935319753557 [NXP]

Power Supply Management Circuit;
935319753557
型号: 935319753557
厂家: NXP    NXP
描述:

Power Supply Management Circuit

文件: 总159页 (文件大小:10075K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC34708  
Rev. 11.0, 11/2013  
escale Semiconductor  
Technical Data  
Power Management Integrated  
Circuit (PMIC) for i.MX50/53  
Families  
34708  
The MC34708 is the Power Management Integrated Circuit (PMIC)  
designed specifically for use with the Freescale i.MX50 and i.MX53  
families. This device is powered by SMARTMOS technology.  
POWER MANAGEMENT  
Features  
• Six multi-mode buck regulators for direct supply of the processor  
core, memory, and peripherals  
• Boost regulator for USB OTG support  
• Eight regulators with internal and external pass devices for thermal  
budget optimization  
VK SUFFIX (PB-FREE)  
VM SUFFIX (PB-FREE)  
98ASA00299D  
98ASA00312D  
206 MAPBGA  
206 MAPBGA  
• USB/UART/Audio switching for mini-micro USB connector  
• 10-bit ADC for monitoring battery and other inputs  
• Real time clock and crystal oscillator circuitry with coin cell backup/  
charger  
8.0 X 8.0 (0.5 MM PITCH) 13.0 X 13.0 (0.8 MM PITCH)  
Applications  
• SPI/I2C bus for control and register interface  
Tablets  
Smart Mobile Devices  
Portable Navigation Devices  
ꢒꢓꢎꢔꢕꢖꢇꢗ  
ꢀꢌꢱꢉꢊꢌ  
ꢀꢁꢄꢁ  
ꢖꢖꢗ  
ꢖꢈꢉꢊꢉꢟ  
ꢂꢟꢔꢠꢙꢚꢉꢌꢡꢉꢊꢙ  
ꢅꢆꢇꢈ  
ꢋꢘꢙꢅꢐ  
ꢚꢀ  
ꢋꢌꢌꢍꢎꢏꢄꢐꢑꢃꢍꢍꢐꢄ  
ꢥꢖꢣ  
ꢅꢌꢈꢌ  
ꢅꢘꢙꢚꢍꢌꢛ  
ꢕꢘꢤꢒꢗꢋꢚꢔꢈ  
ꢁꢔꢠꢘꢟꢒ  
ꢂꢘꢋꢉꢒꢘꢋꢝꢟꢔꢈ  
ꢥꢁꢆꢐ  
ꢖꢈꢉꢊꢉꢟ  
ꢜꢟꢢꢉꢊ  
ꢎꢉꢌꢠꢚꢎꢟꢋꢉꢙ  
ꢖꢜꢗꢝꢗꢞꢀ  
ꢥꢖꢣ  
ꢗꢝꢓ  
ꢥꢖꢣꢒꢖꢢꢘꢈꢤꢎ  
ꢃꢇꢈꢉꢊꢋꢌꢍ  
ꢀꢎꢌꢊꢏꢉꢊ  
ꢜꢟꢢꢉꢊ  
ꢇꢀꢛꢜꢝꢞꢟ  
ꢏꢐꢠꢃꢄꢎꢇꢡꢂꢢ  
ꢚꢀ  
ꢂꢘꢒꢗꢟꢋꢒꢣꢌꢈꢈꢉꢊꢛ  
ꢯꢉꢋꢉꢊꢌꢍꢒꢜꢔꢊꢚꢟꢙꢉ  
ꢂꢃꢅꢒꢅꢊꢘꢰꢉꢊ  
ꢐꢟꢔꢤꢎ  
ꢖꢤꢊꢉꢉꢋ  
ꢀꢟꢘꢋꢒꢀꢉꢍꢍ  
ꢣꢌꢈꢈꢉꢊꢛ  
ꢦꢞ  
ꢀꢁꢂꢃꢄꢅꢁꢆ  
ꢦꢦ  
ꢦꢭ  
ꢆꢐꢀ  
Figure 1. MC34708 Simplified Application Diagram  
There are no disclaimers required on the Final publication of a data sheet.  
© Freescale Semiconductor, Inc., 2011-2013. All rights reserved.  
Table of Contents  
1
2
Orderable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Part Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.2 Format and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Simplified Internal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3
4
5
5.2.1  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.3.2  
5.3.3  
General PMIC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6
7
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.1 Startup Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.2 Bias and References Block Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.3 Clocking and Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.3.1  
7.3.2  
7.3.3  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SRTC Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Coin Cell Battery Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.4 Interrupt Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.4.1  
7.4.2  
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Interrupt Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.5 Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
Power Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Power Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Buck Switching Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Boost Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Linear Regulators (LDOs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
7.6 Battery Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
7.7 Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
Input Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Dedicated Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Touch Screen Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
ADC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
7.8 Auxiliary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
7.8.1  
7.8.2  
7.8.3  
7.8.4  
General Purpose I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
PWM Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
General Purpose LED Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Mini/Micro USB Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
2
7.9 Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
7.9.1  
7.9.2  
7.9.3  
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
SPI/I2C Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
7.10 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
7.10.1 Register Set structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
7.10.2 Specific Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
7.10.3 SPI/I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
7.10.4 SPI Register’s Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
8.1 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
8.2 Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
8.3 MC34708 Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
8
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
General board recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
General Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Parallel Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Differential Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Switching Regulator Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
8.4 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
8.4.1  
8.4.2  
Rating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Estimation of Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
9
Package Mechanical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
9.1 206-pin MAPBGA (8 x 8), 0.5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
9.2 206-pin MAPBGA (13 x 13), 0.8 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
10 Reference Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
MC34708  
Analog Integrated Circuit Device Data  
3
Freescale Semiconductor  
Orderable Parts  
1
Orderable Parts  
This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are  
provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part  
number search for the following device numbers.  
Table 1. Orderable Part Variations  
Part Number (1)  
MC34708VK  
Temperature (T )  
Package  
A
206 MAPBGA - 8.0 x 8.0 mm - 0.5 mm pitch  
206 MAPBGA - 13 x 13 mm - 0.8 mm pitch  
-40 to 85 °C  
MC34708VM  
Notes  
1. To Order parts in Tape & Reel, add the R2 suffix to the part number.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
Part Identification  
2
Part Identification  
This section provides an explanation of the part numbers and their alpha numeric breakdown.  
2.1  
Description  
Part numbers for the chips have fields that identify the specific part configuration. You can use the values of these fields to  
determine the specific part you have received.  
2.2  
Format and Examples  
Part numbers for a given device have the following format, followed by a device example:  
Table 2 - Part Numbering - Analog:  
MC tt xxx r v PP RR - MC34708VKR2  
2.3  
Fields  
These tables list the possible values for each field in the part number (not all combinations are valid).  
Table 2: Part Numbering - Analog  
FIELD  
MC  
DESCRIPTION  
VALUES  
• MC- Qualified Standard  
• PC- Prototype Device  
Product Category  
tt  
xxx  
r
Temperature Range  
Product Number  
Revision  
• 34 = -40 °C to 105 °C  
• Assigned by Marketing  
• (default blank)  
v
Variation  
• (default blank)  
PP  
RR  
Package Identifier  
Tape and Reel Indicator  
• Varies by package  
• R2 = 13 inch reel hub size  
MC34708  
Analog Integrated Circuit Device Data  
5
Freescale Semiconductor  
Internal Block Diagram  
3
Internal Block Diagram  
3.1  
Simplified Internal Diagram  
SW1IN  
SW1ALX  
GNDSW1A  
SW1FB  
O/P  
Drive  
Input/Battery  
Monitoring  
General Purpose  
LED Drivers  
SW1  
Dual Phase  
GP  
2000 mA  
Buck  
SW1CFG  
SW1VSSSNS  
LICELL, UID, Die Temp, GPO4  
Voltage /  
Current  
GNDADC  
SW1BLX  
O/P  
Sensing &  
Translation  
10 Bit GP  
ADC  
Drive  
GNDSW1B  
A/D Result  
DVS  
CONTROL  
ADIN9  
ADIN10  
ADIN11  
SW1PWGD  
A/D  
Control  
SW2IN  
SW2LX  
GNDSW2  
SW2FB  
MUX  
O/P  
Drive  
SW2  
ADIN12/TSX1  
ADIN13/TSX2  
ADIN14/TSY1  
ADIN15/TSY2  
TSREF  
LP  
`
1000 mA  
SW2PGD  
Buck  
Touch  
Screen  
Interface  
Die Temp &  
Thermal Warning  
Detection  
SW3IN  
To Interrupt  
Section  
SW3  
INT MEM  
500 mA  
Buck  
O/P  
Drive  
SW3LX  
GNDSW3  
SW3FB  
BPTHERM  
NTCREF  
SW4AIN  
SW4ALX  
GNDSW4A  
SW4AFB  
O/P  
Drive  
BATTISNSCCP  
SW4  
Dual Phase  
DDR  
BATTISNSCCN  
CFP  
SW4CFG  
1000 mA  
Buck  
Package Pin Legend  
SW4BIN  
CFN  
SW4BLX  
GNDSW4B  
SW4BFB  
O/P  
Drive  
Output Pin  
Input Pin  
SPIVCC  
Shift Register  
Bi-directional Pin  
CS  
SPI  
Interface  
+
Muxed  
I2C  
Optional  
Interface  
SW5IN  
CLK  
SW5  
I/O  
1000 mA  
Buck  
O/P  
Drive  
SW5LX  
GNDSW5  
SW5FB  
SPI  
MOSI  
MISO  
To Enables & Control  
Registers  
GNDSPI  
Shift Register  
SWBSTIN  
SWBSTLX  
SWBSTFB  
O/P  
Drive  
SWBST  
380 mA  
Boost  
VALWAYS  
VCORE  
GNDSWBST  
MC34708  
VCOREDIG  
VDDLP  
Reference  
Generation  
VINREFDDR  
VHALF  
SPI Control  
VCOREREF  
GNDCORE  
GNDREF  
VREFDDR  
10mA  
VREFDDR  
SPKR  
SPKL  
MIC  
VINPLL  
VPLL  
VPLL  
50 mA  
Pass  
FET  
VUSB2DRV  
VUSB2  
TXD  
RXD  
Pass  
FET  
VUSB2  
350mA  
VBUS/ID  
Detectors, Host  
Auto detection  
DPLUS  
DMINUS  
VDACDRV  
VDAC  
VDAC  
250mA  
UART Switches  
Audio Switches  
To  
Trimmed  
Circuits  
DP  
DM  
SPI  
Trim-In-Package  
Control  
Logic  
VINGEN1  
VGEN1  
VGEN1  
250mA  
Pass  
FET  
GNDUSB  
UID  
VBUS  
Startup  
Sequencer  
Decode  
Trim?  
OVP  
Control  
Logic  
VGEN2DRV  
VGEN2  
PUMSx  
PLL  
Switchers  
Pass  
FET  
VGEN2  
250mA  
VINUSB  
VUSB  
Monitor  
Timer  
VUSB  
Regulator  
RTC +  
Calibration  
32 KHz  
Internal  
Osc  
LDOVDD  
SPI Result  
Registers  
Interrupt  
Inputs  
Enables &  
Control  
32 KHz  
Buffers  
Best  
of  
Supply  
GNDREG1  
GNDREG2  
GNDREF1  
GNDREF2  
BP  
LCELL  
Switch  
LICELL  
PWM  
Outputs  
32 KHz  
Crystal  
Osc  
GPIO Control  
Li Cell  
Charger  
Digital Core  
VSRTC  
Figure 2. Simplified Internal Block Diagram  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
6
Pin Connections  
4
Pin Connections  
4.1  
Pinout Diagram  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
A
B
C
D
TRICKLESEL  
GNDACHRG  
BATT  
CFP  
BP  
VBUSVIN  
CHRGLX  
GNDCHRG  
LEDVDD  
LICELL  
PWM1  
GPIOVDD  
PUMS4  
AUXVIN  
AUXVIN  
VAUX  
AUXVIN  
AUXVIN  
GOTG  
PRETMR  
SUBSANA3  
GAUX  
BPTHERM  
NTCREF  
SDWNB  
INT  
CFN  
GBAT  
VBUSVIN  
VBUSVIN  
VBUSVIN  
BATTISNSP  
BATTISNSN  
GLBRST  
MIC  
CHRGLX  
CHRGLX  
GNDCHRG  
GNDCHRG  
GNDCHRG  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SW1VSSSNS  
CHRGLEDG  
PWM2  
GPIOLV1  
GPIOLV3  
GPIOLV2  
GPIOLV0  
GNDREF2  
SW3FB  
GNDGPIO  
PUMS1  
PUMS3  
GNDSW2  
SW2LX  
PUMS2  
GNDSW2  
SW2LX  
SUBSANA2  
GNDSW2  
SW2LX  
CHRGFB  
BPSNS  
CHRGLX  
ICTEST  
PUMS5  
E
F
RESETB  
MISO  
GNDCTRL  
GNDSPI  
CS  
PWRON2  
MOSI  
BATTISNSCCN  
BATTISNSCCP  
ITRIC  
CHRGLEDR  
SW2FB  
SW2IN  
SW2IN  
SW2IN  
SPIVCC  
RXD  
RESETBMCU  
TXD  
SUBSPWR1  
PWRON1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
GNDREF1  
SWBSTIN  
GNDSWBST  
SWBSTFB  
VPLL  
SWBSTIN  
GNDSWBST  
CLK32K  
GNDSW3  
SW3LX  
GNDSW3  
SW3LX  
G
H
J
CLK  
VINUSB  
UID  
SW2PWGD  
CLK32KMCU  
VDACDRV  
VHALF  
VBUS  
VUSB  
VALWAYS  
VDDLP  
TSX1  
SUBSREF  
STANDBY  
SUBSPWR1  
TSY2  
CLK32KVCC  
VINPLL  
SW3IN  
SW3IN  
DM  
SPKR  
VCOREDIG  
VCORE  
GNDUSB  
TSY1  
VSRTC  
SWBSTLX  
GNDRTC  
LDOVDD  
VUSB2DRV  
VINGEN1  
GNDSW1B  
GNDSW1B  
SWBSTLX  
SUBSLDO  
XTAL2  
K
L
DP  
SPKL  
ADIN10  
ADIN9  
VGEN2  
VDAC  
GNDREG1  
VUSB2  
DPLUS  
DMINUS  
VCOREREF  
TSREF  
GNDCORE  
GNDREF  
GNDADC  
GNDSW4A  
SW4ALX  
WDI  
TSX2  
ADIN11  
SUBSPWR1  
SW5FB  
SW1CFG  
SW1FB  
VINREFDDR  
SW1PWGD  
SW1IN  
GNDREG2  
M
N
P
R
SW4CFG  
VGEN1  
XTAL1  
GNDADC  
GNDADC  
SW4AIN  
GNDADC  
GNDADC  
SW4BIN  
SW5IN  
SW5LX  
SW5LX  
SW5LX  
GNDSW5  
GNDSW5  
GNDSW5  
SW1IN  
SW1IN  
SW1IN  
SUBSANA1  
SW1BLX  
SW1BLX  
VGEN2DRV  
VREFDDR  
SW4BFB  
SW4BLX  
SW4AFB  
SW5IN  
GNDSW1A  
GNDSW1A  
SW1ALX  
SW1ALX  
GNDSW4B  
SW5IN  
Legend  
LDOs  
Switching Regulators  
Control Logic  
Misc  
RTC  
Ground  
USB  
ADC  
SPI/I2C  
No Connect  
No Ball  
Figure 3. Top View Ballmap  
MC34708  
Analog Integrated Circuit Device Data  
7
Freescale Semiconductor  
Pin Connections  
4.2  
Pin Definitions  
Table 3. MC34708 Pin Definitions  
Pin  
Pin Number  
Pin Name  
Definition  
Function  
Charger (Function no longer supported on MC34708)  
Charger Not supported.  
A7, B7, C7,  
D7  
VBUSVIN  
AUXVIN  
VAUX  
NC  
NC  
NC  
No Connect  
Charger Not supported.  
No Connect  
B1, B2, C1,  
C2  
Charger Not supported.  
No Connect  
D1  
Charger Not supported.  
No Connect  
A8, B8, C8,  
D8  
CHRGLX  
CHRGFB  
GOTG  
NC  
I
Connect to BATT pin  
C5  
D2  
Charger Not supported.  
No Connect  
NC  
Charger Not supported.  
No Connect  
D3  
GAUX  
NC  
I
BP sense point  
C6  
A6  
BPSNS  
1. Application supply point  
2. Input supply to the IC core circuitry  
3. Application supply voltage sense  
BP  
I
Connect to GND  
B6  
E8  
GBAT  
ITRIC  
O
Charger Not supported.  
No Connect  
NC  
Battery current sensing point.(Optional)  
E7  
F7  
A4  
BATTISNSP  
BATTISNSN  
I
I
If required, connect a 20 msense resistor between BATTISNSP and BATTISNSN  
Battery current sensing point (Optional)  
If required, connect a 20 msense resistor between BATTISNSP and BATTISNSN  
1. Battery positive terminal  
2. Battery current sensing point 2  
3. Battery supply voltage sense  
BATT  
I
Coulomb counter Not supported.  
No Connect  
F6  
E6  
BATTISNSCCP  
BATTISNSCCN  
NC  
NC  
Coulomb counter Not supported.  
No Connect  
Connect to VCOREDIG  
Connect to Ground  
A2  
B3  
A5  
TRICKLESEL  
PRETMR  
I
I
Coulomb Counter Not supported.  
No Connect  
CFP  
CFN  
NC  
NC  
Coulomb Counter Not supported.  
No Connect  
B5  
LED supply  
A10  
E10  
LEDVDD  
O
I
Red LED driver  
CHRGLEDR  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
8
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Definition  
Function  
Green LED driver  
Analog ground  
B10  
A3  
CHRGLEDG  
GNDACHRG  
I
GND  
A9, B9, C9,  
D9  
Ground  
GNDCHRG  
GND  
Charger Not supported.  
No Connect  
C4  
NTCREF  
NC  
I
Connect to Ground  
B4  
IC Core  
K3  
BPTHERM  
Regulated supply for the IC analog core circuitry  
Regulated supply for the IC digital core circuitry  
Always on supply for internal core circuitry  
Main bandgap reference  
VCORE  
VCOREDIG  
VALWAYS  
VCOREREF  
VDDLP  
O
O
J3  
H4  
O
N1  
O
VDDLP reference  
J4  
O
Ground for the IC core circuitry  
L2  
GNDCORE  
GNDREF  
GND  
GND  
Ground reference for the IC core circuitry  
M2  
Switching Regulators  
N11, N12,  
SW1 input  
SW1IN  
I
P12, R12  
P11, R11  
M10  
SW1A switch node connection  
SW1 feedback  
SW1ALX  
SW1FB  
O
I
Ground for SW1A  
P10, R10  
L9  
GNDSW1A  
SW1VSSSNS  
SW1PWGD  
SW1BLX  
GND  
GND  
O
SW1 sense  
Powergood signal for SW1  
SW1B switch node connection  
Ground for SW1B  
M11  
P13, R13  
P14, R14  
L10  
O
GNDSW1B  
SW1CFG  
GND  
I
SW1A/B mode configuration  
E13, E14,  
E15  
SW2 input  
SW2IN  
I
D13, D14,  
D15  
SW2 switch node connection  
SW2 feedback  
SW2LX  
SW2FB  
O
I
E12  
C13, C14,  
C15  
Ground for SW2  
GNDSW2  
GND  
Powergood signal for SW2  
SW3 input  
G10  
H14, H15  
G14, G15  
G11  
SW2PWGD  
SW3IN  
O
I
SW3 switch node connection  
SW3 feedback  
SW3LX  
O
SW3FB  
I
Ground for SW3  
F14, F15  
F11  
GNDSW3  
GNDREF2  
SW4AIN  
GND  
GND  
I
Ground reference for switching regulators  
SW4A input  
R3  
MC34708  
Analog Integrated Circuit Device Data  
9
Freescale Semiconductor  
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Definition  
Function  
SW4A switch node connection  
SW4A feedback  
R2  
SW4ALX  
SW4AFB  
GNDSW4A  
SW4BIN  
O
P6  
I
Ground for SW4A  
SW4B input  
P2  
R4  
GND  
I
SW4B switch node connection  
SW4B feedback  
R5  
SW4BLX  
SW4BFB  
GNDSW4B  
SW4CFG  
SW5IN  
O
P5  
I
Ground for SW4B  
SW4A/B mode configuration  
SW5 input  
R6  
GND  
M6  
I
N7, P7, R7  
N8, P8, R8  
M7  
I
SW5 output  
SW5LX  
O
SW5 feedback  
SW5FB  
I
GND  
GND  
I
Ground for SW5  
N9, P9, R9  
L8  
GNDSW5  
GNDREF1  
SWBSTIN  
SWBSTLX  
SWBSTFB  
GNDSWBST  
Ground reference for Switching Regulators  
Boost Regulator BP supply  
F12, F13  
J14, J15  
H12  
SWBST switch node connection  
Boost Regulator feedback  
O
I
Ground for boost Regulator  
G12, G13  
LDO Regulators  
L11  
GND  
VREFDDR input supply  
VINREFDDR  
VREFDDR  
VHALF  
I
VREFDDR regulator output  
Half supply reference for VREFDDR  
VPLL input supply  
P15  
O
O
I
K10  
J11  
VINPLL  
VPLL regulator output  
J12  
VPLL  
O
O
O
Drive output for VDAC regulator using external PNP device  
VDAC regulator output  
J10  
VDACDRV  
VDAC  
K12  
Supply pin for VUSB2, VDAC, and VGEN2. Must always be connected to the same supply as  
the PNP emitter. Recommended to use BP as the LDOVDD supply. See Figure 38 for a typical  
connection diagram.  
L14  
LDOVDD  
I
1. VUSB2 input using internal PMOS FET  
2. Drive output for VUSB2 regulator using external PNP device  
VUSB2 regulator output  
M14  
I
O
VUSB2DRV  
L13  
N14  
M13  
N15  
VUSB2  
VINGEN1  
VGEN1  
O
VGEN1 input supply  
I
VGEN1 regulator output  
O
1. VGEN2 input using internal PMOS FET  
2. Drive output for VGEN2 regulator using external PNP device  
VGEN2 regulator output  
I
VGEN2DRV  
O
K11  
J13  
K13  
VGEN2  
VSRTC  
O
Output regulator for SRTC module on processor  
Ground for regulators 1  
O
GNDREG1  
GND  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
10  
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Definition  
Function  
Ground for regulators 2  
Supply for GPIO  
L12  
A13  
GNDREG2  
GPIOVDD  
GPIOLV0  
GPIOLV1  
GPIOLV2  
GPIOLV3  
PWM1  
GND  
I
General purpose input/output 0  
General purpose input/output 1  
General purpose input/output 2  
General purpose input/output 3  
PWM output 1  
E11  
I/O  
I/O  
I/O  
I/O  
O
B11  
D11  
C11  
A12  
PWM output 2  
C10  
PWM2  
O
GPIO ground  
B12  
GNDGPIO  
-
Control Logic  
A11  
1. Coin cell supply input  
LICELL  
I/O  
2. Coin cell charger output  
32.768 kHz Oscillator crystal connection 1  
32.768 kHz Oscillator crystal connection 2  
Ground for the RTC block  
M15  
L15  
K14  
H11  
H13  
H10  
E1  
XTAL1  
XTAL2  
I
I
GNDRTC  
CLK32KVCC  
CLK32K  
CLK32KMCU  
RESETB  
RESETBMCU  
WDI  
GND  
Supply voltage for 32 kHz buffer  
32 kHz Clock output for peripherals  
32 kHz Clock output for processor  
Reset output for peripherals  
Reset output for processor  
I
O
O
O
F5  
O
Watchdog input  
L4  
I
Standby input signal from processor  
Interrupt to processor  
J5  
STANDBY  
INT  
I
E4  
O
Power on/off button connection 1  
Power on/off button connection 2  
Global Reset  
G8  
PWRON1  
PWRON2  
GLBRST  
PUMS1  
PUMS2  
PUMS3  
PUMS4  
PUMS5  
ICTEST  
GNDCTRL  
SPIVCC  
CS  
I
E3  
I
G7  
I
Power up mode supply setting 1  
Power up mode supply setting 2  
Power up mode supply setting 3  
Power up mode supply setting 4  
Power up mode supply setting 5  
C12  
B14  
B13  
A14  
D12  
D10  
E2  
I
I
I
I
I
Connect to ground for normal mode operation.  
Ground for control logic  
I
GND  
Supply for SPI bus  
F4  
I
I
Primary SPI select input  
Primary SPI clock input  
G2  
G1  
CLK  
I
Primary SPI write input  
F3  
MOSI  
I
Primary SPI read output  
F1  
MISO  
O
MC34708  
Analog Integrated Circuit Device Data  
11  
Freescale Semiconductor  
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Definition  
Function  
Indication of imminent system shutdown  
Ground for SPI interface  
D4  
SDWNB  
GNDSPI  
O
F2  
GND  
USB (2)  
USB OTG transceiver cable ID  
USB Ground  
H3  
UID  
GNDUSB  
DP  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
O
L3  
USB Data +  
K1  
USB Data –  
J1  
DM  
Processor D+  
Processor D-  
L1  
DPLUS  
DMINUS  
RXD  
M1  
UART Receive  
UART Transmit  
Mic output  
G4  
G5  
TXD  
I/O  
O
H7  
MIC  
Speaker right  
Speaker left  
J2  
SPKR  
SPKL  
VBUS  
VUSB  
VINUSB  
I
K2  
I
USB transceiver cable interface VBUS & OTG supply output  
USB transceiver regulator output  
H1  
I/O  
O
H2  
Input option for VUSB; tie to SWBST at top level.  
G3  
I
A to D Converter  
ADC generic input channel 9  
K7  
K6  
L6  
ADIN9  
ADIN10  
ADIN11  
I
I
ADC generic input channel 10,  
ADC generic input channel 11  
I
Touch Screen Interface X1 or ADC generic input channel 12  
Touch Screen Interface X2 or ADC generic input channel 13  
Touch Screen Interface Y1 or ADC generic input channel 14  
Touch Screen Interface Y2 or ADC generic input channel 15  
Touch Screen Reference  
K4  
L5  
J7  
J6  
P1  
TSX1/ADIN12  
TSX2/ADIN13  
TSY1/ADIN14  
TSY2/ADIN15  
TSREF  
I
I
I
I
O
N2, N3, N4,  
P3, P4  
Ground for ADC  
GNDADC  
GND  
Thermal Grounds  
Substrate ground connection for reference circuitry  
H5  
SUBSREF  
GND  
GND  
E9, F8,F9,  
L7, G9, H6,  
H8, H9, J8,  
J9, K8, K9  
Substrate ground connection for power devices SW1, SW4, SW5  
SUBSPWR1  
K15  
N13  
B15  
SUBSLDO  
SUBSANA1  
SUBSANA2  
GND  
GND  
GND  
Substrate ground connection for all LDOs  
Substrate ground connection for analog circuitry of SW1, SW4, SW5  
Substrate ground connection for analog circuitry of SW2, SW3, SWBST  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
12  
Pin Connections  
Table 3. MC34708 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Definition  
Function  
C3  
SUBSANA3  
GND  
Substrate ground connection for analog circuitry  
Notes  
2. In applications without USB support, leave all USB pins unconnected.  
MC34708  
Analog Integrated Circuit Device Data  
13  
Freescale Semiconductor  
General Product Characteristics  
5
General Product Characteristics  
5.1  
Maximum Ratings  
Table 4. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Max.  
Unit  
Notes  
ELECTRICAL RATINGS  
Input Supply Pins  
• BATT, BP, BPSNS  
• LICELL  
V
VBATT, VBP  
VLICELL  
,
4.8  
4.8  
Input Sense Pins  
V
• CHRGFB  
7.5  
5.5  
• BATTISNSP, BATTISNSN  
LED Drivers Pins  
V
V
• CHRGLEDR, CHRGLEDG  
7.5  
IC Core Reference  
• VCOREREF  
• VCOREDIG, VDDLP  
• VCORE  
1.5  
1.65  
3.6  
• VALWAYS  
7.5  
Switching Regulators Pins  
• SWxIN, SWxLX, SWBSTFB  
• SWxFB, SWxPWGD, SWxCFG  
• SWBSTLX  
V
V
5.5  
3.6  
7.5  
LDO Regulator Pins  
• VREFDDR, VHALF  
1.5  
2.5  
3.6  
4.8  
5.5  
• VPLL, VGEN1, VINGEN1, VSRTC  
• VINREFDDR,VDAC, VUSB2, VGEN2,  
• VINPLL, VDACDRV, VUSB2DRV, VGEN2DRV  
• LDOVDD  
GPIO Pins  
V
V
• GPIOVDD, GPIOLVx, PWMx  
2.5  
Control Logic Pins  
• ICTEST  
1.8  
2.5  
3.6  
XTAL1, XTAL2  
• CLK32KVCC, CLK32K, CLK32KMCU, WDI, STANDBY,INT, PWRON1,  
PWRON2, GLBRST, PUMSx, SPIVCC, CS, CLK, MOSI, MISO, SDWNB  
Mini/Micro USB Interface Pins  
V
V
• VBUS input sense pin  
20  
3.6  
5.5  
• VUSB  
• UID, DP, DM, DPLUS, DMINUS, RXD, TXD, MIC, SPKR, SPKL, VINUSB  
ADC Interface Pins  
• ADINx, TSX1/ADIN12, TSX2/ADIN13, TSY1/ADIN14, TSY2/ADIN15, TSREF  
4.8  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
14  
General Product Characteristics  
Table 4. Maximum Ratings (continued)  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Max.  
Unit  
Notes  
V
VESD  
ESD Ratings  
• Human Body Model All pins  
(3)  
(3)  
(4)  
(4)  
2000  
500  
• Charge Device Model All pins  
15000  
8000  
• Air Gap Discharge Model for UID, VBUS, DP, and DM pins  
• Human Body Model (HBM) for UID, VBUS, DP, and DM pins  
Notes  
3. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge Device  
Model (CDM), Robotic (CZAP = 4.0 pF).  
4. Need external ESD protection diode array to meet IEC1000-4-2 15000 V Air Gap discharge and 8000 V HBM requirements.  
(CZAP = 150 pF, RZAP = 330 ohm).  
5.2  
Thermal Characteristics  
Table 5. Thermal Ratings  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
THERMAL RATINGS  
Ambient Operating Temperature Range  
Operating Junction Temperature Range  
-40  
-40  
-65  
-
°C  
°C  
TA  
TJ  
85  
125  
(5)  
Storage Temperature Range  
°C  
°C  
TST  
150  
(6), (7)  
Peak Package Reflow Temperature During Reflow  
TPPRT  
Note 7  
8.0 X 8.0 MM, THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
(8), (9)  
(8), (10)  
(8), (10)  
(8), (10)  
Junction to Ambient Natural Convection  
• Single layer board (1s)  
-
93  
53  
80  
49  
RθJA  
°C/W  
°C/W  
°C/W  
°C/W  
-
Junction to Ambient Natural Convection  
• Four layer board (2s2p)  
RθJMA  
RθJMA  
RθJMA  
-
-
Junction to Ambient (@200 ft/min.)  
• Single layer board (1s)  
Junction to Ambient (@200 ft/min.)  
• Four layer board (2s2p)  
-
-
-
(11)  
(12)  
(13)  
Junction to Board  
Junction to Case  
34  
25  
RθJB  
RθJC  
θJT  
°C/W  
°C/W  
°C/W  
Junction to Package Top  
• Natural Convection  
3.0  
13 X 13 MM, THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
-
-
(8), (9)  
Junction to Ambient Natural Convection  
• Single layer board (1s)  
57  
36  
°C/W  
°C/W  
RθJA  
(8), (9),  
(10)  
Junction to Ambient Natural Convection  
• Four layer board (2s2p)  
RθJMA  
MC34708  
Analog Integrated Circuit Device Data  
15  
Freescale Semiconductor  
General Product Characteristics  
Table 5. Thermal Ratings (continued)  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
-
(8), (10)  
Junction to Ambient (@200 ft/min.)  
• Single layer board (1s)  
48  
°C/W  
RθJMA  
-
(8), (10)  
Junction to Ambient (@200 ft/min.)  
• Four layer board (2s2p)  
32  
°C/W  
RθJMA  
-
-
-
(11)  
(12)  
(13)  
Junction to Board  
Junction to Case  
22  
15  
°C/W  
°C/W  
°C/W  
RθJB  
RθJC  
θJT  
Junction to Package Top  
• Natural Convection  
3.0  
Notes  
5. Do not operate above 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC.  
6. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause a malfunction or permanent damage to the device.  
7. Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow  
Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes  
and enter the core ID to view all orderable parts (i.e. MC33xxxD enter 33xxx), and review parametrics.  
8. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
9. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
10. Per JEDEC JESD51-6 with the board horizontal.  
11. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top  
surface of the board near the package.  
12. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
13. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per  
JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
General Product Characteristics  
5.2.1  
Power Dissipation  
During operation, the temperature of the die should not exceed the maximum junction temperature. To optimize the thermal  
management scheme and avoid overheating, the MC34708 PMIC provides a thermal management system. The thermal  
protection is based on a circuit with a voltage output proportional to the absolute temperature.This voltage can be read out via  
the ADC for specific temperature readouts, see Channel 3 Die Temperature.  
The ADEN SPI bit must be set = 1 to enable the comparators for the thermal monitoring (THERM110, THERM120, THERM125,  
THERM130, and thermal shutdown). With ADEN = 0 the thermal monitors and thermal shutdown are disabled. Interrupts  
THERM110, THERM120, THERM125, and THERM130 will be generated when respectively crossing in either direction the  
thresholds specified in Table 6. The temperature range can be determined by reading the THERMxxxS bits.  
Thermal protection is integrated to power off the MC34708 PMIC in case of over dissipation. This thermal protection will act above  
the maximum junction temperature to avoid any unwanted power downs. The protection is debounced for 8.0 ms in order to  
suppress any (thermal) noise. This protection should be considered as a fail-safe mechanism and therefore the application  
design should be dimensioned such that this protection is not tripped under normal conditions. The temperature thresholds and  
the sense bit assignment are listed in Table 6  
.
Table 6. Thermal Protection Thresholds  
Parameter  
Thermal 110 °C threshold (THERM110)  
Min  
Typ  
Max  
Units  
Notes  
105  
115  
120  
125  
2.0  
110  
120  
125  
130  
-
115  
125  
130  
135  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal 120 °C threshold (THERM120)  
Thermal 125 °C threshold (THERM125)  
Thermal 130 °C threshold (THERM130)  
Thermal warning hysteresis  
(14)  
Thermal protection threshold  
130  
140  
150  
Notes  
14. Equivalent to approx. 30 mW min, 60 mW max  
The THERM1xx thresholds are debounced by the SPI bits DIE_TEMP_DB[1:0], which are programmable from 100 s to 4.0 ms  
(4.0 ms by default), see Table 7. When the die temperature crosses these thresholds, the corresponding sense bit will change,  
and an interrupt will be generated to notify the software the hardware is reaching its thermal limit.  
Table 7. Die Temp Debounce Settings  
DIE_TEMP_DB [1:0]  
Time  
Units  
00  
01  
0.100  
1.0  
ms  
ms  
ms  
ms  
10  
2.5  
11 (default)  
4.0  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
General Product Characteristics  
5.3  
Electrical Characteristics  
5.3.1  
Recommended Operating Conditions  
Table 8. Recommended Operating Conditions  
Symbol  
Description (Rating)  
Main Input Supply  
Min.  
Max.  
Unit  
Notes  
VBP  
VLICELL  
TA  
3.0  
1.8  
-40  
4.5  
3.6  
85  
V
V
LICELL Backup Battery  
Ambient Temperature  
°C  
5.3.2  
General PMIC Specifications  
Table 9. Pin Logic Thresholds  
Internal  
Termination (19)  
Max (22)  
Pin Name  
Parameter  
Input Low  
Load Condition  
Min  
Unit  
Notes  
(16)  
(16)  
(21)  
(21)  
47 kOhm  
1.0 MOhm  
-
0.0  
1.0  
0.0  
0.9  
0.0  
0.3  
VCOREDIG  
0.3  
V
V
V
V
V
V
V
V
V
V
PWRON1, PWRON2,  
GLBRST  
Pull-up  
Input High  
Input Low  
STANDBY, WDI  
CLK32K  
Weak Pull-down  
CMOS  
Input High  
Output Low  
Output High  
Output Low  
Output High  
Output Low  
-
3.6  
-100 A  
100 A  
-100 A  
100 A  
-2.0 mA  
Open Drain  
0.2  
CLK32KVCC - 0.2  
CLK32KVCC  
0.2  
0.0  
CLK32KMCU  
CMOS  
VSRTC - 0.2  
VSRTC  
0.4  
(20)  
(20)  
RESETB,  
Open Drain  
0.0  
-
RESETBMCU,  
SDWNB, SW1PWGD,  
SW2PWGD  
3.6  
Output High  
Input Low  
-
0.0  
0.3 * GPIOVDD  
GPIOVDD + 0.3  
0.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Input High  
Output Low  
Output High  
Output Low  
Output High  
Output Low  
Output High  
Input Low  
-
0.7 * GPIOVDD  
CMOS  
-
0.0  
GPIOLV1,2,3,4  
-
GPIOVDD - 0.2  
GPIOVDD  
0.4  
-2.0 mA  
0
Open Drain  
CMOS  
Open Drain  
-
GPIOVDD + 0.3  
0.2  
-
-
-
-
-
-
-
-
0.0  
PWM1, PWM2  
CLK, MOSI  
CS  
GPIOVDD - 0.2  
GPIOVDD  
0.3 * SPIVCC  
SPIVCC + 0.3  
0.4  
(15)  
(15)  
(15)  
(15)  
0.0  
Input High  
Input Low  
0.7 * SPIVCC  
0.0  
Weak Pull-down  
Input High  
Input Low  
1.1  
0.0  
SPIVCC + 0.3  
0.3 * VCOREDIG  
VCOREDIG  
(15) (23)  
,
Weak Pull-down  
on CS  
CS, MOSI (at Booting  
for SPI / I2C decoding)  
(15) (23)  
Input High  
0.7 * VCOREDIG  
,
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
18  
General Product Characteristics  
Table 9. Pin Logic Thresholds  
Internal  
Termination (19)  
Max (22)  
Pin Name  
Parameter  
Load Condition  
Min  
Unit  
Notes  
-100 A  
0.0  
0.2  
V
MISO  
Output Low  
(15) (24)  
MISO, INT  
CMOS  
100 A  
SPIVCC - 0.2  
SPIVCC  
0.3  
V
V
V
MISO  
Output High  
(15) (24)  
(17)  
(17)  
Input Low  
PUMSxS = 0  
-
-
0.0  
1.0  
PUMS1,2,3,4,5  
ICTEST  
Input High  
VCOREDIG  
PUMSxS = 1  
(18)  
(18)  
Input Low  
Input High  
Input Low  
Input Mid  
Input High  
-
-
-
-
-
0.0  
1.1  
0.0  
1.3  
2.5  
0.3  
1.7  
0.3  
2.0  
3.1  
V
V
V
V
V
SW1CFG, SW4CFG  
Notes  
15. SPIVCC is typically connected to the output of buck regulator SW5 and set to 1.800 V  
16. Input has internal pull-up to VCOREDIG equivalent to 200 kOhm  
17. Input state is latched in first phase of cold start, refer to Serial Interfaces for a description of the PUMS configuration  
18. Input state is not latched  
19. A weak pull-down represents a nominal internal pull-down of 100 nA unless otherwise noted  
20. RESETB, RESETBMCU, SDWNB, SW1PWGD, SW2PWGD have open drain outputs, external pull-ups are required  
21. SPIVCC needs to remain enabled for proper detection of WDI High to avoid involuntary shutdown  
22. The maximum should never exceed the maximum rating of the pin as given in Pin Connections  
23. The weak pull-down on CS is disabled if a VIH is detected at startup to avoid extra consumption in I2C mode  
24. The output drive strength is programmable  
MC34708  
Analog Integrated Circuit Device Data  
19  
Freescale Semiconductor  
General Product Characteristics  
5.3.3  
Current Consumption  
The current consumption of the individual blocks is described in detail throughout this specification. For convenience, a summary  
table follows for standard use cases.  
Table 10. Current Consumption Summary (27)  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Mode  
Description  
Typ  
Max  
Unit  
Notes  
All blocks disabled, no main battery attached, coin cell is attached to LICELL   
(at 25 °C only)  
4.0  
8.0  
A  
• RTC Logic  
RTC / Power  
cut  
• VSRTC  
• 32 kHz Oscillator  
• Clk32KMCU buffer active(10 pF load)  
All blocks disabled, main battery attached  
• Digital Core  
20  
55  
A  
A  
• RTC Logic  
OFF (good  
battery)  
• VSRTC  
• 32 kHz Oscillator  
• CLK32KMCU buffer active (10 pF load)  
Low Power Mode (Standby pin asserted and ON_STBY_LP=1)  
340  
424  
• Digital Core  
• RTC Logic  
• VCORE Module  
• VSRTC  
• CLK32KMCU/CLK32K active (10 pF load)  
LPM ON  
Standby  
• 32 kHz Oscillator  
• IREF  
• SW1, SW2, SW3, SW4A, SW4B, SW5 in PFM (26),(30)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC  
in low power mode (25),(28)  
• Mini-USB  
• Digital Core  
480  
561  
A  
• RTC Logic  
• VCORE module  
• VSRTC  
• CLK32KMCU/CLK32K active (10 pF load)  
• 32 kHz Oscillator  
• Digital  
ON Standby  
• IREF  
• SW1, SW2, SW3 SW4A, SW4B, SW5 in PFM (26),(30)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC on   
in low power mode (26),(28)  
• Mini-USB  
• PLL (for mini USB)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
20  
General Product Characteristics  
Table 10. Current Consumption Summary (27)  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Typical use case  
1600  
3000  
A  
• Digital Core  
• RTC Logic  
• VCORE Module  
• VSRTC CLK32KMCU/CLK32K active (10 pf)  
• 32 kHz Oscillator  
• IREF  
ON  
• SW1, SW2, SW3 SW4A, SW4B, SW5 in Apskip SWBST (26),(29),(30)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC on   
in low power mode (25),(28)  
• Digital  
• PLL  
• Mini-USB  
Notes  
25. Equivalent to approx. 30 mW min, 60 mW max  
26. Current in RTC Mode is from LICELL=2.5 V; in all other modes from BP = 3.6 V.  
27. External loads are not included (1)  
28. VUSB2, VGEN2 external pass PNPs  
29. SWBST in auto mode  
30. SW4A output 2.5 V  
MC34708  
Analog Integrated Circuit Device Data  
21  
Freescale Semiconductor  
General Description  
6
General Description  
6.1  
Features  
Power Generation  
• Six Buck Switching Regulators  
• Two Single/Dual Phase Buck Regulators  
• Three Single Phase Buck Regulators  
• PFM/Auto Pulse Skip/PWM Operation Mode  
• Dynamic Voltage Scaling  
• 5 V Boost Regulator  
• USB On-the-go Support  
• Eight LDO Regulators  
• Two with Selectable Internal or External Pass Devices  
• Five with Embedded Pass Devices  
• One with an External PNP Device  
Analog to Digital Converter  
• Seven General Purpose Channels  
• Internal Dedicated Channels  
• Resistive Touchscreen Interface  
Auxiliary Circuits  
• Mini/Micro USB Switch  
• Bidirectional Audio/Data/UART  
• Accessory Identification Circuit  
• General Purpose I/Os  
• PWM Outputs  
• Two general purpose LED Drivers.  
Clocking and Oscillators  
• Real Time clock  
• Time and day Counters  
• Time of day Alarm  
• 32.768 kHz Crystal Oscillator  
• Coin Cell Battery Backup and Charger  
Serial Interface  
• SPI  
• I2C  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
22  
General Description  
6.2  
Block Diagram  
SIX BUCK  
REGULATORS  
Processor Core  
Split Power Domains  
DDR Memory  
I/O  
5 V BOOST  
REGULATOR  
USB On The Go  
Supply  
MINI/MICRO USB  
INTERFACE  
USB/UART/Audio  
Auto Accessory Detect  
EIGHT LDO  
REGULATORS  
Peripherals  
10-BIT ADC CORE  
General Purpose  
Resistive Touch  
Screen Interface  
GENERAL PURPOSE  
I/O & PWM OUTPUTS  
Dual LED Indicator  
MC34708  
32.768 kHz CRYSTAL  
OSCILLATOR  
Real Time Clock  
SRTC Support with  
Coin Cell Charger  
BIAS &  
REFERENCES  
Trimmed Bandgap  
CONTROL  
INTERFACE  
SPI/I2C  
POWER CONTROL  
LOGIC  
State Machine  
Figure 4. Functional Block Diagram  
6.3  
Functional Description  
The MC34708 Power Management Integrated Circuit (PMIC) represents a complete system power solution in a single package.  
Designed specifically for use with the Freescale i.MX50/53 families. The MC34708 integrates six multi-mode buck regulators and  
eight LDO regulators for direct supply of the processor core, memory and peripherals.  
The USB switch enables the use of a single, mini or micro USB connector for USB, UART and audio connections, switching the  
relevant signals to the connector depending on the type of device connected. In addition, the MC34708 also integrates a real  
time clock, coin cell charger, a 13-channel 10-bit ADC, 5 V USB Boost regulator, two PWM outputs, touch-screen interface, status  
LED drivers and four GPIOs.  
MC34708  
Analog Integrated Circuit Device Data  
23  
Freescale Semiconductor  
Functional Block Description  
7
Functional Block Description  
7.1  
Startup Requirements  
When power is applied, there is an initial delay of 8.0 ms during which the core circuitry is enabled. The switching and linear  
regulators are then sequentially enabled in time slot steps of 2.0 ms. This allows the PMIC to limit the inrush current.  
The outputs of the switching regulators not enabled are discharged with weak pull-downs on the output to ensure a proper power-  
up sequence. Any undervoltage detection at BP is masked while the power-up sequencer is running. When the switching  
regulators are enabled, they will start in PWM mode. After 3.0 ms, the switching regulators will transition to the mode  
programmed in the SPI register map.  
The Power-up mode select pins PUMSx (x = 1, 2, 3, 4, and 5) are used to configure the start-up characteristics of the regulators.  
Supply enabling and output level options are selected by hardwiring the PUMSx pins. It is recommended to minimize the load  
during system boot-up by supplying only the essential voltage domains. This allows the start-up transients to be minimized after  
which the rest of the system power tree can be brought up by software. The PUMSx pins also allow optimization of the supply  
sequence and default values. Software code can load the required programmable options without any change to hardware.  
The state of the PUMSx pins are latched before any of the regulators are enabled, with the exception of VCORE. PUMSx options  
and start-up configurations are robust to a PCUT event, whether occurring during normal operation or during the 8.0 ms of pre-  
sequencer initialization, i.e. the system will not end up in an unexpected / undesirable consumption state.  
Table 11 shows the initial setup for the voltage level of the switching and linear regulators, and whether they get enabled.  
Table 11. Power Up Defaults  
53  
LPM  
53  
DDR2  
53  
DDR3  
53  
LVDDR3  
53  
LVDDR2  
50  
50  
50  
50  
50  
50  
i.MX  
Reserved  
MDDR LPDDR2 LPDDR2 MDDR LPDDR2 MDDR  
PUMS[4:1]  
0000-0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
PUMS5=0  
VUSB2  
VGEN2  
Ext PNP Ext PNP Ext PNP  
Ext PNP  
Ext PNP  
Ext PNP  
Ext PNP Ext PNP Ext PNP Ext PNP Ext PNP  
Reserved  
Reserved  
PUMS5=1  
VUSB2  
VGEN2  
Internal  
Internal  
Internal  
Internal  
PMOS  
Internal  
PMOS  
Internal  
PMOS  
Internal  
Internal  
Internal  
Internal  
Internal  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
SW1A  
(VDDGP)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1.1  
1.1  
1.1  
1.1  
1.3  
1.3  
1.8  
1.8  
1.8  
1.1  
1.1  
1.3  
1.2  
1.5  
1.5  
1.8  
1.1  
1.1  
1.1  
1.1  
1.3  
1.2  
1.2  
1.2  
1.8  
1.1  
1.1  
1.2  
1.2  
1.8  
1.8  
1.8  
1.1  
1.1  
1.2  
1.2  
1.2  
1.2  
1.8  
1.1  
1.1  
1.2  
1.2  
3.15  
1.2  
1.8  
1.1  
1.1  
1.2  
1.2  
3.15  
1.8  
1.8  
1.1  
1.1  
1.2  
1.2  
3.15  
1.2  
1.8  
1.1  
1.1  
1.2  
1.2  
3.15  
1.8  
1.8  
SW1B  
(VDDGP)  
(31)  
SW2  
1.225  
1.2  
1.3  
(VCC)  
(31)  
SW3  
1.2  
(VDDA)  
(31)  
SW4A  
1.5  
1.35  
1.35  
1.8  
(DDR/SYS)  
(31)  
SW4B  
1.5  
(DDR/SYS)  
(31)  
SW5  
1.8  
(I/O)  
SWBST  
Reserved  
Reserved  
Reserved  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
Off  
3.3  
2.5  
(32)  
VUSB  
VUSB2  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
Functional Block Description  
Table 11. Power Up Defaults  
53  
LPM  
53  
DDR2  
53  
DDR3  
53  
LVDDR3  
53  
LVDDR2  
50  
50  
50  
50  
50  
50  
i.MX  
Reserved  
MDDR LPDDR2 LPDDR2 MDDR LPDDR2 MDDR  
VSRTC  
VPLL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1.2  
1.3  
1.8  
1.3  
1.8  
1.3  
1.8  
1.3  
1.8  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
1.2  
1.8  
On  
2.5  
1.2  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
2.5  
1.8  
VREFDDR  
VDAC  
On  
On  
On  
On  
On  
2.775  
1.2  
2.775  
1.3  
2.775  
1.3  
2.775  
1.3  
2.775  
1.3  
VGEN1  
VGEN2  
Notes  
2.5  
2.5  
2.5  
2.5  
2.5  
31. The SWx node are activated in APS mode when enabled by the startup sequencer.  
32. VUSB regulator is only enabled if 5.0 V is present on VBUS. By default VUSB will be supplied by VBUS. SWBST = 5.0 V powers up as  
does VUSB, regardless of 5.0 V present on UVBUS. By default VUSB is supplied by SWBST.  
The power up sequence is shown in Tables 12 and 13. VCOREDIG, VSRTC, and VCORE, are brought up in the pre-sequencer  
startup.  
Table 12. Power Up Sequence i.MX53  
Tap x 2.0 ms  
PUMS [4:1] = [0101,0110,0111,1000,1001] (i.MX53)  
0
1
2
3
4
5
6
7
8
9
SW2 (VCC)  
VPLL (NVCC_CKIH = 1.8 V)  
VGEN2 (VDD_REG= 2.5 V, external PNP  
SW3 (VDDA)  
SW1A/B (VDDGP)  
SW4A/B, VREFDDR (DDR/SYS)  
SW5 (I/O), VGEN1  
VUSB (33), VUSB2  
VDAC  
Notes:  
33. The VUSB regulator is only enabled if 5.0 V is present on the VBUS pin. By  
default VUSB will be supplied by the VBUS pin.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
25  
Functional Block Description  
Table 13. Power Up Sequence i.MX50  
Tap x 2.0 ms PUMS [4:1] = [0100, 1011, 1100, 1101, 1110, 1111] (i.MX50/I.MX53)  
0
1
2
3
4
5
6
7
8
9
SW2  
SW3  
SW1A/B  
VDAC  
SW4A/B, VREFDDR  
SW5  
VGEN2, VUSB2  
VPLL  
VGEN1  
VUSB (34)  
Notes:  
34. The VUSB regulator is only enabled if 5.0 V is present on the VBUS pin. By  
default VUSB will be supplied by the VBUS pin.  
7.2  
Bias and References Block Description and Application  
Information  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. The  
bandgap and the rest of the core circuitry is supplied from VCORE. The performance of the regulators is directly dependent on  
the performance of VCORE and the bandgap. No external DC loading is allowed on VCORE, VCOREDIG, and REFCORE.  
VCOREDIG is kept powered as long as there is a valid supply and/or coin cell. Table 14 shows the main characteristics of the  
core circuitry.  
Table 14. Core Voltages Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VCOREDIG (DIGITAL CORE SUPPLY)  
Output voltage  
• ON mode  
VCOREDIG  
V
(35)  
-
-
1.5  
1.2  
-
-
• OFF mode with good battery and RTC mode  
VCOREDIG bypass capacitor  
CCOREDIG  
-
1.0  
-
F  
VDDLP (DIGITAL CORE SUPPLY - LOWER POWER)  
Output voltage  
• ON mode with good battery  
VDDLP  
V
(36)  
-
-
-
1.5  
1.2  
1.2  
-
-
-
• OFF mode with good battery  
• RTC mode  
(37)  
VDDLP bypass capacitor  
CDDLP  
-
100  
-
pF  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
26  
Functional Block Description  
Table 14. Core Voltages Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VCORE (ANALOG CORE SUPPLY)  
Output voltage  
VCORE  
V
(35)  
• ON mode  
-
-
2.775  
0.0  
-
-
• OFF and RTC mode  
VCORE bypass capacitor  
CCORE  
-
1.0  
-
F  
VCOREREF (BANDGAP VOLTAGE/ REGULATOR REFERENCE)  
(35)  
Output voltage  
VCOREREF  
-
-
-
-
1.2  
0.5  
-
-
-
-
V
Absolute Accuracy  
Temperature Drift  
%
%
0.25  
100  
VCOREREF bypass capacitor  
CCOREREF  
Notes  
nF  
35. 3.0 V < BP < 4.5 V, no external loading on VCOREDIG, VDDLP, VCORE, or VCOREREF. Extended operation down to UVDET, but no  
system malfunction.  
36. Powered by VCOREDIG  
37. Maximum capacitance on VDDLP should not exceed 1000 pF, including the board capacitance.  
7.3  
Clocking and Oscillators  
Clock Generation  
7.3.1  
A system clock is generated for internal digital circuitry as well as for external applications utilizing the clock output pins. A crystal  
oscillator is used for the 32.768 kHz time base and generation of related derivative clocks. If the crystal oscillator is not running  
(for example, if the crystal is not present), an internal 32 kHz oscillator will be used instead.  
Support is also provided for an external Secure Real Time Clock (SRTC) which may be integrated on a companion system  
processor IC. For media protection in compliance with Digital Rights Management (DRM) system requirements, the  
CLK32KMCU can be provided as a reference to the SRTC module where tamper protection is implemented.  
7.3.1.1  
Clocking Scheme  
The internal 32 kHz oscillator is an integrated backup for the crystal oscillator, and provides a 32.768 kHz nominal frequency at  
60% accuracy, if running. The internal oscillator only runs if a valid supply is available at BP, and would not be used as long as  
the crystal oscillator is active. In absence of a valid supply at the BP supply node, the crystal oscillator will continue to operate  
as it is powered from the coin cell battery. All control functions will run off the crystal derived frequency, occasionally referred to  
as “32 kHz” for brevity’s sake.  
During the switch-over between the two clock sources (such as when the crystal oscillator is starting up), the output clock is  
maintained at a stable active low or high phase of the internal 32 kHz clock to avoid any clocking glitches. If the XTAL clock  
source suddenly disappears during operation, the IC will revert back to the internal clock source. Given the unpredictable nature  
of the event and the startup times involved, the clock may be absent long enough for the application to shutdown during this  
transition due to various reasons, for example a sag in the regulator output voltage or absence of a signal on the clock output pins.  
A status bit, CLKS, is available to indicate to the processor which clock is currently selected: CLKS = 0 when the internal RC is  
used and CLKS = 1 if the crystal source is used. The CLKI interrupt bit will be set whenever a change in the clock source occurs,  
and an interrupt will be generated if the corresponding CLKM mask bit is cleared.  
MC34708  
Analog Integrated Circuit Device Data  
27  
Freescale Semiconductor  
Functional Block Description  
7.3.1.2  
Oscillator Specifications  
The crystal oscillator has been optimized for use in conjunction with the Micro Crystal CC7V-T1A32.768 kHz-9.0 pF-30 ppm or  
equivalent (such as Micro Crystal CC5V-T1A or Epson FC135) and is capable of handling its parametric variations. Ensure that  
the chosen crystal has a typical drive level of 0.5 µW or above to ensure proper operation of the crystal oscillator. Using a crystal  
with a lower drive level can cause overtone oscillations.  
The electrical characteristics of the 32 kHz Crystal oscillator are given in the following table, taking into account the crystal  
characteristics noted above. The oscillator accuracy depends largely on the temperature characteristics of the crystal. Application  
circuits can be optimized for required accuracy by adapting the external crystal oscillator network (via component accuracy and/  
or tuning). Additionally, a clock calibration system is provided to adjust the 32.768 cycle counter that generates the 1.0 Hz timer  
and RTC registers; see SRTC Support for more detail.  
Table 15. Oscillator and Clock Main Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
OSCILLATOR AND CLOCK OUTPUT  
Operating Voltage  
VINRTC  
V
• Oscillator and RTC Block from BP  
1.8  
1.8  
-
-
4.5  
3.6  
• Oscillator and RTC Block from LICELL  
Operating Current Crystal Oscillator and RTC Module  
IINRTC  
A  
• All blocks disabled, no main battery attached, coin cell is attached  
to LICELL  
-
2.0  
5.0  
RTC oscillator startup time  
• Upon application of power  
tSTART-RTC  
sec  
V
-
-
-
1.0  
0.2  
Output Low  
VRTCLO  
• CLK32K Output sink 100 A  
• CLK32KMCU Output source 50 A  
0.0  
Output High  
VRTCHI  
V
• CLK32K Output source 100 A   
CLK32K  
VCC -0.2  
-
-
CLK32K  
VCC  
VSRTC-0.2  
VSRTC  
• CLK32KMCU Output sink 50 A  
CLK32K Rise and Fall Time, CL = 50 pF  
• CLK32KDRV [1:0] = 00  
tCLK32KET  
ns  
-
-
-
-
6.0  
2.5  
3.0  
2.0  
-
-
-
-
• CLK32KDRV [1:0] = 01 (default)  
• CLK32KDRV [1:0] = 10  
• CLK32KDRV [1:0] = 11  
CLK32KMCU Rise and Fall Time  
• CL = 12 pF  
tCKL32K  
ns  
%
MCUET  
-
22  
-
-
CLK32KDC/  
CLK32K  
MCUDC  
CLK32K and CLK32KMCU Output Duty Cycle  
• Crystal on XTAL1, XTAL2 pins  
45  
55  
RMS Output Jitter  
ns  
RMS  
• 1 Sigma for Gaussian distribution  
-
-
30  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
28  
Functional Block Description  
7.3.2  
SRTC Support  
When configured for DRM mode (SPI bit DRM = 1), the CLK32KMCU driver will be kept enabled through all operational states  
to ensure the SRTC module always has its reference clock. If DRM = 0, the CLK32KMCU driver will not be maintained in the Off  
state.  
It is also necessary to provide a means for the processor to do an RTC initiated wake-up of the system if it has been programmed  
for such capability. This can be accomplished by connecting an open drain NMOS driver to the PWRON pin of the MC34708  
PMIC, so it is in effect, a parallel path for the power key. The MC34708 PMIC will not be able to discern the turn on event from  
a normal power key initiated turn on, but the processor should have the knowledge, since the RTC initiated turn on is generated  
locally.  
Open Drain output for RTC wake-up  
34708  
32 kHz  
SPIVCC=1.8 V  
Processor  
Core Supply  
SOG Supply  
I/O  
VCOREDIG  
PWRONx  
V
GP Domain=1.1 V  
LP Dominant=1.2 V  
COREDIG  
On  
Detect  
SRTC  
HP-RC  
Best of  
Supply  
On/Off  
Button  
VSRTC=1.2 V  
V
&
SRTC  
32 kHz for  
DSM timing  
Detect  
LP-RTC  
CKIL: VSRTC  
CLK32KMCU  
+
-
Main  
Battery  
Coin Cell  
Battery  
+
-
0.1 F  
Figure 5. SRTC Block Diagram  
7.3.2.1  
VSRTC  
The VSRTC regulator provides the CLK32KMCU output level. Additionally, it is used to bias the Low Power SRTC domain of the  
SRTC module integrated on certain FSL processors. The VSRTC regulator is enabled as soon as the RTCPORB is detected.  
The VSRTC regulator cannot be disabled.  
Depending on the configuration of the PUMS[4:0] pins, the VSRTC voltage will be set to 1.3 or 1.2 V. With PUMS[4:0] = (0110,  
0111, 1000, or 1001) VSRTC will be set to 1.3 V in ON mode (ON, ON Standby and ON Standby Low Power modes). In OFF  
and Coin Cell modes the VSRTC voltage will drop to 1.2 V with the PUMS[4:0] = (0110, 0111, 1000, or 1001). With PUMS[4:0]  
(0110, 0111, 1000, or 1001), VSRTC will be set to 1.2 V for all modes (ON, ON Standby, LPM ON Standby, OFF, and Coin Cell).  
Table 16. VSRTC Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VSRTCIN  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Operating Input Voltage Range VINMIN to VINMAX  
• Valid Coin Cell range  
V
1.8  
1.8  
-
-
3.6  
4.5  
• Valid BP  
(38)  
Operating Current Load Range ILMIN to ILMAX  
Bypass Capacitor Value  
ISRTC  
0.0  
-
-
50  
-
A  
COSRTC  
0.1  
F  
MC34708  
Analog Integrated Circuit Device Data  
29  
Freescale Semiconductor  
Functional Block Description  
Table 16. VSRTC Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VSRTC - ACTIVE MODE - DC  
Output Voltage VOUT  
VSRTC  
1.15  
1.20  
1.28  
V
• VINMIN < VIN < VINMAX  
• ILMIN < IL < ILMAX  
• Off and coincell mode  
Output Voltage VOUT  
VSRTC  
1.15  
1.25  
1.2  
1.3  
1.25  
1.35  
V
V
• VINMIN < VIN < VINMAX  
• ILMIN < IL < ILMAX  
• PUMS[4:0] (0110, 0111, 1000, 1001)  
• On mode (On, Standby, Standby LPM)  
Output Voltage VOUT  
VSRTC  
• VINMIN < VIN < VINMAX  
• ILMIN < IL < ILMAX  
• PUMS[4:0] = (0110, 0111, 1000, 1001)  
• On mode (On, Standby, Standby LPM)  
ISRTCQ  
Active Mode Quiescent Current  
VINMIN < VIN < VINMAX, IL = 0  
A  
• VSRTC = 1.2 V  
• VSRTC = 1.3 V  
-
-
1.7  
2.7  
-
-
Notes  
38. Valid for BP > 2.4 V and/or LICELL > 2.0 V.  
7.3.2.2  
Real Time Clock  
A Real Time Clock (RTC) is provided with time and day counters as well as an alarm function. The RTC utilizes the 32.768 kHz  
crystal oscillator for the time base and is powered by the coin cell backup supply when BP has dropped below operational range.  
In configurations where the SRTC is used, the RTC can be disabled to conserve current drain by setting the RTCDIS bit to a 1  
(defaults on at power up).  
Time and Day Counters  
The 32.768 kHz clock is divided down to a 1.0 Hz time tick which drives a 17 bit Time Of Day (TOD) counter. The TOD counter  
counts the seconds during a 24 hour period from 0 to 86,399 and will then roll over to 0. When the roll over occurs, it increments  
the 15 bit DAY counter. The DAY counter can count up to 32767 days. The 1.0 Hz time tick can be used to generate a 1HZI  
interrupt if unmasked.  
Time Of Day Alarm  
A Time Of Day Alarm (TODA) function can be used to turn on the application and alert the processor. If the application is already  
on, the processor will be interrupted. The TODA and DAYA registers are used to set the alarm time. When the TOD counter is  
equal to the value in TODA and the DAY counter is equal to the value in DAYA, the TODAI interrupt will be generated.  
Timer Reset  
As long as the supply at BP is valid, the real time clock will be supplied from VCOREDIG. If BP is not valid, the real time clock  
can be backed up from a coin cell via the LICELL pin. When the VSRTC voltage drops to the range of 0.9 - 0.8 V, the RTCPORB  
reset signal is generated and the contents of the RTC will be reset. Additional registers backed up by coin cell will also reset with  
RTCPORB. To inform the processor the contents of the RTC are no longer valid due to the reset, a timer reset interrupt function  
is implemented with the RTCRSTI bit.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
30  
Functional Block Description  
RTC Timer Calibration  
A clock calibration system is provided to adjust the 32.768 cycle counter that generates the 1.0 Hz timer for RTC timing registers.  
The general implementation relies on the system processor to measure the 32.768 kHz crystal oscillator against a higher  
frequency and more accurate system clock such as a TCXO. If the RTC timer needs a correction, a 5-bit 2’s complement  
calibration word can be sent via the SPI to compensate the RTC for inaccuracy in its reference oscillator.  
Table 17. RTC Calibration Settings  
Code in RTCCAL[4:0]  
Correction in Counts per 32768 Relative correction in ppm  
01111  
00011  
00001  
00000  
11111  
11101  
10001  
10000  
+15  
+3  
+1  
0
+458  
+92  
+31  
0
-1  
-31  
-3  
-92  
-15  
-16  
-458  
-488  
The available correction range should be sufficient to ensure drift accuracy in compliance with standards for DRM time keeping.  
Note that the 32.768 kHz oscillator is not affected by RTCCAL settings; calibration is only applied to the RTC time base counter.  
Therefore, the frequency at the clock output CLK32K is not affected.  
The RTC system calibration is enabled by programming the RTCCALMODE[1:0] for desired behavior by operational mode.  
Table 18. RTC Calibration Enabling  
RTCCALMODE  
Function  
RTC Calibration disabled (default)  
00  
01  
10  
11  
RTC Calibration enabled in all modes except coin cell only  
Reserved for future use. Do not use.  
RTC Calibration enabled in all modes  
The RTC Calibration circuitry can be automatically disabled when main battery contact is lost or if it is so deeply discharged that  
the RTC power draw is switched to the coin cell (configured with RTCCALMODE=01).  
Because of the low RTC consumption, RTC accuracy can be maintained through long periods of the application being shut down,  
even after the main battery has discharged. However, the calibration can only be as good as the RTCCAL data provided, so  
occasional refreshing is recommended to ensure any drift influencing environmental factors have not skewed the clock beyond  
desired tolerances.  
MC34708  
Analog Integrated Circuit Device Data  
31  
Freescale Semiconductor  
Functional Block Description  
7.3.3  
Coin Cell Battery Backup  
The LICELL pin provides a connection for a coin cell backup battery or supercap. If the main battery is deeply discharged,  
removed, or contact-bounced (i.e., during a power cut), the RTC system and coin cell maintained logic will switch over to the  
LICELL for backup power. This switch over occurs for a BP below 1.8 V threshold with LICELL greater than BP. A small capacitor  
should be placed from LICELL to ground under all circumstances.  
Upon initial insertion of the coin cell, it is not immediately connected to the on chip circuitry. The cell gets connected when the IC  
powers on, or after enabling the coin cell charger when the IC was already on.  
The coin cell charger circuit will function as a current-limited voltage source, resulting in the CC/CV taper characteristic typically  
used for rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit. The coin cell voltage is  
programmable through the VCOIN[2:0] bits. The coin cell charger voltage is programmable in the ON state where the charge  
current is fixed at ICOINHI.  
If COINCHEN=1 when the system goes into Off or User Off state, the coin cell charger will continue to charge to the predefined  
voltage setting but at a lower maximum current ICOINLO. This compensates for self discharge of the coin cell and ensures if and/  
or when the main cell gets depleted, the coin cell will be topped off for maximum RTC retention. The coin cell charging will be  
stopped for the BP below UVDET. The bit COINCHEN itself is only cleared when an RTCPORB occurs.  
Table 19. Coin Cell Voltage Specifications  
VCOIN[2:0]  
Output Voltage  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
Table 20. Coin Cell Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
COIN CELL CHARGER  
Voltage Accuracy  
VLICELLACC  
-
-
-
100  
60  
-
-
-
mV  
A  
A  
Coin Cell Charge Current in On and Watchdog modes ICOINHI  
ILICELLON  
Coin Cell Charge Current in Off, cold start/warm start, and Low Power Off  
modes (User Off / Memory Hold) ICOINLO  
ILICELLOFF  
10  
Current Accuracy  
ILICELACC  
COLICELL  
-
-
-
30  
100  
4.7  
-
-
-
%
nF  
F  
LICELL Bypass Capacitor  
LICELL Bypass Capacitor as coin cell replacement  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
32  
Functional Block Description  
7.4  
Interrupt Management  
7.4.1  
Control  
The system is informed about important events, based on interrupts. Unmasked interrupt events are signaled to the processor  
by driving the INT pin high; this is true whether the communication interface is configured for SPI or I2C.  
Each interrupt is latched so even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each interrupt  
can be cleared by writing a 1 to the appropriate bit in the Interrupt Status register, which will also cause the interrupt line to go  
low. If a new interrupt occurs while the processor clears an existing interrupt bit, the interrupt line will remain high.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high,  
the interrupt line will not go high. A masked interrupt can still be read from the Interrupt Status register. This gives the processor  
the option of polling for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the  
device to determine if any interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked  
interrupt bit was already high, the interrupt line will go high after unmasking.  
The sense registers contain status and input sense bits, so the system processor can poll the current state of interrupt sources.  
They are read only, and not latched or clearable.  
Interrupts generated by external events are debounced. Therefore, the event needs to be stable throughout the debounce period  
before an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary table later in  
this section. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
7.4.2  
Interrupt Bit Summary  
Table 21 summarizes all interrupt, mask, and sense bits associated with INT control. For more detailed behavioral descriptions,  
refer to the related chapters.  
Table 21. Interrupt, Mask and Sense Bits  
Debounce  
Time  
Interrupt  
Mask  
Sense  
Purpose  
Trigger  
ADCDONEI  
TSDONEI  
ADCDONEM  
TSDONEM  
-
-
-
ADC has finished requested conversions L2H  
0
0
Touch screen has finished conversion  
Touch screen pen detect  
L2H  
TSPENDET  
TSPENDETM  
Dual  
Dual  
1.0 ms  
VBUS over-voltage  
Programmable  
SUP_OVP_DB  
USBOVP  
LOWBATT  
USBDET  
USBOVPM  
LOWBATTM  
USBDETM  
USBOVPS  
-
Sense is 1 if above threshold.  
Low battery detect  
Programmable  
VBATTDB  
H2L  
Sense is 1 if below LOWBAT threshold  
USB VBUS detect  
Programmable  
VBUSDB  
USBDETS  
Dual  
Sense is 1 if detected  
Stuck_Key_RCV Stuck_Key_RCV_m  
-
-
Stuck key has recovered  
Stuck key detected  
L2H  
L2H  
Stuck_Key  
Stuck_Key_m  
ADC result changed  
ADC_Change  
ADC_Change_m  
ADC_STATUS  
L2H  
Sense is 1 if conversion is completed, 0 if  
in progress  
Unknown_Atta  
LKR  
Unknown_Atta_m  
LKR_m  
-
-
-
-
-
Unknown accessory detected  
Remote control long key is released  
Remote control long key is pressed  
Remote control key is pressed  
Accessory detached  
L2H  
L2H  
L2H  
L2H  
L2H  
LKP  
LKP_m  
KP  
KP_m  
Detach  
Detach_m  
MC34708  
Analog Integrated Circuit Device Data  
33  
Freescale Semiconductor  
Functional Block Description  
Table 21. Interrupt, Mask and Sense Bits  
Interrupt Mask Sense  
Attach Attach_m  
Debounce  
Time  
Purpose  
Accessory attached  
Trigger  
L2H  
-
ID_GNDS  
Sense is 1 if ID pin is grounded  
Sense is 1 if ID pin is floating  
ID_FLOATS  
Sense is 1 if ID resistance detection is  
complete  
ID_DET_ENDS  
VBUS_DET_ENDS Sense is 1 if VBUS PTSI is complete  
min. 4.0 ms  
max 8.0 ms  
SCPI  
SCPM  
-
Regulator short-circuit protection tripped  
L2H  
1HZI  
1HZM  
-
-
1.0 Hz time tick  
L2H  
L2H  
H2L  
L2H  
H2L  
L2H  
L2H  
L2H  
L2H  
L2H  
L2H  
0
TODAI  
TODAM  
Time of day alarm  
0
30 ms (39)  
Power on button 1 event  
PWRON1I  
PWRON2I  
PWRON1M  
PWRON2M  
PWRON1S  
PWRON2S  
Sense is 1 if PWRON1 is high  
30 ms  
30 ms (39)  
Power on button 2 event  
Sense is 1 if PWRON2 is high  
30 ms  
SYSRSTI  
WDIRESETI  
PCI  
SYSRSTM  
WDIRESETM  
PCM  
-
-
-
System reset through PWRONx pins  
WDI silent system restart  
Power cut event  
0
0
0
0
0
WARMI  
WARMM  
Warm Start event  
MEMHLDI  
MEMHLDM  
Memory Hold event  
32 kHz clock source change  
Sense is 1 if source is XTAL  
CLKI  
CLKM  
CLKS  
Dual  
L2H  
Dual  
0
0
RTCRSTI  
THERM110  
RTCRSTM  
THERM110M  
-
RTC reset has occurred  
Thermal 110C threshold  
Programmable  
DIE_TEMP_DB  
THERM110S  
Sense is 1 if above threshold  
Thermal 120C threshold  
Programmable  
DIE_TEMP_DB  
THERM120  
THERM125  
THERM130  
THERM120M  
THERM125M  
THERM120S  
THERM125S  
Dual  
Dual  
Dual  
Sense is 1 if above threshold  
Thermal 125C threshold  
Programmable  
DIE_TEMP_DB  
Sense is 1 if above threshold  
Thermal 130C threshold  
Programmable  
DIE_TEMP_DB  
THERM130M  
GPIOLVxM  
THERM130S  
GPIOLVxS  
Sense is 1 if above threshold  
GPIOLVxI  
Notes  
General Purpose input interrupt  
Programmable Programmable  
39. Debounce timing for the falling edge can be extended with PWRONxDBNC[1:0]; refer to Turn On Events for details.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
34  
Functional Block Description  
7.5  
Power Generation  
The MC34708 PMIC provides reference and supply voltages for the application processor as well as peripheral devices.  
Six buck (step down) converters and one boost (step up) converter are included. One of the buck regulators can be configured  
in dual phase, single phase mode, or operate as separate independent outputs (in this case, there are six buck converters). The  
buck converters provide the supply to processor cores and to other low voltage circuits such as IO and memory. Dynamic voltage  
scaling is provided to allow controlled supply rail adjustments for the processor cores and/or other circuitry. The boost converter  
supplies the VUSB regulator for the USB PHY on the processor. The VUSB regulator is powered from the boost to ensure  
sufficient headroom for the LDO through the normal discharge range of the main battery.  
Linear regulators could be supplied directly from the battery or from one of the switching regulator, and provide supplies for IO  
and peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. Naming conventions are suggestive of typical or possible  
use case applications, but the switching and linear regulators may be utilized for other system power requirements within the  
guidelines of specified capabilities.  
Four general purpose I/Os are available. When configured as inputs they can be used as external interrupts.  
7.5.1  
Power Tree  
Refer to the representative tables and text specifying each supply for information on performance metrics and operating ranges.  
Table 22 summarizes the available power supplies.  
Table 22. Power Tree Summary  
Supply  
Purpose (typical application)  
Buck regulator for processor VDDGP domain  
Buck regulator for processor VCC domain  
Buck regulator for processor VDD domain and peripherals  
Buck regulator for DDR memory and peripherals  
Buck regulator for DDR memory and peripherals  
Buck regulator for I/O domain  
Output Voltage (in V)  
Load Capability (in mA)  
SW1  
SW2  
0.650 - 1.4375  
0.650 - 1.4375  
2000  
1000  
500  
500  
500  
1000  
380  
0.05  
50  
SW3  
0.650 - 1.425  
SW4A  
SW4B  
SW5  
1.200 – 1.85: 2.5/3.15  
1.200 – 1.85: 2.5/3.15  
1.200 – 1.85  
Boost regulator for USB OTG  
SWBST  
VSRTC  
VPLL  
5.00/5.05/5.10/5.15  
1.2  
Secure Real Time Clock supply  
Quiet Analog supply  
1.2/1.25/1.5/1.8  
DDR Ref supply  
VREFDDR  
VDAC  
0.6-0.9  
10  
TV DAC supply, external PNP  
2.5/2.6/2.7/2.775  
2.5/2.6/2.75/3.0  
250  
65  
VUSB/peripherals supply, internal PMOS  
VUSB/peripherals external PNP  
VUSB2  
VGEN1  
VGEN2  
VUSB  
2.5/2.6/2.75/3.0  
350  
250  
50  
General peripherals supply #1  
1.2/1.25/1.3/1.35/1.4/1.45/1.5/1.55  
2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3  
2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3  
3.3  
General peripherals supply #2, internal PMOS  
General peripherals supply #2, external PNP  
USB Transceiver supply  
250  
100  
MC34708  
Analog Integrated Circuit Device Data  
35  
Freescale Semiconductor  
Functional Block Description  
7.5.2  
Modes of Operation  
The MC34708 PMIC is fully programmable via the SPI/I2C interface and associated register map. Additional communication is  
provided by direct logic interfacing, including interrupt, watchdog, and reset. Default startup of the device is selectable by  
hardwiring the Power Up Mode Select (PUMS) pins.  
Power cycling of the application is driven by the MC34708 PMIC. It has the interfaces for the power buttons and dedicated  
signaling interfacing with the processor. It also ensures the supply of the Real Time Clock (RTC), critical internal logic, and other  
circuits from the coin cell, in case of brief interruptions from the main battery. A charger for the coin cell is included to ensure it  
is kept topped off until needed.  
The MC34708 PMIC provides the timekeeping, based on an integrated low power oscillator running with a standard crystal. This  
oscillator is used for internal clocking, the control logic, and as a reference for the switcher PLL. The timekeeping includes time  
of day, calendar, and alarm, and is backed up by coin cell. The clock is driven to the processor for reference and deep sleep  
mode clocking.  
From any state: Loss of Power with PCEN=0  
PCT[7:0] Expired  
Thermal Protection Trip, or System Reset  
Off  
Unqual’d  
Turn On  
WDI Low,  
WDIRESET=0  
WDI Low  
Unqual’d  
Turn On  
Turn On  
Event  
WDIRESET=1  
and PCMAXCNT  
is exceeded  
Start Up States  
Reset Timer  
Expired  
Reset Timer  
Expired  
Cold  
Start  
Warm  
Start  
Watchdog  
WDI Low  
WDIRESET=1  
and PCMAXCNT  
is not exceeded  
Watchdog Timer  
Expired  
On  
PCUT Timeout  
PCT[7:0]  
Expired  
PCUTEXPB  
cleared to 0  
Processor Request  
for User Off:  
Turn On Event  
(Warm Start)  
Turn On Event  
(Warm Boot)  
USEROFFSPI=1  
Low Power  
Off States  
Warm Start  
Not  
Enabled  
Warm Start  
Enabled  
Memory  
Hold  
User  
Off  
User Off  
Wait  
WARMEN=1  
WARMEN=0  
Application of Power  
before PCUT Timer  
PCT[7:0] expiration  
(PCEN=1 and  
From any state: Loss of Power  
with Power Cuts enabled  
(PCEN=1) and PCMAXCNT  
not exceeded  
PCMAXCNT not  
exceeded)  
Internal  
MemHold  
Power  
Cut  
Legend and Notes (refer to text for additional details)  
Blue Box = Steady State, no specific timer is running  
Green Circle = Transitional State, a specific timer is running, see text  
Dashed Boxes = Grouping of States for clarification  
WDI has influence only in the “On” state  
Complete loss of BP and coin cell power is not represented in the state machine  
Figure 6. Power Control State Machine Flow Diagram  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
36  
Functional Block Description  
The following are text descriptions of the power states of the system for additional details of the state machine to complement  
the drawing in Figure 6. Note that the SPI control is only possible in the Watchdog, On and User Off Wait states and the interrupt  
line INT is kept low in all states except for Watchdog and On.  
7.5.2.1  
Coin Cell  
The RTC module is powered from either the battery or the coin cell, due to insufficient voltage at VALWAYS, and the IC is not in  
a Power Cut. No Turn On event is accepted in the Coin Cell state. Transition out (to the Off state) requires VALWAYS restoration  
with a threshold above UVDET. RESETB and RESETBMCU are held low in this mode.  
The RTC module remains active (32 kHz oscillator + RTC timers), along with VALWAYS level detection to qualify exit to the Off  
state. VCOREDIG is off and the VDDLP regulator is on, the rest of the system is put into its lowest power configuration.  
If the coin cell is depleted (VSTRC drops to 0.9 - 0.8 V while in the Coin Cell state), a complete system reset will occur. At next  
power application / Turn On event, the system will startup reinitialized with all SPI bits including those that reset on RTCPORB  
restored to their default states.  
7.5.2.2  
Off (with good battery)  
If the supply VALWAYS is above the UVDET threshold, only the IC core circuitry at VCOREDIG and the RTC module are  
powered, all other supplies are inactive. To exit the Off state, a valid turn on event is required. No specific timer is running in this  
state. RESETB, RESETBMCU are held low in this state.  
If the supply VALWAYS is below the UVDET threshold, no turn on events are accepted. If a valid coin cell is present, the core  
gets powered from LICELL. The only active circuitry is the RTC module and the VCORE module powering VCOREDIG at 1.5 V.  
7.5.2.3  
Cold Start  
Cold Start is entered upon a Turn On event from Off, Warm Boot, successful PCUT, or a Silent System Restart. The first 8.0 ms  
is used for initialization which includes bias generation, PUMSx configuration latching, and qualification of the input supply level  
BP. The switching and linear regulators are then powered up sequentially to limit the inrush current; see the Power Up section  
for sequencing and default level details. The reset signals RESETB and RESETBMCU are kept low. The Reset timer starts  
running when entering Cold Start. The Cold Start state is exited for the Watchdog state and both RESETB and RESETBMCU  
become high (open drain output with external pull-ups) when the reset timer expires. The input control pins WDI, and STANDBY  
are ignored.  
7.5.2.4  
Watchdog  
The system is fully powered and under SPI/I2C control. RESETB and RESETBMCU are high. The Watchdog timer starts running  
when entering the Watchdog state. When expired, the system transitions to the On state, where WDI will be checked and  
monitored. The input control pins WDI and STANDBY are ignored while in the Watchdog state.  
7.5.2.5  
On Mode  
The system is fully powered and under SPI control. RESETB and RESETBMCU are high. The WDI pin must be high to stay in  
this state. The WDI IO supply voltage is referenced to SPIVCC (normally connected to SW5 = 1.8 V); SPIVCC must therefore  
remain enabled to allow for proper WDI detection. If WDI goes low, the system will transition to the Off state or Cold Start  
(depending on the configuration; refer to the section on Silent System Restart with WDI Event for details).  
7.5.2.6  
User Off Wait  
The system is fully powered and under SPI control. The WDI pin no longer has control over the part. The Wait mode is entered  
by a processor request for user off by setting the USEROFFSPI bit high. This is normally initiated by the end user via the power  
key; upon receiving the corresponding interrupt, the system will determine if the product has been configured for User Off or  
Memory Hold states (both of which first require passing through User Off Wait) or just transition to Off.  
The Wait timer starts running when entering User Off Wait state. This leaves the processor time to suspend or terminate its tasks.  
When expired, the Wait state is exited for User Off state or Memory Hold state depending on warm starts being enabled or not  
via the WARMEN bit. The USEROFFSPI bit is being reset at this point by RESETB going low.  
MC34708  
Analog Integrated Circuit Device Data  
37  
Freescale Semiconductor  
Functional Block Description  
7.5.2.7  
Memory Hold and User Off (Low Power Off States)  
As noted in the User Off Wait description, the system is directed into low power Off states based on a SPI command in response  
to an intentional turn off by the user. The only exit then will be a turn on event. To the user, the Memory Hold and User Off states  
look like the product has been shut down completely. However, a faster startup is facilitated by maintaining external memory in  
self-refresh state (Memory Hold and User Off state) as well as powering portions of the processor core for state retention (User  
Off only). The Switching regulator mode control bits allow selective powering of the buck regulators for optimizing the supply  
behavior in the low power Off states. Linear regulators and most functional blocks are disabled (the RTC module, SPI bits  
resetting with RTCPORB, and Turn On event detection are maintained).  
By way of example, the following descriptions assume the typical use case where SW1 supplies the processor core(s), SW2 is  
applied to the processor’s VCC domain, SW3 supplies the processor’s internal memory/peripherals, and SW4 supplies the  
external memory, and SW5 supplies the I/O rail. The buck regulators are intended for direct connection to the aforementioned  
loads.  
7.5.2.8  
Memory Hold  
RESETB and RESETBMCU are low, and both CLK32K and CLK32KMCU are disabled (CLK32KMCU active if DRM is set). To  
ensure that SW1, SW2, SW3, and SW5 shut off in Memory Hold, appropriate mode settings should be used such as  
SW1MHMODE, = SW2MHMODE, = SW3MHMODE, = SW5MHMODE set to = 0 (refer to the mode control description later in  
this section). Since SW4 should be powered in PFM mode, SW4MHMODE could be set to 1.  
Upon a Turn On event, the Cold Start state is entered, the default power up values are loaded, and the MEMHLDI interrupt bit is  
set. A Cold Start out of the Memory Hold state will result in shorter boot times compared to starting out of the Off state, since  
software does not have to be loaded and expanded from flash. The startup out of Memory Hold is also referred to as Warm Boot.  
No specific timer is running in this state.  
Buck regulators configured to stay on in MEMHOLD mode by their SWxMHMODE settings will not be turned off when coming  
out of MEMHOLD and entering a Warm Boot. The switching regulators will be reconfigured for their default settings as selected  
by the PUMSx pins in the normal time slot affecting them.  
7.5.2.9  
User Off  
RESETB is low and RESETBMCU is kept high. The 32 kHz peripheral clock driver CLK32K is disabled; CLK32KMCU (connected  
to the processor’s CKIL input) is maintained in this mode if the CLK32KMCUEN and USEROFFCLK bits are both set, or if DRM  
is set.  
The memory domain is held up by setting SW4UOMODE = 1. Similarly, the SW1 and/or SW2 and/or SW3 supply domains can  
be configured for SWxUOMODE=1 to keep them powered through the User Off event. If one of the switching regulators can be  
shut down in User Off, its mode bits would typically be set to 0.  
Since power is maintained for the core (which is put into its lowest power state), and since MCU RESETBMCU does not trip, the  
processor’s state may be quickly recovered when exiting USEROFF upon a turn on event. The CLK32KMCU clock can be used  
for very low frequency / low power idling of the core(s), minimizing battery drain, while allowing a rapid recovery from where the  
system left off before the USEROFF command.  
Upon a Turn On event, Warm Start state is entered, and the default power up values are loaded. A Warm Start out of User Off  
will result in an almost instantaneous startup of the system, since the internal states of the processor were preserved along with  
external memory. No specific timer is running in this mode.  
7.5.2.10 Warm Start  
Entered upon a Turn On event from User Off. The first 8.0 ms is used for initialization, which includes bias generation, PUMSx  
latching, and qualification of the input supply level BP. The switching and linear regulators are then powered up sequentially to  
limit the inrush current; see Startup Requirements for sequencing and default level details. If SW1, SW2, SW3, SW4, and/or  
SW5, were configured to stay on in User Off mode by their SWxUOMODE settings, they will not be turned off when coming out  
of User Off and entering a Warm Start. The buck regulators will be reconfigured for their default settings as selected by the  
PUMSx pins in the respective time slot defined in the sequencer selection.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
38  
Functional Block Description  
RESETB is kept low and RESETBMCU is kept high. CLK32KMCU is kept active if CLK32KMCU was set. The reset timer starts  
running when entering Warm Start. When expired, the Warm Start state is exited for the Watchdog state, a WARMI interrupt is  
generated, and RESETB will go high.  
7.5.2.11 Internal MemHold Power Cut  
As described in the Power Cut Description, a momentary power interruption will put the system into the Internal MemHold Power  
Cut state if PCUTs are enabled. The backup coin cell will now supply the MC34708 core, along with the 32 kHz crystal oscillator,  
the RTC system, and coin cell backed up registers. All regulators will be shut down to preserve the coin cell and RTC as long as  
possible.  
Both RESETB and RESETBMCU are tripped, bringing the entire system down, along with the supplies and external clock drivers,  
so the only recovery out of a Power Cut state is to reestablish power and initiate a Cold Start.  
If the PCT timer expires before power is re-established, the system transitions to the Off state and awaits a sufficient supply  
recovery.  
7.5.3  
Power Control Logic  
Power Cut Description  
7.5.3.1  
When the supply at VALWAYS drops below the UVDET threshold, due to battery bounce or battery removal, the Internal  
MemHold Power Cut state is entered and a Power Cut (PCUT) timer starts running. The backup coin cell will now supply the RTC  
as well as the on chip memory registers and some other power control related bits. All other supplies will be disabled.  
The maximum duration of a power cut is determined by the PCUT timer PCT [7:0] preset via the SPI. When a PCUT occurs, the  
PCUT timer will be started. The contents of PCT [7:0] does not reflect the actual count down value, but will keep the programmed  
value, and therefore does not have to be reprogrammed after each power cut.  
If power is not re-established above the LOWBATT threshold before the PCUT timer expires, the state machine transitions to the  
Off mode at expiration of the counter, and clears the PCUTEXB bit by setting it to 0. This transition is referred to as an  
“unsuccessful” PCUT. In addition the PMIC will bring the SDWNB pin low for one 32 kHz clock cycle before powering down.  
Upon re-application of power before expiration (a “successful PCUT”, defined as VALWAYS first rising above the UVDET  
threshold and then battery above the LOWBATT threshold before the PCUT timer expires), a Cold Start is engaged after the  
UVTIMER has expired.  
In order to distinguish a non-PCUT initiated Cold Start from a Cold Start after a PCUT, the PCI interrupt should be checked by  
software. The PCI interrupt is cleared by software or when cycling through the Off state.  
Because the PCUT system quickly disables the entire power tree, the battery voltage may recover to a level with the appearance  
of a valid supply once the battery is unloaded. However, upon a restart of the IC and power sequencer, the surge of current  
through the battery and trace impedances can once again cause the BP node to droop below UVDET. This chain of cyclic power  
down / power up sequences is referred to as “ambulance mode”, and the power control system includes strategies to minimize  
the chance of a product falling into and getting stuck in ambulance mode.  
First, the successful recovery out of a PCUT requires the VABTT node to rise above LOBATT threshold, providing hysteretic  
margin from the LOBATTT (H to L) threshold. Second, the number of times the PCUT mode is entered is counted with the counter  
PCCOUNT [3:0], and the allowed count is limited to PCMAXCNT [3:0] set through SPI. When the contents of both become equal,  
then the next PCUT will not be supported and the system will go to Off mode, after the PCUT time expires.  
After a successful power up after a PCUT (i.e., valid power is reestablished, the system comes out of reset, and the processor  
reassumes control), software should clear the PCCOUNT [3:0] counter. Counting of PCUT events is enabled via the  
PCCOUNTEN bit. This mode is only supported if the power cut mode feature is enabled by setting the PCEN bit. When not  
enabled, then in case of a power failure, the state machine will transition to the Off state. SPI control is not possible during a  
PCUT event and the interrupt line is kept low. SPI configuration for PCUT support should also include setting the PCUTEXPB = 1  
(See Silent Restart from PCUT Event).  
MC34708  
Analog Integrated Circuit Device Data  
39  
Freescale Semiconductor  
Functional Block Description  
7.5.3.2  
Silent Restart from PCUT Event  
If a short duration power cut event occurs (such as from a battery bounce, for example), it may be desirable to perform a silent  
restart, so the system is reinitialized without alerting the user. This can be facilitated by setting the PCUTEXPB bit to “1” at booting  
or after a Cold Start. This bit resets on RTCPORB, therefore any subsequent Cold Start can first check the status of PCUTEXPB  
and the PCI bit. The PCUTEXPB is cleared to “0” when transitioning from PCUT to Off. If there was a PCUT interrupt and  
PCUTEXPB is still “1”, then the state machine has not transitioned through Off, which confirms the PCT timer has not expired  
during the PCUT event (i.e., a successful power cut). In this case, a silent restart may be appropriate.  
If PCUTEXPB is found to be “0” after the Cold Start where PCI is found to be “1”, then it is inferred the PCT timer has expired  
before power was re-established. This indicates an unsuccessful power cut or first power up, so the startup user greeting may  
be desirable for playback.  
7.5.3.3  
Silent System Restart with WDI Event  
A mechanism is provided for recovery if the system software somehow gets into an abnormal state which requires a system reset,  
but it is desired to make the reset a silent event so as to happen without user awareness. The default response to WDI going low  
is for the state machine to transition to the Off state (when WDIRESET = 0). However, if WDIRESET = 1, the state machine will  
go to Cold Start without passing through Off mode (i.e., does not generate an OFFB signal).  
A WDIRESET event will generate a maskable WDIRESETI interrupt and also increment the PCCOUNT counter. This function is  
unrelated to PCUTs, but it shares the PCUT counter so the number of silent system restarts can be limited by the programmable  
PCMAXCNT counter.  
When PCUT support is used, the software should set the PCUTEXPB bit to “1”. Since this bit resets with RTCPORB, it will not  
be reset to “0” if a WDI falls and the state machine goes straight to the Cold Start state. Therefore, upon a restart, software can  
discern a silent system restart if there is a WDIRESETI interrupt and PCUTEXPB = 1. The application may then determine an  
inconspicuous restart without fanfare may be more appropriate than launching into the welcoming routine.  
A PCUT event does not trip the WDIRESETI bit.  
Note that the system response to WDI is gated by the Watchdog timer—once the timer has expired, the system will respond as  
programmed by WDIRESET as described above.  
Applications should make sure there is time for switching regulator outputs to discharge before re-asserting WDI.  
7.5.3.4  
Turn On Events  
When in Off mode, the circuit can be powered on via a Turn On event. The Turn On events are listed by the following. To indicate  
to the processor what event caused the system to power on, an interrupt bit is associated with each of the Turn On events.  
Masking the interrupts related to the turn on events will not prevent the part to turn on except for the time of day alarm. If the part  
was already on at the time of the turn on event, the interrupt is still generated.  
Power Button Press: PWRON1 or PWRON2 pulled low with corresponding interrupts and sense bits PWRON1I, or  
PWRON2I and PWRON1S, or PWRON2S. A power on/off button is connected from PWRONx to ground. The PWRONx can  
be hardware debounced through a programmable debouncer PWRONxDBNC [1:0] to avoid a response upon a very short (i.e.,  
unintentional) key press. BP should be above UVDET to allow a power up. The PWRONxI interrupt is generated for both the  
falling and the rising edge of the PWRONx pin. By default, a 30 ms interrupt debounce is applied to both falling and rising  
edges. The falling edge debounce timing can be extended with PWRONxDBNC[1:0] as defined in the following table. The  
PWRONxI interrupt is cleared by software or when cycling through the Off mode.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
40  
Functional Block Description  
Table 23. PWRONx Hardware Debounce Bit Settings(40)  
Turn On  
Debounce (ms)  
Falling Edge INT Rising Edge INT  
Bits  
State  
Debounce (ms)  
Debounce (ms)  
PWRONxDBNC[1:0]  
00  
01  
10  
11  
0.0  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
750  
750  
Notes  
40. The sense bit PWRONxS is not debounced and follows the state of the PWRONx pin.  
Battery Attach: This occurs when BP crosses the LOWBATT threshold which is equivalent to attaching a charged battery to  
the product.  
USB Attach: VBUS pulled high with corresponding interrupt and sense bits USBDET and USBDETS. This is equivalent to  
plugging in a USB cable connected to a host powering the VBUS line. The battery voltage should be above LOWBATT. For  
details on the USB detection, see Mini/Micro USB Switch.  
RTC Alarm: TOD and DAY become equal to the alarm setting programmed. This allows powering up a product at a preset  
time. BP should be above LOWBATT. For details and related interrupts, see Real Time Clock.  
System Restart: System restart which may occur after a system reset as described earlier in this section. This is an optional  
function, see Turn Off Events. BP should be above LOWBATT.  
Global System Reset: The global reset feature powers down the part, resets the SPI registers to their default value including  
all the RTCPORB registers (except the DRM bit, and the RTC registers), and then powers back on. To enable a global reset,  
the GLBRST pin needs to be pulled low for greater than GLBRSTTMR [1:0] seconds and then pulled back high (defaults to  
12 s). BP should be above LOWBATT.  
Table 24. Global Reset Time Settings  
Bits  
State  
Time (s)  
GLBRSTTMR[1:0]  
00  
01  
INVALID  
4
8
10  
11 (default)  
12  
7.5.3.5  
Turn Off Events  
Power Button Press (via WDI): User shutdown of a product is typically done by pressing the power button connected to the  
PWRONx pin. This will generate an interrupt (PWRONxI), but will not directly power off the part. The product is powered off  
by the processor’s response to this interrupt, which will be to pull WDI low. Pressing the power button is therefore, under  
normal circumstances, not considered as a turn off event for the state machine. However, since the button press power down  
is the most common turn off method for end products, it is described in this section as the product implementation for a WDI  
initiated Turn Off event. Note that the software can configure a user initiated power down, via a power button press for  
transition to a Low Power Off mode (Memory Hold or User Off) for a quicker restart than the default transition into the Off state.  
Power Button System Reset: A secondary application of the PWRONx pins is the option to generate a system reset. This is  
recognized as a Turn Off event. By default, the system reset function is disabled but can be enabled by setting the  
PWRONxRSTEN bits. When enabled, a four second long press on the power button will cause the device to go to the Off  
mode, and as a result, the entire application will power down. An interrupt SYSRSTI is generated upon the next power up.  
Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.  
Thermal Protection: If the die gets overheated, the thermal protection will power off the part to avoid damage. A Turn On  
event will not be accepted while the thermal protection is still being tripped. The part will remain in Off mode until cooling  
sufficiently to accept a Turn On event. There are no specific interrupts related to this, other than the warning interrupts.  
BP lower than VBAT_TRKL: When the voltage at BP drops below VBAT_TRKL[1:0] - 100mV, the state machine will  
transition to the Off mode. The SDWNB pin is used to notify the processor that the PMIC is going to immediately shutdown.  
The PMIC will bring the SDWNB pin low for one 32 kHz clock cycle before powering down. This signal will then be brought  
back high into the power off state.  
MC34708  
Analog Integrated Circuit Device Data  
41  
Freescale Semiconductor  
Functional Block Description  
Table 25. Turn OFF Voltage Threshold  
VBAT_TRKL[1:0]  
Turn off Voltage threshold  
00  
01  
10  
11  
2.8  
2.9  
3.0 (default)  
3.1  
7.5.3.6  
Timers  
The different timers as used by the state machine are listed in Table 26. This listing does not include RTC timers for timekeeping.  
A synchronization error of up to one clock period may occur with respect to the occurrence of an asynchronous event, the duration  
listed below is therefore the effective minimum time period.  
Table 26. Timer Main Characteristics  
Timer  
Duration  
Clock  
Under-voltage Timer  
Reset Timer  
4.0 ms  
40 ms  
32 k/32  
32 k/32  
32 k/32  
Watchdog Timer  
Power Cut Timer  
128 ms  
Programmable 0 to 8 seconds 32 k/1024  
in 31.25 ms steps  
7.5.3.6.1  
Timing Diagrams  
A Turn On event timing diagrams shown in Figure 7.  
ow  
Turn On Event  
WDI Pulled Low  
Sequencer time slots  
System Core Active  
Turn On Verification  
Power Up Sequencer  
UV Masking  
RESETB  
INT  
WDI  
8 ms  
8 ms  
20 ms  
12 ms  
128 ms  
1- Off  
2- Cold Start  
3- Watchdog  
4- On  
3- Watchdog  
1- Off  
Power up of the system upon a Turn On Event followed by a transition to the On state if WDI is pulled high  
Turn on Event is based on PWRON being pulled low  
... or transition to Off state if WDI remains low  
= Indeterminate State  
Figure 7. Power Up Timing Diagram  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
42  
Functional Block Description  
7.5.3.7  
Power Monitoring  
The voltage at BATT and BP are monitored by detectors as summarized in Table 27.  
Table 27. LOWBATT Detection Thresholds  
Threshold in V  
L to H transition  
(42) (43)  
H to L transition  
(41)  
Bit setting  
(42) (43)  
(Power on)  
,
(Low battery detect)  
LOWBATT  
3.0  
,
UVDET (V)  
LOWBATT1  
LOWBATT0  
LOWBATT  
0
0
3.1 (Rising)  
3.1  
3.2  
3.3  
3.4  
2.65 (Falling)  
0
1
1
1
0
1
3.1 (Rising)  
3.1  
3.2  
3.3  
2.65 (Falling)  
3.1 (Rising)  
2.65 (Falling)  
3.1 (Rising)  
2.65 (Falling)  
Notes  
41. Default setting for LOWBATT[1:0] is 11.  
42. The above specified thresholds are ±50 mV accurate for the indicated transition  
43. A hysteresis is applied to the detectors on the order of 100 mV  
The UVDET and LOWBATT thresholds are related to the power on/off events as described earlier in this chapter. The LOWBATT  
threshold when transitioned from low to a high is used to power on the MC34708. The LOWBATT threshold when transitioned  
from high to low, is used as a low battery detect warning. An interrupt LOWBAT is generated when dropping below the high to  
low threshold to indicate to the processor the battery is weak and a shutdown is imminent.  
The LOWBATT detection threshold is debounced by the VBATTDB[2:0] SPI bits shown in Table 28.  
Table 28. VBATTDB Debounce Times  
VATTDB[1:0]  
Debounce Time  
00  
01  
10  
11  
0 (default)  
2 RTC clock cycles  
4 RTC clock cycles  
8 RTC clock cycles  
7.5.3.8  
Power Saving  
System Standby  
7.5.3.8.1  
A product may be designed to go into DSM (Deep Sleep Mode) after periods of inactivity, the STANDBY pin is provided for board  
level control of timing in and out of such deep sleep modes.  
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing  
the operating mode of the switching regulators or disabling some regulators. This can be obtained by controlling the STANDBY  
pin. The configuration of the regulators in standby is pre-programmed through the SPI.  
A lower power standby mode can be obtained by setting the ON_STBY_LP SPI bit to a one. With the ON_STBY_LP SPI bit set  
and the STANDBY pin asserted a lower power standby will be entered. In the on Standby Low Power mode, the switching  
Regulators should all be programmed into PFM mode and the LDO's should be configured to Low Power mode when the  
STANDBY pin is asserted. The PLL is disabled in this mode so the mini USB will not be able to detect if an audio device, UART,  
or a USB OTG device is attached. It will require the software to wake up occasionally to allow the mini-USB to detect if a device  
MC34708  
Analog Integrated Circuit Device Data  
43  
Freescale Semiconductor  
Functional Block Description  
is attached by de-asserting the STANDBY pin and waking up for a period to see if a device is attached and then re-asserting  
Standby if a device has not been detected. If a device has been detected then the software can bring up the appropriate  
application etc.  
Note the STANDBY pin is programmable for Active High or Active Low polarity, and decoding of a Standby event will take into  
account the programmed input polarity associated with each pin. For simplicity, Standby will generally be referred to as active  
high throughout this document, but as defined in Table 29, active low operation can be accommodated. Finally, since STANDBY  
pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the pin  
level changes.  
Table 29. Standby Pin and Polarity Control  
STANDBY (Pin)  
STANDBYINV (SPI bit)  
STANDBY Control(44)  
0
0
1
1
0
1
0
1
0
1
1
0
Notes  
44. STANDBY = 0: System is not in Standby STANDBY = 1: System is in Standby  
The state of the STANDBY pin only has influence in On mode, and are therefore it is ignored during start up and in the Watchdog  
phase. This allows the system to power up without concern of the required Standby polarities since software can make  
adjustments accordingly as soon as it is running.  
A command to transition to one of the low power Off states (User Off or Memory Hold, initiated with USE-ROFFSPI=1) redefines  
the power tree configuration based on SWxMODE programming, and has priority over Standby (which also influences the power  
tree configuration).  
7.5.3.8.2  
Standby Delay  
A provision to delay the Standby response is included. This allows the processor and peripherals, some time after a Standby  
instruction has been received, to terminate processes to facilitate seamless Standby exiting and re-entrance into Normal  
operating mode.  
A programmable delay is provided to hold off the system response to a Standby event. When enabled (STBYDLY = 01, 10, or  
11), STBYDLY will delay the STANDBY initiated response for the entire IC until the STBYDLY counter expires.  
Note that this delay is applied only when going into Standby, and no delay is applied when coming out of Standby. Also, an  
allowance should be accounted for synchronization of the asynchronous Standby event and the internal clocking edges (up to a  
full 32 kHz cycle of additional delay).  
Table 30. Delay of STANDBY- Initiated Response  
STBYDLY[1:0]  
Function  
No Delay  
00  
One 32 k period (default)  
Two 32 k periods  
01  
10  
11  
Three 32 k periods  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
44  
Functional Block Description  
7.5.4  
Buck Switching Regulators  
Six buck switching regulators are provided with integrated power switches and synchronous rectification. In a typical application,  
SW1 and SW2 are used for supplying the application processor core power domains. Split power domains allow independent  
DVS control for processor power optimization, or to support technologies with a mix of device types with different voltage ratings.  
SW3 is used for powering internal processor memory as well as low voltage peripheral devices and interfaces which can run at  
the same voltage level. SW4A/B is used for powering external DDR memory as well as low voltage peripheral devices and  
interfaces, which can run at the same voltage level. SW5 is used to supply the I/O domain for the system.  
The buck regulators are supplied from the system supply BP, which is drawn from the main battery or the external battery charger  
(when present).  
The switching regulators can operate in different modes depending on the load conditions. These modes can be set through the  
SPI/I2C and include a PFM mode, an Automatic Pulse Skipping mode (APS), and a PWM mode. The previous selection is  
optimized to maximum battery life based on load conditions.  
Table 31. Buck Operating Modes  
Mode  
Description  
The regulator is switched off and the output voltage is discharged  
OFF  
PFM  
The regulator is switched on and set to PFM mode operation. In this mode, the regulator  
is always running in PFM mode. Useful at light loads for optimized efficiency.  
The regulator is switched on and set to Automatic Pulse Skipping. In this mode the  
regulator moves automatically between pulse skipping and full PWM mode depending  
on load conditions.  
APS  
The regulator is switched on and set to PWM mode. In this mode the regulator is always  
in full PWM mode operation regardless of load conditions.  
PWM  
Buck modes of operation are programmable for explicitly defined or load-dependent control.  
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms  
(typical) after the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the  
particular switching mode selected, additional ripple may be observed on the output voltage rail as the controller transitions  
between switching modes. The regulators are turned on in APS mode by default. After the start-up sequence is complete, all  
switching regulators should be set to PFM/PWM mode, depending on system load for best performance.  
Point of load feedback is intended for minimizing errors due to board level IR drops.  
7.5.4.1  
General Control  
Operational modes of the Buck regulators can be controlled by direct SPI programming, altered by the state of the STANDBY  
pin, by direct state machine influence (entering Off or low power Off states, for example), or by load current magnitude when so  
configured (APS mode). Available modes include PWM, PFM, APS and OFF. For light loading, the regulators should be put into  
PFM mode to optimize efficiency.  
Provisions are made for maintaining PFM operation in User off and Memhold modes, to support state retention for faster startup  
from the Low Power Off modes for Warm Start or Warm Boot. SWxMODE[3:0] bits will be reset to their default values defined by  
PUMSx settings by the startup sequencer.  
Table 32 summarizes the Buck regulators programmability for Normal and Standby modes.  
Table 32. Switching regulator Mode Control for Normal and Standby Operation  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
0000  
0001  
0010  
0011  
Off  
PWM  
Off  
Off  
Reserved  
PFM  
Reserved  
Off  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
45  
Functional Block Description  
Table 32. Switching regulator Mode Control for Normal and Standby Operation  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
APS  
PWM  
Off  
PWM  
PWM  
APS  
Off  
Off  
APS  
APS  
Reserved  
Reserved  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
PFM  
PWM  
PFM  
Reserved  
PFM  
Reserved  
PFM  
In addition to controlling the operating mode in Standby, the voltage setting can be changed. The transition in voltage is handled  
in a controlled slope manner, see Dynamic Voltage Scaling for details. Each regulator has an associated set of SPI bits for  
Standby mode set points. By default, the Standby settings are identical to the non-standby settings which are initially defined by  
PUMSx programming.  
The actual operating mode of the Switching regulators as a function of the STANDBY pin is not reflected through the SPI. In other  
words, the SPI will read back what is programmed in SWxMODE[3:0], not the actual state that may be altered as described  
previously.  
Two tables follow for mode control in the low power Off states. Note that a low power Off activated SWx should use the Standby  
set point as programmed by SWxSTBY[4:0]. The activated regulator(s) will maintain settings for mode and voltage until the next  
startup event. When the respective time slot of the startup sequencer is reached for a given regulator, its mode and voltage  
settings will be updated the same as if starting out of the Off state (except switching regulators active through a low power Off  
mode will not be off when the startup sequencer is started).  
Table 33. Switching regulator Control In Memory Hold  
SWxMHMODE  
Memory Hold Operational Mode (45)  
0
1
Off  
PFM  
Notes:  
45. For Memory Hold mode, an activated SWx should use the  
Standby set point as programmed by SWxSTBY[4:0].  
Table 34. Switching regulator Control In User Off  
SWxUOMODE  
User Off Operational Mode (46)  
0
1
Off  
PFM  
Notes:  
46. For User Off mode, an activated SWx should use the Standby  
set point as programmed by SWxSTBY[4:0].  
In normal steady state operating mode, the SWxPWGD pin is high. When the SWx set point is changed to a higher or lower set  
point, the SWxPWGD pin will go low and will go high again when the higher/lower set point is reached.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
46  
Functional Block Description  
7.5.4.2  
Switching Frequency  
A PLL generates the switching system clocking from the 32.768 kHz crystal oscillator reference. The switching frequency can be  
programmed to 2.0 MHz or 4.0 MHz by setting the PLLX SPI bit as shown in Table 35.  
Table 35. Buck Regulator Frequency  
PLLX  
Switching Frequency (Hz)  
0
1
2 000 000  
4 000 000  
The clocking system provides a near instantaneous activation when the Switching regulators are enabled or when exiting PFM  
operation for PWM mode. The PLL can be configured for continuous operation with PLLEN = 1.  
7.5.4.3  
SW1  
SW1 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator. It can be operated in single phase/dual  
phase mode. The operating mode of the switching regulators is configured by the SW1CFG pin. The SW1CFG pin is sampled  
at startup.  
Table 36. SW1 Configuration  
SW1CFG  
VCOREDIG  
SW1A/B Configuration Mode  
Single Phase Mode  
Ground  
Dual Phase Mode  
BP  
SW1IN  
SW1AMODE  
SW1FAULT  
ISENSE  
CINSW 1A  
Controller  
SW1  
SW1ALX  
Driver  
LSW 1A  
COSW1A  
DSW1  
GNDSW1A  
SW1FB  
Internal  
Compensation  
SPI  
Z2  
SPI  
Interface  
Z1  
VREF  
EA  
DAC  
BP  
SW1BIN  
SW1BMODE  
ISENSE  
CINSW 1B  
Controller  
SW1BLX  
Driver  
SW1BFAULT  
GNDSW1B  
VCOREDIG  
SW1CFG  
Figure 8. SW1 Single Phase Output Mode Block Diagram  
MC34708  
Analog Integrated Circuit Device Data  
47  
Freescale Semiconductor  
Functional Block Description  
BP  
SW1IN  
SW1AMODE  
SW1FAULT  
ISENSE  
CINSW1A  
Controller  
SW1  
SW1ALX  
Driver  
LSW1A  
COSW1A  
DSW1A  
GNDSW1A  
Internal  
Compensation  
SPI  
Z2  
SPI  
Interface  
SW1FB  
Z1  
VREF  
EA  
DAC  
BP  
SW1BIN  
SW1BLX  
SW1BMODE  
ISENSE  
CINSW1B  
Controller  
Driver  
LSW 1B  
COSW 1B  
DSW1B  
SW1BFAULT  
GNDSW1B  
SW1CFG  
Figure 9. SW1 Dual Phase Output Mode Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW1FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW1A/B output voltage is SPI configurable in step sizes of 12.5 mV as shown in the table below. The SPI bits SW1A[5:0] set the  
output voltage for both SW1A and SW1B.  
Table 37. SW1A/B Output Voltage Programmability  
SW1A/B  
Output (V)  
SW1A/B  
Output (V)  
Set Point SW1A[5:0]  
Set Point SW1A[5:0]  
0
1
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
2
3
4
5
6
7
8
9
10  
11  
12  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
48  
Functional Block Description  
Table 37. SW1A/B Output Voltage Programmability  
SW1A/B  
SW1A/B  
Output (V)  
Set Point SW1A[5:0]  
Set Point SW1A[5:0]  
Output (V)  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
Table 38. SW1A/B Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW1A/B BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW1IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(47)  
Output Voltage Accuracy  
VSW1ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-25  
Nom-25  
Nom  
Nom  
Nom+25  
Nom+25  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode single/dual phase (parallel)  
• SW1 in PFM mode  
ISW1  
mA  
A
-
-
-
2000  
-
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V, Current through Inductor  
ISW1PEAK  
-
4.0  
-
-
Transient Load Change  
• 100 mA/µs  
ISW1  
A
TRANSIENT  
-
-
1.0  
25  
VSW1OS-  
mV  
Start-up Overshoot, IL = 0  
START  
MC34708  
Analog Integrated Circuit Device Data  
49  
Freescale Semiconductor  
Functional Block Description  
Table 38. SW1A/B Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Turn-on Time  
• Enable to 90% of end value IL = 0  
tON-SW1  
µs  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW1  
ISW1Q  
SW1  
MHz  
µA  
-
-
2.0  
4.0  
-
-
• PLLX = 1  
Quiescent Current Consumption  
• APS MODE, IL=0 mA  
-
-
240  
15  
-
-
• PFM MODE, IL=0 mA  
(48)  
Efficiency,  
%
• PFM, 0.9 V, 1.0 mA  
• PWM, 1.1 V, 200 mA  
• PWM, 1.1 V, 800 mA  
• PWM, 1.1 V, 1600 mA  
-
-
-
-
54  
75  
81  
76  
-
-
-
-
Notes:  
47. Transient loading for load steps of ILMAX/2.  
48. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current  
7.5.4.4  
SW2  
SW2 is fully integrated synchronous Buck PWM voltage-mode control DC/DC regulator.  
BP  
SW2IN  
SW2MODE  
ISENSE  
C
INSW 2  
Controller  
SW2  
SW2LX  
Driver  
LSW2  
DSW 2  
COSW2  
SW2FAULT  
SPI  
Interface  
GNDSW2  
Internal  
Compensation  
SPI  
Z2  
SW2FB  
Z1  
VREF  
EA  
DAC  
Figure 10. SW2 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected, the regulator  
will limit the current through cycle by cycle operation, alert the system through the SW2FAULT SPI bit, and issue an SCPI  
interrupt via the INT pin  
SW2 can be programmed in step sizes of 12.5 mV as shown in Table 39.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
50  
Functional Block Description  
Table 39. SW2 Output Voltage Programmability  
SW2x  
SW2 Output  
(V)  
Set Point SW2[5:0]  
Set Point SW2[5:0]  
Output (V)  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
51  
Functional Block Description  
Table 40. SW2 Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW2 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW2IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(49)  
Output Voltage Accuracy  
VSW2ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-25  
Nom-25  
Nom  
Nom  
Nom+25  
Nom+25  
Continuous Output Load Current, VINMIN < BP < 4.65 V  
ISW2  
mA  
• PWM mode  
• PFM mode  
-
-
-
1000  
-
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW2PEAK  
A
A
-
2.0  
-
Transient Load Change  
• 100 mA/µs  
ISW2  
TRANSIENT  
-
-
-
-
0.500  
25  
VSW2OS-  
mV  
µs  
Start-up Overshoot, IL = 0  
START  
Turn-on Time  
tON-SW2  
• Enable to 90% of end value IL = 0  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW2  
-
-
-
MHz  
µA  
-
-
2.0  
4.0  
• PLLX = 1  
Quiescent Current Consumption  
ISW2Q  
• APS MODE, IL = 0 mA; device not switching  
• PFM MODE, IL = 0 mA; device not switching  
-
-
160  
15  
-
-
(50)  
Efficiency  
SW2  
%
• PFM, 0.9 V, 1.0 mA  
• PWM, 1.2 V, 120 mA  
• PWM, 1.2 V, 500 mA  
• PWM, 1.2 V, 1000 mA  
-
-
-
-
54  
75  
83  
78  
-
-
-
-
Notes:  
49. Transient loading for load steps of ILMAX/2.  
50. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
52  
Functional Block Description  
7.5.4.5  
SW3  
SW3 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator.  
BP  
SW3IN  
SW3MODE  
ISENSE  
C
INSW 3  
Controller  
SW3  
SW3LX  
Driver  
LSW3  
DSW3  
COSW3  
SW3FAULT  
SPI  
Interface  
GNDSW3  
Internal  
Compensation  
SPI  
Z2  
SW3FB  
Z1  
VREF  
EA  
DAC  
Figure 11. SW3 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW3FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW3 can be programmed in step sizes of 25 mV as shown in Table 41.  
Table 41. SW3 Output Voltage Programmability  
Set Point  
SW3[4:0]  
SW3 Output (V)  
Set Point  
SW3[4:0]  
SW3 Output (V)  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
MC34708  
Analog Integrated Circuit Device Data  
53  
Freescale Semiconductor  
Functional Block Description  
Table 42. SW3 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW3 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW3IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(51)  
Output Voltage Accuracy  
VSW3ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
Continuous Output Load Current, VINMIN < BP < 4.65 V  
ISW3  
mA  
• PWM mode  
• PFM mode  
-
-
-
500  
-
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW3PEAK  
A
-
-
1.0  
-
-
Transient Load Change  
• 100 mA/µs  
ISW3  
250  
mA  
TRANSIENT  
VSW3OS-  
-
-
-
-
25  
mV  
µs  
Start-up Overshoot, IL = 100 mA/µs  
START  
Turn-on Time  
tON-SW3  
• Enable to 90% of end value IL = 0  
500  
Switching Frequency  
• PLLX = 0  
fSW3  
MHz  
µA  
-
-
2.0  
4.0  
-
-
• PLLX = 1  
Quiescent Current Consumption  
ISW3Q  
• APSMODE, IL = 0 mA; device not switching  
• PFM MODE, IL = 0 mA; device not switching  
-
-
160  
15  
-
-
(52)  
Efficiency,  
SW3  
%
• PFM, 1.2 V, 1.0 mA  
• PWM, 1.2 V, 120 mA  
• PWM, 1.2 V, 250 mA  
• PWM, 1.2V, 500 mA  
-
-
-
-
71  
79  
82  
81  
-
-
-
-
Notes:  
51. Transient loading for load steps of ILMAX/2  
52. Efficiency numbers at VIN = 3.6 V, Excludes the quiescent current,  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
54  
Functional Block Description  
7.5.4.6  
SW4  
SW4A/B is fully integrated synchronous Buck PWM voltage-mode control DC/DC regulator. It can be operated in (single phase/  
dual phase mode) or as separate independent outputs. The operating mode of the Switching regulator is configured by the  
SW4CFG pin. The SW4CFG pin is sampled at startup.  
Table 43. SW4A/B Configuration  
SW4CFG  
Ground  
SW4A/B Configuration Mode  
Separate Independent Output  
Single Phase  
VCOREDIG  
VCORE  
Dual Phase  
BP  
SWAIN  
SW4AMODE  
ISENSE  
CINSW 4A  
Controller  
Driver  
SW4A  
SW4ALX  
LSW4A  
COSW4A  
DSW 4A  
SW4AFAULT  
GNDSW4A  
SW4AFB  
Internal  
Compensation  
SPI  
Z2  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BLX  
SW4BMODE  
ISENSE  
CINSW 4B  
Controller  
Driver  
SW4B  
LSW4B  
COSW 4B  
DSW4B  
SW4BFAULT  
GNDSW4B  
Internal  
Compensation  
SPI  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
Figure 12. SW4A/B Separate Output Mode Block Diagram  
MC34708  
Analog Integrated Circuit Device Data  
55  
Freescale Semiconductor  
Functional Block Description  
BP  
SWAIN  
SW4AMODE  
SW4AFAULT  
ISENSE  
CINSW4A  
Controller  
SW4  
SW4ALX  
Driver  
LSW4A  
COSW4a  
DSW4  
GNDSW4A  
Internal  
SPI  
Compensation  
Z2  
SW4AFB  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BMODE  
ISENSE  
CINSW4B  
Controller  
SW4BLX  
Driver  
SW4BFAULT  
GNDSW4B  
Internal  
SPI  
Compensation  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
VCOREDIG  
Figure 13. SW4 Single Phase Output Mode Block Diagram  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
56  
Functional Block Description  
BP  
SWAIN  
SW4AMODE  
ISENSE  
CINSW4A  
Controller  
SW4  
SW4ALX  
Driver  
LSW4A  
COSW4A  
DSW4A  
SW4AFAULT  
GNDSW4A  
Internal  
SPI  
Compensation  
Z2  
SW4AFB  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BMODE  
ISENSE  
CINSW4B  
Controller  
SW4BLX  
DSW4B  
Driver  
LSW4B  
COSW4B  
SW4BFAULT  
GNDSW4B  
Internal  
SPI  
Compensation  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
VCORE  
Figure 14. SW4 Dual Phase Output Mode Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW4xFAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW4A/B has a high output range (2.5 V, 3.15 V) and a low output range (1.2 V 1.85 V). The SW4A/B output range is set by the  
PUMS configuration at start-up and cannot be changed dynamically by software. This means if the PUMS are set to allow SW4A  
to come up in the high output voltage range, the output can only be changed between 2.5 V or 3.15 V. It cannot be programmed  
in the low output range. If software sets the SW4AHI[1:0] = 00 when the PUMS is set to come up in the high voltage range, the  
output voltage will only go as low as the lowest setting in the high range, which is 2.5 V. If the PUMS are set to start-up in the low  
output voltage range, the voltage is controlled through the SW4x[4:0] bits by software, it cannot be programmed into the high  
voltage range. When changing the voltage in either the high or low voltage range, the regulator should be forced into PWM mode  
to change the voltage.  
Table 44. SW4A/B Output Voltage Select  
SW4xHI[1:0]  
Set point selected by  
Output Voltage  
00  
01  
10  
11  
SW4x[4:0]  
SW4xHI[1:0]  
SW4xHI[1:0]  
Invalid  
See Table 45  
2.5 V  
3.15 V  
Invalid  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
57  
Functional Block Description  
Table 45. SW4A/B Output Voltage Programmability  
SW4x  
SW4x  
Output (V)  
Set Point SW4x[4:0]  
Set Point SW4x[4:0]  
Output (V)  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
-
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
-
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
-
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
-
-
-
-
-
-
-
-
-
-
-
-
Table 46. SW4A/B Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW4A/B Buck Regulator  
(54)  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW4IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(53)  
Output Voltage Accuracy  
VSW4ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode (separate)  
ISW4  
mA  
A
-
-
-
-
-
500  
1000  
-
• PWM mode single/dual phase  
• PFM mode  
50  
Current Limiter Peak Current Detection  
ISW4PEAK  
• VIN = 3.6 V Current through Inductor (separate)  
-
-
1.0  
2.0  
-
-
• Current through Inductor  
Transient Load Change, 100 mA/µs  
• Single/Dual Phase  
• Separate  
iSW4  
mA  
mV  
TRANSIENT  
-
-
-
-
500  
250  
VSW4OS-  
-
-
25  
Start-up Overshoot, IL = 100 mA/µs  
START  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
58  
Functional Block Description  
Table 46. SW4A/B Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Turn-on Time  
• Enable to 90% of end value IL = 0  
tON-SW4  
µs  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW4  
MHz  
µA  
-
-
2.0  
4.0  
-
-
• PLLX = 1  
ISW4Q  
Quiescent Current Consumption  
-
-
-
500  
260  
15  
-
-
-
• APS MODE, IL = 0 mA; High output voltage range (VSW4x = 3.15 V  
or 2.5 V) device not switching  
• APS MODE, IL = 0 mA; Low output voltage range (VSW4x = 1.3 V).  
device not switching  
• PFM MODE, IL = 0 mA; device not switching  
(55)  
Efficiency  
SW4  
%
• PFM, 3.15 V, 10 mA (A)  
• PWM, 3.15 V, 50 mA (A)  
• PWM, 3.15 V, 250 mA (A)  
• PWM, 3.15 V, 500 mA (A)  
• PFM, 1.2 V, 10 mA (B)  
• PWM, 1.2 V, 50 mA (B)  
• PWM, 1.2 V, 250 mA (B)  
• PWM 1.2 V, 500 mA (B)  
-
-
-
-
-
-
-
-
79  
93  
92  
82  
72  
71  
81  
78  
-
-
-
-
-
-
-
-
Notes:  
53. Transient loading for load steps of ILMAX / 2.  
54. When SW4A/B is set to 3.0 V and above the regulator may drop out of regulation when BP nears the output voltage.  
55. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current.  
MC34708  
Analog Integrated Circuit Device Data  
59  
Freescale Semiconductor  
Functional Block Description  
7.5.4.7  
SW5  
SW5 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator.  
BP  
SW5IN  
SW5MODE  
ISENSE  
CINSW5  
Controller  
SW5  
SW5LX  
Driver  
LSW5  
COSW5  
DSW5  
SW5FAULT  
SPI  
GNDSW5  
Interface  
Internal  
SPI  
Compensation  
Z2  
SW5FB  
Z1  
VREF  
EA  
DAC  
Figure 15. SW5 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW5FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW5 can be programmed in step sizes of 25 mV as shown in Table 47. If the software wants to change the output voltage, after  
power up the regulator should be forced into PWM mode to change the voltage.  
Table 47. SW5 Output Voltage Programmability  
SW5  
Output (V)  
SW5  
Output (V)  
Set Point SW5[4:0]  
Set Point SW5[4:0]  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
-
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
-
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
-
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
-
-
-
-
-
-
-
-
-
-
-
-
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
60  
Functional Block Description  
Table 48. SW5 Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW5 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
VSW5IN  
V
3.0  
2.8  
-
-
4.5  
4.5  
• PFM operation, 0 < IL < ILMAX  
(56)  
Output Voltage Accuracy  
VSW5ACC  
mV  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
ISW5  
mA  
• PWM mode  
• PFM mode  
-
-
-
1000  
-
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW5PEAK  
A
-
1.0  
-
Transient Load Change  
• 100 mA/µs  
ISW5  
mA  
TRANSIENT  
-
-
-
-
500  
25  
VSW5  
mV  
µs  
Start-up Overshoot, IL = 0  
OS-START  
Turn-on Time  
tON-SW5  
• Enable to 90% of end value IL = 0  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW5  
MHz  
µA  
-
-
2.0  
4.0  
-
-
• PLLX = 1  
Quiescent Current Consumption  
ISW5Q  
• APS MODE, IL = 0 mA; device not switching  
• PFM MODE, IL = 0 mA; device not switching  
-
-
160  
15  
-
-
(57)  
Efficiency  
SW5  
%
• PFM, 1.8 V, 1.0 mA  
• PWM, 1.8 V, 50 mA  
• PWM, 1.8 V, 500 mA  
• PWM, 1.8 V, 1000 mA  
-
-
-
-
80  
79  
86  
82  
-
-
-
-
Notes  
56. Transient Loading for load Steps of ILMAX/2  
57. Efficiency numbers at VIN = 3.6 V, Excludes the quiescent current.  
MC34708  
Analog Integrated Circuit Device Data  
61  
Freescale Semiconductor  
Functional Block Description  
7.5.4.8  
Dynamic Voltage Scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the  
processor. SW1A/B and SW2 allow for two different set points with controlled transitions to avoid sudden output voltage changes,  
which could cause logic disruptions on their loads.  
Preset operating points for SW1A/B and SW2 can be set up for:  
• Normal operation: output value selected by SPI bits SWx[5:0]. Voltage transitions initiated by SPI writes to SWx[5:0] are  
governed by the DVS stepping rate shown in the following tables.  
• Standby (Deep Sleep): can be higher or lower than normal operation, but is typically selected to be the lowest state retention  
voltage of a given process. Set by SPI bits SWxSTBY[5:0] and controlled by a Standby event. Voltage transitions initiated by  
Standby are governed by the SWxDVSSPEED[1:0] SPI bits shown in Table 49.  
The following table summarizes the set point control and DVS time stepping applied to SW1A/B and SW2.  
Table 49. DVS Control Logic Table for SW1A/B and SW2  
STANDBY  
Set Point Selected by  
0
1
SWx[4:0]  
SWxSTBY[4:0]  
Table 50. DVS Speed Selection  
SWxDVSSPEED[1:0]  
Function  
00  
01 (default)  
10  
12.5 mV step each 2.0 s  
12.5 mV step each 4.0 s  
12.5 mV step each 8.0 s  
12.5 mV step each 16.0 s  
11  
The regulators have a strong sourcing and sinking capability in the PWM mode. Therefore, the rising/falling slope is determined  
by the regulator in PWM mode, however, if the regulators are programmed in PFM or APS mode during a DVS transition, the  
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS  
transitions in PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.  
Voltage transitions programmed through SPI(SWx[4:0]) on SW3 and SW5 will step in increments of 25 mV per 4.0 s, SW4A/B  
will step in increments of 25 mV per 8.0 s when SW4xHI[1:0]=00, and SW4A/B will step in increments of 25 mV per 16 s when  
SW4xHI[1:0]=00. Additionally, SW3, SW4/B, and SW5 include standby mode set point programmability.  
The following diagram shows the general behavior for the switching regulators when initiated with SPI programming or standby  
control.  
SW1 and SW2 also contain power good outputs to the application processor. The power good signal is an active high signal.  
When SWxPWGD is high, it means the regulator’s output has reached its programmed voltage. The SWxPWGD voltage outputs  
will be low during the DVS period and if the current limit is reached on the switching regulator. During the DVS period, the over-  
current condition on the switching regulator should be masked. If the current limit is reached outside of a DVS period, the  
SWxPWGD pin will stay low until the current limit condition is removed.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
62  
Functional Block Description  
Requested  
Set Point  
Output Voltage  
with light Load  
Internally  
Controlled Steps  
Example  
Actual Output  
Voltage  
Output  
Voltage  
Init ial  
Set Point  
Actual  
Output Voltage  
Internally  
Possible  
Output Voltage  
Window  
Controlled Steps  
Request for  
Higher Voltage  
Request for  
Lower Voltage  
Voltage  
Change  
Request  
Initiated by SPI Programming, Standby Control  
SWxPWGD  
Figure 16. Voltage Stepping with DVS  
7.5.5  
Boost Switching Regulator  
SWBST is a boost switching regulator with a programmable output, which defaults to 5.0 V on power up, operating at 2.0 MHz.  
SWBST supplies the VUSB regulator for the USB PHY in OTG mode, as well as the VBUS voltage. Note that the parasitic  
leakage path for a boost regulator will cause the output voltage and SWBSTFB to sit at a Schottky drop below the battery voltage  
whenever SWBST is disabled. The switching NMOS transistor is integrated on-chip. An external fly back Schottky diode,  
inductor, and capacitor are required.  
VIN  
CINBST  
SWBSTIN  
SWBSTLX  
LBST  
DBST  
SWBSTMODE  
SWBSTFAULT  
VOBST  
Driver  
OC  
Controller  
SPI/I2C  
GNDSWBST  
RSENSE  
Interface  
VREFSC  
VREFUV  
SC  
UV  
SWBSTFB  
Internal  
Compensation  
COSWBST  
Z2  
Z1  
EA  
VREF  
Figure 17. Boost Regulator Architecture  
SWBST output voltage programmable via the SWBST[1:0] SPI bits as shown in Table 51.  
MC34708  
Analog Integrated Circuit Device Data  
63  
Freescale Semiconductor  
Functional Block Description  
Table 51. SWBST Voltage Programming  
Parameter  
Voltage  
SWBST Output Voltage  
SWBST[1:0]  
00  
01  
10  
11  
5.000 (default)  
5.050  
5.100  
5.150  
SWBST can be controlled by SPI programming in PFM, APS, and Auto mode. Auto mode transitions between PFM and APS  
mode based on the load current. By default SWBST is powered up in Auto mode.  
Table 52. SWBST Mode Control  
Parameter  
Voltage  
SWBST Mode  
SWBSTMODE[1:0]  
00  
01  
10  
11  
Off  
PFM  
SWBSTSTBYMODE[1:0]  
Auto (default)  
APS  
Table 53. SWBST Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SWITCH MODE SUPPLY SWBST  
(58)  
Average Output Voltage  
• 3.0 V < VIN < 4.5 V, 0 < IL < ILMAX  
VSWBST  
V
Nom-4%  
-
VNOM  
Nom+3%  
120 mV  
Output Ripple  
VSWBSTACC  
Vp-p  
• 3.0 V < VIN < 4.5 V 0 < IL < ILMAX, excluding reverse recovery of  
Schottky diode  
-
Average Load Regulation  
SWBSTACC  
mV/mA  
mV  
• VIN = 3.6 V, 0 < IL < ILMAX  
-
-
-
0.5  
50  
-
-
-
Average Line Regulation  
VSWBST  
LINEAREG  
• 3.0 V < VIN < 4.5 V IL = ILMAX  
Continuous Load Current  
ISWBST  
mA  
• 3.0 V < VIN < 4.5 V, VOUT = 5.0 V  
380  
Peak Current Limit  
ISWBSTPEAK  
mA  
• At SWBSTIN, VIN = 3.6 V  
-
-
1800  
-
-
VSWBSTOS-  
500  
mV  
ms  
Start-up Overshoot, IL = 0 mA  
START  
Turn-on Time  
tON-SWBST  
• Enable to 90% of VOUT IL = 0  
-
-
-
2.0  
-
Switching Frequency  
fSWBST  
2.0  
MHz  
mV  
Transient Load Response, IL from 1.0 to 100 mA in 1.0 µs  
• Maximum transient Amplitude  
VSWBST  
TRANSIENT  
-
-
300  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
64  
Functional Block Description  
Table 53. SWBST Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Transient Load Response, IL from 100 to 1.0 mA in 1.0 µs  
• Maximum transient Amplitude  
VSWBST  
mV  
TRANSIENT  
-
-
-
-
300  
500  
Transient Load Response, IL from 1.0 to 100 mA in 1.0 µs  
• Time to settle 80% of transient  
VSWBST  
µs  
TRANSIENT  
Transient Load Response, IL from 100 to 1.0 mA in 1.0 µs  
• Time to settle 80% of transient  
VSWBST  
ms  
TRANSIENT  
-
-
20  
-
Efficiency, IL = ILMAX  
SWBST  
65  
80  
%
Bias Current Consumption  
• PFM or Auto mode  
ISWBSTBIAS  
µA  
-
-
35  
-
NMOS Off Leakage  
ILEAK-SWBST  
µA  
• SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 0  
1.0  
6.0  
Notes:  
58. VIN is the low side of the inductor connected to BP.  
7.5.6  
Linear Regulators (LDOs)  
This section describes the linear regulators provided. For convenience, these regulators are named to indicate their typical or  
possible applications, but the supplies are not limited to these uses and may be applied to any loads within the specified regulator  
capabilities.  
A low power standby mode controlled by STANDBY is provided for the regulators with an external pass device in which the bias  
current is aggressively reduced. This mode is useful for deep sleep operation, where certain supplies cannot be disabled, but  
active regulation can be tolerated with lesser parametric requirements. The output drive capability and performance are limited  
in this mode.  
7.5.6.1  
General Guidelines  
The following applies to all linear regulators, unless otherwise specified.  
• Parametric specifications assume the use of low ESR X5R/X7R ceramic capacitors with 20% accuracy and 15% temperature  
spread, for a worst case stack up of 35% from the nominal value. Use of other types with wider temperature variation may  
require a larger room temperature nominal capacitance value, to meet performance specs over temperature. Capacitor  
derating as a function of DC bias voltage requires special attention. Minimum bypass capacitor guidelines are provided for  
stability and transient performance. However, larger values may be applied, but performance metrics may be altered and  
generally improved and should be confirmed in system applications.  
• Regulators with an external PNP transistor require an equivalent resistance (including the ESR) in series with the output  
capacitor, as noted in the specific regulator sections.  
• Output voltage tolerance specified for each of the linear regulators include process variation, temperature range, static line  
regulation, and static load regulation.  
• In the Low-power mode, the output performance is degraded. Only those parameters listed in the Low-power mode section  
are guaranteed. In this mode, the output current is limited to much lower levels than in the active mode.  
• When a regulator gets disabled, the output will be pulled to ground by an internal pull-down. The pull-down is also activated  
when RESETB goes low.  
MC34708  
Analog Integrated Circuit Device Data  
65  
Freescale Semiconductor  
Functional Block Description  
7.5.6.2  
LDO Regulator Control  
The regulators with embedded pass devices (VPLL, VGEN1, and VUSB) have an adaptive biasing scheme thus, there are no  
distinct operating modes such as a Normal mode and a Low Power mode. Therefore, no specific control is required to put these  
regulators in a Low Power mode.  
The external pass regulator (VDAC) can also operate in a normal and low power mode. However, since a load current detection  
cannot be performed for this regulator, the transition between both modes is not automatic and is controlled by setting the  
corresponding mode bits for the operational behavior desired.  
The regulators VUSB2, and VGEN2 can be configured for using the internal pass device or external pass device as explained in  
Supplies. For both configurations, the transition between both modes is controlled by setting the VxMODE bit for the specific  
regulator. Therefore, depending on the configuration selected, the automatic Low Power mode determines availability.  
The regulators can be disabled and the general purpose outputs can be forced low when going into Standby (note that the  
Standby response timing can be altered with the STBYDLY function, as described in the previous section). Each regulator has  
an associated SPI bit for this. When the bit is not set, STANDBY is of no influence. The actual operating mode of the regulators  
as a function of STANDBY is not reflected through SPI. In other words, the SPI will read back what is programmed, not the actual  
state.  
Table 54. LDO Regulator Control (external pass device LDOs)  
VxEN  
VxMODE  
VxSTBY STANDBY(59)  
Regulator Vx  
0
1
1
1
1
1
X
0
1
X
0
1
X
0
0
1
1
1
X
X
X
0
1
1
Off  
On  
Low Power  
On  
Off  
Low Power  
Notes  
59. STANDBY refers to a Standby event as described earlier  
For regulators with internal pass devices, the previous table can be simplified by elimination of the VxMODE column.  
Table 55. LDO Regulator Control (internal pass device LDOs)  
VxEN  
VxSTBY  
STANDBY (60)  
Regulator Vx  
0
1
1
1
X
0
1
1
X
X
0
1
Off  
On  
On  
Off  
Notes  
60. STANDBY refers to a Standby event as described earlier  
7.5.6.3  
Transient Response Waveforms  
The transient load and line response are specified with the waveforms as depicted in Figure 18. Note that where the transient  
load response refers to the overshoot only, so excluding the DC shift itself, the transient line response refers to the sum of both  
overshoot and DC shift. This is also valid for the mode transition response.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
66  
Functional Block Description  
VNOM + 0.8V  
IMAX  
VIN  
ILOAD  
0 mA  
VNOM + 0.3V  
10us  
10us  
1us  
1us  
VIN Stimulus for Transient Line  
Response  
ILOAD Stimulus for Transient Load  
Response  
IL = 0 mA  
IL = IMAX  
Overshoot  
VOUT  
Overshoot  
VOUT for Transient Load Response  
Active Mode  
Low Power Mode  
Active Mode  
Overshoot  
VOUT  
Mode Transition  
Time  
Overshoot  
IL < ILMAX  
IL < ILMAXLP  
IL < ILMAX  
V
OUT for Mode Transition Response  
(VGEN2, VUSB2, VDAC  
)
Figure 18. Transient Waveforms  
7.5.6.4  
Short-circuit Protection  
The higher current LDOs, and those most accessible in product applications, include a short-circuit detection and protection  
(VDAC, VUSB, VUSB2, VGEN1, and VGEN2). The short-circuit protection (SCP) system includes debounced fault condition  
detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product  
damage. If an over-current (short-circuit) condition is detected, typically 20% above ILMAX, the LDO will be disabled by resetting  
its VxEN bit, while at the same time, an interrupt SCPI will be generated to flag the fault to the system processor. The SCPI  
interrupt is maskable through the SCPM mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, then not only is no interrupt generated, but also  
the regulators will not automatically be disabled upon a short-circuit detection. Note that by default, the REGSCPEN bit is not  
set, so at startup, none of the regulators in an overload condition are disabled.  
7.5.6.5  
VPLL  
VPLL is provided for isolated biasing of the application processors PLLs for clock generation, in support of protocol and peripheral  
needs. Depending on the application and power requirements, this supply may be considered for sharing with other loads, but  
MC34708  
Analog Integrated Circuit Device Data  
67  
Freescale Semiconductor  
Functional Block Description  
noise injection must be avoided and filtering added, if necessary to ensure suitable PLL performance. The VPLL regulator has a  
dedicated input supply pin.  
VINPLL can be connected to either BP or a 1.8 V switched mode power supply rail such as from SW5 for the two lower set points  
of each regulator VPLL[1:0] = [00], [01]. In addition, when the two upper set points (VPLL[1:0] = [10],[11]) are used, the VINPLL  
inputs can be connected to either BP or a 2.2 V nominal external switched mode power supply rail, to improve power dissipation.  
Table 56. VPLL Voltage Control  
Parameter Value  
Function  
ILoad max  
Input Supply  
VPLL[1:0]  
00  
output = 1.2 V  
50 mA  
50 mA  
50 mA  
50 mA  
BP or 1.8 V  
BP or 1.8 V  
01 output = 1.25 V  
10 output = 1.50 V  
BP or External switch  
BP or External switch  
11  
output = 1.8 V  
Table 57. VPLL Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V,-40 C TA 85 C, unless otherwise noted. Typical values at  
BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VINPLL  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Operating Input Voltage Range  
V
• VPLL all settings, BP biased  
UVDET  
1.75  
-
4.5  
4.5  
4.5  
• VPLL [1:0] = 00, 01 (SW5 = 1.8 V)  
• VPLL, [1:0] = 10, 11, External Switch  
1.8  
2.2  
2.15  
Operating current Load range  
IPLL  
-
-
50  
mA  
V
VPLL ACTIVE MODE – DC  
Output Voltage VOUT  
VPLL  
• VINMIN < VIN < VINMAX  
• ILMIN < IL < ILMAX  
,
VNOM  
– 0.05  
VNOM  
VNOM  
+ 0.05  
Load Regulation  
VPLL-LOPP  
VPLL-LIPP  
IPLL-Q  
mV/mA  
mV  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
0.35  
5.0  
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Quiescent Current  
µA  
• VINMIN < VIN < VINMAX IL = 0  
8.0  
VPLL ACTIVE MODE – AC  
PSRR, IL = 75% of ILMAX, 20 Hz to 20 kHz  
VPLLPSRR  
dB  
• VIN = UVDET  
-
-
70  
75  
-
-
• VIN = VNOM + 1.0 V, > UVDET  
Turn-on Time  
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
tON-VPLL  
µs  
ms  
%
-
0.05  
-
-
-
120  
10  
Turn-off Time  
tOFF-VPLL  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
Start-up Overshoot  
VPLLOS-  
START  
• VIN = VINMIN, VINMAX IL = 0  
1.0  
2.0  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
68  
Functional Block Description  
Table 57. VPLL Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V,-40 C TA 85 C, unless otherwise noted. Typical values at  
BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
50  
Max  
70  
Unit Notes  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VPLL-LO  
mV  
TRANSIENT  
-
-
Transient Line Response  
• IL = 75% of ILMAX  
VPLL-LI  
mV  
TRANSIENT  
5.0  
8.0  
7.5.6.6  
VREFDDR  
VREFDDR is an internal PMOS half supply Voltage Follower. The output voltage is at one half the input voltage. It’s typical  
application is as the VREF for DDR memories. A filtered resistor divider is utilized to create a low frequency pole. This divider then  
utilizes a voltage follower to drive the load.  
Table 58. VREFDDR Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
GENERAL  
VREFFDDRIN  
IREFDDR  
Operating Input Voltage Range VINMIN to VINMAX  
Operating Current Load Range ILMIN to ILMAX  
1.2  
0.0  
-
-
1.8  
10  
V
mA  
VREFDDR ACTIVE MODE – DC  
Output Voltage VOUT  
VREFDDR  
V
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
-
VIN/2  
-
6.5  
-
(61)  
%
Output Voltage tolerance  
VREFDDRTOL  
• VINMIN < VIN < VINMAX IL = 1.0 mA  
-6.5  
-
Load Regulation  
VREFDDR  
mV/mA  
µA  
LOPP  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
5.0  
8.0  
Quiescent Current  
IREFDDRQ  
• VINMIN < VIN < VINMAX IL = 0  
-
VREFDDR ACTIVE MODE – AC  
Turn-on Time  
tON-VREFDDR  
µs  
ms  
%
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
-
-
100  
10  
2.0  
-
Turn-off Time  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
tOFF-  
VREFDDR  
0.05  
-
Start-up Overshoot  
VREFDDROS  
• VIN = VINMIN, VINMAX IL = 0  
-
-
1.0  
5.0  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VREFDDRL  
mV  
TRANSIENT  
Notes  
61. guaranteed at 25 °C only  
MC34708  
Analog Integrated Circuit Device Data  
69  
Freescale Semiconductor  
Functional Block Description  
7.5.6.7  
VUSB2  
VUSB2 has an internal PMOS pass FET which will support loads up to 65 mA. To support load currents an external PNP is  
provided. The external PNP configuration is offered to avoid excess on-chip power dissipation at higher loads and large  
differentials between BP and output settings. For lower current requirements, an integrated PMOS pass FET is included. The  
input pin for the integrated PMOS option is shared with the base current drive pin for the PNP option. The external PNP  
configuration must be committed as a hardwired board level implementation. The recommended PNP device is the ON  
Semiconductor™ NSS12100XV6T1G, which is capable of handling up to 250 mW of continuous dissipation, at minimum footprint  
and 75 °C of ambient. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is ON  
Semiconductor NSS12100UW3TCG. For stability reasons, a total resistance of 50 m 20% in series with the output  
capacitance is required. The total resistance includes the ESR of the capacitor plus an external resistance provided by a discrete  
resistor or PCB circuit trace.  
A short-circuit condition will shut down the VUSB2 regulator and generate an interrupt for SCPI, if REGSCPEN is set.  
The nominal output voltage of this regulator is SPI configurable, and can be 2.5 V, 2.6 V, 2.75 V, or 3.0 V. The output current  
when working with the internal pass FET is 65 mA, and could be up to 350 mA when working with an external PNP.  
Table 59. VUSB2 Voltage Control  
ILoad max  
Output  
Voltage  
Parameter Value  
VUSB2CONFIG = 0 VUSB2CONFIG = 1  
Internal Pass FET  
External PNP  
VUSB2[1:0] 00  
2.5 V  
2.6 V  
65 mA  
65 mA  
65 mA  
65 mA  
350 mA  
350 mA  
350 mA  
350 mA  
01  
10  
11  
2.75 V  
3.00 V  
Table 60. VUSB2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VUSB2IN  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VNOM  
0.25  
+
-
4.5  
V
Operating Input Voltage Range VINMIN to VINMAX  
Operating Current Load Range ILMIN to ILMAX  
• Internal pass FET  
IUSB2  
mA  
0.0  
0.0  
-
-
65  
• External PNP Not exceeding PNP max power  
350  
Extended Input Voltage Range  
VUSB2IN  
V
• Performance may be out of specification  
UVDET  
-
4.5  
VUSB2 ACTIVE MODE - DC  
Output Voltage VOUT  
VUSB2  
VUSB2LOPP  
VUSB2LIPP  
IUSB2Q  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM - 3%  
VNOM  
0.25  
8.0  
VNOM + 3%  
Load Regulation  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Active Mode Quiescent Current, VINMIN < VIN < VINMAX  
• IL = 0, Internal PMOS configuration  
µA  
-
-
25  
30  
-
-
• VINMIN < VIN < VINMAX IL = 0, External PNP configuration  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
70  
Functional Block Description  
Table 60. VUSB2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VUSB2 LOW POWER MODE - DC  
Output Voltage VOUT  
VUSB2  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM - 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IUSB2  
mA  
µA  
Low Power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IUSB2Q  
-
8.0  
10.5  
VUSB2 ACTIVE MODE - AC  
PSRR, IL = 75% of ILMAX 20 Hz to 20 kHz  
VUSB2PSRR  
dB  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
-
-
30  
30  
-
-
Turn-on Time  
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
tON-VUSB2  
ms  
ms  
%
-
0.05  
-
-
-
1.0  
10  
Turn-off Time  
tOFF-VUSB2  
• Disable to 10% of initial value VIN = VINMIN, VINMAX IL = 0  
Start-up Overshoot  
VUSB2OS-  
START  
• VIN = VINMIN, VINMAX IL = 0  
1.0  
2.0  
Transient Load Response, VIN = VINMIN, VINMAX  
• VUSB2=01, 10, 11  
x
VUSB2LO  
TRANSIENT  
-
-
1.0  
50  
2.0  
70  
%
• VUSB2=00  
mV  
Transient Line Response  
• IL = 75% of ILMAX  
VUSB2LI  
mV  
µs  
TRANSIENT  
-
-
5.0  
-
8.0  
Mode Transition Time  
tMOD-VUSB2  
• From low power to active and from active to low power  
VIN = VINMIN, VINMAX IL = ILMAXLP  
100  
Mode Transition Response  
VUSBMODE  
%
RES  
• From low power to active and from active to low power  
VIN = VINMIN, VINMAX IL = ILMAXLP  
-
1.0  
2.0  
7.5.6.8  
VDAC  
The primary applications of this power supply is the TV-DAC. However, these supplies could also be used for other peripherals  
if one of these functions is not required. Low Power modes and programmable standby options can be used to optimize power  
efficiency during deep sleep modes.  
An external PNP is utilized for VDAC to avoid excess on-chip power dissipation at high loads and large differentials between BP  
and output settings. External PNP devices must always be connected to the BP line in the application. The recommended PNP  
device is the ON Semiconductor NSS12100XV6T1G, which is capable of handling up to 250 mW of continuous dissipation at  
minimum footprint and 75 °C of ambient. For use cases where up to 500 mW of dissipation is required, the recommended PNP  
device is ON Semiconductor NSS12100UW3TCG. For stability reasons, a total resistance of 100 m 20% in series with the  
output capacitance is required. The total resistance includes the ESR of the capacitor plus an external resistance provided by a  
discrete resistor or PCB circuit trace.  
A short-circuit condition will shut down the VDAC regulator and generate an interrupt for SCPI, if the REGSCPEN bit is set.  
The nominal output voltage of this regulator is SPI configurable, and can be 2.5 V, 2.6 V, 2.7 V, or 2.775 V. The maximum output  
current along with an external PNP, is 250 mA.  
MC34708  
Analog Integrated Circuit Device Data  
71  
Freescale Semiconductor  
Functional Block Description  
Table 61. VDAC Voltage Control  
Parameter  
Value  
Output Voltage  
ILoad max  
VDAC  
00  
01  
10  
11  
2.500 V  
2.600 V  
2.700 V  
2.775 V  
250 mA  
250 mA  
250 mA  
250 mA  
Table 62. VDAC Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VDACIN  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VNOM  
0.25  
+
-
4.5  
V
Operating Input Voltage Range VINMIN to VINMAX  
Operating Current Load Range ILMIN to ILMAX  
• Not exceeding PNP max power  
IDAC  
mA  
0.0  
-
-
250  
4.5  
Extended Input Voltage Range  
VDACIN  
V
• Performance may be out of specification  
UVDET  
VDAC ACTIVE MODE – DC  
Output Voltage VOUT  
VDAC  
VDACLOPP  
VDACLIPP  
IDACQ  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM – 3%  
VNOM  
0.20  
5.0  
VNOM + 3%  
Load Regulation  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
µA  
30  
VDAC LOW POWER MODE – DC - VDACMODE=1  
Output Voltage VOUT  
VDAC  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM – 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IDAC  
mA  
µA  
Low Power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IDACQ  
-
8.0  
-
VDAC ACTIVE MODE – AC  
PSRR - IL = 75% of ILMAX 20 Hz to 20 kHz  
VDACPSRR  
dB  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
-
-
50  
50  
-
-
Turn-on Time  
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
tON-VDAC  
ms  
ms  
-
-
-
1.0  
10  
Turn-off Time  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
tOFF-VDAC  
0.05  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
72  
Functional Block Description  
Table 62. VDAC Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VDAC ACTIVE MODE – AC (CONTINUED)  
Start-up Overshoot  
VDACOS-  
%
%
START  
• VIN = VINMIN, VINMAX IL = 0  
-
-
-
-
-
1.0  
1.0  
5.0  
-
2.0  
2.0  
8.0  
100  
2.0  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VDACLO  
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VDACLI  
mV  
µs  
%
TRANSIENT  
Mode Transition Time  
tMODE-VDAC  
• From low power to active VIN = VINMIN, VINMAX IL = ILMAXLP  
Mode Transition Response  
VDACMODE  
RES  
• From low power to active and from active to low power  
1.0  
VIN = VINMIN, VINMAX IL = ILMAXLP  
7.5.6.9  
VGEN1, VGEN2  
General purpose LDOs, VGEN1, and VGEN2, are provided for expansion of the power tree to support peripheral devices, which  
could include EMMC cards, WLAN, BT, GPS, or other functional modules. These regulators include programmable set points for  
system flexibility. VGEN1 has an internal PMOS pass FET, and is powered from the SW5 buck for an efficiency advantage and  
reduced power dissipation in the pass devices. VGEN2 is powered directly from the battery.  
VGEN2 has an internal PMOS pass FET, which will support loads up to 50 mA. For higher current capability, drive for an external  
PNP is provided. The external PNP is offered to avoid excess on-chip power dissipation at high loads and large differentials  
between BP and the output settings. The input pin for the integrated PMOS option is shared with the base current drive pin for  
the PNP option. The external PNP device is always connected to the BP line in the application. The recommended PNP device  
is the ON Semiconductor NSS12100XV6T1G which is capable of handling up to 250 mW of continuous dissipation at minimum  
footprint and 75 °C of ambient. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is  
the ON Semiconductor NSS12100UW3TCG. For stability, a total resistance of 60 m 20% in series with the output capacitance  
is required. The total resistance includes the ESR of the capacitor plus an external resistance provided by a discrete resistor or  
PCB circuit trace.  
Table 63. VGEN1 Control Register Bit Assignments  
Parameter  
Value  
Output Voltage  
ILoad max  
VGEN1[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
The nominal output voltage of VGEN1 is SPI configurable, and can be 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.4 V, 1.45 V, 1.5 V, or  
1.55 V.  
MC34708  
Analog Integrated Circuit Device Data  
73  
Freescale Semiconductor  
Functional Block Description  
The nominal output voltage of VGEN2 is SPI configurable, and can be 2.5 V, 2.7 V, 2.8 V, 2.9 V, 3.0 V, 3.1 V, 3.15 V, or 3.3 V.  
The output current when working with the internal pass FET is 50 mA, and could be up to 250 mA when working with an external  
PNP.  
Table 64. VGEN2 Control Register Bit Assignments  
ILoad max  
Output  
Voltage  
Parameter Value  
VGEN2CONFIG=0 VGEN2CONFIG=1  
Internal Pass FET  
External PNP  
VGEN2[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.15  
3.30  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
Table 65. VGEN1 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
GENERAL  
VGEN1IN  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Operating Input Voltage Range VINMIN to VINMAX  
• All settings  
V
1.75  
0.0  
1.8  
-
1.85  
250  
IGEN1  
• Operating Current Load Range ILMIN to ILMAX  
mA  
VGEN1 ACTIVE MODE – DC  
Output Voltage VOUT  
VGEN1  
VGEN1LOPP  
VGEN1LIPP  
IGEN1Q  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM – 3%  
VNOM  
0.25  
5.0  
VNOM + 3%  
Load Regulation  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
µA  
12  
VGEN1 LOW POWER MODE - DC  
Output Voltage VOUT  
VGEN1  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM - 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IGEN1  
mA  
µA  
Low Power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IGEN1Q  
-
12  
-
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
74  
Functional Block Description  
Table 65. VGEN1 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VGEN1 ACTIVE MODE - AC  
PSRR  
VGEN1PSRR  
dB  
• IL = 75% of ILMAX 20 Hz to 20 kHz VGEN1[2:0] = 000-101  
• IL = 75% of ILMAX 20 Hz to 20 kHz VGEN1[2:0] = 110-111  
-
-
50  
45  
-
-
Turn-on Time  
• Enable to 90% of end value VIN = VINMIN, VINMAX, IL = 0  
tON-VGEN1  
ms  
ms  
%
-
-
-
1.0  
10  
Turn-off Time  
tOFF-VGEN1  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
0.01  
Start-up Overshoot  
VGEN1OS-  
START  
• VIN = VINMIN, VINMAX, IL = 0  
-
-
-
-
1.0  
1.0  
5.0  
-
2.0  
2.0  
8.0  
100  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VGEN1LO  
%
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VGEN1LI  
mV  
µs  
TRANSIENT  
Mode Transition Time  
tMODE-VGEN1  
• From low power to active and from active to low power  
VIN = VINMIN, VINMAX IL = ILMAXLP  
Mode Transition Response  
VGEN  
%
1MODERES  
• From low power to active and from active to low power  
-
1.0  
2.0  
VIN = VINMIN, VINMAX IL = ILMAXLP  
Table 66. VGEN2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
VGEN2  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VGEN2IN  
V
Operating Input Voltage Range VINMIN to VINMAX  
• All settings, BP biased  
VNOM  
+0.25  
-
4.5  
Operating Current Load Range ILMI to ILMAX  
• Internal Pass FET  
IGEN2  
mA  
mA  
V
0.0  
0.0  
-
-
-
50  
250  
4.5  
Operating Current Load Range ILMIN to ILMAX  
• External PNP, Not exceeding PNP max power  
IGEN2  
Extended Input Voltage Range  
VGEN2IN  
• BP Biased, Performance may out of specification for output levels  
VGEN2 [2:0] = 010 to 111  
UVDET  
MC34708  
Analog Integrated Circuit Device Data  
75  
Freescale Semiconductor  
Functional Block Description  
Table 66. VGEN2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VGEN2 ACTIVE MODE - DC  
Output Voltage VOUT  
VGEN2  
VGEN2LOPP  
VGEN2LIPP  
IGEN2Q  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM - 3%  
VNOM  
0.20  
8.0  
VNOM + 3%  
Load Regulation  
• 1.0 mA < IL < ILMAX, For any VINMIN < VIN < VINMAX  
-
-
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
µA  
30  
VGEN2 LOW POWER MODE - DC - VGEN2MODE=1  
Output Voltage VOUT  
VGEN2  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM - 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IGEN2  
mA  
µA  
Low Power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IGEN2Q  
-
8.0  
-
VGEN2 ACTIVE MODE - AC  
PSRR - IL = 75% of ILmax, 20 Hz to 20 kHz  
VGEN2PSRR  
dB  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
-
-
40  
50  
-
-
Turn-on Time  
tON-VGEN22  
ms  
ms  
%
• Enable to 90% of end value VIN = VINMIN, VINMAX, IL = 0  
-
-
1.0  
10  
Turn-off Time  
tOFF-VGEN2  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
0.05  
-
Start-up Overshoot  
VGEN2OS-  
START  
• VIN = VINMIN, VINMAX IL = 0  
-
-
-
-
-
1.0  
1.0  
5.0  
-
2.0  
2.0  
8.0  
100  
2.0  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VGEN2LO  
%
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VGEN2LI  
mV  
µs  
%
TRANSIENT  
Mode Transition Time  
tMODE-VGEN2  
• From low power to active VIN = VINMIN, VINMAX, IL = ILMAXLP  
Mode Transition Response  
VGEN  
2MODERES  
• From low power to active and from active to low power  
1.0  
VIN = VINMIN, VINMAX, IL = ILMAXLP  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
76  
Functional Block Description  
7.6  
Battery Management  
BATTERY CHARGER NO LONGER SUPPORTED ON  
MC34708.  
7.7  
Analog to Digital Converter  
The ADC core is a 10-bit converter. The ADC core and logic run at an internally generated frequency of approximately 1.33 MHz.  
The ADC is supplied from VCORE. The ADC core has an integrated auto calibration circuit which reduces the offset and gain  
errors.  
7.7.1  
Input Selector  
The ADC has 16 input channels. Table 67 gives an overview of the characteristics of each of these channels.  
Table 67. ADC Inputs  
Channel  
Signal read  
Battery Voltage (BATTISNSN)  
Battery Current (BATTISNSN-BATTISNSP)  
Application Supply (BPSNS)  
Die temperature  
Input Level  
Scaling  
Scaled Version  
0
1
0 – 4.8 V  
-80 mV – +80 mV (62)  
0 to 4.8 V  
-40 – 150 °C  
Reserved  
0 – 6.0 V  
/2  
x15  
0 – 2.4 V  
-1.2 to +1.2 V  
0 – 2.4 V  
1.2 – 2.4 V  
Reserved  
0 – 2.4 V  
Reserved  
Reserved  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
2
/2  
3
x1  
Reserved  
4
Reserved  
x0.4  
USB Voltage (VBUS)  
Reserved  
5
6
Reserved  
Reserved  
0 – 3.6 V  
Reserved  
Reserved  
x2/3  
Reserved  
7
Coincell Voltage  
8
ADIN9 (63)  
9
0 – 2.4 V  
x1  
ADIN10 (63)  
10  
11  
12  
13  
14  
15  
0 – 2.4 V  
x1  
ADIN11 (63)  
0 – 2.4 V  
x1  
ADIN12/TSX1 (64)  
ADIN13/TSX2 (64)  
ADIN14/TSY1 (64)  
ADIN15/TSY2 (64)  
0 – 2.4 V  
x1/x2  
x1/x2  
x1/x2  
x1/x2  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
Notes  
62. Equivalent to -4.0 A to +4.0 A of current with a 20 mOhm sense resistor.  
63. Input must not exceed the BP voltage.  
64. Input must not exceed BP or VCORE.  
Some of the internal signals are first scaled to adapt the signal range to the input range of the ADC. The battery current is  
indirectly read out by the voltage drop over the resistor in the charge path and battery path respectively. For details on scaling,  
see Dedicated Readings.  
MC34708  
Analog Integrated Circuit Device Data  
77  
Freescale Semiconductor  
Functional Block Description  
Table 68. ADC Input Specification  
Parameter  
Condition  
Min Typ Max Units  
Source Impedance  
No bypass capacitor at input  
-
-
-
-
5.0  
30  
kOhm  
kOhm  
Bypass capacitor at input 10 nF  
When exceeding the maximum input of the ADC at the scaled or unscaled inputs, the reading result will return a full scale. It has  
to be noted however, that this full scale does not necessarily yield a 1022 DEC reading due to the offsets and calibration applied.  
The same applies for when going below the minimum input where the corresponding 0000 DEC reading may not be returned.  
7.7.2  
Control  
The ADC parameters are programmed by the processor via the SPI. When a reading sequence is finished, an interrupt  
ADCDONEI is generated. The interrupt can be masked with the ADCDONEM bit.  
The ADC is automatically calibrated every time the PMIC is powered on.  
The ADC is enabled by setting ADEN bit high. The ADC can start a series of conversions through SPI programming by setting  
the ADSTART bit. If the ADEN bit is low, the ADC will be disabled and in low power mode. The ADC is automatically calibrated  
every time PMIC is powered.  
The conversions will begin after a small analog synchronization of up to 30 microseconds, plus a programmable delay from 0  
(default) up to 600 S, by programming the bits ADDLY1[3:0]. The ADDLY2[3:0] controls the delay between each of the  
conversions from 0 to 600 S. ADDLY3[3:0] controls the delay after the final conversion, and is only valid when ADCONT is high.  
ADDLY1, 2, and 3 are set to 0 by default.  
Table 69. ADDLYx[3:0]  
ADDLYx[3:0]  
Delay in s  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
40  
80  
120  
160  
200  
240  
280  
320  
360  
400  
440  
480  
520  
560  
600  
A maximum of 8 conversions will take place when the ADC is started. The register ADSELx[3:0] selects the channel which the  
ADC will read and store in the ADRESULTx register. The ADC will always start at the channel indicated in ADSEL0, and read up  
to and including the channel set by the ADSTOP[2:0] bits. For example, when ADSTOP[2:0] = 010, it will request the ADC to  
read channels indicated in ADSEL0, ADSEL1, and ADSEL2. When ADSTOP[2:0] = 111, all eight channels programmed by the  
value in ADSEL0-7 will be read. When the ADCONT bit is set high, it allows the ADC to continuously loop and read the channels  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
78  
Functional Block Description  
from address 0 to the stop address programmed in ADSTOP. By default, the ADCONT is set low (disabled). In the continuous  
mode, the ADHOLD bit will allow the software to hold the ADC sequencer from updating the results register while the ADC results  
are read. Once the sequence of A/D conversions is complete, the ADRESULTx results are stored in 4 SPI registers (ADC 4 -  
ADC 7).  
7.7.3  
Dedicated Readings  
7.7.3.1  
Channel 0 Battery Voltage  
The battery voltage is read at the BATTISNSN pin on channel 0. The battery voltage is first scaled as V(BATT)/2 to fit the input  
range of the ADC.  
Table 70. Battery Voltage Reading Coding  
Conversion Code  
Voltage at Input ADC in V Voltage at BATTISNSN in V  
ADRESULTx[9:0]  
1 111 111 111  
1 000 010 100  
0 000 000 000  
2.400  
1.250  
0.000  
4.800  
2.500  
0.000  
7.7.3.2  
Channel 1 Battery Current (Optional)  
Battery current is only valid after a battery voltage reading. The current flowing into and out of the battery can be read via the  
ADC by monitoring the voltage drop over the sense resistor between BATTISNSN and BATTISNSP.  
The voltage difference between BATTISNSN and BATTISNSP is amplified to fit the ADC input range as V(BATTISNSP -  
BATTISNSN)*15. Since battery current can flow in both directions, the conversion is read out in 2’s complement. Positive  
readings correspond to the current flowing into the battery, and negative readings to the current flowing out of the battery.  
Table 71. Battery Current Reading Coding  
Conversion  
Code ADRESULTx [9:0]  
Voltage at input  
ADC in mV  
Current through  
20 mOhm in mA  
BATTISNSN–BATTISNSP in mV  
Current Flow  
0 111 111 111  
0 000 000 001  
0 000 000 000  
1 111 111 111  
1 000 000 000  
1200.00  
2.346  
0
80  
0.156  
0
4000  
7.813  
0
To battery  
To battery  
-
-2.346  
-1200.00  
-0.156  
-80  
7.813  
4000  
From battery  
From battery  
The value of the sense resistor used determines the accuracy of the result, as well as the available conversion range. Note that  
excessively high values can impact the operating life of the device due to extra voltage drop across the sense resistor.  
If battery current sense is required, add a 20 mresistor between the BATTISNSN and BATTISNSP terminal, as shown in  
Figure 19.  
MC34708  
Analog Integrated Circuit Device Data  
79  
Freescale Semiconductor  
Functional Block Description  
BP  
R1  
20m  
C1  
10u  
C2  
10u  
Battery  
Input/Battery  
Monitoring  
Figure 19. Input Configuration with Battery Current Sense  
7.7.3.3  
Channel 2 Application Supply  
The application supply voltage is read at the BPSNS pin on channel 2. The battery voltage is first scaled as VBPSNS /2 to fit the  
input range of the ADC.  
Table 72. Application Supply Voltage Reading Coding  
Conversion Code  
Voltage at Input ADC in V Voltage at BPSNS in V  
ADRESULTx[9:0]  
1 111 111 111  
1 000 010 101  
0 000 000 000  
2.400  
1.250  
0.000  
4.800  
2.500  
0.000  
7.7.3.4  
Channel 3 Die Temperature  
The relation between the read out code and temperature is given in Table 73.  
Table 73. Die Temperature Voltage Reading  
Parameter  
Min  
Typ  
Max  
Unit  
Die Temperature Read Out Code at 25 °C  
Slope temperature change per LSB  
Slope error  
-
-
-
680  
+0.426  
-
-
-
Decimal  
°C/LSB  
%
5.0  
The Actual Die Temperature is obtained as follows: Die Temp = 25 + 0.426 * (ADC Code - 680)  
7.7.3.5  
Channel 4 Reserved  
Channel 4 is reserved.  
7.7.3.6  
Channel 5 VBUS Voltage  
The VBUS voltage is measured at the VBUS pin on channel 5. The VBUS voltage is first scaled in order to fit the input range of  
the ADC by multiplying by 0.4.  
7.7.3.7  
Channel 6 and 7 Reserved  
Channel 6 is reserved.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
80  
Functional Block Description  
7.7.3.8  
Channel 8 Coin Cell Voltage  
The voltage of the coin cell connected to the LICELL pin can be read on channel 8. Since the voltage range of the coin cell  
exceeds the input voltage range of the ADC, the LICELL voltage is scaled as V(LICELL)*2/3. See .  
Table 74. Coin Cell Voltage Reading Coding  
Conversion Code  
Voltage at ADC input (V) Voltage at LICELL (V)  
ADRESULTx[9:0]  
1 111 111 110  
1 000 000 000  
0 000 000 000  
2.400  
1.200  
0.000  
3.6  
1.8  
0
7.7.3.9  
Channel 9-11 ADIN9-ADIN11  
There are 3 general purpose analog input channels that can be measured through the ADIN9-ADIN11 pins.  
7.7.3.10 Channel 12-15 ADIN12-ADIN15  
If the touch screen is not used, the inputs TSX1, TSX2, TSY1, and TSY2 can be used as general purpose inputs. They are  
respectively mapped on ADC channels 12, 13, 14, and 15.  
7.7.4  
Touch Screen Interface  
The touch screen interface provides all circuitry required for the readout of a 4-wire resistive touch screen. The touch screen X  
plate is connected to TSX1 and TSX2, while the Y plate is connected to TSY1 and TSY2. A local supply TSREF will serve as a  
reference. Several readout possibilities are offered.  
If the touchscreen is not used, the inputs TSX1, TSX2, TSY1, and TSY2 can be used as general purpose inputs. They are  
respectively mapped on ADC channels 12, 13, 14, and 15.  
Touch Screen Pen detection bias can be enabled via the TSPENDETEN bit in the AD0 register. When this bit is enabled and a  
pen touch is detected, the TSPENDET bit in the Interrupt Status 0 register is set and the INT pin is asserted - unless the interrupt  
is masked. Pen detection is only active when TSEN is low.  
The reference for the touch screen (Touch Bias) is TSREF and is powered from VCORE. During touch screen operation, TSREF  
is a dedicated regulator. No loads other than the touch screen should be connected here. When the ADC performs non touch  
screen conversions, the ADC does not rely on TSREF and the reference is disabled.  
The readouts are designed such that the on chip switch resistances are of no influence on the overall readout. The readout  
scheme does not account for contact resistances, as present in the touch screen connectors. The touch screen readings will  
have to be calibrated by the user or the factory, where one has to point with a stylus to the opposite corners of the screen. When  
reading the X-coordinate, the 10-bit ADC reading represents a 10-bit coordinate, with ‘0’ for a coordinate equal to X-, and full  
scale ‘1023’ when equal to X+. When reading the Y-coordinate, the 10-bit ADC reading represents a 10-bit coordinate, with ‘0’  
for a coordinate equal to Y-, and full scale ‘1023’ when equal to Y+. When reading contact resistance, the 10-bit ADC reading  
represents the voltage drop over the contact resistance created by the known current source, multiplied by 2.  
The X-coordinate is determined by applying TSREF over the TSX1 and TSX2 pins, while performing a high-impedance reading  
on the Y-plate through TSY1. The Y-coordinate is determined by applying TSREF between TSY1 and TSY2, while reading the  
TSX1 pin. The contact resistance is measured by applying a known current into the TSY1 pin of the touch screen and through  
the TSX2 pin, which is grounded. The voltage difference between the two remaining terminals TSY2 and TSX1 is measured by  
the ADC, and equals the voltage across the contact resistance. Measuring the contact resistance helps determine if the touch  
screen is touched with a finger or a stylus.  
The TSSELx[1:0] allows the application processor to select its own reading sequence. The TSSELx[1:0] determines what is read  
during the touch screen reading sequence, as shown in Table 75. The Touchscreen will always start at TSSEL0 and read up to  
and including the channel set by TSSEL at the TSSTOP[2:0] bits. For example when TSSTOP[2:0] = 010, it will request the ADC  
to read channels indicated in TSSEL0, TSSEL1, and TSSEL2. When TSSTOP[2:0] = 111, all eight addresses will be read.  
MC34708  
Analog Integrated Circuit Device Data  
81  
Freescale Semiconductor  
Functional Block Description  
Table 75. Touch Screen Action Select  
TSSELx[1:0]  
Signals Sampled  
00  
01  
10  
11  
Dummy to discharge TSREF cap  
X plate  
Y –plate  
Contact  
The touch screen readings can be repeated, as in the following example readout sequence, to reduce the interrupt rate and to  
allow for easier noise rejection. The dummy conversion inserted between the different readings allows the references in the  
system to be pre-biased for the change in touch screen plate polarity. It will read out as ‘0’.  
A touchscreen reading will take precedence over an ADC sequence. If an ADC reading is triggered during a touchscreen event,  
the ADC sequence will be overwritten by the Touchscreen data.  
The first Touch screen conversion can be delayed from 0 (default) to 600 s by programming the TSDLY1[3:0] bits. The  
TSDLY2[3:0] controls the delay between each of the touch screen conversions from 0 to 600 s. TSDLY[2:0] sets the delay after  
the last address is converted. TSDLY1, 2, and 3 are set to 0 by default.  
Table 76. TSDLYx[3:0]  
TSDLYx[3:0]  
Delay in uS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
40  
80  
120  
160  
200  
240  
280  
320  
360  
400  
440  
480  
520  
560  
600  
To perform a touch screen reading, the processor must do the following:  
• Enable the touch screen with TSEN  
• Select the touch screen sequence by programming the TSSEL0-TSSEL7 SPI bits.  
• Program the TSSTOP[2:0]  
• Program the delay between the conversion via the TSDLY1 and TSDLY2 settings.  
• Trigger the ADC via the TSSTART SPI bit  
• Wait for an interrupt indicating the conversion is done TSDONEI  
• And then read out the data in the ADRESULTx registers  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
82  
Functional Block Description  
7.7.5  
ADC Specifications  
Table 77. ADC Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
ADC  
ICONVER  
VADCIN  
Conversion Current  
-
1.0  
-
mA  
V
Converter Core Input Range  
• Single ended voltage readings  
• Differential readings  
0.0  
-
-
2.4  
1.2  
-1.2  
Conversion Time per channel  
Integral Non-linearity  
Differential Non-linearity  
Zero Scale Error (Offset)  
Full Scale Error (Gain)  
Drift over temperature  
Turn on/off time  
tCONVERT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
3
s  
LSB  
LSB  
LSB  
LSB  
LSB  
s  
1
5
10  
10  
31  
tON-OFF-ADC  
BATTERY CURRENT READING(65)  
Amplifier Gain  
19  
-2.0  
-
20  
-
21  
2.0  
-
Amplifier Offset  
mV  
Sense Resistor  
20  
m  
DIE TEMPERATURE VOLTAGE READING  
Die Temperature Read Out Code at 25 °C  
-
-
-
680  
0.426  
-
-
-
Decimal  
°C/LSB  
%
Slope temperature change per LSB  
Slope error  
5.0  
Notes  
65. Amplifier Bias Current accounted for in overall ADC current drain  
MC34708  
Analog Integrated Circuit Device Data  
83  
Freescale Semiconductor  
Functional Block Description  
7.8  
Auxiliary Circuits  
7.8.1  
General Purpose I/Os  
The MC34708 contains four configurable GPIOs for general purpose use. When configured as outputs, they can be configured  
as open-drain (OD) or CMOS (push-pull outputs). These GPIOs are low voltage capable (1.2 or 1.8 V). In open drain  
configuration these outputs can only be pulled up to 2.5 V maximum.  
Each individual GPIO has a dedicated 16-bit control register. Table 78 provides detailed bit descriptions.  
Table 78. GPIOLVx Control  
SPI Bit  
Description  
DIR  
GPIOLVx direction  
0: Input (default)  
1: Output  
DIN  
DOUT  
Input state of the GPIOLVx pin  
0: Input low  
1: Input High  
Output state of GPIOLVx pin  
0: Output Low  
1: Output High  
HYS  
Hysteresis  
0: CMOS in  
1: Hysteresis (default)  
DBNC[1:0]  
GPIOLVx input debounce time  
00: no debounce (default)  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
INT[1:0]  
GPIOLVx interrupt control  
00: None (default)  
01: Falling edge  
10: Rising edge  
11: Both edges  
PKE  
ODE  
DSE  
PUE  
Pad keep enable  
0: Off (default)  
1: On  
Open drain enable  
0: CMOS (default)  
1: OD  
Drive strength enable  
0: 4.0 mA (default)  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
84  
Functional Block Description  
Table 78. GPIOLVx Control  
SPI Bit  
Description  
PUS[1:0]  
Pull-up/Pull-down enable  
00: 10 K active pull-down  
01: 10 K active pull-up  
10: 100 K active pull-down  
11: 100 K active pull-up (default)  
SRE[1:0]  
Slew rate enable  
00: slow (default)  
01: normal  
10: fast  
11: very fast  
x= 0, 1, 2, or 3  
7.8.2  
PWM Outputs  
There are two PWM outputs on the MC34708. PWM1 and PWM2 are controlled by the PWMxDUTY and PWMxCLKDIV registers  
shown in Table 79.The base clock will be the 2.0 MHz divided by 32.  
Table 79. PWMx Duty Cycle Programming  
PWMxDC[5:0]((66)  
)
Duty Cycle  
000000  
000001  
0/32, Off (default)  
1/32  
010000  
16/32  
31/32  
011111  
1xxxxx  
32/32, Continuously On  
Notes  
66. “x” represent 1 and 2  
32.768 kHz Crystal Oscillator RTC Block Description and Application Information  
Table 80. PWMx Clock Divider Programming  
PWMxCLKDIV[5:0]((67)  
)
Duty Cycle  
000000  
000001  
Base Clock  
Base Clock / 2  
001111  
Base Clock / 16  
111111  
Base Clock / 64  
Notes  
67. “x” represent 1 and 2  
MC34708  
Analog Integrated Circuit Device Data  
85  
Freescale Semiconductor  
Functional Block Description  
7.8.3  
General Purpose LED Drivers  
To turn on the LEDs, the following bits must be set, CHRLEDxEN = 1, CHRGLEDOVRD =1, THERM bit = 1, and programming  
the duty cycle > 0/32.  
Table 81. LED Driver Control  
THERM  
CHRGLEDxEN(68)  
CHRGLEDOVRD  
CHRGLEDx(68)  
x
0 (default)  
0
x
1
1
Off  
Off  
On  
Off  
1
x
1
0
0
Notes  
68. “x” represents R or G  
The general purpose LED drivers, CHRGLEDR, and CHRLEDG are independent current sink channels. Each driver channel  
features programmable current levels via CHRGLEDx[1:0], as well as programmable PWM duty cycle settings with  
CHRGLEDxDC[5:0]. By a combination of level and PWM settings, each channel provides flexible LED intensity control.  
Table 82. General Purpose LED Drivers Current Programming  
CHRGLEDx[1:0]  
CHRGLEDx Current Level (mA)  
00  
3.5  
7.0 (default)  
10  
01  
10  
11  
12  
“x” represents for R, and G  
Table 83. General Purpose LED Drivers Duty Cycle Programming  
CHRGLEDxDC[5:0]  
Duty Cycle  
000000  
0/32, Off  
000001  
1/32  
010000  
16/32  
011111  
31/32  
1xxxxx  
32/32, Continuously On  
“x” represents R, and G  
The general purpose LED drivers include ramp up and ramp down patterns implemented in hardware. Ramping is enabled for  
each of the drivers using the corresponding CHRGLEDxRAMP bits, only when the repetition rate is 256 Hz.  
The ramp itself is generated by increasing or decreasing the PWM duty cycle with a 1/32 step every 1/64 seconds. The ramp  
time is therefore a function of the initial set PWM cycle and the final PWM cycle. As an example, starting from 0/32 and going to  
32/32 will take 500 ms, while going to from 8/32 to 16/32 takes 125 ms.  
Note that the ramp function is executed upon every change in PWM cycle setting. If a PWM change is programmed via the SPI  
when CHRGLEDxRAMP = 0, the change is immediate rather than spread out over a PWM sweep.  
In addition, programmable blink rates are provided. Blinking is obtained by lowering the PWM repetition rate of each of the drivers  
through CHRGLEDxPER[1:0], while the on period is determined by the duty cycle setting. To avoid high frequency spur coupling  
in the application, the switching edges of the output drivers are softened.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
86  
Functional Block Description  
Table 84. General Purpose LED Drivers Period Control  
CHRGLEDxPER[1:0]  
Repetition Rate  
Units  
00  
01  
10  
11  
256  
8.0  
1.0  
1/2  
Hz  
Hz  
Hz  
Hz  
Table 85. LED Driver Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
General Purpose LED Driver  
Absolute Accuracy  
-
-
-
-
-
-
30  
4.0  
1.0  
%
%
Matching - At 1.0 V, 12 mA  
Leakage - CHRGLEDxDC [5:0]=000000  
A  
7.8.4  
Mini/Micro USB Switch  
The MC34708 is able to multiplex the 5 pins to support UART and high-speed USB2.0 data communications, a mono/stereo-  
audio/microphone headset, or other accessories. To identify what accessory is plugged into the Mini or Micro-USB connector,  
the MC34708 supports various detection mechanisms, including the VBUS detection and ID detection. A highly accurate 5-bit  
ADC is offered to distinguish the 32 levels of ID resistance, and to identify the button pressed in a cord remote control, while an  
Audio Type 1 cable is attached. After identifying the accessory attached, the MC34708 configures itself to support the accessory  
and interrupts a host via the INT pin. The processor can evaluate what caused the interrupt via the SPI/I2C bus. The MC34708  
is also able to identify some non-supported accessories, such as video cables, phone-powered devices, etc.  
MC34708  
Analog Integrated Circuit Device Data  
87  
Freescale Semiconductor  
Functional Block Description  
GND  
ID  
To/From  
Mini-USB  
ID  
Detect  
Connector  
VBUS  
VBUS  
Detect  
M0  
M1  
VUSB  
Regulator  
MOTG  
VINUSB  
VUSB  
SWBST (5.0 V boosted supply)  
3.3 V USB Analog supply  
VINUSB2  
VUSB2  
BP  
VUSB2  
Regulator  
2.5V USB Analog supply  
TXD  
RXD  
DP  
To/from  
Mini-USB  
Connector  
UART  
Switches  
DM  
To/From  
Application  
Processor  
D+  
D-  
USB  
Switches  
SPKR  
SPKRL  
MIC  
To/From  
Audio IC  
Audio  
Switches  
VBUS  
Figure 20. USB Interface  
7.8.4.1  
Supplies  
The MC34708 provides the regulators required to power the PHY in the i.MX50, i.MX51, and i.MX53 processors, which are  
VUSB2 (detailed Linear Regulators (LDOs)), and VUSB. The IC also provides the 5.0 V supply for USB OTG operation.  
The VUSB regulator is used to supply 3.3 V to the external USB PHY. The input to the VUSB regulator can be supplied from the  
VBUS wire of the cable when supplied by a host (PC or Hub), or by the SWBST voltage via the VINUSB pin. The VUSB regulator  
is powered from the SWBST boost supply to ensure OTG current sourcing compliance through the normal discharge range of  
the main battery. The VUSBSEL SPI bit is used to make the selection between a host or OTG mode operation.  
Table 86. VUSB Input Source Control (69)  
Parameter  
Value  
Function  
Powered by Host: VBUS powers VUSB regulator (switch M0 closed and M1 open)  
VUSBSEL  
0
1
OTG mode: SWBST internally switched to supply the VUSB regulator (switch M1 closed, M0 open), and  
SWBST will drive VBUS from the VINUSB pin as long as SPI bit OTGEN is set = 1.  
Notes  
69. VUSBSEL = 1 and OTGEN = 1 only close the switch between the VINUSB and VBUS pins, but do not enable the SWBST boost  
regulator (which should be enabled with SWBSTEN = 1)  
The VUSB regulator defaults to ON when PUMS4:1 = [0100], and is supplied by the SWBST output. As shown in Figure 20, this  
means the M0 and MOTG switches are open, while the M1 switch is closed.  
When PUMS4:1 is not equal to [0100], the VUSB regulator can not be enabled unless 5.0 V is present on the VBUS pin. If VBUS  
is detected during a cold start, then the VUSB regulator will be enabled and powered ON in the sequence shown in Startup  
Requirements, and it will default to be supplied by the VBUS pin. This means switch M0 is closed and switch M1 and MOTG in  
Figure 20 are open. If VBUS is not detected at cold start, then the VUSB regulator cannot be enabled. If VBUS is detected later,  
the VUSB regulator will be enabled automatically and supplied from the VBUS pin. The VUSBEN SPI bit is initialized at startup,  
based on the PUMS4:1 configuration. With PUMS4:1 not equal to [0100], the VUSBEN SPI bit will default to a 1 on power up and  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
88  
Functional Block Description  
will reset to a 1, when either RESETB is valid or VBUS is invalid. This allows the VUSBEN regulator to be enabled automatically  
if the VUSB regulator was disabled by software. With PUMS4:1 equal to [0100], the VUSBEN bit will be enabled in the power up  
sequence.  
The MC34708 also supports USB OTG mode by supplying 5.0 V to the VBUS pin. The OTGEN SPI bit along with the VUSBSEL  
SPI bit, control switching the SWBST to drive VBUS in OTG mode. When OTGEN = 1 and VUSBSEL = 1, SWBST will be driving  
the VBUS (switch M1 and MOTG are closed, and the M0 switch is open). When OTG mode is disabled, the switch (MOTG) from  
VINUSB to VBUS will be open.  
In OTG mode, the VUSB regulator is enabled by setting the VUSBEN SPI bit to a 1. When SWBST is supplying the VBUS pin  
(OTG Mode), it will generate a USBDET interrupt. The USBDET interrupt while in OTG mode should not be interpreted as being  
powered by the host by software.  
Table 87. VUSB/OTG Switch Configuration  
Mode  
VUSB powered from VBUS pin  
VUSB powered from VINUSB pin  
Invalid option  
OTGEN VUSBSEL Switches Enabled (Closed) Switches Disabled (Open)  
0
0
1
1
0
1
0
1
M0  
M1, MOTG  
M1  
M0, MOTG  
-
-
OTG Mode (VUSB powered from VINUSB pin and SWBST  
M1, MOTG  
M0  
Table 88. VUSB Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VUSB REGULATOR  
Operating Input Voltage Range VINMIN to VINMAX  
• Supplied by VBUS  
VUSBIN  
V
4.4  
-
5.0  
-
5.25  
5.75  
• Supplied by SWBST  
Operating Current Load Range ILMIN to ILMAX  
IUSB  
0.0  
-
100  
mA  
VUSB ACTIVE MODE - DC  
Output Voltage VOUT  
VUSB  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMA  
VNOM - 4%  
3.3  
1.0  
-
VNOM + 4%  
Load Regulation  
VUSBLOPP  
VUSBLIPP  
tOFF-VUSB  
• 0 < IL < ILMAX from DM / DP, For any VINMIN < VIN < VINMAX  
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX, For any ILMIN < IL < ILMAX  
20  
1.3  
Turn-off Time  
sec  
• Disable to 0.8 V, per USB OTG specification parameter  
VA_SESS_VLD VIN = VINMIN, VINMAX IL = 0  
-
VUSB ACTIVE MODE - AC  
PSRR - IL = 75% of ILMAX 20 Hz to 20 kHz  
VUSBPSRR  
dB  
• VIN = VINMIN + 100 mV  
-
65  
-
7.8.4.2  
Accessory Identification  
The MC34708 monitors both the ID pin and the VBUS pin. When an accessory attachment is detected, the accessory  
identification state machine will enter Active mode to start the identification flow. The ID detection state machine will determine  
MC34708  
Analog Integrated Circuit Device Data  
89  
Freescale Semiconductor  
Functional Block Description  
what ID resistor is attached and the Power Supply Type Identification or PSTI circuit will determine what type of power supply is  
connected. The 32 kHz crystal must be placed across the XTAL 1 and XTAL2 pins for the accessory identification to work.  
An identification conclusion is made when the identification flow is finished. The corresponding bit in the USB Device Type/Status  
register is set to indicate the device type, and the ATTACH bit in the USB Interrupt Status register is set to inform the baseband.  
If the attached accessory can't be identified, the Unknown_Atta bit in the USB Interrupt Status register is set.  
The MC34708 will automatically detect three types of accessories.  
1. Recognized and supported. The following accessories are identified and configured automatically: USB port, UART, Audio  
Type 1 cable, TTY accessory, USB jig cables, and UART jig cables.  
2. Recognized but not supported. The following accessories can be identified but are not supported by the MC34708 PMIC:  
A/V cables, Phone-Powered Devices, Audio Type 2 cables, dedicated charger, USB charger, A/V charger, 5-wire type 1  
and type 2 chargers. The PMIC will detect that a charger is attached, when the VBUS voltage transitions above the  
setpoint, which is defaulted to 4.35 V. When above this threshold for longer than the debounce period (VBUSDB[1:0]), the  
USBDET interrupt is generated and USBDETS is set to a one. When the VBUS input falls below the VBUSTL[2:0]  
threshold, the USBDET interrupt is generated immediately without any debounce and the USBDETS bit is low. See  
Table 89 and Table 90. The USBOVP interrupt will be triggered when an over-voltage on VBUS (>6.5 V typical) is  
detected during a device attach. The over-voltage interrupt is debounce by SUP_OVP_DB[1:0] bits on Table 91.  
Table 89. VBUS Debounce Times  
VBUSDB[1:0]  
Debounce Time (ms)  
00  
01  
10  
11  
0
10  
20  
30  
Table 90. VBUS High/low Detection Threshold  
VBUSTH[2:0]  
Voltage  
VBUSTL[2:0]  
Voltage  
000  
001  
010  
011  
100  
101  
110  
111  
4.05  
4.15  
000  
001  
010  
011  
100  
101  
110  
111  
3.55  
3.65  
4.25  
3.75  
4.35 (default)  
4.45  
3.85 (default)  
3.95  
4.55  
4.05  
4.65  
4.15  
4.75  
4.25  
Table 91. Over-voltage Debounce Time SUP_OVP_DB[1:0]  
SUP_OVP_DB[1:0]  
Debounce Time  
00  
01  
10  
11  
0 (default 1.0)  
2 RTC clock cycles  
4 RTC clock cycles  
8 RTC clock cycles (default 2.0)  
3. Not recognized accessories. All accessories that are not recognized are identified as unknown accessories.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
90  
Functional Block Description  
Reset  
Yes  
Yes  
Yes  
VBUS_DET?  
No  
Active  
(Identification  
Flow)  
Detection  
Delay  
Yes  
Yes  
ID_FLOAT?  
ID_FLOAT?  
No  
No  
Standby  
DP 0.6V  
No  
ID_DET_EN  
D?  
RID < 100?  
Yes  
Yes  
Yes  
DM > 0.8V  
ADC = 00000  
No  
Yes  
No  
Start ADC to  
measure RID  
No  
No  
Video cable?  
RID = 75?  
DM < 0.4V?  
Yes  
Yes  
USB-OTG  
No  
A/V_CHG = 1  
RID = Video  
cable?  
Yes  
No  
ID_FLOAT?  
USB host  
ID_FLOAT  
DM 0.6V  
No  
Video  
cable  
No  
UART jig  
Yes RID = UART  
cable w/  
jig w/ boot?  
boot option  
ID_DET_EN  
D?  
Dedicated  
Charger  
No  
DP < 0.4V?  
Yes  
No  
No  
ID_DET_EN  
D?  
Audio  
Type 1  
Yes RID = Audio  
No  
Yes  
Type 1 ?  
UART jig  
cable w/o  
boot option  
RID = UART  
jig w/o boot?  
Yes  
Yes  
Yes  
No  
USB  
Charger  
RID  
=
Yes  
Yes  
TTY  
Converter  
Yes  
RID = TTY  
Converter?  
440k?  
USB jig  
cable w/  
No  
RID = USB  
jig w/ Boot?  
Yes  
No  
boot option  
Phone  
Powered  
Device  
No  
RID  
=
No  
102k?  
RID  
=
5-Wire  
Charger  
UART  
Cable  
Yes RID = UART  
USB jig  
cable w/o  
boot option  
200k?  
No  
Cable?  
RID = USB  
Yes  
jig w/o Boot?  
No  
No  
Audio  
Type2  
Cable  
RID = Audio  
Type2  
Cable?  
No  
Yes  
No  
Unknown  
No  
Stuck Key  
Process  
Yes  
RID = remote  
key?  
Figure 21. Identification Flow State Diagram  
7.8.4.3  
Id Identification  
A comparator monitors the ID pin impedance to ground. When a resistor less than 1.0 Mis connected between the ID line and  
the ground, the ID_FLOATS bit in the Interrupt Sense 0 register will be set to 0. When the resistor is removed, the ID_FLOATS  
bit will be set to 1. A falling edge of this bit starts the identification flow, and a rising edge starts the detachment detection flow.  
The ID_DET_END signal is used to indicate the end of the identification.  
After the ID_FLOATS bit is set to 0, the identification flow is started, and an ADC_EN signal is set to enable an ADC conversion.  
A 5-bit ID ADC is used to measure the ID resistance. The ADC is also used to identify what button is pressed in a cord remote  
control when the attached accessory is an Audio Type 1 cable.  
When the conversion completes, an ADC_STATUS bit is set and the ADC result value is sent to the ADC Manual SW/Result  
register. The ADC_EN signal is cleared automatically after the conversion finishes.  
If the ID resistance is below 2.0 k, the ADC Result is set to 00000. If the ID line is floating, the ADC Result is set to 11111.  
7.8.4.4  
Stuck Key Identification  
When the ADC conversion is finished and the ADC result is found to be a value corresponding to a remote control key of Audio  
Type 1 cable, a stuck key process flow will be initiated to determine whether a remote control key is stuck and to inform the  
baseband of the stuck key status.  
Figure 22 shows the stuck key process flow. If the stuck key is detected to be released within 1.5 s, the flow will return to re-start  
the ID identification flow. Otherwise, a Stuck_Key Interrupt is set. When the key is released, a Stuck_Key_RCV Interrupt is  
generated, and the identification flow is re-started to determine the ID resistance of the attached cable.  
MC34708  
Analog Integrated Circuit Device Data  
91  
Freescale Semiconductor  
Functional Block Description  
Figure 22. Stuck Key Process Flow Diagram  
7.8.4.5  
Power Supply Type Identification  
The PSTI (Power Supply Type Identification) circuit is used in Active mode to identify the type of the connected power supply.  
The PSTI circuit first detects whether the DP and DM pins are shorted. If the DP and DM pins are found to be shorted, the PSTI  
circuit will continue to determine whether DP and DM pins are a forward short or reverse short. The detection result, together  
with the ID detection result, is used to determine what powered accessory is connected.  
The PSTI circuit is shown in Figure 23. Its operation is described as follows.  
When the MC34708 detects the VBUS_DET bit is set, the PSTI identification flow starts.  
1. Wait for a Detection Delay tD (programmable in the USB Time Delay register).  
2. During tD, check to see whether ID_FLOAT = 0. If yes, then wait for the ID_DET_END to be set and check whether the  
attached accessory is an A/V cable.  
3. If the result is an A/V cable, set the A/V_CHG and ATTACH interrupt bits, as well as the A/V bit in USB Device Type/Status  
register, to inform the baseband and finish the identification flow. If not, go to step 4.  
4. Enable the PSTI (PSTI_EN set to '1') at t1. When PSTI_EN rises, the SW1 switch is turned on to drive the VDAT_SRC  
data source voltage to DP line. In the meantime, the SW2 switch is turned on so the IDAT_SINK current source sinks a  
current from the DM line. At t2, the PSTI starts to compare the DM line voltage with references VDAT_REF and VCR_REF.  
If the DM line voltage stays above VDAT_REF, but below VCR_REF for 20 ms continuously before t4, which means the  
DP and DM pins are shorted, the DP/DM_short signal is set to '1' at t3. Go to step 5. If the DP and DM are not shorted, the  
VBUS detection completes at t4 and the VBUS_DET_END is set to '1'. The state machine will go to step 6 to determine  
the type of accessory, based on the DM voltage.  
5. The state machine checks if the ID pin is floating. If the ID pin is not floating at t3, the PSTI circuit turns off SW1 and SW2,  
and the VBUS detection completes. The VBUS_DET_END is set to '1' and the state machine goes to step 6. If the ID pin  
is floating at t3, the PSTI circuit turns off SW1 and SW2, and then turns on SW3 and SW4 to force VDAT_SRC to the DM  
pin. If the DP pin is between the two thresholds VDAT_REF and VCR_REF for 20 ms continuously before t6, it means the  
DP and DM pins are a reverse short.The DP/DM_reverse_short is set to '1' at t5, the SW3 and SW4 are turned off,  
VBUS_DET_END is set to '1', and the state machine goes to step 6. If DP and DM are not a reverse short, the VBUS  
detection completes at t6, SW3 and SW4 are turned off, the VBUS_DET_END is set to '1', and the state machine goes to  
step 6.  
6. The state machine decides on the attached accessory, based on the ID identification, and the VBUS identification results.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
92  
Functional Block Description  
Figure 23. Power Supply Type Identification Circuit Block Diagram  
Figure 24. Operating Waveforms for the PSTI Circuit  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
93  
Functional Block Description  
Table 92. Timing Delays for PSTI Circuit  
Characteristics noted under conditions BP = 3.6 V, VBUS = 5.0 V, -40 C TA 85 C, unless otherwise noted. Typical values  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Switching Delay  
t1 - t0 (tD in Default Value is TD = 0100)  
ms  
tD  
• TD = 0000  
• TD = 0001  
• TD = 0010  
• TD = 0011  
• TD = 0100  
• ...  
-
-
100  
200  
300  
400  
500  
...  
-
-
-
-
-
-
-
-
...  
-
...  
-
• TD = 1111  
1600  
t2 - t1  
tSW  
tSW  
tSW  
tSW  
20  
20  
-
-
-
-
-
-
-
-
ms  
ms  
ms  
ms  
t3 - t2  
t4 - t1  
t6 - t3  
100  
100  
The MC34708 contains registers which hold control and status information. The register map and the description of each register  
can be found in the SPI/I2C Register Map section. The details of some important control bits are described as follows.  
7.8.4.6  
Control Functions  
7.8.4.6.1  
Timing of the Switching Action (WAIT BIT)  
If the WAIT bit is '1' when the Attach interrupt bit is set, the MC34708 waits for a WAIT time before turning on the switches. The  
WAIT time is programmed by the Switching Wait bits in the Timing Set 2 register. If the WAIT bit is '0' when the Attach interrupt  
is generated, then the MC34708 will not turn on the switches until the WAIT bit is set to '1' by the SPI. Both cases are shown in  
Figure 25.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
94  
Functional Block Description  
Figure 25. Operating Waveforms of the Wait Bit  
7.8.4.6.2  
Automatic Switching OR Manual Switching (Switch_open & Manual S/W Bits)  
When a supported accessory is identified, the default behavior of the MC34708 automatically turns on the corresponding signal  
switches. The user can also choose to turn on optional signal switches manually. Switch turn on is controlled by the Manual   
S/W bit and the Switch_Open bits in the USB Manual SW/Result and USB Control/Device mode registers respectively.  
If the Switch_Open bit is '0', the audio, UART, and USB switches are off.  
If Manual S/W = 1, which is its reset value, the switches to be turned on and the outputs of the JIG and BOOT pins are determined  
automatically by the Device Mode register, which is the identification result. If Manual S/W = 0, the switches to be turned on are  
determined by the values of the USB Manual SW/Result register. The relationship between the values of the USB Manual SW/  
Result register and the switches to be turned on is found in SPI/I2C Register Map section.  
The values of the Switch_Open and Manual S/W bits will not affect the identification flow and the timing of the signal switching  
action of the MC34708. The difference between Manual S/W = 1 and Manual S/W = 0 is what switches are turned on. In both  
cases, no switches are turned on in Standby mode. If the Manual S/W bit is changed from '1' to '0' while an accessory is attached,  
the already automatically turned on switches will be turned off, and the switches selected manually will be turned on. However,  
writing the Manual S/W bit back to '1' in Active mode will not change the switches and outputs status. Setting the  
Switch_Open = 1, sets the switches according to the Manual S/W bit.  
Raw Data (Raw Data Bit)  
The RAW DATA bit functions only when the accessory is Audio Type 1, which supports the remote control key. The RAW DATA  
bit determines whether to report the ID pin resistance change to the baseband when any key is pressed. When RAW DATA = 1,  
the ADC is enabled only when an ID line event is detected, such as when a key is pressed. In this case, the interrupt bits KP,  
LKP, or LKR, and the corresponding button bits in Button 1 and Button 2 registers, will be set accordingly. Detailed behavior  
information when RAW DATA = 1 can be found in Audio Type 1 Operation Mode.  
Audio Device Type 1 - Audio with or without the Remote Control. When RAW DATA = 0, the ADC is enabled periodically to  
calculate the ID line resistance. Any change of ADC Result will set the ADC_Change interrupt bit to inform the baseband. The  
baseband can read the ADC result via the SPI. The KP, LKP, or LKR, and the button bits, will not set when RAW DATA = 0. The  
period of ADC conversion is determined by the Device Wake-up bits in the USB Timing register. All other behaviors of Audio  
MC34708  
Analog Integrated Circuit Device Data  
95  
Freescale Semiconductor  
Functional Block Description  
Type 1 and other accessories will not be affected by the RAW DATA bit. LKR and the button bits will not set when RAW DATA = 0.  
The period of ADC conversion is determined by the Device Wake-up bits in the Timing Set 1 register. All other behaviors of Audio  
Type 1 and other accessories will not be affected by the RAW DATA bit.  
7.8.4.7  
Analog and Digital Switches  
The signal switches in the MC34708 are shown in Figure 26. These switches are controlled by the identification result when the  
Manual S/W = 1, and by the Manual SW/Result register, when the Manual S/W = 0 is in Active mode. The Switch_Open bit  
overrides the switch configuration. When the Switch_Open bit is 0, all switches are turned off. The switches for the SPK_L and  
SPK_R are capable of passing signals of 1.5 V, referencing to the GND pin voltage. The SPK_L and SPK_R pins are pulled  
down to GND via a 100 kresistor respectively, as shown in Figure 26. When the switches are configured automatically by the  
identification result, the configuration of the switches vs. the device type is shown in Table 93.  
When detachment of an accessory is detected, the MC34708 will return to Standby mode. In Standby mode, regardless of the  
Manual S/W = 1 or Manual S/W = 0 state, all signal switches and are off in the Standby mode. The OUT-to-ground FET is turned  
on whenever the FET_ON bit is '0'.  
DP  
RxD  
TxD  
SW1  
DM  
SW2  
SW3  
D+  
SW6  
SW7  
D-  
SW4  
SPK_R  
SPK_L  
SW5  
VBUS  
MIC  
M0  
M1  
VUSB  
LDO  
MOTG  
VINUSB  
Figure 26. Analog and Digital Switches  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
96  
Functional Block Description  
Table 93. Switch Configuration When Controlled by the Device Type Register  
Device Type  
Audio  
USB  
UART  
USB CHG  
Dedicated CHG  
On SW#  
Off SW  
4, 5, 7  
3, 6,  
1, 2  
3, 6  
-
-
-
(70)  
MOTG, M0  
5WT1 CHG  
-
Device Type  
5WT2 CHG  
JIG_USB_ON  
JIG_USB_OFF  
JIG_UART_ON  
JIG_UART  
TTY  
On SW#  
Off SW  
-
-
-
-
3, 6  
-
3, 6  
4, 5, 7  
(70)  
MOTG, M0  
Notes  
70. Switches M0, M1, and MOTG are controlled by software by the OTGEN and VUSBSEL bits.  
7.8.4.8  
Audio Type 1 Operation Mode  
Audio Type 1 accessories have the same interface shown in Figure 27, either stereo or mono, with or without a remote control,  
or with or without a microphone. When a device, such as a microphone is not connected to the accessory, the corresponding pin  
in the mini-USB connector will be left floating. With the normal operation setting of the control bits, the accessory is identified as  
an Audio Type 1 device, the analog switches SW4 and SW7 for SPK_R to DP, SPK_L to DM, and SW5 for VBUS to MIC are  
turned on, and the MOTG, and M0 switches are turned off, to isolate the VBUS pin.  
The MC34708 supports the remote control key for an Audio Type 1 device. If the RAW DATA = 0, the ADC is turned on  
periodically to monitor the ID line change caused by the key press. The period is programmed by the Device Wake-up bits. If the  
ADC Result changes, the ADC_Change bit in the USB Interrupt Sense register is set to inform the baseband. If the RAW  
DATA = 1, a comparator is enabled to monitor the key press. The timing of the key press when RAW DATA = 1 is shown in  
Figure 28. If a key is pressed for a time less than 20 ms, the MC34708 ignores it. If the key is still pressed after 20 ms, the  
MC34708 starts a timer to count the time during which the key is kept pressed. There are three conditions according to the press  
time: Error key press, short key press, and long key press.  
1. Error key press: if the key press time is less than TKP, the Error bit in the USB Button register and the short key press bit  
KP in USB Interrupt Sense register are set to indicate an error has occurred. The Error bit is reset to '0' when the USB  
Button register is read or the next key press occurs. The KP bit is cleared when the Interrupt 1 register is read.  
2. Short key press: if the key press time is between TKP and TLKP, the KP bit and the corresponding button bit in USB  
Button are set to inform the baseband. If the ADC result is not one of the ADC values of the 13 buttons, the Unknown bit in  
the Button register is set. The INT pin is driven high when the key is released and returns to low when the interrupt register  
is read. The KP bit is cleared when the USB Interrupt Sense register is read.  
3. Long key press: if the key press time is longer than TLKP, the long key press bit LKP in the USB Interrupt Sense register,  
and the corresponding button bit, are set to inform the baseband. If the ADC Result is not one of the ADC values of the 13  
buttons, the Unknown bit in the USB Button register is set. When the key is released, the long key release bit LKR in the  
Interrupt Status 0 register is set to interrupt the baseband again.  
Figure 27. Audio Accessory with Remote Control and Microphone  
MC34708  
Analog Integrated Circuit Device Data  
97  
Freescale Semiconductor  
Functional Block Description  
Baseband  
AUDIO ACCESSORY  
VBUS  
MIC  
VBUS  
SPKR_R  
SPKR_L  
DP  
D+  
D-  
DM  
ID  
ID  
ADC  
ID Det  
GND  
GND  
SHLD  
Figure 28. Operation of the Headset with Remote Control and Microphone  
TKP  
TLKP  
20ms  
20ms  
Key  
Press  
Error  
KP  
Button Register read  
INT  
Interrupt Status 0 Register KP bit written to a one  
KP  
Interrupt Status 0 Register KP bit written to a one  
INT  
LKP  
LKR  
INT  
ADC  
Time  
Interrupt Status 0 Register  
LKR bit written to a one  
Interrupt Status0 Register  
LKP bit written to a one  
Figure 29. Remote Control Key Press Timing  
The ID detection circuit continues to be ON for detaching detection in the Active mode, and samples the ID line every interval  
programmed by the device wake-up bits in the USB Timing register. When the ID_FLOAT rising edge is detected, the Detach bit  
in the USB Interrupt Sense register is set to inform the host the accessory is detached. The MC34708 then enters Standby mode.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
98  
Functional Block Description  
7.8.4.9  
JiG Cable USB and UART  
The JIG cable is used for test and development and has an ID resistance to differentiate it from a regular USB cable. The Jig  
cable has 2 ID resistance values to resemble a USB JIG type1/2, and 2 ID resistance values to resemble a UART JIG type1/2  
cable.  
7.8.4.9.1  
USB JIG Cable 1 or 2  
Under normal operation, setting the control bits when the identified accessory is a USB JIG 1 or 2 cable, both the DPLUS to DP,  
the DMINUS to DM switches are switched on.  
When SW_HOLD = 0, the switching action of DPLUS to DP, and the DMINUS to DM switches are controlled by the WAIT bit. If  
WAIT = 1, the signal switches will be turned ON after a WAIT. If WAIT = 0, the signal switches won't be turned on until the WAIT  
2
bit is set to '1' by the SPI/I C. When SW_HOLD = 1, regardless of what the WAIT is set to, '0' or '1', the signal switches are turned  
on, once the USB JIG cable is identified.  
The ID detector and the VBUS detector both monitor the detachment of the USB JIG cable. The ID detection circuit continues to  
be ON for detachment detection in the Active mode. When the ID_FLOAT is set, the Detach bit in the Interrupt Status 0 register  
is set to inform the host. When the USBDETS is set to '0', which means either the VBUS power is removed or the cable is  
detached, the Detach bit is also set to inform the host. The mini USB interface moves to the Standby mode. If the Detach bit is  
set, due to the removing only the VBUS or the ID resistance, and the cable is not detached completely, the identification flow will  
be triggered again. The ID_FLOAT bit or USBDETS bit still indicate an accessory is connected when the mini USB interface  
moves to the Standby mode. All the signal switches are turned off  
7.8.4.9.2  
UART JIG Cable 1 or 2  
Under normal operation, setting the control bits when the identified accessory is a UART JIG cable 1 or 2, both the RxD to DP  
and the TxD to DM switches are switched on.  
When SW_HOLD = 0, the switching action of RxD to DP, and the TxD to DM switches, are controlled by the WAIT bit. If WAIT = 1,  
the signal switches will be turned on after a WAIT time. If WAIT = 0, the signal switches won't be turned on until the WAIT bit is  
2
set to '1' by the SPI/I C. When SW_HOLD = 1, regardless of what the WAIT is set to, '0' or '1', the signal switches are turned on,  
once the UART JIG cable is identified.  
The ID detection comparator continues to be ON for detachment detection in the Active mode. When the ID_FLOAT is set, the  
Detach bit in the Interrupt Status 0 register is set to inform the host the accessory is detached. The mini USB interface then enters  
the Standby mode.  
7.8.4.10 TTY Operation Mode  
A TTY converter is a type of audio accessory. It has its own ID resistance. When a TTY converter is attached, this sets the TTY  
bit in the USB Device Type register and the Attach interrupt bit in the Interrupt Status 0 register. During normal operation, when  
setting the control bits, the automatic switch configuration of the TTY converter, is similar to that of an Audio Type 1 accessory.  
The SPK_R to DP switch, and MIC to VBUS switch are turned on, but the SPK_L to DM switch can only be turned on when  
TTY_SKPL bit in USB Control register is manually set to 1. In addition, the MOTG, and M0 switches are turned off to isolate the  
VBUS pin.The TTY accessory doesn’t support the remote control key. The Power Save mode operation and the detachment  
detection are the same as those of the Audio Type 1 device.  
7.8.4.11 UART Operation Mode  
During normal operation, when setting the control bits, when the identified accessory is a UART cable, both the RxD and the TxD  
switches are switched on (see Figure 30).  
The ID detection comparator continues to be ON for detachment detection in the Active mode. When the ID_FLOAT is set, the  
Detach bit in the USB interrupt Sense register, is set to inform the host the accessory is detached. The MC34708 USB detection  
then enters Standby mode.  
MC34708  
Analog Integrated Circuit Device Data  
99  
Freescale Semiconductor  
Functional Block Description  
Baseband  
UART  
Cable  
UART  
Interface  
VBUS  
Det  
VBUS  
VBUS  
RxD  
TxD  
DP  
D+  
D-  
UART  
DM  
ID  
ID  
ADC  
ID Det  
`
GND  
GND  
SHLD  
Figure 30. UART Operation  
7.8.4.12 USB Host (PC or HUB) Operation Mode  
When the attached accessory is a USB host or hub, the ID pin floats. During normal operation, when setting the control bits, both  
the D PLUS to DP and the D MINUS to DM switches are switched on (see Figure 31). The mini USB interface sets the bit USB  
in the USB Device type register.  
When SW_HOLD = 0, the switching action of D+ to DP and the D- to DM switches, are controlled by the WAIT bit. If WAIT = 1,  
the signal switches will be turned on after a WAIT time. If WAIT = 0, the signal switches won't be turned on until the WAIT bit is  
set to '1' by the SPI. When SW_HOLD = 1, regardless of what the WAIT is set to, '0' or '1', the signal switches are turned on once  
the USB host is identified.  
After the DPLUS to DP and the DMINUS to DM switches are turned on, the baseband can pull the DPLUS signal high to start  
the USB attaching sequence.  
The detachment is detected by the falling edge of the USBDETS signal. When the USBDETS falls, the Detach bit is set to inform  
the baseband. The MC34708 USB detection then enters the Standby mode.  
Baseband  
USB  
Cable  
USB  
Host  
VBUS  
Det  
VBUS  
VBUS  
5V  
DPLUS  
DP  
D+  
D-  
USB Xcvr  
DMINUS  
DM  
ID  
ID  
ADC  
ID Det  
GND  
GND  
SHLD  
Figure 31. USB Operation  
7.8.4.13 USB charger or Dedicated Charger Operation Mode  
When the attached accessory is a USB Charger or Dedicated Charger, the MC34708 enables the bit USB Charge or the  
Dedicated CHG in the USB Device type register. During normal operation when setting of the control bits, the D PLUS and D  
MINUS switches are turned on for the USB Charger, but not for the Dedicated Charger.  
The VBUS detector is used to monitor the detachment of the charger. The falling edge of USBDETS is an indication of charger  
detachment. Unplugging the mini-USB connector and unplugging the AC side, both lead to the same detachment conclusion.  
The Detach bit is set to inform the host. The MC34708 USB detection then enters the Standby mode.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
100  
Functional Block Description  
7.8.4.14 5-Wire Charger or A/V Charger Mode  
When the attached accessory is a 5-Wire Charger or A/V Charger, the MC34708 enables the appropriate device type 5.0 W CHG  
or A/V in the USB device type register.  
The VBUS detector is used to monitor the detachment of the charger. The falling edge of USBDETS is an indication of the charger  
detachment. Both unplugging the mini-USB connector and unplugging the ac side lead to the same detachment conclusion. The  
Detach bit is set to inform the host. Then the MC34708 USB detection enters the Standby mode.  
7.8.4.15 Device Detect Mode  
When the Manual SW_B bit is set to 1, the MC34708 automatically detects what device is attached.  
7.8.4.16 Unknown Accessory Operation Mode  
When an unknown accessory is attached, the ID_FLOAT bit is cleared or the USBDETS bit is set to '1'. Only the Unknown_Atta  
bit is set to interrupt the baseband. The Attach bit is not set to distinguish the unknown accessory from the known accessory. No  
other actions are taken.The falling edge of the USBDETS or the rising edge of the ID_FLOAT signals can trigger the detachment  
detection. The Detach bit is set to inform the detachment of the unknown accessory. The USB detection then enters the Standby  
mode.  
7.8.4.17 Software Reset  
The USB detection supports a software reset, which is realized by writing the Reset bit in the USB Control register to 1. The  
consequence of the software reset is the same as the hardware reset. All register bits reset by the Mini-USB will be reset.  
Table 94. ID Detection Thresholds  
UID Pin External  
UID Pin Voltage (71)  
0.18 * VCORE < UID < 0.77 * VCORE  
0 < UID < 0.12 * VCORE  
IDFLOATS IDGNDS IDFACTORYS  
Accessory  
Connection  
Non-USB accessory is attached (per  
CEA-936-A spec)  
0
0
1
1
1
0
1
1
0
0
0
1
Resistor to Ground  
A type plug (USB default slave) is  
attached (per CEA-936-A spec)  
Grounded  
Floating  
B type plug (USB Host, OTG default  
master or no device) is attached.  
0.89 * VCORE < UID < VCORE  
3.6 V < UID (1)  
Voltage Applied  
Notes  
Factory mode  
71. UID maximum voltage is 5.25 V  
7.8.4.18 ID Resistance Value Assignment  
The ID resistors used are standard 1% resistors. Table 95 lists the complete 32 ID resistor assignment. Those with the Assigned  
Functions filled are ones already used with special functions. The ones reserved can be assigned to other functions.  
Table 95. ID Resistance Assignment  
Item#  
ADC Result  
ID Resistance K  
Assignment  
0
1
2
3
4
00000  
00001  
00010  
00011  
00100  
<1.9  
2.0  
Reserved  
S0  
S1  
S2  
S3  
2.604  
3.208  
4.014  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
101  
Functional Block Description  
Table 95. ID Resistance Assignment  
Item#  
ADC Result  
ID Resistance K  
Assignment  
5
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
4.820  
6.03  
8.03  
10.03  
12.03  
14.46  
17.26  
20.5  
24.07  
28.7  
34.0  
40.2  
49.9  
64.9  
80.6  
102  
S4  
S5  
6
7
S6  
8
S7  
9
S8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
S9  
S10  
S11  
S12  
UART JIG Cable 2  
UART JIG Cable 1  
USB JIG Cable 2  
USB JIG Cable 1  
Factory Mode  
Audio Type 2  
PPD  
121  
Reserved  
UART  
150  
200  
5W Type 1  
Reserved  
Reserved  
A/V  
255  
301  
365  
442  
5W Type 2  
Reserved  
TTY  
523  
619  
1000  
-
Audio Type 1  
ID float  
The remote control architecture is illustrated in Figure 32. The recommended resistors for the remote control resistor network are  
given in Table 96.  
ID  
R1  
R2  
R13  
R3  
…...  
R14  
SEND/END  
HOLD  
/
GND  
Figure 32. Remote Control Architecture  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
102  
Functional Block Description  
Table 96. ID Remote Control Values  
Resistor  
Standard Value K  
ID Resistance  
R1  
R2  
2.0  
0.604  
0.604  
0.806  
0.806  
1.21  
2.0  
2.0  
2.604  
3.208  
4.014  
4.82  
R3  
R4  
R5  
R6  
6.03  
R7  
8.03  
R8  
2.0  
10.03  
12.03  
14.46  
17.26  
20.5  
R9  
2.0  
R10  
R11  
R12  
R13  
R14  
2.43  
2.8  
3.24  
3.57  
590/976  
24.07  
614/1000  
7.8.4.19 USB Interface Electrical Specifications  
Table 97. USB Interface Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Power Input  
Detection Module Quiescent Current  
I
A  
DM  
• In Standby mode  
-
-
-
-
2
3
• When accessory is attached & INT_MASK = ‘1’  
125  
550  
850  
160  
650  
1000  
• In Active mode (V < V  
)
DD  
BUS  
• In Active mode (V < V  
)
DD  
BUS  
VBUS Supply Quiescent Current  
• In VBUS OTG  
I
mA  
VBUS  
-
-
-
-
1.5  
0.5  
• In Active mode - Audio or TTY  
Accessory Detect Switch  
SPK_L and SPK_R Switches  
• On resistance (20 Hz to 470 kHz)  
• Matching between channels  
R
-
-
-
30  
3.0  
0.3  
-
-
-
SPK_ON  
R
SPK_ONMCT  
• On resistance flatness (from -1.2 to 1.2 V)  
R
SPK_ONFLT  
D+ and D- Switches  
R
• On resistance (0.0 Hz to 240 MHz)  
• Matching between channels  
• On resistance flatness (from 0.0 to 3.3 V)  
-
-
-
5.0  
0.1  
8.0  
1.0  
0.4  
USB_ON  
R
USB_ONMCT  
R
USB_ONFLT  
0.02  
MC34708  
Analog Integrated Circuit Device Data  
103  
Freescale Semiconductor  
Functional Block Description  
Table 97. USB Interface Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol Characteristic  
Min  
Typ  
Max  
Unit Notes  
RxD and TxD Switches  
• On resistance  
R
-
-
-
-
60  
UART_ON  
R
UART_ONFLT  
• On resistance flatness (from 0.0 to 3.3 V)  
MIC Switches  
6.0  
• On resistance (at 1.5 V MIC bias voltage)  
R
-
-
75  
150  
-
MIC_ON  
Pull-Down Resistors between SPK_L or SPK_R Pins to GND  
R
100  
k  
PD_AUDIO  
Signal Voltage Range  
• MIC  
V
-
-
-
-
1.5  
1.5  
3.6  
• SPK_L, SPK_R  
• D+, D-, RxD, TxD  
-1.5  
-0.3  
PSRR - From BP (100 mVrms) to DP/DM Pins  
V
dB  
%
A_PSRR  
• 20 Hz to 20 kHz with 32/16 load.  
-
-
-
-
-
-
-
-
-60  
0.05  
-50  
Total Harmonic Distortions  
T
HD  
• 20 Hz to 20 kHz with 32/16 load.  
Crosstalk between Two Channels  
V
dB  
dB  
A_CT  
• 20 Hz to 20 kHz with 32/16 load.  
Off Channel Isolation  
• Less than 1.0 MHz  
V
A_ISO  
-100  
Power Supply Type Identification  
Data Source Voltage  
V
V
DAT_SRC  
• Loaded by 0~200 μA  
0.5  
0.0  
0.3  
0.8  
0.6  
-
0.7  
200  
0.4  
1.0  
Data Source Current  
Data Detect Voltage  
Car Kit Detect Voltage  
I
μA  
V
DAT_SRC  
V
0.35  
0.9  
DAT_REF  
V
V
CR_REF  
Data Sink Current  
I
μA  
DAT_SINK  
• DM pin is biased between 0.15 to 3.0 V  
65  
-
100  
8.0  
135  
-
DP, DM Pin Capacitance  
C
R
pF  
DP/DM  
DP, DM Pin Impedance  
M  
DP/DM  
• All switches are off (Switch_Open = 0)  
-
50  
-
ID Detection  
ID FLOAT Threshold  
• Detection threshold  
V
V
FLOAT  
-
-
2.3  
20  
-
-
t
ID FLOAT Detection Deglitch Time  
ms  
ID_FLOAT  
IID  
Pull-up Current Source  
μA  
• When ADC Result is 1xxxx  
• When ADC Result is 0xxxx  
1.9  
2.0  
32  
2.1  
30.4  
33.6  
Video Cable Detection  
• Detection current  
I
1.0  
1.2  
50  
1.4  
mA  
mV  
mV  
VCBL  
• Detection voltage low threshold  
• Detection voltage high threshold  
V
-
-
-
-
VCBL_L  
VCBL_H  
V
118  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
104  
Functional Block Description  
Table 97. USB Interface Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
A
BUS  
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
ID Detection (Continued)  
t
Video Cable Detection Time (Video Cable Detection Current Source On  
Time)  
ms  
ms  
-
-
20  
20  
-
-
VCBL  
t
Key Press Comparator Debounce Time  
RMTCON_DG  
7.9  
Serial Interfaces  
The IC contains a number of programmable registers for control and communication. The majority of registers are accessed  
2
through a SPI interface in a typical application. The same register set may alternatively be accessed with an I C interface muxed  
2
on SPI pins. Table 98 describes the muxed pin options for the SPI and I C interfaces; further details for each interface mode  
follow.  
2
Table 98. SPI / I C Bus Configuration  
Pin Name  
SPI Mode Functionality  
I2C Mode Functionality  
(72)  
(73)  
CS  
Configuration  
SPI Clock  
, Chip Select  
Configuration  
2
CLK  
SCL: I C bus clock  
MISO  
MOSI  
Notes  
Master In, Slave Out (data output)  
Master Out, Slave In (data input)  
SDA: Bi-directional serial data line  
(74)  
A0 Address Selection  
72. CS held low at Cold Start, configures the interface for SPI mode; once activated, CS functions as the SPI Chip Select.  
2
2
73. CS tied to VCOREDIG at Cold Start, configures the interface for I C mode; the pin is not used in I C mode, other than for configuration.  
2
74. In I C mode, the MOSI pin is hardwired to ground, or VCOREDIG is used to select between two possible addresses.  
7.9.1  
SPI Interface  
The IC contains a SPI interface port which allows access by a processor to the register set. Via these registers, the resources of  
the IC can be controlled. The registers also provide status information about how the IC is operating, as well as information on  
external signals.  
2
Because the SPI interface pins can be reconfigured for reuse as an I C interface, a configuration protocol mandates the CS pin  
is held low during a turn on event for the IC (a weak pull-down is integrated on the CS pin). The state of CS is latched in during  
2
the initialization phase of a Cold Start sequence, ensuring the I C bus is configured before the interface is activated. With the CS  
pin held low during startup (as would be the case if connected to the CS driver of an unpowered processor due to the integrated  
pull down), the bus configuration will be latched for SPI mode.  
The SPI port utilizes 32-bit serial data words comprised of 1 write/read_b bit, 6 address bits, 1 null bit, and 24 data bits. The  
addressable register map spans 64 registers of 24 data bits each. The map is not fully populated, but it follows the legacy  
conventions for bit positions corresponding to common functionality with previous generation FSL products.  
7.9.1.1  
SPI Interface Description  
For a SPI read, the first bit sent to the IC must be a zero indicating a SPI read cycle. Next, the six bit address is sent MSB first.  
This is followed by one dead bit to allow for more address decode time. The MC34708 will clock the above bits in on the rising  
edge of the SPI clock. The 24 data bits are then driven out on the MISO pin on the falling edge of the SPI clock, so the master  
can clock them in on the rising edge of the SPI clock.  
MC34708  
Analog Integrated Circuit Device Data  
105  
Freescale Semiconductor  
Functional Block Description  
For each MOSI SPI transfer, first a one is written to the write/read_b bit if this SPI transfer is to be a write. A zero is written to the  
write/read_b bit if this is to be a read command. If a zero is written, then any data sent after the address bits are ignored and the  
internal contents of the field addressed do not change when the 32nd CLK is sent.  
For a SPI write, the first bit sent to the MC34708 must be a one, indicating a SPI write cycle. Next the six bit address is sent MSB  
first. This is followed by one dead bit to allow for more address decode time. The data is then sent MSB first. The SPI data is  
written to the SPI register whose address was sent at the start of the SPI cycle on the falling edge of the 32nd SPI clock.  
Additionally, whenever a SPI write cycle is taking place the SPI read data is shifted out for the same address as for the write  
cycle. Next the 6-bit address is written, MSB first. Finally, data bits are written, MSB first. Once all the data bits are written then  
the data is transferred into the actual registers on the falling edge of the 32nd CLK.  
The CS polarity is active high. The CS line must remain high during the entire SPI transfer. For a write sequence it is possible for  
the written data to be corrupted, if after the falling edge of the 32nd clock the CS goes low before it's required time. CS can go  
low before this point and the SPI transaction will be ignored, but after that point the write process is started and cannot be  
stopped, because the write strobe pulse is already being generated, and CS going low may cause a runt pulse that may or may  
not be wide enough to clock all 24 data bits properly. To start a new SPI transfer, the CS line must be toggled low and then pulled  
high again. The MISO line will be tri-stated while CS is low.  
The register map includes bits that are read/write, read only, read/write “1” to clear (i.e., Interrupts), and clear on read, reserved,  
and unused. Refer to the SPI/I2C Register Map and the individual subcircuit descriptions to determine the read/write capability  
of each bit. All unused SPI bits in each register must be written to as zeroes. A SPI read back of the address field and unused  
bits are returned as zeroes. To read a field of data, the MISO pin will output the data field pointed to by the 6 address bits loaded  
at the beginning of the SPI sequence.  
CS  
CLK  
MOSI  
MISO  
Write_En  
Address5  
Addr ess 4  
Address3  
Address2  
Address 1  
Address 0  
Dead Bit”  
Data 23  
Data 23  
Data 22  
Data 22  
Data 1  
Data 1  
Data 0  
Data 0  
Figure 33. SPI Transfer Protocol Single Read/Write Access  
CS  
Preamble  
First Address  
Preamble Another Address  
24 Bits Data  
24 Bits Data  
MOSI  
MISO  
24 Bits Data  
24 Bits Data  
Figure 34. SPI Transfer Protocol Multiple Read/Write Access  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
106  
Functional Block Description  
7.9.1.2  
SPI Timing Requirements  
The following diagram and table summarize the SPI timing requirements. The SPI input and output levels are set via the SPIVCC  
pin, by connecting it to the desired supply. This would typically be tied to SW5 and programmed for 1.80 V. The strength of the  
MISO driver is programmable through the SPIDRV [1:0] bits. See Thermal Protection Thresholds for detailed SPI electrical  
characteristics.  
t
CLKPER  
CS  
t
t
DKHIGH  
SELLOW  
t
t
CLKLOW  
SELSU  
t
SELHLD  
CLK  
t
WRTSU  
t
WRTHLD  
MOSI  
MISO  
t
t
RDDIS  
RDSU  
t
RDHLD  
t
RDEN  
Figure 35. SPI Interface Timing Diagram  
(75)  
Table 99. SPI Interface Timing Specifications  
Parameter  
Description  
T min (ns)  
Time CS has to be high before the first rising edge of CLK  
Time CS has to remain high after the last falling edge of CLK  
Time CS has to remain low between two transfers  
t
15  
15  
SELSU  
t
SELHLD  
SELLOW  
t
15  
Clock period of CLK  
t
38  
CLKPER  
Part of the clock period where CLK has to remain high  
Part of the clock period where CLK has to remain low  
Time MOSI has to be stable before the next rising edge of CLK  
Time MOSI has to remain stable after the rising edge of CLK  
Time MISO will be stable before the next rising edge of CLK  
Time MISO will remain stable after the falling edge of CLK  
Time MISO needs to become active after the rising edge of CS  
Time MISO needs to become inactive after the falling edge of CS  
t
15  
CLKHIGH  
t
15  
CLKLOW  
t
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
WRTSU  
t
WRTHLD  
t
RDSU  
t
RDHLD  
t
RDEN  
t
RDDIS  
Notes  
75. This table reflects a maximum SPI clock frequency of 26 MHz.  
MC34708  
Analog Integrated Circuit Device Data  
107  
Freescale Semiconductor  
Functional Block Description  
7.9.2  
I2C Interface  
2
7.9.2.1  
I C Configuration  
2
When configured for I C mode, the interface may be used to access the complete register map previously described for SPI  
access. Since SPI configuration is more typical, references within this document will generally refer to the common register set  
2
as a “SPI map” and bits as “SPI bits”; however, it should be understood that access reverts to I C mode when configured as such.  
2
The SPI pins CLK and MISO are reused for the SCL and SDA lines respectively. Selection of I C mode for the interface is  
configured by hard-wiring the CS pin to VCOREDIG on the application board. The state of CS is latched in during the initialization  
2
phase of a Cold Start sequence, so the I CS bit is defined for bus configuration before the interface is activated. The pull-down  
2
on CS will be deactivated if the high state is detected (indicating I C mode).  
2
In I C mode, the MISO pin is connected to the bus as an open drain driver, and the logic level is set by an external pull-up. The  
2
part can function only as an I C slave device, not as a host.  
2
7.9.2.2  
I C Device ID  
2
I C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for  
bus conflict avoidance, pin programmable selection is provided to allow configuration for the address LSB(s). This product  
supports 7-bit addressing only; support is not provided for 10-bit or general Call addressing.  
2
Because the MOSI pin is not utilized for I C communication, it is reassigned for pin programmable address selection by  
2
hardwiring to VCOREDIG or GND at the board level when configured for I C mode. MOSI will act as Bit 0 of the address. The  
2
I C address assigned to FSL PM ICs (shared amongst our portfolio) is given as follows:  
00010-A1-A0, the A1 and A0 bits are allowed to be configured for either 1 or 0. The A1 address bit is internally hardwired as a  
“0”, leaving the LSB A0 for board level configuration. The designated address then is defined as: 000100-A0.  
2
7.9.2.3  
I C Operation  
2
The I C mode of the interface is implemented generally following the Fast Mode definition which supports up to 400 kbits/s  
operation. (Exceptions to the standard are noted to be 7-bit only addressing, and no support for general Call addressing) Timing  
diagrams, electrical specifications, and further details on this bus standard, is available on the internet, by typing   
2
“I C specification” in the web search string field.  
2
Standard I C protocol utilizes bytes of 8 bits, with an acknowledge bit (ACK) required between each byte. However, the number  
of bytes per transfer is unrestricted. The register map is organized in 24 bit registers which corresponds to the 24 bit words  
2
supported by the SPI protocol of this product. To ensure that I C operation mimics SPI transactions in behavior of a complete 24  
bit word being written in one transaction, software is expected to perform write transactions to the device in 3-byte sequences,  
beginning with the MSB. Internally, data latching will be gated by the acknowledge at the completion of writing the third  
consecutive byte.  
2
Failure to complete a 3-byte write sequence will abort the I C transaction and the register will retain its previous value. This could  
be due to a premature STOP command from the master, for example.  
2
I C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and  
3-bytes will be sent out unless a STOP command or NACK is received prior to completion.  
The following examples show how to write and read data to the IC. The host initiates and terminates all communication. The host  
sends a master command packet after driving the start condition. The device will respond to the host if the master command  
packet contains the corresponding slave address. In the following examples, the device is shown always responding with an ACK  
to transmissions from the host. If at any time a NAK is received, the host should terminate the current transaction and retry the  
transaction.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
108  
Functional Block Description  
Packet  
Type  
Device  
Address  
Register Address  
7
0
0
7
0
0
Host SDA  
(to MISO)  
Continuation  
START  
0
R / W  
A
C
K
A
C
K
Slave SDA  
(from MISO)  
Host can  
also drive  
another  
Start instead  
of Stop  
Packet  
Type  
Master Driven Data  
( byte 2 )  
Master Driven Data  
( byte 1)  
Master Driven Data  
( byte 0 )  
23  
16  
15  
8
7
0
Host SDA  
(to MISO)  
STOP  
A
C
K
A
C
K
A
C
K
Slave SDA  
(from MISO)  
2
Figure 36. I C 3-byte Write Example  
Packet  
Type  
Device  
Address  
Register Address  
Device Address  
23  
16  
0
15  
0
8
7
0
Host SDA  
(to MISO)  
Continuation  
START  
0
START  
1
R /W  
R /W  
A
C
K
A
C
K
A
Slave SDA  
(from MISO)  
C
K
Host can also  
drive another  
Start instead of  
Stop  
PMIC Driven Data  
PMIC Driven Data  
PMIC Driven Data  
Packet  
Type  
( byte 2)  
( byte 1 )  
( byte 0)  
A
C
K
A
C
K
Host SDA  
(to MISO)  
NA  
CK  
STOP  
23  
16  
15  
8
7
0
Slave SDA  
(from MISO)  
2
Figure 37. I C 3-byte Read Example  
MC34708  
Analog Integrated Circuit Device Data  
109  
Freescale Semiconductor  
Functional Block Description  
7.9.3  
SPI/I2C Specification  
2
Table 100. SPI/I C Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, V  
= 5.0 V, -40 C T 85 C, unless otherwise noted. Typical values  
BUS  
A
at BP = 3.6 V and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SPI Interface Logic IO  
Input Low CS  
V
0.0  
1.1  
0.0  
-
-
-
0.4  
V
V
V
INCSLO  
Input High CS  
V
SPIVCC+0.3  
0.3*SPIVCC  
INCSHI  
V
/
INMOSILO  
Input Low, MOSI, CLK  
V
INCLKLO  
V
V
/
0.7*SPIVCC  
-
SPIVCC+0.3  
V
V
INMOSIHI  
Input High, MOSI, CLK  
INCLKHI  
Output Low MISO, INT  
V
/
MISOLO  
V
INTLO  
• Output sink 100 A  
0.0  
-
-
0.2  
Output High MISO, INT  
V
/
SPIVCC-0.2  
SPIVCC  
V
MISOHI  
V
INTHI  
• Output source 100 A  
SPIVCC Operating Range  
V
1.75  
-
3.6  
V
CC-SPI  
MISO Rise and Fall Time, CL = 50 pF, SPIVCC = 1.8 V  
• SPIDRV [1:0] = 00  
t
ns  
MISOET  
-
-
-
-
6.0  
2.5  
3.0  
2.0  
-
-
-
-
• SPIDRV [1:0] = 01 (default)  
• SPIDRV [1:0] = 10  
• SPIDRV [1:0] = 11  
7.10 Configuration Registers  
7.10.1 Register Set structure  
The general structure of the register set is given in the following table. Expanded bit descriptions are included in the following  
functional sections for application guidance. For brevity’s sake, references are occasionally made herein to the register set as  
2
the “SPI map” or “SPI bits”, but note that bit access is also possible through the I C interface option so such references are  
implied as generically applicable to the register set accessible by either interface.  
Table 101. Register Set  
Register  
Register  
Register  
Register  
0
1
2
3
4
5
6
7
8
Interrupt Status 0  
Interrupt Mask 0  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Memory A  
Memory B  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Regulator Mode 0  
GPIOLV0 Control  
GPIOLV1 Control  
GPIOLV2 Control  
GPIOLV3 Control  
USB Timing  
48  
49  
50  
51  
52  
53  
54  
55  
56  
ADC5  
ADC6  
Interrupt Sense 0  
Interrupt Status 1  
Interrupt Mask 1  
Memory C  
ADC7  
Memory C  
Input Monitoring  
Supply Debounce  
VBUS monitoring  
LED Control  
PWM Control  
Unused  
RTC Time  
Interrupt Sense 1  
Power Up Mode Sense  
Identification  
RTC Alarm  
RTC Day  
USB Button  
RTC Day Alarm  
Regulator 1 A/B Voltage  
USB Control  
Regulator Fault Sense  
USB Device Type  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
110  
Functional Block Description  
Table 101. Register Set  
Register  
Register  
Register  
Register  
9
Reserved  
Reserved  
25  
26  
27  
28  
29  
30  
31  
Regulator 2 & 3 Voltage  
Regulator 4 A/B Voltage  
Regulator 5 Voltage  
Regulator 1 & 2 Mode  
Regulator 3, 4 and 5 Mode  
Regulator Setting 0  
41  
42  
43  
44  
45  
46  
47  
Unused  
Unused  
ADC 0  
ADC 1  
ADC 2  
ADC 3  
ADC4  
57  
58  
59  
60  
61  
62  
63  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
10  
11  
12  
13  
14  
15  
Reserved  
Unused  
Power Control 0  
Power Control 1  
Power Control 2  
SWBST Control  
7.10.2 Specific Registers  
7.10.2.1 IC and Version Identification  
The IC and other version details can be read via the identification bits. These are hardwired on the chip and described in  
Table 102.  
Table 102. IC Revision Bit Assignment  
Identifier  
Value  
Purpose  
Represents the full layer revision  
XXX  
FULL_LAYER_REV[2:0]  
Pass 2.4 = 010  
Represents the metal layer revision  
XXX  
000  
METAL_LAYER_REV[2:0]  
FIN[2:0]  
Pass 2.4 = 100  
FIN version  
• Pass 2.4 = 000  
FAB Version  
• Pass 2.4 = 000  
000  
FAB[2:0]  
7.10.2.2 Embedded Memory  
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[23:0],  
MEMB[23:0], MEMC[23:0], and MEMD[23:0] is maintained by the coin cell when the main battery is deeply discharged, removed,  
or contact-bounced (i.e., during a power cut). The contents of the embedded memory are reset by RTCPORB. A known pattern  
can be maintained in these registers to validate confidence in the RTC contents when power is restored after a power cut event.  
Alternatively, the banks can be used for any system need for bit retention with coin cell backup.  
MC34708  
Analog Integrated Circuit Device Data  
111  
Freescale Semiconductor  
Functional Block Description  
7.10.3 SPI/I2C Register Map  
The complete SPI bitmap is given in Table 103.  
2
Table 103. SPI/I C Register Map Legend  
Register Types  
Register Values  
Reset  
R/W  
R/WM  
W1C  
RO  
Read / Write  
0 = low  
Bits Loaded at Cold Start based on PUMS Value  
Bits Reset by POR or Global Reset  
RESETB / Bits Reset by POR or Global  
Bits Reset by RTCPORB or Global Reset  
Bits Reset by POR or OFFB  
Read / Write Modify  
Write One to Clear  
Read Only  
1 = High  
X = Variable  
NU  
Not Used  
Bits Reset by RTCPORB Only  
MUSBRST  
2
Table 104. SPI/I C Register Map  
Register  
Name  
Address  
Type  
Default  
MC34708 SPI Register Map  
23  
22  
21  
20  
19  
18  
17  
16  
UNKNOWN_  
ATTA  
STUCK_KEY_RCV STUCK_KEY ADC_CHANGE  
LKR  
LKP  
KP  
DETACH  
Interrupt  
Status 0  
15  
14  
-
13  
LOWBATT  
5
12  
-
11  
10  
9
8
0
W1C h00_00_00  
ATTACH  
-
-
-
-
Table 105  
7
-
6
4
3
USBDET  
19  
2
TSPENDET  
18  
1
TSDONEI  
17  
0
ADCDONEI  
16  
-
USBOVP  
21  
-
23  
22  
20  
STUCK_KEY_RCV_  
M
ADC_CHANGE_ UNKNOWN_  
STUCK_KEY_M  
LKR_M  
LKP_M  
KP_M  
DETACH_M  
M
ATTA_M  
Interrupt  
Mask 0  
15  
14  
-
13  
12  
11  
10  
9
8
1
R/W hFF_FF_FF  
Table 106  
ATTACH_M  
LOWBATTM  
-
4
-
-
-
-
7
-
6
5
USBOVPM  
21  
3
USBDETM  
19  
2
TSPENDETM  
18  
1
TSDONEM  
17  
0
ADCDONEM  
16  
-
-
23  
22  
20  
MUSB_ADC_  
STATUS  
VBUS_DET_  
ENDS  
-
-
ID_GNDS  
ID_FLOATS ID_DET_ENDS  
-
Interrupt  
Sense 0  
15  
14  
13  
12  
11  
10  
9
8
2
RO  
h00_00_00  
Table 107  
-
-
-
-
-
-
-
-
0
7
6
5
4
3
USBDETS  
19  
2
1
-
-
USBOVPS  
-
-
-
-
23  
22  
21  
20  
GPIOLV3I  
12  
18  
17  
16  
-
-
-
GPIOLV2I  
11  
GPIOLV1I  
GPIOLV0I  
SCPI  
8
Interrupt  
Status 1  
15  
14  
13  
10  
9
WARMI  
1
3
W1C h00_00_00  
CLKI  
THERM130  
THERM125  
THERM120  
4
THERM110  
3
MEMHLDI  
PCI  
0
Table 108  
7
6
5
2
RTCRSTI  
SYSRSTI  
WDIRESTI  
PWRON2I  
20  
PWRON1I  
19  
-
TODAI  
17  
1HZI  
16  
23  
22  
21  
18  
-
15  
-
-
GPIOLV3M  
12  
GPIOLV2M  
11  
GPIOLV1M  
GPIOLV0M  
9
SCPM  
8
Interrupt  
Mask 1  
14  
THERM130M  
6
13  
THERM125M  
5
10  
4
R/W h5F_77_FB  
CLKM  
7
THERM120M  
4
THERM110M  
3
MEMHLDM  
WARMM  
1
PCM  
0
Table 109  
2
RTCRSTM  
SYSRSTM  
WDIRESTM  
PWRON2M  
PWRON1M  
-
TODAM  
1HZM  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
112  
Functional Block Description  
2
Table 104. SPI/I C Register Map  
23  
22  
21  
20  
19  
18  
17  
16  
-
-
-
GPIOLV3S  
GPIOLV2S  
GPIOLV1S  
GPIOLV0S  
-
Interrupt  
Sense 1  
15  
14  
13  
12  
11  
10  
9
8
5
RO hXX_XX_XX  
CLKS  
THERM130S  
THERM125S  
THERM120S  
THERM110S  
-
-
-
Table 110  
7
-
6
-
5
4
3
2
1
0
-
PWRON2S  
PWRON1S  
-
-
-
23  
-
22  
-
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
Power Up  
Mode Sense  
15  
-
14  
-
13  
12  
11  
10  
9
8
6
RO  
h00_00_XX  
-
-
-
-
-
-
Table 111  
7
6
5
4
PUMS4S  
20  
3
PUMS3S  
19  
2
1
0
-
-
PUMS5S  
PUMS2S  
PUMS1S  
ICTESTS  
23  
22  
21  
18  
17  
-
16  
PAGE[4:0]  
-
-
15  
-
14  
-
13  
-
12  
-
11  
3
10  
FAB[2:0]  
2
9
8
FIN[2]  
0
Identification  
Table 112  
7
RW  
h00_00_08  
7
6
5
4
1
FIN[1:0]  
FULL_LAYER_REV[2:0]  
METAL_LAYER_REV[2:0]  
23  
22  
21  
20  
-
19  
-
18  
-
17  
-
16  
-
REGSCPEN  
-
-
Regulator  
Fault Sense  
15  
14  
13  
12  
11  
10  
9
8
8
RW h00_XX_XX  
-
-
-
VGEN2FAULT VGEN1FAULT VDACFAULT  
VUSB2FAULT  
VUSBFAULT  
Table 113  
7
SWBSTFAULT  
23  
6
SW5FAULT  
22  
5
SW4BFAULT  
21  
4
SW4AFAULT  
20  
3
SW3FAULT  
19  
2
SW2FAULT  
18  
1
0
SW1FAULT  
16  
RSVD  
17  
-
-
15  
14  
6
13  
5
12  
11  
10  
9
8
9-11  
12  
13  
14  
Reserved  
NU hXX_XX_XX  
7
4
-
3
-
2
1
0
-
-
-
-
-
23  
22  
-
21  
20  
-
19  
-
18  
17  
16  
-
-
-
-
-
15  
14  
-
13  
12  
-
11  
-
10  
9
8
Unused  
NU  
h00_00_00  
-
-
-
-
-
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
23  
22  
21  
20  
19  
18  
17  
16  
COINCHEN  
VCOIN[2:0]  
-
-
-
Power  
Control 0  
15  
-
14  
-
13  
-
12  
-
11  
10  
9
8
R/W h00_00_40  
-
-
PCUTEXPB  
-
Table 118  
7
6
5
4
3
2
1
0
-
CLK32KMCUEN USEROFFCLK  
DRM  
20  
-
USEROFFSPI  
WARMEN  
PCCOUNTEN  
PCEN  
23  
-
22  
21  
-
19  
-
18  
-
17  
-
16  
-
-
Power  
Control 1  
15  
14  
13  
12  
11  
10  
9
8
R/W h00_00_00  
PCMAXCNT[3:0]  
PCCOUNT[3:0]  
Table 119  
7
6
5
4
3
2
1
0
PCT[7:0]  
MC34708  
Analog Integrated Circuit Device Data  
113  
Freescale Semiconductor  
Functional Block Description  
2
Table 104. SPI/I C Register Map  
23  
22  
14  
6
21  
ON_STBY_LP  
13  
20  
19  
-
18  
10  
17  
9
16  
-
STBYDLY[1:0]  
-
CLKDRV[1:0]  
15  
-
12  
WDIRESET  
4
11  
-
8
Power  
Control 2  
15  
R/W h40_03_00  
SPIDRV[1:0]  
STANDBYINV  
GLBRSTTMR[1:0]  
Table 120  
7
5
3
2
1
0
PWRON2  
RSTEN  
PWRON2DBNC[1:0]  
PWRON1BDBNC[1:0]  
-
PWRON1RSTEN RESTARTEN  
23  
15  
7
22  
21  
13  
5
20  
MEMA[23:16]  
19  
18  
10  
2
17  
16  
14  
6
12  
11  
3
9
8
Memory A  
Table 121  
16  
17  
18  
19  
20  
21  
22  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h01_FF_FF  
R/W h00_00_00  
MEMA[15:8]  
MEMA[7:0]  
4
1
0
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
11  
3
18  
10  
2
17  
9
16  
8
MEMB[23:16]  
12  
Memory B  
Table 122  
MEMB[15:8]  
4
1
0
MEMB[7:0]  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
11  
3
18  
10  
2
17  
9
16  
8
MEMC[23:16]  
12  
Memory C  
Table 123  
MEMC[15:8]  
4
1
0
MEMC[7:0]  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
11  
3
18  
10  
2
17  
9
16  
8
MEMD[23:16]  
12  
Memory D  
Table 124  
MEMD[15:8]  
4
1
0
MEMD[7:0]  
23  
22  
21  
13  
5
20  
12  
4
19  
18  
10  
2
17  
9
16  
TOD[16]  
8
RTCCALMODE[1:0]  
RTCCAL[4:0]  
15  
7
14  
11  
RTC Time  
Table 125  
TOD[15:8]  
6
3
1
0
TOD[7:0]  
23  
RTCDIS  
15  
22  
SPARE  
14  
21  
SPARE  
13  
20  
19  
SPARE  
11  
18  
SPARE  
10  
17  
SPARE  
9
16  
TODA[16]  
8
SPARE  
12  
RTC Alarm  
Table 126  
TODA[15:8]  
7
6
5
4
3
2
1
0
TODA[7:0]  
23  
-
22  
-
21  
-
20  
-
19  
18  
-
17  
-
16  
-
-
15  
-
14  
13  
12  
11  
10  
9
8
RTC Day  
Table 127  
DAY[14:8]  
7
6
5
4
3
2
1
0
DAY[7:0]  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
114  
Functional Block Description  
2
Table 104. SPI/I C Register Map  
23  
-
22  
-
21  
-
20  
-
19  
18  
-
17  
-
16  
-
-
RTC Day  
Alarm  
15  
-
14  
13  
12  
11  
10  
9
8
23  
24  
25  
26  
27  
28  
29  
30  
R/W h00_7F_FF  
R/WM hXX_XX_XX  
R/WM hXX_XX_XX  
R/WM hXX_XX_XX  
R/WM h00_XX_XX  
R/W hEX_XX_8X  
R/W hXX_XX_XX  
R/WM h00_XX_XX  
DAYA[14:8]  
Table 128  
7
6
5
4
20  
12  
4
3
2
1
17  
9
0
16  
8
DAYA[7:0]  
23  
15  
7
22  
14  
6
21  
19  
11  
3
18  
10  
2
RSVD[5:0]  
RSVD[5:4]  
Regulator  
1A/B Voltage  
13  
RSVD[3:0]  
SW1ASTBY[5:2]  
Table 129  
5
1
0
SW1ASTBY[1:0]  
SW1A[5:0]  
23  
-
22  
14  
6
21  
13  
5
20  
SW3STBY[4:0]  
12  
19  
11  
3
18  
10  
2
17  
-
16  
SW3[4]  
8
Regulator  
2&3 Voltage  
15  
9
SW3[3:0]  
SW2STBY[5:2]  
Table 130  
7
23  
15  
7
4
20  
12  
4
1
17  
9
0
SW2STBY[1:0]  
SW4BHI[1:0]  
SW2[5:0]  
22  
14  
6
21  
13  
5
19  
18  
10  
16  
SW4BSTBY[4:0]  
SW4B[4]  
Regulator 4  
Voltage  
11  
8
SW4B[3:0]  
SW4AHI[1:0]  
SW4ASTBY[4:3]  
Table 131  
3
2
1
0
SW4ASTBY[2:0]  
SW4A[4:0]  
23  
22  
-
21  
-
20  
19  
-
18  
-
17  
-
16  
-
-
15  
-
-
Regulator 5  
Voltage  
14  
13  
12  
11  
10  
9
-
8
-
SW5TBY[4:0]  
Table 132  
7
6
-
5
-
4
3
2
1
0
-
SW5[4:0]  
18  
23  
PLLX  
15  
22  
21  
20  
19  
17  
16  
PLLEN  
14  
SW2DVSSPEED[1:0]  
SW2UOMODE SW2MHMODE  
SW2MODE[3:2]  
Regulator  
1, 2 Mode  
13  
-
12  
-
11  
-
10  
-
9
8
-
SW2MODE[1:0]  
-
Table 133  
7
6
5
4
3
2
1
SW1AMODE[3:0]  
17  
0
SW1DVSSPEED[1:0]  
SW1AUOMODE SW1AMHMODE  
23  
SW5UOMODE  
15  
22  
21  
13  
5
20  
12  
4
19  
18  
10  
16  
SW5MHMODE  
SW5MODE[3:0]  
SW4BUOMODE SW4BMHMODE  
Regulator  
3, 4, 5 Mode  
14  
11  
9
8
SW4BMODE[3:0]  
SW4AUOMODE SW4AMHMODE  
SW4AMODE[3:2]  
Table 134  
7
6
3
2
1
0
SW4AMODE[1:0]  
SW3UOMODE SW3MHMODE  
SW3MODE[3:0]  
23  
-
22  
-
21  
-
20  
-
19  
-
18  
-
17  
-
16  
-
Regulator  
Setting 0  
15  
-
14  
-
13  
-
12  
11  
10  
9
8
VGEN2[2]  
0
VUSB2[1:0]  
VPLL[1:0]  
Table 135  
7
6
5
4
3
2
1
VGEN2[1:0]  
VDAC[1:0]  
-
VGEN1[2:0]  
MC34708  
Analog Integrated Circuit Device Data  
115  
Freescale Semiconductor  
Functional Block Description  
2
Table 104. SPI/I C Register Map  
23  
22  
-
21  
-
20  
19  
-
18  
-
17  
-
16  
-
-
-
SWBST  
Control  
15  
14  
-
13  
-
12  
11  
-
10  
-
9
-
8
-
31  
32  
33  
34  
35  
36  
37  
38  
R/WM h00_00_XX  
R/WM h0X_XX_XX  
R/W h00_18_0A  
R/W h00_18_0A  
R/W h00_18_0A  
R/W h00_18_0A  
R/W hXX_XX_XX  
R/C hXX_XX_XX  
-
-
4
Table 136  
7
6
5
3
2
1
0
SPARE  
SWBSTSTBYMODE[1:0]  
SPARE  
20  
SWBSTMODE[1:0]  
SWBST[1:0]  
23  
22  
21  
19  
18  
VUSB2EN  
10  
17  
16  
-
-
-
VUSB2MODE VUSB2STBY  
VUSB2CONFIG  
VPLLSTBY  
Regulator  
Mode 0  
15  
14  
13  
12  
11  
9
8
VPLLEN  
VGEN2MODE  
VGEN2STBY  
VGEN2EN  
VGEN2CONFIG VREFDDREN  
-
-
Table 137  
7
6
5
4
3
VUSBEN  
19  
2
1
0
RSVD  
VDACMODE  
VDACSTBY  
VDACEN  
VUSBSEL  
VGEN1STBY  
VGEN1EN  
23  
22  
-
21  
20  
18  
-
17  
-
16  
SPARE  
8
-
-
-
-
GPIOLV0  
Control  
15  
14  
13  
12  
11  
10  
9
SRE1  
SRE0  
6
PUS1  
PUS0  
PUE  
3
DSE  
2
ODE  
1
PKE  
0
Table 138  
7
5
4
INT1  
INT0  
22  
DBNC1  
DBNC0  
HYS  
19  
DOUT  
18  
DIN  
17  
-
DIR  
16  
23  
21  
20  
-
-
-
-
-
-
SPARE  
8
GPIOLV1  
Control  
15  
14  
13  
12  
11  
10  
9
SRE1  
SRE0  
6
PUS1  
PUS0  
PUE  
3
DSE  
2
ODE  
1
PKE  
0
Table 139  
7
5
4
INT1  
INT0  
22  
DBNC1  
DBNC0  
HYS  
19  
DOUT  
18  
DIN  
17  
-
DIR  
16  
23  
21  
20  
-
-
-
-
-
-
SPARE  
8
GPIOLV2  
Control  
15  
14  
13  
12  
11  
10  
9
SRE1  
SRE0  
6
PUS1  
PUS0  
PUE  
3
DSE  
2
ODE  
1
PKE  
0
Table 140  
7
5
4
INT1  
INT0  
22  
DBNC1  
DBNC0  
HYS  
19  
DOUT  
18  
DIN  
17  
-
DIR  
16  
23  
21  
20  
-
-
-
13  
-
12  
-
-
SPARE  
8
GPIOLV3  
Control  
15  
14  
11  
10  
9
SRE1  
SRE0  
6
PUS1  
5
PUS0  
4
PUE  
3
DSE  
2
ODE  
1
PKE  
0
Table 141  
7
INT1  
INT0  
22  
DBNC1  
21  
DBNC0  
20  
HYS  
19  
DOUT  
18  
DIN  
17  
DIR  
16  
23  
READVALID  
15  
-
-
-
TD[3:0]  
14  
13  
12  
11  
3
10  
9
8
0
USB Timing  
Table 142  
SWITCHING_WAIT[3:0]  
Long_KEY_PRESS[3:0]  
7
6
5
4
2
1
KEY_PRESS[3:0]  
DEVICE_WAKE_UP[3:0]  
23  
-
22  
-
21  
-
20  
-
19  
-
18  
-
17  
-
16  
-
15  
-
14  
13  
12  
S12  
4
11  
S11  
3
10  
S10  
2
9
8
USB Button  
Table 143  
UNKNOWN  
Error  
5
S9  
1
S8  
0
7
6
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
116  
Functional Block Description  
2
Table 104. SPI/I C Register Map  
23  
22  
14  
21  
20  
19  
18  
17  
16  
VBUS_SWITCHIN  
G[1]  
READVALID  
DM_SWITCHING[2:0]  
DP_SWITCHING[2:0]  
15  
13  
12  
11  
-
10  
-
9
8
USB control  
Table 144  
39  
R/W hXX_XX_XX  
VBUS_SWITCHING[  
0]  
-
SW_HOLD  
VOTGEN  
CLK_RST  
7
ACTIVE  
23  
6
5
TTY_SPKL  
21  
4
RESET  
20  
3
2
1
0
RST  
22  
SWITCH_OPEN RAWDATA  
MANUAL_SW_B  
WAIT  
19  
18  
-
17  
16  
USB_ADC_ID_RESULTS[4:0]  
UKN_DEVICE  
ID_FACTORY  
15  
UARTJIG2  
7
14  
13  
USBJIG2  
5
12  
USBJIG1  
4
11  
AVCHRG  
3
10  
A/V  
2
9
TTY  
1
8
PPD  
0
USB Device  
Type  
40  
R
hXX_XX_XX  
UARTJIG1  
Table 145  
6
DEDICATED_  
CHG  
USB OTG  
USB CHG  
5W CHG  
UART  
USB  
AUDIO_TYPE_2 AUDIO_TYPE_1  
23  
22  
21  
20  
19  
18  
-
17  
16  
-
-
-
-
-
-
-
41  
to  
15  
14  
13  
12  
11  
10  
-
9
8
Unused  
NU  
h00_00_00  
-
-
-
-
-
-
-
42  
7
6
5
4
3
2
1
0
-
23  
-
22  
-
-
-
19  
-
-
-
21  
20  
18  
17  
16  
SPARE  
15  
SPARE  
14  
SPARE  
TSPENDETEN  
SPARE  
11  
TSSTOP[2:0]  
13  
12  
TSEN  
4
10  
SPARE  
2
9
8
THERM  
0
ADC 0  
43  
44  
45  
46  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
Table 147  
TSHOLD  
7
TSCONT  
6
TSSTART  
SPARE  
3
DIETEMP_EN  
5
ADSTOP[2:0]  
21  
1
ADSTART  
17  
SPARE  
23  
ADHOLD  
19  
ADCONT  
18  
ADEN  
16  
22  
14  
20  
12  
4
TSDLY3[3:0]  
TSDLY2[3:0]  
15  
7
13  
5
11  
3
10  
2
9
8
0
ADC 1  
Table 148  
TSDLY1[3:0]  
ADDLY3[3:0]  
6
1
17  
9
ADDLY2[3:0]  
22  
ADSEL5[3:0]  
14  
ADSEL3[3:0]  
ADDLY1[3:0]  
ADSEL4[3:0]  
ADSEL2[3:0]  
ADSEL0[3:0]  
23  
15  
7
21  
13  
5
20  
12  
4
19  
11  
3
18  
10  
2
16  
8
ADC 2  
Table 149  
6
1
0
ADSEL1[3:0]  
23  
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
9
16  
TSSEL7[1:0]  
TSSEL6[1:0]  
TSSEL5[1:0]  
TSSEL4[1:0]  
15  
7
12  
4
11  
3
8
0
ADC 3  
Table 150  
TSSEL3[1:0]  
TSSEL2[1:0]  
TSSEL1[1:0]  
TSSEL0[1:0]  
1
ADSEL7[3:0]  
ADSEL6[3:0]  
MC34708  
Analog Integrated Circuit Device Data  
117  
Freescale Semiconductor  
Functional Block Description  
2
Table 104. SPI/I C Register Map  
23  
15  
22  
14  
6
21  
20  
19  
18  
10  
2
17  
16  
8
ADRESULT1[9:2]  
13  
12  
-
11  
9
ADC 4  
47  
48  
49  
50  
51  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h01_31_7E  
Table 151  
ADRESULT1[1:0]  
-
ADRESULT0[9:6]  
7
5
4
3
1
-
0
-
ADRESULT0[5:0]  
23  
15  
22  
14  
6
21  
20  
19  
18  
10  
2
17  
16  
ADRESULT3[9:2]  
13  
12  
-
11  
9
8
ADC 5  
Table 152  
ADRESULT3[1:0]  
-
ADRESULT2[9:6]  
7
5
4
3
1
-
0
-
ADRESULT2[5:0]  
23  
15  
22  
14  
6
21  
20  
19  
18  
10  
2
17  
16  
ADRESULT5[9:2]  
13  
12  
-
11  
9
8
ADC 6  
Table 153  
ADRESULT5[1:0]  
-
ADRESULT4[9:6]  
7
5
4
3
1
-
0
-
ADRESULT4[5:0]  
23  
15  
22  
14  
6
21  
20  
19  
18  
10  
2
17  
16  
ADRESULT7[9:2]  
13  
12  
-
11  
9
8
ADC 7  
Table 154  
ADRESULT7[9:2]  
-
ADRESULT6[9:6]  
7
5
4
3
1
0
-
ADRESULT6[5:0]  
-
23  
-
22  
14  
6
21  
20  
12  
4
19  
11  
18  
10  
17  
16  
-
-
-
Input  
Monitoring  
15  
13  
9
8
0
-
-
Table 155  
7
5
3
CHREN  
19  
2
-
1
-
LOWBATT[1:0]  
21  
-
23  
-
22  
-
20  
-
18  
17  
16  
-
-
DIE_TEMP_DB[1:0]  
15  
14  
13  
12  
11  
3
10  
9
8
Supply  
Debounce  
52  
R/W h00_03_FD  
CHRGLED  
OVRD  
SUP_OVP_DB[1:0]  
-
-
Table 156  
7
6
5
4
2
1
17  
9
0
-
VBUSDB[1:0]  
VBATTDB[1:0]  
18  
-
-
23  
-
22  
-
21  
20  
12  
4
19  
11  
3
16  
-
VBUS  
monitoring  
15  
-
14  
13  
-
10  
-
8
-
53  
R/W hC0_36_1B  
Table 157  
7
6
5
2
1
0
-
VBUSTH[2:0]  
VBUSTL[2:0]  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
118  
Functional Block Description  
2
Table 104. SPI/I C Register Map  
23  
22  
21  
13  
20  
12  
19  
18  
17  
9
16  
CHRGLEDGEN  
CHRGLEDG[1:0]  
CHRGLEDGDC[5:1]  
15  
14  
11  
10  
8
LED Control  
Table 158  
54  
R/W h60_06_00  
CHRGLEDG  
RAMP  
CHRGLEDGDC[0]  
LEDGPER[1:0]  
CHRGLEDREN  
CHRGLEDR[1:0]  
CHRGLEDRDC[5]  
7
6
5
4
3
2
1
0
CHRGLEDR  
RAMP  
CHRGLEDRDC[4:0]  
CHRGLEDRPER[1:0]  
23  
15  
7
22  
21  
20  
12  
4
19  
11  
3
18  
17  
16  
PWM2CLKDIV[5:0]  
PWM2DUTY[5:4]  
14  
13  
10  
9
8
PWM Control  
Table 159  
55  
R/W h00_00_00  
PWM2DUTY[3:0]  
PWM1CLKDIV[5:2]  
6
5
2
1
0
PWM1CLKDIV[1:0]  
PWM1DUTY[5:0]  
23  
-
22  
-
21  
-
20  
-
19  
-
18  
-
17  
-
16  
-
56  
to  
15  
-
14  
-
13  
-
12  
-
11  
-
10  
-
9
-
8
-
Unused  
NU  
h00_00_00  
63  
7
6
5
4
3
2
1
-
0
-
-
-
-
-
-
-
MC34708  
Analog Integrated Circuit Device Data  
119  
Freescale Semiconductor  
Functional Block Description  
7.10.4 SPI Register’s Bit Description  
Table 105. Register 0, Interrupt Status 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADC has finished requested conversions  
Touchscreen has finished requested conversions  
Touch screen pen detection  
USB detect  
ADCDONEI  
TSDONEI  
TSPENDET  
USBDET  
0
1
2
3
4
5
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RESETB  
RESETB  
RESETB  
OFFB  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Reserved  
Reserved  
NONE  
USB over voltage protection  
Reserved  
USBOVP  
RESETB  
NONE  
Reserved  
12:6 RW1C  
Low battery threshold warning  
Reserved  
LOWBATT  
Reserved  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
RW1C  
RW1C  
RESETB  
NONE  
1: accessory attached  
ATTACH  
RW1C MUSBRSTB  
RW1C MUSBRSTB  
RW1C MUSBRSTB  
RW1C MUSBRSTB  
RW1C MUSBRSTB  
RW1C MUSBRSTB  
RW1C MUSBRSTB  
RW1C MUSBRSTB  
RW1C MUSBRSTB  
1: accessory detached  
DETACH  
1: remote controller key is pressed  
1: remote controller long key is pressed  
1: remote controller long key is released  
1: an unknown accessory is attached  
1: ADC Result has changed when the RAW DATA = 0  
1: Stuck key is detected  
KP  
LKP  
LKR  
UNKNOWN_ATTA  
ADC_CHANGE  
STUCK_KEY  
STUCK_KEY_RCV  
1: Stuck key is recovered  
Table 106. Interrupt Mask 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADCDONEI mask bit  
TSDONEI mask bit  
Touch screen pen detect mask bit  
USBDET mask bit  
Reserved  
ADCDONEM  
TSDONEM  
TSPENDETM  
USBDETM  
Reserved  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RW1C  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
OFFB  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x0  
0x1  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
2
3
4
NONE  
USB over voltage protection  
Reserved  
USBOVPM  
Reserved  
5
RESETB  
NONE  
12:6  
13  
14  
15  
16  
17  
18  
19  
20  
LOBATLI mask bit  
Reserved  
LOWBATTM  
Reserved  
RESETB  
NONE  
DETACH mask bit  
KP mask bit  
ATTACH_M  
DETACH_M  
KP_M  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
LKP mask bit  
LKR mask bit  
LKP_M  
DETACH mask bit  
UNKNOWN_ATTA mask bit  
LKR_M  
UKNOWN_ATTA_M  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
120  
Functional Block Description  
Table 106. Interrupt Mask 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VBUS power supply type identification completed mask  
ID resistance detection finished mask  
For future use  
ADC_CHANGE_M  
STUCK_KEY_M  
21  
22  
23  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
0x1  
0x1  
0x1  
STUCK_KEY_RCV_M  
Table 107. Register 2, Interrupt Sense 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Not available  
Unused  
USBDETS  
Reserved  
2-0  
3
R
R
R
R
R
R
R
R
R
R
R
R
0x0  
S
USBDET sense bit  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
Reserved  
4
0x0  
S
USBOVP sense bit  
USBOVPS  
Reserved  
5
Reserved  
6
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
S
Not available  
Unused  
7
Reserved  
Reserved  
9:8  
16-10  
17  
18  
19  
20  
Not available  
Unused  
VBUS power supply type identification completed sense bit  
ID resistance detection finished sense bit  
ID float sense bit  
VBUS_DET_ENDS  
ID_DET_ENDS  
ID_FLOATS  
ID_GNDS  
MUSBRSTB  
MUSBRSTB  
NONE  
ID ground sense bit  
0: no  
MUSBRSTB  
0x0  
1: yes  
Mini USB ADC conversion status  
1: ADC conversion completed  
0: ADC conversion in progress  
MUSB_ADC_STATUS  
Unused  
21  
R
R
NONE  
X
Not available  
23-22  
0x0  
Table 108. Register 3, Interrupt Status 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
1.0 Hz time tick  
1HZI  
TODAI  
0
1
RW1C RTCPORB  
RW1C RTCPORB  
R
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x0  
0x0  
0x0  
0x0  
Time of day alarm  
Not available  
Unused  
2
PWRON1 event  
PWRON1I  
PWRON2I  
WDIRESETI  
SYSRSTI  
RTCRSTI  
PCI  
3
RW1C  
RW1C  
OFFB  
OFFB  
PWRON2 event  
4
WDI system reset event  
PWRON system reset event  
RTC reset event  
5
RW1C RTCPORB  
RW1C RTCPORB  
RW1C RTCPORB  
6
7
Power cut event  
8
RW1C  
OFFB  
Warm start event  
WARMI  
9
RW1C RTCPORB  
RW1C RTCPORB  
Memory hold event  
110 °C thermal threshold  
MEMHLDI  
THERM110  
10  
11  
RW1C  
RESETB  
MC34708  
Analog Integrated Circuit Device Data  
121  
Freescale Semiconductor  
Functional Block Description  
Table 108. Register 3, Interrupt Status 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
120 °C thermal threshold  
THERM120  
THERM125  
THERM130  
CLKI  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
R
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
125 °C thermal threshold  
130 °C thermal threshold  
Clock source change  
Short-circuit protection trip detection  
GPIOLV1 interrupt  
GPIOLV2 interrupt  
GPIOLV3 interrupt  
GPIOLV4 interrupt  
Not available  
SCPI  
GPIOLV1I  
GPIOLV2I  
GPIOLV3I  
GPIOLV4I  
Unused  
Reserved  
Reserved  
Unused  
R
NONE  
Not available  
R
RESETB  
Table 109. Register 4, Interrupt Mask 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
1HZI mask bit  
1HZM  
TODAM  
0
1
R/W  
R/W  
R
RTCPORB  
RTCPORB  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
TODAI mask bit  
Not available  
Unused  
2
PWRON1 mask bit  
PWRON1M  
PWRON2M  
WDIRESETM  
SYSRSTM  
RTCRSTM  
PCM  
3
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
OFFB  
OFFB  
PWRON2 mask bit  
4
WDIRESETI mask bit  
SYSRSTI mask bit  
5
RTCPORB  
RTCPORB  
RTCPORB  
OFFB  
6
RTCRSTI mask bit  
7
PCI mask bit  
8
WARMI mask bit  
WARMM  
9
RTCPORB  
RTCPORB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
MEMHLDI mask bit  
THERM110 mask bit  
THERM120 mask bit  
THERM125 mask bit  
THERM130 mask bit  
CLKI mask bit  
MEMHLDM  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
CLKM  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Short-circuit protection trip mask bit  
GPIOLV1 interrupt mask bit  
GPIOLV2 interrupt mask bit  
GPIOLV3 interrupt mask bit  
GPIOLV4 interrupt mask bit  
Not available  
SCPM  
GPIOLV1M  
GPIOLV2M  
GPIOLV3M  
GPIOLV4M  
Unused  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
122  
Functional Block Description  
Table 109. Register 4, Interrupt Mask 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Description  
Reserved  
Reserved  
Unused  
22  
23  
R
R
NONE  
0x0  
0x1  
Not available  
Table 110. Register 5, Interrupt Sense 1  
Name  
Bit #  
R/W  
Reset  
Default  
Not available  
Unused  
PWRON1S  
PWRON2S  
Unused  
2-0  
3
R
R
R
R
R
R
R
R
R
R
R
R
0x0  
S
PWRON1I sense bit  
PWRON2I sense bit  
Not available  
NONE  
NONE  
4
S
10-5  
11  
0x0  
S
THERM110 sense bit  
THERM120 sense bit  
THERM125 sense bit  
THERM130 sense bit  
CLKI sense bit  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
CLKS  
NONE  
NONE  
NONE  
NONE  
NONE  
12  
S
13  
S
14  
S
15  
0x0  
0x00  
0x0  
0x0  
Not available  
Unused  
21-16  
22  
Reserved  
Reserved  
Unused  
NONE  
NONE  
Not available  
23  
Table 111. Register 6, Power Up Mode Sense  
Default  
Name  
Bit #  
R/W  
Reset  
Description  
(76)  
ICTEST sense state  
PUMS1 state  
PUMS2 state  
PUMS3 state  
PUMS4 state  
PUMS5 state  
Not available  
Reserved  
ICTESTS  
PUMS1S  
PUMS2S  
PUMS3S  
PUMS4S  
PUMS5S  
Unused  
0
R
R
R
R
R
R
R
R
R
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
S
1
L
2
3
L
L
4
L
5
L
8-6  
9
0x0  
0x0  
0x0000  
Reserved  
Unused  
NONE  
Not available  
23-10  
76. L = Loaded PUMSx level at startup.  
Table 112. Register 7, Identification  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Metal Layer version  
Pass 2.4 =100  
METAL_LAYER_REV[2:0] 2-0  
R
NONE  
X
Full Layer version  
Pass 2.4 = 010  
FULL_LAYER_REV[2:0]  
FIN[2:0]  
5-3  
8-6  
R
R
NONE  
NONE  
X
X
FIN version  
Pass 2.4 = 000  
MC34708  
Analog Integrated Circuit Device Data  
123  
Freescale Semiconductor  
Functional Block Description  
Table 112. Register 7, Identification  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
FAB version  
FAB[2:0]  
11-9  
R
NONE  
X
Pass 2.4 = 000  
Not available  
SPI Page  
Unused  
18-12  
R
0x0  
0x0  
PAGE[4:0]  
23-19 R/W  
DIGRESETB  
Table 113. Register 8, Regulator Fault Sense  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1 fault detection  
Reserved  
SW1FAULT  
Reserved  
0
1
R
R
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
S
0x0  
S
SW2 fault detection  
SW3 fault detection  
SW4A fault detection  
SW4B fault detection  
SW5 fault detection  
SWBST fault detection  
VUSB fault detection  
VUSB2 fault detection  
VDAC fault detection  
VGEN1 fault detection  
VGEN2 fault detection  
Not available  
SW2FAULT  
SW3FAULT  
SW4AFAULT  
SW4BFAULT  
SW5FAULT  
SWBSTFAULT  
VUSBFAULT  
VUSB2FAULT  
VDACFAULT  
VGEN1FAULT  
VGEN2FAULT  
Unused  
2
R
3
R
S
4
R
S
5
R
S
6
R
S
7
R
S
8
R
S
9
R
S
10  
11  
12  
22-13  
23  
R
S
R
S
R
S
R
0x00  
0x0  
Regulator short-circuit protect enable  
REGSCPEN  
R/W  
RESETB  
Table 114. Register 9, Reserved  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Reserved  
Reserved  
1-23  
R
NONE  
0x000020  
Table 115. Register 10, Reserved  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Reserved  
Reserved  
1-23  
R
NONE  
0x00013A  
Table 116. Register 11, Reserved  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Reserved  
Reserved  
1-23  
R
NONE  
0x000000  
Table 117. Register 12, Unused  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Not available  
Unused  
23-0  
R
0x000000  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
124  
Functional Block Description  
Table 118. Register 13, Power Control 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Power cut enable  
PCEN  
PCCOUNTEN  
WARMEN  
0
1
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RESETB  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x00  
0x0  
Power cut counter enable  
Warm start enable  
2
SPI command for entering user off modes  
Keeps VSRTC and CLK32KMCU on for all states  
Keeps the CLK32KMCU active during user off  
Enables the CLK32KMCU  
USEROFFSPI  
DRM  
3
(77)  
4
R/W RTCPORB  
USEROFFCLK  
CLK32KMCUEN  
Unused  
5
R/W  
R/W  
R
RTCPORB  
6
RTCPORB  
Not available  
8-7  
9
PCUTEXPB=1 at a startup event indicates the PCUT timer  
did not expire (assuming it was set to 1 after booting)  
PCUTEXPB  
R/W  
RTCPORB  
Not available  
Unused  
Reserved  
18-10  
19  
R
R
0x000  
0x0  
Reserved  
NONE  
Coin cell charger voltage setting  
Coin cell charger enable  
VCOIN[2:0]  
COINCHEN  
22-20 R/W  
23 R/W  
RTCPORB  
RTCPORB  
0x00  
0x0  
Notes:  
77. Reset by RTCPORB but not during a GLBRST (global reset)  
Table 119. Register 14, Power Control 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Power cut timer  
PCT[7:0]  
PCCOUNT[3:0]  
PCMAXCNT[3:0]  
Unused  
7-0  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
0x00  
0x00  
0x00  
0x00  
Power cut counter  
11-8  
Maximum allowed number of power cuts  
Not available  
15-12 R/W  
23-16  
R
Table 120. Register 15, Power Control 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Enables automatic restart after a system reset  
Enables system reset on PWRON1 pin  
Enables system reset on PWRON2 pin  
Not available  
RESTARTEN  
PWRON1RSTEN  
PWRON2RSTEN  
Unused  
0
1
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
0x0  
0x0  
2
0x0  
3
0x0  
Sets debounce time on PWRON1 pin  
Sets debounce time on PWRON2 pin  
Sets Global reset time  
PWRON1DBNC[1:0]  
PWRON2DBNC[1:0]  
GLBRSTTMR[1:0]  
STANDBYINV  
Unused  
5-4  
7-6  
9-8  
10  
11  
12  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0x00  
0x00  
0x01  
0x0  
If set then STANDBY is interpreted as active low  
Not available  
0x0  
Enables system reset through WDI  
SPI drive strength  
WDIRESET  
R/W  
RESETB  
0x0  
SPIDRV[1:0]  
14-13 R/W  
16-15  
RTCPORB  
0x01  
0x00  
Not available  
Unused  
R
MC34708  
Analog Integrated Circuit Device Data  
125  
Freescale Semiconductor  
Functional Block Description  
Table 120. Register 15, Power Control 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
CLK32K and CLK32KMCU drive strength (master control  
bits)  
CLK32KDRV[1:0]  
18-17 R/W  
RTCPORB  
0x01  
Not available  
Unused  
20-19  
21  
R
0x00  
0x0  
On Standby Low Power Mode  
0 = Low power mode disabled  
1 =Low power mode enabled  
ON_STBY_LP  
R/W  
RESETB  
RESETB  
Standby delay control  
STBYDLY[1:0]  
23-22 R/W  
0x01  
Table 121. Register 16, Memory A  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Backup memory A  
MEMA[23:0]  
23-0  
R/W  
RTCPORB  
0x000000  
Table 122. Register 17, Memory B  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Backup memory B  
MEMB[23:0]  
23:0  
R/W  
RTCPORB  
0x000000  
Table 123. Register 18, Memory C  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Backup memory C  
MEMC[23:0]  
23-0  
R/W  
RTCPORB  
0x000000  
Table 124. Register 19, Memory D  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Backup memory D  
MEMD[23:0]  
23-0  
R/W  
RTCPORB  
0x000000  
Table 125. Register 20, RTC Time  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Time of day counter  
(78)  
TOD[16:0]  
RTCCAL[4:0]  
16-0  
R/W RTCPORB  
0x00000  
0x00  
(78)  
(78)  
RTC calibration count  
21-17 R/W RTCPORB  
23-22 R/W RTCPORB  
RTC calibration mode  
RTCCALMODE[1:0]  
0x0  
Notes  
78. Reset by RTCPORB but not during a GLBRST (global reset)  
Table 126. Register 21, RTC Alarm  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Time of day alarm  
(79)  
(79)  
TODA[16:0]  
Unused  
16-0  
22-17  
23  
R/W RTCPORB  
R
0x1FFFF  
0x00  
Not available  
Disable RTC  
RTCDIS  
R/W RTCPORB  
0x0  
Notes  
79. Reset by RTCPORB but not during a GLBRST (global reset)  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
126  
Functional Block Description  
Table 127. Register 22, RTC Day  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Description  
Description  
(80)  
Day counter  
Not available  
DAY[14:0]  
Unused  
14-0  
R/W RTCPORB  
R
0x0000  
0x000  
23-15  
Notes  
80. Reset by RTCPORB but not during a GLBRST (global reset)  
Table 128. Register 23, RTC Day Alarm  
Name  
Bit #  
R/W  
Reset  
Default  
(81)  
Day alarm  
DAYA[14:0]  
Unused  
14-0  
R/W RTCPORB  
R
0x7FFF  
0x000  
Not available  
23-15  
Notes  
81. Reset by RTCPORB but not during a GLBRST (global reset)  
Table 129. Register 24, Regulator 1A/B Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
SW1 setting in normal mode  
SW1 setting in Standby mode  
Not available  
SW1A[5:0]  
SW1ASTBY[5:0]  
Reserved  
5-0 R/WM  
11-6 R/WM  
NONE  
NONE  
NONE  
*
*
*
23-12  
R
Table 130. Register 25, Regulator 2 & 3 Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW2 setting in normal mode  
SW2 setting in Standby mode  
SW3 setting in normal mode  
Not available  
SW2[5:0]  
SW2STBY[5:0]  
SW3[4:0]  
5-0 R/WM  
11-6 R/WM  
16-12 R/WM  
NONE  
NONE  
NONE  
*
*
*
Unused  
17  
22-18 R/WM  
23  
R
0x0  
*
SW3 setting in standby mode  
Not available  
SW3STBY[4:0]  
Unused  
NONE  
R
0x0  
Table 131. Register 26, Regulator 4A/B  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW4A setting in normal mode  
SW4A setting in Standby mode  
SW4A high setting  
SW4A[0:4]  
SW4ASTBY[4:0]  
SW4AHI[1:0]  
SW4B[4:0]  
4-0 R/WM  
9-5 R/WM  
11-10 R/WM  
16-12 R/WM  
21-17 R/WM  
23-22 R/WM  
NONE  
NONE  
*
*
*
*
*
*
NONE  
SW4B setting in normal mode  
SW4B setting in Standby mode  
SW4B high setting  
NONE  
SW4BSTBY[4:0]  
SW4BHI[1:0]  
RESETB  
RESETB  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
127  
Functional Block Description  
Table 132. Register 27, Regulator 5 Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW4 setting in normal mode  
SW5[4:0]  
Unused  
4-0 R/WM  
9-5  
14-10 R/WM  
23-15  
NONE  
*
Not available  
R
*
*
SW5 setting in Standby mode  
Not available  
SW5STBY[4:0]  
Unused  
NONE  
R
0x000  
Table 133. Register 28, Regulators 1 & 2 Operating Mode  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1A operating mode  
SW1A Memory Hold mode  
SW1A User Off mode  
SW1 DVS1 speed  
SW1AMODE[3:0]  
SW1AMHMODE  
SW1AUOMODE  
SW1DVSSPEED[1:0]  
Unused  
3-0  
4
R/W  
R/W  
R/W  
R/W  
R
RESETB  
OFFB  
0xA  
0x0  
0x0  
0x1  
0x00  
0xA  
0x0  
0x0  
0x01  
0x1  
0x0  
5
OFFB  
7-6  
13-8  
RESETB  
Not available  
(82)  
SW2 operating mode  
SW2 Memory Hold mode  
SW2 User Off mode  
SW2 DVS1 speed  
SW2MODE[3:0]  
17-14 R/W  
RESETB  
OFFB  
SW2MHMODE  
SW2UOMODE  
SW2DVSSPEED[1:0]  
PLLEN  
18  
19  
R/W  
R/W  
OFFB  
21-20 R/W  
RESETB  
RESETB  
RESETB  
PLL enable  
22  
23  
R/W  
R/W  
PLL multiplication factor  
PLLX  
Notes  
82. SWxMODE[3:0] bits will be reset to their default values by the startup sequencer, based on PUMS settings. An enabled  
switch will default to APS mode for both Normal and Standby operation.  
Table 134. Register 29, Regulators 3, 4, and 5 Operating Mode  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW3 operating mode  
SW3MODE[3:0]  
SW3MHMODE  
SW3UOMODE  
SW4AMODE[3:0]  
SW4AMHMODE  
SW4AUOMODE  
SW4BMODE[3:0]  
SW4BMHMODE  
SW4BUOMODE  
3-0  
4
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
OFFB  
0xA  
0x0  
0x0  
0xA  
0x0  
0x0  
0xA  
0x0  
0x0  
0xA  
0x0  
0x0  
SW3 Memory Hold mode  
SW3 User Off mode  
5
OFFB  
SW4A operating mode  
SW4A Memory Hold mode  
SW4A User Off mode  
SW4B operating mode  
SW4B Memory Hold mode  
SW4B User Off mode  
SW5 operating mode  
SW5 Memory Hold mode  
SW5 User Off mode  
9-6  
10  
11  
RESETB  
OFFB  
OFFB  
15-12 R/W  
RESETB  
OFFB  
16  
17  
R/W  
R/W  
OFFB  
(83)  
SW5MODE[3:0]  
SW5MHMODE  
SW5UOMODE  
21-18 R/W  
RESETB  
OFFB  
22  
23  
R/W  
R/W  
OFFB  
Notes  
83. SWxMODE[3:0] bits will be reset to their default values by the startup sequencer, based on PUMS settings. An enabled  
regulator will default to APS mode for both Normal and Standby operation.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
128  
Functional Block Description  
Table 135. Register 30, Regulator Setting 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VGEN1 setting  
Not available  
VDAC setting  
VGEN2 setting  
VPLL setting  
VUSB2 setting  
Not available  
VGEN1[2:0]  
Unused  
2-0 R/WM  
RESETB  
*
3
R
0x0  
VDAC[1:0]  
VGEN2[2:0]  
VPLL[1:0]  
VUSB2[1:0]  
Unused  
5-4 R/WM  
8-6 R/WM  
10-9 R/WM  
12-11 R/WM  
RESETB  
RESETB  
RESETB  
RESETB  
*
*
*
*
23-13  
R
0x000  
Table 136. Register 31, SWBST Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SWBST setting  
SWBST mode  
Not available  
SWBST[1:0]  
SWBSTMODE[1:0]  
Spare  
1-0  
3-2  
4
R/W  
R/W  
R/W  
R/W  
R/W  
R
NONE  
*
0x2  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
SWBST standby mode  
Not available  
SWBSTSTBYMODE[1:0] 6-5  
0x2  
Spare  
7
0x0  
Not available  
Unused  
23-8  
0x0000  
Table 137. Register 32, Regulator Mode 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VGEN1 enable  
VGEN1EN  
VGEN1STBY  
VUSBSEL  
VUSBEN  
0
1
2
3
R/W  
R/W  
R/W  
R/W  
NONE  
RESETB  
NONE  
*
VGEN1 controlled by standby  
0x0  
*
Slave or Host configuration for VBUS  
VUSB enable (PUMS4:1=[0100]). Also reset to 1 by invalid  
VBUS  
RESETB  
0x1  
VDAC enable  
VDACEN  
VDACSTBY  
VDACMODE  
Unused  
4
5
R/W  
R/W  
R/W  
R
NONE  
*
VDAC controlled by standby  
VDAC operating mode  
Not available  
RESETB  
RESETB  
0x0  
0x0  
0x0  
*
6
9-7  
10  
11  
VREFDDR enable  
VREFDDREN  
VGEN2CONFIG  
R/W  
R/W  
NONE  
NONE  
PUMS5 Tied to ground = 0: VGEN2 with external PNP  
PUMS5 Tied to VCROREDIG =1:VGEN2 internal PMOS  
*
VGEN2 enable  
VGEN2EN  
VGEN2STBY  
VGEN2MODE  
VPLLEN  
12  
13  
14  
15  
16  
17  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NONE  
RESETB  
RESETB  
NONE  
*
VGEN2 controlled by standby  
VGEN2 operating mode  
VPLL enable  
0x0  
0x0  
*
VPLL controlled by standby  
VPLLSTBY  
RESETB  
NONE  
0x0  
*
PUMS5 Tied to ground = 0: VUSB2 with external PNP  
PUMS5 Tied to VCROREDIG =1:VUSB2 internal PMOS  
VUSB2CONFIG  
VUSB2 enable  
VUSB2EN  
18  
R/W  
NONE  
*
MC34708  
Analog Integrated Circuit Device Data  
129  
Freescale Semiconductor  
Functional Block Description  
Table 137. Register 32, Regulator Mode 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VUSB2 controlled by standby  
VUSB2STBY  
VUSB2MODE  
Unused  
19  
20  
R/W  
R/W  
R
RESETB  
RESETB  
0x0  
0x0  
0x0  
VUSB2 operating mode  
Not available  
23-21  
Table 138. Register 33, GPIOLV0 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
GPIOLV0 direction  
0: Input  
DIR  
0
R/W  
RESETB  
0x0  
1: Output  
Input state of GPIOLV0 pin  
0: Input low  
DIN  
DOUT  
1
2
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x1  
0x0  
1: Input High  
Output state of GPIOLV0 pin  
0: Output Low  
1: Output High  
Hysteresis  
HYS  
3
0: CMOS in  
1: Hysteresis  
GPIOLV0 input debounce time  
00: no debounce  
DBNC[1:0]  
5-4  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
GPIOLV0 interrupt control  
00: None  
INT[1:0]  
7-6  
R/W  
RESETB  
0x0  
01: Falling edge  
10: Rising edge  
11: Both edges  
Pad keep enable  
0: Off  
PKE  
ODE  
8
9
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x0  
0x1  
0x3  
1: On  
Open drain enable  
0: CMOS  
1: OD  
Drive strength enable  
0: 4.0 mA  
DSE  
10  
11  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
PUE  
1: pull-up/down on (default)  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
PUS[1:0]  
13-12 R/W  
11: 100 K pull-up  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
130  
Functional Block Description  
Table 138. Register 33, GPIOLV0 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Slew rate enable  
00: slow (default)  
01: normal  
SRE[1:0]  
15-14 R/W  
RESETB  
0x0  
10: fast  
11: very fast  
Not available  
Unused  
23-16  
R
0x00  
Table 139. Register 34, GPIOLV1 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
GPIOLV1directon  
0: Input  
DIR  
0
R/W  
RESETB  
0x0  
1: Output  
Input state of GPIOLV1 pin  
0: Input low  
DIN  
DOUT  
1
2
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x1  
0x0  
1: Input High  
Output state of GPIOLV1 pin  
0: Output Low  
1: Output High  
Hysteresis  
HYS  
3
0: CMOS in  
1: Hysteresis  
GPIOLV1 input debounce time  
00: no debounce  
DBNC[1:0]  
5-4  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
GPIOLV1 interrupt control  
00: None  
INT[1:0]  
7-6  
R/W  
RESETB  
0x0  
01: Falling edge  
10: Rising edge  
11: Both edges  
Pad keep enable  
0: Off  
PKE  
ODE  
8
9
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x0  
0x1  
0x3  
1: On  
Open drain enable  
0: CMOS  
1: OD  
Drive strength enable  
0: 4.0 mA  
DSE  
10  
11  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
PUE  
1: pull-up/down on (default)  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
PUS[1:0]  
13:12 R/W  
11: 100 K pull-up  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
131  
Functional Block Description  
Table 139. Register 34, GPIOLV1 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Slew rate enable  
00: slow (default)  
01: normal  
SRE[1:0]  
15-14 R/W  
RESETB  
0x0  
10: fast  
11: very fast  
Not available  
Unused  
23-16  
R
0x00  
Table 140. Register 35, GPIOLV2 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
GPIOLV2 direction  
0: Input  
DIR  
0
R/W  
RESETB  
0x0  
1: Output  
Input state of GPIOLV2 pin  
0: Input low  
DIN  
DOUT  
1
2
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x1  
0x0  
1: Input High  
Output state of GPIOLV2 pin  
0: Output Low  
1: Output High  
Hysteresis  
HYS  
3
0: CMOS in  
1: Hysteresis  
GPIOLV2 input debounce time  
00: no debounce  
DBNC[1:0]  
5-4  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
GPIOLV2 interrupt control  
00: None  
INT[1:0]  
7-6  
R/W  
RESETB  
0x0  
01: Falling edge  
10: Rising edge  
11: Both edges  
Pad keep enable  
0: Off  
PKE  
ODE  
8
9
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x0  
0x1  
0x3  
1: On  
Open drain enable  
0: CMOS  
1: OD  
Drive strength enable  
0: 4.0 mA  
DSE  
10  
11  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
PUE  
1: pull-up/down on (default)  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
PUS[1:0]  
13-12 R/W  
11: 100 K pull-up  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
132  
Functional Block Description  
Table 140. Register 35, GPIOLV2 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Slew rate enable  
00: slow (default)  
01: normal  
SRE[1:0]  
15-14 R/W  
RESETB  
0x0  
10: fast  
11: very fast  
Not available  
Unused  
23-16  
R
0x00  
Table 141. Register 36, GPIOLV3 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
GPIOLV3 direction  
0: Input  
DIR  
0
R/W  
RESETB  
0x0  
1: Output  
Input state of GPIOLV3 pin  
0: Input low  
DIN  
DOUT  
1
2
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x1  
0x0  
1: Input High  
Output state of GPIOLV3 pin  
0: Output Low  
1: Output High  
Hysteresis  
HYS  
3
0: CMOS in  
1: Hysteresis  
GPIOLV3 input debounce time  
00: no debounce  
DBNC[1:0]  
5-4  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
GPIOLV3 interrupt control  
00: None  
INT[1:0]  
7-6  
R/W  
RESETB  
0x0  
01: Falling edge  
10: Rising edge  
11: Both edges  
Pad keep enable  
0: Off  
PKE  
ODE  
8
9
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x0  
0x1  
0x3  
1: On  
Open drain enable  
0: CMOS  
1: OD  
Drive strength enable  
0: 4.0 mA  
DSE  
10  
11  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
PUE  
1: pull-up/down on (default)  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
PUS[1:0]  
13-12 R/W  
11: 100 K pull-up  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
133  
Functional Block Description  
Table 141. Register 36, GPIOLV3 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Slew rate enable  
00: slow (default)  
01: normal  
SRE[1:0]  
15-14 R/W  
RESETB  
0x0  
10: fast  
11: very fast  
Not available  
Unused  
23-16  
R
0x00  
Table 142. Register 37, USB timing  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
The periodical sampling time of the ID line in the Power-Save  
DEVICE_WAKE_UP[3:0] 3-0  
R/W  
MUSBRSTB  
0x0  
mode and Standby mode; the periodical time of ADC  
conversion of the resistance at ID pin when RAW DATA = 0.  
0000: 50 ms  
0001: 100 ms  
0010: 150 ms  
0011: 200 ms  
0100: 300 ms  
Normal key press duration  
0000: 100 ms  
0001: 200 ms  
0010: 300 ms  
...  
KEYPRESS[3:0]  
7-4  
R/W  
R/W  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
0x0  
0x0  
0x0  
0x0  
Long key press duration  
0000: 300 ms  
0001: 400 ms  
0010: 500 ms  
...  
LONG_KEYPRESS[3:0] 11-8  
Waiting time before switching the analog or digital switches:  
SWITCHING_WAIT  
15-12 R/W  
19-16 R/W  
0000: 10 ms  
0001: 30 ms  
0010: 50 ms  
...  
Time delay to start the powered accessory identification flow  
TD  
after detecting the bus voltage  
0000: 100 ms  
0001: 200 ms  
0010: 300 ms  
0011: 400 ms  
0100: 500 ms  
...  
1111:1600 ms  
The time for no activity in the switches before entering the  
Power Save mode automatically for Audio Type 1 or TTY  
device  
0000: 1 s  
0001: 2 s  
...  
1001:10s  
...  
1111:16 s  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
134  
Functional Block Description  
Table 142. Register 37, USB timing  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Not available  
Unused  
22-20  
23  
R
R
0x0  
0x0  
Read data valid  
0: Data not valid  
1: Data valid  
READVALID  
MUSBRSTB  
Table 143. Register 38, USB Button  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
1: the Send_End button is pressed  
1: button 1 is pressed  
1: button 2 is pressed  
1: button 3 is pressed  
1: button 4 is pressed  
1: button 5 is pressed  
1: button 6 is pressed  
1: button 7 is pressed  
1: button 8 is pressed  
1: button 9 is pressed  
1: button 10 is pressed  
1: button 11 is pressed  
1: button 12 is pressed  
1: button error occurred  
1: an unknown button is pressed  
Not available  
Send_End  
S1  
0
1
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R/C  
R
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x000  
S2  
2
S3  
3
S4  
4
S5  
5
S6  
6
S7  
7
S8  
8
S9  
9
S10  
10  
11  
12  
13  
14  
23-15  
S11  
S12  
ERROR  
UNKNOWN  
Unused  
Table 144. Register 39, USB Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Wait or not to wait for the command from the baseband  
before turning on the analog or digital switches for attached  
accessory  
Wait  
0
R/W  
MUSBRSTB  
0x1  
0: Wait until this bit is changed to 1. Turn on the switches  
immediately when this bit is changed to 1.  
1: Wait for only the time programmed by the Switching Wait  
bits in Timing Set 2 register before turning on the switches.  
Manual or automatic switching of the switches  
0: manual: the switches are controlled by the Manual S/W  
registers.  
Manual S/W  
RAWDATA  
1
2
R/W  
R/W  
MUSBRSTB  
MUSBRSTB  
0x1  
0x1  
1: auto: the switches are controlled by the Device Type  
registers  
Interrupt behavior selection  
0: Enable the ADC conversion periodically and report the  
ADC Result changes on ID pin to the host.  
1: Enable the key press monitor circuit to detect the ID pin  
status changes and report the key press events to the host.  
MC34708  
Analog Integrated Circuit Device Data  
135  
Freescale Semiconductor  
Functional Block Description  
Table 144. Register 39, USB Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Switch connection selection  
SWITCH_OPEN  
3
R/W  
MUSBRSTB  
0x1  
0: Open all switches  
1: Switch selection according to the Manual S/W bit.  
Soft reset. When written to 1, the IC is reset. Once the reset  
is complete, the RST bit is set and the RESET bit is cleared  
automatically.  
RESET  
4
RWM MUSBRSTB  
0x0  
1: to soft-reset the IC  
SPK_L to DM switch control  
TTY_SPKL  
RST  
5
6
R/W  
R/C  
MUSBRSTB  
MUSBRSTB  
0x0  
X
0: Turn off the SPK_L to DM switch  
1: Turn on the SPK_L to DM switch for TTY  
This bit indicates if a chip reset has occurred. This bit will be  
cleared once being read.  
0: no.  
1: Yes.  
Indicate either the device is in Active mode  
ACTIVE  
7
R/W  
MUSBRSTB  
X
0: Standby  
1: Active  
Not available  
CLK_RST  
VOTGEN  
Unused  
8
R/C  
R/W  
R
MUSBRST  
RESETB  
0x1  
0x0  
0x0  
0x0  
0x1  
Enables the OTG switch and the GOTG switch  
9
Not available  
Reserved  
10  
11  
12  
Reserved  
SWHOLD  
R
NONE  
Switch Hold  
R/W  
MUSBRSTB  
0: Run state machine and allow detection of accessory  
1: Holds off state machine until baseband comes up  
Reserved  
Reserved  
14-13  
R
NONE  
0x0  
0x0  
VBUS line switching configuration when Manual S/W = 0  
00: open all switches MOTG, M0  
VBUS SWITCHING[1:0] 16-15 R/W  
MUSBRSTB  
01: N/A  
10: VBUS connects to MIC. M0, MOTG.  
Others: open all switches connected to the VBUS line  
DP line switching configuration when Manual S/W = 0  
000: open all switches  
DP SWITCHING[2:0]  
DM SWITCHING[2:0]  
READVALID  
19-17 R/W  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
0x0  
0x0  
0x0  
001: DP connected to D+, DM connected to D-  
010: DP connected to SPK_R, DM connected to SPK_L  
011: DP connected to RxD, DM connected to TxD  
Others: open all switches connected to the DP pin and DM  
pin  
DM line switching configuration when Manual S/W = 0  
000: open all switches  
22-20 R/W  
001: DP connected to D+, DM connected to D-  
010: DP connected to SPK_R, DM connected to SPK_L  
011: DP connected to RxD, DM connected to TxD  
Others: open all switches connected to the DP pin and DM  
pin  
Read data valid  
0: Data not valid  
1: Data valid  
23  
R
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
136  
Functional Block Description  
Table 145. Register 40, USB Device Type  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
1: An audio type 1 accessory is attached  
1: An audio type 2 accessory is attached  
1: A USB host is attached  
Audio Type 1  
Audio Type 2  
USB  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
MUSBRSTB  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x00  
2
1: A UART cable is attached  
UART  
3
1: A 5-wire charger (type 1 or 2) is attached  
1: A USB charger is attached  
5W CHG  
4
USB CHG  
DEDICATED CHG  
USB OTG  
PPD  
5
1: A dedicated charger is attached  
1: A USB OTG accessory is attached  
1: A phone powered device is attached  
1: A TTY converter is attached  
1: An audio/video cable is attached  
1: An audio/video charger is attached  
1: A USB jig cable 1 is attached  
1: A USB jig cable 2is attached  
1: A UART jig cable 1is attached  
1: A UART jig cable 2 is attached  
1: A factory cable is attached  
6
7
8
TTY  
9
A/V  
10  
11  
12  
13  
14  
15  
16  
17  
18  
23-19  
AVCHRG  
USBJIG1  
USBJIG2  
UARTJIG1  
UARTJIG2  
ID_FACTORY  
UNK_DEVICE  
Unused  
1: Device not recognized  
Not available  
ADC result value of the resistance at ID pin  
ADCIDRESULT[4:0]  
MUSBRSTB  
Table 146. Register 41 and 42, Unused  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Not available  
Unused  
0-23  
R
0x000000  
Table 147. Register 43, ADC 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Enables ADC from the low power mode  
Request a start of the ADC Reading Sequencer  
ADEN  
0
1
2
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
0x0  
ADSTART  
ADCONT  
Run ADC reads continuously when high or one time when  
low. Note that the TSSTART request will have higher priority  
Hold the ADC reading Sequencer while saved ADC results  
are read from SPI  
ADHOLD  
3
R/W  
R/W  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
Channel Selection to stop when complete. Always start at  
000 and read up to and including this channel value.  
ADSTOP[2:0]  
6-4  
Not available  
Spare  
7
8
R/W  
R/W  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
0 = Disable manual LED control.  
1= Enable manual LED control  
THERM  
Not available  
Spare  
11-9  
R/W  
DIGRESETB  
0x0  
MC34708  
Analog Integrated Circuit Device Data  
137  
Freescale Semiconductor  
Functional Block Description  
Table 147. Register 43, ADC 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Enable the Touch screen from low power mode.  
TSEN  
12  
13  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
Request a start of the ADC Reading Sequencer for Touch  
screen readings.  
TSSTART  
Run ADC reads of Touch screen continuously when high or  
one time when low.  
TSCONT  
TSHOLD  
14  
15  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
0x0  
Hold the ADC reading Sequencer while saved Touch screen  
results are read from SPI  
Just like the ADSTOP above, but for the Touchscreen read  
programming. This will allow independent code for ADC  
Sequence readings and touchscreen ADC Sequence  
readings.  
TSSTOP[2:0]  
18-16 R/W  
Not available  
Spare  
19  
20  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
Enable the Touchscreen Pen Detection. Note that TSEN  
must be off for Pen Detection.  
TSPENDETEN  
Not available  
Spare  
23-21 R/W  
DIGRESETB  
0x0  
Table 148. Register 44, ADC 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
This will allow delay before the ADC readings.  
This will allow delay between each of ADC readings in a set.  
ADDLY1[3:0]  
ADDLY2[3:0]  
ADDLY3[3:0]  
3-0  
7:4  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
0x0  
This will allow delay after the set of ADC readings. This delay  
is only valid between subsequent wrap around reading  
sequences with ADCONT  
11-8  
This will allow delay before the ADC Touch screen readings.  
This is like the ADDLY1, but allows independent  
programming of touchscreen readings from general purpose  
ADC readings to prevent code replacement in the system.  
TSDLY1[3:0]  
TSDLY2[3:0]  
15-12 R/W  
19-16 R/W  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
This will allow delay between each of ADC Touch screen  
readings in a set. This is like the ADDLY2, but allows  
independent programming of touchscreen readings from  
general purpose ADC readings to prevent code replacement  
in the system.  
This will allow delay after the set of ADC Touch screen  
readings. This delay is only valid between subsequent wrap  
around reading sequences with TSCONT mode. This is like  
the ADDLY3, but allows independent programming of  
touchscreen readings from general purpose ADC readings  
to prevent code replacement in the system.  
TSDLY3[3:0]  
23-20 R/W  
DIGRESETB  
0x0  
Table 149. Register 45, ADC 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Channel Selection to place in ADRESULT0  
Channel Selection to place in ADRESULT1  
Channel Selection to place in ADRESULT2  
Channel Selection to place in ADRESULT3  
ADSEL0[3:0]  
ADSEL1[3:0]  
ADSEL2[3:0]  
ADSEL3[3:0]  
3-0  
7-4  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
0x0  
0x0  
11-8  
15-12 R/W  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
138  
Functional Block Description  
Table 149. Register 45, ADC 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Channel Selection to place in ADRESULT4  
Channel Selection to place in ADRESULT5  
ADSEL4[3:0]  
ADSEL5[3:0]  
19-16 R/W  
23-20 R/W  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
Table 150. Register 46, ADC 3  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Channel Selection to place in ADRESULT6  
Channel Selection to place in ADRESULT7  
ADSEL6[3:0]  
ADSEL7[3:0]  
TSSEL0[1:0]  
3-0  
7-4  
9-8  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
0x0  
Touchscreen Selection to place in ADRESULT0.  
Select the action for the Touchscreen;  
00 = dummy to discharge TSREF capacitance,  
01 = to read X-plate, 10 = to read Y-plate, and 11 = to read  
Contact.  
Touchscreen Selection to place in ADRESULT1.  
See TSSEL0 for modes.  
TSSEL1[1:0]  
TSSEL2[1:0]  
TSSEL3[1:0]  
TSSEL4[1:0]  
TSSEL5[1:0]  
TSSEL6[1:0]  
TSSEL7[1:0]  
11-10 R/W  
13-12 R/W  
15-14 R/W  
17-16 R/W  
19-18 R/W  
21-20 R/W  
23-22 R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Touchscreen Selection to place in ADRESULT2.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT3.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT4.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT5.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT6.  
See TSSEL0 for modes.  
Touchscreen Selection to place in ADRESULT7.  
See TSSEL0 for modes.  
Table 151. Register 47, ADC 4  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Not available  
Unused  
ADRESULT0[9:0]  
Unused  
1-0  
R
R
R
R
0x0  
0x000  
0x0  
ADC Result for ADSEL0  
Not available  
11-2  
DIGRESETB  
DIGRESETB  
13-12  
23-14  
ADC Result for ADSEL1  
ADRESULT1[9:0]  
0x000  
Table 152. Register 48, ADC5  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Not available  
Unused  
ADRESULT2[9:0]  
Unused  
1-0  
R
R
R
R
0x0  
0x000  
0x0  
ADC Result for ADSEL2  
Not available  
11-2  
DIGRESETB  
DIGRESETB  
13-12  
23-14  
ADC Result for ADSEL3  
ADRESULT3[9:0]  
0x000  
MC34708  
Analog Integrated Circuit Device Data  
139  
Freescale Semiconductor  
Functional Block Description  
Table 153. Register 49, ADC6  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Not available  
Unused  
ADRESULT4[9:0]  
Unused  
1-0  
R
R
R
R
0x0  
0x000  
0x0  
ADC Result for ADSEL4  
Not available  
11-2  
DIGRESETB  
DIGRESETB  
13-12  
23-14  
ADC Result for ADSEL5  
ADRESULT5[9:0}  
0x000  
Table 154. Register 50, ADC7  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Not available  
Unused  
ADRESULT6[9:0]  
Unused  
1:0  
R
R
R
R
0x0  
0x000  
0x0  
ADC Result for ADSEL6  
Not available  
11-2  
DIGRESETB  
DIGRESETB  
13-12  
23-14  
ADC Result for ADSEL7  
ADRESULT7[9:0]  
0x000  
Table 155. Register 51, Input Monitoring  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Trickle1 to Trickle2 change over threshold  
VBAT_TRKL[1:0]  
1-0  
R/W  
RTCPORB  
0x0  
00: 2.8 V  
01: 2.9 V  
10: 3.0 V  
11: 3.1 V  
Reserved  
Reserved  
CHREN  
2
3
R
NONE  
0x0  
0x1  
0x3  
Charger enable  
R/W  
R/W  
RTCPORB  
RTCPORB  
Turn on detection threshold and low battery warning  
threshold  
LOWBATT[1:0]  
5-4  
Reserved  
Reserved  
23-6  
R/W  
NONE  
0x00000  
Table 156. Register 52, Input Debounce  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Reserved  
Reserved  
VBATTDB[1:0]  
VBUSDB[1:0]  
Reserved  
1-0  
3-2  
5-4  
9-6  
10  
R/W  
R/W  
R/W  
R/W  
R/W  
NONE  
RESETB  
RESETB  
NONE  
0x0  
0x3  
0x03  
0x0  
0x0  
0x0  
0x3  
0x3  
0x00  
Battery voltage debounce  
VBUS debounce  
Reserved  
LED override  
CHRGLEDOVRD  
Reserved  
RESETB  
NONE  
Reserved  
13-11 R/W  
15-14 R/W  
17-16 R/W  
VBUS over voltage debounce  
Die Temp Comparator Debounce  
Reserved  
SUP_OVP_DB[1:0]  
DIE_TEMP_DB[1:0]  
Reserved  
RESETB  
RESETB  
NONE  
23-18  
R
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
140  
Functional Block Description  
Table 157. Register 53, VBUS Monitoring  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VBUS threshold low  
VBUS threshold high  
Reserved  
VBUSTL[2:0]  
VBUSTH[2:0]  
Reserved  
2-0  
5-3  
R/W  
R/W  
R/W  
RESETB  
RESETB  
NONE  
0x3  
0x3  
23-6  
0x00000  
Table 158. Register 54, LED Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
LED red repetition period  
CHRGLEDRPER[1:0]  
CHRGLEDRRAMP  
CHRGLEDRDC[5:0]  
CHRGLEDR[1:0]  
1-0  
2
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0x0  
0x0  
0x00  
0x3  
0x0  
0x0  
0x0  
0x00  
0x3  
0x0  
LED red channel driver ramp enable  
LED red channel driver duty cycle  
LED red driver current setting  
LED red enable  
8-3  
10-9  
11  
CHRGLEDREN  
LED green repetition period  
LED green channel driver ramp enable  
LED green channel driver duty cycle  
LED green driver current setting  
LED green enable  
CHRGLEDGPER[1:0]  
CHRGLEDGRAMP  
CHRGLEDGDC[5:0]  
CHRGLEDG[1:0]  
CHRGLEDGEN  
13-12 R/W  
14 R/W  
20-15 R/W  
22-21 R/W  
23  
R/W  
Table 159. Register 55, PWM Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
PWM1 Duty Cycle  
PWM1DUTY[5:0]  
PWMCLKDIV[5:0]  
PWM2DUTY[5-0]  
PWM2CLKDIV[5:0]  
5-0  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
0x00  
0x00  
0x00  
0x00  
PWM1 Clock Divide Setting  
PWM2 Duty Cycle  
11-6  
17-12 R/W  
23-18 R/W  
PWM2 Clock Divide Setting  
Table 160. Register 56 to 63, Unused  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
0-23  
R
0x000000  
Not available  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
141  
Typical Applications  
8
Typical Applications  
Figure 38 presents a typical application diagram of the MC34708 PMIC together with its functional components. For details on  
component references and additional components such as filters, refer to the individual sections.  
8.1  
Application Diagram  
BP  
C1  
10u  
C2  
10u  
BP  
VCOREDIG  
D2  
D1  
SW1 Output  
C5  
4.7u  
L2  
1.0u  
BP  
SW1IN  
2
x22u  
SW1ALX  
GNDSW1A  
SW1FB  
O/P  
Drive  
Input/Battery  
Monitoring  
General Purpose  
LED drivers  
C6/C7  
SW1  
Dual Phase  
GP  
2000 mA  
Buck  
SW1CFG  
SW1VSSSNS  
VCOREDIG  
To AP  
LICELL, UID, Die Temp, GPO4  
D8  
Voltage /  
Current  
GNDADC  
SW1BLX  
GNDSW1B  
O/P  
Drive  
Sensing  
&
R18  
100K  
10 Bit GP  
ADC  
A/D Result  
Translation  
ADIN9  
ADIN10  
ADIN11  
DVS  
CONTROL  
SW1PWGD  
General Purpose ADC Inputs:  
i.e., PA thermistor, Light Sensor, Etc.  
SW2 Output  
C11  
C10  
4.7u  
BP  
L4  
A/D  
Control  
1.0u  
SW2IN  
SW2LX  
GNDSW2  
SW2FB  
SW2PWGD  
22u  
MUX  
O/P  
Drive  
SW2  
ADIN12/TSX1  
ADIN13/TSX2  
ADIN14/TSY1  
D10  
R19  
100K  
LP  
Touch  
Screen  
Interface  
`
1000 mA  
To AP  
BP  
Buck  
Touch  
Screen  
SW3 Output  
C14 10u  
C13  
4.7u  
L5  
1.0u  
ADIN15/TSY2  
TSREF  
Interface  
Die Temp  
&
Thermal Warning  
Detection  
SW3IN  
C54  
To Interrupt  
Section  
SW3  
INT MEM  
500 mA  
Buck  
O/P  
Drive  
SW3LX  
GNDSW3  
SW3FB  
D11  
2.2u  
BPTHERM  
NTCREF  
C16  
4.7u  
SW4A Output  
C17 10u  
L6  
1.0u  
BP  
SW4AIN  
SW4ALX  
GNDSW4A  
SW4FBA  
O/P  
Drive  
BATTISNSCCP  
D12  
SW4  
Dual Phase  
DDR  
BATTISNSCCN  
CFP  
SW4CFG  
1000 mA  
Buck  
SW4B Output  
C20 10u  
C19  
4.7u  
L7  
1.0u  
Package Pin Legend  
BP  
BP  
SW4BIN  
CFN  
SW4BLX  
GNDSW4B  
SW4BFB  
O/P  
Drive  
Output Pin  
Input Pin  
D13  
SPIVCC  
Shift Register  
Bi-directional Pin  
SW5  
SW5 Output  
C23 22u  
C22  
4.7u  
L8  
1.0u  
CS  
SPI  
Interface  
+
Muxed  
I2C  
Optional  
Interface  
SW5IN  
CLK  
SW5  
I/O  
1000 mA  
Buck  
O/P  
Drive  
SW5LX  
GNDSW5  
SW5FB  
SPI  
D14  
SPI  
MOSI  
MISO  
To Enables & Control  
Registers  
BP  
C25  
2.2u  
L9  
2.2u  
GNDSPI  
Shift Register  
SWBSTIN  
SWBSTLX  
SWBSTFB  
SWBST  
Output  
(Boost)  
BP  
D3  
O/P  
Drive  
SWBST  
380 mA  
Boost  
C56  
VALWAYS  
VCORE  
1u  
GNDSWBST  
C26  
2x22u  
C50  
34708  
1u  
C51  
SW4B  
C57  
VCOREDIG  
VDDLP  
VINREFDDR  
Reference  
Generation  
1u  
C52  
SPI Control  
C35  
100n  
C55  
100pF  
C49  
VCOREREF  
100n  
100n  
VHALF  
VREFDDR  
10mA  
GNDCORE  
GNDREF  
100n  
VREFDDR  
1u  
C28  
SPKR  
SPKL  
MIC  
C30  
2.2u  
VINPLL  
VPLL  
VPLL  
50 mA  
BP  
Pass  
FET  
To/From  
Audio IC  
BP  
Q1  
C29  
VUSB2DRV  
VUSB2  
TXD  
RXD  
Pass  
FET  
VUSB2  
350mA  
2.2u  
VBUS/ID  
Detectors, Host  
Auto detection  
To/From  
AP  
R22  
40m  
DPLUS  
BP  
DMINUS  
VDACDRV  
VDAC  
VDAC  
250mA  
Q3  
UART Switches  
Audio Switches  
C36  
2.2u  
To  
Trimmed  
Circuits  
DP  
DM  
SPI  
R23  
Trim-In-Package  
100m  
Control  
Logic  
To/From  
USB Cable  
C38  
SW5  
VINGEN1  
VGEN1  
VGEN1  
250mA  
Pass  
FET  
GNDUSB  
UID  
2.2u  
VBUS  
BP  
Startup  
Sequencer  
Decode  
Trim?  
C34  
2.2uF  
OVP  
Control  
Logic  
VGEN2DRV  
VGEN2  
PUMSx  
PLL  
Switchers  
Q5  
Pass  
FET  
VGEN2  
250mA  
VINUSB  
VUSB  
Monitor  
Timer  
SWBST  
C47  
C41  
2.2u  
VUSB  
Regulator  
R24  
50m  
RTC  
Calibration  
+
32 KHz  
Internal  
Osc  
LDOVDD  
BP  
2.2u  
SPI Result  
Registers  
Interrupt  
Inputs  
Enables &  
Control  
32 KHz  
Buffers  
Best  
of  
Supply  
GNDREG1  
GNDREG2  
GNDREF1  
GNDREF2  
BP  
LCELL  
Switch  
LICELL  
PWM  
Outputs  
32 KHz  
Crystal  
Osc  
GPIO Control  
Li Cell  
Charger  
Digital Core  
Coin Cell  
Battery  
C46  
100n  
R4  
R20 R3  
C43  
0.1uF  
VDDLP  
D16  
BP  
D15  
To/From  
AP  
1.5V LDO  
To AP  
To Peripherals  
To GND, or  
VCOREDIG  
VOUT  
GND  
VIN  
CE  
LICELL  
18p  
C45  
15p  
C44  
D17  
C59  
C58  
100nF  
100nF  
Y1  
32.768 KHz  
Crystal  
Workaround for erratum#23.  
On/Off  
Button  
Reset  
button  
If back-up coin cell is not present in the application, D16 and D17 are not  
required and BP is connected directly to VIN of the LDO  
Figure 38. Typical Application Schematic  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
142  
Typical Applications  
8.2  
Bill of Material  
The following table provides a complete list of the recommended components on a full featured system using the MC34708  
Device. Critical components such as inductors, transistors, and diodes are provided with a recommended part number, but  
equivalent components may be used.  
(84)  
Table 161. MC34708 Bill of Material  
Item  
Quantity Component  
Description  
MC34708  
Vendor  
Comments  
Freescale  
PMIC  
1
1
Battery Interface  
10 F  
TDK  
Battery Filter  
2
3
4
5
6
7
1
2
1
1
1
1
C1  
R1  
20 mOhm  
10 F  
Battery Sense (Optional for battery current sensing)  
BP/ buck charging capacitor  
C2  
1 uF  
VBUS 1 uF input cap  
C67  
D2  
Green LED  
Red LED  
Green general purpose LED indicator  
Red General purpose LED indicator  
D1  
Miscellaneous  
1.0 F  
VALWAYS  
8
9
1
1
1
1
1
1
1
1
1
1
2
1
C56  
C43  
C50  
C51  
C52  
C49  
C46  
Y1  
100 nF  
VSRTC  
1.0 F  
VCORE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Boost  
20  
21  
22  
23  
1.0 F  
VCOREDIG  
100 pF  
VDDLP  
100 nF  
VCOREREF  
100 nF  
Coin cell  
Crystal 32.768 kHz CC7  
18 pF  
Oscillator  
Oscillator load capacitor  
Oscillator load capacitor  
RESETB, RESETBMCU Pull-ups  
SDWNB Pull-up  
C44  
C45  
R3, R4  
R20  
18 pF  
100 k  
100 k  
2.2 H LPS3015-222ML  
Diode BAS52  
2.2 F 16 V  
Coilcraft  
Infineon  
Boost Inductor  
1
1
1
2
L9  
D3  
Boost diode  
Boost Output Capacitor  
Boost Input Capacitor  
C26  
C25  
22 F  
MC34708  
Analog Integrated Circuit Device Data  
143  
Freescale Semiconductor  
Typical Applications  
(84)  
Table 161. MC34708 Bill of Material  
Item  
SW1  
Quantity Component  
Description  
Vendor  
Comments  
1.0 H VLS201612ET-1R0N TDK  
1.0 H VLS252010ET-1R0N TDK  
Buck 1 Inductor (I  
< 1.6 Amps)  
MAX  
Optional dual phase Inductor (I  
2.0 Amps)  
MAX  
24  
2
L2, L3  
1.0 H BRL3225T1ROM  
1.0 uH LPS4012-102NL  
22 F  
Taiyo Yuden Optional single Phase inductor (I  
< 1.6 Amps)  
MAX  
Coilcraft  
Optional single phase inductor (I  
Buck 1 Output Capacitor  
Buck 1 Input Capacitor  
SW1LX diode  
2.0 Amps)  
MAX  
25  
26  
2
1
1
C6, C7  
C5  
4.7 F  
Diode BAS3010-03LRH  
Infineon  
27  
D8  
SW2  
28  
1.0 H VLS252010ET-1R0N TDK  
Buck 2 Inductor  
1
1
1
1
L4  
22 F  
Buck 2 Output Capacitor  
Buck 2 Input Capacitor  
SW2LX diode  
29  
C11  
C10  
D10  
4.7 F  
30  
Diode BAS3010-03LRH  
Infineon  
31  
SW3  
32  
1.0 H VLS201612ET-1R0N TDK  
Buck 3 Inductor  
1
1
1
1
L5  
10 F  
Buck 3 Output Capacitor  
Buck 3 Input Capacitor  
SW3LX diode  
33  
C14  
C13  
D11  
4.7 F  
34  
Diode BAS3010-03LRH  
Infineon  
35  
SW4A  
36  
1.0 H VLS201612ET-1R0N TDK  
Buck 4A Inductor  
1
0
1
1
1
L6  
1.0 H VLS252010ET-1R0N TDK  
Optional Inductor  
37  
10 F  
Buck 4A Output Capacitor  
Buck 4A Input Capacitor  
SW4ALX diode  
38  
C17  
C16  
D12  
4.7 F  
39  
Diode BAS3010-03LRH  
Infineon  
40  
SW4B  
41  
1.0 H VLS201612ET-1R0N TDK  
Buck 4B Inductor  
1
0
1
1
1
L7  
-
1.0 H VLS25010ET-1R0N TDK  
Optional Inductor  
42  
10 F  
Buck 4B Output Capacitor  
Buck 4B Input Capacitor  
SW4BLX diode  
43  
C20  
C19  
D13  
4.0 F  
44  
Diode BAS3010-03LRH  
Infineon  
45  
SW5  
46  
1.0 H VLS252010ET-1R0N TDK  
Buck 5 Inductor  
1
1
1
L8  
22 F  
Buck 5 Output Capacitor  
Buck 5 Input Capacitor  
47  
C23  
C22  
4.7 F  
48  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
144  
Typical Applications  
(84)  
Table 161. MC34708 Bill of Material  
Item  
49  
Quantity Component  
Description  
Vendor  
Infineon  
Comments  
Diode BAS3010-03LRH  
SW5LX diode  
VPLL  
1
1
D14  
C30  
VPLL  
2.2 F  
50  
VREFDDR  
51  
100 nF  
100 nF  
1.0 F  
VREFDDR input capacitor  
VHALF 0.1 uF caps  
VREFDDR  
1
1
1
C35  
C57  
C28  
52  
53  
VDAC  
PNP Transistor  
• NSS12100UW3  
• 2SB1733  
On Semi  
Rohm  
VDAC PNP  
VDAC  
54  
1
Q3  
2.2 F  
55  
56  
1
1
C36  
R23  
Connect this resistor in series with the output capacitor to  
provide an extra series resistance of 100 mfor LDO  
stability.  
100 m  
VUSB2  
PNP transistor  
• NSS12100UW3  
• 2SB1733  
On Semi  
Rohm  
VUSB2 PNP  
VUSB2  
57  
1
Q1  
2.2 F  
58  
59  
1
1
C29  
R22  
Connect this resistor in series with the output capacitor to  
provide an extra series resistance of 40 mfor LDO  
stability.  
40 m  
VUSB  
60  
2.2 F  
4.7 F  
VUSB  
1
1
C47  
C38  
VGEN1  
61  
VGEN1  
VGEN2  
PNP Transistor  
• NSS12100UW3  
• 2SB1733  
On Semi  
Rohm  
VGEN2 PNP  
VGEN2  
62  
1
Q5  
2.2 F  
63  
64  
1
1
C41  
R24  
Connect this resistor in series with the output capacitor to  
provide an extra series resistance of 50 mfor LDO  
stability.  
50 m  
WORKAROUNDS  
1.5 V LDO  
• NCP4682  
• NCP4685  
On Semi  
1.5 V LDO for workaround. See erratum #23 on ER34708  
65  
1
U2  
MC34708  
Analog Integrated Circuit Device Data  
145  
Freescale Semiconductor  
Typical Applications  
(84)  
Table 161. MC34708 Bill of Material  
Item  
66  
Quantity Component  
Description  
Vendor  
Comments  
Low voltage Schottky diode  
Schottky diode  
100 nF  
1
1
1
D15  
C58  
C59  
LDO input capacitor  
LDO output capacitor  
67  
100 nF  
68  
Notes  
84. Freescale does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or  
tables. While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their  
application.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
146  
Typical Applications  
8.3  
MC34708 Layout Guidelines  
8.3.1  
General board recommendations  
1. It is recommended to use an 8 layer board stack-up arranged as follows:  
• High current signal  
• GND  
• Signal  
• Power  
• Power  
• Signal  
• GND  
• High current signal  
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area.  
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.  
8.3.2  
Component Placement  
Sense resistors should be placed as Close to the IC as possible. Route the high current path flowing from VBATT to BATTISNSN  
as thick and as short as possible to reduce power losses.  
8.3.3  
General Routing Requirements  
1. Some recommended things to keep in mind for manufacturability:  
• Via in pads require a 4.5 mil Minimum annular ring. Pad must be 9.0 mils larger than the hole  
• Max copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
• Minimum allowed spacing between line and hole pad is 3.5 mils  
• Minimum allowed spacing between line and line is 3.0 mils  
2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from  
power, clock, or high power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins.  
3. Shield feedback traces of the switching regulators and keep them as short as possible (trace them on the bottom so the  
ground and power planes shield these traces).  
4. Sense pins must be directly connected to the 0.02 Ohm sense resistor R1 (BATTISNSN and BATTISNSP).  
5. Avoid coupling trace between important signal/low noise supplies (like VCOREREF, VCORE, VCOREDIG) from any  
switching node (i.e. SW1ALXx, SW2LXx, SW3LXx, SW4ALX, SW4BLX, SW5LXx and SWBSTLXx).  
6. Make sure all components related to an specific block are referenced to the corresponding ground, e.g. all components  
related to the SW1 converter must referenced to GNDSW1A1 and GNDSW1A2.  
8.3.4  
Parallel Routing Requirements  
2
1. SPI/I C signal routing:  
• CLK is the fastest signal of the system, so it must be given special care. Here are some tips for routing the communication  
signals:  
• To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to  
shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole  
signal trace length.  
MC34708  
Analog Integrated Circuit Device Data  
147  
Freescale Semiconductor  
Typical Applications  
Figure 39. Recommended Shielding for Critical Signals.  
• These signals can be placed on an outer layer of the board to reduce their capacitance in respect to the ground plane.  
• The crystal connected to the XTAL1 and XTAL2 pins must not have a ground plane directly below.  
• The following are clock signals: CLK, CLK32K, CLK32KMCU, XTAL1, and XTAL2. These signals must not run parallel to  
each other, or in the same routing layer. If it is necessary to run clock signals parallel to each other, or parallel to any other  
signal, then follow a MAX PARALLEL rule as follows:  
• Up to 1 inch parallel length – 25 mil minimum separation  
• Up to 2 inch parallel length – 50 mil minimum separation  
• Up to 3 inch parallel length – 100 mil minimum separation  
• Up to 4 inch parallel length – 250 mil minimum separation  
• Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals.  
Another good practice is to trace them perpendicularly on different layers, so there is a minimum area of  
proximity between signals.  
2. The R1 resistor must run in parallel to the BATTISNSN and BATTISNSP traces.  
8.3.5  
Differential Routing  
1. DP and DM traces should be routed as 90 ohm differential signals.  
2. DPLUS and DMINUS traces should be routed as 90 ohm differential signals.  
8.3.6  
Switching Regulator Layout Recommendations  
1. Per design, the MC34708 is designed to operate with only 1 input bulk capacitor. However, it is recommended to add a  
high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor should be in the  
range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.  
2. Make high-current ripple traces low inductance (short, high W/L ratio).  
3. Make high-current traces wide or copper islands.  
4. Make high-current traces SYMETRICAL for dual–phase regulators (SW1, SW4).  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
148  
Typical Applications  
BP  
SWxVIN  
CIN_HF  
CIN  
SWx  
SWxLX  
Diver Controller  
L
COUT  
D
GNDSWx  
SWxFB  
Compensation  
Figure 40. Generic Buck Regulator Architecture  
Figure 41. Recommended Layout for Switching Regulators.  
MC34708  
Analog Integrated Circuit Device Data  
149  
Freescale Semiconductor  
Typical Applications  
8.4  
Thermal Considerations  
Rating Data  
8.4.1  
The thermal rating data of the packages has been simulated with the results listed in Table 5.  
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol R  
or θJA (Theta-JA)  
θJA  
strictly for junction-to-ambient thermal resistance on a 1s test board in natural convection environment. R  
or θJMA (Theta-  
θJMA  
JMA) will be used for both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced  
convection on both 1s and 2s2p test boards. The generic name, Theta-JA, is expected to continue to be commonly used.  
The JEDEC standards can be consulted at http://www.jedec.org/  
8.4.2  
Estimation of Junction Temperature  
An estimation of the chip junction temperature TJ can be obtained from the equation  
T = T + (R  
x P )  
D
J
A
θJA  
with  
T = Ambient temperature for the package in °C  
A
R= Junction to ambient thermal resistance in °C/W  
JA  
P = Power dissipation in the package in W  
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board R  
and the  
θJA  
value obtained on a four layer board R  
. Actual application PCBs show a performance close to the simulated four layer board  
θJMA  
value although this may be somewhat degraded in case of significant power dissipated by other components placed close to the  
device.  
At a known board temperature, the junction temperature TJ is estimated using the following equation  
T = T + (R  
x P ) with  
D
J
B
θJB  
T = Board temperature at the package perimeter in °C  
B
R
= Junction to board thermal resistance in °C/W  
θJB  
P = Power dissipation in the package in W  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
See Thermal Characteristics for more details on thermal management.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
150  
Package Mechanical Dimensions  
9
Package Mechanical Dimensions  
The MC34708 is offered in two pin compatible 206 pin MAPBGA packages, an 8.0x8.0 mm, 0.5 mm pitch package, and a  
13x13 mm, 0.8 mm pitch package.  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to  
www.freescale.com and perform a keyword search for the drawing’s document number.  
Table 162. Package Drawing Information  
Package  
Suffix  
Package Outline Drawing Number  
98ASA00312D  
98ASA00299D  
206-pin MAPBGA (8 x 8), 0.5 mm  
206-pin MAPBGA (13 x 13), 0.8 mm  
VK  
VM  
Dimensions shown are provided for reference ONLY (For Layout and Design, refer to the Package Outline Drawing listed in the  
following figures).  
MC34708  
Analog Integrated Circuit Device Data  
151  
Freescale Semiconductor  
Package Mechanical Dimensions  
9.1  
206-pin MAPBGA (8 x 8), 0.5 mm  
VK SUFFIX (PB-FREE)  
206-PIN  
98ASA00312D  
ISSUE 0  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
152  
Package Mechanical Dimensions  
VK SUFFIX (PB-FREE)  
206-PIN  
98ASA00312D  
ISSUE 0  
MC34708  
Analog Integrated Circuit Device Data  
153  
Freescale Semiconductor  
Package Mechanical Dimensions  
9.2  
206-pin MAPBGA (13 x 13), 0.8 mm  
VM SUFFIX (PB-FREE)  
206-PIN  
98ASA00299D  
ISSUE A  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
154  
Package Mechanical Dimensions  
VM SUFFIX (PB-FREE)  
206-PIN  
98ASA00299D  
ISSUE A  
MC34708  
Analog Integrated Circuit Device Data  
155  
Freescale Semiconductor  
Reference Section  
10 Reference Section  
Table 163. MC34708 Reference Documents  
Reference  
Description  
MC34708ER  
Errata  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
156  
Revision History  
11 Revision History  
.
REVISION  
6.0  
DATE  
DESCRIPTION OF CHANGES  
Initial release  
7/2011  
10/2011  
Corrected the two pins SW2PWGD and SDWNB, and associated drawings.  
Changed LED Driver Electrical Specifications, VPLL Matching from 3.0 to 4.0%  
Changed VPLL Electrical Specification, tON-VPLL from 100 to 120 s  
Changed SWBST Electrical Specifications, ILEAK_SWBST from 5.0 to 6.0 A  
Added Max limit to Charger Input Current Limit (Using the USB input).  
Added note (61) to VREFDDR  
Changed RUSB ON value to 5.0 typ, 8.0 max  
Set MIC bias to 1.5 V, and changed ON resistance values to 75 typ and 150 max.  
Added Efficiency values for all Buck Converter  
7.0  
Added diodes to the LX pin on SW1, SW2, SW3, SW4A, SW4B, and SW5.  
Updated schematics to reflect the LX pin diodes on SW1, SW2, SW3, SW4A, SW4B, and SW5, and  
removed the 10 F VBUSVIN input capacitor.  
Removed charger and coulomb counter functionality throughout the document. Section 7.6  
removed.  
Updated Figure 1, Figure 2, Figure 3, Figure 4, Figure 38, Figure 20, Figure 26, Figure 28, Figure  
30, Figure 31, Figure 40.  
Update Table 3  
8.0  
7/2012  
Pin function changed to “O” on pins VCORE, VCOREDIG, VALWAYS, VCOREREF, VDDLP,  
and TSREF.  
Pin function to “I” on pins ADIN11, TSX1/ADIN12, TSX2/ADIN13, TSY1/ADIN14 and TSY2/  
ADIN15  
Description for unsupported charger and coulomb counter pins modified.  
Clarified ICTEST description  
Update Table 4 with maximum pin rating for all blocks.  
Added Table 7 “Die Temp Debounce Settings”  
Updated thermal monitor operation in section 5.2.1  
Removed PRETMR, ITRICKLE, VSRT and ADC specifications in Table 9.  
Changed typ current spec for ON Standby (LPM) from 260 uA to 340uA, changed ON Standby  
Digital Core from 370uA to 480uA and removed all charger conditions in Table 10.  
Updated section 6.1 feature list  
Renamed all instances of APSKIP to APS.  
Updated Table 15: VSRTC quiescent current to 1.7uA @1.2V setting and 2.7uA @ 1.3V setting.  
GLBRSTTMR[1:0], value “00” changed to Invalid option in Table 24.  
Removed interrupt, mask and sense bit related to charger and coulomb counter in Table 21.  
Changed debounce time for THERMxxx interrupts.  
Updated SW4A/B operation and removed 3.3V setting from SW4A/B in section 7.5.4.6  
Removed AUX attach in section 7.5.3.4  
Replaced “Under Voltage Detection” event in section 7.5.3.5 with “BP lower than VBAT_TRKL”  
event.  
Changed UVDET threshold to 3.1V (rising)/ 2.65V (falling) in Table 27  
Added PWMPS mode description on Table 31  
Changed quiescent currents for all switching regulators ISWxQ in PWMPS and APS modes.  
LDO Short Circuit Protection feature no longer supported.  
Changed ADC channels 4 and 7 to “Reserved”  
Added Figure 19. Added section 7.8.3.  
Removed VBATTREMTH specification from Table 77  
Removed charger support from section 7.8.4  
Removed IVBUS quiescent current specification for dedicated charger condition in Table 97  
Updated components to BOM in section 8.2  
Updated SPI register map  
Replaced Figures 42-45 with Table 104 SPI/I2C Register Map  
Updated Table 101 and Table 104 to match removed functionality  
Updated Table 105 through Table 158 to match removed functionality  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
157  
Revision History  
REVISION  
DATE  
10/2012  
DESCRIPTION OF CHANGES  
Corrected pins E14, E15, and F7 in Table 3  
Corrected Figure 3, Ball Map.  
9.0  
Update table 3. Pin definition  
10  
2/2013  
Pin TRICKLESEL, Function = I, Description = Connect to VCOREDIG  
Pin PRETMR, Function = I, Description = Connect to Ground  
Pin BPTHERM, Function = I, Description = Connect to Ground  
Update Table 4. Maximum rating  
Update IC core Reference maximum pin voltages.  
Update LDO regulator maximum pin voltage.  
Table 5. Note added to restrict operation at maximum temperature ratings.  
Table 10. Update Mode descriptions.  
Removed PWMPS mode on all Buck Switching regulators.  
Corrected SWBST operating mode PWM to APS  
Typical short circuit protection defined to 20% above ILMAX  
Remove Noise specifications from all LDO regulators.  
Removed Short-circuit protection threshold specification from VUSB2, VDAC and VGEN1 and  
VUSB.  
Removed Spurs specification on VDAC and VGEN1  
Changed PSRR specifications for all LDO regulators to typical value only.  
Changed typical VPLLPSRR specifications  
VIN=UVDET: from 40 to 70 dB  
VIN=VNOM+1.0 V, >UVDET: from 60 to 75 dB  
Changed typical VUSB2PSRR specifications  
VIN=VINMIN + 100 mV: from 40 to 30 dB  
VIN=VNOM+1.0 V: from 60 to 30 dB  
Changed typical VDACPSRR specifications  
VIN=VINMIN + 100 mV: from 40 to 50 dB  
VIN=VNOM+1.0 V: from 60 to 50 dB  
Changed typical VGEN1PSRR specifications  
VIN=VINMIN + 100 mV: from 60 to 50 dB  
VIN=VNOM+1.0 V: from - to 45 dB  
Changed typical VUSBPSRR specifications  
VIN=VINMIN + 100 mV: from 40 to 65 dB  
Specified total series resistance of VGEN2 output capacitance to 60m±20% including capacitor  
ESR.  
Changed ADC drift over temperate from 1 to 10 LSB  
Update Bill of materials  
Corrected sensing point for ADC channel 2, from BP to BPSENSE pin.  
Table 81. LED driver control option x00 changed the CHRGLEDx status to Off.  
Changed section 7.8.4.15 title to Device Detect mode  
Updated figure 38  
Updated General Purpose LED Drivers Current Programming  
Corrected Table 14 VCOREDIG spec  
Modified Table 82 LED current programming  
No technical changes. Revised back page. Updated document properties. Added SMARTMOS  
sentence to first paragraph. Changed to Technical Data.  
4/2013  
Updated section Oscillator Specifications.  
11  
11/2013  
Added note (38) to VSRTC Electrical Specifications table.  
MC34708  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
158  
Information in this document is provided solely to enable system and software implementers to use Freescale products.  
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no  
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.  
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.  
Off.SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of  
their respective owners.  
© 2013 Freescale Semiconductor, Inc.  
Document Number: MC34708  
Rev. 11.0  
11/2013  

相关型号:

935319759557

RISC Microprocessor
NXP

935319782518

Multifunction Peripheral
NXP

935319782557

Multifunction Peripheral
NXP

935319794557

Microcontroller
NXP

935319811557

Microprocessor
NXP

935319818557

RISC Microcontroller
NXP

935319841557

RISC Microcontroller
NXP

935319892518

RISC Microcontroller
NXP

935319894557

RISC Microcontroller
NXP

935319895557

RISC Microcontroller
NXP

935319899557

RISC Microcontroller
NXP

935319906557

Microcontroller
NXP