SR — Voltage regulator core supply maximum DC  
output current4  
400  
3.3  
mA  
V
Vdd33  
SR — Regulated 3.3 V supply voltage when external  
regulator is used without disabling the internal  
regulator (PMC unit turned-on, internal 3.3V  
regulator enabled, LVI  
3.45  
3.6  
monitor active)5  
5a  
6
SR — Regulated 3.3 V supply voltage when external  
regulator is used with a disabled internal  
regulator (PMC unit turned-off, LVI monitor  
disabled)  
3
3.3  
3.6  
V
SR — Voltage regulator 3.3 V supply maximum  
required DC output current  
80  
mA  
1
2
3
4
5
During start up operation the minimum required voltage to come out of reset state is 4.6 V.  
An internal regulator controller can be used to regulate core supply.  
The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V.  
The onchip regulator can support a minimum of 400 ma although the worst case core current is 180 ma.  
An internal regulator can be used to regulate 3.3 V supply.  
Table 14. PMC electrical characteristics  
ID  
Name  
Vbg  
C
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1
CC C Nominal bandgap voltage  
reference  
1.219  
V
1a  
1b  
CC  
P
Untrimmed bandgap  
reference voltage  
Vbg–7%  
Vbg  
Vbg  
Vbg+6%  
V
V
CC  
P
Trimmed bandgap  
reference voltage (5 V,  
27 °C)1  
Vbg–10mV  
Vbg+10mV  
1c  
CC C Bandgap reference  
temperature variation  
100  
ppm  
/°C  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
63  
Electrical characteristics  
Table 14. PMC electrical characteristics (continued)  
ID  
Name  
C
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1d  
CC C Bandgap reference supply  
voltage variation  
3000  
ppm  
/V  
2
Vdd  
CC C Nominal VDD core supply  
internal regulator target  
1.28  
Vdd  
V
DC output voltage2  
2a  
CC  
P
Nominal VDD core supply  
internal regulator target DC  
output voltage variation at  
power-on reset  
Vdd – 6%  
Vdd + 10%  
V
2b  
CC  
P
Nominal VDD core supply  
internal regulator target DC  
output voltage variation  
after power-on reset  
Vdd – 103  
Vdd  
Vdd + 3%  
V
2c  
2d  
CC C Trimming step Vdd  
20  
mV  
mA  
Ivrcctl  
CC C Voltage regulator controller  
for core supply maximum  
DC output current  
20  
3
Lvi1p2  
CC C Nominal LVI for rising core  
supply4,5  
1.160  
1.200  
V
V
3a  
CC C Variation of LVI for rising  
core supply at power-on  
reset5,6  
1.120  
1.280  
3b  
3c  
CC C Variation of LVI for rising  
core supply after power-on  
reset5,6  
Lvi1p2–3% Lvi1p2  
Lvi1p2+3%  
V
CC C Trimming step LVI core  
supply5  
20  
mV  
3d  
4
Lvi1p2_h CC C LVI core supply hysteresis5  
40  
mV  
V
Por1.2V_r CC C POR 1.2 V rising  
0.709  
4a  
CC C POR 1.2 V rising variation Por1.2V_r– Por1.2V_r Por1.2V_r+  
V
35%  
35%  
4b Por1.2V_f CC C POR 1.2 V falling  
0.638  
V
V
4c  
CC C POR 1.2 V falling variation Por1.2V_f– Por1.2V_f Por1.2V_f+  
35%  
35%  
5
Vdd33  
CC C Nominal 3.3 V supply  
internal regulator DC output  
voltage  
3.39  
V
V
5a  
CC  
P
Nominal 3.3 V supply  
internal regulator DC output  
voltage variation at  
Vdd33 –  
8.5%  
Vdd33  
Vdd3 + 7%  
power-on reset6  
MPC5634M Microcontroller Data Sheet, Rev. 9  
64  
Freescale Semiconductor  
Electrical characteristics  
Table 14. PMC electrical characteristics (continued)  
ID  
Name  
C
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
5b  
CC  
P
Nominal 3.3 V supply  
internal regulator DC output  
voltage variation after  
power-on reset  
Vdd33 –  
7.5%  
Vdd33  
Vdd33 +  
7%  
V
With internal  
load up  
to Idd3p3  
5c  
5d  
CC D Voltage regulator 3.3 V  
output impedance at  
2
maximum DC load  
Idd3p3  
CC  
P
Voltage regulator 3.3 V  
maximum DC output  
current  
80  
mA  
5e Vdd33 ILim6 CC C Voltage regulator 3.3 V DC  
current limit  
130  
mA  
V
6
Lvi3p3  
CC C Nominal LVI for rising 3.3 V  
supply5  
3.090  
The Lvi3p3  
specs are also  
valid for the  
Vddeh LVI  
6a  
6b  
CC C Variation of LVI for rising  
3.3 V supply at power-on  
reset5  
Lvi3p3–6% Lvi3p3  
Lvi3p3–3% Lvi3p3  
Lvi3p3+6%  
Lvi3p3+3%  
V
V
See note 7  
CC C Variation of LVI for rising  
3.3 V supply after power-on  
reset5  
See note 7  
6c  
6d  
7
CC C Trimming step LVI 3.3 V5  
20  
60  
mV  
mV  
V
Lvi3p3_h CC C LVI 3.3 V hysteresis5  
Por3.3V_r CC C Nominal POR for rising  
3.3 V supply  
2.07  
The 3.3V POR  
specs  
are also valid  
for the  
Vddeh POR  
7a  
CC C Variation of POR for rising Por3.3V_r– Por3.3V_r Por3.3V_r+  
V
V
V
V
V
3.3 V supply  
35%  
35%  
7b Por3.3V_f CC C Nominal POR for falling  
3.3 V supply  
1.95  
7c  
Lvi5p0  
CC C Variation of POR for falling Por3.3V_f– Por3.3V_f Por3.3V_f+  
3.3 V supply  
35%  
35%  
8
CC C Nominal LVI for rising 5 V  
VDDREG supply5  
4.290  
8a  
CC C Variation of LVI for rising  
5 V VDDREG supply at  
power-on reset5  
Lvi5p0–6% Lvi5p0  
Lvi5p0–3% Lvi5p0  
Lvi5p0+6%  
Lvi5p0+3%  
8b  
8c  
CC C Variation of LVI for rising  
5 V VDDREG supply  
V
power-on reset5  
CC C Trimming step LVI 5 V5  
20  
mV  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
65  
Electrical characteristics  
Table 14. PMC electrical characteristics (continued)  
ID  
Name  
C
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
8d  
9
Lvi5p0_h CC C LVI 5 V hysteresis5  
60  
mV  
V
Por5V_r CC C Nominal POR for rising 5 V  
VDDREG supply  
2.67  
9a  
9b  
9c  
CC C Variation of POR for rising Por5V_r – Por5V_r Por5V_r +  
V
V
V
5 V VDDREG supply  
35%  
50%  
Por5V_f CC C Nominal POR for falling 5 V  
VDDREG supply  
2.47  
CC C Variation of POR for falling Por5V_f – Por5V_f Por5V_f +  
5 V VDDREG supply 35% 50%  
1
2
3
4
5
The limits will be reviewed after data collection from 3 different lots in a full production environment.  
Using external ballast transistor.  
Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset.  
LVI for falling supply is calculated as LVI rising - LVI hysteresis.  
The internal voltage regulator can be disabled by tying the VDDREG pin to ground. When the internal voltage  
regulator is disabled, the LVI specifications are not applicable because all LVI monitors are disabled. POR  
specifications remain valid when the internal voltage regulator is disabled as long as VDDEH and VDD33 supplies  
are within the required ranges.  
6
7
This parameter is the “inrush” current of the internal 3.3V regulator when it is turned on. This spec. is the current at  
which the regulator will go into current limit mode.  
Lvi3p3 tracks DC target variation of internal Vdd33 regulator. Minimum and maximum Lvi3p3 correspond to  
minimum and maximum Vdd33 DC target respectively.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
66  
Freescale Semiconductor  
Electrical characteristics  
4.6.1  
Regulator example  
Keep inductance from 5V supply  
to the transistor collector and  
VDDREG below 1 H if not using R  
VDDREG  
C
5V from  
power supply  
Required only  
CREG  
if R is used  
C
RC  
CC  
T1  
MCU  
VRCCTL  
RB  
CB  
Keep inductance  
below 20 nH  
RE  
VDD  
VSS  
CE  
CD  
Figure 7. Core voltage regulator controller external components preferred configuration  
There are three options for the bypassing and compensation networks for the 1.2V regulator controller. The component values  
in the following table are the same for all PMC network requirements.  
Table 15. Required external PMC component values  
Component  
Pass Transistor  
Symbol  
T1  
Minimum  
Typical  
Maximum  
Units  
Comment  
NJD2873 or  
BCP68  
VDDREG capacitor  
CREG  
10  
µF  
µF  
X7R,  
-50%/+35%  
Pass transistor Collector CC  
bypass capacitor  
13.3  
5.6  
X7R,  
-50%/+35%  
Collector resistor1  
RC  
1.1  
1
The collector resistor may not be required. It depends on the allowable power dissipation of the pass transistor (T1).  
Table 16, Table 17 and Table 18 show the required component values for the three different options.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
67  
Electrical characteristics  
Component  
Table 16. Network 1 component values  
Symbol  
Minimum  
Typical  
Maximum  
Units  
Comment  
Transistor emitter bypass CE  
capacitance  
4 x 2.35  
1 x 5  
5
4 x 4.7  
1 x 10  
4 x 6.35  
1 x 13.5  
50  
µF  
µF  
X7R, -50%/+35%  
X7R, -50%/+35%  
RESR  
CD  
m  
Equivalent ESR of  
CE capacitors  
MCU decoupling  
capacitor  
4 x 50  
4 x 100  
4 x 135  
nF  
X7R, -50%/+35%  
Base "snubber" capacitor CB  
Base "snubber" resistor RB  
1.1  
6.12  
0
2.2  
6.8  
0
2.97  
7.48  
0
µF  
X7R, -50%/+35%  
±10%  
Emitter resistor  
RE  
Not required  
(short)  
Table 17. Network 2 component values  
Component  
Symbol  
Minimum  
Typical  
Maximum  
Units  
Comment  
Transistor emitter bypass CE  
capacitance  
3 x 2.35  
1 x 5  
5
3 x 4.7  
1 x 10  
3 x 6.35  
1 x 13.5  
50  
µF  
µF  
X7R, -50%/+35%  
X7R, -50%/+35%  
RESR  
CD  
m  
Equivalent ESR of  
CE capacitors  
MCU decoupling  
capacitor  
4 x 50  
4 x 100  
4 x 135  
nF  
X7R, -50%/+35%  
Base "snubber" capacitor CB  
Base "snubber" resistor RB  
1.1  
9
2.2  
10  
2.97  
11  
µF  
X7R, -50%/+35%  
±10%  
Emitter resistor  
RE  
0.252  
0.280  
0.308  
Not required  
(short)  
The following component configuration is acceptable when using the BCP68 transistor, however, is not recommended for new  
designs. Either option 1 or option 2 should be used for new designs. This option should not be used with the NJD2873 transistor.  
Table 18. Network 3 component values  
Component  
Symbol  
Minimum  
Typical  
Maximum  
Units  
Comment  
Transistor emitter bypass CE  
capacitance  
4 x 3.4  
5
4 x 6.8  
4 x 9.18  
50  
µF  
X7R, -50%/+35%  
RESR  
m  
Equivalent ESR of  
CE capacitors  
MCU decoupling  
capacitor  
CD  
4 x 110  
4 x 220  
4 x 297  
nF  
X7R, -50%/+35%  
Base "snubber" capacitor CB  
Base "snubber" resistor RB  
1.1  
13.5  
0
2.2  
15  
0
2.97  
16.5  
0
µF  
X7R, -50%/+35%  
±10%  
Emitter resistor  
RE  
Not required  
(short)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
68  
Freescale Semiconductor  
Electrical characteristics  
4.6.2  
Recommended power transistors  
TM  
The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON Semiconductor  
BCP68T1 or NJD2873 as well as Philips Semiconductor BCP68. The collector of the external transistor is preferably  
TM  
connected to the same voltage supply source as the output stage of the regulator.  
Table 19. Recommended operating characteristics  
Symbol  
Parameter  
Value  
Unit  
hFE () DC current gain (Beta)  
60 – 550  
W
PD  
Absolute minimum power dissipation  
>1.0  
(1.5 preferred)  
ICMaxDC Minimum peak collector current  
1.0  
A
mV  
V
VCESAT Collector-to-emitter saturation voltage  
200–6001  
VBE  
Base-to-emitter voltage  
0.4–1.0  
1
Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT  
4.7  
Power up/down sequencing  
There is no power sequencing required among power sources during power up and power down, in order to operate within  
specification but use of the following sequence is strongly recommended when the internal regulator is bypassed:  
5 V 3.3 V and 1.2 V  
This is also the normal sequence when the internal regulator is enabled.  
Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc.,  
the state of the I/O pins during power up/down varies according to table Table 20 for all pins with fast pads and Table 21 for all  
1
pins with medium, slow and multi-voltage pads.  
Table 20. Power sequence pin states for fast pads  
VDDE  
VRC33  
VDD  
Fast (pad_fc)  
LOW  
VDDE  
VDDE  
VDDE  
X
X
X
LOW  
HIGH  
LOW  
VRC33  
VRC33  
LOW  
VDD  
HIGH IMPEDANCE  
FUNCTIONAL  
Table 21. Power sequence pin states for medium, slow and multi-voltage pads  
Medium (pad_msr_hv)  
VDDEH  
VDD  
Slow (pad_ssr_hv)  
Multi-voltage (pad_multv_hv)  
LOW  
VDDEH  
VDDEH  
X
LOW  
LOW  
VDD  
HIGH IMPEDANCE  
FUNCTIONAL  
1.If an external 3.3V external regulator is used to supply current to the 1.2V pass transistor and this supply also supplies  
current for the other 3.3V supplies, then the 5V supply must always be greater than or equal to the external 3.3V supply.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
69  
Electrical characteristics  
4.8  
DC electrical specifications  
1
Table 22. DC electrical specifications  
Value2  
typ  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
max  
VDD  
SR — Core supply voltage  
SR — I/O supply voltage  
SR — I/O supply voltage  
SR — 3.3 V external voltage4  
SR — Analog supply voltage  
SR — Analog input voltage6  
SR — VSS differential voltage  
1.14  
1.62  
3.0  
1.32  
3.63  
V
V
VDDE  
VDDEH  
VRC33  
VDDA  
5.25  
V
3.0  
3.6  
V
4.755  
5.25  
V
VINDC  
SS – VSSA  
VRL  
VSSA – 0.3  
–100  
VDDA+0.3  
100  
V
V
mV  
V
SR — Analog reference low  
voltage  
VSSA  
VSSA+0.1  
V
RL – VSSA  
VRH  
SR — VRL differential voltage  
–100  
100  
mV  
V
SR — Analog reference high  
voltage  
VDDA – 0.1  
VDDA  
V
RH – VRL  
SR — VREF differential  
voltage  
4.75  
1.14  
5.25  
1.32  
V
V
VDDF  
SR — Flash operating  
voltage 7  
8
VFLASH  
SR — Flash read voltage  
4.75  
0.95  
5.25  
1.2  
V
V
VSTBY  
SR — SRAM standby voltage Unregulated  
mode  
Regulated  
mode  
2.0  
5.5  
5.25  
VDDREG  
VDDPLL  
SSPLL – VSS  
VIL_S  
SR — Voltage regulator  
supply voltage9  
4.75  
V
V
SR — Clock synthesizer  
operating voltage  
1.14  
1.32  
V
SR — VSSPLL to VSS  
differential voltage  
–100  
100  
mV  
V
CC C Slow/medium pad I/O Hysteresis  
VSS–0.3  
VSS–0.3  
VSS–0.3  
0.35*VDDEH  
0.40*VDDEH  
0.35*VDDE  
0.40*VDDE  
input low voltage  
enabled  
P
hysteresis  
disabled  
VIL_F  
CC C Fast pad I/O input low Hysteresis  
V
voltage  
enabled  
P
hysteresis  
disabled  
VSS–0.3  
MPC5634M Microcontroller Data Sheet, Rev. 9  
70  
Freescale Semiconductor  
Electrical characteristics  
1
Table 22. DC electrical specifications (continued)  
Value2  
Symbol  
C
Parameter  
Conditions  
Unit  
max  
min  
typ  
VIL_LS  
CC  
C
P
Multi-voltage pad I/O Hysteresis  
VSS–0.3  
0.8  
V
V
V
V
V
V
V
input low voltage in  
low-swing  
enabled  
Hysteresis  
disabled  
V
SS–0.3  
SS–0.3  
1.1  
mode10,11,12,13  
VIL_HS  
CC C Multi-voltage pad I/O Hysteresis  
V
0.35 VDDEH  
0.4 VDDEH  
VDDEH+0.3  
VDDEH+0.3  
VDDE+0.3  
VDDE+0.3  
VDDEH+0.3  
VDDEH+0.3  
VDDEH+0.3  
VDDEH+0.3  
0.2*VDDEH  
input low voltage in  
high-swing mode  
enabled  
P
Hysteresis  
disabled  
VSS–0.3  
0.65 VDDEH  
0.55 VDDEH  
0.65 VDDE  
0.55 VDDE  
2.5  
VIH_S  
CC C Slow/medium pad I/O Hysteresis  
input high voltage  
enabled  
P
hysteresis  
disabled  
VIH_F  
CC C Fast pad I/O input high Hysteresis  
voltage  
enabled  
P
hysteresis  
disabled  
VIH_LS  
VIH_HS  
VOL_S  
CC C Multi-voltage pad I/O Hysteresis  
input high voltage in  
low-swing  
enabled  
P
Hysteresis  
disabled  
2.2  
mode10,11,12,13,14  
CC C Multi-voltage pad I/O Hysteresis  
0.65 VDDEH  
0.55 VDDEH  
input high voltage in  
enabled  
high-swing mode15  
P
Hysteresis  
disabled  
CC P Slow/medium  
multi-voltage pad I/O  
output low voltage18,16  
VOL_F  
CC P Fast pad I/O output low  
voltage17,18  
0.2*VDDE  
0.6  
V
V
VOL_LS  
CC P Multi-voltage pad I/O  
output low voltage in  
low-swing  
I
OL = 2 mA  
mode10,11,12,13,17  
VOL_HS  
VOH_S  
VOH_F  
CC P Multi-voltage pad I/O  
output low voltage in  
0.2 VDDEH  
V
V
V
high-swing mode17  
CC P Slow/medium pad I/O  
output high  
0.8 VDDEH  
voltage18,16  
CC P Fast pad I/O output  
high voltage17,18  
0.8 VDDE  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
71  
Electrical characteristics  
1
Table 22. DC electrical specifications (continued)  
Value2  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typ  
max  
VOH_LS  
CC P Multi-voltage pad I/O  
output high voltage in  
low-swing  
IOH_LS  
=
2.1  
3.7  
V
0.5 mA  
Min VDDEH  
4.75 V  
=
mode10,11,12,13,17  
VOH_HS  
CC P Multi-voltage pad I/O  
output high voltage in  
0.8 VDDEH  
V
V
high-swing mode17  
VHYS_S  
CC C Slow/medium/multi-vol  
tage I/O input  
0.1 * VDDEH  
hysteresis  
VHYS_F  
CC C Fast I/O input  
hysteresis  
0.1 * VDDE  
0.25  
V
V
VHYS_LS  
CC C Low-Swing-Mode  
hysteresis  
Multi-Voltage I/O Input enabled  
Hysteresis  
19  
I
DD+IDDPLL  
CC P Operating current  
1.2 V supplies  
VDD = 1.32 V,  
80 MHz  
195  
135  
98  
mA  
CC  
P
V
DD = 1.32 V,  
60 MHz  
CC  
P
V
DD = 1.32 V,  
40 MHz  
IDDSTBY  
CC  
CC  
T Operating current 1 V TJ = 25 oC  
supplies  
80  
100  
700  
50  
µA  
µA  
A  
mA  
T
TJ = 55 oC  
TJ=150 oC  
IDDSTBY150  
CC P Operating current  
IDDSLOW  
IDDSTOP  
CC P VDD low-power mode Slow mode20  
operating current @  
C
Stop mode21  
50  
1.32 V  
4 22  
IDD33  
CC  
T Operating current  
3.3 V supplies @  
80 MHz  
VRC33  
,
70  
mA  
mA  
IDDA  
IREF  
IDDREG  
CC P Operating current  
VDDA  
30  
5.0 V supplies @  
P
Analog  
reference  
1.0  
80 MHz  
supply current  
C
VDDREG  
70  
MPC5634M Microcontroller Data Sheet, Rev. 9  
72  
Freescale Semiconductor  
Electrical characteristics  
1
Table 22. DC electrical specifications (continued)  
Value2  
typ  
Symbol  
C
Parameter  
Conditions  
Unit  
max  
min  
IDDH1  
CC D Operating current  
VDDEH1  
VDDEH6  
VDDEH7  
VDDE7  
15  
35  
See note 23  
mA  
IDDH6  
IDDH7  
IDD7  
IDDH9  
IDD12  
VDDE23 supplies @  
D
80 MHz  
D
D
D
D
VDDEH9  
VDDE12  
IACT_S  
CC C Slow/mediumI/Oweak 3.0 V – 3.6 V  
pull up/down current24  
95  
A  
A  
P
4.75 V –  
5.25 V  
200  
IACT_F  
CC D Fast I/O weak pull  
up/down current24  
1.62 V –  
1.98 V  
36  
34  
120  
139  
D
2.25 V –  
2.75 V  
D
3.0 V – 3.6 V  
42  
10  
158  
75  
IACT_MV_PU  
CC C Multi-voltagepadweak VDDEH  
=
A  
pullup current  
3.0–3.6 V10  
,
pad_multv_hv,  
all process  
corners,  
high swing  
mode only  
P
4.75 V –  
5.25 V  
25  
10  
200  
60  
IACT_MV_PD  
CC C Multivoltage pad weak VDDEH  
=
A  
pulldown current  
3.0–3.6 V10  
,
pad_multv_hv,  
all process  
corners,  
high swing  
mode only  
P
4.75 V –  
5.25 V  
25  
200  
2.5  
1.0  
250  
IINACT_D  
IIC  
CC P I/O input leakage  
current25  
–2.5  
–1.0  
–250  
A  
mA  
nA  
CC  
T DC injection current  
(per pin)  
IINACT_A  
CC P Analog input current,  
channel off, AN[0:7],  
AN38, AN3926  
P Analog input current,  
channel off, all other  
analog pins (ANx)26  
–150  
150  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
73  
Electrical characteristics  
1
Table 22. DC electrical specifications (continued)  
Value2  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typ  
max  
CL  
CC D Load capacitance (fast DSC(PCR[8:9  
10  
pF  
I/O)27  
]) = 0b00  
D
D
D
DSC(PCR[8:9  
]) = 0b01  
20  
30  
50  
7
DSC(PCR[8:9  
]) = 0b10  
DSC(PCR[8:9  
]) = 0b11  
CIN  
CC D Input capacitance  
(digital pins)  
pF  
pF  
pF  
CIN_A  
CIN_M  
CC D Input capacitance  
(analog pins)  
10  
12  
CC D Input capacitance  
(digital and analog  
pins28  
)
RPUPD200K  
CC P Weak Pull-Up/Down  
Resistance29,30  
130  
280  
k  
200 kOption  
RPUPDMATCH  
RPUPD100K  
CC C 200KOption  
–2.5  
65  
2.5  
%
CC P Weak Pull-Up/Down  
Resistance29,30  
140  
k  
100 kOption  
RPUPDMATCH  
RPUPD5K  
CC C 100KOption  
–2.5  
1.4  
2.5  
7.5  
%
CC D Weak Pull-Up/Down  
Resistance29  
5 V ± 5%  
supply  
k  
5 kOption  
TA (TL to TH)  
SR — Operating temperature  
range - ambient  
–40.0  
125.0  
50  
C  
(packaged)  
SR — Slew rate on power  
supply pins  
V/ms  
1
2
3
4
5
These specifications are design targets and subject to change per device characterization.  
TBD: To Be Defined.  
VDDE must be lower than VRC33, otherwise there is additional leakage on pins supplied by VDDE  
.
These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0).  
ADC is functional with 4 V VDDA 4.75 V but with derated accuracy. This means the ADC will continue to function  
at full speed with no bad behavior, but the accuracy will be degraded.  
6
7
Internal structures hold the input voltage less than VDDA + 1.0 V on all pads powered by VDDA supplies, if the  
maximum injection current specification is met (3 mA for all pins) and VDDA is within the operating voltage  
specifications.  
The VDDF supply is connected to VDD in the package substrate. This specification applies to calibration package  
devices only.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
74  
Freescale Semiconductor  
Electrical characteristics  
8
9
VFLASH is only available in the calibration package.  
Regulator is functional, with derated performance, with supply voltage down to 4.0 V.  
10 Multi-voltage pads (type pad_multv_hv) must be supplied with a power supply between 4.75 V and 5.25 V.  
11 The slew rate (SRC) setting must be 0b11 when in low-swing mode.  
12 While in low-swing mode there are no restrictions in transitioning to high-swing mode.  
13 Pin in low-swing mode can accept a 5 V input.  
14 Values are pending characterization.  
15 Pin in low-swing mode can accept a 5 V input.  
16  
Characterization based capability:  
IOH_S = {6, 11.6} mA and IOL_S = {9.2, 17.7} mA for {slow, medium} I/O with VDDEH=4.5 V;  
IOH_S = {2.8, 5.4} mA and IOL_S = {4.2, 8.1} mA for {slow, medium} I/O with VDDEH=3.0 V  
17 Characterization based capability:  
IOH_F = {12, 20, 30, 40} mA and IOL_F = {24, 40, 50, 65} mA for {00, 01,10, 11} drive mode with VDDE=3.0 V;  
IOH_F = {7, 13, 18, 25} mA and IOL_F = {18, 30, 35, 50} mA for {00, 01, 10, 11} drive mode with VDDE=2.25 V;  
IOH_F = {3, 7, 10, 15} mA and IOL_F = {12, 20, 27, 35} mA for {00, 01, 10, 11} drive mode with VDDE=1.62 V  
18 All VOL/VOH values 100% tested with ± 2 mA load.  
19 Run mode as follows:  
System clock = 40/60/80 MHz + FM 2%  
Code executed from flash memory  
ADC0 at 16 MHz with DMA enabled  
ADC1 at 8 MHz  
eMIOS pads toggle in PWM mode with a rate between 100 kHz and 500 kHz  
eTPU pads toggle in PWM mode with a rate between 10 kHz and 500 kHz  
CAN configured for a bit rate of 500 kHz  
DSPI configured in master mode with a bit rate of 2 MHz  
eSCI transmission configured with a bit rate of 100 kHz  
20 Bypass mode, system clock at 1 MHz (using system clock divider), PLL shut down, CPU running simple executive  
code, 4 x ADC conversion every 10 ms, 2 × PWM channels at 1 kHz, all other modules stopped.  
21 Bypass mode, system clock at 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules  
stopped.  
22 When using the internal regulator only, a bypass capacitor should be connected to this pin. External circuits should  
not be powered by the internal regulator. The internal regulator can be used as a reference for an external debugger.  
23 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a  
particular I/O segment, and the voltage of the I/O segment. See Table 23 for values to calculate power dissipation for  
specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions  
for each pin on the segment.  
24 Absolute value of current, measured at VIL and VIH.  
25 Weak pull up/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types: fast (pad_fc).  
26 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half  
for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types: pad_a and pad_ae.  
27 Applies to CLKOUT, external bus pins, and Nexus pins.  
28 Applies to the FCK, SDI, SDO, and SDS pins.  
29 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor  
diagnostics.  
30 When the pull-up and pull-down of the same nominal 200 Kor 100 Kvalue are both enabled, assuming no  
interference from external devices, the resulting pad voltage will be 0.5*VDDE ± 2.5%  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
75  
Electrical characteristics  
4.9  
I/O Pad current specifications  
NOTE  
MPC5634M devices use two sets of I/O pads (5 V and 3.3 V). See Table 2 and Table 3 in  
Section 3.6, “Signal summary, for the pad type associated with each signal.  
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption  
is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 23 based on  
the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load  
parameters that fall outside the values given in Table 23.  
1
Table 23. I/O pad average I  
specifications  
DDE  
Period  
(ns)  
Load2 VDDE  
Drive/Slew  
Rate Select  
I
DDE Avg  
(mA)3  
I
DDE RMS  
(mA)  
Pad Type  
Symbol  
C
(pF)  
(V)  
Slow  
IDRV_SSR_HV  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
37  
130  
650  
840  
24  
50  
50  
50  
200  
50  
50  
50  
200  
50  
30  
20  
10  
50  
30  
20  
10  
50  
50  
50  
50  
200  
30  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
3.6  
11  
01  
00  
00  
11  
01  
00  
00  
11  
10  
01  
00  
11  
10  
01  
00  
11  
10  
01  
00  
00  
11  
9
2.5  
0.5  
1.5  
Medium  
IDRV_MSR_HV  
14  
62  
5.3  
317  
425  
10  
1.1  
3
Fast  
IDRV_FC  
22.7  
12.1  
8.3  
68.3  
41.1  
27.7  
14.3  
31  
10  
3.6  
10  
3.6  
10  
3.6  
4.44  
12.5  
7.3  
10  
1.98  
1.98  
1.98  
1.98  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
10  
18.6  
12.6  
6.4  
10  
5.42  
2.84  
21.24  
10  
MultiV IDRV_MULTV_HV CC  
(High  
Swing  
15  
5
CC  
30  
50  
6.24  
1.14  
Mode)  
CC  
CC  
CC  
300  
300  
15  
4.04  
MultiV IDRV_MULTV_HV CC  
(Low  
Swing  
Mode)  
20.26  
CC  
30  
30  
11  
NA  
1
2
3
Numbers from simulations at best case process, 150 °C.  
All loads are lumped.  
Average current is for pad configured as output only.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
76  
Freescale Semiconductor  
Electrical characteristics  
4
5
6
Ratio from 5.5 V pad spec to 5.25 V data sheet.  
Not specified.  
Low swing mode is not a strong function of VDDE  
.
4.9.1  
I/O pad VRC33 current specifications  
The power consumption of the VRC33 supply is dependent on the usage of the pins on all I/O segments. The power  
consumption is the sum of all output pin V currents for all I/O segments. The output pin V current can be calculated  
RC33  
RC33  
from Table 24 based on the voltage, frequency, and load on all medium, slow, and multv_hv pins. The output pin VRC33 current  
can be calculated from Table 25 based on the voltage, frequency, and load on all fast pins. Use linear scaling to calculate pin  
currents for voltage, frequency, and load parameters that fall outside the values given in Table 24 and Table 25.  
1
Table 24. I/O pad V  
average I  
specifications  
DDE  
RC33  
Period  
(ns)  
Load2  
(pF)  
Slew Rate  
Select  
I
DD33 Avg  
(µA)  
IDD33 RMS  
(µA)  
Pad Type  
Symbol  
C
Slow  
IDRV_SSR_HV  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
100  
200  
800  
800  
40  
50  
50  
11  
01  
00  
00  
11  
01  
00  
00  
11  
01  
00  
00  
11  
11  
11  
11  
0.8  
0.04  
0.06  
0.009  
2.75  
0.11  
0.02  
0.01  
2.75  
0.11  
0.02  
0.01  
2.75  
0.11  
0.02  
0.01  
235.7  
87.4  
47.4  
47  
50  
200  
50  
Medium  
IDRV_MSR_HV  
258  
100  
500  
500  
40  
50  
76.5  
56.2  
56.2  
258  
50  
200  
50  
MultiV3 (High IDRV_MULTV_HV CC  
Swing Mode)  
CC  
100  
500  
500  
40  
50  
76.5  
56.2  
56.2  
258  
CC  
CC  
50  
200  
30  
MultiV4 (Low IDRV_MULTV_HV CC  
Swing Mode)  
CC  
100  
500  
500  
30  
76.5  
56.2  
56.2  
CC  
CC  
30  
30  
1
These are typical values that are estimated from simulation and not tested. Currents apply to output pins  
only.  
2
3
4
All loads are lumped.  
Average current is for pad configured as output only.  
In low swing mode, multi-voltage pads (pad_multv_hv) must operate in highest slew rate setting.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
77  
Electrical characteristics  
1
Table 25. V  
pad average DC current  
RC33  
Pad  
Type  
Period  
(ns)  
Load2  
(pF)  
VRC33  
(V)  
VDDE  
(V)  
Drive  
Select  
IDD33 Avg IDD33 RMS  
Symbol  
C
(µA)  
(µA)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
10  
10  
10  
10  
10  
10  
10  
10  
50  
30  
20  
10  
50  
30  
20  
10  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
11  
10  
01  
00  
11  
10  
01  
00  
2.35  
1.75  
1.41  
1.06  
1.75  
1.32  
1.14  
0.95  
6.12  
4.3  
3.6  
3.43  
2.9  
3.6  
Fast  
IDRV_FC  
1.98  
1.98  
1.98  
1.98  
4.56  
3.44  
2.95  
2.62  
1
2
These are typical values that are estimated from simulation and not tested. Currents apply to output pins  
only.  
All loads are lumped.  
4.9.2  
LVDS pad specifications  
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is an enhanced feature of the DSPI  
module. The LVDS pads are compliant with LVDS specifications and support data rates up to 50 MHz.  
1, 2  
Table 26. DSPI LVDS pad specification  
Min.  
Value  
Typ.  
Value  
Max.  
Value  
#
Characteristic  
Symbol  
C
Condition  
Unit  
Data Rate  
4
5
Data Frequency  
FLVDSCLK  
CC  
D
50  
MHz  
mV  
Driver Specs  
3
Differential output voltage  
VOD  
CC  
P
SRC=0b00 or  
0b11  
150  
430  
CC  
CC  
CC  
P
P
P
SRC=0b01  
SRC=0b10  
90  
155  
0.8  
340  
480  
1.6  
3
6
Common mode voltage  
(LVDS), VOS  
VOS  
1.2  
V
7
8
Rise/Fall time  
TR/TF  
TPLH  
CC  
CC  
D
D
2
4
ns  
ns  
Propagation delay (Low to  
High)  
9
Propagation delay (High to  
Low)  
TPHL  
CC  
D
4
ns  
10 Delay (H/L), sync Mode  
tPDSYNC  
CC  
CC  
D
D
4
ns  
ns  
11 Delay, Z to Normal (High/Low) TDZ  
500  
MPC5634M Microcontroller Data Sheet, Rev. 9  
78  
Freescale Semiconductor  
Electrical characteristics  
1, 2  
Table 26. DSPI LVDS pad specification  
(continued)  
12 Diff Skew Itphla-tplhbI or  
Itplhb-tphlaI  
TSKEW  
CC  
D
0.5  
ns  
Termination  
13 Trans. Line (differential Zo)  
14 Temperature  
CC  
CC  
D
D
95  
100  
105  
150  
–40  
C  
1
2
3
These are typical values that are estimated from simulation.  
These specifications are subject to change per device characterization.  
Preliminary target values. Actual specifications to be determined.  
4.10 Oscillator and PLLMRFM electrical characteristics  
1
Table 27. PLLMRFM electrical specifications  
(VDDPLL =1.14 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
max  
fref_crystal  
fref_ext  
CC D PLL reference frequency range2  
C
Crystal reference  
External reference  
4
4
4
20  
80  
16  
MHz  
fpll_in  
CC  
P
Phase detector input frequency range  
(after pre-divider)  
MHz  
fvco  
fsys  
fsys  
CC  
P
VCO frequency range3  
256  
16  
4
512  
80  
MHz  
MHz  
MHz  
CC C On-chip PLL frequency2  
CC  
T
P
System frequency in bypass mode4  
Crystal reference  
External reference  
20  
0
80  
tCYC  
CC D System clock period  
1.6  
24  
1.2  
–5  
1 / fsys  
3.7  
56  
ns  
fLORL  
fLORH  
CC D Loss of reference frequency window5  
Lower limit  
Upper limit  
MHz  
D
fSCM  
CC  
CC  
P
T
Self-clocked mode frequency 6,7  
75  
MHz  
CJITTER  
CLKOUT period Peak-to-peak (clock  
fSYS maximum  
5
% fCLKO  
jitter8,9,10,11  
edge to clock edge)  
UT  
T
Long-term jitter (avg.  
over 2 ms interval)  
–6  
6
ns  
tcst  
CC  
CC  
T
T
Crystal start-up time 12, 13  
10  
ms  
V
VIHEXT  
EXTAL input high voltage  
Crystal Mode14  
0.8 Vxtal 1.5V15  
,
Vxtal +  
0.4  
T
External Reference14, VRC33/2  
VRC33  
16  
+ 0.4  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
79  
Electrical characteristics  
1
Table 27. PLLMRFM electrical specifications  
(VDDPLL =1.14 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
max  
VILEXT  
CC  
CC  
T
T
T
EXTAL input low voltage  
Crystal Mode14  
,
Vxtal –  
0.4  
V
0.65Vxtal1.25V15  
External Reference14,  
0
VRC33/2  
– 0.4  
16  
XTAL load capacitance12  
4 MHz  
5
5
30  
26  
pF  
8 MHz  
12 MHz  
5
23  
16 MHz  
5
19  
20 MHz  
5
16  
tlpll  
tdc  
fLCK  
fUL  
fCS  
CC  
CC  
CC  
CC  
P
T
T
T
PLL lock time 12, 17  
200  
60  
s  
Duty cycle of reference  
Frequency LOCK range  
Frequency un-LOCK range  
40  
–6  
–18  
±0.25  
–0.5  
%
6
% fsys  
% fsys  
%fsys  
18  
CC D Modulation Depth  
Center spread  
Down Spread  
±4.0  
–8.0  
100  
fDS  
D
fMOD  
CC D Modulation frequency18  
kHz  
1
2
3
All values given are initial design targets and subject to change.  
Considering operation with PLL not bypassed.  
fVCO is calculated as follows:  
— In Legacy Mode fVCO = (fcrystal / (PREDIV + 1)) * (4 * (MFD + 4))  
— In Enhanced Mode fvco = (fcrystal / (EPREDIV + 1)) * (EMFD + 4)  
4
All internal registers retain data at 0 Hz.  
5
“Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked  
mode.  
6
7
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the  
fLOR window.  
fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in  
enhanced mode.  
8
9
This value is determined by the crystal manufacturer and board design.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.  
Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the  
CJITTER percentage for a given interval.  
10 Proper PC board layout procedures must be followed to achieve specifications.  
11 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and  
either fCS or fDS (depending on whether center spread or down spread modulation is enabled).  
12 This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for  
this PLL, load capacitors should not exceed these limits. For a 20 MHz crystal the maximum load should be 17 pF.  
13 Proper PC board layout procedures must be followed to achieve specifications.  
14 This parameter is guaranteed by design rather than 100% tested.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
80  
Freescale Semiconductor  
Electrical characteristics  
15 Vxtal range is preliminary and subject to change pending characterization data.  
16  
V
cannot exceed VRC33 in external reference mode.  
IHEXT  
17 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in  
the synthesizer control register (SYNCR).  
18 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50kHz.  
4.11 Temperature sensor electrical characteristics  
Table 28. Temperature sensor electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typical  
max  
CC C Temperature  
monitoring range  
–40  
150  
°C  
CC C Sensitivity  
CC Accuracy  
6.3  
mV/°C  
°C  
P
TJ = –40 to 150 °C  
–10  
10  
4.12 eQADC electrical characteristics  
NOTE  
ADC performance is affected by several environmental elements, such as quality of the  
input signal source, presence of noise sources and quality of the PCB layout.  
The DC or Static parameters (DNL, INL, OFFSET, GAIN, and TUE) are measured using  
methods that provide a very accurate evaluation using averaging.  
The AC or Dynamic parameters (SNR, THD, SFDR, SINAD) are determined using a full  
scale peak-peak sinewave of 1kHz frequency at the input of the ADC.  
Table 29. eQADC conversion specifications (operating)  
Value  
Symbol  
C
Parameter  
Unit  
min  
max  
fADCLK  
SR — ADC clock (ADCLK) frequency  
CC D Conversion cycles  
2
16  
MHz  
CC  
2 + 13  
128 + 14  
ADCLK  
cycles  
TSR  
CC C Stop mode recovery time1  
CC D Resolution2  
1.25  
0
10  
160  
4
s  
mV  
OFFNC  
OFFWC  
GAINNC  
GAINWC  
IINJ  
CC C Offset error without calibration  
CC C Offset error with calibration  
CC C Full scale gain error without calibration  
CC C Full scale gain error with calibration  
Counts  
Counts  
Counts  
Counts  
mA  
–4  
–160  
–4  
0
4
CC  
CC  
T
T
Disruptive input injection current 3, 4, 5, 6  
–3  
3
EINJ  
Incremental error due to injection current6,7,8  
–4  
4
Counts  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
81  
Electrical characteristics  
Table 29. eQADC conversion specifications (operating) (continued)  
Value  
Symbol  
C
Parameter  
Unit  
min  
max  
TUE8  
CC C Total unadjusted error (TUE) at 8 MHz9  
CC C Total unadjusted error at 16 MHz10  
–4  
–8  
4
8
Counts  
Counts  
dB  
TUE16  
SNR  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
T
T
Signal to Noise Ratio11  
55.2  
70.0  
65.0  
55.0  
8.8  
THD  
Total Harmonic Distorsion  
dB  
SFDR  
T
Spurious Free Dynamic Range  
Signal to Noise and Distorsion  
Effective Number of Bits  
dB  
SINAD  
ENOB  
T
dB  
T
Counts  
GAINVGA1  
Variable gain amplifier accuracy (gain=1)12  
C
C
C
C
INL  
8 MHz ADC  
–4  
–8  
4
Counts13  
Counts  
Counts  
Counts  
16 MHz ADC  
8 MHz ADC  
16 MHz ADC  
8
DNL  
–314  
–314  
314  
314  
GAINVGA2  
GAINVGA4  
Variable gain amplifier accuracy (gain=2)12  
D
D
D
D
INL  
8 MHz ADC  
–5  
–8  
–3  
–3  
5
8
3
3
Counts  
Counts  
Counts  
Counts  
16 MHz ADC  
8 MHz ADC  
16 MHz ADC  
DNL  
Variable gain amplifier accuracy (gain=4)12  
D
D
D
D
INL  
8 MHz ADC  
–7  
–8  
–4  
–4  
7
8
4
4
Counts  
Counts  
Counts  
Counts  
V
16 MHz ADC  
8 MHz ADC  
16 MHz ADC  
DNL  
DIFFmax  
DIFFmax2  
DIFFmax4  
DIFFcmv  
CC C Maximum differential voltage  
(DANx+ - DANx-) or (DANx- -  
DANx+)  
PREGAIN set  
to 1X setting  
(VRH -  
VRL)/2  
CC  
C
PREGAIN set  
to 2X setting  
(VRH -  
VRL)/4  
V
V
V
CC  
C
PREGAIN set  
to 4X setting  
(VRH -  
VRL)/8  
CC C Differential input Common mode  
voltage (DANx- + DANx+)/215  
(VRH -  
VRL)/2 -  
5%  
(VRH -  
VRL)/2 +  
5%  
1
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the  
time that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms.  
2
3
At VRH – VRL = 5.12 V, one count = 1.25 mV. Without using pregain.  
Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs  
greater then VRH and 0x0 for values less then VRL. Other channels are not affected by non-disruptive conditions.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
82  
Freescale Semiconductor  
Electrical characteristics  
4
5
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within  
the limit do not affect device reliability or cause permanent damage.  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use the larger of the  
calculated values.  
6
7
8
9
Condition applies to two adjacent pins at injection limits.  
Performance expected with production silicon.  
All channels have same 10 k< Rs < 100 k; Channel under test has Rs=10 k; IINJ=IINJMAX,IINJMIN.  
TUE is tested by averaging 10 samples.  
10 TUE is tested by averaging three samples.  
11  
These values can be significantly improved by using three samples of averaging. Input frequency of 1 kHz was used  
as the reference for the Signal to Noise Ratio.  
12 Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1,  
2, or 4. Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as  
indicated.  
13 At VRH – VRL = 5.12 V, one LSB = 1.25 mV.  
14 Guaranteed 10-bit monotonicity.  
15 Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately  
if the differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the  
common mode voltage of the differential signal violates the Differential Input common mode voltage specification.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
83  
Electrical characteristics  
4.13 Platform flash controller electrical characteristics  
1
Table 30. APC, RWSC, WWSC settings vs. frequency of operation  
Target Max Frequency  
APC2  
RWSC2  
WWSC  
(MHz)  
213  
413  
623  
823  
All  
000  
001  
010  
011  
111  
000  
001  
010  
011  
111  
01  
01  
01  
01  
111  
1
2
3
Illegal combinations exist, all entries must be taken from the same row  
APC must be equal to RWSC  
Maximum Frequency includes FM modulation  
4.14 Flash memory electrical characteristics  
Table 31. Program and erase specifications  
Typical  
Value1  
Initial  
Symbol  
Parameter  
Min Value  
Max3  
Unit  
Max2  
Tdwprogram  
T16kpperase  
T32kpperase  
T64kpperase  
T128kpperase  
P
P
P
P
P
Double Word (64 bits) Program Time4  
16 KB Block Pre-program and Erase Time  
32 KB Block Pre-program and Erase Time  
64 KB Block Pre-program and Erase Time  
128 KB Block Pre-program and Erase Time  
22  
50  
500  
600  
900  
1300  
500  
s  
ms  
ms  
ms  
ms  
300  
400  
600  
800  
5000  
5000  
5000  
7500  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program & erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
Actual hardware programming times. This does not include software overhead.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
84  
Freescale Semiconductor  
Electrical characteristics  
Table 32. Flash module life  
Value  
Unit  
Typ  
Symbol  
Parameter  
Conditions  
Min  
100,000  
P/E  
C Number of program/erase cycles per block  
for 16 Kbyte blocks over the operating  
temperature range (TJ)  
cycles  
P/E  
P/E  
C Number of program/erase cycles per block  
for 32 and 64 Kbyte blocks over operating  
temperature range (TJ)  
10,000 100,000 cycles  
C Number of program/erase cycles per block  
for 128 Kbyte blocks over the operating  
temperature range (TJ)  
1,000  
100,000 cycles  
Retention C Minimum data retention at 85 °C average  
ambient temperature1  
Blocks with 0 – 1,000  
P/E cycles  
20  
10  
5
years  
years  
years  
Blocks with 10,000 P/E  
cycles  
Blocks with 100,000 P/E  
cycles  
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
85  
Electrical characteristics  
4.15 AC specifications  
4.15.1 Pad AC specifications  
1,2  
Table 33. Pad AC specifications (5.0 V)  
Output Delay (ns)3,4  
Low-to-High /  
4 5  
,
SRC/DSC  
Rise/Fall Edge ( )  
Drive Load  
(pF)  
Name  
C
High-to-Low  
Min  
4.6/3.7  
13/10  
Max  
12/12  
32/32  
Min  
2.2/2.2  
9/9  
Max  
MSB,LSB  
CC  
CC  
D
D
7/7  
50  
119  
22/22  
200  
N/A  
1010  
01  
Medium6,7,8  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
12/13  
23/23  
69/71  
95/90  
7.3/5.7  
24/19  
28/34  
52/59  
5.6/6  
11/14  
34/35  
44/51  
4.4/4.3  
17/15  
15/15  
31/31  
74/74  
96/96  
14/14  
42/42  
50  
200  
50  
152/165  
205/220  
19/18  
00  
200  
50  
119  
1010  
01  
58/58  
200  
N/A  
Slow8,11  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
26/27  
49/45  
61/69  
13/13  
27/23  
34/34  
61/61  
50  
200  
50  
115/115  
320/330  
420/420  
10.3/8.9  
137/142  
182/172  
4.1/3.6  
72/74  
164/164  
200/200  
8/8  
00  
90/85  
200  
50  
3.28/2.98  
119  
1010  
01  
10.4/10.2 24.2/23.6 12.7/11.54  
N/A  
29/29  
200  
MultiV12  
(High Swing Mode)  
CC  
CC  
CC  
D
D
D
D
8.38/6.11 16/12.9  
15.9/13.6 31/28.5  
5.48/4.81  
14.6/13.1  
11/11  
31/31  
63/63  
50  
200  
50  
61.7/10.4 92.2/24.3 42.0/12.2  
132.6/  
00  
CC  
CC  
85.5/37.3  
57.7/46.4  
85/85  
7/7  
200  
30  
78.9  
MultiV  
(Low Swing Mode)  
D
2.31/2.34 7.62/6.33 1.26/1.67  
N/A  
119  
Fast13  
pad_i_hv14  
pull_hv  
CC  
CC  
D
D
0.5/0.5  
NA  
1.9/1.9  
6000  
0.3/0.3  
1.5/1.5  
0.5  
50  
N/A  
N/A  
5000/5000  
1
2
These are worst case values that are estimated from simulation and not tested. Values in the table are simulated  
at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDE = 1.62 V to 1.98 V, VDDEH = 4.5 V to 5.25 V, TA = TL to TH.  
TBD: To Be Defined.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
86  
Freescale Semiconductor  
Electrical characteristics  
3
4
5
6
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output  
pads  
7
8
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
Output delay is shown in Figure 8. Add a maximum of one system clock to the output delay for delay with respect  
to system clock.  
9
Can be used on the tester.  
10 This drive select value is not supported. If selected, it will be approximately equal to 11.  
11 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
12 Selectable high/low swing IO pad with selectable slew in high swing mode only.  
13 Fast pads are 3.3 V pads.  
14 Stand alone input buffer. Also has weak pull-up/pull-down.  
1
Table 34. Pad AC specifications (3.3 V)  
Output Delay (ns)2,3  
Low-to-High /  
High-to-Low  
Rise/Fall Edge (ns)3,4  
SRC/DSC  
Drive Load  
(pF)  
Pad Type  
C
Min  
Max  
Min  
Max  
MSB,LSB  
Medium5,6,7  
CC  
CC  
D
D
5.8/4.4  
16/13  
18/17  
46/49  
2.7/2.1  
10/10  
34/34  
50  
118  
11.2/8.6  
200  
N/A  
109  
01  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
14/16  
27/27  
37/45  
69/82  
6.5/6.7  
15/13  
38/38  
53/46  
5.5/4.1  
21/16  
19/19  
43/43  
50  
200  
50  
83/86  
200/210  
270/285  
27/28  
86/86  
00  
11  
113/109  
9.2/6.9  
30/23  
120/120  
20/20  
200  
50  
Slow7,10  
81/87  
63/63  
200  
N/A  
109  
01  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
31/31  
58/52  
80/90  
144/155  
415/415  
533/540  
3.7/3.1  
46/49  
15.4/15.4  
32/26  
42/42  
82/85  
50  
200  
50  
162/168  
216/205  
80/82  
190/190  
250/250  
10/10  
00  
106/95  
200  
30  
MultiV7,11  
(High Swing Mode)  
118  
37/37  
200  
N/A  
109  
01  
CC  
CC  
CC  
CC  
D
D
D
D
32  
72  
15/15  
46/46  
50  
200  
50  
210  
295  
100/100  
134/134  
00  
200  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
87  
Electrical characteristics  
1
Table 34. Pad AC specifications (3.3 V) (continued)  
Output Delay (ns)2,3  
Low-to-High /  
High-to-Low  
Rise/Fall Edge (ns)3,4  
SRC/DSC  
MSB,LSB  
Drive Load  
(pF)  
Pad Type  
C
Min  
Max  
Min  
Max  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
2.5/2.5  
2.5/2.5  
2.5/2.5  
2.5/2.5  
3/3  
1.2/1.2  
1.2/1.2  
10  
20  
30  
50  
0.5  
50  
00  
01  
Fast  
1.2/1.2  
10  
1.2/1.2  
118  
N/A  
N/A  
pad_i_hv12  
0.5/0.5  
NA  
0.4/0.4  
1.5/1.5  
pull_hv  
6000  
5000/5000  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are  
simulated at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH.  
2
3
4
5
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output  
pads  
6
7
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
Output delay is shown in Figure 8. Add a maximum of one system clock to the output delay for delay with respect  
to system clock.  
8
9
Can be used on the tester  
This drive select value is not supported. If selected, it will be approximately equal to 11.  
10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
11 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
12 Stand alone input buffer. Also has weak pull-up/pull-down.  
Table 35. Pad AC specifications (1.8 V)  
Output Delay (ns)1,2  
Low-to-High /  
High-to-Low  
Rise/Fall Edge (ns)3  
SRC/DSC  
MSB,LSB  
Drive Load  
(pF)  
Pad Type  
C
Min  
Max  
Min  
Max  
CC  
CC  
CC  
CC  
D
D
D
D
3.0/3.0  
3.0/3.0  
3.0/3.0  
3.0/3.0  
2.0/1.5  
2.0/1.5  
2.0/1.5  
2.0/1.5  
10  
20  
30  
50  
00  
01  
Fast  
10  
114  
1
2
3
4
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Can be used on the tester.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
88  
Freescale Semiconductor  
Electrical characteristics  
V
/2  
DDE  
Pad  
Data Input  
Rising  
Edge  
Output  
Delay  
Falling  
Edge  
Output  
Delay  
V
OH  
Pad  
Output  
V
OL  
Figure 8. Pad output delay  
4.16 AC timing  
4.16.1 IEEE 1149.1 interface timing  
1
Table 36. JTAG pin AC electrical characteristics  
Min.  
Value  
Max.  
Value  
#
Symbol  
tJCYC  
C
Characteristic  
TCK Cycle Time  
Unit  
1
2
3
4
5
6
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
tJDC  
TCK Clock Pulse Width  
tTCKRISE  
TCK Rise and Fall Times (40% – 70%)  
TMS, TDI Data Setup Time  
TMS, TDI Data Hold Time  
tTMSS, TDIS  
t
23  
t
TMSH, tTDIH  
25  
tTDOV  
TCK Low to TDO Data Valid  
7
8
tTDOI  
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
TCK Low to TDO Data Invalid  
TCK Low to TDO High Impedance  
JCOMP Assertion Time  
0
20  
50  
ns  
ns  
ns  
ns  
ns  
9
100  
40  
10  
11  
JCOMP Setup Time to TCK Low  
TCK Falling Edge to Output Valid  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
89  
Electrical characteristics  
1
Table 36. JTAG pin AC electrical characteristics (continued)  
Min.  
Value  
Max.  
Value  
#
Symbol  
tBSDVZ  
C
Characteristic  
Unit  
12  
CC  
D
TCK Falling Edge to Output Valid out of High  
Impedance  
50  
ns  
13  
14  
15  
tBSDHZ  
tBSDST  
tBSDHT  
CC  
CC  
CC  
D
D
D
TCK Falling Edge to Output High Impedance  
Boundary Scan Input Valid to TCK Rising Edge  
50  
50  
50  
ns  
ns  
ns  
TCK Rising Edge to Boundary Scan Input  
Invalid  
1
JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.25 V with multi-voltage pads programmed to  
Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b00. These specifications apply to JTAG  
boundary scan only. See Table 37 for functional specifications.  
TCK  
2
3
3
2
1
Figure 9. JTAG test clock input timing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
90  
Freescale Semiconductor  
Electrical characteristics  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 10. JTAG test access port timing  
TCK  
10  
JCOMP  
9
Figure 11. JTAG JCOMP timing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
91  
Electrical characteristics  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 12. JTAG boundary scan timing  
4.16.2 Nexus timing  
1
Table 37. Nexus debug port timing  
#
Symbol  
tMCYC  
tMCYC  
tMDC  
C
Characteristic  
MCKO Cycle Time  
Min. Value Max. Value  
Unit  
1
1a  
2
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
22,3  
1004  
40  
8
tCYC  
ns  
Absolute Minimum MCKO Cycle Time  
MCKO Duty Cycle  
60  
0.2  
0.2  
0.2  
%
3
tMDOV  
tMSEOV  
tEVTOV  
tEVTIPW  
MCKO Low to MDO Data Valid5  
MCKO Low to MSEO Data Valid5  
MCKO Low to EVTO Data Valid5  
EVTI Pulse Width  
– 0.1  
0.1  
tMCYC  
tMCYC  
tMCYC  
tTCYC  
tMCYC  
4
6
– 0.1  
4.0  
7
8
tEVTOPW CC  
EVTO Pulse Width  
1
MPC5634M Microcontroller Data Sheet, Rev. 9  
92  
Freescale Semiconductor  
Electrical characteristics  
Min. Value Max. Value Unit  
1
Table 37. Nexus debug port timing (continued)  
#
Symbol  
tTCYC  
tTCYC  
tTDC  
C
Characteristic  
TCK Cycle Time  
9
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
46,7  
1008  
40  
5
60  
20  
tCYC  
ns  
%
9a  
10  
11  
12  
13  
14  
15  
Absolute Minimum TCK Cycle Time  
TCK Duty Cycle  
tNTDIS  
tNTDIH  
tNTMSS  
tNTMSH  
tJOV  
TDI Data Setup Time  
ns  
ns  
ns  
ns  
ns  
TDI Data Hold Time  
25  
5
TMS Data Setup Time  
TMS Data Hold Time  
25  
10  
TCK Low to TDO Data Valid  
1
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing  
specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.25 V with multi-voltage pads programmed to Low-Swing  
mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
2
3
4
Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum  
setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used.  
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the  
Absolute minimum MCKO period specification.  
This may require setting the MCKO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending  
on the actual system frequency being used.  
5
6
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that  
is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system  
frequency being used.  
7
8
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the  
Absolute minimum TCK period specification.  
This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability  
of the design (system frequency / 4) depending on the actual system frequency being used.  
1
2
MCKO  
3
4
6
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 13. Nexus output timing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
93  
Electrical characteristics  
TCK  
EVTI  
EVTO  
7
8
7
8
9
Figure 14. Nexus event trigger and test clock timings  
TCK  
11  
13  
12  
14  
TMS, TDI  
15  
TDO  
Figure 15. Nexus TDI, TMS, TDO timing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
94  
Freescale Semiconductor  
Electrical characteristics  
4.16.3 Calibration bus interface timing  
1
Table 38. Calibration bus operation timing  
66 MHz (ext. bus)2  
#
Symbol  
C
Characteristic  
Unit  
Notes  
Min  
Max  
1
TC  
CC  
P
CLKOUT Period  
15.2  
ns Signals are  
measured at 50%  
VDDE  
.
2
3
4
5
tCDC CC  
tCRT CC  
tCFT CC  
tCOH CC  
D
D
D
D
CLKOUT duty cycle  
CLKOUT rise time  
CLKOUT fall time  
45%  
55%  
TC  
ns  
ns  
3
3
CLKOUT Posedge to Output Signal  
Invalid or High Z(Hold Time)  
1.04/1.5  
ns Hold time selectable  
via  
SIU_ECCR[EBTS]  
bit:  
EBTS=0: 1.0ns  
EBTS=1: 1.5ns  
ADDR[8:31]  
CS[0:3]  
DATA[0:31]  
OE  
RD_WR  
TS  
WE[0:3]/BE[0:3]  
6
tCOV CC  
D
CLKOUT Posedge to Output Signal Valid  
(Output Delay)  
6.04/7.0  
ns Output valid time  
selectable via  
SIU_ECCR[EBTS]  
bit:  
ADDR[8:31]  
CS[0:3]  
DATA[0:31]  
OE  
EBTS=0: 5.5ns  
EBTS=1: 6.5ns  
RD_WR  
TS  
WE[0:3]/BE[0:3]  
7
8
9
tCIS CC  
tCIH CC  
tAPW CC  
D
D
Input Signal Valid to CLKOUT Posedge  
(Setup Time)  
5.0  
1.0  
ns  
ns  
DATA[0:31]  
CLKOUT Posedge to Input Signal Invalid  
(Hold Time)  
DATA[0:31]  
D
D
ALE Pulse Width5  
6.5  
3
ns  
ns  
10 tAAI CC  
ALE Negated to Address Invalid5  
1
Calibration bus timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDE = 1.62 V to 3.6 V (unless stated  
otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
2
3
4
The external bus is limited to half the speed of the internal bus. The maximum external bus frequency is 66 MHz.  
Refer to Fast Pad timing in Table 34 and Table 35 (different values for 3.3 V vs. 1.8 V).  
The EBTS=0 timings are only valid/ tested at VDDE=2.25–3.6 V, whereas EBTS=1 timings are valid/tested at  
1.6–3.6 V.  
5
Measured at 50% of ALE.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
95  
Electrical characteristics  
Voh_f  
VDDE/2  
Vol_f  
CLKOUT  
2
3
2
4
1
Figure 16. CLKOUT timing  
VDDE/2  
CLKOUT  
6
5
VDDE/2  
5
OUTPUT  
BUS  
VDDE/2  
6
5
5
OUTPUT  
SIGNAL  
VDDE/2  
6
OUTPUT  
SIGNAL  
VDDE/2  
Figure 17. Synchronous output timing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
96  
Freescale Semiconductor  
Electrical characteristics  
CLKOUT  
VDDE/2  
7
8
INPUT  
BUS  
VDDE/2  
7
8
INPUT  
SIGNAL  
VDDE/2  
Figure 18. Synchronous input timing  
ipg_clk  
CLKOUT  
ALE  
TS  
A/D  
DATA  
ADDR  
9
10  
Figure 19. ALE signal timing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
97  
Electrical characteristics  
4.16.4 eMIOS timing  
1
Table 39. eMIOS timing  
Characteristic  
Min.  
Value  
Max.  
Value  
#
Symbol  
C
Unit  
1
2
tMIPW  
CC  
CC  
D
D
eMIOS Input Pulse Width  
eMIOS Output Pulse Width  
4
1
tCYC  
tCYC  
tMOPW  
1
eMIOS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.25 V, TA = TL to TH, and CL  
= 50 pF with SRC = 0b00.  
4.16.5 DSPI timing  
1,2  
Table 40. DSPI timing  
40 MHz  
60 MHz  
80 MHz  
#
Symbol  
C
Characteristic  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
1
2
3
4
tSCK  
CC  
CC  
CC  
CC  
D
D
D
D
SCK Cycle Time3,4  
PCS to SCK Delay5  
After SCK Delay6  
SCK Duty Cycle  
48.8 ns 5.8 ms 28.4 ns 3.5 ms 24.4 ns 2.9 ms  
ns  
ns  
ns  
tCSC  
tASC  
tSDC  
46  
45  
26  
25  
22  
21  
(½tSC) – (½tSC) + (½tSC) – (½tSC) + (½tSC) – (½tSC) +  
2
2
2
2
2
2
5
6
tA  
CC  
CC  
D
D
Slave Access Time  
(SS active to SOUT  
driven)  
25  
25  
25  
ns  
ns  
tDIS  
Slave SOUT Disable  
Time  
25  
25  
25  
(SS inactive to SOUT  
High-Z or invalid)  
7
8
9
tPCSC  
tPASC  
tSUI  
CC  
CC  
CC  
D
D
PCSx to PCSS time  
PCSS to PCSx time  
4
5
4
5
4
5
ns  
ns  
Data Setup Time for Inputs  
D
D
D
Master (MTFE = 0)  
Slave  
20  
2
20  
2
20  
2
ns  
Master (MTFE = 1,  
CPHA = 0)7  
–4  
6
8
D
Master (MTFE = 1,  
CPHA = 1)  
20  
20  
20  
MPC5634M Microcontroller Data Sheet, Rev. 9  
98  
Freescale Semiconductor  
Electrical characteristics  
1,2  
Table 40. DSPI timing (continued)  
40 MHz 60 MHz  
80 MHz  
Unit  
#
Symbol  
C
Characteristic  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
10  
tHI  
tSUO  
tHO  
CC  
Data Hold Time for Inputs  
D
D
D
Master (MTFE = 0)  
Slave  
–4  
7
–4  
7
–4  
7
ns  
ns  
ns  
Master (MTFE = 1,  
CPHA = 0)7  
45  
25  
21  
D
Master (MTFE = 1,  
CPHA = 1)  
–4  
–4  
–4  
11  
CC  
Data Valid (after SCK edge)  
D
D
D
Master (MTFE = 0)  
Slave  
6
6
6
25  
45  
25  
25  
25  
21  
Master (MTFE = 1,  
CPHA=0)  
D
Master (MTFE = 1,  
CPHA=1)  
6
6
6
12  
CC  
Data Hold Time for Outputs  
D
D
D
Master (MTFE = 0)  
Slave  
–5  
5.5  
8
–5  
5.5  
4
–5  
5.5  
3
Master (MTFE = 1,  
CPHA = 0)  
D
Master (MTFE = 1,  
CPHA = 1)  
–5  
–5  
–5  
1
2
3
All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type M or MH. DSPI signals using pad  
types of S or SH have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3.0–5.25  
V, TA = TL to TH, and CL = 50 pF with SRC = 0b11.  
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency  
modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 62 MHz parts allow for a 60 MHz system  
clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM.  
The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are  
calculated based on two MPC5634M devices communicating over a DSPI link.  
4
5
6
7
The actual minimum SCK cycle time is limited by pad performance.  
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].  
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].  
This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
99  
Electrical characteristics  
2
3
These numbers  
reference Table 40.  
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 20. DSPI classic SPI timing master, CPHA = 0  
These numbers  
reference Table 40.  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 21. DSPI classic SPI timing master, CPHA = 1  
MPC5634M Microcontroller Data Sheet, Rev. 9  
100  
Freescale Semiconductor  
Electrical characteristics  
These numbers  
reference Table 40.  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Figure 22. DSPI classic SPI timing slave, CPHA = 0  
SS  
These numbers  
reference Table 40.  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 23. DSPI classic SPI timing slave, CPHA = 1  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
101  
Electrical characteristics  
These numbers  
3
reference Table 40.  
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Figure 24. DSPI modified transfer format timing master, CPHA = 0  
These numbers  
reference Table 40.  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 25. DSPI modified transfer format timing master, CPHA = 1  
MPC5634M Microcontroller Data Sheet, Rev. 9  
102  
Freescale Semiconductor  
Electrical characteristics  
These numbers  
reference Table 40.  
3
2
SS  
1
SCK Input  
(CPOL=0)  
4
4
SCK Input  
(CPOL=1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Figure 26. DSPI modified transfer format timing slave, CPHA =0  
These numbers  
reference Table 40.  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Figure 27. DSPI modified transfer format timing slave, CPHA =1  
8
7
PCSS  
PCSx  
Figure 28. DSPI PCS strobe (PCSS) timing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
103  
Electrical characteristics  
4.16.6 eQADC SSI timing  
1
Table 41. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)  
CLOAD = 25pF on all outputs. Pad drive strength set to maximum.  
#
Symbol  
C
Rating  
Min  
Typ  
Max  
Unit  
1
1
2
3
4
5
6
fFCK CC  
tFCK CC  
tFCKHT CC  
tFCKLT CC  
tSDS_LL CC  
tSDO_LL CC  
tDVFE CC  
D
D
D
D
D
D
D
FCK Frequency 2, 3  
1/17 fSYS_CLK  
2 tSYS_CLK  
tSYS_CLK 6.5  
tSYS_CLK 6.5  
–7.5  
12 fSYS_CLK  
17tSYS_CLK  
9* tSYS_CLK 6.5  
8* tSYS_CLK 6.5  
+7.5  
Hertz  
seconds  
ns  
FCK Period (tFCK = 1/ fFCK  
Clock (FCK) High Time  
Clock (FCK) Low Time  
SDS Lead/Lag Time  
SDO Lead/Lag Time  
)
ns  
ns  
–7.5  
+7.5  
ns  
Data Valid from FCK Falling Edge  
(tFCKLT+tSDO_LL  
1
ns  
)
7
8
tEQ SU CC  
D
D
eQADC Data Setup Time (Inputs)  
eQADC Data Hold Time (Inputs)  
22  
1
ns  
ns  
_
tEQ_HO CC  
1
SS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.25 V, TA = TL to TH, and CL = 50 pF  
with SRC = 0b00.  
2
3
Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays.  
FCK duty is not 50% when it is generated through the division of the system clock by an odd number.  
1
2
3
FCK  
SDS  
4
5
4
5
25th  
6
1st (MSB)  
2nd  
26th  
SDO  
External Device Data Sample at  
FCK Falling Edge  
8
7
1st (MSB)  
2nd  
25th  
26th  
SDI  
eQADC Data Sample at  
FCK Rising Edge  
Figure 29. eQADC SSI timing  
MPC5634M Microcontroller Data Sheet, Rev. 9  
104  
Freescale Semiconductor  
Packages  
5
Packages  
5.1  
5.1.1  
Package mechanical data  
144 LQFP  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
105  
Packages  
Figure 30. 144 LQFP package mechanical drawing (part 1)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
106  
Freescale Semiconductor  
Packages  
Figure 31. 144 LQFP package mechanical drawing (part 2)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
107  
Packages  
Figure 32. 144 LQFP package mechanical drawing (part 3)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
108  
Freescale Semiconductor  
Packages  
5.1.2  
176 LQFP  
176  
Figure 33. 176 LQFP package mechanical drawing (part 1)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
109  
Packages  
Figure 34. 176 LQFP package mechanical drawing (part 2)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
110  
Freescale Semiconductor  
Packages  
Figure 35. 176 LQFP package mechanical drawing (part 3)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
111  
Packages  
5.1.3  
208 MAPBGA  
Figure 36. 208 MAPBGA package mechanical drawing (part 1)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
112  
Freescale Semiconductor  
Packages  
Figure 37. 208 MAPBGA package mechanical drawing (part 2)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
113  
Ordering information  
6
Ordering information  
Table 42 shows the orderable part numbers for the MPC5634M series.  
Table 42. Orderable part number summary  
Flash/SRAM  
(Kbytes)  
Speed  
(MHz)  
Part Number  
Package  
SPC5632MF2MLQ60  
SPC5632MF2MLQ40  
SPC5633MF2MMG80  
SPC5633MF2MLU80  
SPC5633MF2MLQ80  
SPC5633MF2MMG60  
SPC5633MF2MLU60  
SPC5633MF2MLQ60  
SPC5633MF2MLQ40  
SPC5634MF2MMG80  
SPC5634MF2MLU80  
SPC5634MF2MLQ80  
SPC5634MF2MMG60  
SPC5634MF2MLU60  
SPC5634MF2MLQ60  
SPC563M60L3CPBY  
SPC563M60L3CPAY  
768 / 48  
768 / 48  
144 LQFP Pb-free  
144 LQFP Pb-free  
208 MAPBGA Pb-free  
176 LQFP Pb-free  
144 LQFP Pb-free  
208 MAPBGA Pb-free  
176 LQFP Pb-free  
144 LQFP Pb-free  
144 LQFP Pb-free  
208 MAPBGA Pb-free  
176 LQFP Pb-free  
144 LQFP Pb-free  
208 MAPBGA Pb-free  
176 LQFP Pb-free  
144 LQFP Pb-free  
60  
40  
80  
80  
80  
60  
60  
60  
40  
80  
80  
80  
60  
60  
60  
1024 / 64  
1024 / 64  
1024 / 64  
1024 / 64  
1024 / 64  
1024 / 64  
1024 / 64  
1536 / 94  
1536 / 94  
1536 / 94  
1536 / 94  
1536 / 94  
1536 / 94  
MPC5634M Microcontroller Data Sheet, Rev. 9  
114  
Freescale Semiconductor  
Ordering information  
Example code:  
M
PC  
56  
3
4
M
F2  
M
LU  
80  
R
Qualification Status  
Power Architecture Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Fab/Mask rev.  
Temperature Spec.  
Package Code  
Maximum Frequency  
Tape and Reel  
Package Code  
Flash Size (z3 core)  
2 = 768 KB  
3 = 1 MB  
Qualification Status  
LQ = 144 LQFP  
LU = 176 LQFP  
MG = 208 MAPBGA  
M = MC status  
S = Auto qualified  
P = PC status  
4 = 1.5 MB  
Automotive Platform  
56 = Power Architecture in 90 nm  
57 = Power Architecture in 55 nm  
Maximum Frequency  
40 = 40 MHz  
60 = 60 MHz  
Product Family  
M = MPC5634M  
80 = 80 MHz  
Fab/Mask rev.  
F2 = ATMC Rev. 2  
Core Version  
3 = e200z3  
Temperature Spec.  
M = –40 °C to 150 °C  
Figure 38. Commercial product code structure  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
115  
Document revision history  
7
Document revision history  
Table 43 summarizes revisions to this document.  
Table 43. Revision history  
Description of Changes  
Revision  
Date  
Rev. 1  
Rev. 2  
4/2008  
Initial release  
12/2008  
• Maximum amount of flash increased from 1 MB to 1.5 MB. Flash memory type has  
changed. Rev. 1 and later devices use LC flash instead of FL flash.  
• Additional packages offered—now includes100 LQFP and 176 LQFP. Please note that  
the pinouts can vary for the same package depending on the amount of flash memory  
included in the device.  
• Device comparison table added.  
• Feature details section added  
• Signal summary table expanded. Now includes PCR register numbers and signal  
selection values and pin numbers for all production packages.  
• Electrical characteristics updated.  
• DSPI timing data added for 40 MHz and 60 MHz.  
• Thermal characteristics data updated. Data added for 100- and 176-pin packages.  
• DSPI LVDS pad specifications added.  
Rev. 3  
2/2009  
Electrical characteristics updated  
• Flash memory electrical characteristics updated for LC flash  
• Power management control (PMC) and Power on Reset (POR) specifications updated  
• EMI characteristics data added  
• Maximum ratings updated  
• I/O pad current specifications updated  
• I/O Pad VRC33 current specifications added  
Temperature sensor electrical characteristics added  
Pad type added to “Voltage” column of signal summary table  
Many signal names have changed to make them more understandable  
• DSPI: PCS_C[n] is now DSPI_C_PCS[n]; SOUT_C is now DSPI_C_SOUT, SIN_C is  
now DSPI_C_SIN, and SCK_C is now DSPI_C_SCK  
• CAN: CNTXB is now CAN_B_TX and CNRXB is now CAN_B_RC  
• SCI: RXDB is now SCI_B_RX and TXDB is now SCI_B_TX  
• In cases where multiple instances of the same IP block is incorporated into the device,  
e.g., 2 SCI blocks, the above nomenclature applies to all blocks  
“No connect” pins on pinouts clarified  
• Pins labelled “NIC” have no internal connection and should be tied to ground  
• Pins labelled “NC” are not functional pins but may be connected to internal circuits  
They are to be left floating  
Some of the longer multiplexed signal names appearing on pinouts have been moved to  
the inside of the package body to avoid having to use smaller fonts  
Orderable parts table updated  
Part number decoder added  
MPC5634M Microcontroller Data Sheet, Rev. 9  
116  
Freescale Semiconductor  
Document revision history  
Table 43. Revision history (continued)  
Description of Changes  
Revision  
Date  
Rev.4  
12/2009  
208-pin MAPBGA ballmap for the MPC5633M (1024 KB flash memory) has changed.  
Power Management Control (PMC) and Power On Reset (POR) electrical specifications  
updated  
Temperature sensor data added  
Specifications now indicate how each controller characteristic parameter is guaranteed.  
I/O pad current specifications updated  
I/O Pad VRC33 current specifications updated  
PAD AC characteristics updated  
VGA gain specifications added to eQADC electrical characteristics  
DC electrical specifications updated:  
• Footnote added to RPUPD100K and RPUPD200K: When the pull-up and pull-down of  
the same nominal 200 Kor 100 Kvalue are both enabled, assuming no  
interference from other devices, the resulting pad voltage will be 0.5*VDDE ± 2.5%  
• IOL condition added to VOL_LS  
.
• IOH condition added to VOH_LS  
.
• Minimum VOH_LS is 2.3 V (was 2.7 V).  
• Separate IDDPLL removed from IDD spec because we can only measure IDD + IDDPLL  
IDD increased by 15 mA (to 195 mA) to account for IDDPLL. IDD now documented as  
IDD + IDDPLL. Footnote added detailing runtime configuration used to measure  
.
IDD + IDDPLL  
.
• Specifications for IDDSTBY and IDDSTBY150 reformatted to make more clear.  
• VSTBY is now specified by two ranges. The area in between those ranges is  
indeterminate.  
LVDS pad specifications updated:  
• Min value for VOD at SRC=0b01 is 90 mV (was 120); and 160 mV (was 180) at  
SRC = 0b10  
Changes to Signal Properties table:  
• VDDE7 removed as voltage segment from Calibration bus pins. Calibration bus pins  
are powered by VDDE12 only.  
• GPIO[139] and GPIO[87] pins changed to Medium pads  
• Some signal names have changed on 176-pin QFP package pinout: “CAL_x” signals  
renamed to “ALT_x”.  
Changes to Pad Types table:  
• Column heading changed from “Voltage” to “Supply Voltage”  
• MultiV pad high swing mode voltage changed to 3.0 V – 5.25 V (was 4.5 V – 5.25 V)  
• MultiV pad low swing mode voltage changed to 4.5 V – 5.25 V (was 3.0 V – 3.6 V)  
Signal details table added  
Power/ground segmentation table added  
100-pin package is no longer available  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
117  
Document revision history  
Table 43. Revision history (continued)  
Description of Changes  
Revision  
Date  
Rev. 5  
04/2010  
Updates to features list:  
• MMU is 16-entry (previously noted as 8-entry)  
• ECSM features include single-bit error correction reporting  
• eTPU2 is object code compatible with previous eTPU versions  
Updates to feature details:  
• Programming feature: eTPU2 channel flags can be tested  
Pinout/ballmap changes:  
144 pin LQFP package:  
• Pin 46 is now VDDEH1B (was VDDEH4A)  
• Pin 61 is now VDDEH6A (was VDDEH4B)  
176 pin LQFP package (1.5M devices)  
• Pin 55 is now VDDEH1B (was VDDEH4A)  
• Pin 74 is now VDDEH6A (was VDDEH4B)  
176 pin LQFP package (1.5M devices)  
• Pin 55 is now VDDEH1B (was VDDEH4A)  
• Pin 74 is now VDDEH6A (was VDDEH4B)  
208 ball BGA package (all devices)  
Ball N9 changed to VDDEH1/6 (was VDDEH6). In a future revision of the device this may  
be changed to NC (no connect).  
Changes to calibration ball names on devices with 1 MB flash memory:  
• CAL_MDO0 changed to ALT_MDO0  
• CAL_MDO1 changed to ALT_MDO1  
• CAL_MDO2 changed to ALT_MDO2  
• CAL_MDO3 changed to ALT_MDO3  
• CAL_MSEO0 changed to ALT_MSEO0  
• CAL_MSEO1 changed to ALT_MSEO1  
• CAL_EVTI changed to ALT_EVTI  
• CAL_EVTO changed to ALT_EVTO  
• CAL_MCKO changed to ALT_MCKO  
Power/ground segment changes:  
• The following pins are on VDDE7 I/O segment only on the 208-ball BGA package:  
ALT_MDO[0:3], ALT_MSEO[0:1], ALT_EVTI, ALT_EVTO, ALT_MCKO.  
• Power segments VDDEH4, VDDEH4A and VDDEH4B have been removed.  
CLKOUT power segment is VDDE5 (was VDDE12)  
Thermal characteristics for 176-pin LQFP updated (all parameter values)  
MPC5634M Microcontroller Data Sheet, Rev. 9  
118  
Freescale Semiconductor  
Document revision history  
Table 43. Revision history (continued)  
Description of Changes  
Revision  
Date  
Rev. 5  
(cont.)  
04/2010  
PMC Operating conditions and external regulators supply voltage specifications updated  
• (2) PMC 5 V supply voltage VDDREG min value is 4.5 V (was 4.75 V)  
PMC electrical characteristics specifications updated  
• (1d) Bandgap reference supply voltage variation is 3000 ppm/V (was 1500 ppm/V)  
• (5a) Nominal 3.3 V supply internal regulator DC output voltage variation at power-on  
reset min value is Vdd33-8.5% (was unspecified previously)  
• (5a) Nominal 3.3 V supply internal regulator DC output voltage variation at power-on  
reset max value is Vdd3+7% (was unspecified previously)  
• (9a) Variation of POR for rising 5 V VDDREG supply max value is Por5V_r + 50% (was  
Por5V_r + 35%)  
• (9c) Variation of POR for falling 5 V VDDREG supply max value is Por5V_f + 50% (was  
Por5V_f + 35%)  
• (9c) note added: Minimum loading (<10 mA) for reading trim values from flash,  
powering internal RC oscillator, and IO consumption during POR.  
“Core Voltage Regulator Controller External Components Preferred Configuration” circuit  
diagram updated  
Changes to DC Electrical Specifications:  
• Footnote added to VDDE. VDDE must be less than VRC33 or there is additional leakage  
on pins supplied by VDDE  
.
• Low range SRAM standby voltage (VSTBY) minimum changed to 0.95 V (was 0.9 V)  
• Low range SRAM standby voltage (VSTBY) maximum changed to 1.2 V (was 1.3 V)  
• High range SRAM standby voltage (VSTBY) minimum changed to 2.0 V (was 2.5 V)  
• VIL_LS max value (Hysteresis disabled) changed to 0.9 V (was 1.1 V)  
• VOH_LS min value changed to 2 V (was 2.3 V)  
• IDDSLOW max value is 50 mA  
• IDDSTOP max value is 50 mA  
• IDDA max value is 30 mA (was 15.0 mA)  
• IDD4 and VDDEH4 removed—they no longer exist  
I/O pad average IDDE specifications table updated  
I/O pad VRC33 average IDDE specifications table updated  
LVDS pad specifications table updated  
• VOS min value is 0.9 V (was 1.075 V)  
• VOS max value is 1.6 V (was 1.325 V)  
Updates to PLLMRFM electrical specifications:  
• Maximum values for XTAL load capacitance added. The maximum value varies with  
frequency.  
• For a 20 MHz crystal the maximum load should be 17 pF.  
Temperature sensor accuracy is ±10 °C (was ±5 °C)  
Updates to eQADC conversion specifications (operating):  
• Offset error without calibration max value is 160 (was 100)  
• Full scale gain error without calibration min value is –160 (was –120)  
Changes to Platform flash controller electrical characteristics:  
• APC, RWSC, WWSC settings vs. frequency of operation table updated  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
119  
Document revision history  
Table 43. Revision history (continued)  
Description of Changes  
Revision  
Date  
Rev. 5  
(cont.)  
04/2010  
Changes to flash memory specifications:  
• TBKPRG 64 KB specification removed (not present in this device)  
• T64kpperase specification added  
• Flash module life P/E spec for 32 Kbyte blocks also applies to 64 Kbyte blocks  
Pad AC specifications (3.3 V) table updated  
Rev. 6  
04/2010  
“Core Voltage Regulator Controller External Components Preferred Configuration” circuit  
diagram updated.  
• Clarification added to note: Emitter and collector capacitors (6.8 F and 10 F) should  
be matched (same type) and ESR should be lower than 200 mW. (Added emphasis  
that only 6.8 F emitter capacitors need to be matched with collector capacitor.  
• 220 F emitter capacitors changed to 220 nF.  
Rev. 7  
Rev. 8  
4/2010  
No specification or product information changes:  
• Mechanical outline drawings section renamed to “Packages” and restructured.  
01/2011  
Removed the 208 BGA package from the device-summary table.  
Revised the “PMC Operating conditions and external regulators supply voltage” table.  
Revised the “PMC electrical characteristics” table.  
Revised the pad AC specifications.  
Revised the “DC electrical specifications” table.  
Revised the “DSPI LVDS pad specification” table:  
Revised the “PLLMRFM electrical specifications” table.  
Change to “Temperature sensor electrical characteristics” table:  
• Accuracy is guaranteed by production test  
Revised the “eQADC conversion specifications (operating)” table.  
Changes to “Calibration bus operation timing“ table:  
• CLKOUT period is guaranteed by production test. All other parameters are guaranteed  
by design  
Changes to “Program and erase specifications“ table in “Flash memory electrical  
characteristics” section.  
• Deleted Bank Program (512KB) (TBKPRG) parameter  
• TYP P/E values added for 32- and 64 KB blocks and for 128 KB blocks.  
Changes to Recommended operating characteristics for external power transistor:  
• VCESAT should be between 200 and 600 mV  
• VBE should be 0.4V to 1.0V  
Removed footnote 8 from Vddeh in Maximum ratings.  
Deleted engineering names for pads in Power UP/DOWN Sequencing Section  
Changed “sin_c” to DSPI_C_SIN” and “sck_c” to DSPI_C_SCK” on 144 pin LQFP  
package.  
Updated the “Electromagnetic Interference Characteristics” table to reflect new parameter  
levels, test conditions.  
In the “APC, RWSC, WWSC settings vs. frequency of operation” table, changed 82 MHz  
entry for WWC from “11” to “01”, added an extra row for “All 111 111 11”  
MPC5634M Microcontroller Data Sheet, Rev. 9  
120  
Freescale Semiconductor  
Document revision history  
Table 43. Revision history (continued)  
Revision  
Date  
Description of Changes  
Rev 9  
05/2012  
In Section 4.6.1, “Regulator example  
• Updated ,Figure 7 “Core voltage regulator controller external components preferred  
configuration” to show RC, RB, RE, CC, CB, CE, CD and CREG  
.
• Added Table 15 “Required external PMC component values”, Table 16 “Network 1  
component values”, Table 17 “Network 2 component values” and Table 18 “Network 3  
component values”.  
Updated Table 1:  
Number of eMIOS channels changed from ‘8’ to ‘16’ for MPC5632M.  
In Section 4.2, “Maximum ratings, Table 7  
• VFLASH maximum value changed from 3.6V to 5.5V and changed table note3 to:  
“The VFLASH supply is connected to VDDEH  
• Removed table note 4, “Allowed 5.3 V for 10 hours cumulative time, remaining time at  
3.3 V +10%”  
In Section 4.12, “eQADC electrical characteristics:  
• Added note.  
• In Table 29, additional five parameters added (SNR, THD, SFDR, SINAD and ENOB)  
and added footnotes # 9,10 and 11.  
MPC5634M Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
121  
Document revision history  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate any  
integrated circuits or integrated circuits based on the information in this  
document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does not  
convey any license under its patent rights nor the rights of others. Freescale  
Semiconductor products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in  
which the failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or  
use Freescale Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Freescale Semiconductor and its  
officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with  
such unintended or unauthorized use, even if such claim alleges that Freescale  
Semiconductor was negligent regarding the design or manufacture of the part.  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics as their non-RoHS-compliant and/or  
non-Pb-free counterparts. For further information, see http://www.freescale.com  
or contact your Freescale sales representative.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property of their  
respective owners.  
The Power Architecture and Power.org word marks and the Power and  
Power.org logos and related marks are trademarks and service marks licensed  
by Power.org  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
© Freescale Semiconductor, Inc. 2008-2012. All rights reserved.  
Document Number: MPC5634M  
Rev. 9  
05/2012  
MPC5634M Microcontroller Data Sheet, Rev. 9  
122  
Freescale Semiconductor  

相关型号:

935319695528

Microcontroller
NXP

935319718528

RISC Microcontroller
NXP

935319718557

RISC Microcontroller
NXP

935319719557

RISC Microcontroller
NXP

935319738528

Microcontroller
NXP

935319753518

Power Supply Management Circuit
NXP

935319753557

Power Supply Management Circuit
NXP

935319759557

RISC Microprocessor
NXP

935319782518

Multifunction Peripheral
NXP

935319782557

Multifunction Peripheral
NXP

935319794557

Microcontroller
NXP

935319811557

Microprocessor
NXP