935320988557 [NXP]

Digital Signal Processor;
935320988557
型号: 935320988557
厂家: NXP    NXP
描述:

Digital Signal Processor

外围集成电路
文件: 总178页 (文件大小:1529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
56F8346/56F8146  
Data Sheet  
Preliminary Technical Data  
56F8300  
16-bit Digital Signal Controllers  
MC56F8346  
Rev. 15  
01/2007  
freescale.com  
Document Revision History  
Version History  
Description of Change  
Rev 1.0  
Rev 2.0  
Rev 3.0  
Pre-Release version, Alpha customers only  
Initial Public Release  
Corrected typo in Table 10-4, Flash Endurance is 10,000 cycles. Addressed additional  
grammar issues.  
Rev 4.0  
Added “Typical Min” values to Table 10-16. Edited grammar, spelling, consistency of  
language throughout family. Updated values in Current Consumption per Power Supply Pin,  
Table 10-7, Regulator Parameters, Table 10-9, External Clock Operation Timing  
Requirements Table 10-13, SPI Timing, Table 10-18, ADC Parameters, Table 10-24, and IO  
Loading Coefficients at 10MHz, Table 10-25.  
Rev 5.0  
Added Part 4.8. Added the word “access” to FM Error Interrupt in Table 4-5. Removed min  
and max numbers. Clarified CSBAR 0 and CSBAR 1 reset values in Table 4-10. Removed  
min and max numbers, only documenting Typ. numbers for LVI in Table 10-6.  
Rev 6.0  
Rev 7.0  
Updated numbers in Table 10-7 and Table 10-8 with more recent data. Corrected typo in  
Table 10-3 in Pd characteristics.  
Replaced any reference to Flash Interface Unit with Flash Memory Module. Added note to  
VCAP pin in Table 2-2. Removed unneccessary notes in Table 10-12. Corrected temperature  
range in Table 10-14. Added ADC calibration information to Table 10-24 and new graphs in  
Figure 10-21.  
Rev 8.0  
Rev 9.0  
Clarified Table 10-22. Corrected Digital Input Current Low (pull-up enabled) numbers in  
Table 10-5. Removed text and Table 10-2. Replaced with note to Table 10-1.  
Added 56F8146 information; edited to indicate differences in 56F8346 and 56F8146. Refor-  
matted for Freescale look and feel. Updated Temperature Sensor and ADC tables, then  
updated balance of electrical tables for consistency throughout family. Clarified I/O power  
description in Table 2-2, added note to Table 10-7 and clarified Section 12.3.  
Added output voltage maximum value and note to clarify in Table 10-1; also removed overall  
life expectancy note, since life expectancy is dependent on customer usage and must be  
determined by reliability engineering. Clarified value and unit measure for Maximum allowed  
PD in Table 10-3. Corrected note about average value for Flash Data Retention in  
Rev 10.0  
Table 10-4. Added new RoHS-compliant orderable part numbers in Table 13-1.  
Rev 11.0  
Rev 12.0  
Updated Table 10-24 to reflect new value for maximum Uncalibrated Gain Error  
Deleted RSTO from Pin Group 2 (listed after Table 10-1). Deleted formula for Max Ambient  
Operating Temperature (Automotive) and Max Ambient Operating Temperature (Industrial) in  
Table 10-4. Added RoHS-compliance and “pb-free” language to back cover.  
Rev 13.0  
Updated JTAG ID in Section 6.5.4. Added information/corrected state during reset in  
Table 2-2. Clarified external reference crystal frequency for PLL in Table 10-14 by increasing  
maximum value to 8.4MHz.  
56F8346 Technical Data, Rev. 15  
2
Freescale Semiconductor  
Preliminary  
Document Revision History (Continued)  
Description of Change  
Version History  
Rev 14.0  
Rev. 15  
Replaced “Tri-stated” with an explanation in State During Reset column in Table 2-2  
• Added the following note to the description of the TMS signal in Table 2-2:  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
• Added the following note to the description of the TRST signal in Table 2-2:  
Note: For normal operation, connect TRST directly to VSS. If the design is to be used in a  
debugging environment, TRST may be tied to VSS through a 1K resistor.  
Please see http://www.freescale.com for the most current data sheet revision.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
3
56F8346 Technical Data, Rev. 15  
4
Freescale Semiconductor  
Preliminary  
56F8346/56F8146 General Description  
Note: Features in italics are NOT available in the 56F8146 device.  
• Up to 60 MIPS at 60MHz core frequency  
Temperature Sensor  
• Up to two Quadrature Decoders  
• Optional On-Chip Regulator  
• DSP and MCU functionality in a unified,  
C-efficient architecture  
• Access up to 1MB of off-chip program and data memory  
• FlexCAN module  
• Chip Select Logic for glueless interface to ROM and  
SRAM  
• 128KB of Program Flash  
• 4KB of Program RAM  
• 8KB of Data Flash  
• Two Serial Communication Interfaces (SCIs)  
• Up to two Serial Peripheral Interfaces (SPIs)  
• Up to four general-purpose Quad Timers  
• Computer Operating Properly (COP) / Watchdog  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for  
unobtrusive, real-time debugging  
• 8KB of Data RAM  
• 8KB of Boot Flash  
• Up to 62 GPIO lines  
• Up to two 6-channel PWM Modules  
• Four 4-channel, 12-bit ADCs  
• 144-pin LQFP Package  
OCR_DIS  
EMI_MODE  
RSTO  
V
2
V
VDD  
VSS VDDA  
VSSA  
PP  
CAP  
EXTBOOT  
5
RESET  
4
7
5
2
6
6
JTAG/  
EOnCE  
Port  
PWM Outputs  
Current Sense Inputs  
or GPIOC  
Digital Reg  
Analog Reg  
PWMA  
3
3
Low Voltage  
Supervisor  
16-Bit  
56800E Core  
Fault Inputs  
Program Controller  
and  
Hardware Looping Unit  
Address  
Generation Unit  
Data ALU  
Bit  
Manipulation  
Unit  
PWM Outputs  
PWMB  
16 x 16 + 36 -> 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
Current Sense Inputs  
or GPIOD  
3
4
Fault Inputs  
PAB  
PDB  
CDBR  
CDBW  
4
4
AD0  
ADCA  
AD1  
5
4
4
R/W Control  
Memory  
VREF  
XDB2  
XAB1  
XAB2  
6
2
8
A0-5 or GPIOA8-13  
A6-7 or GPIOE2-3  
AD0  
AD1  
Program Memory  
64K x 16 Flash  
2K x 16 RAM  
4K x 16 Boot  
Flash  
External  
Address Bus  
Switch  
ADCB  
A8-15 or GPIOA0-7  
GPIOB0 or A16  
PAB  
Temp_Sense  
System Bus  
Control  
PDB  
Quadrature  
Decoder 0 or  
Quad  
Timer A or  
GPIOC  
4
7
9
CDBR  
CDBW  
D0-6 or GPIOF9-15  
D7-15 or GPIOF0-8  
WR  
External Data  
Bus Switch  
Data Memory  
4K x 16 Flash  
8K x 16 RAM  
Quadrature  
Decoder 1 or  
Quad  
Timer B or  
SPI1 or  
GPIOC  
Quad  
Timer C or  
GPIOE  
RD  
4
2
Bus Control  
GPIOD0-1 or CS2-3  
PS (CS0) or GPIOD8  
IPBus Bridge (IPBB)  
Peripheral  
Device Selects  
RW  
IPAB  
IPWDB  
IPRDB  
DS (CS1) or GPIOD9  
Control  
Decoding  
Peripherals  
Quad  
Timer D or  
GPIOE  
2
2
Clock  
resets  
PLL  
FlexCAN  
P
O
R
System  
Integration  
Module  
O
SPI0 or  
GPIOE  
SCI1 or  
GPIOD  
SCI0 or  
GPIOE  
COP/  
Interrupt  
Clock  
XTAL  
S
Generator  
C
Watchdog Controller  
EXTAL  
4
2
2
CLKMODE  
IRQA IRQB  
CLKO  
56F8346/56F8146 Block Diagram - 144 LQFP  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
5
Table of Contents  
Part 1 Overview . . . . . . . . . . . . . . . . . . . . . . . .7  
Part 8 General Purpose Input/Output  
(GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
1.1  
1.2  
1.3  
56F8346/56F8146 Features . . . . . . . . . . . .7  
Device Description. . . . . . . . . . . . . . . . . . . .9  
Award-Winning Development  
8.1  
8.2  
8.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . 130  
Memory Maps . . . . . . . . . . . . . . . . . . . . . 130  
Configuration. . . . . . . . . . . . . . . . . . . . . . 130  
Environment . . . . . . . . . . . . . . . . . . .11  
Architecture Block Diagram . . . . . . . . . . . .11  
Product Documentation . . . . . . . . . . . . . . .15  
Data Sheet Conventions . . . . . . . . . . . . . .16  
1.4  
1.5  
1.6  
Part 9 Joint Test Action Group (JTAG) . . 136  
9.1  
JTAG Information . . . . . . . . . . . . . . . . . . 136  
Part 2 Signal/Connection Descriptions . . . .17  
Part 10 Specifications . . . . . . . . . . . . . . . . 136  
2.1  
2.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . .17  
Signal Pins. . . . . . . . . . . . . . . . . . . . . . . . .20  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
General Characteristics. . . . . . . . . . . . . . 136  
DC Electrical Characteristics. . . . . . . . . . 141  
AC Electrical Characteristics. . . . . . . . . . 145  
Flash Memory Characteristics. . . . . . . . . 145  
External Clock Operation Timing . . . . . . 146  
Phase Locked Loop Timing. . . . . . . . . . . 146  
Crystal Oscillator Timing . . . . . . . . . . . . . 147  
External Memory Interface Timing . . . . . 147  
Reset, Stop, Wait, Mode Select, and  
Part 3 On-Chip Clock Synthesis (OCCS). . .40  
3.1  
3.2  
3.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . .40  
External Clock Operation. . . . . . . . . . . . . .40  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Part 4 Memory Map . . . . . . . . . . . . . . . . . . . .42  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
Introduction . . . . . . . . . . . . . . . . . . . . . . . .42  
Program Map. . . . . . . . . . . . . . . . . . . . . . .44  
Interrupt Vector Table . . . . . . . . . . . . . . . .45  
Data Map . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Flash Memory Map . . . . . . . . . . . . . . . . . .49  
EOnCE Memory Map. . . . . . . . . . . . . . . . .51  
Peripheral Memory Mapped Registers . . .52  
Factory Programmed Memory. . . . . . . . . .79  
Interrupt Timing . . . . . . . . . . . . . . . 150  
10.10 Serial Peripheral Interface (SPI)  
Timing. . . . . . . . . . . . . . . . . . . . . . . 152  
10.11 Quad Timer Timing . . . . . . . . . . . . . . . . . 157  
10.12 Quadrature Decoder Timing . . . . . . . . . . 157  
10.13 Serial Communication Interface (SCI)  
Timing. . . . . . . . . . . . . . . . . . . . . . . 158  
10.14 Controller Area Network (CAN) Timing. . 159  
10.15 JTAG Timing . . . . . . . . . . . . . . . . . . . . . . 159  
10.16 Analog-to-Digital Converter (ADC)  
Part 5 Interrupt Controller (ITCN). . . . . . . . .79  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Introduction . . . . . . . . . . . . . . . . . . . . . . . .79  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Functional Description . . . . . . . . . . . . . . . .80  
Block Diagram . . . . . . . . . . . . . . . . . . . . . .81  
Operating Modes . . . . . . . . . . . . . . . . . . . .81  
Register Descriptions. . . . . . . . . . . . . . . . .82  
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Parameters. . . . . . . . . . . . . . . . . . . 161  
10.17 Equivalent Circuit for ADC Inputs . . . . . . 163  
10.18 Power Consumption . . . . . . . . . . . . . . . . 165  
Part 11 Packaging . . . . . . . . . . . . . . . . . . . 167  
11.1  
56F8346 Package and Pin-Out  
Information . . . . . . . . . . . . . . . . . . . 167  
56F8146 Package and Pin-Out  
11.2  
Part 6 System Integration Module (SIM) . .109  
Information . . . . . . . . . . . . . . . . . . . 169  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Overview . . . . . . . . . . . . . . . . . . . . . . . . .109  
Features. . . . . . . . . . . . . . . . . . . . . . . . . .110  
Operating Modes . . . . . . . . . . . . . . . . . . .111  
Operating Mode Register. . . . . . . . . . . . .111  
Register Descriptions. . . . . . . . . . . . . . . .112  
Clock Generation Overview. . . . . . . . . . .125  
Power-Down Modes Overview . . . . . . . .125  
Stop and Wait Mode Disable Function . .126  
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
Part 12 Design Considerations . . . . . . . . . 174  
12.1  
12.2  
12.3  
Thermal Design Considerations . . . . . . . 174  
Electrical Design Considerations . . . . . . 175  
Power Distribution and I/O Ring  
Implementation. . . . . . . . . . . . . . . . 176  
Part 13 Ordering Information . . . . . . . . . . 177  
Part 7 Security Features . . . . . . . . . . . . . . .127  
7.1  
7.2  
Operation with Security Enabled . . . . . . .127  
Flash Access Blocking Mechanisms . . . .127  
56F8346 Technical Data, Rev. 15  
6
Freescale Semiconductor  
Preliminary  
56F8346/56F8146 Features  
Part 1 Overview  
1.1 56F8346/56F8146 Features  
1.1.1  
Core  
Efficient 16-bit 56800E family controller engine with dual Harvard architecture  
Up to 60 Million Instructions Per Second (MIPS) at 60MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Four 36-bit accumulators, including extension bits  
Arithmetic and logic multi-bit shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses  
Four internal data buses  
Instruction set supports both DSP and controller functions  
Controller-style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/EOnCE debug programming interface  
1.1.2  
Differences Between Devices  
Table 1-1 outlines the key differences between the 56F8346 and 56F8146 devices.  
Table 1-1 Device Differences  
Feature  
56F8346  
56F8146  
Guaranteed Speed  
Program RAM  
Data Flash  
60MHz/60 MIPS  
40MHz/40 MIPS  
Not Available  
Not Available  
1 x 6  
4KB  
8KB  
2 x 6  
1
PWM  
CAN  
Not Available  
2
Quad Timer  
4
Quadrature Decoder  
Temperature Sensor  
Dedicated GPIO  
2 x 4  
1
1 x 4  
Not Available  
5
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
7
1.1.3  
Memory  
Note: Features in italics are NOT available in the 56F8146 device.  
Harvard architecture permits as many as three simultaneous accesses to program and data memory  
Flash security protection feature  
On-chip memory, including a low-cost, high-volume Flash solution  
— 128KB of Program Flash  
— 4KB of Program RAM  
— 8KB of Data Flash  
— 8KB of Data RAM  
— 8KB of Boot Flash  
Off-chip memory expansion capabilities programmable for 0 - 30 wait states  
— Access up to 1MB of program memory or 1MB of data memory  
— Chip select logic for glueless interface to ROM and SRAM  
EEPROM emulation capability  
1.1.4  
Peripheral Circuits  
Note: Features in italics are NOT available in the 56F8146 device.  
Pulse Width Modulator:  
— In the 56F8346, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense  
inputs, and three Fault inputs; fault-tolerant design with dead time insertion; supports both  
center-aligned and edge-aligned modes  
— In the 56F8146, one Pulse Width Modulator module with six PWM outputs, three Current Sense inputs,  
and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and  
edge-aligned modes  
Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with  
quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels  
2 and 3  
Quadrature Decoder:  
— In the 56F8346, two four-input Quadrature Decoders or two additional Quad Timers  
— In the 56F8146, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A  
Temperature Sensor diode can be connected, on the board, to any of the ADC inputs to monitor the on-chip  
temperature  
Quad Timer:  
— In the 56F8346, four dedicated general-purpose Quad Timers totaling three dedicated pins: Timer C  
with one pin and Timer D with two pins  
— In the 56F8146, two Quad Timers; Timer A and Timer C both work in conjunction with GPIO  
Optional On-Chip Regulator  
FlexCAN (CAN Version 2.0 B-compliant ) module with 2-pin port for transmit and receive  
56F8346 Technical Data, Rev. 15  
8
Freescale Semiconductor  
Preliminary  
Device Description  
Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)  
Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO  
lines)  
— In the 56F8346, SPI1 can also be used as Quadrature Decoder 1 or Quad Timer B  
— In the 56F8146, SPI1 can alternately be used only as GPIO  
Computer Operating Properly (COP)/Watchdog timer  
Two dedicated external interrupt pins  
62 General Purpose I/O (GPIO) pins  
External reset input pin for hardware reset  
External reset output pin for system reset  
Integrated low-voltage interrupt module  
JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent, real-time  
debugging  
Software-programmable, Phase Lock Loop (PLL)-based frequency synthesizer for the core clock  
1.1.5  
Energy Information  
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs  
On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be disabled  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
ADC smart power management  
Each peripheral can be individually disabled to save power  
1.2 Device Description  
The 56F8346 and 56F8146 are members of the 56800E core-based family of controllers. Each combines,  
on a single chip, the processing power of a Digital Signal Processor (DSP) and the functionality of a  
microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because  
of its low cost, configuration flexibility, and compact program code, the 56F8346 and 56F8146 are  
well-suited for many applications. The devices include many peripherals that are especially useful for  
motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and  
control, automotive control (56F8346 only), engine management, noise suppression, remote utility  
metering, industrial control for power, lighting, and automation applications.  
The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and  
optimized instruction set allow straightforward generation of efficient, compact DSP and control code.  
The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized  
control applications.  
The 56F8346 and 56F8146 support program execution from either internal or external memories. Two  
data operands can be accessed from the on-chip data RAM per instruction cycle. These devices also  
provide two external dedicated interrupt lines and up to 62 General Purpose Input/Output (GPIO) lines,  
depending on peripheral configuration.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
9
1.2.1  
56F8346 Features  
The 56F8346 controller includes 128KB of Program Flash and 8KB of Data Flash (each programmable  
through the JTAG port) with 4KB of Program RAM and 8KB of Data RAM. It also supports program  
execution from external memory.  
A total of 8KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software  
routines that can be used to program the main Program and Data Flash memory areas. Both Program and  
Data Flash memories can be independently bulk erased or erased in pages. Program Flash page erase size  
is 1KB. Boot and Data Flash page erase size is 512 bytes. The Boot Flash memory can also be either bulk  
or page erased.  
A key application-specific feature of the 56F8346 is the inclusion of two Pulse Width Modulator (PWM)  
modules. These modules each incorporate three complementary, individually programmable PWM signal  
output pairs (each module is also capable of supporting six independent PWM functions, for a total of 12  
PWM outputs) to enhance motor control functionality. Complementary operation permits programmable  
dead time insertion, distortion correction via current sensing by software, and separate top and bottom  
output polarity control. The up-counter value is programmable to support a continuously variable PWM  
frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is  
supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both  
BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance  
Motors); and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting  
with sufficient output drive capability to directly drive standard optoisolators. A “smoke-inhibit”,  
write-once protection feature for key parameters is also included. A patented PWM waveform distortion  
correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit  
integral reload rates to be programmable from 1 to 16. The PWM modules provide reference outputs to  
synchronize the Analog-to-Digital Converters through two channels of Quad Timer C.  
The 56F8346 incorporates two Quadrature Decoders capable of capturing all four transitions on the  
two-phase inputs, permitting generation of a number proportional to actual position. Speed computation  
capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the  
Quadrature Decoder can be programmed with a time-out value to alert when no shaft motion is detected.  
Each input is filtered to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and four Quad Timers. Any of  
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. A  
Flex Controller Area Network (FlexCAN) interface (CAN Version 2.0 B-compliant) and an internal  
interrupt controller are a part of the 56F8346.  
1.2.2  
56F8146 Features  
The 56F8146 hybrid controller includes 128KB of Program Flash, programmable through the JTAG port,  
with 8KB of Data RAM. It also supports program execution from external memory.  
A total of 8KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software  
routines that can be used to program the main Program Flash memory area, which can be independently  
bulk erased or erased in pages. Program Flash page erase size is 1KB. Boot Flash page erase size is 512  
bytes and the Boot Flash memory can also be either bulk or page erased.  
56F8346 Technical Data, Rev. 15  
10  
Freescale Semiconductor  
Preliminary  
Award-Winning Development Environment  
A key application-specific feature of the 56F8146 is the inclusion of one Pulse Width Modulator (PWM)  
module. This module incorporates three complementary, individually programmable PWM signal output  
pairs and can also support six independent PWM functions to enhance motor control functionality.  
Complementary operation permits programmable dead time insertion, distortion correction via current  
sensing by software, and separate top and bottom output polarity control. The up-counter value is  
programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned  
synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of  
controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless  
DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM  
incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to  
directly drive standard optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters  
is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is  
double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1  
to 16. The PWM module provides reference outputs to synchronize the Analog-to-Digital Converters  
through two channels of Quad Timer C.  
The 56F8146 incorporates a Quadrature Decoder capable of capturing all four transitions on the two-phase  
inputs, permitting generation of a number proportional to actual position. Speed computation capabilities  
accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder  
can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered  
to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and two Quad Timers. Any of  
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An  
internal interrupt controller is also a part of the 56F8146.  
1.3 Award-Winning Development Environment  
TM  
Processor Expert  
(PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
1.4 Architecture Block Diagram  
Note: Features in italics are NOT available in the 56F8146 device and are shaded in the following figures.  
The 56F8346/56F8146 architecture is shown in Figure 1-1 and Figure 1-2. Figure 1-1 illustrates how the  
56800E system buses communicate with internal memories, the external memory interface and the IPBus  
Bridge. Table 1-2 lists the internal buses in the 56800E architecture and provides a brief description of  
their function. Figure 1-2 shows the peripherals and control blocks connected to the IPBus Bridge. The  
figures do not show the on-board regulator and power and ground signals. They also do not show the  
multiplexing between peripherals or the dedicated GPIOs. Please see Part 2, Signal/Connection  
Descriptions, to see which signals are multiplexed with those of other peripherals.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
11  
Also shown in Figure 1-2 are connections between the PWM, Timer C and ADC blocks. These  
connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The  
Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions.  
In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer  
C input channel as indicated. The timer can then be used to introduce a controllable delay before  
generating its output signal. The timer output then triggers the ADC. To fully understand this interaction,  
please see the 56F8300 Peripheral User Manual for clarification on the operation of all three of these  
peripherals.  
56F8346 Technical Data, Rev. 15  
12  
Freescale Semiconductor  
Preliminary  
Architecture Block Diagram  
5
JTAG / EOnCE  
Boot  
Flash  
pdb_m[15:0]  
pab[20:0]  
Program  
Flash  
Program  
RAM  
cdbw[13:0]  
56800E  
EMI  
17  
16  
6
Address  
CHIP  
TAP  
Controller  
Data  
Control  
TAP  
Linking  
Module  
Data  
RAM  
xab1[23:0]  
xab2[23:0]  
Data  
Flash  
External  
JTAG  
Port  
cdbr_m[31:0]  
xdb2_m[15:0]  
To Flash  
Control Logic  
IPBus  
Bridge  
Flash  
NOT available on the 56F8146 device.  
Interface  
Units  
IPBus  
Figure 1-1 System Bus Interfaces  
Note:  
Note:  
Flash memories are encapsulated within the Flash Interface Unit (FIU). Flash control is accomplished  
by the I/O to the FIU over the peripheral bus, while reads and writes are completed between the core  
and the Flash memories.  
The primary data RAM port is 32 bits wide. Other data ports are 16 bits.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
13  
To/From IPBus Bridge  
Interrupt  
Controller  
CLKGEN  
(OSC/PLL)  
Low-Voltage Interrupt  
Timer A  
POR & LVI  
System POR  
RESET  
4
Quadrature Decoder 0  
Timer D  
SIM  
2
COP Reset  
Timer B  
COP  
2
4
FlexCAN  
Quadrature Decoder 1  
SPI 1  
12  
PWMA  
SYNC Output  
13  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
PWMB  
SYNC Output  
ch3i  
ch2i  
ch2i  
1
Timer C  
ch3i  
8
ADCB  
ADCA  
4
SPI0  
SCI0  
8
2
1
TEMP_SENSE  
2
SCI1  
Note: ADCA and ADCB use the same volt-  
age reference circuit with VREFH, VREFP,  
VREFMID, VREFN, and VREFLO pins.  
IPBus  
NOT available on the 56F8146 device.  
Figure 1-2 Peripheral Subsystem  
56F8346 Technical Data, Rev. 15  
14  
Freescale Semiconductor  
Preliminary  
Product Documentation  
Table 1-2 Bus Signal Names  
Name  
Function  
Program Memory Interface  
pdb_m[15:0] Program data bus for instruction word fetches or read operations.  
cdbw[15:0]  
Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus  
are used for writes to program memory.)  
pab[20:0]  
Program memory address bus. Data is returned on pdb_m bus.  
Primary Data Memory Interface Bus  
cdbr_m[31:0] Primary core data bus for memory reads. Addressed via xab1 bus.  
cdbw[31:0]  
xab1[23:0]  
Primary core data bus for memory writes. Addressed via xab1 bus.  
Primary data address bus. Capable of addressing bytes1, words, and long data types. Data is written  
on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O.  
Secondary Data Memory Interface  
xdb2_m[15:0] Secondary data bus used for secondary data address bus xab2 in the dual memory reads.  
xab2[23:0]  
Secondary data address bus used for the second of two simultaneous accesses. Capable of  
addressing only words. Data is returned on xdb2_m.  
Peripheral Interface Bus  
IPBus [15:0] Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate  
as the Primary Data Memory and therefore generates no delays when accessing the processor.  
Write data is obtained from cdbw. Read data is provided to cdbr_m.  
1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced  
to 0.  
1.5 Product Documentation  
The documents in Table 1-3 are required for a complete description and proper design with the 56F8346  
and 56F8146 devices. Documentation is available from local Freescale distributors, Freescale  
semiconductor sales offices, Freescale Literature Distribution Centers, or online at  
http://www.freescale.com.  
Table 1-3 Chip Documentation  
Topic  
Description  
Order Number  
DSP56800E  
Reference Manual  
Detailed description of the 56800E family architecture,  
and 16-bit controller core processor and the instruction  
set  
DSP56800ERM  
56F8300 Peripheral User Manual  
Detailed description of peripherals of the 56F8300  
devices  
MC56F8300UM  
MC56F83xxBLUM  
MC56F8346  
56F8300 SCI/CAN Bootloader User  
Manual  
Detailed description of the SCI/CAN Bootloaders  
56F8300 family of devices  
56F8346/56F8146  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
Errata  
Details any chip issues that might be present  
MC56F8346E  
MC56F8146E  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
15  
1.6 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56F8346 Technical Data, Rev. 15  
16  
Freescale Semiconductor  
Preliminary  
Introduction  
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F8346 and 56F8146 are organized into functional groups, as detailed  
in Table 2-1 and as illustrated in Figure 2-1. In Table 2-2, each table row describes the signal or signals  
present on a pin.  
Table 2-1 Functional Group Pin Allocations  
Number of Pins in Package  
Functional Group  
56F8346  
56F8146  
Power (VDD or VDDA  
)
9
9
Power Option Control  
1
6
1
6
Ground (VSS or VSSA  
)
Supply Capacitors1 & VPP  
6
6
PLL and Clock  
4
17  
16  
6
4
17  
16  
6
Address Bus  
Data Bus  
Bus Control  
Interrupt and Program Control  
Pulse Width Modulator (PWM) Ports  
Serial Peripheral Interface (SPI) Port 0  
Serial Peripheral Interface (SPI) Port 1  
6
6
25  
4
13  
4
4
4
Quadrature Decoder Port 02  
4
Quadrature Decoder Port 13  
Serial Communications Interface (SCI) Ports  
CAN Ports  
4
4
2
4
21  
1
Analog to Digital Converter (ADC) Ports  
Quad Timer Module Ports  
21  
3
JTAG/Enhanced On-Chip Emulation (EOnCE)  
Temperature Sense  
5
5
1
5
Dedicated GPIO  
1. If the on-chip regulator is disabled, the V  
pins serve as 2.5V V  
power inputs  
CAP  
DD_CORE  
2. Alternately, can function as Quad Timer pins or GPIO  
3. Pins in this section can function as Quad Timer, SPI #1, or GPIO  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
17  
VDD_IO  
PHASEA0 (TA0, GPIOC4)  
PHASEB0 (TA1, GPIOC5)  
INDEX0 (TA2, GPIOC6)  
HOME0 (TA3, GPIOC7)  
Quadrature  
Decoder 0  
or Quad  
Timer A or  
GPIO  
Power  
Power  
7
1
1
1
1
1
VDDA_ADC  
VDDA_OSC_PLL  
VSS  
Power  
1
5
Ground  
Ground  
VSSA_ADC  
1
SCLK0  
1
1
1
1
56F8346  
OCR_DIS  
MOSI0 (GPIOE5)  
MISO0 (GPIOE6)  
SS0 (GPIOE7)  
SPI0 or  
GPIO  
1
VCAP1 - VCAP  
4
2
Other  
Supply  
Ports  
4
2
V
PP1 & VPP  
PHASEA1(TB0, SCLK1, GPIOC0)  
PHASEB1 (TB1, MOSI1, GPIOC1)  
INDEX1 (TB2, MISO1, GPIOC2)  
HOME1 (TB3, SS1, GPIOC3)  
Quadrature  
Decoder 1 or  
Quad Timer  
B or SPI 1 or  
GPIO  
1
1
1
1
CLKMODE  
EXTAL  
XTAL  
1
1
1
1
PLL  
and  
Clock  
CLKO  
PWMA0 - 5  
6
3
3
PWMA or  
GPIO  
ISA0 - 2 (GPIOC8 - 10)  
FAULTA0 - 2  
A0 - A5 (GPIOA8 - 13)  
A6 - A7 (GPIOE2 - 3)  
A8 - A15 (GPIOA0 - 7)  
GPIOB0 (A16)  
6
2
External  
Address  
Bus  
8
1
or GPIO  
PWMB0 - 5  
6
3
4
PWMB or  
GPIO  
ISB0 - 2 (GPIOD10 - 12)  
FAULTB0 - 3  
External  
Data Bus  
or GPIO  
D0-D6 (GPIOF9 - 15)  
D7 - D15 (GPIOF0 - 8)  
7
9
ANA0 - 7  
VREF  
ADCA  
ADCB  
8
5
8
RD  
WR  
1
1
ANB0 - 7  
External  
Bus  
Control or  
GPIO  
PS (CS0)(GPIOD8)  
1
1
2
Temperature  
Sensor  
TEMP_SENSE  
DS (CS1)(GPIOD9)  
GPIOD0 - 1 (CS2 - 3)  
1
CAN_RX  
CAN_TX  
1
1
FlexCAN  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI 0 or  
GPIO  
1
1
QUAD  
TIMER C and  
D or GPIO  
TC0 (GPIOE8)  
1
2
TD0 - 1 (GPIOE10 - 11)  
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
1
1
SCI 1  
or GPIO  
IRQA  
1
TCK  
TMS  
IRQB  
1
1
1
EXTBOOT  
EMI_MODE  
Imterrupt/  
Program  
Control  
1
1
1
1
JTAG/  
EOnCE  
Port  
TDI  
TDO  
1
RESET  
RSTO  
1
1
TRST  
1
Figure 2-1 56F8346 Signals Identified by Functional Group (144-pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8346 Technical Data, Rev. 15  
18  
Freescale Semiconductor  
Preliminary  
Introduction  
VDD_IO  
VDDA_ADC  
VDDA_OSC_PLL  
VSS  
Power  
Power  
7
1
PHASEA0 (TA0, GPIOC4)  
PHASEB0 (TA1, GPIOC5)  
INDEX0 (TA2, GPIOC6)  
HOME0 (TA3, GPIOC7)  
Quadrature  
1
1
1
1
Decoder 0  
or Quad  
Timer A or  
GPIO  
Power  
1
5
Ground  
Ground  
VSSA_ADC  
1
56F8146  
SCLK0  
OCR_DIS  
1
1
1
1
1
MOSI0  
SPI0 or  
GPIO  
VCAP1 - VCAP  
4
2
Other  
Supply  
Ports  
MISO0  
4
2
V
PP1 & VPP  
SS0 (GPIOE7)  
CLKMODE  
(SCLK1, GPIOC0)  
(MOSI1, GPIOC1)  
(MISO1, GPIOC2)  
(SS1, GPIOC3)  
1
1
1
1
1
1
1
1
PLL  
and  
Clock  
EXTAL  
XTAL  
SPI 1 or  
GPIO  
CLKO  
A0 - A5 (GPIOA8 -  
A6 - A7 (GPIOE2 - 3)  
A8 - A15 (GPIOA0 - 7)  
GPIOB0 (A16)  
6
2
External  
Address  
Bus  
GPIO  
(GPIOC8 - 10)  
3
8
1
or GPIO  
PWMB0 - 5  
6
3
4
PWMB or  
GPIO  
ISB0 - 2 (GPIOD10 - 12)  
FAULTB0 - 3  
External  
Data Bus  
or GPIO  
D0-D6 (GPIOF9 - 15)  
D7 - D15 (GPIOF0 -  
7
9
ANA0 - 7  
VREF  
ADCA  
ADCB  
8
RD  
WR  
1
1
5
8
External  
Bus  
ANB0 - 7  
PS (CS0)(GPIOD8)  
1
Control  
or GPIO  
DS (CS1)(GPIOD9)  
GPIOD0 - 1 (CS2 - 3)  
1
2
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI 0 or  
GPIO  
1
1
QUAD  
TIMER C or  
GPIO  
TC0 (GPIOE8)  
(GPIOE10 - 11)  
1
2
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
1
1
SCI 1  
or GPIO  
IRQA  
1
TCK  
TMS  
1
IRQB  
1
1
1
1
1
1
JTAG/  
EOnCE  
Port  
EXTBOOT  
EMI_MODE  
Interrupt/  
Program  
Control  
TDI  
TDO  
1
RESET  
RSTO  
1
1
TRST  
1
Figure 2-2 56F8146 Signals Identified by Functional Group (144-pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
19  
2.2 Signal Pins  
After reset, each pin is configured for its primary function (listed first). Any alternate functionality must  
be programmed.  
Note: Signals in italics are NOT available in the 56F8146 device.  
If the “State During Reset” lists more than one state for a pin, the first state is the actual reset state. Other  
states show the reset condition of the alternate function, which you get if the alternate pin function is  
selected without changing the configuration of the alternate peripheral. For example, the A8/GPIOA0 pin  
shows that it is tri-stated during reset. If the GPIOA_PER is changed to select the GPIO function of the  
pin, it will become an input if no other registers are changed.  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDDA_ADC  
1
Supply  
I/O Power — This pin supplies 3.3V power to the chip I/O interface  
and also the Processor core throught the on-chip voltage regulator,  
if it is enabled.  
16  
31  
38  
66  
84  
119  
102  
Supply  
Supply  
ADC Power — This pin supplies 3.3V power to the ADC modules.  
It must be connected to a clean analog power supply.  
VDDA_OSC_PLL  
80  
Oscillator and PLL Power — This pin supplies 3.3V power to the  
OSC and to the internal regulator that in turn supplies the Phase  
Locked Loop. It must be connected to a clean analog power  
supply.  
VSS  
VSS  
27  
37  
Supply  
VSS — These pins provide ground for chip logic and I/O drivers.  
VSS  
63  
VSS  
69  
VSS  
144  
103  
VSSA_ADC  
Supply  
ADC Analog Ground — This pin supplies an analog ground to the  
ADC modules.  
56F8346 Technical Data, Rev. 15  
20  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
OCR_DIS  
Pin No.  
Type  
During  
Reset  
Signal Description  
79  
Input  
Input  
On-Chip Regulator Disable —  
Tie this pin to VSS to enable the on-chip regulator  
Tie this pin to VDD to disable the on-chip regulator  
This pin is intended to be a static DC signal from power-up to  
shut down. Do not try to toggle this pin for power savings  
during operation.  
VCAP  
VCAP  
VCAP  
VCAP  
1
2
3
4
51  
128  
83  
Supply  
Supply  
VCAP1 - 4 — When OCR_DIS is tied to VSS (regulator enabled),  
connect each pin to a 2.2μF or greater bypass capacitor in order to  
bypass the core logic voltage regulator, required for proper chip  
operation. When OCR_DIS is tied to VDD (regulator disabled),  
these pins become VDD_CORE and should be connected to a  
regulated 2.5V power supply.  
15  
Note: This bypass is required even if the chip is powered with  
an external supply.  
V
PP1  
125  
2
Input  
Input  
Input  
Input  
VPP1 - 2 — These pins should be left unconnected as an open  
circuit for normal functionality.  
VPP  
2
CLKMODE  
87  
Clock Input Mode Selection — This input determines the function  
of the XTAL and EXTAL pins.  
1 = External clock input on XTAL is used to directly drive the input  
clock of the chip. The EXTAL pin should be grounded.  
0 = A crystal or ceramic resonator should be connected between  
XTAL and EXTAL.  
EXTAL  
XTAL  
82  
81  
Input  
Input  
External Crystal Oscillator Input — This input can be connected  
to an 8MHz external crystal. Tie this pin low if XTAL is driven by an  
external clock source.  
Input/  
Chip-driven Crystal Oscillator Output — This output connects the internal  
Output  
crystal oscillator output to an external crystal.  
If an external clock is used, XTAL must be used as the input and  
EXTAL connected to GND.  
The input clock can be selected to provide the clock directly to the  
core. This input clock can also be selected as the input clock for  
the on-chip PLL.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
21  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
CLKO  
Pin No.  
Type  
During  
Reset  
Signal Description  
3
Output  
In reset,  
output is  
disabled  
Clock Output — This pin outputs a buffered clock signal. Using  
the SIM CLKO Select Register (SIM_CLKOSR), this pin can be  
programmed as any of the following: disabled, CLK_MSTR  
(system clock), IPBus clock, oscillator output, prescaler clock and  
postscaler clock. Other signals are also available for test purposes.  
See Part 6.5.7 for details.  
A0  
138  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Address Bus — A0 - A5 specify six of the address lines for  
external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), A0 - A5 and EMI control signals are tri-stated when the  
external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOA8)  
Input/  
Port A GPIO — These six GPIO pins can be individually  
Output  
programmed as input or output pins.  
A1  
(GPIOA9)  
10  
11  
12  
13  
14  
After reset, the default state is Address Bus.  
A2  
(GPIOA10)  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOA_PUR register.  
A3  
(GPIOA11)  
Example: GPIOA8, clear bit 8 in the GPIOA_PUR register.  
A4  
(GPIOA12)  
A5  
(GPIOA13)  
56F8346 Technical Data, Rev. 15  
22  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
A6  
Pin No.  
Type  
During  
Reset  
Signal Description  
17  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Address Bus — A6 - A7 specify two of the address lines for  
external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), A6 - A7 and EMI control signals are tri-stated when the  
external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOE2)  
A7  
Schmitt  
Input/  
Output  
Port E GPIO — These two GPIO pins can be individually  
programmed as input or output pins.  
18  
19  
After reset, the default state is Address Bus.  
(GPIOE3)  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOE_PUR register.  
Example: GPIOE2, clear bit 2 in the GPIOE_PUR register.  
A8  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Address Bus— A8 - A15 specify eight of the address lines for  
external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), A8 - A15 and EMI control signals are tri-stated when  
the external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOA0)  
Schmitt  
Input/  
Output  
Port A GPIO — These eight GPIO pins can be individually  
programmed as input or output pins.  
A9  
(GPIOA1)  
20  
21  
22  
23  
24  
25  
26  
After reset, the default state is Address Bus.  
A10  
(GPIOA2)  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOA_PUR register.  
A11  
(GPIOA3)  
Example: GPIOA0, clear bit 0 in the GPIOA_PUR register.  
A12  
(GPIOA4)  
A13  
(GPIOA5)  
A14  
(GPIOA6)  
A15  
(GPIOA7)  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
23  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
GPIOB0  
Pin No.  
Type  
During  
Reset  
Signal Description  
33  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be programmed as an input or  
output pin.  
(A16)  
Output  
Address Bus — A16 specifies one of the address lines for  
external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), A16 and EMI control signals are tri-stated when the  
external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
After reset, the start-up state of GPIOB0 (GPIO or address) is  
determined as a function of EXTBOOT, EMI_MODE and the Flash  
security setting. See Table 4-4 for further information on when this  
pin is configured as an address pin at reset. In all cases, this state  
may be changed by writing to GPIOB_PER.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOB_PUR register.  
D0  
59  
Input/  
Outpu  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Data Bus — D0 - D6 specify part of the data for external program or  
data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), D0-D6 are tri-stated when the external bus is  
inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOF9)  
Input/  
Port F GPIO — These seven GPIO pins can be individually  
Outputt  
programmed as input or output pins.  
D1  
(GPIOF10)  
60  
72  
75  
76  
77  
78  
At reset, these pins default to the EMI Data Bus function.  
D2  
(GPIOF11)  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOF_PUR register.  
D3  
(GPIOF12)  
Example: GPIOF9, clear bit 9 in the GPIOF_PUR register.  
D4  
(GPIOF13)  
D5  
(GPIOF14)  
D6  
(GPIOF15)  
56F8346 Technical Data, Rev. 15  
24  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
D7  
Pin No.  
Type  
During  
Reset  
Signal Description  
28  
Input/  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Data Bus — D7 - D14 specify part of the data for external program  
or data memory accesses.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOF0)  
Input/  
Port F GPIO — These eight GPIO pins can be individually  
Output  
programmed as input or output pins.  
D8  
(GPIOF1)  
29  
30  
At reset, these pins default to Data Bus functionality.  
D9  
(GPIOF2)  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOF_PUR register.  
D10  
(GPIOF3)  
32  
Example: GPIOF0, clear bit 0 in the GPIOF_PUR register.  
D11  
(GPIOF4)  
133  
134  
135  
136  
137  
D12  
(GPIOF5)  
D13  
(GPIOF6)  
D14  
(GPIOF7)  
D15  
Input/  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Data Bus — D15 specifies part of the data for external program or  
data memory accesses.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOF8)  
Input/  
Port F GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
At reset, this pin defaults to the Data Bus function.  
To deactivate the internal pull-up resistor, clear bit 8 in the  
GPIOF_PUR register.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
25  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
RD  
Pin No.  
Type  
During  
Reset  
Signal Description  
45  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Read Enable — RD is asserted during external memory read  
cycles. When RD is asserted low, pins D0 - D15 become inputs  
and an external device is enabled onto the data bus. When RD is  
deasserted high, the external data is latched inside the device.  
When RD is asserted, it qualifies the A0 - A16, PS, DS, and CSn  
pins. RD can be connected directly to the OE pin of a static RAM or  
ROM.  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), RD is tri-stated when the external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
To deactivate the internal pull-up resistor, set the CTRL bit in the  
SIM_PUDR register.  
WR  
44  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Write Enable — WR is asserted during external memory write  
cycles. When WR is asserted low, pins D0 - D15 become outputs  
and the device puts data on the bus. When WR is deasserted high,  
the external data is latched inside the external device. When WR is  
asserted, it qualifies the A0 - A16, PS, DS, and CSn pins. WR can  
be connected directly to the WE pin of a static RAM.  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), WR is tri-stated when the external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
To deactivate the internal pull-up resistor, set the CTRL bit in the  
SIM_PUDR register.  
PS  
46  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Program Memory Select — This signal is actually CS0 in the EMI,  
which is programmed at reset for compatibility with the 56F80x PS  
signal. PS is asserted low for external program memory access.  
(CS0)  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), PS is tri-stated when the external bus is inactive.  
CS0 resets to provide the PS function as defined on the 56F80x  
devices.  
(GPIOD8)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
To deactivate the internal pull-up resistor, clear bit 8 in the  
GPIOD_PUR register.  
56F8346 Technical Data, Rev. 15  
26  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
DS  
47  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Data Memory Select — This signal is actually CS1 in the EMI,  
which is programmed at reset for compatibility with the 56F80x DS  
signal. DS is asserted low for external data memory access.  
(CS1)  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), DS is tri-stated when the external bus is inactive.  
CS1 resets to provide the DS function as defined on the 56F80x  
devices.  
(GPIOD9)  
GPIOD0  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
To deactivate the internal pull-up resistor, clear bit 9 in the  
GPIOD_PUR register.  
48  
49  
Input/  
Output  
Input,  
pull-up  
enabled  
Port D GPIO — These two GPIO pins can be individually  
programmed as input or output pins.  
(CS2)  
Output  
Chip Select — CS2 - CS3 may be programmed within the EMI  
module to act as chip selects for specific areas of the external  
memory map.  
GPIOD1  
(CS3)  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), CS2 - CS3 are tri-stated when the external bus is  
inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
At reset, these pins are configured as GPIO.  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOD_PUR register.  
Example: GPIOD0, clear bit 0 in the GPIOD_PUR register.  
TXD0  
4
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Transmit Data — SCI0 transmit data output  
(GPIOE0)  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOE_PUR register.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
27  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
RXD0  
5
Input  
Input,  
pull-up  
enabled  
Receive Data — SCI0 receive data input  
(GPIOE1)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOE_PUR register.  
TXD1  
42  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Transmit Data — SCI1 transmit data output  
(GPIOD6)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 6 in the  
GPIOD_PUR register.  
RXD1  
43  
Input  
Input,  
pull-up  
enabled  
Receive Data — SCI1 receive data input  
(GPIOD7)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is SCI input.  
To deactivate the internal pull-up resistor, clear bit 7 in the  
GPIOD_PUR register.  
TCK  
TMS  
121  
122  
Schmitt  
Input  
Input,  
pulled low  
internally  
Test Clock Input — This input pin provides a gated clock to  
synchronize the test logic and shift serial data to the JTAG/EOnCE  
port. The pin is connected internally to a pull-down resistor.  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Mode Select Input — This input pin is used to sequence the  
JTAG TAP controller’s state machine. It is sampled on the rising  
edge of TCK and has an on-chip pull-up resistor.  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
TDI  
123  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Data Input — This input pin provides a serial input data  
stream to the JTAG/EOnCE port. It is sampled on the rising edge  
of TCK and has an on-chip pull-up resistor.  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
56F8346 Technical Data, Rev. 15  
28  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
TDO  
Pin No.  
Type  
During  
Reset  
Signal Description  
124  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Test Data Output — This tri-stateable output pin provides a serial  
output data stream from the JTAG/EOnCE port. It is driven in the  
shift-IR and shift-DR controller states, and changes on the falling  
edge of TCK.  
TRST  
120  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Reset — As an input, a low signal on this pin provides a reset  
signal to the JTAG TAP controller. To ensure complete hardware  
reset, TRST should be asserted whenever RESET is asserted. The  
only exception occurs in a debugging environment when a  
hardware device reset is required and the JTAG/EOnCE module  
must not be reset. In this case, assert RESET, but do not assert  
TRST.  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
Note: For normal operation, connect TRST directly to VSS. If the  
design is to be used in a debugging environment, TRST may be tied to  
VSS through a 1K resistor.  
PHASEA0  
(TA0)  
139  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Phase A — Quadrature Decoder 0, PHASEA input  
Schmitt  
Input/  
TA0 — Timer A, Channel 0  
Output  
(GPIOC4)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is PHASEA0.  
To deactivate the internal pull-up resistor, clear bit 4 of the  
GPIOC_PUR register.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
29  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
PHASEB0  
(TA1)  
Pin No.  
Type  
During  
Reset  
Signal Description  
Phase B — Quadrature Decoder 0, PHASEB input  
TA1 — Timer A, Channel  
140  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Schmitt  
Input/  
Output  
(GPIOC5)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is PHASEB0.  
To deactivate the internal pull-up resistor, clear bit 5 of the  
GPIOC_PUR register.  
INDEX0  
(TA2)  
141  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Index — Quadrature Decoder 0, INDEX input  
Schmitt  
Input/  
TA2 — Timer A, Channel 2  
Output  
(GPOPC6)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is INDEX0.  
To deactivate the internal pull-up resistor, clear bit 6 of the  
GPIOC_PUR register.  
HOME0  
(TA3)  
142  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Home — Quadrature Decoder 0, HOME input  
Schmitt  
Input/  
TA3 — Timer A, Channel 3  
Output  
(GPIOC7)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is HOME0.  
To deactivate the internal pull-up resistor, clear bit 7 of the  
GPIOC_PUR register.  
56F8346 Technical Data, Rev. 15  
30  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
SCLK0  
Pin No.  
Type  
During  
Reset  
Signal Description  
130  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
SPI 0 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input.  
(GPIOE4)  
Schmitt  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is SCLK0.  
To deactivate the internal pull-up resistor, clear bit 4 in the  
GPIOE_PUR register.  
MOSI0  
132  
Input/  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
SPI 0 Master Out/Slave In — This serial data pin is an output from  
a master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge the  
slave device uses to latch the data.  
(GPIOE5)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is MOSI0.  
To deactivate the internal pull-up resistor, clear bit 5 in the  
GPIOE_PUR register.  
MISO0  
131  
Input/  
Output  
Input,  
pull-up  
enabled  
SPI 0 Master In/Slave Out — This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of  
a slave device is placed in the high-impedance state if the slave  
device is not selected. The slave device places data on the MISO  
line a half-cycle before the clock edge the master device uses to  
latch the data.  
(GPIOE6)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is MISO0.  
To deactivate the internal pull-up resistor, clear bit 6 in the  
GPIOE_PUR register.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
31  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
SS0  
Pin No.  
Type  
During  
Reset  
Signal Description  
129  
Input  
Input,  
pull-up  
enabled  
SPI 0 Slave Select — SS0 is used in slave mode to indicate to the  
SPI module that the current transfer is to be received.  
(GPIOE7)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
input or output pin.  
After reset, the default state is SS0.  
To deactivate the internal pull-up resistor, clear bit 7 in the  
GPIOE_PUR register.  
PHASEA1  
(TB0)  
6
Schmitt  
Input  
Input,  
pull-up  
enabled  
Phase A1 — Quadrature Decoder, PHASEA input for decoder 1.  
Schmitt  
Input/  
TB0 — Timer B, Channel 0  
Output  
(SCLK1)  
Schmitt  
Input/  
Output  
SPI 1 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input. To activate the SPI function, set the  
PHSA_ALT bit in the SIM_GPS register. For details, see Part  
6.5.8.  
(GPIOC0)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
In the 56F8346, the default state after reset is PHASEA1.  
In the 56F8146, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOC_PUR register.  
56F8346 Technical Data, Rev. 15  
32  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
PHASEB1  
(TB1)  
Pin No.  
Type  
During  
Reset  
Signal Description  
7
Schmitt  
Input  
Input,  
pull-up  
enabled  
Phase B1 — Quadrature Decoder 1, PHASEB input for decoder 1.  
TB1 — Timer B, Channel 1  
Schmitt  
Input/  
Output  
(MOSI1)  
Schmitt  
Input/  
Output  
SPI 1 Master Out/Slave In — This serial data pin is an output from  
a master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge the  
slave device uses to latch the data. To activate the SPI function,  
set the PHSB_ALT bit in the SIM_GPS register. For details, see  
Part 6.5.8.  
(GPIOC1)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
In the 56F8346, the default state after reset is PHASEB1.  
In the 56F8146, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOC_PUR register.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
33  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
INDEX1  
Pin No.  
Type  
During  
Reset  
Signal Description  
Index1 — Quadrature Decoder 1, INDEX input  
TB2 — Timer B, Channel 2  
8
Schmitt  
Input  
Input,  
pull-up  
enabled  
(TB2)  
Schmitt  
Input/  
Output  
(MISO1)  
Schmitt  
Input/  
Output  
SPI 1 Master In/Slave Out — This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of  
a slave device is placed in the high-impedance state if the slave  
device is not selected. The slave device places data on the MISO  
line a half-cycle before the clock edge the master device uses to  
latch the data. To activate the SPI function, set the INDEX_ALT bit  
in the SIM_GPS register. For details, see Part 6.5.8.  
(GPIOC2)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
In the 56F8346, the default state after reset is INDEX1.  
In the 56F8146, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 2 in the  
GPIOC_PUR register.  
HOME1  
(TB3)  
9
Schmitt  
Input  
Input,  
pull-up  
enabled  
Home — Quadrature Decoder 1, HOME input  
Schmitt  
Input/  
TB3 — Timer B, Channel 3  
Output  
(SS1)  
Schmitt  
Input  
SPI 1 Slave Select — In the master mode, this pin is used to  
arbitrate multiple masters. In slave mode, this pin is used to select  
the slave. To activate the SPI function, set the HOME_ALT bit in  
the SIM_GPS register. For details, see Part 6.5.8.  
(GPIOC3)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
In the 56F8346, the default state after reset is HOME1.  
In the 56F8146, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 3 in the  
GPIOC_PUR register.  
56F8346 Technical Data, Rev. 15  
34  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
PWMA0  
PWMA1  
PWMA2  
PWMA3  
PWMA4  
PWMA5  
ISA0  
62  
64  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
PWMA0 - 5 — These are six PWMA outputs.  
65  
67  
68  
70  
113  
Schmitt  
Input  
Input,  
pull-up  
enabled  
ISA0 - 2 — These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMA.  
(GPIOC8)  
Schmitt  
Input/  
Output  
Port C GPIO — These three GPIO pins can be individually  
programmed as input or output pins.  
ISA1  
(GPIOC9)  
114  
115  
In the 56F8346, these pins default to ISA functionality after reset.  
ISA2  
(GPIOC10)  
In the 56F8146, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pull-up resistor, clear the appropriate bit  
of the GPIOC_PUR register. For details, see Part 6.5.8.  
FAULTA0  
FAULTA1  
FAULTA2  
71  
73  
74  
Schmitt  
Input  
Input,  
pull-up  
enabled  
FAULTA0 - 2 — These three fault input pins are used for disabling  
selected PWMA outputs in cases where fault conditions originate  
off-chip.  
To deactivate the internal pull-up resistor, set the PWMA0 bit in the  
SIM_PUDR register. For details, see Part 6.5.8.  
PWMB0  
PWMB1  
PWMB2  
PWMB3  
PWMB4  
PWMB5  
34  
35  
36  
39  
40  
41  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
PWMB0 - 5 — Six PWMB output pins.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
35  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
ISB0  
Pin No.  
Type  
During  
Reset  
Signal Description  
50  
Schmitt  
Input  
Input,  
pull-up  
enabled  
ISB0 - 2 — These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMB.  
(GPIOD10)  
Schmitt  
Input/  
Output  
Port D GPIO — These three GPIO pins can be individually  
programmed as input or output pins.  
ISB1  
(GPIOD11)  
52  
53  
At reset, these pins default to ISB functionality.  
ISB2  
(GPIOD12)  
To deactivate the internal pull-up resistor, clear the appropriate bit  
of the GPIOD_PUR register. For details, see Part 6.5.8.  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
ANA0  
56  
57  
58  
61  
88  
89  
90  
91  
92  
93  
94  
95  
101  
Schmitt  
Input  
Input,  
pull-up  
enabled  
FAULTB0 - 3 — These four fault input pins are used for disabling  
selected PWMB outputs in cases where fault conditions originate  
off-chip.  
To deactivate the internal pull-up resistor, set the PWMB bit in the  
SIM_PUDR register. For details, see Part 6.5.8.  
Input  
Input  
Input  
Analog  
Input  
ANA0 - 3 — Analog inputs to ADC A, channel 0  
ANA1  
ANA2  
ANA3  
ANA4  
Analog  
Input  
ANA4 - 7 — Analog inputs to ADC A, channel 1  
ANA5  
ANA6  
ANA7  
VREFH  
Analog  
Input  
VREFH — Analog Reference Voltage High. VREFH must be less  
than or equal to VDDA_ADC.  
VREFP  
VREFMID  
VREFN  
100  
99  
Input/  
Output  
Analog  
Input/  
Output  
VREFP, VREFMID & VREFN — Internal pins for voltage reference  
which are brought off-chip so they can be bypassed. Connect to a  
0.1μF low ESR capacitor.  
98  
VREFLO  
97  
Input  
Analog  
Input  
VREFLO — Analog Reference Voltage Low. This should normally  
be connected to a low-noise VSSA  
.
56F8346 Technical Data, Rev. 15  
36  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
ANB0  
ANB1  
104  
105  
106  
107  
108  
109  
110  
111  
96  
Input  
Analog  
Input  
ANB0 - 3 — Analog inputs to ADC B, channel 0  
ANB2  
ANB3  
ANB4  
Input  
Analog  
Input  
ANB4 - 7 — Analog inputs to ADC B, channel 1  
ANB5  
ANB6  
ANB7  
TEMP_SENSE  
Output  
Analog  
Output  
Temperature Sensor Diode — This signal connects to an on-chip  
diode that can be connected to one of the ADC inputs and used to  
monitor the temperature of the die. Must be bypassed with a  
0.01μF capacitor.  
CAN_RX  
CAN_TX  
127  
126  
Schmitt  
Input  
Input,  
pull-up  
enabled  
FlexCAN Receive Data — This is the CAN input. This pin has an  
internal pull-up resistor.  
To deactivate the internal pull-up resistor, set the CAN bit in the  
SIM_PUDR register.  
Open  
Drain  
Open  
Drain  
FlexCAN Transmit Data — CAN output with internal pull-up  
enable at reset.*  
Output  
Output  
* Note: If a pin is configured as open drain output mode, internal  
pull-up will automatically be disabled when it outputs low. Internal  
pull-up will be enabled unless it has been manually disabled by  
clearing the corresponding bit in the PUREN register of the GPIO  
module, when it outputs high.  
If a pin is configured as push-pull output mode, internal pull-up will  
automatically be disabled, whether it outputs low or high.  
TC0  
118  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
TC0 — Timer C Channel 0  
(GPIOE8)  
Schmitt  
Input/  
Port E GPIO — This GPIO pin can be programmed as an input or  
output pin.  
Output  
At reset, this pin defaults to timer functionality.  
To deactivate the internal pull-up resistor, clear bit 8 of the  
GPIOE_PUR register.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
37  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
TD0  
Pin No.  
Type  
During  
Reset  
Signal Description  
116  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
TD0 -1 — Timer D, Channels 0 and 1  
(GPIOE10)  
Schmitt  
Input/  
Output  
Port E GPIO — These GPIO pins can be individually programmed  
as input or output pins.  
TD1  
(GPIOE11)  
117  
At reset, these pins default to Timer functionality.  
To deactivate the internal pull-up resistor, clear the appropriate bit  
of the GPIOE_PUR register. See Part 6.5.6 for details.  
IRQA  
IRQB  
54  
55  
Schmitt  
Input  
Input,  
pull-up  
enabled  
External Interrupt Request A and B — The IRQA and IRQB  
inputs are asynchronous external interrupt requests during Stop  
and Wait mode operation. During other operating modes, they are  
synchronized external interrupt requests, which indicate an  
external device is requesting service. They can be programmed to  
be level-sensitive or negative-edge triggered.  
To deactivate the internal pull-up resistor, set the IRQ bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
RESET  
86  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Reset — This input is a direct hardware reset on the processor.  
When RESET is asserted low, the device is initialized and placed  
in the reset state. A Schmitt trigger input is used for noise  
immunity. When the RESET pin is deasserted, the initial chip  
operating mode is latched from the EXTBOOT pin. The internal  
reset signal will be deasserted synchronous with the internal clocks  
after a fixed number of internal clocks.  
To ensure complete hardware reset, RESET and TRST should be  
asserted together. The only exception occurs in a debugging  
environment when a hardware device reset is required and the  
JTAG/EOnCE module must not be reset. In this case, assert  
RESET but do not assert TRST.  
Note: The internal Power-On Reset will assert on initial power-up.  
To deactivate the internal pull-up resistor, set the RESET bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
RSTO  
85  
Output  
Output  
Reset Output — This output reflects the internal reset state of the  
chip.  
56F8346 Technical Data, Rev. 15  
38  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 144 Pin LQFP  
State  
Signal Name  
EXTBOOT  
Pin No.  
Type  
During  
Reset  
Signal Description  
112  
Schmitt  
Input  
Input,  
pull-up  
enabled  
External Boot — This input is tied to VDD to force the device to  
boot from off-chip memory (assuming that the on-chip Flash  
memory is not in a secure state). Otherwise, it is tied to ground. For  
details, see Table 4-4.  
Note: When this pin is tied low, the customer boot software should  
disable the internal pull-up resistor by setting the XBOOT bit of the  
SIM_PUDR; see Part 6.5.6.  
EMI_MODE  
143  
Schmitt  
Input  
Input,  
pull-up  
enabled  
External Memory Mode — The EMI_MODE input is internally tied  
low (to VSS). This device will boot from internal flash memory  
under normal operation. This function is also affected by  
EXTBOOT and the Flash security mode. For details, see  
Table 4-4.  
If a 20-bit address bus is not desired, then this pin is tied to ground.  
Note: When this pin is tied low, the customer boot software should  
disable the internal pull-up resistor by setting the EMI_MODE bit of  
the SIM_PUDR; see Part 6.5.6.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
39  
Part 3 On-Chip Clock Synthesis (OCCS)  
3.1 Introduction  
Refer to the OCCS chapter of the 56F8300 Peripheral User Manual for a full description of the OCCS.  
The material contained here identifies the specific features of the OCCS design. Figure 3-1 shows the  
specific OCCS block diagram to reference in the OCCS chapter in the 56F8300 Peripheral User Manual.  
CLKMODE  
XTAL  
ZSRC  
Crystal  
OSC  
Prescaler CLK  
PLLCOD  
SYS_CLK2  
Source to SIM  
EXTAL  
PLLCID  
PLLDB  
PLL  
FOUT  
FOUT/2  
Postscaler  
Prescaler  
÷ (1,2,4,8)  
Postscaler CLK  
÷2  
x (1 to 128)  
÷ (1,2,4,8)  
Bus  
Interface  
Bus Interface & Control  
LCK  
Lock  
Detector  
Loss of Reference  
Clock Interrupt  
Loss of  
Reference  
Clock  
Detector  
Figure 3-1 OCCS Block Diagram  
3.2 External Clock Operation  
The system clock can be derived from an external crystal, ceramic resonator, or an external system clock  
signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic  
resonator, must be connected between the EXTAL and XTAL pins.  
3.2.1  
Crystal Oscillator  
The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency  
range specified for the external crystal in Table 10-15. A recommended crystal oscillator circuit is shown  
in Figure 3-2. Follow the crystal supplier’s recommendations when selecting a crystal, since crystal  
parameters determine the component values required to provide maximum stability and reliable start-up.  
56F8346 Technical Data, Rev. 15  
40  
Freescale Semiconductor  
Preliminary  
External Clock Operation  
The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL  
pins to minimize output distortion and start-up stabilization time.  
Crystal Frequency = 4 - 8MHz (optimized for 8MHz)  
EXTAL XTAL  
Rz  
EXTAL XTAL  
Rz  
Sample External Crystal Parameters:  
Rz = 750 KΩ  
Note: If the operating temperature range is limited to  
CLKMODE = 0  
below 85oC (105oC junction), then Rz = 10 Meg Ω  
CL1  
CL2  
Figure 3-2 Connecting to a Crystal Oscillator  
Note:  
The OCCS_COHL bit must be set to 1 when a crystal oscillator is used. The reset condition on the  
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed  
in the 56F8300 Peripheral User Manual.  
3.2.2  
Ceramic Resonator (Default)  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system  
design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in Figure 3-3.  
Refer to the supplier’s recommendations when selecting a ceramic resonator and associated components.  
The resonator and components should be mounted as near as possible to the EXTAL and XTAL pins.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
41  
Resonator Frequency = 4 - 8MHz (optimized for 8MHz)  
3 Terminal  
2 Terminal  
Sample External Ceramic Resonator Parameters:  
Rz = 750 KΩ  
EXTAL XTAL  
Rz  
EXTAL XTAL  
Rz  
CLKMODE = 0  
CL1  
CL2  
C1  
C2  
Figure 3-3 Connecting a Ceramic Resonator  
Note:  
The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition on the  
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed  
in the 56F8300 Peripheral User Manual.  
3.2.3  
External Clock Source  
The recommended method of connecting an external clock is illustrated in Figure 3-4. The external clock  
source is connected to XTAL and the EXTAL pin is grounded. Set OCCS_COHL bit high when using an  
external clock source as well.  
Note: When using an external clocking source  
XTAL  
EXTAL  
with this configuration, the input “CLKMODE”  
should be high and the COHL bit in the OSCTL  
register should be set to 1.  
V
External  
Clock  
SS  
Figure 3-4 Connecting an External Clock Register  
3.3 Registers  
When referring to the register definitions for the OCCS in the 56F8300 Peripheral User Manual, use the  
register definitions without the internal Relaxation Oscillator, since the 56F8346/56F8146 devices do  
NOT contain this oscillator.  
Part 4 Memory Map  
4.1 Introduction  
The 56F8346 and 56F8146 devices are 16-bit motor-control chips based on the 56800E core. These parts  
use a Harvard-style architecture with two independent memory spaces for Data and Program. On-chip  
RAM and Flash memories are used in both spaces.  
56F8346 Technical Data, Rev. 15  
42  
Freescale Semiconductor  
Preliminary  
Introduction  
This section provides memory maps for:  
Program Address Space, including the Interrupt Vector Table  
Data Address Space, including the EOnCE Memory and Peripheral Memory Maps  
On-chip memory sizes for each device are summarized in Table 4-1. Flash memories’ restrictions are  
identified in the “Use Restrictions” column of Table 4-1.  
Note: Data Flash and Program RAM are NOT available on the 56F8146 device.  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8346  
56F8146  
Use Restrictions  
Program Flash  
128KB  
128KB  
Erase / Program via Flash interface unit and word writes to  
CDBW  
Data Flash  
8KB  
4KB  
Erase / Program via Flash interface unit and word writes to  
CDBW. Data Flash can be read via either CDBR or XDB2, but  
not by both simultaneously  
Program RAM  
None  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
43  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8346  
56F8146  
Use Restrictions  
Data RAM  
8KB  
8KB  
8KB  
8KB  
None  
Program Boot Flash  
Erase / Program via Flash Interface unit and word to CDBW  
4.2 Program Map  
The operating mode control bits (MA and MB) in the Operating Mode Register (OMR) control the  
Program memory map. At reset, these bits are set as indicated in Table 4-2. Table 4-4 shows the memory  
map configurations that are possible at reset. After reset, the OMR MA bit can be changed and will have  
an effect on the P-space memory map, as shown in Table 4-3. Changing the OMR MB bit will have no  
effect.  
Table 4-2 OMR MB/MA Value at Reset  
OMR MB =  
OMR MA =  
Flash Secured  
State1, 2  
Chip Operating Mode  
EXTBOOT Pin  
0
0
0
Mode 0 – Internal Boot; EMI is configured to use 16 address lines; Flash  
Memory is secured; external P-space is not allowed; the EOnCE is disabled  
1
Not valid; cannot boot externally if the Flash is secured and will actually  
configure to 00 state  
1
1
0
1
Mode 0 – Internal Boot; EMI is configured to use 16 address lines  
Mode 1 – External Boot; Flash Memory is not secured; EMI configuration is  
determined by the state of the EMI_MODE pin  
1. This bit is only configured at reset. If the Flash secured state changes, this will not be reflected in MB until the next reset.  
2. Changing MB in software will not affect Flash memory security.  
Table 4-3 Changing OMR MA Value During Normal Operation  
OMR MA  
Chip Operating Mode  
Use internal P-space memory map configuration  
0
1
Use external P-space memory map configuration – If MB = 0 at reset, changing this bit has no  
effect.  
The device’s external memory interface (EMI) can operate much like the 56F80x family’s EMI, or it can  
be operated in a mode similar to that used on other products in the 56800E family. Initially, CS0 and CS1  
are configured as PS and DS, in a mode compatible with earlier 56800 devices.  
Eighteen address lines are required to shadow the first 192K of internal program space when booting  
externally for development purposes. Therefore, the entire complement of on-chip memory cannot be  
accessed using a 16-bit 56800-compatible address bus. To address this situation, the EMI_MODE pin can  
be used to configure four GPIO pins as Address[19:16] upon reset (only one of these pins [A16] is usable  
56F8346 Technical Data, Rev. 15  
44  
Freescale Semiconductor  
Preliminary  
Interrupt Vector Table  
in the 56F8346/56F8146).  
The EMI_MODE pin also affects the reset vector address, as provided in Table 4-4. Additional pins must  
be configured as address or chip select signals to access addresses at P:$10 0000 and above.  
Note: Program RAM is NOT available on the 56F8146 device.  
Table 4-4 Program Memory Map at Reset  
Mode 11 (MA = 1)  
Mode 0 (MA = 0)  
Begin/End  
Address  
Internal Boot  
External Boot  
EMI_MODE = 02,3  
EMI_MODE = 14  
Internal Boot  
16-Bit External Address Bus  
16-Bit External Address Bus  
20-Bit External Address Bus  
External Program Memory5  
External Program Memory5  
External Program Memory5  
P:$1F FFFF  
P:$10 0000  
P:$0F FFFF  
P:$03 0000  
P:$02 FFFF  
P:$02 F800  
On-Chip Program RAM  
4KB  
P:$02 F7FF  
P:$02 1000  
Reserved  
116KB  
P:$02 0FFF  
P:$02 0000  
Boot Flash  
8KB  
COP Reset Address = 02 0002  
Boot Location = 02 0000  
Boot Flash  
8KB  
(Not Used for Boot in this Mode)  
External Program RAM  
COP Reset Address = 02 00026  
Boot Location = 02 00006  
External Program RAM5  
Internal Program Flash7  
128KB  
P:$01 FFFF  
P:$01 0000  
P:$00 FFFF  
P:$00 0000  
Internal Program Flash  
128KB  
External Program RAM  
COP Reset Address = 00 0002  
Boot Location = 00 0000  
1. If Flash Security Mode is enabled, EXTBOOT Mode 1 cannot be used. See Security Features, Part 7.  
2. This mode provides maximum compatibility with 56F80x parts while operating externally.  
3. “EMI_MODE =0” when EMI_MODE pin is tied to ground at boot up.  
4. “EMI_MODE =1” when EMI_MODE pin is tied to V at boot up.  
DD  
5. Not accessible in reset configuration, since the address is above P:$00 FFFF. The higher bit address/GPIO (and/or chip se-  
lects) pins must be reconfigured before this external memory is accessible.  
6. Booting from this external address allows prototyping of the internal Boot Flash.  
7. The internal Program Flash is relocated in this mode making it accessible.  
4.3 Interrupt Vector Table  
Table 4-5 provides the reset and interrupt priority structure, including on-chip peripherals. The table is  
organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. The  
priority of an interrupt can be assigned to different levels, as indicated, allowing some control over  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
45  
interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority  
level, the lowest vector number has the highest priority.  
The location of the vector table is determined by the Vector Base Address (VBA) register. Please see Part  
5.6.12 for the reset value of the VBA.  
In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the  
interrupt vector table. In these instances, the first two locations in the vector table must contain branch or  
JMP instructions. All other entries must contain JSR instructions.  
Note: PWMA, FlexCAN, Quadrature Decoder 1, and Quad Timers B and D are NOT available on the  
56F8146 device.  
1
Table 4-5 Interrupt Vector Table Contents  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Reserved for Reset Overlay2  
Reserved for COP Reset Overlay2  
Illegal Instruction  
SW Interrupt 3  
core  
core  
core  
core  
core  
core  
2
3
4
5
6
7
3
3
P:$04  
P:$06  
P:$08  
P:$0A  
P:$0C  
P:$0E  
3
HW Stack Overflow  
Misaligned Long Word Access  
OnCE Step Counter  
OnCE Breakpoint Unit 0  
Reserved  
3
1-3  
1-3  
core  
core  
core  
9
1-3  
1-3  
1-3  
P:$12  
P:$14  
P:$16  
OnCE Trace Buffer  
OnCE Transmit Register Empty  
OnCE Receive Register Full  
Reserved  
10  
11  
core  
core  
core  
core  
core  
14  
15  
16  
17  
18  
2
1
P:$1C  
P:$1E  
P:$20  
P:$22  
P:$24  
SW Interrupt 2  
SW Interrupt 1  
0
SW Interrupt 0  
0-2  
0-2  
IRQA  
IRQB  
Reserved  
LVI  
20  
21  
0-2  
0-2  
P:$28  
P:$2A  
Low Voltage Detector (power sense)  
PLL  
PLL  
56F8346 Technical Data, Rev. 15  
46  
Freescale Semiconductor  
Preliminary  
Interrupt Vector Table  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
FM  
FM  
FM  
22  
23  
24  
0-2  
0-2  
0-2  
P:$2C  
P:$2E  
P:$30  
FM Access Error Interrupt  
FM Command Complete  
FM Command, data and address Buffers Empty  
Reserved  
FLEXCAN  
FLEXCAN  
FLEXCAN  
FLEXCAN  
GPIOF  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$34  
P:$36  
P:$38  
P:$3A  
P:$3C  
P:$3E  
P:$40  
P:$42  
P:$44  
P:$46  
FLEXCAN Bus Off  
FLEXCAN Error  
FLEXCAN Wake Up  
FLEXCAN Message Buffer Interrupt  
GPIOF  
GPIOE  
GPIOE  
GPIOD  
GPIOD  
GPIOC  
GPIOC  
GPIOB  
GPIOB  
GPIOA  
GPIOA  
Reserved  
SPI1  
SPI1  
SPI0  
SPI0  
SCI1  
SCI1  
38  
39  
40  
41  
42  
43  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$4C  
P:$4E  
P:$50  
P:$52  
P:$54  
P:$56  
SPI 1 Receiver Full  
SPI 1 Transmitter Empty  
SPI 0 Receiver Full  
SPI 0 Transmitter Empty  
SCI 1 Transmitter Empty  
SCI 1 Transmitter Idle  
Reserved  
SCI1  
45  
46  
47  
48  
49  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$5A  
P:$5C  
P:$5E  
P:$60  
P:$62  
SCI 1 Receiver Error  
SCI 1 Receiver Full  
SCI1  
DEC1  
DEC1  
DEC0  
Quadrature Decoder #1 Home Switch or Watchdog  
Quadrature Decoder #1 INDEX Pulse  
Quadrature Decoder #0 Home Switch or Watchdog  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
47  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
DEC0  
50  
0-2  
P:$64  
Quadrature Decoder #0 INDEX Pulse  
Reserved  
TMRD  
TMRD  
TMRD  
TMRD  
TMRC  
TMRC  
TMRC  
TMRC  
TMRB  
TMRB  
TMRB  
TMRB  
TMRA  
TMRA  
TMRA  
TMRA  
SCI0  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$68  
P:$6A  
P:$6C  
P:$6E  
P:$70  
P:$72  
P:$74  
P:$76  
P:$78  
P:$7A  
P:$7C  
P:$7E  
P:$80  
P:$82  
P:$84  
P:$86  
P:$88  
P:$8A  
Timer D, Channel 0  
Timer D, Channel 1  
Timer D, Channel 2  
Timer D, Channel 3  
Timer C, Channel 0  
Timer C, Channel 1  
Timer C, Channel 2  
Timer C, Channel 3  
Timer B, Channel 0  
Timer B, Channel 1  
Timer B, Channel 2  
Timer B, Channel 3  
Timer A, Channel 0  
Timer A, Channel 1  
Timer A, Channel 2  
Timer A, Channel 3  
SCI 0 Transmitter Empty  
SCI 0 Transmitter Idle  
Reserved  
SCI0  
SCI0  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
- 1  
P:$8E  
P:$90  
P:$92  
P:$94  
P:$96  
P:$98  
P:$9A  
P:$9C  
P:$9E  
P:$A0  
P:$A2  
SCI 0 Receiver Error  
SCI 0 Receiver Full  
SCI0  
ADCB  
ADCA  
ADCB  
ADCA  
PWMB  
PWMA  
PWMB  
PWMA  
core  
ADC B Conversion Compete / End of Scan  
ADC A Conversion Complete / End of Scan  
ADC B Zero Crossing or Limit Error  
ADC A Zero Crossing or Limit Error  
Reload PWM B  
Reload PWM A  
PWM B Fault  
PWM A Fault  
SW Interrupt LP  
56F8346 Technical Data, Rev. 15  
48  
Freescale Semiconductor  
Preliminary  
Data Map  
1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced  
from the vector table, providing only 19 bits of address.  
2. If the VBA is set to 0200 (or VBA = 0000 for Mode 1, EMI_MODE = 0), the first two locations of the vector table are the  
chip reset addresses; therefore, these locations are not interrupt vectors.  
2.  
4.4 Data Map  
Note: Data Flash is NOT available on the 56F8146 device.  
1
Table 4-6 Data Memory Map  
Begin/End  
Address  
EX = 02  
EX = 1  
X:$FF FFFF  
X:$FF FF00  
EOnCE  
256 locations allocated  
EOnCE  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
External Memory  
External Memory  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 2000  
External Memory  
External Memory  
X:$00 1FFF  
X:$00 1000  
On-Chip Data Flash  
8KB  
X:$00 0FFF  
X:$00 0000  
On-Chip Data RAM  
8KB3  
1. All addresses are 16-bit Word addresses, not byte addresses.  
2. In the Operating Mode Register (OMR).  
3. The Data RAM is organized as a 2K x 32-bit memory to allow single-cycle long-word operations.  
4.5 Flash Memory Map  
Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.  
The Flash Memory is divided into three functional blocks. The Program and boot memories reside on the  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
49  
Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides  
on the Data Memory buses and is controlled separately by own set of banked registers.  
The top nine words of the Program Memory Flash are treated as special memory locations. The content of  
these words is used to control the operation of the Flash Controller. Because these words are part of the  
Flash Memory content, their state is maintained during power-down and reset. During chip initialization,  
the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash  
Memory chapter of the 56F8300 Peripheral User Manual. These configuration parameters are located  
between $00_FFF7 and $00_FFFF.  
Data Memory  
Program Memory  
BOOT_FLASH_START + $1FFF  
FM_BASE + $14  
FM_BASE + $00  
Banked Registers  
8KB  
Boot  
Unbanked Registers  
BOOT_FLASH_START = $02_0000  
Reserved  
DATA_FLASH_START + $0FFF  
DATA_FLASH_START + $0000  
8KB  
Note: Data Flash is  
NOT available in the  
56F8146 device.  
FM_PROG_MEM_TOP = $00_FFFF  
PROG_FLASH_START + $00_FFFF  
PROG_FLASH_START + $00_FFF7  
PROG_FLASH_START + $00_FFF6  
Configure Field  
Block 0 Odd  
Block 0 Even  
128K Bytes  
BLOCK 0 Odd (2 Bytes) $00_0003  
BLOCK 0 Even (2 Bytes) $00_0002  
BLOCK 0 Odd (2 Bytes) $00_0001  
BLOCK 0 Even (2 Bytes) $00_0000  
PROG_FLASH_START = $00_0000  
Figure 4-1 Flash Array Memory Maps  
Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip.  
Note: Data Flash is NOT available on the 56F8146 device.  
Table 4-7. Flash Memory Partitions  
Flash Size  
Sectors  
Sector Size  
Page Size  
Program Flash  
Data Flash  
128KB  
8KB  
16  
16  
4
4K x 16 bits  
256 x 16 bits  
1K x 16 bits  
512 x 16 bits  
256 x 16 bits  
256 x 16 bits  
Boot Flash  
8KB  
Please see 56F8300 Peripheral User Manual for additional Flash information.  
56F8346 Technical Data, Rev. 15  
50  
Freescale Semiconductor  
Preliminary  
EOnCE Memory Map  
4.6 EOnCE Memory Map  
Table 4-8 EOnCE Memory Map  
Address  
Register Acronym  
Register Name  
Reserved  
X:$FF FF8A  
X:$FF FF8E  
OESCR  
External Signal Control Register  
Reserved  
OBCNTR  
Breakpoint Unit [0] Counter  
Reserved  
X:$FF FF90  
X:$FF FF91  
X:$FF FF92  
X:$FF FF93  
X:$FF FF94  
X:$FF FF95  
X:$FF FF96  
X:$FF FF97  
X:$FF FF98  
X:$FF FF99  
X:$FF FF9A  
X:$FF FF9B  
X:$FF FF9C  
X:$FF FF9D  
X:$FF FF9E  
X:$FF FF9F  
X:$FF FFA0  
OBMSK (32 bits)  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint Unit [0] Control Register  
Breakpoint Unit [0] Control Register  
Trace Buffer Register Stages  
Trace Buffer Register Stages  
Trace Buffer Pointer Register  
Trace Buffer Control Register  
Peripheral Base Address Register  
Status Register  
OBAR2 (32 bits)  
OBAR1 (24 bits)  
OBCR (24 bits)  
OTB (21-24 bits/stage)  
OTBPR (8 bits)  
OTBCR  
OBASE (8 bits)  
OSR  
OSCNTR (24 bits)  
Instruction Step Counter  
Instruction Step Counter  
OCR (bits)  
Control Register  
Reserved  
X:$FF FFFC  
X:$FF FFFD  
X:$FF FFFE  
X:$FF FFFF  
OCLSR (8 bits)  
Core Lock / Unlock Status Register  
OTXRXSR (8 bits)  
OTX / ORX (32 bits)  
OTX1 / ORX1  
Transmit and Receive Status and Control Register  
Transmit Register / Receive Register  
Transmit Register Upper Word  
Receive Register Upper Word  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
51  
4.7 Peripheral Memory Mapped Registers  
On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may  
be accessed with the same addressing modes used for ordinary Data memory, except all peripheral  
registers should be read/written using word accesses only.  
Table 4-9 summarizes base addresses for the set of peripherals on the 56F8346 and 56F8146 devices.  
Peripherals are listed in order of the base address.  
The following tables list all of the peripheral registers required to control or access the peripherals.  
Note: Features in italics are NOT available on the 56F8146 device.  
Table 4-9 Data Memory Peripheral Base Address Map Summary  
Peripheral  
Prefix  
Base Address  
Table Number  
External Memory Interface  
Timer A  
EMI  
X:$00 F020  
X:$00 F040  
X:$00 F080  
X:$00 F0C0  
X:$00 F100  
X:$00 F140  
X:$00 F160  
X:$00 F180  
X:$00 F190  
X:$00 F1A0  
X:$00 F200  
X:$00 F240  
X:$00 F270  
X:$00 F280  
X:$00 F290  
X:$00 F2A0  
X:$00 F2B0  
X:$00 F2C0  
X:$00 F2D0  
X:$00 F2E0  
X:$00 F300  
X:$00 F310  
X:$00 F320  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
4-24  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
TMRA  
TMRB  
TMRC  
TMRD  
PWMA  
PWMB  
DEC0  
DEC1  
ITCN  
Timer B  
Timer C  
Timer D  
PWM A  
PWM B  
Quadrature Decoder 0  
Quadrature Decoder 1  
ITCN  
ADC A  
ADCA  
ADCB  
ADC B  
Temperature Sensor  
SCI #0  
TSENSOR  
SCI0  
SCI #1  
SCI1  
SPI #0  
SPI0  
SPI #1  
SPI1  
COP  
COP  
PLL, OSC  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
CLKGEN  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
56F8346 Technical Data, Rev. 15  
52  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-9 Data Memory Peripheral Base Address Map Summary (Continued)  
Peripheral  
GPIO Port E  
Prefix  
Base Address  
Table Number  
GPIOE  
GPIOF  
SIM  
X:$00 F330  
X:$00 F340  
X:$00 F350  
X:$00 F360  
X:$00 F400  
X:$00 F800  
4-33  
4-34  
4-35  
4-36  
4-37  
4-38  
GPIO Port F  
SIM  
Power Supervisor  
FM  
LVI  
FM  
FlexCAN  
FC  
Table 4-10 External Memory Integration Registers Address Map  
(EMI_BASE = $00 F020)  
Register Acronym Address Offset  
CSBAR 0 $0  
Register Description  
Reset Value  
Chip Select Base Address Register 0  
0x0004 = 64K when  
EXT_BOOT = 0 or  
EMI_MODE = 0  
0x0008 = 1M when  
EMI_MODE = 1  
(Selects entire program  
space for CS0)  
Note that A17-A19 are not  
available in the package  
CSBAR 1  
$1  
Chip Select Base Address Register 1  
0x0004 = 64K when  
EMI_MODE = 0  
0x0008 = 1M when  
EMI_MODE = 1  
(Selects A0-A19  
addressable data space for  
CS1)  
Note that A17-A19 are not  
available in the package  
CSBAR 2  
CSBAR 3  
CSBAR 4  
CSBAR 5  
CSBAR 6  
CSBAR 7  
$2  
$3  
$4  
$5  
$6  
$7  
Chip Select Base Address Register 2  
Chip Select Base Address Register 3  
Chip Select Base Address Register 4  
Chip Select Base Address Register 5  
Chip Select Base Address Register 6  
Chip Select Base Address Register 7  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
53  
Table 4-10 External Memory Integration Registers Address Map (Continued)  
(EMI_BASE = $00 F020)  
Register Acronym Address Offset  
Register Description  
Reset Value  
CSOR 0  
$8  
Chip Select Option Register 0  
0x5FCB programmed for  
chip select for program  
space, word wide, read and  
write, 11 waits  
CSOR 1  
$9  
Chip Select Option Register 1  
0x5FAB programmed for  
chip select for data space,  
word wide, read and write,  
11 waits  
CSOR 2  
CSOR 3  
CSOR 4  
CSOR 5  
CSOR 6  
CSOR 7  
CSTC 0  
CSTC 1  
CSTC 2  
CSTC 3  
CSTC 4  
CSTC 5  
CSTC 6  
CSTC 7  
BCR  
$A  
$B  
Chip Select Option Register 2  
Chip Select Option Register 3  
$C  
Chip Select Option Register 4  
$D  
Chip Select Option Register 5  
$E  
Chip Select Option Register 6  
$F  
Chip Select Option Register 7  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
Chip Select Timing Control Register 0  
Chip Select Timing Control Register 1  
Chip Select Timing Control Register 2  
Chip Select Timing Control Register 3  
Chip Select Timing Control Register 4  
Chip Select Timing Control Register 5  
Chip Select Timing Control Register 6  
Chip Select Timing Control Register 7  
Bus Control Register  
0x016B sets the default  
number of wait states to 11  
for both read and write  
accesses  
Table 4-11 Quad Timer A Registers Address Map  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRA0_CMP1  
TMRA0_CMP2  
TMRA0_CAP  
TMRA0_LOAD  
TMRA0_HOLD  
$0  
$1  
$2  
$3  
$4  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
56F8346 Technical Data, Rev. 15  
54  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-11 Quad Timer A Registers Address Map (Continued)  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
$5  
Register Description  
TMRA0_CNTR  
TMRA0_CTRL  
Counter Register  
Control Register  
$6  
$7  
$8  
$9  
$A  
TMRA0_SCR  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserve  
TMRA0_CMPLD1  
TMRA0_CMPLD2  
TMRA0_COMSCR  
TMRA1_CMP1  
TMRA1_CMP2  
TMRA1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA1_LOAD  
TMRA1_HOLD  
TMRA1_CNTR  
TMRA1_CTRL  
TMRA1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA1_CMPLD1  
TMRA1_CMPLD2  
TMRA1_COMSCR  
TMRA2_CMP1  
TMRA2_CMP2  
TMRA2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA2_LOAD  
TMRA2_HOLD  
TMRA2_CNTR  
TMRA2_CTRL  
TMRA2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA2_CMPLD1  
TMRA2_CMPLD2  
TMRA2_COMSCR  
TMRA3_CMP1  
$30  
Compare Register 1  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
55  
Table 4-11 Quad Timer A Registers Address Map (Continued)  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 2  
TMRA3_CMP2  
TMRA3_CAP  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Capture Register  
TMRA3_LOAD  
TMRA3_HOLD  
TMRA3_CNTR  
TMRA3_CTRL  
TMRA3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRA3_CMPLD1  
TMRA3_CMPLD2  
TMRA3_COMSC  
Table 4-12 Quad Timer B Registers Address Map  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRB0_CMP1  
TMRB0_CMP2  
TMRB0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRB0_LOAD  
TMRB0_HOLD  
TMRB0_CNTR  
TMRB0_CTRL  
TMRB0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB0_CMPLD1  
TMRB0_CMPLD2  
TMRB0_COMSCR  
TMRB1_CMP1  
TMRB1_CMP2  
TMRB1_CAP  
TMRB1_LOAD  
TMRB1_HOLD  
$10  
$11  
$12  
$13  
$14  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
56F8346 Technical Data, Rev. 15  
56  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-12 Quad Timer B Registers Address Map (Continued)  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
TMRB1_CNTR  
TMRB1_CTRL  
$15  
$16  
$17  
$18  
$19  
$1A  
Counter Register  
Control Register  
TMRB1_SCR  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB1_CMPLD1  
TMRB1_CMPLD2  
TMRB1_COMSCR  
TMRB2_CMP1  
TMRB2_CMP2  
TMRB2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRB2_LOAD  
TMRB2_HOLD  
TMRB2_CNTR  
TMRB2_CTRL  
TMRB2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB2_CMPLD1  
TMRB2_CMPLD2  
TMRB2_COMSCR  
TMRB3_CMP1  
TMRB3_CMP2  
TMRB3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRB3_LOAD  
TMRB3_HOLD  
TMRB3_CNTR  
TMRB3_CTRL  
TMRB3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRB3_CMPLD1  
TMRB3_CMPLD2  
TMRB3_COMSCR  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
57  
Table 4-13 Quad Timer C Registers Address Map  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRC0_CMP1  
TMRC0_CMP2  
TMRC0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRC0_LOAD  
TMRC0_HOLD  
TMRC0_CNTR  
TMRC0_CTRL  
TMRC0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC0_CMPLD1  
TMRC0_CMPLD2  
TMRC0_COMSCR  
TMRC1_CMP1  
TMRC1_CMP2  
TMRC1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC1_LOAD  
TMRC1_HOLD  
TMRC1_CNTR  
TMRC1_CTRL  
TMRC1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC1_CMPLD1  
TMRC1_CMPLD2  
TMRC1_COMSCR  
TMRC2_CMP1  
TMRC2_CMP2  
TMRC2_CAP  
TMRC2_LOAD  
TMRC2_HOLD  
TMRC2_CNTR  
TMRC2_CTRL  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
56F8346 Technical Data, Rev. 15  
58  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-13 Quad Timer C Registers Address Map (Continued)  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
$27  
Register Description  
Status and Control Register  
TMRC2_SCR  
TMRC2_CMPLD1  
TMRC2_CMPLD2  
TMRC2_COMSCR  
$28  
$29  
$2A  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC3_CMP1  
TMRC3_CMP2  
TMRC3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC3_LOAD  
TMRC3_HOLD  
TMRC3_CNTR  
TMRC3_CTRL  
TMRC3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRC3_CMPLD1  
TMRC3_CMPLD2  
TMRC3_COMSCR  
Table 4-14 Quad Timer D Registers Address Map  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRD0_CMP1  
TMRD0_CMP2  
TMRD0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRD0_LOAD  
TMRD0_HOLD  
TMRD0_CNTR  
TMRD0_CTRL  
TMRD0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRD0_CMPLD1  
TMRD0_CMPLD2  
TMRD0_COMSCR  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
59  
Table 4-14 Quad Timer D Registers Address Map (Continued)  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
Reserved  
TMRD1_CMP1  
TMRD1_CMP2  
TMRD1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD1_LOAD  
TMRD1_HOLD  
TMRD1_CNTR  
TMRD1_CTRL  
TMRD1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD1_CMPLD1  
TMRD1_CMPLD2  
TMRD1_COMSCR  
TMRD2_CMP1  
TMRD2_CMP2  
TMRD2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD2_LOAD  
TMRD2_HOLD  
TMRD2_CNTR  
TMRD2_CTRL  
TMRD2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD2_CMPLD1  
TMRD2_CMPLD2  
TMRD2_COMSCR  
TMRD3_CMP1  
TMRD3_CMP2  
TMRD3_CAP  
TMRD3_LOAD  
TMRD3_HOLD  
TMRD3_CNTR  
$30  
$31  
$32  
$33  
$34  
$35  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
56F8346 Technical Data, Rev. 15  
60  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-14 Quad Timer D Registers Address Map (Continued)  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
TMRD3_CTRL  
$36  
$37  
$38  
$39  
$3A  
Control Register  
TMRD3_SCR  
Status and Control Register  
TMRD3_CMPLD1  
TMRD3_CMPLD2  
TMRD3_COMSCR  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Table 4-15 Pulse Width Modulator A Registers Address Map  
(PWMA_BASE = $00 F140)  
PWMA is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
PWMA_PMCTL  
$0  
$1  
Control Register  
PWMA_PMFCTL  
PWMA_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
$2  
PWMA_PMOUT  
$3  
PWMA_PMCNT  
$4  
PWMA_PWMCM  
PWMA_PWMVAL0  
PWMA_PWMVAL1  
PWMA_PWMVAL2  
PWMA_PWMVAL3  
PWMA_PWMVAL4  
PWMA_PWMVAL5  
PWMA_PMDEADTM  
PWMA_PMDISMAP1  
PWMA_PMDISMAP2  
PWMA_PMCFG  
$5  
Counter Modulo Register  
Value Register 0  
$6  
$7  
Value Register 1  
$8  
Value Register 2  
$9  
Value Register 3  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
Value Register 4  
Value Register 5  
Dead Time Register  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
PWMA_PMCCR  
Channel Control Register  
Port Register  
PWMA_PMPORT  
PWMA_PMICCR  
PWM Internal Correction Control Register  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
61  
Table 4-16 Pulse Width Modulator B Registers Address Map  
(PWMB_BASE = $00 F160)  
Register Acronym  
Address Offset  
Register Description  
PWMB_PMCTL  
$0  
$1  
Control Register  
PWMB_PMFCTL  
PWMB_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
$2  
PWMB_PMOUT  
$3  
PWMB_PMCNT  
$4  
PWMB_PWMCM  
PWMB_PWMVAL0  
PWMB_PWMVAL1  
PWMB_PWMVAL2  
PWMB_PWMVAL3  
PWMB_PWMVAL4  
PWMB_PWMVAL5  
PWMB_PMDEADTM  
PWMB_PMDISMAP1  
PWMB_PMDISMAP2  
PWMB_PMCFG  
$5  
Counter Modulo Register  
Value Register 0  
$6  
$7  
Value Register 1  
$8  
Value Register 2  
$9  
Value Register 3  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
Value Register 4  
Value Register 5  
Dead Time Register  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
PWMB_PMCCR  
Channel Control Register  
Port Register  
PWMB_PMPORT  
PWMB_PMICCR  
PWM Internal Correction Control Register  
Table 4-17 Quadrature Decoder 0 Registers Address Map  
(DEC0_BASE = $00 F180)  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC0_DECCR  
DEC0_FIR  
$0  
$1  
$2  
$3  
$4  
Filter Interval Register  
DEC0_WTR  
DEC0_POSD  
DEC0_POSDH  
Watchdog Time-out Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
56F8346 Technical Data, Rev. 15  
62  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-17 Quadrature Decoder 0 Registers Address Map (Continued)  
(DEC0_BASE = $00 F180)  
Register Acronym  
Address Offset  
$5  
Register Description  
Revolution Counter Register  
DEC0_REV  
DEC0_REVH  
DEC0_UPOS  
DEC0_LPOS  
DEC0_UPOSH  
DEC0_LPOSH  
DEC0_UIR  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Revolution Hold Register  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
Input Monitor Register  
DEC0_LIR  
DEC0_IMR  
Table 4-18 Quadrature Decoder 1 Registers Address Map  
(DEC1_BASE = $00 F190)  
Quadrature Decoder 1 is NOT available on the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC1_DECCR  
DEC1_FIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Filter Interval Register  
DEC1_WTR  
DEC1_POSD  
DEC1_POSDH  
DEC1_REV  
Watchdog Time-out Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
DEC1_REVH  
DEC1_UPOS  
DEC1_LPOS  
DEC1_UPOSH  
DEC1_LPOSH  
DEC1_UIR  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
Input Monitor Register  
DEC1_LIR  
DEC1_IMR  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
63  
Table 4-19 Interrupt Control Registers Address Map  
(ITCN_BASE = $00 F1A0)  
Register Acronym  
IPR 0  
Address Offset  
Register Description  
Interrupt Priority Register 0  
$0  
$1  
IPR 1  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Interrupt Priority Register 5  
Interrupt Priority Register 6  
Interrupt Priority Register 7  
Interrupt Priority Register 8  
Interrupt Priority Register 9  
Vector Base Address Register  
Fast Interrupt Match Register 0  
Fast Interrupt Vector Address Low 0 Register  
Fast Interrupt Vector Address High 0 Register  
Fast Interrupt Match Register 1  
Fast Interrupt Vector Address Low 1 Register  
Fast Interrupt Vector Address High 1 Register  
IRQ Pending Register 0  
IPR 2  
$2  
IPR 3  
$3  
IPR 4  
$4  
IPR 5  
$5  
IPR 6  
$6  
IPR 7  
$7  
IPR 8  
$8  
IPR 9  
$9  
VBA  
$A  
FIM0  
$B  
FIVAL0  
FIVAH0  
FIM1  
$C  
$D  
$E  
FIVAL1  
FIVAH1  
IRQP 0  
IRQP 1  
IRQP 2  
IRQP 3  
IRQP 4  
IRQP 5  
$F  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$1D  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
Reserved  
ICTL  
Interrupt Control Register  
Table 4-20 Analog-to-Digital Converter Registers Address Map  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCA_CR 1  
$0  
56F8346 Technical Data, Rev. 15  
64  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-20 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
$1  
Register Description  
Control Register 2  
ADCA_CR 2  
ADCA_ZCC  
$2  
$3  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCA_LST 1  
ADCA_LST 2  
ADCA_SDIS  
$4  
$5  
ADCA_STAT  
$6  
ADCA_LSTAT  
ADCA_ZCSTAT  
ADCA_RSLT 0  
ADCA_RSLT 1  
ADCA_RSLT 2  
ADCA_RSLT 3  
ADCA_RSLT 4  
ADCA_RSLT 5  
ADCA_RSLT 6  
ADCA_RSLT 7  
ADCA_LLMT 0  
ADCA_LLMT 1  
ADCA_LLMT 2  
ADCA_LLMT 3  
ADCA_LLMT 4  
ADCA_LLMT 5  
ADCA_LLMT 6  
ADCA_LLMT 7  
ADCA_HLMT 0  
ADCA_HLMT 1  
ADCA_HLMT 2  
ADCA_HLMT 3  
ADCA_HLMT 4  
ADCA_HLMT 5  
ADCA_HLMT 6  
ADCA_HLMT 7  
ADCA_OFS 0  
$7  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
$8  
$9  
$A  
Result Register 1  
$B  
Result Register 2  
$C  
Result Register 3  
$D  
Result Register 4  
$E  
Result Register 5  
$F  
Result Register 6  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
65  
Table 4-20 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
Register Description  
ADCA_OFS 1  
ADCA_OFS 2  
ADCA_OFS 3  
ADCA_OFS 4  
ADCA_OFS 5  
ADCA_OFS 6  
ADCA_OFS 7  
ADCA_POWER  
ADCA_CAL  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
Table 4-21 Analog-to-Digital Converter Registers Address Map  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCB_CR 1  
$0  
$1  
ADCB_CR 2  
Control Register 2  
ADCB_ZCC  
$2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCB_LST 1  
ADCB_LST 2  
ADCB_SDIS  
$3  
$4  
$5  
ADCB_STAT  
ADCB_LSTAT  
ADCB_ZCSTAT  
ADCB_RSLT 0  
ADCB_RSLT 1  
ADCB_RSLT 2  
ADCB_RSLT 3  
ADCB_RSLT 4  
ADCB_RSLT 5  
ADCB_RSLT 6  
ADCB_RSLT 7  
ADCB_LLMT 0  
ADCB_LLMT 1  
ADCB_LLMT 2  
$6  
$7  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
$13  
Result Register 1  
Result Register 2  
Result Register 3  
Result Register 4  
Result Register 5  
Result Register 6  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
56F8346 Technical Data, Rev. 15  
66  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-21 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
$14  
Register Description  
Low Limit Register 3  
ADCB_LLMT 3  
ADCB_LLMT 4  
ADCB_LLMT 5  
ADCB_LLMT 6  
ADCB_LLMT 7  
ADCB_HLMT 0  
ADCB_HLMT 1  
ADCB_HLMT 2  
ADCB_HLMT 3  
ADCB_HLMT 4  
ADCB_HLMT 5  
ADCB_HLMT 6  
ADCB_HLMT 7  
ADCB_OFS 0  
ADCB_OFS 1  
ADCB_OFS 2  
ADCB_OFS 3  
ADCB_OFS 4  
ADCB_OFS 5  
ADCB_OFS 6  
ADCB_OFS 7  
ADCB_POWER  
ADCB_CAL  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
Table 4-22 Temperature Sensor Register Address Map  
(TSENSOR_BASE = $00 F270)  
Temperature Sensor is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
TSENSOR_CNTL  
$0  
Control Register  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
67  
Table 4-23 Serial Communication Interface 0 Registers Address Map  
(SCI0_BASE = $00 F280)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI0_SCIBR  
SCI0_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI0_SCISR  
SCI0_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-24 Serial Communication Interface 1 Registers Address Map  
(SCI1_BASE = $00 F290)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI1_SCIBR  
SCI1_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI1_SCISR  
SCI1_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-25 Serial Peripheral Interface 0 Registers Address Map  
(SPI0_BASE = $00 F2A0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI0_SPSCR  
SPI0_SPDSR  
SPI0_SPDRR  
SPI0_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
Table 4-26 Serial Peripheral Interface 1 Registers Address Map  
(SPI1_BASE = $00 F2B0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI1_SPSCR  
SPI1_SPDSR  
SPI1_SPDRR  
$0  
$1  
$2  
Data Size Register  
Data Receive Register  
56F8346 Technical Data, Rev. 15  
68  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-26 Serial Peripheral Interface 1 Registers Address Map (Continued)  
(SPI1_BASE = $00 F2B0)  
Register Acronym  
Address Offset  
$3  
Register Description  
Data Transmitter Register  
SPI1_SPDTR  
Table 4-27 Computer Operating Properly Registers Address Map  
(COP_BASE = $00 F2C0)  
Register Acronym  
Address Offset  
Register Description  
COPCTL  
COPTO  
$0  
$1  
$2  
Control Register  
Time Out Register  
Counter Register  
COPCTR  
Table 4-28 Clock Generation Module Registers Address Map  
(CLKGEN_BASE = $00 F2D0)  
Register Acronym  
PLLCR  
Address Offset  
Register Description  
$0  
$1  
$2  
Control Register  
PLLDB  
PLLSR  
Divide-By Register  
Status Register  
Reserved  
SHUTDOWN  
OSCTL  
$4  
$5  
Shutdown Register  
Oscillator Control Register  
Table 4-29 GPIOA Registers Address Map  
(GPIOA_BASE = $00 F2E0)  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
Register Acronym  
GPIOA_PUR  
GPIOA_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Data Register  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
GPIOA_DDR  
GPIOA_PER  
GPIOA_IAR  
GPIOA_IENR  
GPIOA_IPOLR  
GPIOA_IPR  
GPIOA_IESR  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
69  
Table 4-29 GPIOA Registers Address Map (Continued)  
(GPIOA_BASE = $00 F2E0)  
Address Offset  
Register Description  
Push-Pull Mode Register  
Raw Data Input Register  
Reset Value  
0 x 3FFF  
Register Acronym  
GPIOA_PPMODE  
$9  
$A  
GPIOA_RAWDATA  
Table 4-30 GPIOB Registers Address Map  
(GPIOB_BASE = $00 F300)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOB_PUR  
GPIOB_DR  
GPIOB_DDR  
GPIOB_PER  
$0  
$1  
$2  
$3  
0 x 00FF  
0 x 0000  
0 x 0000  
Data Register  
Data Direction Register  
Peripheral Enable Register  
0 x 000F for 20-bit EMI  
address at reset.  
0 x 0000 for all other cases.  
See Table 4-4 for details.  
0 x 0000  
GPIOB_IAR  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOB_IENR  
GPIOB_IPOLR  
GPIOB_IPR  
0 x 0000  
0 x 0000  
0 x 0000  
GPIOB_IESR  
GPIOB_PPMODE  
GPIOB_RAWDATA  
0 x 0000  
0 x 00FF  
Table 4-31 GPIOC Registers Address Map  
(GPIOC_BASE = $00 F310)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOC_PUR  
GPIOC_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
Data Register  
GPIOC_DDR  
GPIOC_PER  
GPIOC_IAR  
GPIOC_IENR  
GPIOC_IPOLR  
GPIOC_IPR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
56F8346 Technical Data, Rev. 15  
70  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-31 GPIOC Registers Address Map (Continued)  
(GPIOC_BASE = $00 F310)  
Register Acronym  
Address Offset  
Register Description  
Reset Value  
GPIOC_IESR  
$8  
$9  
$A  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
0 x 0000  
0 x 07FF  
GPIOC_PPMODE  
GPIOC_RAWDATA  
Raw Data Input Register  
Table 4-32 GPIOD Registers Address Map  
(GPIOD_BASE = $00 F320)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOD_PUR  
GPIOD_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 1FFF  
0 x 0000  
0 x 0000  
0 x 1FC0  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 1FFF  
Data Register  
GPIOD_DDR  
GPIOD_PER  
GPIOD_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOD_IENR  
GPIOD_IPOLR  
GPIOD_IPR  
GPIOD_IESR  
GPIOD_PPMODE  
GPIOD_RAWDATA  
Table 4-33 GPIOE Registers Address Map  
(GPIOE_BASE = $00 F330)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOE_PUR  
GPIOE_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
Data Register  
GPIOE_DDR  
GPIOE_PER  
GPIOE_IAR  
GPIOE_IENR  
GPIOE_IPOLR  
GPIOE_IPR  
GPIOE_IESR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
71  
Table 4-33 GPIOE Registers Address Map (Continued)  
(GPIOE_BASE = $00 F330)  
Register Acronym  
GPIOE_PPMODE  
GPIOE_RAWDATA  
Address Offset  
Register Description  
Push-Pull Mode Register  
Raw Data Input Register  
Reset Value  
0 x 3FFF  
$9  
$A  
Table 4-34 GPIOF Registers Address Map  
(GPIOF_BASE = $00 F340)  
Register Acronym  
Address Offset  
Register Description  
Reset Value  
GPIOF_PUR  
GPIOF_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Pull-up Enable Register  
Data Register  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x FFFF  
GPIOF_DDR  
GPIOF_PER  
GPIOF_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOF_IENR  
GPIOF_IPOLR  
GPIOF_IPR  
GPIOF_IESR  
GPIOF_PPMODE  
GPIOF_RAWDATA  
Table 4-35 System Integration Module Registers Address Map  
(SIM_BASE = $00 F350)  
Register Acronym  
Address Offset  
Register Description  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Control Register  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half JTAG ID  
Least Significant Half JTAG ID  
Pull-up Disable Register  
Reserved  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_PUDR  
56F8346 Technical Data, Rev. 15  
72  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-35 System Integration Module Registers Address Map (Continued)  
(SIM_BASE = $00 F350)  
Register Acronym  
Address Offset  
Register Description  
SIM_CLKOSR  
SIM_GPS  
$A  
$B  
$C  
$D  
$E  
Clock Out Select Register  
Quad Decoder 1 / Timer B / SPI 1 Select Register  
Peripheral Clock Enable Register  
SIM_PCE  
SIM_ISALH  
SIM_ISALL  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
Table 4-36 Power Supervisor Registers Address Map  
(LVI_BASE = $00 F360)  
Register Acronym  
Address Offset  
Register Description  
LVI_CONTROL  
LVI_STATUS  
$0  
$1  
Control Register  
Status Register  
Table 4-37 Flash Module Registers Address Map  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Clock Divider Register  
FMCLKD  
FMMCR  
$0  
$1  
Module Control Register  
Reserved  
FMSECH  
FMSECL  
$3  
$4  
Security High Half Register  
Security Low Half Register  
Reserved  
Reserved  
FMPROT  
$10  
$11  
Protection Register (Banked)  
Protection Boot Register (Banked)  
Reserved  
FMPROTB  
FMUSTAT  
FMCMD  
$13  
$14  
User Status Register (Banked)  
Command Register (Banked)  
Reserved  
Reserved  
FMOPT 0  
$1A  
16-Bit Information Option Register 0  
Hot temperature ADC reading of Temperature Sensor;  
value set during factory test  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
73  
Table 4-37 Flash Module Registers Address Map (Continued)  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
FMOPT 1  
$1B  
16-Bit Information Option Register 1  
Not used  
FMOPT 2  
$1C  
16-Bit Information Option Register 2  
Room temperature ADC reading of Temperature Sensor;  
value set during factory test  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8146 device  
Register Acronym  
FCMCR  
Address Offset  
Register Description  
Module Configuration Register  
$0  
Reserved  
FCCTL0  
FCCTL1  
FCTMR  
$3  
$4  
$5  
$6  
Control Register 0 Register  
Control Register 1 Register  
Free-Running Timer Register  
Maximum Message Buffer Configuration Register  
Reserved  
FCMAXMB  
FCRXGMASK_H  
FCRXGMASK_L  
FCRX14MASK_H  
FCRX14MASK_L  
FCRX15MASK_H  
FCRX15MASK_L  
$8  
$9  
$A  
$B  
$C  
$D  
Receive Global Mask High Register  
Receive Global Mask Low Register  
Receive Buffer 14 Mask High Register  
Receive Buffer 14 Mask Low Register  
Receive Buffer 15 Mask High Register  
Receive Buffer 15 Mask Low Register  
Reserved  
FCSTATUS  
$10  
$11  
$12  
$13  
Error and Status Register  
Interrupt Masks 1 Register  
Interrupt Flags 1 Register  
Receive and Transmit Error Counters Register  
Reserved  
FCIMASK1  
FCIFLAG1  
FCR/T_ERROR_CNTRS  
Reserved  
Reserved  
FCMB0_CONTROL  
FCMB0_ID_HIGH  
$40  
$41  
Message Buffer 0 Control / Status Register  
Message Buffer 0 ID High Register  
56F8346 Technical Data, Rev. 15  
74  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
FCMB0_ID_LOW  
FCMB0_DATA  
FCMB0_DATA  
FCMB0_DATA  
FCMB0_DATA  
$42  
$43  
$44  
$45  
$46  
Message Buffer 0 ID Low Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Reserved  
FCMSB1_CONTROL  
FCMSB1_ID_HIGH  
FCMSB1_ID_LOW  
FCMB1_DATA  
$48  
$49  
$4A  
$4B  
$4C  
$4D  
$4E  
Message Buffer 1 Control / Status Register  
Message Buffer 1 ID High Register  
Message Buffer 1 ID Low Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Reserved  
FCMB1_DATA  
FCMB1_DATA  
FCMB1_DATA  
FCMB2_CONTROL  
FCMB2_ID_HIGH  
FCMB2_ID_LOW  
FCMB2_DATA  
$50  
$51  
$52  
$53  
$54  
$55  
$56  
Message Buffer 2 Control / Status Register  
Message Buffer 2 ID High Register  
Message Buffer 2 ID Low Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Reserved  
FCMB2_DATA  
FCMB2_DATA  
FCMB2_DATA  
FCMB3_CONTROL  
FCMB3_ID_HIGH  
FCMB3_ID_LOW  
FCMB3_DATA  
$58  
$59  
$5A  
$5B  
$5C  
$5D  
$5E  
Message Buffer 3 Control / Status Register  
Message Buffer 3 ID High Register  
Message Buffer 3 ID Low Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Reserved  
FCMB3_DATA  
FCMB3_DATA  
FCMB3_DATA  
FCMB4_CONTROL  
$60  
Message Buffer 4 Control / Status Register  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
75  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
FCMB4_ID_HIGH  
FCMB4_ID_LOW  
FCMB4_DATA  
FCMB4_DATA  
FCMB4_DATA  
FCMB4_DATA  
$61  
$62  
$63  
$64  
$65  
$66  
Message Buffer 4 ID High Register  
Message Buffer 4 ID Low Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Reserved  
FCMB5_CONTROL  
FCMB5_ID_HIGH  
FCMB5_ID_LOW  
FCMB5_DATA  
$68  
$69  
$6A  
$6B  
$6C  
$6D  
$6E  
Message Buffer 5 Control / Status Register  
Message Buffer 5 ID High Register  
Message Buffer 5 ID Low Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Reserved  
FCMB5_DATA  
FCMB5_DATA  
FCMB5_DATA  
FCMB6_CONTROL  
FCMB6_ID_HIGH  
FCMB6_ID_LOW  
FCMB6_DATA  
$70  
$71  
$72  
$73  
$74  
$75  
$76  
Message Buffer 6 Control / Status Register  
Message Buffer 6 ID High Register  
Message Buffer 6 ID Low Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Reserved  
FCMB6_DATA  
FCMB6_DATA  
FCMB6_DATA  
FCMB7_CONTROL  
FCMB7_ID_HIGH  
FCMB7_ID_LOW  
FCMB7_DATA  
$78  
$79  
$7A  
$7B  
$7C  
$7D  
$7E  
Message Buffer 7 Control / Status Register  
Message Buffer 7 ID High Register  
Message Buffer 7 ID Low Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Reserved  
FCMB7_DATA  
FCMB7_DATA  
FCMB7_DATA  
56F8346 Technical Data, Rev. 15  
76  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8146 device  
Register Acronym  
Address Offset  
Register Description  
FCMB8_CONTROL  
FCMB8_ID_HIGH  
FCMB8_ID_LOW  
FCMB8_DATA  
$80  
$81  
$82  
$83  
$84  
$85  
$86  
Message Buffer 8 Control / Status Register  
Message Buffer 8 ID High Register  
Message Buffer 8 ID Low Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Reserved  
FCMB8_DATA  
FCMB8_DATA  
FCMB8_DATA  
FCMB9_CONTROL  
FCMB9_ID_HIGH  
FCMB9_ID_LOW  
FCMB9_DATA  
$88  
$89  
$8A  
$8B  
$8C  
$8D  
$8E  
Message Buffer 9 Control / Status Register  
Message Buffer 9 ID High Register  
Message Buffer 9 ID Low Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Reserved  
FCMB9_DATA  
FCMB9_DATA  
FCMB9_DATA  
FCMB10_CONTROL  
FCMB10_ID_HIGH  
FCMB10_ID_LOW  
FCMB10_DATA  
FCMB10_DATA  
FCMB10_DATA  
FCMB10_DATA  
$90  
$91  
$92  
$93  
$94  
$95  
$96  
Message Buffer 10 Control / Status Register  
Message Buffer 10 ID High Register  
Message Buffer 10 ID Low Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Reserved  
FCMB11_CONTROL  
FCMB11_ID_HIGH  
FCMB11_ID_LOW  
$98  
$99  
$9A  
Message Buffer 11 Control / Status Register  
Message Buffer 11 ID High Register  
Message Buffer 11 ID Low Register  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
77  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8146 device  
Register Acronym  
FCMB11_DATA  
Address Offset  
Register Description  
Message Buffer 11 Data Register  
$9B  
$9C  
$9D  
$9E  
FCMB11_DATA  
FCMB11_DATA  
FCMB11_DATA  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Reserved  
FCMB12_CONTROL  
FCMB12_ID_HIGH  
FCMB12_ID_LOW  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
$A0  
$A1  
$A2  
$A3  
$A4  
$A5  
$A6  
Message Buffer 12 Control / Status Register  
Message Buffer 12 ID High Register  
Message Buffer 12 ID Low Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Reserved  
FCMB13_CONTROL  
FCMB13_ID_HIGH  
FCMB13_ID_LOW  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
$A8  
$A9  
$AA  
$AB  
$AC  
$AD  
$AE  
Message Buffer 13 Control / Status Register  
Message Buffer 13 ID High Register  
Message Buffer 13 ID Low Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Reserved  
FCMB14_CONTROL  
FCMB14_ID_HIGH  
FCMB14_ID_LOW  
FCMB14_DATA  
FCMB14_DATA  
FCMB14_DATA  
FCMB14_DATA  
$B0  
$B1  
$B2  
$B3  
$B4  
$B5  
$B6  
Message Buffer 14 Control / Status Register  
Message Buffer 14 ID High Register  
Message Buffer 14 ID Low Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Reserved  
FCMB15_CONTROL  
FCMB15_ID_HIGH  
FCMB15_ID_LOW  
$B8  
$B9  
$BA  
Message Buffer 15 Control / Status Register  
Message Buffer 15 ID High Register  
Message Buffer 15 ID Low Register  
56F8346 Technical Data, Rev. 15  
78  
Freescale Semiconductor  
Preliminary  
Factory Programmed Memory  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8146 device  
Register Acronym  
FCMB15_DATA  
Address Offset  
Register Description  
Message Buffer 15 Data Register  
$BB  
$BC  
$BD  
$BE  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Reserved  
4.8 Factory Programmed Memory  
The Boot Flash memory block is programmed during manufacturing with a default Serial Bootloader  
program. The Serial Bootloader application can be used to load a user application into the Program and  
Data Flash (NOT available in the 56F8146 device) memories of the device. The 56F83xx SCI/CAN  
Bootloader User Manual (MC56F83xxBLUM) provides detailed information on this firmware. An  
application note, Production Flash Programming (AN1973), details how the Serial Bootloader program  
can be used to perform production Flash programming of the on-board Flash memories as well as other  
potential methods.  
Like all the Flash memory blocks, the Boot Flash can be erased and programmed by the user. The Serial  
Bootloader application is programmed as an aid to the end user, but is not required to be used or maintained  
in the Boot Flash memory.  
Part 5 Interrupt Controller (ITCN)  
5.1 Introduction  
The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to  
signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in  
order to service this interrupt.  
5.2 Features  
The ITCN module design includes these distinctive features:  
Programmable priority levels for each IRQ  
Two programmable Fast Interrupts  
Notification to SIM module to restart clocks out of Wait and Stop modes  
Drives initial address on the address bus after reset  
For further information, see Table 4-5, Interrupt Vector Table Contents.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
79  
5.3 Functional Description  
The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt  
sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of  
the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the  
active interrupt requests for that level. Within a given priority level, zero is the highest priority, while  
number 81 is the lowest.  
5.3.1  
Normal Interrupt Handling  
Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest  
priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the  
vector number to determine the vector address. In this way, an offset is generated into the vector table for  
each interrupt.  
5.3.2  
Interrupt Nesting  
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be  
serviced. The following tables define the nesting requirements for each priority level.  
Table 5-1 Interrupt Mask Bit Definition  
SR[9]1  
SR[8]1  
Permitted Exceptions  
Masked Exceptions  
None  
0
0
1
1
0
1
0
1
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 0  
Priorities 0, 1  
Priorities 0, 1, 2  
1. Core status register bits indicating current interrupt mask within the core.  
Table 5-2 Interrupt Priority Encoding  
Current Interrupt  
Priority Level  
Required Nested  
Exception Priority  
IPIC_LEVEL[1:0]1  
00  
01  
10  
11  
No Interrupt or SWILP  
Priority 0  
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 1  
Priorities 2 or 3  
1. See IPIC field definition in Part 5.6.30.2.  
5.3.3  
Fast Interrupt Handling  
Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes  
fast interrupts before the core does.  
A fast interrupt is defined (to the ITCN) by:  
56F8346 Technical Data, Rev. 15  
80  
Freescale Semiconductor  
Preliminary  
Block Diagram  
1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers  
2. Setting the FIMn register to the appropriate vector number  
3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt  
When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a  
match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector  
address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an  
offset from the VBA.  
The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts  
its fast interrupt handling.  
5.4 Block Diagram  
any0  
Priority  
Level  
Level 0  
82 -> 7  
Priority  
Encoder  
7
2 -> 4  
Decode  
INT1  
INT  
VAB  
CONTROL  
IPIC  
any3  
Level 3  
Priority  
Level  
IACK  
SR[9:8]  
PIC_EN  
82 -> 7  
Priority  
Encoder  
7
2 -> 4  
INT82  
Decode  
Figure 5-1 Interrupt Controller Block Diagram  
5.5 Operating Modes  
The ITCN module design contains two major modes of operation:  
Functional Mode  
The ITCN is in this mode by default.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
81  
Wait and Stop Modes  
During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal  
a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ  
can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode. Also, the IRQA  
and IRQB signals automatically become low-level sensitive in these modes even if the control register bits  
are set to make them falling-edge sensitive. This is because there is no clock available to detect the falling  
edge.  
A peripheral which requires a clock to generate interrupts will not be able to generate interrupts during Stop  
mode. The FlexCAN module can wake the device from Stop mode, and a reset will do just that, or IRQA  
and IRQB can wake it up.  
5.6 Register Descriptions  
A register address is the sum of a base address and an address offset. The base address is defined at the  
system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00F1A0)  
Register  
Acronym  
Base Address +  
Register Name  
Section Location  
IPR0  
$0  
$1  
Interrupt Priority Register 0  
5.6.1  
5.6.2  
IPR1  
Interrupt Priority Register 1  
IPR2  
$2  
Interrupt Priority Register 2  
5.6.3  
IPR3  
$3  
Interrupt Priority Register 3  
5.6.4  
IPR4  
$4  
Interrupt Priority Register 4  
5.6.5  
IPR5  
$5  
Interrupt Priority Register 5  
5.6.6  
IPR6  
$6  
Interrupt Priority Register 6  
5.6.7  
IPR7  
$7  
Interrupt Priority Register 7  
5.6.8  
IPR8  
$8  
Interrupt Priority Register 8  
5.6.9  
IPR9  
$9  
Interrupt Priority Register 9  
5.6.10  
5.6.11  
5.6.12  
5.6.13  
5.6.14  
5.6.15  
5.6.16  
5.6.17  
5.6.18  
5.6.19  
VBA  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
Vector Base Address Register  
Fast Interrupt 0 Match Register  
Fast Interrupt 0 Vector Address Low Register  
Fast Interrupt 0 Vector Address High Register  
Fast Interrupt 1 Match Register  
Fast Interrupt 1 Vector Address Low Register  
Fast Interrupt 1 Vector Address High Register  
IRQ Pending Register 0  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQ Pending Register 1  
56F8346 Technical Data, Rev. 15  
82  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00F1A0) (Continued)  
Register  
Acronym  
Base Address +  
Register Name  
Section Location  
IRQP2  
$13  
$14  
$15  
$16  
$17  
$1D  
IRQ Pending Register 2  
5.6.20  
5.6.21  
5.6.22  
5.6.23  
IRQP3  
IRQP4  
IRQP5  
Reserved  
ICTL  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
Interrupt Control Register  
5.6.30  
Add. Register  
Offset Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
IPR0  
IPR1  
IPR2  
IPR3  
IPR4  
IPR5  
IPR6  
BKPT_U0 IPL  
STPCNT IPL  
0
0
0
0
0
0
0
0
0
0
RX_REG IPL  
TX_REG IPL  
IRQB IPL  
TRBUF IPL  
IRQA IPL  
W
R
0
0
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
W
R
0
0
GPIOD  
IPL  
GPIOE  
IPL  
GPIOF  
IPL  
FCMSGBUF IPL FCWKUP IPL  
FCERR IPL  
FCBOFF IPL  
W
R
0
0
0
0
0
0
SPI1_RCV  
IPL  
GPIOA  
IPL  
GPIOB  
IPL  
GPIOC  
IPL  
SPI0_RCV IPL SPI1_XMIT IPL  
DEC1_XIRQ IPL DEC1_HIRQ IPL  
W
R
SCI1_RCV  
IPL  
SCI1_RERR IPL  
TMRD1 IPL  
SCI1_TIDL IPL SCI1_XMIT IPL SPI0_XMIT IPL  
W
R
0
0
TMRC0 IPL  
TMRA0 IPL  
TMRD3 IPL  
TMRB3 IPL  
TMRD2 IPL  
TMRB2 IPL  
TMRD0 IPL  
TMRB0 IPL  
DEC0_XIRQ IPL DEC0_HIRQ IPL  
W
R
TMRB1 IPL  
TMRC3 IPL  
TMRA3 IPL  
TMRC2 IPL  
TMRA2 IPL  
TMRC1 IPL  
TMRA1 IPL  
IPR7  
IPR8  
W
R
0
0
0
0
SCI0_RCV IPL SCI0_RERR IPL  
SCI0_TIDL IPL SCI0_XMIT IPL  
PWMB_RL IPL ADCA_ZC IPL  
W
R
PWMA_RL  
IPL  
IPR9  
PWMA F IPL  
PWMB F IPL  
0
ABCB_ZC IPL  
ADCA_CC IPL  
ADCB_CC IPL  
W
R
0
0
0
0
VECTOR BASE ADDRESS  
VBA  
W
R
0
0
0
0
0
0
0
VBA0  
FIVAL0  
FIVAH0  
FIM1  
FAST INTERRUPT 0  
W
R
FAST INTERRUPT 0 VECTOR ADDRESS LOW  
W
R
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS HIGH  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1  
W
R
FAST INTERRUPT 1  
VECTOR ADDRESS LOW  
FIVAL1  
FIVAH1  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS HIGH  
W
Figure 5-2 ITCN Register Map Summary  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
83  
Add. Register  
Offset Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
PENDING [16:2]  
1
$11  
$12  
$13  
$14  
$15  
IRQP0  
IRQP1  
IRQP2  
IRQP3  
IRQP4  
PENDING [32:17]  
W
R
PENDING [48:33]  
PENDING [64:49]  
PENDING [80:65]  
W
R
W
R
W
PEND-  
ING  
[81]  
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
$16  
IRQP5  
W
Reserved  
ICTL  
IRQB  
STATE STATE  
IRQA  
INT  
IPIC  
VAB  
R
IRQB  
EDG  
IRQA  
EDG  
INT_DIS  
$1D  
W
= Reserved  
Figure 5-2 ITCN Register Map Summary  
5.6.1  
Interrupt Priority Register 0 (IPR0)  
Base + $0  
Read  
15  
0
14  
0
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
BKPT_U0 IPL  
STPCNT IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-3 Interrupt Priority Register 0 (IPR0)  
5.6.1.1  
Reserved—Bits 15–14  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.1.2  
EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)—  
Bits13–12  
This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.3  
EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
56F8346 Technical Data, Rev. 15  
84  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.4  
Reserved—Bits 9–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.2  
Interrupt Priority Register 1 (IPR1)  
Base + $1  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
RX_REG IPL TX_REG IPL  
TRBUF IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-4 Interrupt Priority Register 1 (IPR1)  
5.6.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.2.2  
EOnCE Receive Register Full Interrupt Priority Level  
(RX_REG IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.2.3  
EOnCE Transmit Register Empty Interrupt Priority Level  
(TX_REG IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
85  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.2.4  
EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.3  
Interrupt Priority Register 2 (IPR2)  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
0
5
0
4
0
3
2
1
0
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
IRQB IPL  
IRQA IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-5 Interrupt Priority Register 2 (IPR2)  
5.6.3.1  
Flash Memory Command, Data, Address Buffers Empty Interrupt  
Priority Level (FMCBE IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.2  
Flash Memory Command Complete Priority Level  
(FMCC IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
56F8346 Technical Data, Rev. 15  
86  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.3  
Flash Memory Error Interrupt Priority Level  
(FMERR IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.4  
PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.5  
Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.3.7  
External IRQ B Interrupt Priority Level (IRQB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
87  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.8  
External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4  
Interrupt Priority Register 3 (IPR3)  
Base + $3  
Read  
15 14 13 12 11 10  
GPIODIPL GPIOE IPL GPIOFIPL  
9
8
7
6
5
4
3
2
1
0
0
0
FCMSGBUF IPL  
FCWKUP IPL  
FCERR IPL  
FCBOFF IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-6 Interrupt Priority Register 3 (IPR3)  
GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 15–14  
5.6.4.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.2  
GPIOE Interrupt Priority Level (GPIOE IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
88  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.4.3  
GPIOF Interrupt Priority Level (GPIOF IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through  
2two. They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.4  
FlexCAN Message Buffer Interrupt Priority Level (FCMSGBUF IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.5  
FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.6  
FlexCAN Error Interrupt Priority Level (FCERR IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.7  
FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
89  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.8  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5  
Interrupt Priority Register 4 (IPR4)  
Base + $4  
Read  
15  
14  
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
4
3
2
1
0
SPI0_RCV  
IPL  
SPI1_XMIT  
IPL  
SPI1_RCV  
IPL  
GPIOA IPL  
GPIOB IPL  
GPIOC IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-7 Interrupt Priority Register 4 (IPR4)  
5.6.5.1  
SPI0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.2  
SPI1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
90  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.5.3  
SPI1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.4  
Reserved—Bits 9–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5.5  
GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.6  
GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.7  
GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
91  
5.6.6  
Interrupt Priority Register 5 (IPR5)  
Base + $5  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
0
6
0
5
4
3
2
1
0
DEC1_XIRQ DEC1_HIRQ  
IPL IPL  
SCI1_RCV  
IPL  
SCI1_RERR  
IPL  
SCI1_TIDL  
IPL  
SCI1_XMIT  
IPL  
SPI0_XMIT  
IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-8 Interrupt Priority Register 5 (IPR5)  
5.6.6.1  
Quadrature Decoder 1 INDEX Pulse Interrupt Priority Level (DEC1_XIRQ  
IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.2  
Quadrature Decoder 1 HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC1_HIRQ IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.3  
SCI 1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
92  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.6.4  
SCI 1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.5  
Reserved—Bits 7–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.6.6  
SCI 1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)—  
Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.7  
SCI 1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)—  
Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.8  
SPI 0 Transmitter Empty Interrupt Priority Level (SPI0_XMIT IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
93  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7  
Interrupt Priority Register 6 (IPR6)  
Base + $6  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
2
1
0
DEC0_XIRQ  
IPL  
DEC0_HIRQ  
IPL  
TMRC0 IPL  
TMRD3 IPL  
TMRD2 IPL  
TMRD1 IPL  
TMRD0 IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-9 Interrupt Priority Register 6 (IPR6)  
Timer C, Channel 0 Interrupt Priority Level (TMRC0 IPL)—Bits 15–14  
5.6.7.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.2  
Timer D, Channel 3 Interrupt Priority Level (TMRD3 IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.3  
Timer D, Channel 2 Interrupt Priority Level (TMRD2 IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
56F8346 Technical Data, Rev. 15  
94  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
11 = IRQ is priority level 2  
5.6.7.4  
Timer D, Channel 1 Interrupt Priority Level (TMRD1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.5  
Timer D, Channel 0 Interrupt Priority Level (TMRD0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.7.7  
Quadrature Decoder 0, INDEX Pulse Interrupt Priority Level (DEC0_XIRQ  
IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.8  
Quadrature Decoder 0, HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
95  
5.6.8  
Interrupt Priority Register 7 (IPR7)  
Base + $7  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMRA0 IPL  
TMRB3 IPL  
TMRB2 IPL  
TMRB1 IPL  
TMRB0 IPL  
TMRC3 IPL  
TMRC2 IPL  
TMRC1 IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-10 Interrupt Priority Register (IPR7)  
Timer A, Channel 0 Interrupt Priority Level (TMRA0 IPL)—Bits 15–14  
5.6.8.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.2  
Timer B, Channel 3 Interrupt Priority Level (TMRB3 IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.3  
Timer B, Channel 2 Interrupt Priority Level (TMRB2 IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.4  
Timer B, Channel 1 Interrupt Priority Level (TMRB1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
96  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.8.5  
Timer B, Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.6  
Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.7  
Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.8  
Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
97  
5.6.9  
Interrupt Priority Register 8 (IPR8)  
Base + $8  
Read  
15  
14  
13  
12  
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
SCI0_RCV  
IPL  
SCI0_RERR  
IPL  
SCI0_TIDL  
IPL  
SCI0_XMIT  
IPL  
TMRA3 IPL  
TMRA2 IPL  
TMRA1 IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-11 Interrupt Priority Register 8 (IPR8)  
SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)—Bits 15–14  
5.6.9.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.2  
SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.3  
Reserved—Bits 11–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.9.4  
SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
98  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.9.5  
SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.6  
Timer A, Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.7  
Timer A, Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.8  
Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
99  
5.6.10 Interrupt Priority Register 9 (IPR9)  
Base + $9  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWMA_RL  
IPL  
ADCA_CC  
IPL  
ADCB_CC  
IPL  
PWMA_F IPL PWMB_F IPL  
PWM_RL IPL ADCA_ZC IPL ABCB_ZC IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-12 Interrupt Priority Register 9 (IPR9)  
5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.4 Reload PWM B Interrupt Priority Level (PWMB_RL IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
100  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.10.5 ADC A Zero Crossing or Limit Error Interrupt Priority Level  
(ADCA_ZC IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.6 ADC B Zero Crossing or Limit Error Interrupt Priority Level  
(ADCB_ZC IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.7 ADC A Conversion Complete Interrupt Priority Level  
(ADCA_CC IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.8 ADC B Conversion Complete Interrupt Priority Level (ADCB_CC  
IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
101  
5.6.11 Vector Base Address Register (VBA)  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
VECTOR BASE ADDRESS  
Write  
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-13 Vector Base Address Register (VBA)  
5.6.11.1 Reserved—Bits 15–13  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)—Bits 12–0  
The contents of this register determine the location of the Vector Address Table. The value in this register  
is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower eight bits are  
determined based upon the highest-priority interrupt. They are then appended onto VBA before presenting  
the full VAB to the 56800E core; see Part 5.3.1 for details.  
5.6.12 Fast Interrupt 0 Match Register (FIM0)  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 0  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-14 Fast Interrupt 0 Match Register (FIM0)  
5.6.12.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will  
occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the  
highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared  
as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each  
IRQ, refer to Table 4-5.  
56F8346 Technical Data, Rev. 15  
102  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0  
The lower 16 bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAH0  
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
Base + $D  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
5.6.14.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0  
The upper five bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAL0  
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.15 Fast Interrupt 1 Match Register (FIM1)  
Base + $E  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 1  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-17 Fast Interrupt 1 Match Register (FIM1)  
5.6.15.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing.  
5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a service  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
103  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will  
occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the  
highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared  
as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each  
IRQ, refer to Table 4-5.  
5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
Base + $F  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0  
The lower 16 bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAH1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
Base + $10  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
5.6.17.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0  
The upper five bits of the vector address are used for Fast Interrupt 1. This register is combined with  
FIVAL1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.18 IRQ Pending 0 Register (IRQP0)  
Base + $11  
Read  
15  
1
14  
1
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [16:2]  
Write  
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-20 IRQ Pending 0 Register (IRQP0)  
56F8346 Technical Data, Rev. 15  
104  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.18.1 IRQ Pending (PENDING)—Bits 16–2  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.18.2 Reserved—Bit 0  
This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.19 IRQ Pending 1 Register (IRQP1)  
$Base + $12  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [32:17]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
1
1
1
Figure 5-21 IRQ Pending 1 Register (IRQP1)  
5.6.19.1 IRQ Pending (PENDING)—Bits 32–17  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.20 IRQ Pending 2 Register (IRQP2)  
Base + $13  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [48:33]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-22 IRQ Pending 2 Register (IRQP2)  
5.6.20.1 IRQ Pending (PENDING)—Bits 48–33  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
105  
5.6.21 IRQ Pending 3 Register (IRQP3)  
Base + $14  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [64:49]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-23 IRQ Pending 3 Register (IRQP3)  
5.6.21.1 IRQ Pending (PENDING)—Bits 64–49  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.22 IRQ Pending 4 Register (IRQP4)  
Base + $15  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [80:65]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-24 IRQ Pending 4 Register (IRQP4)  
5.6.22.1 IRQ Pending (PENDING)—Bits 80–65  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.23 IRQ Pending 5 Register (IRQP5)  
Base + $16  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
PEND-  
ING  
[81]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-25 IRQ Pending Register 5 (IRQP5)  
56F8346 Technical Data, Rev. 15  
106  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.23.1 Reserved—Bits 96–82  
This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.  
5.6.23.2 IRQ Pending (PENDING)—Bit 81  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.24 Reserved—Base + 17  
5.6.25 Reserved—Base + 18  
5.6.26 Reserved—Base + 19  
5.6.27 Reserved—Base + 1A  
5.6.28 Reserved—Base + 1B  
5.6.29 Reserved—Base + 1C  
5.6.30 ITCN Control Register (ICTL)  
Base + $1D  
Read  
15  
14  
13  
12 11 10  
9
8
7
6
0
5
INT_DIS  
0
4
1
3
2
1
0
INT  
IPIC  
VAB  
IRQB STATE IRQA STATE  
IRQB IRQA  
EDG  
EDG  
Write  
0
0
0
1
0
0
0
0
0
1
1
1
0
0
RESET  
Figure 5-26 ITCN Control Register (ICTL)  
5.6.30.1 Interrupt (INT)—Bit 15  
This read-only bit reflects the state of the interrupt to the 56800E core.  
0 = No interrupt is being sent to the 56800E core  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
107  
1 = An interrupt is being sent to the 56800E core  
5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13  
These read-only bits reflect the state of the new interrupt priority level bits being presented to the 56800E  
core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new  
interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
00 = Required nested exception priority levels are 0, 1, 2, or 3  
01 = Required nested exception priority levels are 1, 2, or 3  
10 = Required nested exception priority levels are 2 or 3  
11 = Required nested exception priority level is 3  
5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6  
This read-only field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This  
field is only updated when the 56800E core jumps to a new interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5  
This bit allows all interrupts to be disabled.  
0 = Normal operation (default)  
1 = All interrupts disabled  
5.6.30.5 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.30.6 IRQB State Pin (IRQB STATE)—Bit 3  
This read-only bit reflects the state of the external IRQB pin.  
5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2  
This read-only bit reflects the state of the external IRQA pin.  
5.6.30.8 IRQB Edge Pin (IRQB Edg)—Bit 1  
This bit controls whether the external IRQB interrupt is edge- or level-sensitive. During Stop and Wait  
modes, it is automatically level-sensitive.  
0 = IRQB interrupt is a low-level sensitive (default)  
1 = IRQB interrupt is falling-edge sensitive.  
56F8346 Technical Data, Rev. 15  
108  
Freescale Semiconductor  
Preliminary  
Resets  
5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0  
This bit controls whether the external IRQA interrupt is edge- or level-sensitive. During Stop and Wait  
modes, it is automatically level-sensitive.  
0 = IRQA interrupt is a low-level sensitive (default)  
1 = IRQA interrupt is falling-edge sensitive.  
5.7 Resets  
5.7.1  
Reset Handshake Timing  
The ITCN provides the 56800E core with a reset vector address whenever RESET is asserted. The reset  
vector will be presented until the second rising clock edge after RESET is released.  
5.7.2  
ITCN After Reset  
After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled,  
except the core IRQs with fixed priorities:  
Illegal Instruction  
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
SW Interrupt 2  
SW Interrupt 1  
SW Interrupt 0  
SW Interrupt LP  
These interrupts are enabled at their fixed priority levels.  
Part 6 System Integration Module (SIM)  
6.1 Overview  
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls  
distribution of resets and clocks and provides a number of control features. The system integration module  
is responsible for the following functions:  
Reset sequencing  
Clock generation & distribution  
Stop/Wait control  
Pull-up enables for selected peripherals  
System status registers  
Registers for software access to the JTAG ID of the chip  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
109  
Enforcing Flash security  
These are discussed in more detail in the sections that follow.  
6.2 Features  
The SIM has the following features:  
Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory  
Power-saving clock gating for peripheral  
Three power modes (Run, Wait, Stop) to control power utilization  
— Stop mode shuts down the 56800E core, system clock, peripheral clock, and PLL operation  
— Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be  
explicitly done  
— Wait mode shuts down the 56800E core and unnecessary system clock operation  
— Run mode supports full part operation  
Controls to enable/disable the 56800E core WAIT and STOP instructions  
Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will be either  
3 x 32 clocks (phased release of reset) for reset, except for POR, which is 221 clock cycles.  
Controls reset sequencing after reset  
Software-initiated reset  
Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control  
System Control Register  
Registers for software access to the JTAG ID of the chip  
56F8346 Technical Data, Rev. 15  
110  
Freescale Semiconductor  
Preliminary  
Operating Modes  
6.3 Operating Modes  
Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the  
various chip operating modes and take appropriate action. These are:  
Reset Mode, which has two submodes:  
— POR and RESET operation  
The 56800E core and all peripherals are reset. This occurs when the internal POR is asserted or the  
RESET pin is asserted.  
— COP reset and software reset operation  
The 56800E core and all peripherals are reset. The MA bit within the OMR is not changed. This allows  
the software to determine the boot mode (internal or external boot) to be used on the next reset.  
Run Mode  
This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation.  
Debug Mode  
The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP and  
PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to disable any motor  
from being driven; see the PWM chapter in the 56F8300 Peripheral User Manual for details.  
Wait Mode  
In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped.  
Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other  
peripherals continue to run.  
Stop Mode  
When in Stop mode, the 56800E core, memory, and most peripheral clocks are shut down. Optionally, the  
COP and CAN can be stopped. For lowest power consumption in Stop mode, the PLL can be shut down.  
This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. The  
CAN (along with any non-gated interrupt) is capable of waking the chip up from Stop mode, but is not fully  
functional in Stop mode.  
6.4 Operating Mode Register  
Bit  
15  
NL  
R/W  
0
14  
0
13  
0
12  
0
11  
0
10  
9
0
8
CM  
R/W  
0
7
XP  
R/W  
0
6
SD  
R/W  
0
5
R
4
SA  
R/W  
0
3
EX  
R/W  
0
2
0
1
MB  
R/W  
X
0
MA  
R/W  
X
R/W  
0
Type  
0
0
RESET  
Figure 6-1 OMR  
The reset state for MB and MA will depend on the Flash secured state. See Part 4.2 and Part 7 for detailed  
information on how the Operating Mode Register (OMR) MA and MB bits operate in this device. For all  
other bits, see the DSP56800E Reference Manual.  
Note:  
The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
111  
6.5 Register Descriptions  
Table 6-1 SIM Registers (SIM_BASE = $00F350)  
Address Offset  
Address Acronym  
Register Name  
Control Register  
Section Location  
Base + $0  
Base + $1  
Base + $2  
Base + $3  
Base + $4  
Base + $5  
Base + $6  
Base + $7  
Base + $8  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
6.5.1  
6.5.2  
6.5.3  
6.5.3  
6.5.3  
6.5.3  
6.5.4  
6.5.5  
6.5.6  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half of JTAG ID  
Least Significant Half of JTAG ID  
Pull-up Disable Register  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_PUDR  
Reserved  
Base + $A  
Base + $B  
Base + $C  
Base + $D  
Base + $E  
SIM_CLKOSR  
SIM_GPS  
CLKO Select Register  
6.5.7  
6.5.7  
6.5.8  
6.5.9  
6.5.10  
GPIO Peripheral Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
SIM_PCE  
SIM_ISALH  
SIM_ISALL  
Add.  
Offset  
Register  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
SIM_  
CONTROL  
EMI_ ONCE  
MODE EBL  
SW  
RST  
STOP_  
DISABLE  
WAIT_  
DISABLE  
$0  
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
RSTSTS  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
SWR COPR EXTR POR  
W
R
SIM_SCR0  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
FIELD  
W
R
FIELD  
FIELD  
FIELD  
W
R
W
R
W
R
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
1
0
1
1
0
0
1
1
1
0
0
0
0
0
1
0
SIM_MSH_  
ID  
W
R
SIM_LSH_ID  
W
R
PWMA  
1
EMI_  
MODE  
PWMA  
0
SIM_PUDR  
Reserved  
CAN  
RESET IRQ XBOOT PWMB  
CTRL  
JTAG  
W
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
CLKOSR  
$A  
$B  
A23  
0
A22  
0
A21  
0
A20 CLKDIS  
CLKOSEL  
C2  
0
0
0
SIM_GPS  
C3  
C1  
C0  
W
Figure 6-2 SIM Register Map Summary  
56F8346 Technical Data, Rev. 15  
112  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
R
W
R
PWM PWM  
SPI0  
$C  
$D  
$E  
SIM_PCE  
SIM_ISALH  
SIM_ISALL  
EMI  
1
ADCB ADCA CAN DEC1 DEC0 TMRD TMRC TMRB TMRA SCI1  
SCI0 SPI1  
B
A
1
1
1
1
1
1
1
1
1
1
1
1
1
ISAL[23:22]  
W
R
ISAL[21:6]  
W
= Reserved  
Figure 6-2 SIM Register Map Summary (Continued)  
6.5.1  
SIM Control Register (SIM_CONTROL)  
Base + $0  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
Read  
Write  
EMI_ ONCE SW  
MODE EBL  
STOP_  
DISABLE  
WAIT_  
DISABLE  
RST  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-3 SIM Control Register (SIM_CONTROL)  
6.5.1.1  
Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.1.2  
EMI_MODE (EMI_MODE)—Bit 6  
This bit reflects the current (non-clocked) state of the EMI_MODE pin. During reset, this bit, coupled with  
the EXTBOOT signal, is used to initialize address bits [19:16] either as GPIO or as address. These settings  
can be explicitly overwritten using the appropriate GPIO peripheral enable register at any time after reset.  
In addition, this pin can be used as a general purpose input pin after reset.  
0 = External address bits [19:16] are initially programmed as GPIO  
1 = When booted with EXTBOOT = 1, A[19:16] are initially programmed as address. If EXTBOOT is 0,  
they are initialized as GPIO.  
6.5.1.3  
OnCE Enable (OnCE EBL)—Bit 5  
0 = OnCE clock to 56800E core enabled when core TAP is enabled  
1 = OnCE clock to 56800E core is always enabled  
6.5.1.4  
Software Reset (SWRST)—Bit 4  
This bit is always read as 0. Writing a 1 to this field will cause the part to reset.  
6.5.1.5  
Stop Disable (STOP_DISABLE)—Bits 3–2  
00 - STOP mode will be entered when the 56800E core executes a STOP instruction  
01 - The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can be  
reprogrammed in the future  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
113  
10 - The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can then only be  
changed by resetting the device  
11 - Same operation as 10  
6.5.1.6  
Wait Disable (WAIT_DISABLE)—Bits 1–0  
00 - WAIT mode will be entered when the 56800E core executes a WAIT instruction  
01 - The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can be  
reprogrammed in the future  
10 - The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can then only be  
changed by resetting the device  
11 - Same operation as 10  
6.5.2  
SIM Reset Status Register (SIM_RSTSTS)  
Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A  
reset (other than POR) will only set bits in the register; bits are not cleared. Only software should clear this  
register.  
Base + $1  
Read  
15  
0
14  
0
13  
O
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
0
0
SWR COPR  
EXTR POR  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)  
6.5.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.2.2  
Software Reset (SWR)—Bit 5  
When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SW RST  
bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing  
a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.  
6.5.2.3  
COP Reset (COPR)—Bit 4  
When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has  
occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will  
set the bit, while writing a 1 to the bit will clear it.  
6.5.2.4  
External Reset (EXTR)—Bit 3  
If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a Power-On  
Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit position  
will clear it. Basically, when the EXTR bit is 1, the previous system reset was caused by the external  
RESET pin being asserted low.  
56F8346 Technical Data, Rev. 15  
114  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.2.5  
Power-On Reset (POR)—Bit 2  
When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can be cleared  
only by software or by another type of reset. Writing a 0 to this bit will set the bit, while writing a 1 to the  
bit position will clear the bit. In summary, if the bit is 1, the previous system reset was due to a Power-On  
Reset.  
6.5.2.6  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.3  
SIM Software Control Registers (SIM_SCR0, SIM_SCR1, SIM_SCR2,  
and SIM_SCR3)  
Only SIM_SCR0 is shown below. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in functionality.  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FIELD  
0
Write  
0
0
0
0
0
0
0
0
0
0
0
0
POR  
Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)  
Software Control Data 1 (FIELD)—Bits 15–0  
6.5.3.1  
This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is  
intended for use by a software developer to contain data that will be unaffected by the other reset sources  
(RESET pin, software reset, and COP reset).  
6.5.4  
Most Significant Half of JTAG ID (SIM_MSH_ID)  
This read-only register displays the most significant half of the JTAG ID for the chip. This register reads  
$11F4.  
Base + $6  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
1
6
1
5
1
4
1
3
0
2
1
1
0
0
0
Write  
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
0
RESET  
Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)  
6.5.5  
Least Significant Half of JTAG ID (SIM_LSH_ID)  
This read-only register displays the least significant half of the JTAG ID for the chip. This register reads  
$401D.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
115  
Base + $7  
Read  
15  
0
14  
1
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
1
Write  
0
1
0
0
0
0
0
0
0
0
0
1
1
1
0
1
RESET  
Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)  
6.5.6  
SIM Pull-up Disable Register (SIM_PUDR)  
Most of the pins on the chip have on-chip pull-up resistors. Pins which can operate as GPIO can have these  
resistors disabled via the GPIO function. Non-GPIO pins can have their pull-ups disabled by setting the  
appropriate bit in this register. Disabling pull-ups is done on a peripheral-by-peripheral basis (for pins not  
muxed with GPIO). Each bit in the register (see Figure 6-8) corresponds to a functional group of pins. See  
Table 2-2 to identify which pins can deactivate the internal pull-up resistor.  
Base + $8  
Read  
15  
0
14  
13  
12  
11  
10  
9
8
7
6
0
5
CTRL  
0
4
0
3
JTAG  
0
2
0
1
0
0
0
EMI_  
MODE  
PWMA1 CAN  
RESET IRQ XBOOT PWMB PWMA0  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-8 SIM Pull-up Disable Register (SIM_PUDR)  
6.5.6.1  
Reserved—Bit 15  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.2  
PWMA1—Bit 14  
This bit controls the pull-up resistors on the FAULTA3 pin.  
6.5.6.3  
CAN—Bit 13  
This bit controls the pull-up resistors on the CAN_RX pin.  
6.5.6.4  
EMI_MODE—Bit 12  
This bit controls the pull-up resistors on the EMI_MODE pin.  
6.5.6.5  
RESET—Bit 11  
This bit controls the pull-up resistors on the RESET pin.  
6.5.6.6  
IRQ—Bit 10  
This bit controls the pull-up resistors on the IRQA and IRQB pins.  
6.5.6.7  
XBOOT—Bit 9  
This bit controls the pull-up resistors on the EXTBOOT pin.  
56F8346 Technical Data, Rev. 15  
116  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.6.8  
PWMB—Bit 8  
This bit controls the pull-up resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3 pins.  
6.5.6.9  
PWMA0—Bit 7  
This bit controls the pull-up resistors on the FAULTA0, FAULTA1, and FAULTA2 pins.  
6.5.6.10 Reserved—Bit 6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.11 CTRL—Bit 5  
This bit controls the pull-up resistors on the WR and RD pins.  
6.5.6.12 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.13 JTAG—Bit 3  
This bit controls the pull-up resistors on the TRST, TMS and TDI pins.  
6.5.6.14 Reserved—Bits 2 - 0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.7  
CLKO Select Register (SIM_CLKOSR)  
The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock  
generation and SIM modules. The default value is SYS_CLK. All other clocks primarily muxed out are  
for test purposes only, and are subject to significant unspecified latencies at high frequencies.  
The upper four bits of the GPIOB register can function as GPIO, A[23:20], or as additional clock output  
signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIOB[7:4] are programmed  
to operate as peripheral outputs, then the choice between A[23:20] and additional clock outputs is done  
here in the CLKOSR. The default state is for the peripheral function of GPIOB[7:4] to be programmed as  
A[23:20]. This can be changed by altering A[23:20], as shown in Figure 6-9.  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
A23  
0
8
A22  
0
7
A21  
0
6
A20  
0
5
4
3
0
2
CLKOSEL  
0
1
0
0
0
CLK  
DIS  
Write  
0
0
0
0
0
0
1
0
RESET  
Figure 6-9 CLKO Select Register (SIM_CLKOSR)  
Reserved—Bits 15–10  
6.5.7.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
117  
6.5.7.2  
Alternate GPIOB Peripheral Function Select for A23 (A23)—Bit 9  
0 = Peripheral output function of GPIOB7 is defined to be A23  
1 = Peripheral output function of GPIOB7 is defined to be the oscillator clock (MSTR_OSC, see  
Figure 3-4)  
6.5.7.3  
Alternate GPIOB Peripheral Function Select for A22 (A22)—Bit 8  
0 = Peripheral output function of GPIOB6 is defined to be A22  
1 = Peripheral output function of GPIOB6 is defined to be SYS_CLK2  
6.5.7.4  
Alternate GPIOB Peripheral Function Select for A21 (A21)—Bit 7  
0 = Peripheral output function of GPIOB5 is defined to be A21  
1 = Peripheral output function of GPIOB5 is defined to be SYS_CLK  
6.5.7.5  
Alternate GPIOB Peripheral Function Select for A20 (A20)—Bit 6  
0 = Peripheral output function of GPIOB4 is defined to be A20  
1 = Peripheral output function of GPIOB4 is defined to be the prescaler clock (FREF, see Figure 3-4)  
6.5.7.6  
Clockout Disable (CLKDIS)—Bit 5  
0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL  
1 = CLKOUT is tri-stated  
6.5.7.7  
CLockout Select (CLKOSEL)—Bits 4–0  
Selects clock to be muxed out on the CLKO pin.  
00000 = SYS_CLK (from OCCS - DEFAULT)  
00001 = Reserved for factory test—56800E clock  
00010 = Reserved for factory test—XRAM clock  
00011 = Reserved for factory test—PFLASH odd clock  
00100 = Reserved for factory test—PFLASH even clock  
00101 = Reserved for factory test—BFLASH clock  
00110 = Reserved for factory test—DFLASH clock  
00111 = Oscillator output  
01000 = Fout (from OCCS)  
01001 = Reserved for factory test—IPB clock  
01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)  
01011 = Reserved for factory test—Prescaler clock (from OCCS)  
01100 = Reserved for factory test—Postscaler clock (from OCCS)  
01101 = Reserved for factory test—SYS_CLK2 (from OCCS)  
01110 = Reserved for factory test—SYS_CLK_DIV2  
01111 = Reserved for factory test—SYS_CLK_D  
10000 = ADCA clock  
10001 = ADCB clock  
56F8346 Technical Data, Rev. 15  
118  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.8  
GPIO Peripheral Select Register (SIM_GPS)  
The GPIO Peripheral Select register can be used to multiplex out any one of the three alternate peripherals  
for GPIOC. The default peripheral is Quad Decoder 1 and Quad Timer B (NOT available in the 56F8146  
device); these peripherals work together.  
The four I/O pins associated with GPIOC can function as GPIO, Quad Decoder 1/Quad Timer B, or as  
SPI 1 signals. GPIO is not the default and is enabled/disabled via the GPIOC_PER, as shown in  
Figure 6-10 and Table 6-2. When GPIOC[3:0] are programmed to operate as peripheral I/O, then the  
choice between decoder/timer and SPI inputs/outputs is made in the SIM_GPS register and in conjunction  
with the Quad Timer Status and Control Registers (SCR). The default state is for the peripheral function  
of GPIOC[3:0] to be programmed as decoder functions. This can be changed by altering the appropriate  
controls in the indicated registers.  
GPIOC_PER Register  
GPIO Controlled  
0
1
I/O Pad Control  
SIM_ GPS Register  
0
1
Quad Timer Controlled  
SPI Controlled  
Figure 6-10 Overall Control of Pads Using SIM_GPS Control  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
119  
1
Table 6-2 Control of Pads Using SIM_GPS Control  
Control Registers  
Pin Function  
Comments  
GPIO Input  
0
0
1
0
1
0
0
GPIO Output  
Quad Timer Input / Quad  
Decoder Input 2  
See the “Switch Matrix for Inputs to the Timer”  
table in the 56F8300 Peripheral User Manual  
for the definition of the timer inputs based on  
the Quad Decoder Mode configuration.  
Quad Timer Output / Quad  
Decoder Input 3  
1
0
1
SPI input  
1
1
1
1
See SPI controls for determining the direction  
of each of the SPI pins.  
SPI output  
1. This applies to the four pins that serve as Quad Decoder / Quad Timer / SPI / GPIOC functions. A separate set of control bits is  
used for each pin.  
2. Reset configuration  
3. Quad Decoder pins are always inputs and function in conjunction with the Quad Timer pins.  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-11 GPIO Peripheral Select Register (SIM_GPS)  
6.5.8.1  
Reserved—Bits 15–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.8.2  
GPIOC3 (C3)—Bit 3  
This bit selects the alternate function for GPIOC3.  
0 = HOME1/TB3 (default - see “Switch Matrix Mode” bits of the Quad Decoder DECCR register in the  
56F8300 Peripheral User Manual)  
1 = SS1  
56F8346 Technical Data, Rev. 15  
120  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.8.3  
GPIOC2 (C2)—Bit 2  
This bit selects the alternate function for GPIOC2.  
0 = INDEX1/TB2 (default)  
1 = MISO1  
6.5.8.4  
GPIOC1 (C1)—Bit 1  
This bit selects the alternate function for GPIOC1.  
0 = PHASEB1/TB1 (default)  
1 = MOSI1  
6.5.8.5  
GPIOC0 (C0)—Bit 0  
This bit selects the alternate function for GPIOC0.  
0 = PHASEA1/TB0 (default)  
1 = SCLK1  
6.5.9  
Peripheral Clock Enable Register (SIM_PCE)  
The Peripheral Clock Enable register is used to enable or disable clocks to the peripherals as a power  
savings feature. The clocks can be individually controlled for each peripheral on the chip.  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EMI ADCB ADCA CAN DEC1 DEC0 TMRD TMRC TMRB TMRA SCI 1 SCI 0 SPI 1 SPI 0 PWMB PWMA  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-12 Peripheral Clock Enable Register (SIM_PCE)  
6.5.9.1  
External Memory Interface Enable (EMI)—Bit 15  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.2  
Analog-to-Digital Converter B Enable (ADCB)—Bit 14  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.3  
Analog-to-Digital Converter A Enable (ADCA)—Bit 13  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
121  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.4  
FlexCAN Enable (CAN)—Bit 12  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.5  
Decoder 1 Enable (DEC1)—Bit 11  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.6  
Decoder 0 Enable (DEC0)—Bit 10  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.7  
Quad Timer D Enable (TMRD)—Bit 9  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.8  
Quad Timer C Enable (TMRC)—Bit 8  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.9  
Quad Timer B Enable (TMRB)—Bit 7  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.10 Quad Timer A Enable (TMRA)—Bit 6  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
56F8346 Technical Data, Rev. 15  
122  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.9.11 Serial Communications Interface 1 Enable (SCI1)—Bit 5  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.12 Serial Communications Interface 0 Enable (SCI0)—Bit 4  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.13 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.14 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.15 Pulse Width Modulator B Enable (PWMB)—1  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.16 Pulse Width Modulator A Enable (PWMA)—0  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.10 I/O Short Address Location Register (SIM_ISALH and SIM_ISALL)  
The I/O Short Address Location registers are used to specify the memory referenced via the I/O short  
address mode. The I/O short address mode allows the instruction to specify the lower six bits of address;  
the upper address bits are not directly controllable. This register set allows limited control of the full  
address, as shown in Figure 6-13.  
Note:  
If this register is set to something other than the top of memory (EOnCE register space) and the EX bit  
in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers, and debug functions  
will be affected.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
123  
Instruction Portion  
Hard Coded” Address Portion  
6 Bits from I/O Short Address Mode Instruction  
16 Bits from SIM_ISALL Register  
2 bits from SIM_ISALH Register  
Full 24-Bit for Short I/O Address  
Figure 6-13 I/O Short Address Determination  
With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its peripheral  
registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register  
to its previous contents prior to returning from interrupt.  
Note:  
Note:  
The default value of this register set points to the EOnCE registers.  
The pipeline delay between setting this register set and using short I/O addressing with the new value  
is three cycles.  
Base + $D  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
0
ISAL[23:22]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-14 I/O Short Address Location High Register (SIM_ISALH)  
6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0  
This field represents the upper two address bits of the “hard coded” I/O short address.  
Base + $E  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
1
1
0
1
ISAL[21:6]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-15 I/O Short Address Location Low Register (SIM_ISALL)  
56F8346 Technical Data, Rev. 15  
124  
Freescale Semiconductor  
Preliminary  
Clock Generation Overview  
6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0  
This field represents the lower 16 address bits of the “hard coded” I/O short address.  
6.6 Clock Generation Overview  
The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the peripheral and  
system (core and memory) clocks. The maximum master clock frequency is 120MHz. Peripheral and  
system clocks are generated at half the master clock frequency and therefore at a maximum 60MHz. The  
SIM provides power modes (Stop, Wait) and clock enables (SIM_PCE register, CLK_DIS, ONCE_EBL)  
to control which clocks are in operation. The OCCS, power modes, and clock enables provide a flexible  
means to manage power consumption.  
Power utilization can be minimized in several ways. In the OCCS, crystal oscillator, and PLL may be shut  
down when not in use. When the PLL is in use, its prescaler and postscaler can be used to limit PLL and  
master clock frequency. Power modes permit system and/or peripheral clocks to be disabled when unused.  
Clock enables provide the means to disable individual clocks. Some peripherals provide further controls  
to disable unused subfunctions. Refer to the Part 3 On-Chip Clock Synthesis (OCCS), and the 56F8300  
Peripheral User Manual for further details.  
6.7 Power-Down Modes Overview  
The 56F8346/56F8146 devices operate in one of three power-down modes, as shown in Table 6-3.  
Table 6-3 Clock Operation in Power-Down Modes  
Mode  
Run  
Core Clocks  
Active  
Peripheral Clocks  
Description  
Device is fully functional  
Active  
Active  
Wait  
Core and memory  
clocks disabled  
Peripherals are active and can product interrupts if they  
have not been masked off.  
Interrupts will cause the core to come out of its  
suspended state and resume normal operation.  
Typically used for power-conscious applications.  
Stop  
System clocks continue to be generated in The only possible recoveries from Stop mode are:  
the SIM, but most are gated prior to  
reaching memory, core and peripherals.  
1. CAN traffic (1st message will be lost)  
2. Non-clocked interrupts  
3. COP reset  
4. External reset  
5. Power-on reset  
All peripherals, except the COP/watchdog timer, run off the IPBus clock frequency, which is the same as  
the main processor frequency in this architecture. The maximum frequency of operation is  
SYS_CLK = 60MHz.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
125  
6.8 Stop and Wait Mode Disable Function  
Permanent  
Disable  
D
Q
D-FLOP  
C
56800E  
Reprogrammable  
Disable  
STOP_DIS  
D
Q
D-FLOP  
Clock  
Select  
C
R
Reset  
Note: Wait disable circuit is similar  
Figure 6-16 Internal Stop Disable Circuit  
The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest  
power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering  
Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E  
system clock must be set equal to the prescaler output.  
Some applications require the 56800E STOP and WAIT instructions be disabled. To disable those  
instructions, write to the SIM control register (SIM_CONTROL), described in Part 6.5.1. This procedure  
can be on either a permanent or temporary basis. Permanently assigned applications last only until their  
next reset.  
6.9 Resets  
The SIM supports four sources of reset. The two asynchronous sources are the external RESET pin and  
the Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within  
the SIM itself by writing to the SIM_CONTROL register, and the COP reset.  
Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced  
21  
to permit proper operation of the device. A POR reset is first extended for 2 clock cycles to permit  
stabilization of the clock source, followed by a 32 clock window in which SIM clocking is initiated. It is  
then followed by a 32 clock window in which peripherals are released to implement Flash security, and,  
finally, followed by a 32 clock window in which the core is initialized. After completion of the described  
reset sequence, application code will begin execution.  
Resets may be asserted asynchronously, but they are always released internally on a rising edge of the  
system clock.  
56F8346 Technical Data, Rev. 15  
126  
Freescale Semiconductor  
Preliminary  
Operation with Security Enabled  
Part 7 Security Features  
The 56F8346/56F8146 offer security features intended to prevent unauthorized users from reading the  
contents of the Flash Memory (FM) array. The Flash security consists of several hardware interlocks that  
block the means by which an unauthorized user could gain access to the Flash array.  
However, part of the security must lie with the user’s code. An extreme example would be user’s code that  
dumps the contents of the internal program, as this code would defeat the purpose of security. At the same  
time, the user may also wish to put a “backdoor” in his program. As an example, the user downloads a  
security key through the SCI, allowing access to a programming routine that updates parameters stored in  
another section of the Flash.  
7.1 Operation with Security Enabled  
Once the user has programmed the Flash with his application code, the device can be secured by  
programming the security bytes located in the FM configuration field, which occupies a portion of the FM  
array. These non-volatile bytes will keep the part secured through reset and through power-down of the  
device. Only two bytes within this field are used to enable or disable security. Refer to the Flash Memory  
section in the 56F8300 Peripheral User Manual for the state of the security bytes and the resulting state  
of security. When Flash security mode is enabled in accordance with the method described in the Flash  
Memory module specification, the device will disable external P-space accesses restricting code execution  
to internal memory, disable EXTBOOT = 1 mode, and disable the core EOnCE debug capabilities. Normal  
program execution is otherwise unaffected.  
7.2 Flash Access Blocking Mechanisms  
The 56F8346/56F8146 have several operating functional and test modes. Effective Flash security must  
address operating mode selection and anticipate modes in which the on-chip Flash can be compromised  
and read without explicit user permission. Methods to block these are outlined in the next subsections.  
7.2.1  
Forced Operating Mode Selection  
At boot time, the SIM determines in which functional modes the device will operate. These are:  
Internal Boot Mode  
External Boot Mode  
Secure Mode  
When Flash security is enabled as described in the Flash Memory module specification, the device will  
boot in internal boot mode, disable all access to external P-space, and start executing code from the Boot  
Flash at address 0x02_0000.  
This security affords protection only to applications in which the device operates in internal Flash security  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
127  
mode. Therefore, the security feature cannot be used unless all executing code resides on-chip.  
When security is enabled, any attempt to override the default internal operating mode by asserting the  
EXTBOOT pin in conjunction with reset will be ignored.  
7.2.2  
Disabling EOnCE Access  
On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for  
the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the  
EOnCE port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port)  
is active and provides the chip’s boundary scan capability and access to the ID register.  
Proper implementation of Flash security requires that no access to the EOnCE port is provided when  
security is enabled. The 56800E core has an input which disables reading of internal memory via the  
JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the FM security  
bytes.  
7.2.3  
Flash Lockout Recovery  
If a user inadvertently enables Flash security on the device, a built-in lockout recovery mechanism can be  
used to reenable access to the device. This mechanism completely reases all on-chip Flash, thus disabling  
Flash security. Access to this recovery mechanism is built into CodeWarrior via an instruction in memory  
configuration (.cfg) files. Add, or uncomment the following configuration command:  
unlock_flash_on_connect 1  
For more information, please see CodeWarrior MC56F83xx/DSP5685x Family Targeting Manual.  
The LOCKOUT_RECOVERY instruction has an associated 7-bit Data Register (DR) that is used to  
control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control  
the period of the clock used for timed events in the FM erase algorithm. This register must be set with  
appropriate values before the lockout sequence can begin. Refer to the JTAG section of the 56F8300  
Peripheral User Manual for more details on setting this register value.  
The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides  
down the system clock for timed events, as illustrated in Figure 7-1. FM_CLKDIV[6] will map to the  
PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV  
must divide the FM input clock down to a frequency of 150kHz-200kHz. The “Writing the FMCLKD  
Register” section in the Flash Memory chapter of the 56F8300 Peripheral User Manual gives specific  
equations for calculating the correct values.  
56F8346 Technical Data, Rev. 15  
128  
Freescale Semiconductor  
Preliminary  
Flash Access Blocking Mechanisms  
Flash Memory  
SYS_CLK  
2
input  
clock  
DIVIDER  
7
FMCLKD  
7
7
FM_CLKDIV  
FM_ERASE  
JTAG  
Figure 7-1 JTAG to FM Connection for Lockout Recovery  
Two examples of FM_CLKDIV calculations follow.  
EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up,  
the input clock will be below 12.8MHz, so PRDIV8 = FM_CLKDIV[6] = 0. Using the following equation  
yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This  
translates into an FM_CLKDIV[6:0] value of $13 or $14, respectively.  
SYS_CLK  
( )  
(2)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM  
input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8 = FM_CLKDIV[6] = 1. Using the  
following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of  
181kHz. This translates to an FM_CLKDIV[6:0] value of $49 or $4A, respectively.  
SYS_CLK  
( )  
(2)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock  
divider value must be shifted into the corresponding 7-bit data register. After the data register has been  
updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout  
sequence to commence. The controller must remain in this state until the erase sequence has completed.  
For details, see the JTAG Section in the 56F8300 Peripheral User Manual.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
129  
Note:  
Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller  
(by asserting TRST) and the device (by asserting external chip reset) to return to normal unsecured  
operation.  
7.2.4  
Product Analysis  
The recommended method of unsecuring a programmed device for product analysis of field failures is via  
the backdoor key access. The customer would need to supply Technical Support with the backdoor key  
and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows  
backdoor key access must be set.  
An alternative method for performing analysis on a secured hybrid controller would be to mass-erase and  
reprogram the Flash with the original code, but modify the security bytes.  
To insure that a customer does not inadvertently lock himself out of the device during programming, it is  
recommended that he program the backdoor access key first, his application code second, and the security  
bytes within the FM configuration field last.  
Part 8 General Purpose Input/Output (GPIO)  
8.1 Introduction  
This section is intended to supplement the GPIO information found in the 56F8300 Peripheral User  
Manual and contains only chip-specific information. This information supercedes the generic information  
in the 56F8300 Peripheral User Manual.  
8.2 Memory Maps  
The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based  
on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and  
GPIOx_PER registers change from port to port. Tables 4-29 through 4-34 define the actual reset values of  
these registers.  
8.3 Configuration  
There are six GPIO ports defined on the 56F8346/56F8146. The width of each port and the associated  
peripheral function is shown in Table 8-1 and Table 8-2. The specific mapping of GPIO port pins is  
shown in Table 8-3.  
56F8346 Technical Data, Rev. 15  
130  
Freescale Semiconductor  
Preliminary  
Configuration  
Table 8-1 56F8346 GPIO Ports Configuration  
Available  
Pins in  
56F8346  
GPIO  
Port  
Port  
Width  
Peripheral Function  
Reset Function  
14 pins - EMI Address pins  
A
B
14  
8
14  
1
EMI Address  
1 pin - EMI Address pin  
7 pins - EMI Address pins - Not available in this package  
EMI Address  
N/A  
4 pins -DEC1 / TMRB / SPI1  
4 pins -DEC0 / TMRA  
3 pins -PWMA current sense  
C
D
11  
13  
11  
9
DEC1 / TMRB  
DEC0 / TMRA  
PWMA current sense  
2 pins - EMI CSn  
4 pins - EMI CSn - Not available in this package  
2 pins - SCI1  
EMI Chip Selects  
N/A  
SCI1  
2 pins - EMI CSn  
3 pins -PWMB current sense  
EMI Chip Selects  
PWMB current sense  
SCI0  
EMI Address  
SPI0  
TMRC  
N/A  
TMRD  
N/A  
E
14  
16  
11  
16  
2 pins - SCI0  
2 pins - EMI Address pins  
4 pins - SPI0  
1 pin - TMRC  
1 pin - TMRC - Not available in this package  
2 pins - TMRD  
2 pins - TMRD - Not available in this package  
16 pins - EMI Data  
F
EMI Data  
Table 8-2 56F8146 GPIO Ports Configuration  
Available  
Pins in  
56F8146  
GPIO  
Port  
Port  
Width  
Peripheral Function  
Reset Function  
14 pins - EMI Address pins  
A
B
14  
8
14  
1
EMI Address  
1 pin - EMI Address pin  
7 pins - EMI Address pins - Not available in this package  
EMI Address  
N/A  
4 pins - SPI1  
4 pins - DEC0 / TMRA  
3 pins - Dedicated GPIO  
C
D
11  
13  
11  
9
SPI1  
DEC0 / TMRA  
GPIO  
2 pins - EMI CSn  
4 pins - EMI CSn - Not available in this package  
2 pins - SCI1  
EMI Chip Selects  
N/A  
SCI1  
2 pins - EMI CSn  
3 pins - PWMB current sense  
EMI Chip Selects  
PWMB current sense  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
131  
Table 8-2 56F8146 GPIO Ports Configuration  
Available  
Pins in  
56F8146  
GPIO  
Port  
Port  
Width  
Peripheral Function  
Reset Function  
SCI0  
E
14  
11  
2 pins - SCI0  
EMI Address  
SPI0  
2 pins - EMI Address pins  
4 pins - SPI0  
TMRC  
N/A  
GPIO  
1 pin - TMRC  
1 pin - TMRC - Not available in this package  
2 pins - Dedicated GPIO  
N/A  
2 pins - TMRD - Not available in this package  
16 pins - EMI Data  
F
16  
16  
EMI Data  
Table 8-3 GPIO External Signals Map  
Pins in shaded rows are not available in 56F8346/56F8146  
Pins in italics are NOT available in the 56F8146 device  
Reset  
Function  
Functional Signal  
Package Pin  
GPIO Port  
GPIO Bit  
0
1
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
A8  
A9  
19  
20  
21  
22  
23  
24  
25  
26  
138  
10  
11  
12  
13  
14  
2
A10  
A11  
A12  
A13  
A14  
A15  
A0  
3
4
5
6
GPIOA  
7
8
9
A1  
10  
11  
12  
13  
A2  
A3  
A4  
A5  
56F8346 Technical Data, Rev. 15  
132  
Freescale Semiconductor  
Preliminary  
Configuration  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8346/56F8146  
Pins in italics are NOT available in the 56F8146 device  
Reset  
Function  
Functional Signal  
Package Pin  
GPIO Port  
GPIO Bit  
GPIO1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
A16  
33  
1
2
3
4
5
6
7
GPIOB  
1This is a function of the EMI_MODE, EXTBOOT, and Flash security settings at reset.  
PhaseA1 / TB0 / SCLK11  
PhaseB1 / TB1 / MOSI11  
Index1 / TB2 / MISO11  
0
1
2
3
Peripheral  
Peripheral  
Peripheral  
Peripheral  
6
7
8
9
Home1 / TB3 / SS11  
PHASEA0 / TA0  
PHASEB0 / TA1  
INDEX0 / TA2  
HOME0 / TA3  
ISA0  
4
5
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
139  
140  
141  
142  
113  
114  
115  
GPIOC  
6
7
8
9
ISA1  
10  
ISA2  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
133  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8346/56F8146  
Pins in italics are NOT available in the 56F8146 device  
Reset  
Function  
Functional Signal  
Package Pin  
GPIO Port  
GPIO Bit  
0
1
GPIO  
GPIO  
CS2  
CS3  
48  
49  
2
N/A  
3
N/A  
4
N/A  
5
N/A  
GPIOD  
6
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
TXD1  
RXD1  
42  
43  
46  
47  
50  
52  
53  
7
8
PS / CS0  
DS / CS1  
ISB0  
9
10  
11  
12  
ISB1  
ISB2  
56F8346 Technical Data, Rev. 15  
134  
Freescale Semiconductor  
Preliminary  
Configuration  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8346/56F8146  
Pins in italics are NOT available in the 56F8146 device  
Reset  
Function  
Functional Signal  
Package Pin  
GPIO Port  
GPIO Bit  
0
1
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
N/A  
TXD0  
RXD0  
A6  
4
5
2
17  
3
A7  
18  
4
SCLK0  
MOSI0  
MISO0  
SS0  
130  
132  
131  
129  
118  
5
6
GPIOE  
7
8
TC0  
9
10  
11  
12  
13  
Peripheral  
Peripheral  
N/A  
TD0  
TD1  
116  
117  
N/A  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
135  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8346/56F8146  
Pins in italics are NOT available in the 56F8146 device  
Reset  
Function  
Functional Signal  
Package Pin  
GPIO Port  
GPIO Bit  
0
1
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
D7  
D8  
28  
29  
2
D9  
30  
3
D10  
D11  
D12  
D13  
D14  
D15  
D0  
32  
4
133  
134  
135  
136  
137  
59  
5
6
7
GPIOF  
8
9
10  
11  
12  
13  
14  
15  
D1  
60  
D2  
72  
D3  
75  
D4  
76  
D5  
77  
D6  
78  
1. See Part 6.5.8 to determine how to select peripherals from this set; DEC1 is the selected peripheral at reset .  
Part 9 Joint Test Action Group (JTAG)  
9.1 JTAG Information  
Please contact your Freescale marketing representative or authorized distributor for  
device/package-specific BSDL information.  
Part 10 Specifications  
10.1 General Characteristics  
The 56F8346/56F8146 are fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital  
inputs. The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture  
of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and  
56F8346 Technical Data, Rev. 15  
136  
Freescale Semiconductor  
Preliminary  
General Characteristics  
5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V  
± 10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the  
power savings of 3.3V I/O levels combined with the ability to receive 5V levels without damage.  
Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the maximum  
is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to  
the device.  
Note: All specifications meet both Automotive and Industrial requirements unless individual  
specifications are listed.  
Note: The 56F8146 device is guaranteed to 40MHz and specified to meet Industrial requirements only;  
CAN is NOT available on the 56F8146 device.  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Note: The 56F8146 device is specified to meet Industrial requirements only; CAN is NOT available on the  
56F8146 device.  
Table 10-1 Absolute Maximum Ratings  
(VSS = VSSA_ADC = 0)  
Characteristic  
Supply voltage  
Symbol  
VDD_IO  
Notes  
Min  
- 0.3  
- 0.3  
Max  
4.0  
Unit  
V
ADC Supply Voltage  
VDDA_ADC, VREFH  
VREFH must be less than or  
equal to VDDA_ADC  
4.0  
V
Oscillator / PLL Supply Voltage  
Internal Logic Core Supply Voltage  
Input Voltage (digital)  
VDDA_OSC_PLL  
VDD_CORE  
VIN  
- 0.3  
- 0.3  
-0.3  
-0.3  
-0.3  
4.0  
3.0  
6.0  
4.0  
V
V
V
V
V
OCR_DIS is High  
Pin Groups 1, 2, 5, 6, 9, 10  
Pin Groups 11, 12, 13  
Input Voltage (analog)  
VINA  
Pin Groups 1, 2, 3, 4, 5, 6, 7, 8  
Output Voltage  
VOUT  
4.0  
6.01  
Pin Group 4  
Output Voltage (open drain)  
VOD  
-0.3  
6.0  
V
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
137  
Table 10-1 Absolute Maximum Ratings (Continued)  
(VSS = VSSA_ADC = 0)  
Characteristic  
Symbol  
TA  
Notes  
Min  
-40  
-40  
-40  
-40  
-55  
-55  
Max  
125  
105  
150  
125  
150  
150  
Unit  
°C  
Ambient Temperature (Automotive)  
Ambient Temperature (Industrial)  
Junction Temperature (Automotive)  
Junction Temperature (Industrial)  
Storage Temperature (Automotive)  
Storage Temperature (Industrial)  
TA  
°C  
TJ  
°C  
TJ  
°C  
TSTG  
TSTG  
°C  
°C  
1. If corresponding GPIO pin is configured as open drain.  
Note: Pins in italics are NOT available in the 56F8146 device.  
Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0  
Pin Group 2: PHASEA0, PHASEA1, PHASEB0, PHASEB1, INDEX0, INDEX1, HOME0, HOME1, ISB0-2, ISA0-2, TC0, SCLK0  
Pin Group 3: RSTO, TDO  
Pin Group 4: CAN_TX  
Pin Group 5: A0-5, D0-15, GPIOD0-1, PS, DS  
Pin Group 6: A6-15, GPIOB0, TD0-1  
Pin Group 7: CLKO, WR, RD  
Pin Group 8: PWMA0-5, PWMB0-5  
Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST, TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3  
Pin Group 10: TCK  
Pin Group 11: XTAL, EXTAL  
Pin Group 12: ANA0-7, ANB0-7  
Pin Group 13: OCR_DIS, CLKMODE  
Table 10-2 56F8346/56F8146 ElectroStatic Discharge (ESD) Protection  
Characteristic  
Min  
Typ  
Max  
Unit  
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
ESD for Charge Device Model (CDM)  
2000  
200  
V
V
V
500  
6
Table 10-3 Thermal Characteristics  
Value  
Characteristic  
Comments  
Symbol  
Unit  
Notes  
144-pin LQFP  
R
Junction to ambient  
Natural convection  
47.1  
°C/W  
2
θJA  
56F8346 Technical Data, Rev. 15  
138  
Freescale Semiconductor  
Preliminary  
General Characteristics  
6
Table 10-3 Thermal Characteristics  
Value  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
144-pin LQFP  
43.8  
R
Junction to ambient (@1m/sec)  
°C/W  
°C/W  
2
θJMA  
R
Junction to ambient  
Natural convection  
Four layer board (2s2p)  
Four layer board (2s2p)  
40.8  
1,2  
θJMA  
(2s2p)  
R
Junction to ambient (@1m/sec)  
Junction to case  
39.2  
°C/W  
°C/W  
°C/W  
W
1,2  
3
θJMA  
R
11.8  
1
θJC  
Ψ
Junction to center of case  
I/O pin power dissipation  
Power dissipation  
4, 5  
JT  
P
User-determined  
P D = (IDD x VDD + P I/O  
I/O  
P
)
W
D
(TJ - TA) / RθJA7  
P
Maximum allowed PD  
W
DMAX  
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p ther-  
mal test board.  
2. Junction to ambient thermal resistance, Theta-JA (R ) was simulated to be equivalent to the JEDEC specification JESD51-2  
θJA  
in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes  
(2s2p, where “s” is the number of signal layers and “p” is the number of planes) per JESD51-6 and JESD51-7. The correct name  
for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (R  
), was simulated to be equivalent to the measured values using the cold  
θJC  
plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is  
described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when  
the package is being used with a heat sink.  
4. Thermal Characterization Parameter, Psi-JT (Ψ ), is the "resistance" from junction to reference point thermocouple on top cen-  
JT  
ter of case as defined in JESD51-2. Ψ is a useful value to use to estimate junction temperature in steady-state customer en-  
JT  
vironments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature,  
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
6. See Part 12.1 for more details on thermal design considerations.  
7. TJ = Junction temperature  
TA = Ambient temperature  
Note: The 56F8146 device is guaranteed to 40MHz and specified to meet Industrial requirements only;  
CAN is NOT available on the 56F8146 device.  
Table 10-4 Recommended Operating Conditions  
(VREFLO = 0V, VSS = VSSA_ADC = 0V, VDDA = VDDA_ADC = VDDA_OSC_PLL  
)
Characteristic  
Supply voltage  
Symbol  
Notes  
Min  
3
Typ  
3.3  
3.3  
Max  
3.6  
Unit  
V
V
DD_IO  
ADC Supply Voltage  
V
V
V
must be less than  
REFH  
3
3.6  
DDA_ADC,  
or equal to VDDA_ADC  
V
REFH  
Oscillator / PLL Supply Voltage  
V
V
3
3.3  
3.6  
DDA_OSC_PLL  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
139  
Table 10-4 Recommended Operating Conditions  
(VREFLO = 0V, VSS = VSSA_ADC = 0V, VDDA = VDDA_ADC = VDDA_OSC_PLL  
)
Characteristic  
Symbol  
Notes  
Min  
Typ  
Max  
Unit  
Internal Logic Core Supply Voltage  
Device Clock Frequency  
OCR_DIS is High  
V
MHz  
V
V
2.25  
0
2.5  
2.75  
60  
DD_CORE  
FSYSCLK  
Input High Voltage (digital)  
Pin Groups  
1, 2, 5, 6, 9, 10  
V
2
5.5  
IN  
Input High Voltage (analog)  
Pin Group 13  
Pin Group 11  
V
V
V
2
VDDA+0.3  
VDDA+0.3  
IHA  
Input High Voltage (XTAL/EXTAL,  
XTAL is not driven by an external clock)  
V
VDDA-0.8  
IHC  
Input high voltage (XTAL/EXTAL,  
XTAL is driven by an external clock)  
Pin Group 11  
V
V
V
2
VDDA+0.3  
0.8  
IHC  
Input Low Voltage  
Pin Groups  
1, 2, 5, 6, 9, 10,  
11, 13  
V
-0.3  
IL  
Output High Source Current  
VOH = 2.4V (VOH min.)  
Pin Groups 1, 2, 3  
Pin Groups 5, 6, 7  
Pin Group 8  
mA  
mA  
I
-4  
-8  
OH  
-12  
4
Output Low Sink Current  
VOL = 0.4V (VOL max)  
Pin Groups  
1, 2, 3, 4  
I
OL  
Pin Groups 5, 6, 7  
Pin Group 8  
8
12  
125  
Ambient Operating Temperature  
(Automotive)  
°C  
T
-40  
A
Ambient Operating Temperature  
(Industrial)  
105  
°C  
T
-40  
10,000  
10,000  
15  
A
Flash Endurance (Automotive)  
(Program Erase Cycles)  
TA = -40°C to 125°C  
TA = -40°C to 105°C  
TJ <= 85°C avg  
Cycles  
Cycles  
Years  
N
F
Flash Endurance (Industrial)  
(Program Erase Cycles)  
N
F
Flash Data Retention  
T
R
Total chip source or sink current cannot exceed 200mA  
See Pin Groups in Table 10-1  
56F8346 Technical Data, Rev. 15  
140  
Freescale Semiconductor  
Preliminary  
DC Electrical Characteristics  
10.2 DC Electrical Characteristics  
Note: The 56F8146 device is specified to meet Industrial requirements only; CAN is NOT  
available on the 56F8146 device.  
Table 10-5 DC Electrical Characteristics  
At Recommended Operating Conditions; see Table 10-4  
Characteristic  
Output High Voltage  
Output Low Voltage  
Symbol  
Notes  
Min  
2.4  
Typ  
0
Max  
Unit  
V
Test Conditions  
IOH =IOHmax  
V
OH  
V
IOL =IOLmax  
V
0.4  
OL  
Digital Input Current High  
pull-up enabled or disabled  
Pin Groups 1, 2, 5, 6, 9  
Pin Group 10  
μA  
VIN = 3.0V to 5.5V  
I
+/- 2.5  
IH  
Digital Input Current High  
with pull-down  
μA  
VIN = 3.0V to 5.5V  
I
40  
80  
160  
IH  
Analog Input Current High  
ADC Input Current High  
Pin Group 13  
Pin Group 12  
μA  
μA  
μA  
VIN = VDDA  
VIN = VDDA  
VIN = 0V  
I
0
0
+/- 2.5  
+/- 3.5  
-50  
IHA  
I
IHADC  
Digital Input Current Low  
pull-up enabled  
Pin Groups 1, 2, 5, 6, 9  
I
-200  
-100  
IL  
Digital Input Current Low  
pull-up disabled  
Pin Groups 1, 2, 5, 6, 9  
Pin Group 10  
μA  
μA  
VIN = 0V  
VIN = 0V  
I
0
0
+/- 2.5  
+/- 2.5  
IL  
Digital Input Current Low  
with pull-down  
I
IL  
Analog Input Current Low  
ADC Input Current Low  
Pin Group 13  
Pin Group 12  
μA  
μA  
μA  
VIN = 0V  
VIN = 0V  
I
0
0
0
+/- 2.5  
+/- 3.5  
+/- 2.5  
ILA  
I
ILADC  
EXTAL Input Current Low  
clock input  
VIN = VDDA or 0V  
I
EXTAL  
XTAL Input Current Low  
clock input  
CLKMODE = High  
CLKMODE = Low  
μA  
μA  
μA  
VIN = VDDA or 0V  
VIN = VDDA or 0V  
I
0
0
+/- 2.5  
200  
XTAL  
Output Current  
High Impedance State  
Pin Groups  
1, 2, 3, 4, 5, 6, 7, 8  
VOUT = 3.0V to 5.5V or 0V  
I
+/- 2.5  
OZ  
Schmitt Trigger Input  
Hysteresis  
Pin Groups 2, 6, 9,10  
V
V
0.3  
4.5  
5.5  
HYS  
Input Capacitance  
(EXTAL/XTAL)  
pF  
pF  
C
INC  
Output Capacitance  
(EXTAL/XTAL)  
C
OUTC  
Input Capacitance  
Output Capacitance  
pF  
pF  
C
6
6
IN  
C
OUT  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
141  
See Pin Groups in Table 10-1  
Table 10-6 Power on Reset Low Voltage Parameters  
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
POR Trip Point  
POR  
VEI2.5  
VEI3.3  
1.75  
1.8  
1.9  
V
V
LVI, 2.5 volt Supply, trip point1  
2.14  
LVI, 3.3 volt supply, trip point2  
Bias Current  
2.7  
V
I bias  
110  
130  
μA  
1. When V  
2. When V  
drops below V  
drops below V  
, an interrupt is generated.  
, an interrupt is generated.  
DD_CORE  
DD_CORE  
EI2.5  
EI3.3  
Table 10-7 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Enabled (OCR_DIS = Low)  
1
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
• 60MHz Device Clock  
IDD_IO  
RUN1_MAC  
155mA  
50mA  
2.5mA  
• All peripheral clocks are enabled  
• All peripherals running  
• Continuous MAC instructions with fetches from  
Data RAM  
• ADC powered on and clocked  
• 60MHz Device Clock  
Wait3  
Stop1  
91mA  
65μA  
0μA  
2.5mA  
• All peripheral clocks are enabled  
• ADC powered off  
• 8MHz Device Clock  
• All peripheral clocks are off  
• ADC powered off  
5.8mA  
155μA  
• PLL powered off  
• External Clock is off  
• All peripheral clocks are off  
• ADC powered off  
Stop2  
5.1mA  
0μA  
145μA  
• PLL powered off  
1. No Output Switching  
2. Includes Processor Core current supplied by internal voltage regulator  
(VREFH - VREFLO) X 1  
=
RES  
212  
m
56F8346 Technical Data, Rev. 15  
142  
Freescale Semiconductor  
Preliminary  
DC Electrical Characteristics  
Table 10-8 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Disabled (OCR_DIS = High)  
1
IDD_Core  
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
• 60MHz Device Clock  
IDD_IO  
RUN1_MAC  
150mA  
13μA  
50mA  
2.5mA  
• All peripheral clocks are enabled  
• All peripherals running  
• Continuous MAC instructions with  
fetches from Data RAM  
• ADC powered on and clocked  
• 60MHz Device Clock  
• All peripheral clocks are enabled  
• All peripherals running  
• ADC powered off  
Wait3  
Stop1  
Stop2  
86mA  
800μA  
100μA  
13μA  
13μA  
13μA  
65μA  
0μA  
2.5mA  
155μA  
145μA  
• 8MHz Device Clock  
• All peripheral clocks are off  
• ADC powered off  
• PLL powered off  
• External Clock is off  
• All peripheral clocks are off  
• ADC powered off  
0μA  
• PLL powered off  
1. No Output Switching  
Table 10-9. Regulator Parameters  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Unloaded Output Voltage  
(0mA Load)  
VRNL  
2.25  
2.75  
V
Loaded Output Voltage  
(200mA load)  
VRL  
VR  
2.25  
2.25  
2.75  
2.75  
V
V
Line Regulation @ 250mA load  
(VDD33 ranges from 3.0V to 3.6V)  
Short Circuit Current  
Iss  
700  
mA  
(output shorted to ground)  
Bias Current  
I bias  
Ipd  
5.8  
0
7
2
mA  
μA  
Power-down Current  
Short-Circuit Tolerance  
TRSC  
30  
minutes  
(output shorted to ground)  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
143  
Table 10-10. PLL Parameters  
Characteristics  
PLL Start-up time  
Symbol  
TPS  
Min  
0.3  
0.1  
120  
Typical  
0.5  
Max  
10  
Unit  
ms  
ms  
ps  
Resonator Start-up time  
Min-Max Period Variation  
Peak-to-Peak Jitter  
TRS  
0.18  
1
TPV  
200  
175  
2
TPJ  
ps  
Bias Current  
IBIAS  
IPD  
1.5  
mA  
μA  
Quiescent Current, power-down mode  
100  
150  
10.2.1 Temperature Sense  
Note: Temperature Sensor is NOT available in the 56F8146 device.  
Table 10-11 Temperature Sense Parametrics  
Characteristics  
Slope (Gain)1  
Symbol  
m
Min  
Typical  
7.762  
26  
Max  
Unit  
mV/°C  
°C  
Room Trim Temp. 1, 2  
TRT  
24  
28  
Hot Trim Temp. (Industrial)1,2  
Hot Trim Temp. (Automotive)1,2  
THT  
122  
147  
125  
128  
153  
°C  
THT  
150  
°C  
Output Voltage @  
VDDA_ADC = 3.3V, TJ =0°C1  
VTS0  
1.370  
V
Supply Voltage  
VDDA_ADC  
IDD-OFF  
IDD-ON  
3.0  
3.3  
0
3.6  
10  
V
Supply Current - OFF  
Supply Current - ON  
μA  
μA  
°C  
250  
6.7  
Accuracy3,1 from -40°C to 150°C  
Using VTS = mT + VTS0  
TACC  
-6.7  
Resolution4, 5,1  
RES  
0.104  
°C / bit  
1. Includes the ADC conversion of the analog Temperature Sense voltage.  
2. The ADC is not calibrated for the conversion of the Temperature Sensor trim value stored in the Flash Memory at  
FMOPT0 and FMOPT1.  
3. See Application Note, AN1980, for methods to increase accuracy.  
4. Assuming a 12-bit range from 0V to 3.3V.  
5. Typical resolution calculated using equation,  
56F8346 Technical Data, Rev. 15  
144  
Freescale Semiconductor  
Preliminary  
AC Electrical Characteristics  
10.3 AC Electrical Characteristics  
Tests are conducted using the input levels specified in Table 10-5. Unless otherwise specified,  
propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured  
between the 10% and 90% points, as shown in Figure 10-1.  
Low  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 10-1 Input Signal Measurement References  
Figure 10-2 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 10-2 Signal States  
10.4 Flash Memory Characteristics  
Table 10-12 Flash Timing Parameters  
Characteristic  
Symbol  
Tprog  
Terase  
Tme  
Min  
20  
Typ  
Max  
Unit  
μs  
Program time1  
Erase time2  
20  
ms  
ms  
Mass erase time  
100  
1. There is additional overhead which is part of the programming sequence. See the 56F8300 Peripheral User Manual  
for details. Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Pro-  
gram Flash module, as it contains two interleaved memories.  
2. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash  
module uses two interleaved Flash memories, increasing the effective page size to 1024 bytes.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
145  
10.5 External Clock Operation Timing  
1
Table 10-13 External Clock Operation Timing Requirements  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
Max  
120  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)2  
Clock Pulse Width3  
tPW  
3.0  
External clock input rise time4  
trise  
10  
ns  
External clock input fall time5  
tfall  
10  
ns  
1. Parameters listed are guaranteed by design.  
2. See Figure 10-3 for details on using the recommended connection of an external clock driver.  
3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.  
4. External clock input rise time is measured from 10% to 90%.  
5. External clock input fall time is measured from 90% to 10%.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
VIL  
tfall  
trise  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 10-3 External Clock Timing  
10.6 Phase Locked Loop Timing  
Table 10-14 PLL Timing  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
8.4  
Unit  
MHz  
MHz  
External reference crystal frequency for the PLL1  
PLL output frequency2 (fOUT  
)
fop  
160  
260  
PLL stabilization time3 -40° to +125°C  
tplls  
1
10  
ms  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 8MHz input crystal.  
2. ZCLK may not exceed 60MHz. For additional information on ZCLK and (f  
/2), please refer to the OCCS chapter in  
OUT  
the 56F8300 Peripheral User Manual.  
56F8346 Technical Data, Rev. 15  
146  
Freescale Semiconductor  
Preliminary  
Crystal Oscillator Timing  
3. This is the minimum time required after the PLL set up is changed to ensure reliable operation.  
10.7 Crystal Oscillator Timing  
Table 10-15 Crystal Oscillator Parameters  
Characteristic  
Crystal Start-up time  
Symbol  
TCS  
Min  
4
Typ  
5
Max  
10  
Unit  
ms  
ms  
ohms  
ps  
Resonator Start-up time  
TRS  
0.1  
0.18  
1
Crystal ESR  
RESR  
TD  
120  
250  
1.5  
300  
300  
290  
110  
1
Crystal Peak-to-Peak Jitter  
Crystal Min-Max Period Variation  
Resonator Peak-to-Peak Jitter  
Resonator Min-Max Period Variation  
Bias Current, high-drive mode  
Bias Current, low-drive mode  
Quiescent Current, power-down mode  
70  
0.12  
TPV  
ns  
TRJ  
ps  
TRP  
ps  
IBIASH  
IBIASL  
IPD  
250  
80  
0
μA  
μA  
μA  
10.8 External Memory Interface Timing  
The External Memory Interface is designed to access static memory and peripheral devices. Figure 10-4  
shows sample timing and parameters that are detailed in Table 10-16.  
The timing of each parameter consists of both a fixed delay portion and a clock related portion, as well as  
user controlled wait states. The equation:  
t = D + P * (M + W)  
should be used to determine the actual time of each parameter. The terms in this equation are defined as:  
t
= Parameter delay time  
D
P
= Fixed portion of the delay, due to on-chip path delays  
= Period of the system clock, which determines the execution rate of the part  
(i.e., when the device is operating at 60MHz, P = 16.67 ns)  
M
W
= Fixed portion of a clock period inherent in the design; this number is adjusted to account  
for possible derating of clock duty cycle  
= Sum of the applicable wait state controls. The “Wait State Controls” column of  
Table 10-16 shows the applicable controls for each parameter and the EMI chapter of the  
56F8300 Peripheral User Manual details what each wait state field controls.  
When using the XTAL clock input directly as the chip clock without prescaling (ZSRC selects prescaler  
clock and prescaler is set to 1), the EMI quadrature clock is generated using both edges of the EXTAL  
÷
clock input. In this situation only, parameter values must be adjusted for the duty cycle at XTAL. DCAOE  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
147  
and DCAEO are used to make this duty cycle adjustment where needed.  
DCAOE and DCAEO are calculated as follows:  
DCAOE = 0.5 - MAX XTAL duty cycle, if ZSRC selects prescaler clock and the prescaler is set to  
= 0.0 all other cases  
÷
÷
1
1
DCAEO = MIN XTAL duty cycle - 0.5, if ZSRC selects prescaler clock and the prescaler is set to  
= 0.0 all other cases  
Example of DCAOE and DCAEO calculation  
Assuming prescaler is set for  
÷ 1 and prescaler clock is selected by ZSRC, if XTAL duty cycle  
ranges between 45% and 60% high:  
DCAOE = .50 - .60 = - 0.1  
DCAEO = .45 - .50 = - 0.05  
The timing of write cycles is different when WWS = 0 than when WWS > 0. Therefore, some parameters  
contain two sets of numbers to account for this difference. Use the “Wait States Configuration” column of  
Table 10-16 to make the appropriate selection.  
A0-Axx,CS  
tARDD  
tRDA  
tRDRD  
tARDA  
tRD  
RD  
tWR  
tAWR  
tWRWR  
tWAC  
tWRRD  
tRDWR  
WR  
tRDD  
tDWR  
tDOH  
tDOS  
tAD  
tDRD  
Data In  
Data Out  
D0-D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 10-4 External Memory Interface Timing  
Note:  
When multiple lines are given for the same wait state configuration, calculate each and then select the  
smallest or most negative.  
56F8346 Technical Data, Rev. 15  
148  
Freescale Semiconductor  
Preliminary  
External Memory Interface Timing  
Table 10-16 External Memory Interface Timing  
Wait States  
Configuration  
Wait States  
Unit  
Characteristic  
Symbol  
tAWR  
D
M
Controls  
WWS=0  
WWS>0  
WWS=0  
WWS>0  
WWS=0  
WWS=0  
WWS>0  
WWS>0  
-2.121  
-1.805  
-0.063  
-0.253  
-10.252  
-2.868  
-9.505  
-2.552  
0.50  
0.75 + DCAOE  
0.25 + DCAOE  
0
Address Valid to WR Asserted  
WWSS  
WWS  
ns  
ns  
WR Width Asserted to WR Deasserted  
Data Out Valid to WR Asserted  
tWR  
0.25 + DCAEO  
0.00  
tDWR  
WWSS  
ns  
0.50  
0.25 + DCAOE  
Valid Data Out Hold Time after WR  
Deasserted  
tDOH  
-1.512  
0.25 + DCAEO  
WWSH  
ns  
ns  
-2.047  
-9.000  
-3.888  
0.25 + DCAOE  
0.50  
Valid Data Out Set-Up Time to WR  
Deasserted  
tDOS  
WWS, WWSS  
tWAC  
tRDA  
tARDD  
tDRD  
tRD  
0.25 + DCAEO  
WWSH  
RWSH  
ns  
ns  
ns  
ns  
ns  
Valid Address after WR Deasserted  
RD Deasserted to Address Invalid  
Address Valid to RD Deasserted  
Valid Input Data Hold after RD Deasserted  
RD Assertion Width  
-2.922  
-1.645  
0.00  
0.00  
1.00  
RWSS, RWS  
N/A1  
1.00  
0.257  
-14.414  
-19.299  
-2.002  
RWS  
1.00  
Address Valid to Input Data Valid  
tAD  
RWSS, RWS  
RWSS  
ns  
ns  
ns  
1.25 + DCAOE  
0.00  
tARDA  
tRDD  
tWRRD  
tRDRD  
Address Valid to RD Asserted  
-12.411  
-17.297  
-1.323  
1.00  
RD Asserted to Input Data Valid  
RWSS, RWS  
1.25 + DCAOE  
0.25 + DCAEO  
WWSH, RWSS  
ns  
ns  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
RWSS, RWSH  
MDAR3, 4  
-0.3572  
0.00  
WWS=0  
WWS>0  
WWS=0  
-1.442  
-0.695  
-0.476  
0.75 + DCAEO  
1.00  
WR Deasserted to WR Asserted  
WWSS,  
WWSH  
tWRWR  
ns  
ns  
0.50  
RWSH,  
WWSS,  
MDAR3  
RD Deasserted to WR Asserted  
tRDWR  
1. N/A, since device captures data before it deasserts RD  
WWS>0  
-0.160  
0.75 + DCAOE  
2. If RWSS = RWSH = 0, and the chip select does not change, then RD does not deassert during back-to-back reads.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
149  
3. Substitute BMDAR for MDAR if there is no chip select  
4. MDAR is active in this calculation only when the chip select changes.  
10.9 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1,2  
Table 10-17 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Typical  
Min  
Typical  
Max  
Characteristic  
Symbol  
Unit  
See Figure  
10-5  
RESET Assertion to Address, Data and Control Signals  
High Impedance  
tRAZ  
21  
ns  
Minimum RESET Assertion Duration  
tRA  
tRDA  
16T  
63T  
1.5T  
18T  
14T  
18T  
14T  
22T  
18T  
22T  
18T  
1.5T  
64T  
ns  
ns  
ns  
ns  
10-5  
10-5  
10-6  
10-7  
RESET Deassertion to First External Address Output3  
Edge-sensitive Interrupt Request Width  
tIRW  
IRQA, IRQB Assertion to External Data Memory Access  
Out Valid, caused by first instruction execution in the  
interrupt service routine  
tIDM  
tIDM - FAST  
tIG  
tIG - FAST  
tIRI  
tIRI - FAST  
tIF  
tIF - FAST  
tIW  
IRQA, IRQB Assertion to General Purpose Output Valid,  
caused by first instruction execution in the interrupt  
service routine  
ns  
ns  
ns  
ns  
10-7  
10-8  
10-9  
10-9  
Delay from IRQA Assertion (exiting Wait) to External Data  
Memory access4  
Delay from IRQA Assertion to External Data Memory  
Access (exiting Stop)  
IRQA Width Assertion to Recover from Stop State5  
1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and Stop  
modes), T = 125ns.  
2. Parameters listed are guaranteed by design.  
21  
3. During Power-On Reset, it is possible to use the device’s internal reset stretching circuitry to extend this period to 2 T.  
4. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is  
not the minimum required so that the IRQA interrupt is accepted.  
5. The interrupt instruction fetch is visible on the pins only in Mode 3.  
56F8346 Technical Data, Rev. 15  
150  
Freescale Semiconductor  
Preliminary  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
RESET  
tRA  
tRAZ  
tRDA  
A0–A15,  
D0–D15  
First Fetch  
Figure 10-5 Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 10-6 External Interrupt Timing (Negative Edge-Sensitive)  
A0–A15  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 10-7 External Level-Sensitive Interrupt Timing  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
151  
IRQA,  
IRQB  
tIRI  
A0–A15  
First Interrupt Vector  
Instruction Fetch  
Figure 10-8 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 10-9 Recovery from Stop State Using Asynchronous Interrupt Timing  
10.10 Serial Peripheral Interface (SPI) Timing  
1
Table 10-18 SPI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
10-10, 10-11,  
10-12, 10-13  
50  
50  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
10-13  
10-13  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
100  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
17.6  
25  
ns  
ns  
Clock (SCK) low time  
Master  
Slave  
tCL  
10-13  
24.1  
25  
ns  
ns  
56F8346 Technical Data, Rev. 15  
152  
Freescale Semiconductor  
Preliminary  
Serial Peripheral Interface (SPI) Timing  
1
Table 10-18 SPI Timing (Continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Data set-up time required for inputs  
Master  
Slave  
tDS  
10-10, 10-11,  
10-12, 10-13  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
tDH  
10-10, 10-11,  
10-12, 10-13  
0
2
ns  
ns  
Access time (time to data active from  
high-impedance state)  
Slave  
tA  
10-13  
10-13  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
10-10, 10-11,  
10-12, 10-13  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
10-10, 10-11,  
0
0
ns  
ns  
10-12  
Rise time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
9.7  
9.0  
ns  
ns  
1. Parameters listed are guaranteed by design.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
153  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14 –1  
Master LSB out  
tR  
Figure 10-10 SPI Master Timing (CPHA = 0)  
56F8346 Technical Data, Rev. 15  
154  
Freescale Semiconductor  
Preliminary  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
(Input)  
MSB in  
Bits 14 –1  
LSB in  
tDI (ref)  
tDI  
tDV (ref)  
tDV  
Bits 14 – 1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-11 SPI Master Timing (CPHA = 1)  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
155  
SS  
(Input)  
tC  
tF  
tELG  
tCL  
tR  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tF  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14 –1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14 –1  
LSB in  
Figure 10-12 SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
Slave LSB out  
tDI  
LSB in  
tA  
tF  
MISO  
(Output)  
Slave MSB out  
Bits 14 –1  
tDV  
tDS  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14 –1  
Figure 10-13 SPI Slave Timing (CPHA = 1)  
56F8346 Technical Data, Rev. 15  
156  
Freescale Semiconductor  
Preliminary  
Quad Timer Timing  
10.11 Quad Timer Timing  
1, 2  
Table 10-19 Timer Timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
See Figure  
10-14  
2T + 6  
1T + 3  
1T - 3  
0.5T - 3  
Timer input high / low period  
Timer output period  
PINHL  
POUT  
ns  
10-14  
ns  
10-14  
Timer output high / low period  
POUTHL  
ns  
10-14  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 10-14 Timer Timing  
10.12 Quadrature Decoder Timing  
1, 2  
Table 10-20 Quadrature Decoder Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Quadrature input period  
PIN  
4T + 12  
ns  
ns  
ns  
10-15  
10-15  
10-15  
Quadrature input high / low period  
Quadrature phase period  
PHL  
PPH  
2T + 6  
1T + 3  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.  
2. Parameters listed are guaranteed by design.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
157  
PPH PPH PPH PPH  
Phase A  
(Input)  
PHL  
PIN  
PHL  
Phase B  
(Input)  
PHL  
PIN  
PHL  
Figure 10-15 Quadrature Decoder Timing  
10.13 Serial Communication Interface (SCI) Timing  
1
Table 10-21 SCI Timing  
Characteristic  
Baud Rate2  
Symbol  
Min  
Max  
Unit  
See Figure  
BR  
(fMAX/16)  
Mbps  
RXD3 Pulse Width  
TXD4 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
1.04/BR  
1.04/BR  
ns  
ns  
10-16  
10-17  
1. Parameters listed are guaranteed by design.  
2. f is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8346 device and  
MAX  
40MHz for the 56F8146 device.  
3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 10-16 RXD Pulse Width  
56F8346 Technical Data, Rev. 15  
158  
Freescale Semiconductor  
Preliminary  
Controller Area Network (CAN) Timing  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 10-17 TXD Pulse Width  
10.14 Controller Area Network (CAN) Timing  
Note: CAN is NOT available in the 56F8146 device.  
1
Table 10-22 CAN Timing  
Characteristic  
Baud Rate  
Bus Wake Up detection  
Symbol  
Min  
5
Max  
Unit  
See Figure  
BRCAN  
1
Mbps  
T WAKEUP  
μs  
10-18  
1. Parameters listed are guaranteed by design  
CAN_RX  
CAN receive  
data pin  
T WAKEUP  
(Input)  
Figure 10-18 Bus Wake Up Detection  
10.15 JTAG Timing  
Table 10-23 JTAG Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
10-19  
TCK frequency of operation  
using EOnCE1  
fOP  
DC  
SYS_CLK/8  
MHz  
TCK frequency of operation not  
using EOnCE1  
fOP  
DC  
SYS_CLK/4  
MHz  
10-19  
TCK clock pulse width  
tPW  
tDS  
50  
5
ns  
ns  
10-19  
10-20  
TMS, TDI data set-up time  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
159  
Table 10-23 JTAG Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
10-20  
TMS, TDI data hold time  
tDH  
5
ns  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
tDV  
tTS  
30  
30  
ns  
ns  
ns  
10-20  
10-20  
10-21  
2T2  
tTRST  
1. TCK frequency of operation must be less than 1/8 the processor rate.  
2. T = processor clock period (nominally 1/60MHz)  
1/fOP  
tPW  
tPW  
VIH  
VM  
VM  
TCK  
(Input)  
VIL  
VM = VIL + (VIH – VIL)/2  
Figure 10-19 Test Clock Input Timing Diagram  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 10-20 Test Access Port Timing Diagram  
56F8346 Technical Data, Rev. 15  
160  
Freescale Semiconductor  
Preliminary  
Analog-to-Digital Converter (ADC) Parameters  
TRST  
(Input)  
tTRST  
Figure 10-21 TRST Timing Diagram  
10.16 Analog-to-Digital Converter (ADC) Parameters  
Table 10-24 ADC Parameters  
Characteristic  
Input voltages  
Symbol  
VADIN  
RES  
Min  
VREFL  
12  
Typ  
Max  
VREFH  
12  
Unit  
V
Resolution  
Bits  
Integral Non-Linearity1  
Differential Non-Linearity  
LSB2  
LSB2  
INL  
+/- 2.4  
+/- 0.7  
+/- 3.2  
< +1  
DNL  
Monotonicity  
GUARANTEED  
ADC internal clock  
fADIC  
RAD  
0.5  
VREFL  
5
5
MHz  
V
Conversion range  
6
VREFH  
16  
tAIC cycles3  
ms  
ADC channel power-up time  
tADPU  
ADC reference circuit power-up time4  
Conversion time  
tVREF  
tADC  
6
25  
tAIC cycles3  
tAIC cycles3  
Sample time  
tADS  
1
Input capacitance  
CADI  
IADI  
5
3
pF  
Input injection current5, per pin  
Input injection current, total  
mA  
mA  
mA  
mA  
IADIT  
20  
VREFH current  
IVREFH  
IADCA  
IADCB  
IADCQ  
EGAIN  
VOFFSET  
AECAL  
1.2  
3
ADC A current  
25  
ADC B current  
25  
0
mA  
μA  
Quiescent current  
10  
Uncalibrated Gain Error (ideal = 1)  
Uncalibrated Offset Voltage  
+/- .004  
+/- .015  
+/- 46  
+/- 18  
mV  
Calibrated Absolute Error6  
See Figure 10-22  
LSBs  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
161  
Table 10-24 ADC Parameters (Continued)  
Characteristic  
Calibration Factor 17  
Symbol  
CF1  
Min  
Typ  
-0.003141  
-17.6  
Max  
Unit  
Calibration Factor 27  
CF2  
Crosstalk between channels  
Common Mode Voltage  
-60  
dB  
V
Vcommon  
(VREFH - VREFLO) / 2  
Signal-to-noise ratio  
SNR  
SINAD  
THD  
64.6  
59.1  
60.6  
61.1  
9.6  
db  
db  
Signal-to-noise plus distortion ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
db  
SFDR  
ENOB  
db  
Effective Number Of Bits8  
Bits  
1. INL measured from V = .1V  
to V = .9V  
in REFH  
in  
REFH  
10% to 90% Input Signal Range  
2. LSB = Least Significant Bit  
3. ADC clock cycles  
4. Assumes each voltage reference pin is bypassed with 0.1μF ceramic capacitors to ground  
5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of  
the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.  
6. Absolute error includes the effects of both gain error and offset error.  
7. Please see the 56F8300 Peripheral User’s Manual for additional information on ADC calibration.  
8. ENOB = (SINAD - 1.76)/6.02  
56F8346 Technical Data, Rev. 15  
162  
Freescale Semiconductor  
Preliminary  
Equivalent Circuit for ADC Inputs  
Figure 10-22 ADC Absolute Error Over Processing and Temperature Extremes Before  
and After Calibration for VDC = 0.60V and 2.70V  
in  
Note: The absolute error data shown in the graphs above reflects the effects of both gain error and offset  
error. The data was taken on 15 parts: three each from four processing corner lots as well as three from one  
nominally processed lot, each at three temperatures: -40°C, 27°C, and 150°C (giving the 45 data points  
shown above), for two input DC voltages: 0.60V and 2.70V. The data indicates that for the given  
population of parts, calibration significantly reduced (by as much as 39%) the collective variation (spread)  
of the absolute error of the population. It also significantly reduced (by as much as 80%) the mean  
(average) of the absolute error and thereby brought it significantly closer to the ideal value of zero.  
Although not guaranteed, it is believed that calibration will produce results similar to those shown above  
for any population of parts including those which represent processing and temperature extremes.  
10.17 Equivalent Circuit for ADC Inputs  
Figure 10-23 illustrates the ADC input circuit during sample and hold. S1 and S2 are always open/closed  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
163  
at the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input of the sample and  
hold circuit moves to V - V / 2, while the other charges to the analog input voltage. When the  
REFH  
REFH  
switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended  
analog input is switched to a differential voltage centered about V - V / 2. The switches switch  
REFH  
REFH  
on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there  
are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into  
the S/H output voltage, as S1 provides isolation during the charge-sharing phase.  
One aspect of this circuit is that there is an on-going input current, which is a function of the analog input  
voltage, V  
and the ADC clock frequency.  
REF  
Analog Input  
3
4
S1  
C1  
C2  
S/H  
S3  
(VREFH - VREFLO) / 2  
S2  
2
1
C1 = C2 = 1pF  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf  
3. Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only  
connected to it at sampling time; 1pf  
Figure 10-23 Equivalent Circuit for A/D Loading  
56F8346 Technical Data, Rev. 15  
164  
Freescale Semiconductor  
Preliminary  
Power Consumption  
10.18 Power Consumption  
This section provides additional detail which can be used to optimize power consumption for a given  
application.  
Power consumption is given by the following equation:  
Total power =  
A: internal [static component]  
+B: internal [state-dependent component]  
+C: internal [dynamic component]  
+D: external [dynamic component]  
+E: external [static]  
A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage current,  
PLL, and voltage references. These sources operate independently of processor state or operating  
frequency.  
B, the internal [state-dependent component], reflects the supply current required by certain on-chip  
resources only when those resources are in use. These include RAM, Flash memory and the ADCs.  
2
C, the internal [dynamic component], is classic C*V *F CMOS power dissipation corresponding to the  
56800E core and standard cell logic.  
D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading  
2
on the external pins of the chip. This is also commonly described as C*V *F, although simulations on two  
of the IO cell types used on the device reveal that the power-versus-load curve does have a non-zero  
Y-intercept.  
Table 10-25 IO Loading Coefficients at 10MHz  
Intercept  
Slope  
PDU08DGZ_ME  
PDU04DGZ_ME  
1.3  
0.11mW / pF  
0.11mW / pF  
1.15mW  
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and  
frequency at which the outputs change. Table 10-25 provides coefficients for calculating power dissipated  
in the IO cells as a function of capacitive load. In these cases:  
TotalPower = Σ((Intercept +Slope*Cload)*frequency/10MHz)  
where:  
Summation is performed over all output pins with capacitive loads  
TotalPower is expressed in mW  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
165  
Cload is expressed in pF  
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found  
to be fairly low when averaged over a period of time. The one possible exception to this is if the chip is  
using the external address and data buses at a rate approaching the maximum system rate. In this case,  
power from these buses can be significant.  
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the  
2
device. Sum the total of all V /R or IV to arrive at the resistive load contribution to power. Assume V =  
0.5 for the purposes of these rough calculations. For instance, if there is a total of 8 PWM outputs driving  
10mA into LEDs, then P = 8*.5*.01 = 40mW.  
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored,  
as it is assumed to be negligible.  
56F8346 Technical Data, Rev. 15  
166  
Freescale Semiconductor  
Preliminary  
56F8346 Package and Pin-Out Information  
Part 11 Packaging  
11.1 56F8346 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8346. This device comes in a 144-pin  
Low-profile Quad Flat Pack (LQFP). Figure 11-1 shows the package outline for the LQFP; Figure 11-3  
shows the mechanical parameters for this package, and Table 11-1 lists the pin-out for the 144-pin LQFP.  
Orientation Mark  
V
DD_IO  
ANB4  
ANB3  
ANB2  
ANB1  
ANB0  
V
2
PP  
CLKO  
TXD0  
RXD0  
109  
Pin 1  
PHASEA1  
PHASEB1  
INDEX1  
HOME1  
A1  
V
V
SSA_ADC  
DDA_ADC  
V
V
V
V
V
REFH  
REFP  
REFMID  
REFN  
A2  
A3  
A4  
A5  
REFLO  
Temp_Sense  
ANA7  
ANA6  
ANA5  
ANA4  
ANA3  
ANA2  
ANA1  
ANA0  
CLKMODE  
RESET  
RSTO  
V
V
V
4
CAP  
V
DD_IO  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
DD_IO  
3
CAP  
V
SS  
EXTAL  
XTAL  
D7  
D8  
D9  
V
DDA_OSC_PLL  
OCR_DIS  
D6  
D5  
V
DD_IO  
D10  
GPIOB0  
PWMB0  
PWMB1  
PWMB2  
D4  
D3  
FAULTA2  
FAULTA1  
73  
37  
Figure 11-1 Top View, 56F8346 144-Pin LQFP Package  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
167  
Table 11-1 56F8346 144-Pin LQFP Package Identification by Pin Number  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
2
VDD_IO  
37  
38  
VSS  
73  
74  
FAULTA1  
FAULTA2  
109  
110  
ANB5  
ANB6  
VPP2  
VDD_IO  
3
4
5
6
7
8
CLKO  
TXD0  
39  
40  
41  
42  
43  
44  
PWMB3  
PWMB4  
PWMB5  
TXD1  
75  
76  
77  
78  
79  
80  
D3  
D4  
111  
112  
113  
114  
115  
116  
ANB7  
EXTBOOT  
ISA0  
RXD0  
D5  
PHASEA1  
PHASEB1  
INDEX1  
D6  
ISA1  
RXD1  
OCR_DIS  
VDDA_OSC_PLL  
ISA2  
WR  
TD0  
9
HOME1  
A1  
45  
46  
47  
RD  
PS  
DS  
81  
82  
83  
XTAL  
117  
118  
119  
TD1  
TC0  
10  
11  
EXTAL  
A2  
VCAP  
3
VDD_IO  
12  
A3  
48  
GPIOD0  
84  
VDD_IO  
120  
TRST  
13  
14  
15  
A4  
A5  
49  
50  
51  
GPIOD1  
ISB0  
85  
86  
87  
RSTO  
RESET  
121  
122  
123  
TCK  
TMS  
TDI  
V
CAP4  
VDD_IO  
A6  
VCAP  
1
CLKMODE  
16  
17  
52  
53  
ISB1  
ISB2  
88  
89  
ANA0  
ANA1  
124  
125  
TDO  
V
PP1  
18  
19  
20  
A7  
A8  
A9  
54  
55  
56  
IRQA  
IRQB  
90  
91  
92  
ANA2  
ANA3  
ANA4  
126  
127  
128  
CAN_TX  
CAN_RX  
FAULTB0  
VCAP2  
21  
22  
23  
24  
25  
A10  
A11  
A12  
A13  
A14  
57  
58  
59  
60  
61  
FAULTB1  
FAULTB2  
D0  
93  
94  
95  
96  
97  
ANA5  
ANA6  
129  
130  
131  
132  
133  
SS0  
SCLK0  
MISO0  
MOSI0  
D11  
ANA7  
D1  
TEMP_SENSE  
VREFLO  
FAULTB3  
26  
A15  
62  
PWMA0  
98  
VREFN  
134  
D12  
56F8346 Technical Data, Rev. 15  
168  
Freescale Semiconductor  
Preliminary  
56F8146 Package and Pin-Out Information  
Table 11-1 56F8346 144-Pin LQFP Package Identification by Pin Number (Continued)  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
27  
28  
29  
30  
31  
VSS  
63  
64  
65  
66  
67  
VSS  
99  
VREFMID  
VREFP  
135  
136  
137  
138  
139  
D13  
D14  
D7  
PWMA1  
PWMA2  
VDD_IO  
PWMA3  
100  
101  
102  
103  
D8  
VREFH  
D15  
D9  
VDDA_ADC  
VSSA_ADC  
A0  
VDD_IO  
PHASEA0  
32  
33  
D10  
68  
69  
PWMA4  
VSS  
104  
105  
ANB0  
ANB1  
140  
141  
PHASEB0  
INDEX0  
GPIOB0  
34  
35  
36  
PWMB0  
PWMB1  
PWMB2  
70  
71  
72  
PWMA5  
FAULTA0  
D2  
106  
107  
108  
ANB2  
ANB3  
ANB4  
142  
143  
144  
HOME0  
EMI_MODE  
VSS  
11.2 56F8146 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8146. This device comes in a 144-pin  
Low-profile Quad Flat Pack (LQFP). Figure 11-1 shows the package outline for the LQFP; Figure 11-3  
shows the mechanical parameters for this package, and Table 11-1 lists the pin-out for the 144-pin LQFP.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
169  
Orientation Mark  
V
DD_IO  
ANB4  
ANB3  
ANB2  
ANB1  
ANB0  
V
2
PP  
CLKO  
TXD0  
RXD0  
SCLK1  
MOSI1  
MISO1  
109  
Pin 1  
V
V
SSA_ADC  
DDA_ADC  
V
V
V
V
V
REFH  
SS1  
A1  
A2  
A3  
A4  
A5  
REFP  
REFMID  
REFN  
REFLO  
NC  
ANA7  
ANA6  
ANA5  
ANA4  
ANA3  
ANA2  
ANA1  
ANA0  
CLKMODE  
V
4
CAP  
V
DD_IO  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
RESET  
RSTO  
V
V
DD_IO  
3
CAP  
V
SS  
EXTAL  
XTAL  
D7  
D8  
D9  
V
DDA_OSC_PLL  
OCR_DIS  
D6  
D5  
V
DD_IO  
D10  
GPIOB0  
PWMB0  
PWMB1  
PWMB2  
D4  
D3  
NC  
NC  
73  
37  
Figure 11-2 Top View, 56F8146 144-Pin LQFP Package  
Table 11-2 56F8146 144-Pin LQFP Package Identification by Pin Number  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
VDD_IO  
37  
VSS  
73  
NC  
109  
ANB5  
56F8346 Technical Data, Rev. 15  
170  
Freescale Semiconductor  
Preliminary  
56F8146 Package and Pin-Out Information  
Table 11-2 56F8146 144-Pin LQFP Package Identification by Pin Number (Continued)  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
2
VPP2  
38  
VDD_IO  
74  
NC  
110  
ANB6  
3
4
5
6
7
8
CLKO  
TXD0  
39  
40  
41  
42  
43  
44  
PWMB3  
PWMB4  
PWMB5  
TXD1  
75  
76  
77  
78  
79  
80  
D3  
D4  
111  
112  
113  
114  
115  
116  
ANB7  
EXTBOOT  
GPIOC8  
GPIOC9  
GPIOC10  
GPIOE10  
RXD0  
SCLK1  
MOSI1  
MISO1  
D5  
D6  
RXD1  
OCR_DIS  
VDDA_OSC_PLL  
WR  
9
SS1  
A1  
45  
46  
47  
RD  
PS  
DS  
81  
82  
83  
XTAL  
117  
118  
119  
GPIOE11  
TC0  
10  
11  
EXTAL  
A2  
VCAP  
3
VDD_IO  
12  
A3  
48  
GPIOD0  
84  
VDD_IO  
120  
TRST  
13  
14  
15  
A4  
A5  
49  
50  
51  
GPIOD1  
ISB0  
85  
86  
87  
RSTO  
RESET  
121  
122  
123  
TCK  
TMS  
TDI  
V
CAP4  
VDD_IO  
A6  
VCAP  
1
CLKMODE  
16  
17  
52  
53  
ISB1  
ISB2  
88  
89  
ANA0  
ANA1  
124  
125  
TDO  
V
PP1  
18  
19  
20  
A7  
A8  
A9  
54  
55  
56  
IRQA  
IRQB  
90  
91  
92  
ANA2  
ANA3  
ANA4  
126  
127  
128  
NC  
NC  
FAULTB0  
V
CAP2  
21  
22  
23  
24  
25  
A10  
A11  
A12  
A13  
A14  
57  
58  
59  
60  
61  
FAULTB1  
FAULTB2  
D0  
93  
94  
95  
96  
97  
ANA5  
ANA6  
ANA7  
NC  
129  
130  
131  
132  
133  
SS0  
SCLK0  
MISO0  
MOSI0  
D11  
D1  
FAULTB3  
VREFLO  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
171  
Table 11-2 56F8146 144-Pin LQFP Package Identification by Pin Number (Continued)  
Signal  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Name  
A15  
VSS  
26  
27  
28  
29  
30  
31  
62  
63  
64  
65  
66  
67  
NC  
VSS  
NC  
98  
99  
VREFN  
VREFMID  
VREFP  
134  
135  
136  
137  
138  
139  
D12  
D13  
D7  
100  
101  
102  
103  
D14  
D8  
NC  
VREFH  
D15  
D9  
VDD_IO  
NC  
VDDA_ADC  
VSSA_ADC  
A0  
VDD_IO  
PHASEA0  
32  
33  
D10  
68  
69  
NC  
104  
105  
ANB0  
ANB1  
140  
141  
PHASEB0  
INDEX0  
GPIOB0  
VSS  
34  
35  
36  
PWMB0  
PWMB1  
PWMB2  
70  
71  
72  
NC  
NC  
D2  
106  
107  
108  
ANB2  
ANB3  
ANB4  
142  
143  
144  
HOME0  
EMI_MODE  
VSS  
56F8346 Technical Data, Rev. 15  
172  
Freescale Semiconductor  
Preliminary  
56F8146 Package and Pin-Out Information  
0.20 H B-C D  
0.20 A B-C D  
4X  
4X 36 TIPS  
PIN 1  
INDEX  
144  
109  
1
108  
4X e/2  
A
A
E1  
C
B
C
L
4
5
3
X
7
E
X=B, C or D  
140X  
e
E1/2  
E/2  
VIEW A  
VIEW A  
36  
73  
37  
72  
D
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
3. DATUMS B, C AND D TO BE DETERMINED AT DATUM  
H.  
D1/2  
D/2  
4
5
D1  
4. THE TOP PACKAGE BODY SIZE MAY BE SMALLER  
THAN THE BOTTOM PACKAGE SIZE BY A MAXIMUM  
OF 0.1 mm.  
5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSIONS. THE MAXIMUM ALLOWABLE  
PROTRUSION IS 0.25 mm PER SIDE. D1 AND E1 ARE  
MAXIMUMBODYSIZEDIMENSIONSINCLUDINGMOLD  
MISMATCH.  
6. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. PROTRUSIONS SHALL NOT CAUSE  
THE LEAD WIDTH TO EXCEED 0.35. MINIMUM SPACE  
BETWEEN PROTRUSION AND AN ADJACENT LEAD  
SHALL BE 0.07 mm.  
7
D
TOP VIEW  
VIEW B  
H
144X  
A
0.1  
A
8X θ2  
SEATING  
PLANE  
7. DIMENSIONS D AND E TO BE DETERMINED AT THE  
SEATING PLANE, DATUM A.  
SIDE VIEW  
A
MILLIMETERS  
DIM MIN  
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
PLATING  
A
A1  
A2  
b
b1  
c
c1  
D
D1  
e
---  
c
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
22.00 BSC  
20.00 BSC  
0.50 BSC  
c1  
b1  
A2  
0.05  
R2  
R1  
θ 1  
BASE  
METAL  
6
E
E1  
L
L1  
L2  
R1  
R2  
S
22.00 BSC  
20.00 BSC  
0.45  
1.00 REF  
0.50 REF  
0.13  
0.13  
0.25 REF  
b
0.25  
GAGE PLANE  
M
0.08  
A
B-C  
D
0.75  
SECTION A-A  
0.20  
---  
(ROTATED 90  
)
°
L2  
144 PLACES  
A1  
L
θ
θ1  
θ2  
0
0
7
---  
°
°
θ
S
°
12 REF  
°
L1  
VIEW B  
Figure 11-3 144-pin LQFP Mechanical Information  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
173  
Please see www.freescale.com for the most current case outline.  
Part 12 Design Considerations  
12.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
θJΑ x P )  
D
J
A
where:  
o
T
R
= Ambient temperature for the package ( C)  
A
o
= Junction-to-ambient thermal resistance ( C/W)  
θJΑ  
P
= Power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Unfortunately, there are two values in common usage: the value  
determined on a single-layer board and the value obtained on a board with two planes. For packages such  
as the PBGA, these values can be different by a factor of two. Which value is closer to the application  
depends on the power dissipated by other components on the board. The value obtained on a single-layer  
board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the  
internal planes is usually appropriate if the board has low-power dissipation and the components are well  
separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
R
R
θJΑ = θJC + θCΑ  
where:  
R
R
R
= Package junction-to-ambient thermal resistance °C/W  
= Package junction-to-case thermal resistance °C/W  
= Package case-to-ambient thermal resistance °C/W  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For instance, the user can change the size of the heat  
θCA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the  
Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ x P )  
J
T
JT  
D
56F8346 Technical Data, Rev. 15  
174  
Freescale Semiconductor  
Preliminary  
Electrical Design Considerations  
where:  
o
T
Ψ
= Thermocouple temperature on top of package ( C)  
= Thermal characterization parameter ( C)/W  
T
o
JT  
P
= Power dissipation in package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
12.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct device operation:  
Provide a low-impedance path from the board power supply to each VDD pin on the device, and from the  
board ground to each VSS (GND) pin  
The minimum bypass requirement is to place six 0.01–0.1μF capacitors positioned as close as possible to  
the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each  
of the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum capacitors tend to provide better  
performance tolerances.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
175  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS (GND)  
pins are less than 0.5 inch per capacitor lead  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for VDD and VSS  
Bypass the VDD and VSS layers of the PCB with approximately 100 μF, preferably with a high-grade  
capacitor such as a tantalum capacitor  
Because the device’s output signals have fast rise and fall times, PCB trace lengths should be minimal  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and VSS circuits.  
Take special care to minimize noise levels on the VREF, VDDA and VSSA pins  
Designs that utilize the TRST pin for JTAG port or EOnCE module functionality (such as development or  
debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means  
to assert TRST independently of RESET. Designs that do not require debugging functionality, such as  
consumer products, should tie these pins together.  
Because the Flash memory is programmed through the JTAG/EOnCE port, the designer should provide an  
interface to this port to allow in-circuit Flash programming  
12.3 Power Distribution and I/O Ring Implementation  
Figure 12-1 illustrates the general power control incorporated in the 56F8346/56F8146. This chip  
contains two internal power regulators. One of them is powered from the V  
pin and cannot  
DDA_OSC_PLL  
be turned off. This regulator controls power to the internal clock generation circuitry. The other regulator  
is powered from the V pins and provides power to all of the internal digital logic of the core, all  
DD_IO  
peripherals and the internal memories. This regulator can be turned off, if an external V  
voltage  
DD_CORE  
is externally applied to the V  
pins.  
CAP  
In summary, the entire chip can be supplied from a single 3.3 volt supply if the large core regulator is  
enabled. If the regulator is not enabled, a dual supply 3.3V/2.5V configuration can also be used.  
Notes:  
Flash, RAM and internal logic are powered from the core regulator output  
VPP1 and VPP2 are not connected in the customer system  
All circuitry, analog and digital, shares a common VSS bus  
56F8346 Technical Data, Rev. 15  
176  
Freescale Semiconductor  
Preliminary  
Power Distribution and I/O Ring Implementation  
V
DDA_OSC_PLL  
V
V
DDA_ADC  
DD  
V
V
V
V
V
REFH  
V
CAP  
REG  
REFP  
REG  
I/O  
ADC  
REFMID  
CORE  
REFN  
OSC  
REFLO  
V
V
SS  
SSA_ADC  
Figure 12-1 Power Management  
Part 13 Ordering Information  
Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 13-1 Ordering Information  
Ambient  
Temperature  
Range  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
MC56F8346  
MC56F8346  
MC56F8146  
3.0–3.6V  
3.0–3.6V  
3.0–3.6V  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
144  
144  
144  
60  
60  
40  
-40° to + 105° C  
-40° to + 125° C  
-40° to + 105° C  
MC56F8346VFV60  
MC56F8346MFV60  
MC56F8146VFV  
MC56F8346  
MC56F8346  
MC56F8146  
3.0–3.6V  
3.0–3.6V  
3.0–3.6V  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
144  
144  
144  
60  
60  
40  
-40° to + 105° C  
-40° to + 125° C  
-40° to + 105° C  
MC56F8346VFVE*  
MC56F8346MFVE*  
MC56F8146VFVE*  
*This package is RoHS compliant.  
56F8346 Technical Data, Rev. 15  
Freescale Semiconductor  
Preliminary  
177  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
http://www.freescale.com or contact your Freescale sales representative.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005, 2006. All rights reserved.  
MC56F8346  
Rev. 15  
01/2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY