935321128557 [NXP]

RISC Microprocessor;
935321128557
型号: 935321128557
厂家: NXP    NXP
描述:

RISC Microprocessor

文件: 总99页 (文件大小:1086K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8347EAEC  
Rev. 12, 09/2011  
Freescale Semiconductor  
Technical Data  
MPC8347EA PowerQUICC II Pro  
Integrated Host Processor Hardware  
Specifications  
Contents  
The MPC8347EA PowerQUICC II Pro is a next generation  
PowerQUICC II integrated host processor. The  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 6  
MPC8347EA contains a processor core built on Power  
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 10  
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Architecture® technology with system logic for networking,  
storage, and general-purpose embedded applications. For  
functional characteristics of the processor, refer to the  
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6. DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . 16  
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
MPC8349EA PowerQUICC II Pro Integrated Host  
Processor Family Reference Manual.  
8. Ethernet: Three-Speed Ethernet, MII Management . 23  
9. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
10. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
To locate published errata or updates for this document, refer  
to the MPC8347EA product summary page on our website,  
as listed on the back cover of this document, or contact your  
11. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
12. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
13. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
14. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
local Freescale sales office.  
15. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
16. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
17. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
18. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 54  
19. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
20. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
21. System Design Information . . . . . . . . . . . . . . . . . . . 91  
22. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 94  
23. Document Revision History . . . . . . . . . . . . . . . . . . . 96  
© 2006–2011 Freescale Semiconductor, Inc. All rights reserved.  
Overview  
NOTE  
The information in this document is accurate for revision 3.x silicon and  
later (in other words, for orderable part numbers ending in A or B). For  
information on revision 1.1 silicon and earlier versions, see the MPC8347E  
PowerQUICC II Pro Integrated Host Processor Hardware Specifications.  
See Section 22.1, “Part Numbers Fully Addressed by This Document,” for  
silicon revision level determination.  
1 Overview  
This section provides a high-level overview of the device features. Figure 1 shows the major functional  
units within the MPC8347EA.  
e300 Core  
DUART  
Dual I2C  
DDR  
Timers  
GPIO  
Interrupt  
Controller  
32KB  
32KB  
I-Cache  
SDRAM  
Security  
Local Bus  
D-Cache  
Controller  
High-Speed  
USB 2.0  
10/100/1000  
Ethernet  
10/100/1000  
Ethernet  
SEQ  
PCI  
DMA  
Dual  
Role  
Host  
Figure 1. MPC8347EA Block Diagram  
Major features of the device are as follows:  
• Embedded PowerPC e300 processor core; operates at up to 667 MHz  
— High-performance, superscalar processor core  
— Floating-point, integer, load/store, system register, and branch processing units  
— 32-Kbyte instruction cache, 32-Kbyte data cache  
— Lockable portion of L1 cache  
— Dynamic power management  
— Software-compatible with the other Freescale processor families that implement Power  
Architecture technology  
Double data rate, DDR1/DDR2 SDRAM memory controller  
— Programmable timing supporting DDR1 and DDR2 SDRAM  
— 32- or 64-bit data interface, up to 400 MHz data rate for TBGA, 266 MHz for PBGA  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
2
Freescale Semiconductor  
Overview  
— Up to four physical banks (chip selects), each bank up to 1 Gbyte independently addressable  
— DRAM chip configurations from 64 Mbits to 1 Gbit with ×8/×16 data ports  
— Full error checking and correction (ECC) support  
— Support for up to 16 simultaneous open pages (up to 32 pages for DDR2)  
— Contiguous or discontiguous memory mapping  
— Read-modify-write support  
— Sleep-mode support for SDRAM self refresh  
— Auto refresh  
— On-the-fly power management using CKE  
— Registered DIMM support  
— 2.5-V SSTL2 compatible I/O for DDR1, 1.8-V SSTL2 compatible I/O for DDR2  
Dual three-speed (10/100/1000) Ethernet controllers (TSECs)  
— Dual controllers designed to comply with IEEE 802.3™, 802.3u™, 820.3x™, 802.3z™,  
802.3ac™ standards  
— Ethernet physical interfaces:  
– 1000 Mbps IEEE Std. 802.3 GMII/RGMII, IEEE Std. 802.3z TBI/RTBI, full-duplex  
– 10/100 Mbps IEEE Std. 802.3 MII full- and half-duplex  
— Buffer descriptors are backward-compatible with MPC8260 and MPC860T 10/100  
programming models  
— 9.6-Kbyte jumbo frame support  
— RMON statistics support  
— Internal 2-Kbyte transmit and 2-Kbyte receive FIFOs per TSEC module  
— MII management interface for control and status  
— Programmable CRC generation and checking  
PCI interface  
— Designed to comply with PCI Specification Revision 2.3  
— Data bus width:  
– 32-bit data PCI interface operating at up to 66 MHz  
— PCI 3.3-V compatible  
— PCI host bridge capabilities  
— PCI agent mode on PCI interface  
— PCI-to-memory and memory-to-PCI streaming  
— Memory prefetching of PCI read accesses and support for delayed read transactions  
— Posting of processor-to-PCI and PCI-to-memory writes  
— On-chip arbitration supporting five masters on PCI  
— Accesses to all PCI address spaces  
— Parity supported  
— Selectable hardware-enforced coherency  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
3
Overview  
— Address translation units for address mapping between host and peripheral  
— Dual address cycle for target  
— Internal configuration registers accessible from PCI  
Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP,  
IEEE Std. 802.11i®, iSCSI, and IKE processing. The security engine contains four  
crypto-channels, a controller, and a set of crypto execution units (EUs):  
— Public key execution unit (PKEU) :  
– RSA and Diffie-Hellman algorithms  
– Programmable field size up to 2048 bits  
– Elliptic curve cryptography  
– F2m and F(p) modes  
– Programmable field size up to 511 bits  
— Data encryption standard (DES) execution unit (DEU)  
– DES and 3DES algorithms  
– Two key (K1, K2) or three key (K1, K2, K3) for 3DES  
– ECB and CBC modes for both DES and 3DES  
— Advanced encryption standard unit (AESU)  
– Implements the Rijndael symmetric-key cipher  
– Key lengths of 128, 192, and 256 bits  
– ECB, CBC, CCM, and counter (CTR) modes  
— XOR parity generation accelerator for RAID applications  
— ARC four execution unit (AFEU)  
– Stream cipher compatible with the RC4 algorithm  
– 40- to 128-bit programmable key  
— Message digest execution unit (MDEU)  
– SHA with 160-, 224-, or 256-bit message digest  
– MD5 with 128-bit message digest  
– HMAC with either algorithm  
— Random number generator (RNG)  
— Four crypto-channels, each supporting multi-command descriptor chains  
– Static and/or dynamic assignment of crypto-execution units through an integrated controller  
– Buffer size of 256 bytes for each execution unit, with flow control for large data sizes  
Universal serial bus (USB) dual role controller  
— USB on-the-go mode with both device and host functionality  
— Complies with USB specification Rev. 2.0  
— Can operate as a stand-alone USB device  
– One upstream facing port  
– Six programmable USB endpoints  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
4
Freescale Semiconductor  
Overview  
— Can operate as a stand-alone USB host controller  
– USB root hub with one downstream-facing port  
– Enhanced host controller interface (EHCI) compatible  
– High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations  
— External PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)  
Universal serial bus (USB) multi-port host controller  
— Can operate as a stand-alone USB host controller  
– USB root hub with one or two downstream-facing ports  
– Enhanced host controller interface (EHCI) compatible  
– Complies with USB Specification Rev. 2.0  
— High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations  
— Direct connection to a high-speed device without an external hub  
— External PHY with serial and low-pin count (ULPI) interfaces  
Local bus controller (LBC)  
— Multiplexed 32-bit address and data operating at up to 133 MHz  
— Eight chip selects for eight external slaves  
— Up to eight-beat burst transfers  
— 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller  
— Three protocol engines on a per chip select basis:  
– General-purpose chip select machine (GPCM)  
– Three user-programmable machines (UPMs)  
– Dedicated single data rate SDRAM controller  
— Parity support  
— Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)  
Programmable interrupt controller (PIC)  
— Functional and programming compatibility with the MPC8260 interrupt controller  
— Support for 8 external and 35 internal discrete interrupt sources  
— Support for 1 external (optional) and 7 internal machine checkstop interrupt sources  
— Programmable highest priority request  
— Four groups of interrupts with programmable priority  
— External and internal interrupts directed to host processor  
— Redirects interrupts to external INTA pin in core disable mode.  
— Unique vector number for each interrupt source  
2
Dual industry-standard I C interfaces  
— Two-wire interface  
— Multiple master support  
2
— Master or slave I C mode support  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
5
Electrical Characteristics  
— On-chip digital filtering rejects spikes on the bus  
2
— System initialization data optionally loaded from I C-1 EPROM by boot sequencer embedded  
hardware  
DMA controller  
— Four independent virtual channels  
— Concurrent execution across multiple channels with programmable bandwidth control  
— Handshaking (external control) signals for all channels: DMA_DREQ[0:3],  
DMA_DACK[0:3], DMA_DDONE[0:3]  
— All channels accessible to local core and remote PCI masters  
— Misaligned transfer capability  
— Data chaining and direct mode  
— Interrupt on completed segment and chain  
DUART  
— Two 4-wire interfaces (RxD, TxD, RTS, CTS)  
— Programming model compatible with the original 16450 UART and the PC16550D  
Serial peripheral interface (SPI) for master or slave  
General-purpose parallel I/O (GPIO)  
— 52 parallel I/O pins multiplexed on various chip interfaces  
System timers  
— Periodic interrupt timer  
— Real-time clock  
— Software watchdog timer  
— Eight general-purpose timers  
Designed to comply with IEEE Std. 1149.1™, JTAG boundary scan  
Integrated PCI bus and SDRAM clock generation  
2 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the  
MPC8347EA. The device is currently targeted to these specifications. Some of these specifications are  
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer  
design specifications.  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
6
Freescale Semiconductor  
Electrical Characteristics  
2.1.1  
Absolute Maximum Ratings  
Table 1 provides the absolute maximum ratings.  
1
Table 1. Absolute Maximum Ratings  
Parameter  
Symbol  
Max Value  
Unit  
Notes  
Core supply voltage  
PLL supply voltage  
VDD  
–0.3 to 1.32 (1.36 max  
for 667-MHz core  
frequency)  
V
AVDD  
GVDD  
–0.3 to 1.32 (1.36 max  
for 667-MHz core  
frequency)  
V
V
DDR and DDR2 DRAM I/O voltage  
–0.3 to 2.75  
–0.3 to 1.98  
Three-speed Ethernet I/O, MII management voltage  
LVDD  
–0.3 to 3.63  
–0.3 to 3.63  
V
V
PCI, local bus, DUART, system control and power management, I2C,  
and JTAG I/O voltage  
OVDD  
Input voltage  
DDR DRAM signals  
MVIN  
MVREF  
LVIN  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD + 0.3)  
–0.3 to (LVDD + 0.3)  
–0.3 to (OVDD + 0.3)  
V
V
V
V
2, 5  
2, 5  
4, 5  
3, 5  
DDR DRAM reference  
Three-speed Ethernet signals  
Local bus, DUART, CLKIN, system control and  
power management, I2C, and JTAG signals  
OVIN  
PCI  
OVIN  
TSTG  
–0.3 to (OVDD + 0.3)  
–55 to 150  
V
6
Storage temperature range  
°C  
Notes:  
1
Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2
3
4
5
Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
Caution: LVIN must not exceed LVDD by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on  
reset and power-down sequences.  
(M,L,O)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.  
6 OVIN on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as  
shown in Figure 3.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
7
Electrical Characteristics  
2.1.2  
Power Supply Voltage Specification  
Table 2 provides the recommended operating conditions for the MPC8347EA. Note that the values in  
Table 2 are the recommended and tested operating conditions. Proper device operation outside these  
conditions is not guaranteed.  
Table 2. Recommended Operating Conditions  
Recommended  
Parameter  
Symbol  
Unit  
Notes  
Value  
Core supply voltage for 667-MHz core frequency  
Core supply voltage  
VDD  
VDD  
1.3 V 60 mV  
1.2 V 60 mV  
1.3 V 60 mV  
1.2 V 60 mV  
V
V
V
V
V
1
1
PLL supply voltage for 667-MHz core frequency  
PLL supply voltage  
AVDD  
AVDD  
GVDD  
1
1
DDR and DDR2 DRAM I/O voltage  
2.5 V 125 mV  
1.8 V 90 mV  
Three-speed Ethernet I/O supply voltage  
Three-speed Ethernet I/O supply voltage  
LVDD1  
LVDD2  
OVDD  
3.3 V 330 mV  
2.5 V 125 mV  
V
V
V
3.3 V 330 mV  
2.5 V 125 mV  
PCI, local bus, DUART, system control and power  
management, I2C, and JTAG I/O voltage  
3.3 V 330 mV  
Note:  
1
GVDD, LVDD, OVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or  
negative direction.  
Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8347EA.  
G/L/OVDD + 20%  
G/L/OVDD + 5%  
G/L/OVDD  
VIH  
GND  
GND – 0.3 V  
VIL  
GND – 0.7 V  
Not to Exceed 10%  
1
of tinterface  
Note:  
1. tinterface refers to the clock period associated with the bus clock interface.  
Figure 2. Overshoot/Undershoot Voltage for GV /OV /LV  
DD  
DD  
DD  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
8
Electrical Characteristics  
Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8347EA for the  
3.3-V signals, respectively.  
11 ns  
(Min)  
+7.1 V  
Overvoltage  
Waveform  
7.1 V p-to-p  
(Min)  
0 V  
4 ns  
(Max)  
4 ns  
(Max)  
62.5 ns  
+3.6 V  
Undervoltage  
Waveform  
7.1 V p-to-p  
(Min)  
–3.5 V  
Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling  
2.1.3  
Output Driver Characteristics  
Table 3 provides information on the characteristics of the output driver strengths. The values are  
preliminary estimates.  
Table 3. Output Drive Capability  
Output Impedance  
Supply  
Voltage  
Driver Type  
(Ω)  
Local bus interface utilities signals  
PCI signals (not including PCI output clocks)  
PCI output clocks (including PCI_SYNC_OUT)  
DDR signal  
40  
25  
40  
18  
OVDD = 3.3 V  
GVDD = 2.5 V  
GVDD = 1.8 V  
DDR2 signal  
18  
36 (half-strength mode)  
TSEC/10/100 signals  
DUART, system control, I2C, JTAG, USB  
40  
40  
40  
LVDD = 2.5/3.3 V  
OVDD = 3.3 V  
GPIO signals  
OVDD = 3.3 V,  
LVDD = 2.5/3.3 V  
2.2  
Power Sequencing  
This section details the power sequencing considerations for the MPC8347EA.  
2.2.1  
Power-Up Sequencing  
MPC8347EAdoes not require the core supply voltage (V and AV ) and I/O supply voltages (GV ,  
DD  
DD  
DD  
LV , and OV ) to be applied in any particular order. During the power ramp up, before the power  
DD  
DD  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
9
Power Characteristics  
supplies are stable and if the I/O voltages are supplied before the core voltage, there may be a period of  
time that all input and output pins will actively be driven and cause contention and excessive current from  
3A to 5A. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the  
core voltage (V ) before the I/O voltage (GV , LV , and OV ) and assert PORESET before the  
DD  
DD  
DD  
DD  
power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply  
must rise to 90% of its nominal value before the I/O supplies reach 0.7 V, see Figure 4.  
Voltage  
I/O Voltage (GVDD, LVDD, OVDD  
)
Core Voltage (VDD, AVDD  
)
0.7 V  
90%  
Time  
Figure 4. Power Sequencing Example  
I/O voltage supplies (GV , LV , and OV ) do not have any ordering requirements with respect to one  
DD  
DD  
DD  
another.  
3 Power Characteristics  
The estimated typical power dissipation for the MPC8347EA device is shown in Table 4.  
1
Table 4. MPC8347EA Power Dissipation  
Core  
Frequency  
(MHz)  
CSB  
Frequency  
(MHz)  
,
Typical at TJ = 65  
Typical2 3  
Maximum4  
Unit  
PBGA  
266  
400  
400  
266  
133  
266  
133  
200  
100  
1.3  
1.1  
1.5  
1.4  
1.5  
1.3  
1.6  
1.4  
1.9  
1.7  
1.8  
1.7  
1.8  
1.6  
2.1  
1.9  
2.0  
1.9  
W
W
W
W
W
W
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
10  
Power Characteristics  
1
Table 4. MPC8347EA Power Dissipation (continued)  
Core  
Frequency  
(MHz)  
CSB  
Frequency  
(MHz)  
,
Typical at TJ = 65  
Typical2 3  
Maximum4  
Unit  
TBGA  
333  
333  
166  
266  
133  
300  
150  
333  
166  
266  
133  
333  
2.0  
1.8  
2.1  
1.9  
2.3  
2.1  
2.4  
2.2  
2.4  
2.2  
3.5  
3.0  
2.8  
3.0  
2.9  
3.2  
3.0  
3.3  
3.1  
3.3  
3.1  
4.6  
3.2  
2.9  
3.3  
3.1  
3.5  
3.2  
3.6  
3.4  
3.6  
3.4  
5
W
W
W
W
W
W
W
W
W
W
W
400  
450  
500  
533  
6675,6  
1
2
The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD. For I/O power values, see Table 5.  
Typical power is based on a voltage of VDD = 1.2 V, a junction temperature of TJ = 105°C, and a Dhrystone benchmark  
application.  
3
4
5
6
Thermal solutions may need to design to a value higher than typical power based on the end application, TA target, and I/O  
power.  
Maximum power is based on a voltage of VDD = 1.2 V, worst case process, a junction temperature of TJ = 105°C, and an  
artificial smoke test.  
Typical power is based on a voltage of VDD = 1.3 V, a junction temperature of TJ = 105°C, and a Dhrystone benchmark  
application.  
Maximum power is based on a voltage of VDD = 1.3 V, worst case process, a junction temperature of TJ = 105°C, and an  
artificial smoke test.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
11  
Power Characteristics  
Table 5 shows the estimated typical I/O power dissipation for MPC8347EA.  
Table 5. MPC8347EA Typical I/O Power Dissipation  
DDR2  
GVDD  
(1.8 V)  
DDR1  
GVDD  
(2.5 V)  
OVDD  
LVDD  
LVDD  
Interface  
Parameter  
Unit  
Comments  
(3.3 V) (3.3 V) (2.5 V)  
DDR I/O  
65% utilization  
2.5 V  
Rs = 20 Ω  
Rt = 50 Ω  
2 pair of clocks  
200 MHz, 32 bits  
200 MHz, 64 bits  
266 MHz, 32 bits  
266 MHz, 64 bits  
300 MHz,1 32 bits  
300 MHz,1 64 bits  
333 MHz,1 32 bits  
333 MHz,1 64 bits  
400 MHz,1 32 bits  
400 MHz,1 64 bits  
33 MHz, 32 bits  
66 MHz, 32 bits  
167 MHz, 32 bits  
133 MHz, 32 bits  
83 MHz, 32 bits  
66 MHz, 32 bits  
50 MHz, 32 bits  
MII  
0.31  
0.42  
0.35  
0.47  
0.37  
0.50  
0.39  
0.53  
0.44  
0.59  
0.42  
0.55  
0.5  
0.66  
0.54  
0.7  
0.58  
0.76  
0.04  
W
W
W
W
W
W
W
W
PCI I/O  
load = 30 pF  
0.04  
0.07  
0.34  
0.27  
0.17  
0.14  
0.11  
W
W
W
W
W
W
W
W
W
W
W
W
W
Local bus I/O  
load = 25 pF  
TSEC I/O  
load = 25 pF  
0.01  
0.06  
Multiply by number of  
interfaces used.  
GMII or TBI  
RGMII or RTBI  
12 MHz  
USB  
0.01  
0.2  
0.01  
Multiply by 2 if using  
2 ports.  
480 MHz  
Other I/O  
1
TBGA package only.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
12  
Clock Input Timing  
4 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the device.  
4.1  
DC Electrical Characteristics  
Table 6 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8347EA.  
Table 6. CLKIN DC Timing Specifications  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.7  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
0.4  
10  
10  
CLKIN input current  
PCI_SYNC_IN input current  
0 V VIN OVDD  
μA  
μA  
0 V VIN 0.5 V or  
IIN  
OVDD – 0.5 V VIN OVDD  
PCI_SYNC_IN input current  
0.5 V VIN OVDD – 0.5 V  
IIN  
50  
μA  
4.2  
AC Electrical Characteristics  
The primary clock source for the MPC8347EA can be one of two inputs, CLKIN or PCI_CLK, depending  
on whether the device is configured in PCI host or PCI agent mode. Table 7 provides the clock input  
(CLKIN/PCI_CLK) AC timing specifications for the device.  
Table 7. CLKIN AC Timing Specifications  
Parameter/Condition  
CLKIN/PCI_CLK frequency  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
fCLKIN  
tCLKIN  
15  
0.6  
40  
66  
MHz  
ns  
1, 6  
2
CLKIN/PCI_CLK cycle time  
CLKIN/PCI_CLK rise and fall time  
CLKIN/PCI_CLK duty cycle  
CLKIN/PCI_CLK jitter  
Notes:  
tKH, tKL  
1.0  
2.3  
60  
ns  
tKHK CLKIN  
/t  
%
3
150  
ps  
4, 5  
1. Caution: The system, core, USB, security, and TSEC must not exceed their respective maximum or minimum operating  
frequencies.  
2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 and 2.7 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The CLKIN/PCI_CLK driver’s closed loop jitter bandwidth should be < 500 kHz at –20 dB. The bandwidth must be set low to  
allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.  
6. Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 50 KHz modulation rate regardless  
of input frequency.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
13  
RESET Initialization  
4.3  
TSEC Gigabit Reference Clock Timing  
Table 8 provides the TSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications.  
Table 8. EC_GTX_CLK125 AC Timing Specifications  
At recommended operating conditions with LVDD = 2.5 0.125 mV/ 3.3 V 165 mV  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
EC_GTX_CLK125 frequency  
EC_GTX_CLK125 cycle time  
EC_GTX_CLK125 rise and fall time  
tG125  
tG125  
125  
8
MHz  
ns  
1
t
G125R/tG125F  
ns  
LVDD = 2.5 V  
LVDD = 3.3 V  
0.75  
1.0  
EC_GTX_CLK125 duty cycle  
tG125H G125  
/t  
%
2
2
GMII, TBI  
45  
47  
55  
53  
1000Base-T for RGMII, RTBI  
EC_GTX_CLK125 jitter  
Notes:  
150  
ps  
1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LVDD = 2.5 V and from 0.6 and 2.7 V for  
LVDD = 3.3 V.  
2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. The EC_GTX_CLK125  
duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC  
GTX_CLK. See Section 8.2.4, “RGMII and RTBI AC Timing Specifications for the duty cycle for 10Base-T and 100Base-T  
reference clock.  
5 RESET Initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and  
electrical requirements of the MPC8347EA.  
5.1  
RESET DC Electrical Characteristics  
Table 9 provides the DC electrical characteristics for the RESET pins of the MPC8347EA.  
1
Table 9. RESET Pins DC Electrical Characteristics  
Parameter  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
2.0  
–0.3  
OVDD + 0.3  
V
V
0.8  
5
IIN  
μA  
V
Output high voltage2  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
V
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
14  
RESET Initialization  
1
Table 9. RESET Pins DC Electrical Characteristics (continued)  
Parameter  
Symbol  
Condition  
Min  
Max  
0.4  
Unit  
Output low voltage  
V
IOL = 3.2 mA  
V
OL  
Notes:  
1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.  
2. HRESET and SRESET are open drain pins, thus VOH is not relevant for those pins.  
5.2  
RESET AC Electrical Characteristics  
Table 10 provides the reset initialization AC timing specifications of the MPC8347EA.  
Table 10. RESET Initialization Timing Specifications  
Parameter  
Min  
Max  
Unit  
Notes  
Required assertion time of HRESET or SRESET (input) to activate reset flow  
32  
32  
tPCI_SYNC_IN  
tCLKIN  
1
2
Required assertion time of PORESET with stable clock applied to CLKIN when the  
MPC8347EA is in PCI host mode  
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN  
when the MPC8347EA is in PCI agent mode  
32  
tPCI_SYNC_IN  
1
HRESET/SRESET assertion (output)  
512  
16  
4
tPCI_SYNC_IN  
tPCI_SYNC_IN  
tCLKIN  
1
1
2
HRESET negation to SRESET negation (output)  
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and  
CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347EA is  
in PCI host mode  
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and  
CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347EA is  
in PCI agent mode  
4
tPCI_SYNC_IN  
1
Input hold time for POR configuration signals with respect to negation of HRESET  
0
4
ns  
ns  
3
Time for the MPC8347EA to turn off POR configuration signals with respect to the  
assertion of HRESET  
Time for the MPC8347EA to turn on POR configuration signals with respect to the  
negation of HRESET  
1
tPCI_SYNC_IN 1, 3  
Notes:  
1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. In PCI host mode, the primary clock is applied  
to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the MPC8349EA  
PowerQUICC II Pro Integrated Host Processor Family Reference Manual.  
2. tCLKIN is the clock period of the input clock applied to CLKIN. It is valid only in PCI host mode. See the MPC8349EA  
PowerQUICC II Pro Integrated Host Processor Family Reference Manual.  
3. POR configuration signals consist of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
15  
DDR and DDR2 SDRAM  
Table 11 lists the PLL and DLL lock times.  
Table 11. PLL and DLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
PLL lock times  
DLL lock times  
Notes:  
100  
μs  
7680  
122,880  
csb_clk cycles  
1, 2  
1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio  
results in the minimum and an 8:1 ratio results in the maximum.  
2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 19, “Clocking.”  
6 DDR and DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the  
MPC8347EA. Note that DDR SDRAM is GV (typ) = 2.5 V and DDR2 SDRAM is GV (typ) = 1.8 V.  
DD  
DD  
The AC electrical specifications are the same for DDR and DRR2 SDRAM.  
NOTE  
The information in this document is accurate for revision 3.0 silicon and  
later. For information on revision 1.1 silicon and earlier versions see the  
MPC8347E PowerQUICC II Pro Integrated Host Processor Hardware  
Specifications. See Section 22.1, “Part Numbers Fully Addressed by This  
Document,” for silicon revision level determination.  
6.1  
DDR and DDR2 SDRAM DC Electrical Characteristics  
Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the  
MPC8347EA when GV (typ) = 1.8 V.  
DD  
Table 12. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
GVDD  
MVREF  
VTT  
1.71  
0.49 × GVDD  
MVREF – 0.04  
MVREF + 0.125  
–0.3  
1.89  
0.51 × GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.125  
9.9  
V
V
1
2
I/O reference voltage  
I/O termination voltage  
Input high voltage  
V
3
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
Output high current (VOUT = 1.420 V)  
IOZ  
–9.9  
μA  
mA  
IOH  
–13.4  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
16  
DDR and DDR2 SDRAM  
Table 12. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V (continued)  
DD  
Output low current (VOUT = 0.280 V)  
IOL  
13.4  
mA  
Notes:  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to equal 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise  
on MVREF cannot exceed 2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal  
MVREF. This rail should track variations in the DC level of MVREF  
.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
Table 13 provides the DDR2 capacitance when GVDD(typ) = 1.8 V.  
Table 13. DDR2 SDRAM Capacitance for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS, DQS  
Delta input/output capacitance: DQ, DQS, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 1.8 V 0.090 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when  
GV (typ) = 2.5 V.  
DD  
Table 14. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
GVDD  
MVREF  
VTT  
2.375  
0.49 × GVDD  
MVREF – 0.04  
MVREF + 0.18  
–0.3  
2.625  
0.51 × GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.18  
–9.9  
V
V
1
2
I/O reference voltage  
I/O termination voltage  
Input high voltage  
V
3
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
Output high current (VOUT = 1.95 V)  
Output low current (VOUT = 0.35 V)  
Notes:  
IOZ  
–9.9  
μA  
mA  
mA  
IOH  
–15.2  
IOL  
15.2  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed 2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF  
.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
17  
DDR and DDR2 SDRAM  
Table 15 provides the DDR capacitance when GVDD(typ) = 2.5 V.  
Table 15. DDR SDRAM Capacitance for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 2.5 V 0.125 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
Table 16 provides the current draw characteristics for MV  
.
REF  
Table 16. Current Draw Characteristics for MV  
REF  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Note  
Current draw for MVREF  
Note:  
1. The voltage regulator for MVREF must supply up to 500 μA current.  
IMVREF  
500  
μA  
1
6.2  
DDR and DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.  
6.2.1  
DDR and DDR2 SDRAM Input AC Timing Specifications  
Table 17 provides the input AC timing specifications for the DDR2 SDRAM when GV (typ) = 1.8 V.  
DD  
Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface  
At recommended operating conditions with GVDD of 1.8 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
VIL  
MVREF – 0.25  
V
V
VIH  
MVREF + 0.25  
Table 18 provides the input AC timing specifications for the DDR SDRAM when GV (typ) = 2.5 V.  
DD  
Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface  
At recommended operating conditions with GVDD of 2.5 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
VIL  
MVREF – 0.31  
V
V
VIH  
MVREF + 0.31  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
18  
DDR and DDR2 SDRAM  
Table 19 provides the input AC timing specifications for the DDR SDRAM interface.  
Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications  
At recommended operating conditions with GVDD of (1.8 or 2.5 V) 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Controller Skew for MDQS—MDQ/MECC/MDM  
tCISKEW  
ps  
1, 2  
3
400 MHz  
–600  
–750  
–750  
–750  
600  
750  
750  
750  
333 MHz  
266 MHz  
200 MHz  
Notes:  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that  
will be captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be  
determined by the equation: tDISKEW  
value of tCISKEW  
=
(T/4 – abs (tCISKEW)); where T is the clock period and abs (tCISKEW) is the absolute  
.
3. This specification applies only to the DDR interface.  
Figure 5 illustrates the DDR input timing diagram showing the t  
timing parameter.  
DISKEW  
MCK[n]  
MCK[n]  
tMCK  
MDQS[n]  
MDQ[x]  
D0  
D1  
tDISKEW  
tDISKEW  
Figure 5. DDR Input Timing Diagram  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
19  
DDR and DDR2 SDRAM  
6.2.2  
DDR and DDR2 SDRAM Output AC Timing Specifications  
Table 20 shows the DDR and DDR2 output AC timing specifications.  
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications  
At recommended operating conditions with GVDD of (1.8 or 2.5 V) 5%.  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
MCK[n] cycle time, (MCK[n]/MCK[n] crossing) (PBGA  
package)  
tMCK  
5
ns  
2
MCK[n] cycle time, (MCK[n]/MCK[n] crossing) (TBGA  
package)  
tMCK  
7.5  
ns  
ns  
2
3
ADDR/CMD/MODT output setup with respect to MCK  
tDDKHAS  
400 MHz  
1.95  
2.40  
3.15  
4.20  
333 MHz  
266 MHz  
200 MHz  
ADDR/CMD/MODT output hold with respect to MCK  
tDDKHAX  
tDDKHCS  
tDDKHCX  
tDDKHMH  
ns  
ns  
ns  
3
3
3
400 MHz  
1.95  
2.40  
3.15  
4.20  
333 MHz  
266 MHz  
200 MHz  
MCS(n) output setup with respect to MCK  
400 MHz  
1.95  
2.40  
3.15  
4.20  
333 MHz  
266 MHz  
200 MHz  
MCS(n) output hold with respect to MCK  
400 MHz  
1.95  
2.40  
3.15  
4.20  
–0.6  
333 MHz  
266 MHz  
200 MHz  
MCK to MDQS Skew  
0.6  
ns  
ps  
4
5
MDQ/MECC/MDM output setup with respect to  
MDQS  
tDDKHDS,  
tDDKLDS  
400 MHz  
700  
775  
333 MHz  
266 MHz  
1100  
1200  
200 MHz  
MDQ/MECC/MDM output hold with respect to MDQS  
tDDKHDX,  
tDDKLDX  
ps  
5
400 MHz  
333 MHz  
700  
900  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
20  
DDR and DDR2 SDRAM  
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications (continued)  
At recommended operating conditions with GVDD of (1.8 or 2.5 V) 5%.  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
266 MHz  
1100  
1200  
200 MHz  
MDQS preamble start  
MDQS epilogue end  
Notes:  
tDDKHMP  
tDDKHME  
–0.5 × tMCK – 0.6 –0.5 × tMCK + 0.6  
–0.6 0.6  
ns  
ns  
6
6
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from  
the rising or falling edge of the reference clock (KH or KL) until the output goes invalid (AX or DX). For example, tDDKHAS  
symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs (A) are  
set up (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes  
low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals 0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the  
ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks by  
1/2 applied cycle.  
4. tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD) from the  
rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control of the  
DQSS override bits in the TIMING_CFG_2 register and is typically set to the same delay as the clock adjust in the CLK_CNTL  
register. The timing parameters listed in the table assume that these two parameters are set to the same adjustment value.  
See the MPC8349EA PowerQUICC II Pro Integrated Host Processor Family Reference Manual for the timing modifications  
enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that tDDKHMP follows the  
symbol conventions described in note 1.  
Figure 6 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t  
).  
DDKHMH  
MCK[n]  
MCK[n]  
tMCK  
tDDKHMHmax) = 0.6 ns  
MDQS  
tDDKHMH(min) = –0.6 ns  
MDQS  
Figure 6. Timing Diagram for t  
DDKHMH  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
21  
DUART  
Figure 7 shows the DDR SDRAM output timing diagram.  
MCK[n]  
MCK[n]  
tMCK  
tDDKHAS,tDDKHCS  
tDDKHAX,tDDKHCX  
ADDR/CMD/MODT  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
MDQS[n]  
MDQ[x]  
tDDKHME  
tDDKHDS  
tDDKLDS  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 7. DDR SDRAM Output Timing Diagram  
Figure 8 provides the AC test load for the DDR bus.  
GVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 8. DDR AC Test Load  
7 DUART  
This section describes the DC and AC electrical specifications for the DUART interface of the  
MPC8347EA.  
7.1  
DUART DC Electrical Characteristics  
Table 21 provides the DC electrical characteristics for the DUART interface of the MPC8347EA.  
Table 21. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
VIH  
VIL  
IIN  
2
OVDD + 0.3  
V
V
–0.3  
0.8  
5
Input current (0.8 V VIN 2 V)  
μA  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
22  
Ethernet: Three-Speed Ethernet, MII Management  
Table 21. DUART DC Electrical Characteristics (continued)  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level output voltage, IOH = –100 μA  
Low-level output voltage, IOL = 100 μA  
VOH  
VOL  
OVDD – 0.2  
V
V
0.2  
7.2  
DUART AC Electrical Specifications  
Table 22 provides the AC timing parameters for the DUART interface of the MPC8347EA.  
Table 22. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Notes  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
Notes:  
256  
> 1,000,000  
16  
baud  
baud  
1
2
1. Actual attainable baud rate will be limited by the latency of interrupt processing.  
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are  
sampled each 16th sample.  
8 Ethernet: Three-Speed Ethernet, MII Management  
This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and  
MII management.  
8.1  
Three-Speed Ethernet Controller  
(TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics  
The electrical characteristics specified here apply to gigabit media independent interface (GMII), the  
media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent  
interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output  
(MDIO) and management data clock (MDC). The MII, GMII, and TBI interfaces are defined for 3.3 V,  
and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the  
Hewlett-Packard Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification,  
Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3,  
“Ethernet Management Interface Electrical Characteristics.”  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
23  
Ethernet: Three-Speed Ethernet, MII Management  
8.1.1  
TSEC DC Electrical Characteristics  
GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes  
specified in Table 23 and Table 24. The RGMII and RTBI signals in Table 24 are based on a 2.5-V CMOS  
interface voltage as defined by JEDEC EIA/JESD8-5.  
Table 23. GMII/TBI and MII DC Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
2
Supply voltage 3.3 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Notes:  
LVDD  
2.97  
2.40  
GND  
2.0  
3.63  
LVDD + 0.3  
0.50  
V
V
VOH  
VOL  
VIH  
VIL  
IIH  
IOH = –4.0 mA  
LVDD = Min  
IOL = 4.0 mA  
LVDD = Min  
V
LVDD + 0.3  
0.90  
V
–0.3  
V
VIN1 = LVDD  
VIN1 = GND  
40  
μA  
μA  
IIL  
–600  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the OVDD supply.  
Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics  
Parameters  
Supply voltage 2.5 V  
Symbol  
Conditions  
Min  
Max  
Unit  
LVDD  
VOH  
VOL  
VIH  
VIL  
2.37  
2.00  
2.63  
LVDD + 0.3  
0.40  
V
V
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
IOH = –1.0 mA  
LVDD = Min  
LVDD = Min  
LVDD = Min  
LVDD = Min  
IOL = 1.0 mA  
GND – 0.3  
1.7  
V
LVDD + 0.3  
0.70  
V
–0.3  
V
IIH  
VIN1 = LVDD  
VIN1 = GND  
10  
μA  
μA  
IIL  
–15  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
8.2  
GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications  
The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.  
8.2.1  
GMII Timing Specifications  
This section describes the GMII transmit and receive AC timing specifications.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
24  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
8.2.1.1  
GMII Transmit AC Timing Specifications  
Table 25 provides the GMII transmit AC timing specifications.  
Table 25. GMII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
GTX_CLK clock period  
tGTX  
GTXH/tGTX  
tGTKHDX  
tGTXR  
43.75  
0.5  
8.0  
56.25  
5.0  
ns  
%
GTX_CLK duty cycle  
t
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay  
GTX_CLK clock rise time (20%–80%)  
GTX_CLK clock fall time (80%–20%)  
Notes:  
ns  
ns  
ns  
1.0  
tGTXF  
1.0  
1. The symbols for timing specifications follow the pattern t(first two letters of functional block)(signal)(state)(reference)(state) for inputs and  
(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGTKHDV symbolizes GMII transmit timing (GT)  
t
with respect to the tGTX clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the  
valid state (V) to state or setup time. Also, tGTKHDX symbolizes GMII transmit timing (GT) with respect to the tGTX clock  
reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general,  
the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript  
of tGTX represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate  
letter: R (rise) or F (fall).  
Figure 9 shows the GMII transmit AC timing diagram.  
t
t
GTXR  
GTX  
GTX_CLK  
t
t
GTXF  
GTXH  
TXD[7:0]  
TX_EN  
TX_ER  
t
GTKHDX  
Figure 9. GMII Transmit AC Timing Diagram  
8.2.1.2  
GMII Receive AC Timing Specifications  
Table 26 provides the GMII receive AC timing specifications.  
Table 26. GMII Receive AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
RX_CLK clock period  
tGRX  
40  
8.0  
60  
ns  
%
RX_CLK duty cycle  
tGRXH GRX  
tGRDVKH  
tGRDXKH  
/t  
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK  
2.0  
0.5  
ns  
ns  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
25  
Ethernet: Three-Speed Ethernet, MII Management  
Table 26. GMII Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
RX_CLK clock rise (20%–80%)  
RX_CLK clock fall time (80%–20%)  
Note:  
tGRXR  
tGRXF  
1.0  
1.0  
ns  
ns  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGRDVKH symbolizes GMII receive timing  
(GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the tRX clock reference (K) going  
to the high state (H) or setup time. Also, tGRDXKL symbolizes GMII receive timing (GR) with respect to the time data input  
signals (D) went invalid (X) relative to the tGRX clock reference (K) going to the low (L) state or hold time. In general, the clock  
reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of tGRX  
represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter:  
R (rise) or F (fall).  
Figure 10 shows the GMII receive AC timing diagram.  
G
tGRX  
tGRXR  
RX_CLK  
tGRXF  
tGRXH  
RXD[7:0]  
RX_DV  
RX_ER  
tGRDXKH  
tGRDVKH  
Figure 10. GMII Receive AC Timing Diagram  
8.2.2  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
8.2.2.1  
MII Transmit AC Timing Specifications  
Table 27 provides the MII transmit AC timing specifications.  
Table 27. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
TX_CLK clock period 10 Mbps  
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
tMTX  
tMTX  
tMTXH/ MTX  
tMTKHDX  
35  
1
400  
40  
5
65  
15  
ns  
ns  
%
t
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
ns  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
26  
Ethernet: Three-Speed Ethernet, MII Management  
Table 27. MII Transmit AC Timing Specifications (continued)  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
TX_CLK data clock rise (20%–80%)  
TX_CLK data clock fall (80%–20%)  
Note:  
tMTXR  
tMTXF  
1.0  
1.0  
4.0  
4.0  
ns  
ns  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit timing  
(MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference  
symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of tMTX  
represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter:  
R (rise) or F (fall).  
Figure 11 shows the MII transmit AC timing diagram.  
tMTXR  
tMTX  
TX_CLK  
tMTXF  
tMTXH  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 11. MII Transmit AC Timing Diagram  
8.2.2.2  
MII Receive AC Timing Specifications  
Table 28 provides the MII receive AC timing specifications.  
Table 28. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
RX_CLK clock period 10 Mbps  
tMRX  
tMRX  
400  
40  
65  
ns  
ns  
%
RX_CLK clock period 100 Mbps  
RX_CLK duty cycle  
t
MRXH/tMRX  
tMRDVKH  
tMRDXKH  
35  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
10.0  
10.0  
ns  
ns  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
27  
Ethernet: Three-Speed Ethernet, MII Management  
Table 28. MII Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
RX_CLK clock rise (20%–80%)  
RX_CLK clock fall time (80%–20%)  
Note:  
tMRXR  
tMRXF  
1.0  
1.0  
4.0  
4.0  
ns  
ns  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII receive timing  
(MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference (K) going to  
the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data input signals  
(D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time. In general, the clock  
reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of tMRX  
represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter:  
R (rise) or F (fall).  
Figure 12 provides the AC test load for TSEC.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 12. TSEC AC Test Load  
Figure 13 shows the MII receive AC timing diagram.  
tMRXR  
tMRX  
RX_CLK  
tMRXF  
Valid Data  
tMRXH  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKH  
Figure 13. MII Receive AC Timing Diagram  
8.2.3  
TBI AC Timing Specifications  
This section describes the TBI transmit and receive AC timing specifications.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
28  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
8.2.3.1  
TBI Transmit AC Timing Specifications  
Table 29 provides the TBI transmit AC timing specifications.  
Table 29. TBI Transmit AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
GTX_CLK clock period  
tTTX  
40  
1.0  
8.0  
60  
ns  
%
GTX_CLK duty cycle  
tTTXH TTX  
tTTKHDX  
tTTXR  
/t  
GTX_CLK to TBI data TXD[7:0], TX_ER, TX_EN delay  
GTX_CLK clock rise (20%–80%)  
GTX_CLK clock fall time (80%–20%)  
Notes:  
5.0  
1.0  
1.0  
ns  
ns  
ns  
tTTXF  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTTKHDV symbolizes the TBI transmit  
timing (TT) with respect to the time from tTTX (K) going high (H) until the referenced data signals (D) reach the valid state (V)  
or setup time. Also, tTTKHDX symbolizes the TBI transmit timing (TT) with respect to the time from tTTX (K) going high (H) until  
the referenced data signals (D) reach the invalid state (X) or hold time. In general, the clock reference symbol is based on  
three letters representing the clock of a particular function. For example, the subscript of tTTX represents the TBI (T) transmit  
(TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
Figure 14 shows the TBI transmit AC timing diagram.  
tTTXR  
tTTX  
GTX_CLK  
tTTXH  
tTTXF  
TXD[7:0]  
TX_EN  
TX_ER  
tTTKHDX  
Figure 14. TBI Transmit AC Timing Diagram  
8.2.3.2  
TBI Receive AC Timing Specifications  
Table 30 provides the TBI receive AC timing specifications.  
Table 30. TBI Receive AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
PMA_RX_CLK clock period  
PMA_RX_CLK skew  
RX_CLK duty cycle  
tTRX  
16.0  
ns  
ns  
%
tSKTRX  
7.5  
40  
8.5  
60  
tTRXH TRX  
/t  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
29  
Ethernet: Three-Speed Ethernet, MII Management  
Table 30. TBI Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDD/OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) setup time to rising  
PMA_RX_CLK  
2.5  
ns  
2
tTRDVKH  
2
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) hold time to rising  
PMA_RX_CLK  
tTRDXKH  
1.5  
ns  
RX_CLK clock rise time (20%–80%)  
RX_CLK clock fall time (80%–20%)  
Notes:  
tTRXR  
tTRXF  
0.7  
0.7  
2.4  
2.4  
ns  
ns  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTRDVKH symbolizes TBI receive timing  
(TR) with respect to the time data input signals (D) reach the valid state (V) relative to the tTRX clock reference (K) going to  
the high (H) state or setup time. Also, tTRDXKH symbolizes TBI receive timing (TR) with respect to the time data input signals  
(D) went invalid (X) relative to the tTRX clock reference (K) going to the high (H) state. In general, the clock reference symbol  
is based on three letters representing the clock of a particular function. For example, the subscript of tTRX represents the TBI  
(T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For  
symbols representing skews, the subscript SK followed by the clock that is being skewed (TRX).  
2. Setup and hold time of even numbered RCG are measured from the riding edge of PMA_RX_CLK1. Setup and hold times  
of odd-numbered RCG are measured from the riding edge of PMA_RX_CLK0.  
Figure 15 shows the TBI receive AC timing diagram.  
tTRXR  
tTRX  
PMA_RX_CLK1  
RCG[9:0]  
tTRXH  
tTRXF  
Even RCG  
Odd RCG  
tTRDVKH  
tSKTRX  
tTRDXKH  
PMA_RX_CLK0  
tTRXH  
tTRDXKH  
tTRDVKH  
Figure 15. TBI Receive AC Timing Diagram  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
30  
Ethernet: Three-Speed Ethernet, MII Management  
8.2.4  
RGMII and RTBI AC Timing Specifications  
Table 31 presents the RGMII and RTBI AC timing specifications.  
Table 31. RGMII and RTBI AC Timing Specifications  
At recommended operating conditions with LVDD of 2.5 V 5%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
Data to clock output skew (at transmitter)  
Data to clock input skew (at receiver)2  
Clock cycle duration3  
Duty cycle for 1000Base-T4, 5  
Duty cycle for 10BASE-T and 100BASE-TX3, 5  
Rise time (20%–80%)  
tSKRGT  
tSKRGT  
tRGT  
–0.5  
1.0  
7.2  
45  
0.5  
2.8  
8.8  
55  
ns  
ns  
ns  
%
8.0  
50  
50  
tRGTH RGT  
tRGTH/tRGT  
tRGTR  
tRGTF  
/t  
40  
60  
%
0.75  
0.75  
ns  
ns  
Fall time (80%–20%)  
Notes:  
1. In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For  
example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times  
follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).  
2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added  
to the associated clock signal.  
3. For 10 and 100 Mbps, tRGT scales to 400 ns 40 ns and 40 ns 4 ns, respectively.  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long  
as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned.  
5. Duty cycle reference is LVDD/2.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
31  
Ethernet: Three-Speed Ethernet, MII Management  
Figure 16 shows the RBMII and RTBI AC timing and multiplexing diagrams.  
tRGT  
tRGTH  
GTX_CLK  
(At Transmitter)  
tSKRGT  
TXD[8:5][3:0]  
TXD[8:5]  
TXD[7:4][3:0]  
TXD[3:0]  
TXD[7:4]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
tSKRGT  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
tSKRGT  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
tSKRGT  
RX_CLK  
(At PHY)  
Figure 16. RGMII and RTBI AC Timing and Multiplexing Diagrams  
8.3  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to the MII management interface signals management  
data input/output (MDIO) and management data clock (MDC). The electrical characteristics for GMII,  
RGMII, TBI and RTBI are specified in Section 8.1, “Three-Speed Ethernet Controller  
(TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics.”  
8.3.1  
MII Management DC Electrical Characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 2.5 or 3.3 V. The DC electrical  
characteristics for MDIO and MDC are provided in Table 32 and Table 33.  
Table 32. MII Management DC Electrical Characteristics Powered at 2.5 V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (2.5 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
LVDD  
VOH  
VOL  
VIH  
2.37  
2.00  
2.63  
LVDD + 0.3  
0.40  
V
V
V
V
V
IOH = –1.0 mA  
LVDD = Min  
LVDD = Min  
LVDD = Min  
LVDD = Min  
IOL = 1.0 mA  
GND – 0.3  
1.7  
VIL  
–0.3  
0.70  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
32  
Ethernet: Three-Speed Ethernet, MII Management  
Table 32. MII Management DC Electrical Characteristics Powered at 2.5 V (continued)  
Parameter  
Input high current  
Symbol  
Conditions  
Min  
Max  
Unit  
IIH  
IIL  
VIN1 = LVDD  
VIN = LVDD  
10  
μA  
μA  
Input low current  
–15  
Note:  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
Table 33. MII Management DC Electrical Characteristics Powered at 3.3 V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
LVDD  
VOH  
VOL  
VIH  
VIL  
2.97  
2.10  
GND  
2.00  
3.63  
LVDD + 0.3  
0.50  
V
V
IOH = –1.0 mA  
LVDD = Min  
LVDD = Min  
IOL = 1.0 mA  
V
V
0.80  
V
IIH  
LVDD = Max  
LVDD = Max  
VIN1 = 2.1 V  
VIN = 0.5 V  
40  
μA  
μA  
IIL  
–600  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
8.3.2  
MII Management AC Electrical Specifications  
Table 34 provides the MII management AC timing specifications.  
Table 34. MII Management AC Timing Specifications  
At recommended operating conditions with LVDD is 3.3 V 10% or 2.5 V 5%.  
Parameter/Condition  
MDC frequency  
Symbol1  
Min  
Typ  
Max  
Unit  
Notes  
fMDC  
tMDC  
32  
10  
5
2.5  
400  
70  
10  
MHz  
ns  
2
MDC period  
3
MDC clock pulse width high  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
tMDCH  
ns  
tMDKHDX  
tMDDVKH  
tMDDXKH  
tMDCR  
ns  
ns  
0
ns  
ns  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
33  
Ethernet: Three-Speed Ethernet, MII Management  
Table 34. MII Management AC Timing Specifications (continued)  
At recommended operating conditions with LVDD is 3.3 V 10% or 2.5 V 5%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
Notes  
MDC fall time  
Notes:  
tMDHF  
10  
ns  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes management data  
timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also,  
tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V)  
relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention  
is used with the appropriate letter: R (rise) or F (fall).  
2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz  
and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum  
frequency is 1.7 MHz).  
3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a csb_clk of  
333 MHz, the delay is 58 ns).  
Figure 17 shows the MII management AC timing diagram.  
tMDCR  
tMDC  
MDC  
tMDCF  
tMDCH  
MDIO  
(Input)  
tMDDVKH  
tMDDXKH  
MDIO  
(Output)  
tMDKHDX  
Figure 17. MII Management Interface Timing Diagram  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
34  
USB  
9 USB  
This section provides the AC and DC electrical specifications for the USB interface of the MPC8347EA.  
9.1  
USB DC Electrical Characteristics  
Table 35 provides the DC electrical characteristics for the USB interface.  
Table 35. USB DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
0.8  
5
IIN  
μA  
V
High-level output voltage, IOH = –100 μA  
Low-level output voltage, IOL = 100 μA  
VOH  
VOL  
OVDD – 0.2  
0.2  
V
9.2  
USB AC Electrical Specifications  
Table 36 describes the general timing parameters of the USB interface of the MPC8347EA.  
Table 36. USB General Timing Parameters (ULPI Mode Only)  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
USB clock cycle time  
tUSCK  
tUSIVKH  
tUSIXKH  
tUSKHOV  
tUSKHOX  
15  
4
7
ns  
ns  
ns  
ns  
ns  
2–5  
2–5  
2–5  
2–5  
2–5  
Input setup to USB clock—all inputs  
Input hold to USB clock—all inputs  
USB clock to output valid—all outputs  
Output hold from USB clock—all outputs  
Notes:  
1
2
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes USB timing (US) for  
the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, tUSKHOX symbolizes  
USB timing (US) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold  
time.  
2. All timings are in reference to USB clock.  
3. All signals are measured from OVDD/2 of the rising edge of the USB clock to 0.4 × OVDD of the signal in question for 3.3 V  
signaling levels.  
4. Input timings are measured at the pin.  
5. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the  
component pin is less than or equal to that of the leakage current specification.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
35  
Local Bus  
Figure 18 and Figure 19 provide the AC test load and signals for the USB, respectively.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 18. USB AC Test Load  
USB0_CLK/USB1_CLK/DR_CLK  
Input Signals  
tUSIXKH  
tUSIVKH  
tUSKHOX  
tUSKHOV  
Output Signals:  
Figure 19. USB Signals  
10 Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface of the  
MPC8347EA.  
10.1 Local Bus DC Electrical Characteristics  
Table 37 provides the DC electrical characteristics for the local bus interface.  
Table 37. Local Bus DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
0.8  
5
IIN  
μA  
V
High-level output voltage, IOH = –100 μA  
Low-level output voltage, IOL = 100 μA  
VOH  
VOL  
OVDD – 0.2  
0.2  
V
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
36  
Local Bus  
10.2 Local Bus AC Electrical Specification  
Table 38 and Table 39 describe the general timing parameters of the local bus interface of the  
MPC8347EA.  
Table 38. Local Bus General Timing Parameters—DLL On  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
tLBK  
7.5  
1.5  
2.2  
1.0  
1.0  
1.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
3, 4  
3, 4  
5
Input setup to local bus clock (except LUPWAIT)  
LUPWAIT input setup to local bus clock  
tLBIVKH1  
tLBIVKH2  
tLBIXKH1  
tLBIXKH2  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
tLBKHLR  
tLBKHOV1  
tLBKHOV2  
tLBKHOV3  
tLBKHOX1  
tLBKHOX2  
tLBKHOZ  
Input hold from local bus clock (except LUPWAIT)  
LUPWAIT Input hold from local bus clock  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock to LALE rise  
6
2.5  
1
7
4.5  
4.5  
4.5  
4.5  
3
Local bus clock to output valid (except LAD/LDP and LALE)  
Local bus clock to data valid for LAD/LDP  
Local bus clock to address valid for LAD  
3
Output hold from local bus clock (except LAD/LDP and LALE)  
Output hold from local bus clock for LAD/LDP  
Local bus clock to output high impedance for LAD/LDP  
Notes:  
3
1
3
3.8  
8
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus timing (LB)  
for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for clock one  
(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect to the output  
(O) going invalid (X) or output hold time.  
2. All timings are in reference to the rising edge of LSYNC_IN.  
3. All signals are measured from OVDD/2 of the rising edge of LSYNC_IN to 0.4 × OVDD of the signal in question for 3.3 V  
signaling levels.  
4. Input timings are measured at the pin.  
5. tLBOTOT1 should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than  
the load on the LAD output pins.  
6. tLBOTOT2 should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the  
load on the LAD output pins.  
7. tLBOTOT3 should be used when RCWH[LALE] is set and when the load on the LALE output pin equals the load on the LAD  
output pins.  
8. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the  
component pin is less than or equal to that of the leakage current specification.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
37  
Local Bus  
9
Table 39. Local Bus General Timing Parameters—DLL Bypass  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
tLBK  
15  
7
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
5
Input setup to local bus clock  
tLBIVKH  
tLBIXKH  
Input hold from local bus clock  
1.0  
1.5  
3
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock to output valid  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
tLBKLOV  
tLBKHOZ  
6
2.5  
7
3
Local bus clock to output high impedance for LAD/LDP  
4
8
Notes:  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus timing (LB)  
for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for clock one  
(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect to the output  
(O) going invalid (X) or output hold time.  
2. All timings are in reference to the falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or the rising edge  
of LCLK0 (for all other inputs).  
3. All signals are measured from OVDD/2 of the rising/falling edge of LCLK0 to 0.4 × OVDD of the signal in question for 3.3 V  
signaling levels.  
4. Input timings are measured at the pin.  
5. tLBOTOT1 should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the  
load on the LAD output pins.  
6. tLBOTOT2 should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than  
the load on the LAD output pins.the  
7. tLBOTOT3 should be used when RCWH[LALE] is not set and when the load on the LALE output pin equals to the load on the  
LAD output pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.  
Figure 20 provides the AC test load for the local bus.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 20. Local Bus C Test Load  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
38  
Local Bus  
Figure 21 through Figure 26 show the local bus signals.  
LSYNC_IN  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBIXKH  
Output Signals:  
tLBKHOV  
tLBKHOV  
tLBKHOV  
tLBKHLR  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
LA[27:31]/LBCTL/LBCKE/LOE  
tLBKHOZ  
tLBKHOX  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOX  
Output (Address) Signal:  
LAD[0:31]  
tLBOTOT  
LALE  
Figure 21. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)  
LCLK[n]  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBIXKH  
tLBIVKH  
Input Signal:  
LGTA  
tLBKLOV  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
LA[27:31]/LBCTL/LBCKE/LOE  
Output Signals:  
tLBKHOZ  
tLBKLOV  
LAD[0:31]/LDP[0:3]  
tLBKLOV  
tLBOTOT  
LALE  
Figure 22. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
39  
Local Bus  
LSYNC_IN  
T1  
T3  
tLBKHOZ1  
tLBKHOV1  
GPCM Mode Output Signals:  
LCS[0:7]/LWE  
tLBIXKH2  
tLBIVKH2  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH1  
tLBIVKH1  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ1  
tLBKHOV1  
UPM Mode Output Signals:  
LCS[0:7]/LBS[0:3]/LGPL[0:5]  
Figure 23. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)  
LCLK  
T1  
T3  
tLBKHOZ  
tLBKLOV  
GPCM Mode Output Signals:  
LCS[0:7]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
(DLL Bypass Mode)  
tLBKHOZ  
tLBKLOV  
UPM Mode Output Signals:  
LCS[0:7]/LBS[0:3]/LGPL[0:5]  
Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
40  
Freescale Semiconductor  
Local Bus  
LCLK  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKLOV  
GPCM Mode Output Signals:  
LCS[0:7]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
(DLL Bypass Mode)  
tLBKHOZ  
tLBKLOV  
UPM Mode Output Signals:  
LCS[0:7]/LBS[0:3]/LGPL[0:5]  
Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
41  
JTAG  
LSYNC_IN  
T1  
T2  
T3  
T4  
tLBKHOZ1  
tLBKHOV1  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH2  
tLBIVKH2  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH1  
tLBIVKH1  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ1  
tLBKHOV1  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 26. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Enabled)  
11 JTAG  
This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface  
of the MPC8347EA.  
11.1 JTAG DC Electrical Characteristics  
Table 40 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the  
MPC8347EA.  
Table 40. JTAG Interface DC Electrical Characteristics  
Parameter  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
OVDD – 0.3 OVDD + 0.3  
V
V
–0.3  
0.8  
5
IIN  
μA  
V
Output high voltage  
VOH  
IOH = –8.0 mA  
2.4  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
42  
JTAG  
Table 40. JTAG Interface DC Electrical Characteristics (continued)  
Parameter  
Symbol  
Condition  
Min  
Max  
Unit  
Output low voltage  
Output low voltage  
VOL  
IOL = 8.0 mA  
IOL = 3.2 mA  
0.5  
0.4  
V
V
V
OL  
11.2 JTAG AC Timing Specifications  
This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the  
MPC8347EA. Table 41 provides the JTAG AC timing specifications as defined in Figure 28 through  
Figure 31.  
1
Table 41. JTAG AC Timing Specifications (Independent of CLKIN)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol2  
Min  
Max  
Unit  
Notes  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
fJTG  
t JTG  
0
33.3  
2
MHz  
ns  
3
30  
15  
0
tJTKHKL  
tJTGR, tJTGF  
tTRST  
ns  
ns  
25  
ns  
Input setup times:  
ns  
Boundary-scan data  
tJTDVKH  
tJTIVKH  
4
4
4
4
5
5
TMS, TDI  
Input hold times:  
Valid times:  
ns  
ns  
ns  
Boundary-scan data  
TMS, TDI  
tJTDXKH  
tJTIXKH  
10  
10  
Boundary-scan data  
TDO  
tJTKLDV  
tJTKLOV  
2
2
11  
11  
Output hold times:  
Boundary-scan data  
TDO  
tJTKLDX  
tJTKLOX  
2
2
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
43  
JTAG  
1
Table 41. JTAG AC Timing Specifications (Independent of CLKIN) (continued)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol2  
Min  
Max  
Unit  
Notes  
JTAG external clock to output high impedance:  
ns  
Boundary-scan data  
TDO  
tJTKLDZ  
tJTKLOZ  
2
2
19  
9
5, 6  
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.  
The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 18).  
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device timing  
(JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K) going  
to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals (D)  
went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. In general, the clock reference symbol is  
based on three letters representing the clock of a particular function. For rise and fall times, the latter convention is used with  
the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to tTCLK  
.
5. Non-JTAG signal output timing with respect to tTCLK  
.
6. Guaranteed by design and characterization.  
Figure 27 provides the AC test load for TDO and the boundary-scan outputs of the MPC8347EA.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 27. AC Test Load for the JTAG Interface  
Figure 28 provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
VM  
VM  
tJTKHKL  
tJTGR  
tJTG  
VM = Midpoint Voltage (OV /2)  
tJTGF  
DD  
Figure 28. JTAG Clock Input Timing Diagram  
Figure 29 provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 29. TRST Timing Diagram  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
44  
JTAG  
Figure 30 provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Boundary  
Output Data Valid  
Data Outputs  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 30. Boundary-Scan Timing Diagram  
Figure 31 provides the test access port timing diagram.  
JTAG  
External Clock  
VM  
VM  
tJTIVKH  
tJTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
tJTKLOV  
tJTKLOX  
Output Data Valid  
tJTKLOZ  
Output Data Valid  
TDO  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 31. Test Access Port Timing Diagram  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
45  
I2C  
12 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface of the MPC8347EA.  
2
12.1 I C DC Electrical Characteristics  
2
Table 42 provides the DC electrical characteristics for the I C interface of the MPC8347EA.  
2
Table 42. I C DC Electrical Characteristics  
At recommended operating conditions with OVDD of 3.3 V 10%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Input high voltage level  
Input low voltage level  
Low level output voltage  
VIH  
VIL  
0.7 × OVDD  
OVDD + 0.3  
0.3 × OVDD  
0.2 × OVDD  
250  
V
V
1
–0.3  
0
VOL  
V
Output fall time from VIH(min) to VIL(max) with a bus  
capacitance from 10 to 400 pF  
tI2KLKV  
20 + 0.1 × CB  
ns  
2
Pulse width of spikes which must be suppressed by the  
input filter  
tI2KHKL  
0
50  
10  
10  
ns  
μA  
pF  
3
4
Input current each I/O pin (input voltage is between  
0.1 × OVDD and 0.9 × OVDD(max)  
II  
–10  
Capacitance for each I/O pin  
CI  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. CB = capacitance of one bus line in pF.  
3. Refer to the MPC8349EA Integrated Host Processor Family Reference Manual, for information on the digital filter used.  
4. I/O pins obstruct the SDA and SCL lines if OVDD is switched off.  
2
12.2 I C AC Electrical Specifications  
2
Table 43 provides the AC timing parameters for the I C interface of the MPC8347EA. Note that all values  
refer to V (min) and V (max) levels (see Table 42).  
IH  
IL  
2
Table 43. I C AC Electrical Specifications  
Parameter  
Symbol1  
Min  
Max  
Unit  
SCL clock frequency  
fI2C  
tI2CL  
0
400  
kHz  
μs  
Low period of the SCL clock  
1.3  
0.6  
0.6  
0.6  
High period of the SCL clock  
tI2CH  
μs  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
μs  
Hold time (repeated) START condition (after this period, the first clock  
pulse is generated)  
μs  
Data setup time  
tI2DVKH  
tI2DXKL  
100  
ns  
Data hold time:CBUS compatible masters  
I2C bus devices  
02  
μs  
0.93  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
46  
I2C  
2
Table 43. I C AC Electrical Specifications (continued)  
Parameter  
Symbol1  
Min  
Max  
Unit  
__  
Fall time of both SDA and SCL signals5  
Setup time for STOP condition  
tI2CF  
tI2PVKH  
tI2KHDX  
VNL  
300  
ns  
μs  
μs  
V
0.6  
1.3  
Bus free time between a STOP and START condition  
Noise margin at the LOW level for each connected device (including  
hysteresis)  
0.1 × OVDD  
Noise margin at the HIGH level for each connected device (including  
hysteresis)  
VNH  
0.2 × OVDD  
V
Notes:  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing (I2) with  
respect to the time data input signals (D) reach the valid state (V) relative to the tI2C clock reference (K) going to the high (H)  
state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the start condition (S)  
goes invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH symbolizes I2C  
timing (I2) for the time that the data with respect to the stop condition (P) reaches the valid state (V) relative to the tI2C clock  
reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate  
letter: R (rise) or F (fall).  
2. The device provides a hold time of at least 300 ns for the SDA signal (referred to the VIH(min) of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
3. The maximum tI2DVKH must be met only if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
4. CB = capacitance of one bus line in pF.  
5.)The device does not follow the “I2C-BUS Specifications” version 2.1 regarding the tI2CF AC parameter.  
2
Figure 32 provides the AC test load for the I C.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
2
Figure 32. I C AC Test Load  
2
Figure 33 shows the AC timing diagram for the I C bus.  
SDA  
tI2CF  
tI2CL  
tI2DVKH  
tI2KHKL  
tI2CF  
tI2SXKL  
tI2CR  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL  
S
Sr  
Figure 33. I C Bus AC Timing Diagram  
P
S
2
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
47  
PCI  
13 PCI  
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8347EA.  
13.1 PCI DC Electrical Characteristics  
Table 44 provides the DC electrical characteristics for the PCI interface of the MPC8347EA.  
Table 44. PCI DC Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
VOUT VOH (min) or  
VOUT VOL (max)  
2
–0.3  
OVDD + 0.3  
V
V
0.8  
5
IIN  
VIN1= 0 V or VIN = OVDD  
μA  
V
High-level output voltage  
VOH  
OVDD = min,  
OVDD – 0.2  
IOH = –100 μA  
Low-level output voltage  
VOL  
OVDD = min,  
0.2  
V
IOL = 100 μA  
Note:  
1. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 1.  
13.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus of the MPC8347EA. Note that the  
PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is  
configured as a host or agent device. Table 45 provides the PCI AC timing specifications at 66 MHz.  
1
Table 45. PCI AC Timing Specifications at 66 MHz  
Parameter  
Symbol2  
Min  
Max  
Unit  
Notes  
Clock to output valid  
t
1
6.0  
ns  
ns  
ns  
ns  
3
PCKHOV  
Output hold from clock  
Clock to output high impedance  
Input setup to clock  
tPCKHOX  
tPCKHOZ  
tPCIVKH  
3
3.0  
14  
3, 4  
3, 5  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
48  
PCI  
1
Table 45. PCI AC Timing Specifications at 66 MHz (continued)  
Parameter  
Symbol2  
Min  
Max  
Unit  
Notes  
3, 5  
Input hold from clock  
tPCIXKH  
0
ns  
Notes:  
1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a  
description of M66EN.  
2. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing (PC) with  
respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference (K) going  
to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset (R) went  
high (H) relative to the frame signal (F) going to the valid (V) state.  
3. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the  
component pin is less than or equal to the leakage current specification.  
5. Input timings are measured at the pin.  
Table 46 provides the PCI AC timing specifications at 33 MHz.  
Table 46. PCI AC Timing Specifications at 33 MHz  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Clock to output valid  
t
2
11  
14  
ns  
ns  
ns  
ns  
ns  
2
PCKHOV  
Output hold from clock  
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Notes:  
tPCKHOX  
tPCKHOZ  
tPCIVKH  
tPCIXKH  
2
3.0  
0
2, 3  
2, 4  
2, 4  
1. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing (PC) with  
respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference (K) going  
to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset (R) went  
high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the  
component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
Figure 34 provides the AC test load for PCI.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 34. PCI AC Test Load  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
49  
Timers  
Figure 35 shows the PCI input AC timing diagram.  
CLK  
tPCIVKH  
tPCIXKH  
Input  
Figure 35. PCI Input AC Timing Diagram  
Figure 36 shows the PCI output AC timing diagram.  
CLK  
tPCKHOV  
tPCKHOX  
Output Delay  
tPCKHOZ  
High-Impedance  
Output  
Figure 36. PCI Output AC Timing Diagram  
14 Timers  
This section describes the DC and AC electrical specifications for the timers.  
14.1 Timer DC Electrical Characteristics  
Table 47 provides the DC electrical characteristics for the MPC8347EA timer pins, including TIN, TOUT,  
TGATE, and RTC_CLK.  
Table 47. Timer DC Electrical Characteristics  
Parameter  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
5
IIN  
μA  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
IOL = 3.2 mA  
2.4  
0.5  
0.4  
V
V
V
OL  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
50  
GPIO  
14.2 Timer AC Timing Specifications  
Table 48 provides the timer input and output AC timing specifications.  
1
Table 48. Timers Input AC Timing Specifications  
Parameter  
Symbol2  
Min  
Unit  
ns  
Timers inputs—minimum pulse width  
Notes:  
tTIWID  
20  
1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN.  
Timings are measured at the pin.  
2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external  
synchronous logic. Timer inputs are required to be valid for at least tTIWID ns to ensure proper operation.  
15 GPIO  
This section describes the DC and AC electrical specifications for the GPIO.  
15.1 GPIO DC Electrical Characteristics  
Table 49 provides the DC electrical characteristics for the MPC8347EA GPIO.  
Table 49. GPIO DC Electrical Characteristics  
PArameter  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
2.0  
–0.3  
OVDD + 0.3  
V
V
0.8  
5
IIN  
μA  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
IOL = 3.2 mA  
2.4  
0.5  
0.4  
V
V
V
OL  
15.2 GPIO AC Timing Specifications  
Table 50 provides the GPIO input and output AC timing specifications.  
1
Table 50. GPIO Input AC Timing Specifications  
Parameter  
Symbol2  
Min  
Unit  
GPIO inputs—minimum pulse width  
tPIWID  
20  
ns  
Notes:  
1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN.  
Timings are measured at the pin.  
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external  
synchronous logic. GPIO inputs must be valid for at least tPIWID ns to ensure proper operation.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
51  
IPIC  
16 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins.  
16.1 IPIC DC Electrical Characteristics  
Table 51 provides the DC electrical characteristics for the external interrupt pins.  
1
Table 51. IPIC DC Electrical Characteristics  
Parameter  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
Notes  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
V
V
2
Input low voltage  
Input current  
0.8  
5
μA  
V
Output low voltage  
Output low voltage  
Notes:  
VOL  
IOL = 8.0 mA  
IOL = 3.2 mA  
0.5  
0.4  
V
V
2
OL  
1. This table applies for pins IRQ[0:7], IRQ_OUT, and MCP_OUT.  
2. IRQ_OUT and MCP_OUT are open-drain pins; thus VOH is not relevant for those pins.  
16.2 IPIC AC Timing Specifications  
Table 52 provides the IPIC input and output AC timing specifications.  
1
Table 52. IPIC Input AC Timing Specifications  
Parameter  
Symbol2  
Min  
20  
Unit  
IPIC inputs—minimum pulse width  
tPICWID  
ns  
Notes:  
1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.  
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external  
synchronous logic. IPIC inputs must be valid for at least tPICWID ns to ensure proper operation in edge triggered mode.  
17 SPI  
This section describes the SPI DC and AC electrical specifications.  
17.1 SPI DC Electrical Characteristics  
Table 53 provides the SPI DC electrical characteristics.  
Table 53. SPI DC Electrical Characteristics  
Parameter  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
VIH  
VIL  
2.0  
OVDD + 0.3  
0.8  
V
V
–0.3  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
52  
SPI  
Table 53. SPI DC Electrical Characteristics (continued)  
Parameter  
Symbol  
Condition  
Min  
Max  
Unit  
Input current  
IIN  
2.4  
5
μA  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
IOL = 3.2 mA  
0.5  
0.4  
V
V
V
OL  
17.2 SPI AC Timing Specifications  
Table 54 provides the SPI input and output AC timing specifications.  
1
Table 54. SPI AC Timing Specifications  
Parameter  
Symbol2  
Min  
Max  
Unit  
SPI outputs valid—Master mode (internal clock) delay  
SPI outputs hold—Master mode (internal clock) delay  
SPI outputs valid—Slave mode (external clock) delay  
SPI outputs hold—Slave mode (external clock) delay  
SPI inputs—Master mode (internal clock input setup time  
SPI inputs—Master mode (internal clock input hold time  
SPI inputs—Slave mode (external clock) input setup time  
SPI inputs—Slave mode (external clock) input hold time  
Notes:  
tNIKHOV  
tNIKHOX  
tNEKHOV  
tNEKHOX  
tNIIVKH  
0.5  
2
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
4
tNIIXKH  
0
tNEIVKH  
tNEIXKH  
4
2
1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal.  
Timings are measured at the pin.  
2. The symbols for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOX symbolizes the internal timing  
(NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).  
Figure 37 provides the AC test load for the SPI.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 37. SPI AC Test Load  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
53  
Package and Pin Listings  
Figure 38 and Figure 39 represent the AC timings from Table 54. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
Figure 38 shows the SPI timings in slave mode (external clock).  
SPICLK (Input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOX  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 38. SPI AC Timing in Slave Mode (External Clock) Diagram  
Figure 39 shows the SPI timings in master mode (internal clock).  
SPICLK (Output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOX  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 39. SPI AC Timing in Master Mode (Internal Clock) Diagram  
18 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8347EA is available  
in two packages—a tape ball grid array (TBGA) and a plastic ball grid array (PBGA). See Section 18.1,  
“Package Parameters for the MPC8347EA TBGA,” Section 18.2, “Mechanical Dimensions for the  
MPC8347EA TBGA,” Section 18.3, “Package Parameters for the MPC8347EA PBGA,” and  
Section 18.4, “Mechanical Dimensions for the MPC8347EA PBGA.”  
18.1 Package Parameters for the MPC8347EA TBGA  
The package parameters are provided in the following list. The package type is 35 mm × 35 mm, 672 tape  
ball grid array (TBGA).  
Package outline  
Interconnects  
35 mm × 35 mm  
672  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
54  
Package and Pin Listings  
Pitch  
1.00 mm  
1.46 mm  
Module height (typical)  
Solder balls  
62 Sn/36 Pb/2 Ag (ZU package)  
96.5 Sn/3.5Ag (VV package)  
Ball diameter (typical)  
0.64 mm  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
55  
Package and Pin Listings  
18.2 Mechanical Dimensions for the MPC8347EA TBGA  
Figure 40 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347EA,  
672-TBGA package.  
Notes:  
1. All dimensions are in millimeters.  
2. Dimensions and tolerances per ASME Y14.5M-1994.  
3. Maximum solder ball diameter measured parallel to datum A.  
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
5. Parallelism measurement must exclude any effect of mark on top surface of package.  
Figure 40. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347EA TBGA  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
56  
Freescale Semiconductor  
Package and Pin Listings  
18.3 Package Parameters for the MPC8347EA PBGA  
The package parameters are as provided in the following list. The package type is 29 mm × 29 mm,  
620 plastic ball grid array (PBGA).  
Package outline  
29 mm × 29 mm  
620  
Interconnects  
Pitch  
1.00 mm  
2.46 mm  
2.23 mm  
2.00 mm  
Module height (maximum)  
Module height (typical)  
Module height (minimum)  
Solder balls  
62 Sn/36 Pb/2 Ag (ZQ package)  
96.5 Sn/3.5Ag (VR package)  
Ball diameter (typical)  
0.60 mm  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
57  
Package and Pin Listings  
18.4 Mechanical Dimensions for the MPC8347EA PBGA  
Figure 41 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347EA,  
620-PBGA package.  
Notes:  
1. All dimensions are in millimeters.  
2. Dimensioning and tolerancing per ASME Y14. 5M-1994.  
3. Maximum solder ball diameter measured parallel to datum A.  
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
Figure 41. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347EA PBGA  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
58  
Freescale Semiconductor  
Package and Pin Listings  
18.5 Pinout Listings  
Table 55 provides the pinout listing for the MPC8347EA, 672 TBGA package.  
Table 55. MPC8347EA (TBGA) Pinout Listing  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
PCI  
B34  
C33  
PCI_INTA/IRQ_OUT  
O
O
OVDD  
OVDD  
OVDD  
2
PCI_RESET_OUT  
PCI_AD[31:0]  
G30, G32, G34, H31, H32, H33, H34,  
J29, J32, J33, L30, K31, K33, K34,  
L33, L34, P34, R29, R30, R33, R34,  
T31, T32, T33, U31, U34, V31, V32,  
V33, V34, W33, W34  
I/O  
PCI_C/BE[3:0]  
PCI_PAR  
J30, M31, P33, T34  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
5
P32  
PCI_FRAME  
M32  
PCI_TRDY  
N29  
5
PCI_IRDY  
M34  
5
PCI_STOP  
N31  
5
PCI_DEVSEL  
PCI_IDSEL  
N30  
5
J31  
5
PCI_SERR  
N34  
I/O  
I/O  
I/O  
I
PCI_PERR  
N33  
5
PCI_REQ[0]  
D32  
PCI_REQ[1]/CPCI1_HS_ES  
PCI_REQ[2:4]  
PCI_GNT0  
D34  
E34, F32, G29  
I
C34  
I/O  
O
PCI_GNT1/CPCI1_HS_LED  
PCI_GNT2/CPCI1_HS_ENUM  
PCI_GNT[3:4]  
M66EN  
D33  
E33  
O
F31, F33  
A19  
O
I
DDR SDRAM Memory Interface  
MDQ[0:63]  
D5, A3, C3, D3, C4, B3, C2, D4, D2,  
E5, G2, H6, E4, F3, G4, G3, H1, J2,  
L6, M6, H2, K6, L2, M4, N2, P4, R2,  
T4, P6, P3, R1, T2, AB5, AA3, AD6,  
AE4, AB4, AC2, AD3, AE6, AE3, AG4,  
AK5, AK4, AE2, AG6, AK3, AK2, AL2,  
AL1, AM5, AP5, AM2, AN1, AP4, AN5,  
AJ7, AN7, AM8, AJ9, AP6, AL7, AL9,  
AN8  
I/O  
GVDD  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
59  
Package and Pin Listings  
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
MECC[0:4]/MSRCID[0:4]  
MECC[5]/MDVAL  
MECC[6:7]  
W4, W3, Y3, AA6, T1  
I/O  
I/O  
I/O  
O
GVDD  
GVDD  
GVDD  
GVDD  
U1  
Y1, Y6  
MDM[0:8]  
B1, F1, K1, R4, AD4, AJ1, AP3, AP7,  
Y4  
MDQS[0:8]  
B2, F5, J1, P2, AC1, AJ2, AN4, AL8,  
W2  
I/O  
GVDD  
MBA[0:1]  
MA[0:14]  
AD1, AA5  
O
O
GVDD  
GVDD  
W1, U4, T3, R3, P1, M1, N1, L3, L1,  
K2, Y2, K3, J3, AP2, AN6  
MWE  
AF1  
O
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
3
MRAS  
AF4  
MCAS  
AG3  
AG2, AG1, AK1, AL4  
H3, G1  
O
MCS[0:3]  
MCKE[0:1]  
MCK[0:5]  
MCK[0:5]  
MODT[0:3]  
MBA[2]  
O
O
U2, F4, AM3, V3, F2, AN3  
U3, E3, AN2, V4, E1, AM4  
AH3, AJ5, AH1, AJ4  
H4  
O
10  
10  
O
O
O
MDIC0  
AB1  
I/O  
I/O  
MDIC1  
AA1  
Local Bus Controller Interface  
LAD[0:31]  
AM13, AP13, AL14, AM14, AN14,  
AP14, AK15, AJ15, AM15, AN15,  
AP15, AM16, AL16, AN16, AP16,  
AL17, AM17, AP17, AK17, AP18,  
AL18, AM18, AN18, AP19, AN19,  
AM19, AP20, AK19, AN20, AL20,  
AP21, AN21  
I/O  
OVDD  
LDP[0]/CKSTOP_OUT  
LDP[1]/CKSTOP_IN  
LDP[2]/LCS[4]  
AM21  
I/O  
I/O  
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
AP22  
AN22  
LDP[3]/LCS[5]  
AM22  
LA[27:31]  
AK21, AP23, AN23, AP24, AK22  
AN24, AL23, AP25, AN25  
AK23, AP26, AL24, AM25  
AN26  
LCS[0:3]  
O
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]  
LBCTL  
O
O
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
60  
Package and Pin Listings  
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
LALE  
AK24  
O
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
13  
LGPL0/LSDA10/cfg_reset_source0  
LGPL1/LSDWE/cfg_reset_source1  
LGPL2/LSDRAS/LOE  
LGPL3/LSDCAS/cfg_reset_source2  
LGPL4/LGTA/LUPWAIT/LPBSE  
LGPL5/cfg_clkin_div  
LCKE  
AP27  
AL25  
AJ24  
AN27  
I/O  
I/O  
I/O  
O
AP28  
AL26  
AM27  
LCLK[0:2]  
AN28, AK26, AP29  
O
LSYNC_OUT  
AM12  
O
LSYNC_IN  
AJ10  
General Purpose I/O Timers  
F24  
I
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/  
GTM2_TIN2  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[1]/DMA_DACK0/GTM1_TGATE1/  
GTM2_TGATE2  
E24  
GPIO1[2]/DMA_DDONE0/GTM1_TOUT1  
B25  
D24  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/  
GTM2_TIN1  
GPIO1[4]/DMA_DACK1/GTM1_TGATE2/  
GTM2_TGATE1  
A25  
B24  
A24  
D23  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
GPIO1[5]/DMA_DDONE1/GTM1_TOUT2/  
GTM2_TOUT1  
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/  
GTM2_TIN4  
GPIO1[7]/DMA_DACK2/GTM1_TGATE3/  
GTM2_TGATE4  
GPIO1[8]/DMA_DDONE2/GTM1_TOUT3  
B23  
A23  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/  
GTM2_TIN3  
GPIO1[10]/DMA_DACK3/GTM1_TGATE4/  
GTM2_TGATE3  
F22  
E22  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[11]/DMA_DDONE3/GTM1_TOUT4/  
GTM2_TOUT3  
USB Port 1  
A26  
MPH1_D0_ENABLEN/DR_D0_ENABLEN  
MPH1_D1_SER_TXD/DR_D1_SER_TXD  
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
B26  
D25  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
61  
Package and Pin Listings  
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
MPH1_D3_SPEED/DR_D3_SPEED  
MPH1_D4_DP/DR_D4_DP  
A27  
B27  
C27  
D26  
E26  
D27  
A28  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
MPH1_D5_DM/DR_D5_DM  
MPH1_D6_SER_RCV/DR_D6_SER_RCV  
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS  
MPH1_NXT/DR_SESS_VLD_NXT  
MPH1_DIR_DPPULLUP/  
I/O  
DR_XCVR_SEL_DPPULLUP  
MPH1_STP_SUSPEND/  
DR_STP_SUSPEND  
F26  
E27  
O
I
OVDD  
OVDD  
MPH1_PWRFAULT/  
DR_RX_ERROR_PWRFAULT  
MPH1_PCTL0/DR_TX_VALID_PCTL0  
MPH1_PCTL1/DR_TX_VALIDH_PCTL1  
MPH1_CLK/DR_CLK  
A29  
O
O
I
OVDD  
OVDD  
OVDD  
D28  
B29  
USB Port 0  
MPH0_D0_ENABLEN/DR_D8_CHGVBUS  
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS  
MPH0_D2_VMO_SE0/DR_D10_DPPD  
MPH0_D3_SPEED/DR_D11_DMMD  
MPH0_D4_DP/DR_D12_VBUS_VLD  
MPH0_D5_DM/DR_D13_SESS_END  
MPH0_D6_SER_RCV/DR_D14  
C29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
A30  
E28  
B30  
C30  
A31  
B31  
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP  
MPH0_NXT/DR_RX_ACTIVE_ID  
C31  
B32  
MPH0_DIR_DPPULLUP/DR_RESET  
MPH0_STP_SUSPEND/DR_TX_READY  
MPH0_PWRFAULT/DR_RX_VALIDH  
MPH0_PCTL0/DR_LINE_STATE0  
MPH0_PCTL1/DR_LINE_STATE1  
MPH0_CLK/DR_RX_VALID  
A32  
I/O  
I/O  
I
A33  
C32  
D31  
I/O  
I/O  
I
E30  
B33  
Programmable Interrupt Controller  
MCP_OUT  
AN33  
C19  
O
OVDD  
OVDD  
OVDD  
2
IRQ0/MCP_IN/GPIO2[12]  
IRQ[1:5]/GPIO2[13:17]  
I/O  
I/O  
C22, A22, D21, C21, B21  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
62  
Package and Pin Listings  
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
IRQ[6]/GPIO2[18]/CKSTOP_OUT  
IRQ[7]/GPIO2[19]/CKSTOP_IN  
A21  
I/O  
I/O  
OVDD  
OVDD  
C20  
Ethernet Management Interface  
EC_MDC  
EC_MDIO  
A7  
O
LVDD1  
LVDD1  
E9  
I/O  
12  
Gigabit Reference Clock  
EC_GTX_CLK125  
C8  
I
LVDD1  
Three-Speed Ethernet Controller (Gigabit Ethernet 1)  
TSEC1_COL/GPIO2[20]  
TSEC1_CRS/GPIO2[21]  
TSEC1_GTX_CLK  
A17  
I/O  
I/O  
O
OVDD  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
OVDD  
OVDD  
LVDD1  
OVDD  
OVDD  
LVDD1  
LVDD1  
OVDD  
3
F12  
D10  
TSEC1_RX_CLK  
A11  
I
11  
TSEC1_RX_DV  
B11  
I
TSEC1_RX_ER/GPIO2[26]  
TSEC1_RXD[7:4]/GPIO2[22:25]  
TSEC1_RXD[3:0]  
B17  
I/O  
I/O  
I
B16, D16, E16, F16  
E10, A8, F10, B8  
TSEC1_TX_CLK  
D17  
I
TSEC1_TXD[7:4]/GPIO2[27:30]  
TSEC1_TXD[3:0]  
A15, B15, A14, B14  
I/O  
O
A10, E11, B10, A9  
TSEC1_TX_EN  
B9  
O
TSEC1_TX_ER/GPIO2[31]  
A16  
I/O  
Three-Speed Ethernet Controller (Gigabit Ethernet 2)  
TSEC2_COL/GPIO1[21]  
TSEC2_CRS/GPIO1[22]  
TSEC2_GTX_CLK  
C14  
I/O  
I/O  
O
OVDD  
LVDD2  
LVDD2  
LVDD2  
LVDD2  
OVDD  
LVDD2  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
D6  
A4  
TSEC2_RX_CLK  
B4  
I
TSEC2_RX_DV/GPIO1[23]  
TSEC2_RXD[7:4]/GPIO1[26:29]  
TSEC2_RXD[3:0]/GPIO1[13:16]  
TSEC2_RX_ER/GPIO1[25]  
TSEC2_TXD[7]/GPIO1[31]  
E6  
A13, B13, C13, A12  
D7, A6, E8, B7  
D14  
I/O  
I/O  
I/O  
I/O  
I/O  
O
B12  
TSEC2_TXD[6]/DR_XCVR_TERM_SEL  
TSEC2_TXD[5]/DR_UTMI_OPMODE1  
TSEC2_TXD[4]/DR_UTMI_OPMODE0  
C12  
D12  
E12  
O
O
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
63  
Package and Pin Listings  
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
TSEC2_TXD[3:0]/GPIO1[17:20]  
TSEC2_TX_ER/GPIO1[24]  
TSEC2_TX_EN/GPIO1[12]  
TSEC2_TX_CLK/GPIO1[30]  
B5, A5, F8, B6  
F14  
I/O  
I/O  
I/O  
I/O  
LVDD2  
OVDD  
LVDD2  
OVDD  
3
C5  
E14  
DUART  
AK27, AN29  
AL28, AM29  
AP30  
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1]  
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3]  
UART_CTS[1]/MSRCID4/LSRCID4  
UART_CTS[2]/MDVAL/ LDVAL  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
I/O  
I/O  
I/O  
O
AN30  
UART_RTS[1:2]  
AP31, AM30  
I2C interface  
AK29  
IIC1_SDA  
IIC1_SCL  
IIC2_SDA  
IIC2_SCL  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
2
2
2
2
AP32  
AN31  
AM31  
SPI  
SPIMOSI/LCS[6]  
SPIMISO/LCS[7]  
SPICLK  
AN32  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
AP33  
AK30  
SPISEL  
AL31  
Clocks  
AN9, AP9, AM10  
AN10  
PCI_CLK_OUT[0:2]  
PCI_CLK_OUT[3]/LCS[6]  
PCI_CLK_OUT[4]/LCS[7]  
PCI_SYNC_IN/PCI_CLOCK  
PCI_SYNC_OUT  
O
O
O
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
3
AJ11  
AK12  
AP11  
O
I
RTC/PIT_CLOCK  
AM32  
CLKIN  
AM9  
I
JTAG  
TCK  
TDI  
E20  
I
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
4
F20  
TDO  
TMS  
TRST  
B20  
O
I
3
A20  
4
B19  
I
4
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
64  
Package and Pin Listings  
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
Test  
TEST  
D22  
I
I
OVDD  
OVDD  
6
7
TEST_SEL  
AL13  
PMC  
QUIESCE  
A18  
O
OVDD  
System Control  
PORESET  
HRESET  
SRESET  
C18  
I
OVDD  
OVDD  
OVDD  
1
B18  
I/O  
I/O  
D18  
Thermal Management  
K32  
2
THERM0  
I
9
Power and Ground Signals  
L31  
AVDD  
1
Powerfore300  
PLL (1.2 V)  
AVDD  
1
nominal, 1.3 V  
for 667 MHz)  
AVDD2  
AP12  
Power for  
system PLL  
(1.2 V)  
AVDD  
2
nominal, 1.3 V  
for 667 MHz)  
AVDD3  
AVDD4  
GND  
AE1  
PowerforDDR  
DLL (1.2 V)  
nominal, 1.3 V  
for 667 MHz)  
AVDD  
AJ13  
PowerforLBIU  
DLL (1.2 V)  
nominal, 1.3 V  
for 667 MHz)  
4
A1, A34, C1, C7, C10, C11, C15, C23,  
C25, C28, D1, D8, D20, D30, E7, E13,  
E15, E17, E18, E21, E23, E25, E32,  
F6, F19, F27, F30, F34, G31, H5, J4,  
J34, K30, L5, M2, M5, M30, M33, N3,  
N5, P30, R5, R32, T5, T30, U6, U29,  
U33, V2, V5, V30, W6, W30, Y30,  
AA2, AA30, AB2, AB6, AB30, AC3,  
AC6, AD31, AE5, AF2, AF5, AF31,  
AG30, AG31, AH4, AJ3, AJ19, AJ22,  
AK7, AK13, AK14, AK16, AK18, AK20,  
AK25, AK28, AL3, AL5, AL10, AL12,  
AL22, AL27, AM1, AM6, AM7, AN12,  
AN17, AN34, AP1, AP8, AP34  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
65  
Package and Pin Listings  
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
GVDD  
A2, E2, G5, G6, J5, K4, K5, L4, N4, P5, PowerforDDR  
GVDD  
R6, T6, U5, V1, W5, Y5, AA4, AB3,  
AC4, AD5, AF3, AG5, AH2, AH5, AH6,  
AJ6, AK6, AK8, AK9, AL6  
DRAM I/O  
voltage  
(2.5 V)  
LVDD1  
C9, D11  
Power for  
three-speed  
Ethernet #1  
and for  
LVDD  
1
Ethernet  
management  
interface I/O  
(2.5 V, 3.3 V)  
LVDD  
2
C6, D9  
Power for  
three-speed  
Ethernet #2  
I/O (2.5 V,  
3.3 V)  
LVDD  
2
VDD  
E19, E29, F7, F9, F11,F13, F15, F17, Power for core  
VDD  
F18, F21, F23, F25, F29, H29, J6,  
K29, M29, N6, P29, T29, U30, V6,  
V29, W29, AB29, AC5, AD29, AF6,  
AF29, AH29, AJ8, AJ12, AJ14, AJ16,  
AJ18, AJ20, AJ21, AJ23, AJ25, AJ26,  
AJ27, AJ28, AJ29, AK10  
(1.2 V  
nominal, 1.3 V  
for 667 MHz)  
OVDD  
B22, B28, C16, C17, C24, C26, D13,  
PCI, 10/100  
OVDD  
D15, D19, D29, E31, F28, G33, H30, Ethernet, and  
L29, L32, N32, P31, R31, U32, W31, other standard  
Y29, AA29, AC30, AE31, AF30, AG29,  
AJ17, AJ30, AK11, AL15, AL19, AL21,  
AL29, AL30, AM20, AM23, AM24,  
AM26, AM28, AN11, AN13  
(3.3 V)  
MVREF1  
MVREF2  
M3  
I
I
DDR  
reference  
voltage  
AD2  
DDR  
reference  
voltage  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
66  
Package and Pin Listings  
Table 55. MPC8347EA (TBGA) Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
No Connection  
Pin Type  
Supply  
NC  
W32, AA31, AA32, AA33, AA34,  
AB31, AB32, AB33, AB34, AC29,  
AC31, AC33, AC34, AD30, AD32,  
AD33, AD34, AE29, AE30, AH32,  
AH33, AH34, AM33, AJ31, AJ32,  
AJ33, AJ34, AK32, AK33, AK34,  
AM34, AL33, AL34, AK31, AH30,  
AC32, AE32, AH31, AL32, AG34,  
AE33, AF32, AE34, AF34, AF33,  
AG33, AG32, AL11, AM11, AP10, Y32,  
Y34, Y31, Y33  
Notes:  
1. This pin is an open-drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OVDD  
.
2. This pin is an open-drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OVDD  
.
3. During reset, this output is actively driven rather than three-stated.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.  
6. This pin must always be tied to GND.  
7. This pin must always be pulled up to OVDD  
.
8. This pin must always be left not connected.  
9. Thermal sensitive resistor.  
10.It is recommended that MDIC0 be tied to GRD using an 18 Ω resistor and MDIC1 be tied to DDR power using an 18 Ω  
resistor.  
11.TSEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or  
actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.  
12. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to LVDD1  
.
13. For systems that boot from local bus (GPCM)-controlled NOR flash, a pullup on LGPL4 is required.  
Table 56 provides the pinout listing for the MPC8347EA, 620 PBGA package.  
Table 56. MPC8347EA (PBGA) Pinout Listing  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PCI  
D20  
B21  
PCI1_INTA/IRQ_OUT  
O
O
OVDD  
OVDD  
OVDD  
2
PCI1_RESET_OUT  
PCI1_AD[31:0]  
E19, D17, A16, A18, B17, B16, D16,  
B18, E17, E16, A15, C16, D15, D14,  
C14, A12, D12, B11, C11, E12, A10,  
C10, A9, E11, E10, B9, B8, D9, A8,  
C9, D8, C8  
I/O  
PCI1_C/BE[3:0]  
PCI1_PAR  
A17, A14, A11, B10  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
5
D13  
B14  
PCI1_FRAME  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
67  
Package and Pin Listings  
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PCI1_TRDY  
A13  
I/O  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
5
5
PCI1_IRDY  
E13  
PCI1_STOP  
C13  
5
PCI1_DEVSEL  
PCI1_IDSEL  
B13  
5
C17  
5
PCI1_SERR  
C12  
I/O  
I/O  
I/O  
I
PCI1_PERR  
B12  
5
PCI1_REQ[0]  
A21  
PCI1_REQ[1]/CPCI1_HS_ES  
PCI1_REQ[2:4]  
PCI1_GNT0  
C19  
C18, A19, E20  
I
B20  
I/O  
O
PCI1_GNT1/CPCI1_HS_LED  
PCI1_GNT2/CPCI1_HS_ENUM  
PCI1_GNT[3:4]  
M66EN  
C20  
B19  
O
A20, E18  
L26  
O
I
DDR SDRAM Memory Interface  
MDQ[0:63]  
AC25, AD27, AD25, AH27, AE28,  
AD26, AD24, AF27, AF25, AF28,  
AH24, AG26, AE25, AG25, AH26,  
AH25, AG22, AH22, AE21, AD19,  
AE22, AF23, AE19, AG20, AG19,  
AD17, AE16, AF16, AF18, AG18,  
AH17, AH16, AG9, AD12, AG7, AE8,  
AD11, AH9, AH8, AF6, AF8, AE6,  
AF1, AE4, AG8, AH3, AG3, AG4, AH2,  
AD7, AB4, AB3, AG1, AD5, AC2, AC1,  
AC4, AA3, Y4, AA4, AB1, AB2, Y5, Y3  
I/O  
GVDD  
MECC[0:4]/MSRCID[0:4]  
MECC[5]/MDVAL  
MECC[6:7]  
AG13, AE14, AH12, AH10, AE15  
I/O  
I/O  
I/O  
O
GVDD  
GVDD  
GVDD  
GVDD  
AH14  
AE13, AH11  
MDM[0:8]  
AG28, AG24, AF20, AG17, AE9, AH5,  
AD1, AA2, AG12  
MDQS[0:8]  
AE27, AE26, AE20, AH18, AG10, AF5,  
AC3, AA1, AH13  
I/O  
GVDD  
MBA[0:1]  
MA[0:14]  
AF10, AF11  
O
O
GVDD  
GVDD  
AF13, AF15, AG16, AD16, AF17,  
AH20, AH19, AH21, AD18, AG21,  
AD13, AF21, AF22, AE1, AA5  
MWE  
AD10  
O
GVDD  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
68  
Package and Pin Listings  
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
MRAS  
AF7  
O
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
3
MCAS  
AG6  
AE7, AH7, AH4, AF2  
AG23, AH23  
MCS[0:3]  
MCKE[0:1]  
MCK[0:5]  
MCK[0:5]  
MODT[0:3]  
MBA[2]  
O
O
AH15, AE24, AE2, AF14, AE23, AD3  
AG15, AD23, AE3, AG14, AF24, AD2  
AG5, AD4, AH6, AF4  
AD22  
O
9
O
O
O
MDIC0  
AG11  
I/O  
I/O  
MDIC1  
AF12  
9
Local Bus Controller Interface  
LAD[0:31]  
T4, T5, T1, R2, R3, T2, R1, R4, P1, P2,  
P3, P4, N1, N4, N2, N3, M1, M2, M3,  
N5, M4, L1, L2, L3, K1, M5, K2, K3, J1,  
J2, L5, J3  
I/O  
OVDD  
LDP[0]/CKSTOP_OUT  
LDP[1]/CKSTOP_IN  
LDP[2]/LCS[4]  
H1  
I/O  
I/O  
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
12  
K5  
H2  
LDP[3]/LCS[5]  
G1  
LA[27:31]  
J4, H3, G2, F1, G3  
LCS[0:3]  
J5, H4, F2, E1  
O
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]  
LBCTL  
F3, G4, D1, E2  
O
H5  
E3  
O
LALE  
O
LGPL0/LSDA10/cfg_reset_source0  
LGPL1/LSDWE/cfg_reset_source1  
LGPL2/LSDRAS/LOE  
LGPL3/LSDCAS/cfg_reset_source2  
LGPL4/LGTA/LUPWAIT/LPBSE  
LGPL5/cfg_clkin_div  
LCKE  
F4  
I/O  
I/O  
O
D2  
C1  
C2  
I/O  
I/O  
I/O  
O
C3  
B3  
E4  
LCLK[0:2]  
D4, A3, C4  
U3  
O
LSYNC_OUT  
O
LSYNC_IN  
Y2  
I
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
69  
Package and Pin Listings  
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
General Purpose I/O Timers  
GPIO1[0]/DMA_DREQ0/GTM1_TIN1/  
GTM2_TIN2  
D27  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[1]/DMA_DACK0/GTM1_TGATE1/  
GTM2_TGATE2  
E26  
GPIO1[2]/DMA_DDONE0/GTM1_TOUT1  
D28  
G25  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[3]/DMA_DREQ1/GTM1_TIN2/  
GTM2_TIN1  
GPIO1[4]/DMA_DACK1/GTM1_TGATE2/  
GTM2_TGATE1  
J24  
F26  
E27  
E28  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
GPIO1[5]/DMA_DDONE1/GTM1_TOUT2/  
GTM2_TOUT1  
GPIO1[6]/DMA_DREQ2/GTM1_TIN3/  
GTM2_TIN4  
GPIO1[7]/DMA_DACK2/GTM1_TGATE3/  
GTM2_TGATE4  
GPIO1[8]/DMA_DDONE2/GTM1_TOUT3  
H25  
F27  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[9]/DMA_DREQ3/GTM1_TIN4/  
GTM2_TIN3  
GPIO1[10]/DMA_DACK3/  
GTM1_TGATE4/GTM2_TGATE3  
K24  
G26  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[11]/DMA_DDONE3/  
GTM1_TOUT4/GTM2_TOUT3  
USB Port 1  
C28  
MPH1_D0_ENABLEN/DR_D0_ENABLEN  
MPH1_D1_SER_TXD/DR_D1_SER_TXD  
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0  
MPH1_D3_SPEED/DR_D3_SPEED  
MPH1_D4_DP/DR_D4_DP  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
F25  
B28  
C27  
D26  
MPH1_D5_DM/DR_D5_DM  
E25  
MPH1_D6_SER_RCV/DR_D6_SER_RCV  
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS  
MPH1_NXT/DR_SESS_VLD_NXT  
C26  
D25  
B26  
MPH1_DIR_DPPULLUP/  
E24  
I/O  
DR_XCVR_SEL_DPPULLUP  
MPH1_STP_SUSPEND/  
DR_STP_SUSPEND  
A27  
C25  
O
I
OVDD  
OVDD  
MPH1_PWRFAULT/  
DR_RX_ERROR_PWRFAULT  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
70  
Package and Pin Listings  
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
MPH1_PCTL0/DR_TX_VALID_PCTL0  
MPH1_PCTL1/DR_TX_VALIDH_PCTL1  
MPH1_CLK/DR_CLK  
A26  
O
O
I
OVDD  
OVDD  
OVDD  
B25  
A25  
USB Port 0  
MPH0_D0_ENABLEN/DR_D8_CHGVBUS  
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS  
MPH0_D2_VMO_SE0/DR_D10_DPPD  
MPH0_D3_SPEED/DR_D11_DMMD  
MPH0_D4_DP/DR_D12_VBUS_VLD  
MPH0_D5_DM/DR_D13_SESS_END  
MPH0_D6_SER_RCV/DR_D14  
D24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
C24  
B24  
A24  
D23  
C23  
B23  
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP  
MPH0_NXT/DR_RX_ACTIVE_ID  
A23  
D22  
MPH0_DIR_DPPULLUP/DR_RESET  
MPH0_STP_SUSPEND/DR_TX_READY  
MPH0_PWRFAULT/DR_RX_VALIDH  
MPH0_PCTL0/DR_LINE_STATE0  
MPH0_PCTL1/DR_LINE_STATE1  
MPH0_CLK/DR_RX_VALID  
C22  
I/O  
I/O  
I
B22  
A22  
E21  
I/O  
I/O  
I
D21  
C21  
Programmable Interrupt Controller  
MCP_OUT  
E8  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
2
IRQ0/MCP_IN/GPIO2[12]  
IRQ[1:5]/GPIO2[13:17]  
IRQ[6]/GPIO2[18]/CKSTOP_OUT  
IRQ[7]/GPIO2[19]/CKSTOP_IN  
J28  
I/O  
I/O  
I/O  
I/O  
K25, J25, H26, L24, G27  
G28  
J26  
Ethernet Management Interface  
EC_MDC  
EC_MDIO  
Y24  
O
LVDD1  
LVDD1  
Y25  
Gigabit Reference Clock  
Y26  
I/O  
11  
EC_GTX_CLK125  
I
LVDD1  
Three-Speed Ethernet Controller (Gigabit Ethernet 1)  
TSEC1_COL/GPIO2[20]  
TSEC1_CRS/GPIO2[21]  
TSEC1_GTX_CLK  
M26  
U25  
V24  
I/O  
I/O  
O
OVDD  
LVDD1  
LVDD1  
3
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
71  
Package and Pin Listings  
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
TSEC1_RX_CLK  
U26  
I
I
LVDD1  
LVDD1  
OVDD  
OVDD  
LVDD1  
OVDD  
OVDD  
LVDD1  
LVDD1  
OVDD  
10  
TSEC1_RX_DV  
U24  
TSEC1_RX_ER/GPIO2[26]  
TSEC1_RXD[7:4]/GPIO2[22:25]  
TSEC1_RXD[3:0]  
L28  
I/O  
I/O  
I
M27, M28, N26, N27  
W26, W24, Y28, Y27  
TSEC1_TX_CLK  
N25  
I
TSEC1_TXD[7:4]/GPIO2[27:30]  
TSEC1_TXD[3:0]  
N28, P25, P26, P27  
I/O  
O
O
I/O  
V28, V27, V26, W28  
TSEC1_TX_EN  
W27  
TSEC1_TX_ER/GPIO2[31]  
N24  
Three-Speed Ethernet Controller (Gigabit Ethernet 2)  
TSEC2_COL/GPIO1[21]  
TSEC2_CRS/GPIO1[22]  
TSEC2_GTX_CLK  
P28  
I/O  
I/O  
O
OVDD  
LVDD2  
LVDD2  
LVDD2  
LVDD2  
OVDD  
LVDD2  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
LVDD2  
OVDD  
LVDD2  
OVDD  
3
AC28  
AC27  
TSEC2_RX_CLK  
AB25  
I
TSEC2_RX_DV/GPIO1[23]  
TSEC2_RXD[7:4]/GPIO1[26:29]  
TSEC2_RXD[3:0]/GPIO1[13:16]  
TSEC2_RX_ER/GPIO1[25]  
TSEC2_TXD[7]/GPIO1[31]  
AC26  
R28, T24, T25, T26  
AA25, AA26, AA27, AA28  
R25  
I/O  
I/O  
I/O  
I/O  
I/O  
O
T27  
TSEC2_TXD[6]/DR_XCVR_TERM_SEL  
TSEC2_TXD[5]/DR_UTMI_OPMODE1  
TSEC2_TXD[4]/DR_UTMI_OPMODE0  
TSEC2_TXD[3:0]/GPIO1[17:20]  
TSEC2_TX_ER/GPIO1[24]  
T28  
U28  
O
U27  
O
AB26, AB27, AA24, AB28  
I/O  
I/O  
I/O  
I/O  
R27  
AD28  
R26  
TSEC2_TX_EN/GPIO1[12]  
TSEC2_TX_CLK/GPIO1[30]  
DUART  
B4, A4  
D5, C5  
B5  
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1]  
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3]  
UART_CTS[1]/MSRCID4/LSRCID4  
UART_CTS[2]/MDVAL/LDVAL  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
I/O  
I/O  
I/O  
O
A5  
UART_RTS[1:2]  
D6, C6  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
72  
Package and Pin Listings  
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
I2C interface  
IIC1_SDA  
IIC1_SCL  
IIC2_SDA  
IIC2_SCL  
E5  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
2
2
2
2
A6  
B6  
E7  
SPI  
SPIMOSI/LCS[6]  
SPIMISO/LCS[7]  
SPICLK  
D7  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
C7  
B7  
SPISEL  
A7  
Clocks  
PCI_CLK_OUT[0:2]  
PCI_CLK_OUT[3]/LCS[6]  
PCI_CLK_OUT[4]/LCS[7]  
PCI_SYNC_IN/PCI_CLOCK  
PCI_SYNC_OUT  
Y1, W3, W2  
O
O
O
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
3
W1  
V3  
U4  
U5  
O
I
RTC/PIT_CLOCK  
E9  
CLKIN  
W5  
I
JTAG  
TCK  
TDI  
H27  
I
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
4
H28  
TDO  
TMS  
TRST  
M24  
O
I
3
J27  
4
K26  
I
4
Test  
TEST  
F28  
I
I
OVDD  
OVDD  
6
6
TEST_SEL  
T3  
PMC  
QUIESCE  
K27  
O
OVDD  
System Control  
PORESET  
HRESET  
SRESET  
K28  
M25  
L27  
I
OVDD  
OVDD  
OVDD  
1
I/O  
I/O  
2
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
73  
Package and Pin Listings  
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
Thermal Management  
THERM0  
B15  
Power and Ground Signals  
C15  
I
8
AVDD  
1
Powerfore300  
PLL (1.2 V)  
AVDD1  
nominal, 1.3 V  
for 667 MHz)  
AVDD2  
U1  
Power for  
system PLL  
(1.2 V)  
AVDD  
2
nominal, 1.3 V  
for 667 MHz)  
AVDD  
3
AF9  
U2  
PowerforDDR  
DLL (1.2 V  
nominal, 1.3 V  
for 667 MHz)  
AVDD4  
GND  
PowerforLBIU  
DLL (1.2 V  
nominal, 1.3 V  
for 667 MHz)  
AVDD4  
A2, B1, B2, D10, D18, E6, E14, E22,  
F9, F12, F15, F18, F21, F24, G5, H6,  
J23, L4, L6, L12, L13, L14, L15, L16,  
L17, M11, M12, M13, M14, M15, M16,  
M17, M18, M23, N11, N12, N13, N14,  
N15, N16, N17, N18, P6, P11, P12,  
P13, P14, P15, P16, P17, P18, P24,  
R5, R11, R12, R13, R14, R15, R16,  
R17, R18, R23, T11, T12, T13, T14,  
T15, T16, T17, T18, U6, U11, U12,  
U13, U14, U15, U16, U17, U18, V12,  
V13, V14, V15, V16, V17, V23, V25,  
W4, Y6, AA23, AB24, AC5, AC8,  
AC11, AC14, AC17, AC20, AD9,  
AD15, AD21, AE12, AE18, AF3, AF26  
GVDD  
U9, V9, W10, W19, Y11, Y12, Y14, PowerforDDR  
GVDD  
Y15, Y17, Y18, AA6, AB5, AC9, AC12,  
AC15, AC18, AC21, AC24, AD6, AD8,  
AD14, AD20, AE5, AE11, AE17, AG2,  
AG27  
DRAM I/O  
voltage  
(2.5 V)  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
74  
Package and Pin Listings  
Table 56. MPC8347EA (PBGA) Pinout Listing (continued)  
Power  
Notes  
Signal  
Package Pin Number  
Pin Type  
Supply  
LVDD  
1
U20, W25  
Power for  
three-speed  
Ethernet #1  
and for  
LVDD  
1
Ethernet  
management  
interface I/O  
(2.5 V, 3.3 V)  
LVDD  
2
V20, Y23  
Power for  
three-speed  
Ethernet #2  
I/O (2.5 V,  
3.3 V)  
LVDD2  
VDD  
J11, J12, J15, K10, K11, K12, K13, Power for core  
VDD  
K14, K15, K16, K17, K18, K19, L10,  
L11, L18, L19, M10, M19, N10, N19,  
P9, P10, P19, R10, R19, R20, T10,  
T19, U10, U19, V10, V11, V18, V19,  
W11, W12, W13, W14, W15, W16,  
W17, W18  
(1.2 V)  
OVDD  
B27, D3, D11, D19, E15, E23, F5, F8,  
PCI, 10/100  
OVDD  
F11, F14, F17, F20, G24, H23, H24, Ethernet, and  
J6, J14, J17, J18, K4, L9, L20, L23, other standard  
L25, M6, M9, M20, P5, P20, P23, R6,  
R9, R24, U23, V4, V6  
(3.3 V)  
MVREF1  
MVREF2  
AF19  
AE10  
I
DDR  
reference  
voltage  
I
DDR  
reference  
voltage  
No Connection  
NC  
V1, V2, V5  
Notes:  
1. This pin is an open-drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OVDD  
.
2. This pin is an open-drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OVDD  
.
3. During reset, this output is actively driven rather than three-stated.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.  
6. This pin must always be tied to GND.  
7. This pin must always be left not connected.  
8. Thermal sensitive resistor.  
9. It is recommended that MDIC0 be tied to GRD using an 18 Ω resistor and MDIC1 be tied to DDR power using an 18 Ω resistor.  
10.TSEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or  
actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.  
11. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to LVDD1  
.
12. For systems that boot from local bus (GPCM)-controlled NOR flash, a pullup on LGPL4 is required.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
75  
Clocking  
19 Clocking  
Figure 42 shows the internal distribution of the clocks.  
e300 Core  
Core PLL  
core_clk  
csb_clk  
To DDR  
Memory  
6
6
DDR  
Controller  
DDR  
Memory  
Device  
MCK[0:5]  
MCK[0:5]  
Clock  
Div  
/2  
ddr_clk  
Clock  
Unit  
System PLL  
lbiu_clk  
/n  
LCLK[0:2]  
To Local Bus  
Memory  
Local Bus  
Memory  
Device  
LBIU  
DLL  
LSYNC_OUT  
LSYNC_IN  
Controller  
csb_clk to Rest  
of the Device  
PCI_CLK/  
PCI_SYNC_IN  
CFG_CLKIN_DIV  
CLKIN  
PCI_SYNC_OUT  
PCI Clock  
Divider  
5
PCI_CLK_OUT[0:4]  
Figure 42. MPC8347EA Clock Subsystem  
The primary clock source can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device  
is configured in PCI host or PCI agent mode. When the MPC8347EA is configured as a PCI host device,  
CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for  
PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether  
CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICDn] parameters select  
whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUTn signals.  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to  
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,  
with equal delay to all PCI agent devices in the system, to allow the MPC8347EA to function. When the  
device is configured as a PCI agent device, PCI_CLK is the primary input clock and the CLKIN signal  
should be tied to GND.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
76  
Freescale Semiconductor  
Clocking  
As shown in Figure 42, the primary clock input (frequency) is multiplied up by the system phase-locked  
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the  
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbiu_clk).  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following  
equation:  
csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF  
In PCI host mode, PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is the CLKIN frequency.  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the  
csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL  
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL),  
which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset,  
clocking, and initialization in the MPC8349EA Reference Manual for more information on the clock  
subsystem.  
The internal ddr_clk frequency is determined by the following equation:  
ddr_clk = csb_clk × (1 + RCWL[DDRCM])  
ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to  
create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the  
same frequency as ddr_clk.  
The internal lbiu_clk frequency is determined by the following equation:  
lbiu_clk = csb_clk × (1 + RCWL[LBIUCM])  
lbiu_clk is not the external local bus frequency; lbiu_clk passes through the LBIU clock divider to create  
the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is  
controlled by LCCR[CLKDIV].  
In addition, some of the internal units may have to be shut off or operate at lower frequency than the  
csb_clk frequency. Those units have a default clock ratio that can be configured by a memory-mapped  
register after the device exits reset. Table 57 specifies which units have a configurable clock frequency.  
Table 57. Configurable Clock Units  
Unit  
Default Frequency  
Options  
TSEC1  
csb_clk/3  
csb_clk/3  
csb_clk/3  
csb_clk/3  
csb_clk  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk  
TSEC2, I2C1  
Security core  
USB DR, USB MPH  
PCI and DMA complex  
Table 58 provides the operating frequencies for the MPC8347EA TBGA under recommended operating  
conditions (see Table 2). All frequency combinations shown in the table below may not be available.  
Maximum operating frequencies depend on the part ordered, see Section 22.1, “Part Numbers Fully  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
77  
Clocking  
Addressed by This Document,” for part ordering details and contact your Freescale Sales Representative  
or authorized distributor for more information.  
Table 58. Operating Frequencies for TBGA  
Characteristic1  
e300 core frequency (core_clk)  
400 MHz  
266–400  
533 MHz  
266–533  
667 MHz  
266–667  
Unit  
MHz  
Coherent system bus frequency (csb_clk)  
DDR1 memory bus frequency (MCK)2  
DDR2 memory bus frequency (MCK)3  
Local bus frequency (LCLKn)4  
100–266  
100–133  
100–133  
16.67–133  
25–66  
100–333  
100–133  
100–200  
16.67–133  
25–66  
100–333  
100–166.67  
100–200  
16.67–133  
25–66  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
PCI input frequency (CLKIN or PCI_CLK)  
Security core maximum internal operating frequency  
133  
133  
166  
USB_DR, USB_MPH maximum internal operating  
frequency  
133  
133  
166  
1
The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting csb_clk, MCLK,  
LCLK[0:2], and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies. The value  
of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal  
operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.  
The DDR data rate is 2x the DDR memory bus frequency.  
The DDR data rate is 2x the DDR memory bus frequency.  
The local bus frequency is 1/2, 1/4, or 1/8 of the lbiu_clk frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x  
the csb_clk frequency (depending on RCWL[LBIUCM]).  
2
3
4
Table 59 provides the operating frequencies for the MPC8347EA PBGA under recommended operating  
conditions.  
Table 59. Operating Frequencies for PBGA  
Parameter1  
266 MHz  
333 MHz  
400 MHz  
Unit  
MHz  
e300 core frequency (core_clk)  
200–266  
200–333  
100–266  
100–133  
100–133  
16.67–133  
25–66  
200–400  
Coherent system bus frequency (csb_clk)  
DDR1 memory bus frequency (MCK)2  
DDR2 memory bus frequency (MCK)3  
Local bus frequency (LCLKn)4  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
PCI input frequency (CLKIN or PCI_CLK)  
Security core maximum internal operating frequency  
133  
USB_DR, USB_MPH maximum internal operating  
frequency  
133  
1
The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting csb_clk, MCLK,  
LCLK[0:2], and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies. The value  
of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal  
operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.  
The DDR data rate is 2× the DDR memory bus frequency.  
2
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
78  
Freescale Semiconductor  
Clocking  
3
4
The DDR data rate is 2× the DDR memory bus frequency.  
The local bus frequency is ½, ¼, or 1/8 of the lbiu_clk frequency (depending on LCCR[CLKDIV]) which is in turn 1× or 2× the  
csb_clk frequency (depending on RCWL[LBIUCM]).  
19.1 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] parameter. Table 60 shows the multiplication factor  
encodings for the system PLL.  
Table 60. System PLL Multiplication Factors  
RCWL[SPMF]  
System PLL Multiplication Factor  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
× 16  
Reserved  
× 2  
× 3  
× 4  
× 5  
× 6  
× 7  
× 8  
× 9  
× 10  
× 11  
× 12  
× 13  
× 14  
× 15  
As described in Section 19, “Clocking,” the LBIUCM, DDRCM, and SPMF parameters in the reset  
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the  
primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (csb_clk). Table 61  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
79  
Clocking  
and Table 62 show the expected frequency values for the CSB frequency for select csb_clk to  
CLKIN/PCI_SYNC_IN ratios.  
Table 61. CSB Frequency Options for Host Mode  
Input Clock Frequency (MHz)2  
CFG_CLKIN_DIV  
at Reset1  
csb_clk :  
SPMF  
16.67  
25  
33.33  
66.67  
Input Clock Ratio2  
csb_clk Frequency (MHz)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
2 : 1  
3 : 1  
4 : 1  
5 : 1  
6 : 1  
7 : 1  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
16 : 1  
2 : 1  
3 : 1  
4 : 1  
5 : 1  
6 : 1  
7 : 1  
8 : 1  
133  
200  
266  
333  
100  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
133  
166  
200  
233  
266  
300  
333  
100  
116  
133  
150  
166  
183  
200  
216  
233  
250  
266  
133  
200  
266  
333  
100  
133  
166  
200  
233  
1
2
CFG_CLKIN_DIV selects the ratio between CLKIN and PCI_SYNC_OUT.  
CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
80  
Freescale Semiconductor  
Clocking  
Table 62. CSB Frequency Options for Agent Mode  
Input Clock Frequency (MHz)2  
CFG_CLKIN_DIV  
at Reset1  
csb_clk :  
SPMF  
16.67  
25  
33.33  
66.67  
Input Clock Ratio2  
csb_clk Frequency (MHz)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
2 : 1  
3 : 1  
133  
200  
266  
333  
100  
4 : 1  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
133  
166  
200  
233  
266  
300  
333  
5 : 1  
6 : 1  
100  
7 : 1  
116  
133  
150  
166  
183  
200  
216  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
16 : 1  
4 : 1  
233  
250  
266  
100  
150  
200  
250  
300  
133  
200  
266  
333  
266  
6 : 1  
100  
133  
166  
200  
233  
266  
8 : 1  
10 : 1  
12 : 1  
14 : 1  
16 : 1  
1
2
CFG_CLKIN_DIV doubles csb_clk if set high.  
CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.  
19.2 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). Table 63 shows the encodings for RCWL[COREPLL]. COREPLL values that are  
not listed in Table 63 should be considered as reserved.  
NOTE  
Core VCO frequency = core frequency × VCO divider  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
81  
Clocking  
VCO divider must be set properly so that the core VCO frequency is in the  
range of 800–1800 MHz.  
Table 63. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk : csb_clk Ratio  
VCO Divider1  
0–1  
2–5  
6
nn  
0000  
n
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk clocks core directly) (PLL off, csb_clk clocks core directly)  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
0011  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1:1  
1:1  
2
4
8
8
2
4
8
8
2
4
8
8
2
4
8
8
2
4
8
8
1:1  
1:1  
1.5:1  
1.5:1  
1.5:1  
1.5:1  
2:1  
2:1  
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
3:1  
1
Core VCO frequency = core frequency × VCO divider. The VCO divider must be set properly so that the core VCO frequency  
is in the range of 800–1800 MHz.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
82  
Freescale Semiconductor  
Clocking  
19.3 Suggested PLL Configurations  
Table 64 shows suggested PLL configurations for 33 and 66 MHz input clocks.  
Table 64. Suggested PLL Configurations  
RCWL  
400 MHz Device  
533 MHz Device  
667 MHz Device  
Input  
Input  
Input  
Clock  
Freq  
Ref  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
No.1  
CORE  
PLL  
Clock  
Freq  
Clock  
Freq  
SPMF  
(MHz)2  
(MHz)2  
(MHz)2  
33 MHz CLKIN/PCI_CLK Options  
922  
723  
604  
624  
803  
823  
903  
923  
704  
724  
A03  
804  
705  
606  
904  
805  
A04  
1001  
0111  
0110  
0110  
1000  
1000  
1001  
1001  
0111  
0111  
1010  
1000  
0111  
0110  
1001  
1000  
1010  
0100010  
0100011  
0000100  
0100100  
0000011  
0100011  
0000011  
0100011  
0000011  
0100011  
0000011  
0000100  
0000101  
0000110  
0000100  
0000101  
0000100  
33  
33  
33  
33  
33  
233  
200  
200  
266  
266  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
233  
200  
200  
266  
266  
300  
300  
233  
233  
333  
266  
f300  
350  
400  
400  
400  
400  
450  
450  
466  
466  
500  
533  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
300  
233  
200  
200  
266  
266  
300  
300  
233  
233  
333  
266  
233  
200  
300  
266  
333  
300  
350  
400  
400  
400  
400  
450  
450  
466  
466  
500  
533  
583  
600  
600  
667  
667  
350  
400  
400  
400  
400  
66 MHz CLKIN/PCI_CLK Options  
304  
324  
403  
423  
305  
503  
404  
0011  
0011  
0100  
0100  
0011  
0101  
0100  
0000100  
0100100  
0000011  
0100011  
0000101  
0000011  
0000100  
66  
66  
66  
66  
200  
200  
266  
266  
400  
400  
400  
400  
66  
66  
66  
66  
66  
66  
66  
200  
200  
266  
266  
200  
333  
266  
400  
400  
400  
400  
500  
500  
533  
66  
66  
66  
66  
66  
66  
66  
200  
200  
266  
266  
200  
333  
266  
400  
400  
400  
400  
500  
500  
533  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
83  
Thermal  
Table 64. Suggested PLL Configurations (continued)  
400 MHz Device 533 MHz Device  
RCWL  
667 MHz Device  
Input  
Input  
Input  
Ref  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
No.1  
CORE  
PLL  
Clock  
Freq  
Clock  
Freq  
Clock  
Freq  
SPMF  
(MHz)2  
(MHz)2  
(MHz)2  
306  
405  
0011  
0100  
0101  
0000110  
0000101  
0000100  
66  
66  
66  
200  
266  
333  
600  
667  
667  
504  
1
The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and  
COREPLL settings given in the table.  
The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.  
2
20 Thermal  
This section describes the thermal specifications of the MPC8347EA.  
20.1 Thermal Characteristics  
Table 65 provides the package thermal characteristics for the 672 35 × 35 mm TBGA of the MPC8347EA.  
Table 65. Package Thermal Characteristics for TBGA  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient natural convection on single-layer board (1s)  
Junction-to-ambient natural convection on four-layer board (2s2p)  
Junction-to-ambient (at 200 ft/min) on single-layer board (1s)  
Junction-to-ambient (at 200 ft/min) on four-layer board (2s2p)  
Junction-to-ambient (at 2 m/s) on single-layer board (1s)  
Junction-to-ambient (at 2 m/s) on four-layer board (2s2p)  
Junction-to-board thermal  
RθJA  
RθJMA  
RθJMA  
RθJMA  
RθJMA  
RθJMA  
RθJB  
14  
11  
11  
8
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
1, 3  
1, 3  
4
9
7
3.8  
1.7  
Junction-to-case thermal  
RθJC  
5
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
84  
Thermal  
Table 65. Package Thermal Characteristics for TBGA (continued)  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-package natural convection on top  
ψJT  
1
°C/W  
6
Notes:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
Table 66 provides the package thermal characteristics for the 620 29 × 29 mm PBGA of the MPC8347EA.  
Table 66. Package Thermal Characteristics for PBGA  
Parameter  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient natural convection on single-layer board (1s)  
Junction-to-ambient natural convection on four-layer board (2s2p)  
Junction-to-ambient (at 200 ft/min) on single-layer board (1s)  
Junction-to-ambient (at 200 ft/min) on four-layer board (2s2p)  
Junction-to-board thermal  
RθJA  
RθJMA  
RθJMA  
RθJMA  
RθJB  
21  
15  
17  
12  
6
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
Junction-to-case thermal  
RθJC  
5
5
Junction-to-package natural convection on top  
Notes  
ψJT  
5
6
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
20.2 Thermal Management Information  
For the following sections, P = (V × I ) + P where P is the power dissipation of the I/O drivers.  
D
DD  
DD  
I/O  
I/O  
See Table 5 for I/O power dissipation values.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
85  
Thermal  
20.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
× P )  
D
J
A
θJA  
where:  
T = junction temperature (°C)  
J
T = ambient temperature for the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
θJA  
P = power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Generally, the value obtained on a single-layer board is appropriate for  
a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually  
appropriate if the board has low power dissipation and the components are well separated. Test cases have  
demonstrated that errors of a factor of two (in the quantity T – T ) are possible.  
J
A
20.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
(edge) of the package is approximately the same as the local air temperature near the device. Specifying  
the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
× P )  
D
J
A
θJA  
where:  
T = junction temperature (°C)  
J
T = ambient temperature for the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
θJA  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
86  
Freescale Semiconductor  
Thermal  
20.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, use  
the thermal characterization parameter (Ψ ) to determine the junction temperature and a measure of the  
JT  
temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
T = junction temperature (°C)  
J
T = thermocouple temperature on top of package (°C)  
T
Ψ
= junction-to-ambient thermal resistance (°C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type  
T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance  
Some application environments require a heat sink to provide the necessary thermal management of the  
device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case  
thermal resistance and a case-to-ambient thermal resistance:  
R
= R  
+ R  
θJA  
θJC θCA  
where:  
R
R
R
= junction-to-ambient thermal resistance (°C/W)  
= junction-to-case thermal resistance (°C/W)  
= case-to-ambient thermal resistance (°C/W)  
θJA  
θJC  
θCA  
RθJC is device-related and cannot be influenced by the user. The user controls the thermal environment to  
change the case-to-ambient thermal resistance, RθCA. For instance, the user can change the size of the heat  
sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit  
board, or change the thermal dissipation on the printed-circuit board surrounding the device.  
The thermal performance of devices with heat sinks has been simulated with a few commercially available  
heat sinks. The heat sink choice is determined by the application environment (temperature, air flow,  
adjacent component power dissipation) and the physical space available. Because there is not a standard  
application environment, a standard heat sink is not required.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
87  
Thermal  
Table 67 and Table 68 show heat sink thermal resistance for TBGA and PBGA of the MPC8347EA.  
Table 67. Heat Sink and Thermal Resistance of MPC8347EA (TBGA)  
35 × 35 mm TBGA  
Heat Sink Assuming Thermal Grease  
Air Flow  
Thermal Resistance  
AAVID 30 × 30 × 9.4 mm pin fin  
Natural convection  
1 m/s  
10  
6.5  
5.6  
8.4  
4.7  
4
AAVID 30 × 30 × 9.4 mm pin fin  
AAVID 30 × 30 × 9.4 mm pin fin  
2 m/s  
AAVID 31 × 35 × 23 mm pin fin  
Natural convection  
1 m/s  
AAVID 31 × 35 × 23 mm pin fin  
AAVID 31 × 35 × 23 mm pin fin  
2 m/s  
Wakefield, 53 × 53 × 25 mm pin fin  
Wakefield, 53 × 53 × 25 mm pin fin  
Wakefield, 53 × 53 × 25 mm pin fin  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 mm, adjacent board, 40 mm side bypass  
f
Natural convection  
1 m/s  
5.7  
3.5  
2.7  
6.7  
4.1  
2.8  
3.1  
2 m/s  
Natural convection  
1 m/s  
2 m/s  
1 m/s  
Table 68. Heat Sink and Thermal Resistance of MPC8347EA (PBGA)  
29 × 29 mm PBGA  
Heat Sink Assuming Thermal Grease  
Air Flow  
Thermal Resistance  
AAVID 30 × 30 × 9.4 mm pin fin  
Natural convection  
1 m/s  
13.5  
9.6  
8.8  
11.3  
8.1  
7.5  
9.1  
7.1  
6.5  
10.1  
7.7  
6.6  
6.9  
AAVID 30 × 30 × 9.4 mm pin fin  
AAVID 30 × 30 × 9.4 mm pin fin  
2 m/s  
AAVID 31 × 35 × 23 mm pin fin  
Natural convection  
1 m/s  
AAVID 31 × 35 × 23 mm pin fin  
AAVID 31 × 35 × 23 mm pin fin  
2 m/s  
Wakefield, 53 × 53 × 25 mm pin fin  
Natural convection  
1 m/s  
Wakefield, 53 × 53 × 25 mm pin fin  
Wakefield, 53 × 53 × 25 mm pin fin  
2 m/s  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 mm, adjacent board, 40 mm side bypass  
Natural convection  
1 m/s  
2 m/s  
1 m/s  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
88  
Thermal  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling and the convection cooling of the  
air moving through the application. Simplified thermal models of the packages can be assembled using the  
junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More  
detailed thermal models can be made available on request.  
Heat sink vendors include the following list:  
Aavid Thermalloy  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
603-224-9988  
408-567-8082  
Alpha Novatech  
473 Sapena Ct. #12  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC) 818-842-7277  
413 North Moss St.  
Burbank, CA 91502  
Internet: www.ctscorp.com  
Millennium Electronics (MEI)  
Loroco Sites  
671 East Brokaw Road  
San Jose, CA 95112  
408-436-8770  
800-522-2800  
603-635-5102  
Internet: www.mei-thermal.com  
Tyco Electronics  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105-3668  
Internet: www.chipcoolers.com  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
77 Dragon Ct.  
Woburn, MA 01801  
Internet: www.chomerics.com  
781-935-4850  
800-248-2481  
Dow-Corning Corporation  
Dow-Corning Electronic Materials  
P.O. Box 994  
Midland, MI 48686-0997  
Internet: www.dowcorning.com  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
89  
Thermal  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
Phoenix, AZ 85044  
888-642-7674  
800-347-4572  
Internet: www.microsi.com  
The Bergquist Company  
18930 West 78th St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
20.3 Heat Sink Attachment  
When heat sinks are attached, an interface material is required, preferably thermal grease and a spring clip.  
The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to  
the board, or to a plastic stiffener. Avoid attachment forces that can lift the edge of the package or peel the  
package from the board. Such peeling forces reduce the solder joint lifetime of the package. The  
recommended maximum force on the top of the package is 10 lb force (4.5 kg force). Any adhesive  
attachment should attach to painted or plastic surfaces, and its performance should be verified under the  
application requirements.  
20.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimize the size of the clearance to minimize the change in thermal  
performance caused by removing part of the thermal interface to the heat sink. Because of the experimental  
difficulties with this technique, many engineers measure the heat sink temperature and then back calculate  
the case temperature using a separate measurement of the thermal resistance of the interface. From this  
case temperature, the junction temperature is determined from the junction-to-case thermal resistance.  
T = T + (R  
× P )  
D
J
C
θJC  
where:  
T = junction temperature (°C)  
J
T = case temperature of the package (°C)  
C
R
= junction-to-case thermal resistance (°C/W)  
θJC  
P = power dissipation (W)  
D
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
90  
Freescale Semiconductor  
System Design Information  
21 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC8347EA.  
21.1 System Clocking  
The MPC8347EA includes two PLLs:  
1. The platform PLL generates the platform clock from the externally supplied CLKIN input. The  
frequency ratio between the platform and CLKIN is selected using the platform PLL ratio  
configuration bits as described in Section 19.1, “System PLL Configuration.”  
2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio  
between the e300 core clock and the platform clock is selected using the e300 PLL ratio  
configuration bits as described in Section 19.2, “Core PLL Configuration.”  
21.2 PLL Power Supply Filtering  
Each PLL gets power through independent power supply pins (AV 1, AV 2, respectively). The AV  
DD  
DD  
DD  
level should always equal to V , and preferably these voltages are derived directly from V through a  
DD  
DD  
low frequency filter scheme.  
There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to  
provide four independent filter circuits as illustrated in Figure 43, one to each of the four AV pins.  
DD  
Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.  
The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built  
with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the  
recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic  
(Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value  
capacitor.  
To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the  
specific AV pin being supplied. It should be possible to route directly from the capacitors to the AV  
DD  
DD  
pin, which is on the periphery of package, without the inductance of vias.  
Figure 43 shows the PLL power supply filter circuit.  
10 Ω  
VDD  
AVDD (or L2AVDD)  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
GND  
Figure 43. PLL Power Supply Filter Circuit  
21.3 Decoupling Recommendations  
Due to large address and data buses and high operating frequencies, the MPC8347EA can generate  
transient power surges and high frequency noise in its power supply, especially while driving large  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
91  
System Design Information  
capacitive loads. This noise must be prevented from reaching other components in the MPC8347EA  
system, and the device itself requires a clean, tightly regulated source of power. Therefore, the system  
designer should place at least one decoupling capacitor at each V , OV , GV , and LV pin of the  
DD  
DD  
DD  
DD  
device. These capacitors should receive their power from separate V , OV , GV , LV , and GND  
DD  
DD  
DD  
DD  
power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under  
the device using a standard escape pattern. Others can surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, distribute several bulk storage capacitors around the PCB, feeding the V , OV , GV ,  
DD  
DD  
DD  
and LV planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should  
DD  
have a low ESR (equivalent series resistance) rating to ensure the quick response time. They should also  
be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk  
capacitors are 100–330 µF (AVX TPS tantalum or Sanyo OSCON).  
21.4 Connection Recommendations  
To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low  
inputs should be tied to OV , GV , or LV as required. Unused active high inputs should be  
DD  
DD  
DD  
connected to GND. All NC (no-connect) signals must remain unconnected.  
Power and ground connections must be made to all external V , GV , LV , OV , and GND pins of  
DD  
DD  
DD  
DD  
the MPC8347EA.  
21.5 Output Buffer DC Impedance  
The MPC8347EA drivers are characterized over process, voltage, and temperature. For all buses, the  
2
driver is a push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to OV  
0
DD  
or GND. Then the value of each resistor is varied until the pad voltage is OV /2 (see Figure 44). The  
DD  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open) and R is trimmed until the voltage at the pad equals  
P
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
92  
Freescale Semiconductor  
System Design Information  
OV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R ) ÷ 2.  
0
P
N
OVDD  
RN  
SW2  
SW1  
Pad  
RP  
Data  
OGND  
Figure 44. Driver Impedance Measurement  
Two measurements give the value of this resistance and the strength of the driver current source. First, the  
output voltage is measured while driving logic 1 without an external differential termination resistor. The  
measured voltage is V = R  
× I  
. Second, the output voltage is measured while driving logic 1  
1
source  
source  
with an external precision differential termination resistor of value R . The measured voltage is  
term  
V = (1 ÷ (1/R + 1/R )) × I  
. Solving for the output impedance gives R  
= R  
× (V ÷ V – 1).  
2
1
2
source  
source  
term 1 2  
The drive current is then I  
= V ÷ R  
.
source  
1
source  
Table 69 summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal OV , 105°C.  
DD  
Table 69. Impedance Characteristics  
Local Bus, Ethernet,  
PCI Signals  
(Not Including PCI  
Output Clocks)  
PCI Output Clocks  
(Including  
PCI_SYNC_OUT)  
DUART, Control,  
Configuration, Power  
Management  
Impedance  
DDR DRAM Symbol  
Unit  
R
R
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
42 Target  
42 Target  
NA  
20 Target  
20 Target  
NA  
Z0  
Z0  
W
W
W
N
P
Differential  
ZDIFF  
Note: Nominal supply voltages. See Table 1, Tj = 105°C.  
21.6 Configuration Pin Multiplexing  
The MPC8347EA power-on configuration options can be set through external pull-up or pull-down  
resistors of 4.7 kΩ on certain output pins (see the customer-visible configuration pins). These pins are used  
as output only pins in normal operation.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
93  
Ordering Information  
However, while HRESET is asserted, these pins are treated as inputs, and the value on these pins is latched  
when PORESET deasserts. Then the input receiver is disabled and the I/O circuit takes on its normal  
function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with  
the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed  
for the output pins.  
21.7 Pull-Up Resistor Requirements  
The MPC8347EA requires high resistance pull-up resistors (10 kΩ is recommended) on open-drain pins,  
2
including I C pins, and IPIC interrupt pins.  
For more information on required pull-up resistors and the connections required for the JTAG interface,  
refer to application note AN2931, “PowerQUICC Design Checklist.”  
22 Ordering Information  
This section presents ordering information for the device discussed in this document, and it shows an  
example of how the parts are marked.  
NOTE  
The information in this document is accurate for revision 3.x silicon and  
later (in other words, for orderable part numbers ending in A or B). For  
information on revision 1.1 silicon and earlier versions, see the MPC8347E  
PowerQUICC II Pro Integrated Host Processor Hardware Specifications  
(Document Order No. MPC8347EEC).  
22.1 Part Numbers Fully Addressed by This Document  
Table 70 shows an analysis of the Freescale part numbering nomenclature for the MPC8347EA. The  
individual part numbers correspond to a maximum processor core frequency. Each part number also  
contains a revision code that refers to the die mask revision number. For available frequency configuration  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
94  
Freescale Semiconductor  
Ordering Information  
parts including extended temperatures, refer to the device product summary page on our website listed on  
the back cover of this document or, contact your local Freescale sales office.  
Table 70. Part Numbering Nomenclature  
MPC  
nnnn  
Part  
e
t
pp  
aa  
a
r
Product  
Encryption  
Temperature1  
Range  
Processor  
Platform  
Frequency  
Revision  
Level  
Package2  
Code Identifier Acceleration  
Frequency3  
MPC  
8347  
Blank = Not Blank = 0 to 105°C ZU =TBGA  
e300 core  
speed  
D = 266  
F = 3334  
B = 3.1  
included  
C = –40 to 105°C VV = PB free TBGA  
E = included  
ZQ = PBGA  
VR = PB Free PBGA  
AD = 266  
AG = 400  
AJ = 533  
AL = 667  
Notes:  
1. For temperature range = C, processor frequency is limited to 400 (PBGA) with a platform frequency of 266 and up to 533  
(TBGA) with a platform frequency of 333  
2. See Section 18, “Package and Pin Listings,for more information on available package types.  
3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other  
maximum core frequencies.  
4. ALF marked parts support DDR1 data rate up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 data rate  
up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 data rate up to 333 MHz (at a CSB of 333  
MHz).  
Table 71 shows the SVR settings by device and package type.  
Table 71. SVR Settings  
Device  
Package  
SVR (Rev. 3.0)  
MPC8347EA  
MPC8347A  
MPC8347EA  
MPC8347A  
TBGA  
TBGA  
PBGA  
PBGA  
8052_0030  
8053_0030  
8054_0030  
8055_0030  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
95  
Document Revision History  
22.2 Part Marking  
Parts are marked as in the example shown in Figure 45.  
MPCnnnnetppaaar  
core/platform MHZ  
ATWLYYWW  
CCCCC  
*MMMMM  
YWWLAZ  
TBGA/  
PBGA  
Notes:  
ATWLYYWW is the traceability code.  
CCCCC is the country code.  
MMMMM is the mask number.  
YWWLAZ is the assembly traceability code.  
Figure 45. Freescale Part Marking for TBGA or PBGA Devices  
23 Document Revision History  
This table provides a revision history of this document.  
Table 72. Document Revision History  
Rev.  
Number  
Date  
Substantive Change(s)  
12  
09/2011  
• In Section 2.2, “Power Sequencing,added Section 2.2.1, “Power-Up Sequencing” and Figure 4.  
• In Table 25, Table 29 and Table 31, removed the GTX_CLK125.  
• In Table 34, updated tMDKHDX Max value from 170ns to 70ns.  
11  
11/2010  
• In Table 56, added overbar to LCS[4] and LCS[5] signals. In Table 55 and Table 56, added note  
for pin LGPL4.  
• In Section 21.7, “Pull-Up Resistor Requirements, updated the list of open drain type pins.  
10  
9
05/2010  
5/2009  
• In Table 25 through Table 30, changed VIL(min) to VIH(max) to (20%–80%).  
• Added Table 8, “EC_GTX_CLK125 AC Timing Specifications.”  
• In Section 18.3, “Package Parameters for the MPC8347EA PBGA, changed solder ball for TBGA  
and PBGA from 95.5 Sn/0.5 Cu/4 Ag to 96.5 Sn/3.5 Ag.  
• In Table 58, updated frequency for DDR2, from 100-200 to 100-133 at core frequency = 533MHz.  
• In Table 59, added two columns for the DDR1 and DDR2 memory bus frequency.  
• In Table 70, footnote 1, changed 667(TBGA) to 533(TBGA). footnote 4, added data rate for DDR1  
and DDR2.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
96  
Document Revision History  
Table 72. Document Revision History (continued)  
Rev.  
Number  
Date  
Substantive Change(s)  
8
2/2009  
• Added footnote 6 to Table 7.  
• In Section 9.2, “USB AC Electrical Specifications,clarified that AC table is for ULPI only.  
• In Table 39, corrected tLBKHOV parameter to tLBKLOV (output data is driven on falling edge of clock  
in DLL bypass mode). Similarly, made the same correction to Figure 22, Figure 24, and Figure 25  
for output signals.  
• Added footnote 10 and 11 to Table 55 and Table 56.  
• In Section 21.1, “System Clocking,removed “(AVDD1)” and “(AVDD2”) from bulleted list.  
• In Section 21.2, “PLL Power Supply Filtering,in the second paragraph, changed “provide five  
independent filter circuits,and “the five AVDD pins” to provide four independent filter circuits,and  
“the four AVDD pins.”  
• In Table 58, corrected the max csb_clk to 266 MHz.  
• In Table 64, added PLL configurations 903, 923, A03, A23, and 503 for 533 MHz  
• Added footnote 4 to Table 70.  
• In Table 70, updated note 1 to say the following: “For temperature range = C, processor frequency  
is limited to 533 (TBGA) and 400 (PBGA) with a platform frequency of 266.”  
7
6
4/2007  
3/2007  
• In Table 3, “Output Drive Capability,” changed the values in the Output Impedance column and  
added USB to the seventh row.  
• In Table 4, “Operating Frequencies for TBGA,added column for 400 MHz.  
• In Section 21.7, “Pull-Up Resistor Requirements,“deleted last two paragraphs and after first  
paragraph, added a new paragraph.  
• Deleted Section 21.8, “JTAG Configuration Signals,and Figure 43, “JTAG Interface Connection.”  
• Page 1, updated first paragraph to reflect PowerQUICC II Pro information.  
• In Table 18, “DDR and DDR2 SDRAM Input AC Timing Specifications,added note 2 to tCISKEW  
and deleted original note 3; renumbered the remaining notes.  
• In Figure 43, “JTAG Interface Connection,” updated with new figure.  
• In Table 57, “Operating Frequencies for TBGA,in the ‘Coherent system bus frequency (csb_clk)’  
row, changed the value in the 533 MHz column to 100-333.  
• In Table 63, “Suggested PLL Configurations,under the subhead, ‘33 MHz CLKIN/PCI_CLK  
Options,added row A03 between Ref. No. 724 and 804. Under the subhead ‘66 MHz  
CLKIN/PCI_CLK Options,added row 503 between Ref. No. 305 and 404. For Ref. No. 306,  
changed the CORE PLL value to 0000110.  
• In Section 23, “Ordering Information,replaced first paragraph and added a note.  
• In Section 23.1, “Part Numbers Fully Addressed by this Document,replaced first paragraph.  
5
1/2007  
• In Table 1, “Absolute Maximum Ratings,added (1.36 max for 667-MHz core frequency).  
• In Table 2, “Recommended Operating Conditions,added a row showing nominal core supply  
voltage of 1.3 V for 667-MHz parts.  
• In Table 4, “MPC8347EA Power Dissipation,added two footnotes to 667-MHz row showing  
nominal core supply voltage of 1.3 V for 667-MHz parts.  
• In Table 54, “MPC8347EA (TBGA) Pinout Listing,updated VDD row to show nominal core supply  
voltage of 1.3 V for 667-MHz parts.  
4
3
12/2006  
11/2006  
Table 19, “DDR and DDR2 SDRAM Output AC Timing Specifications,modified Tddkhds for 333 MHz  
from 900 ps to 775 ps.  
• Updated note in introduction.  
• In the features list in Section 1, “Overview,updated DDR data rate to show 266 MHz for PBGA  
parts for all silicon revisions, and 400 MHz for DDR2 for TBGA parts for silicon Rev. 2 and 3.  
• In Table 5, “MPC8347EA Typical I/O Power Dissipation,added GVDD 1.8-V values for DDR2;  
added table footnote to designate rates that apply only to the TBGA package.  
• In Section 23, “Ordering Information,replicated note from document introduction.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
97  
Document Revision History  
Table 72. Document Revision History (continued)  
Substantive Change(s)  
Rev.  
Date  
Number  
2
8/2006  
• Changed all references to revision 2.0 silicon to revision 3.0 silicon.  
• Changed VIH minimum value in Table 39, “JTAG Interface DC Electrical Characteristics,to  
OVDD – 0.3.  
• In Table 40, “PCI DC Electrical Characteristics,changed high-level input voltage values to min  
= 2 and max = OVDD + 0.3; changed low-level input voltage values to min = (–0.3) and max = 0.8.  
• In Table 44, “PCI DC Electrical Characteristics,changed high-level input voltage values to min  
= 2 and max = OVDD + 0.3; changed low-level input voltage values to min = (–0.3) and max = 0.8.  
• Updated DDR2 I/O power values in Table 5, “MPC8347EA Typical I/O Power Dissipation.”  
• In Table 63, “Suggested PLL Configurations,deleted reference-number rows 902 and 703.  
1
4/2006  
• Removed Table 20, “Timing Parameters for DDR2-400.”  
• Changed ADDR/CMD to ADDR/CMD/MODT in Table 9, “DDR and DDR2 SDRAM Output AC  
Timing Specifications,rows 2 and 3, and in Figure 2, “DDR SDRAM Output Timing Diagram.  
• Changed Min and Max values for VIH and VIL in Table 40,“PCI DC Electrical Characteristics.”  
• In Table 51, “MPC8347EA (TBGA) Pinout Listing,and Table 52, “MPC8347EA (PBGA) Pinout  
Listing,modified rows for MDICO and MDIC1 signals and added note ‘It is recommended that  
MDICO be tied to GRD using an 18 Ω resistor and MCIC1 be tied to DDR power using an 18 Ω  
resistor.’  
• In Table 51, “MPC8347EA (TBGA) Pinout Listing,and Table 52, “MPC8347EA (PBGA) Pinout  
Listing,in row AVDD3 changed power supply from “AVDD3” to ‘—.’  
0
3/2006  
Initial public release  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
98  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Semiconductor was negligent regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale, the Freescale logo and PowerQUICC are trademarks of  
Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. The Power  
Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by  
Power.org.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
1-800 441-2447 or  
© 2006–2011 Freescale Semiconductor, Inc.  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Document Number: MPC8347EAEC  
Rev. 12  
09/2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY