935324259557 [NXP]

Microprocessor;
935324259557
型号: 935324259557
厂家: NXP    NXP
描述:

Microprocessor

外围集成电路
文件: 总106页 (文件大小:1021K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8315EEC  
Rev. 2, 11/2011  
Freescale Semiconductor  
Data Sheet: Technical Data  
MPC8315E  
PowerQUICC II Pro Processor  
Hardware Specifications  
Contents  
This document provides an overview of the MPC8315E  
PowerQUICC™ II Pro processor features, including a block  
diagram showing the major functional components. The  
MPC8315E contains a core built on Power Architecture™  
technology. It is a cost-effective, low-power, highly  
integrated host processor that addresses the requirements of  
several storage, consumer, and industrial applications,  
including main CPUs and I/O processors in network attached  
storage (NAS), voice over IP (VoIP) router/gateway,  
intelligent wireless LAN (WLAN), set top boxes, industrial  
controllers, and wireless access points. The MPC8315E  
extends the PowerQUICC II Pro family, adding higher CPU  
performance, new functionality, and faster interfaces while  
addressing the requirements related to time-to-market, price,  
power consumption, and package size. Note that while the  
MPC8315E supports a security engine, the MPC8315 does  
not.  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. MPC8315E Features . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 8  
4. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 14  
5. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7. DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . 18  
8. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
9. Ethernet: Three-Speed Ethernet, MII Management . 24  
10. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
12. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
14. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
15. High-Speed Serial Interfaces (HSSI) . . . . . . . . . . . . 51  
16. PCI Express . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
17. Serial ATA (SATA) . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
18. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
19. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
20. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
21. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
22. TDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
23. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 76  
24. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
25. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
26. System Design Information . . . . . . . . . . . . . . . . . . 100  
27. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 103  
28. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
© Freescale Semiconductor, Inc., 2011. All rights reserved.  
Overview  
1 Overview  
The MPC8315E incorporates the e300c3 (MPC603e-based) core, which includes 16 Kbytes of L1  
instruction and data caches, on-chip memory management units (MMUs), and floating-point support. In  
addition to the e300 core, the SoC platform includes features such as dual enhanced three-speed 10, 100,  
1000 Mbps Ethernet controllers (eTSECs) with SGMII support, a 32- or 16-bit DDR1/DDR2 SDRAM  
memory controller, dual SATA 3 Gbps controllers (MPC8315E-specific), a security engine to accelerate  
control and data plane security protocols, and a high degree of software compatibility with  
previous-generation PowerQUICC processor-based designs for backward compatibility and easier  
software migration. The MPC8315E also offers peripheral interfaces such as a 32-bit PCI interface with  
up to 66 MHz operation, 16-bit enhanced local bus interface with up to 66 MHz operation, TDM interface,  
and USB 2.0 with an on-chip USB 2.0 PHY.  
The MPC8315E offers additional high-speed interconnect support with dual integrated SATA 3 Gbps  
interfaces and dual single-lane PCI Express interfaces. When not used for PCI Express, the SerDes  
interface may be configured to support SGMII. The MPC8315E security engine (SEC 3.3) allows  
CPU-intensive cryptographic operations to be offloaded from the main CPU core. This figure shows a  
block diagram of the MPC8315E.  
MPC8315E  
e300c3 Core with  
Power Management  
16-KB  
D-Cache  
16-KB  
I-Cache  
DUART  
I2C  
Enhanced  
Local Bus,  
SPI  
Interrupt  
DDR1/DDR2  
Controller  
Timers  
GPIO  
Security  
Engine 3.3  
FPU  
Controller  
TDM  
I/O  
Sequencer  
(IOS)  
USB 2.0 HS  
Host/Device/OTG  
PCI  
Express  
PCI  
Express  
eTSEC  
SATA  
PHY  
eTSEC  
SATA  
PHY  
On-Chip  
ULPI  
x1  
RGMII, (R)MII  
RTBI, SGMII  
x1  
RGMII, (R)MII  
RTBI, SGMII  
HS PHY  
DMA  
Note: The MPC8315 do not include a security engine.  
Figure 1. MPC8315E Block Diagram  
PCI  
2 MPC8315E Features  
The following features are supported in the MPC8315E.  
2.1  
e300 Core  
The e300 core has the following features:  
Operates at up to 400 MHz  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
2
MPC8315E Features  
16-Kbyte instruction cache, 16-Kbyte data cache  
One floating point unit and two integer units  
Software-compatible with the Freescale processor families implementing the PowerPC  
Architecture  
Performance monitor  
2.2  
Serial Interfaces  
The following interfaces are supported in the MPC8315E.  
Two enhanced TSECs (eTSECs)  
Two Ethernet interfaces using one RGMII/MII/RMII/RTBI or SGMII (no GMII)  
2
Dual UART, one I C, and one SPI interface  
2.3  
Security Engine  
The security engine is optimized to handle all the algorithms associated with IPSec, 802.11i, and iSCSI.  
The security engine contains one crypto-channel, a controller, and a set of crypto execution units (EUs).  
The execution units are:  
Public key execution unit (PKEU)  
— RSA and Diffie-Hellman (to 4096 bits)  
— Programmable field size up to 2048 bits  
— Elliptic curve cryptography (1023 bits)  
— F2m and F(p) modes  
— Programmable field size up to 511 bits  
Data encryption standard execution unit (DEU)  
— DES, 3DES  
— Two key (K1, K2) or three key (K1, K2, K3)  
— ECB, CBC, CFB-64 and OFB-64 modes for both DES and 3DES  
Advanced encryption standard unit (AESU)  
— Implements the Rinjdael symmetric key cipher  
— Key lengths of 128, 192, and 256 bits  
— ECB, CBC, CCM, CTR, GCM, CMAC, OFB, CFB, XCBC-MAC and LRW modes  
— XOR acceleration  
Message digest execution unit (MDEU)  
— SHA with 160-bit, 256-bit, 384-bit and 512-bit message digest  
— SHA-384/512  
— MD5 with 128-bit message digest  
— HMAC with either algorithm  
Random number generator (RNG)  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
3
MPC8315E Features  
— Combines a True Random Number Generator (TRNG) and a NIST-approved Pseudo-Random  
Number Generator (PRNG) (as described in Annex C of FIPS140-2 and ANSI X9.62).  
Cyclical Redundancy Check Hardware Accelerator (CRCA)  
— Implements CRC32C as required for iSCSI header and payload checksums, CRC32 as required  
for IEEE 802 packets, as well as for programmable 32 bit CRC polynomials  
2.4  
DDR Memory Controller  
The DDR1/DDR2 memory controller includes the following features:  
Single 16- or 32-bit interface supporting both DDR1 and DDR2 SDRAM  
Support for up to 266 MHz data rate  
Support for two physical banks (chip selects), each bank independently addressable  
64-Mbit to 2-Gbit (for DDR1) and to 4-Gbit (for DDR2) devices with x8/x16 data ports (no direct  
x4 support)  
Support for one 16-bit device or two 8-bit devices on a 16-bit bus or two 16-bit devices on a 32-bit  
bus  
Support for up to 16 simultaneous open pages  
Supports auto refresh  
On-the-fly power management using CKE  
1.8-/2.5-V SSTL2 compatible I/O  
2.5  
PCI Controller  
The PCI controller includes the following features:  
Designed to comply with PCI Local Bus Specification Revision 2.3  
Single 32-bit data PCI interface operates at up to 66 MHz  
PCI 3.3-V compatible (not 5-V compatible)  
Support for host and agent modes  
On-chip arbitration, supporting three external masters on PCI  
Selectable hardware-enforced coherency  
2.6  
TDM Interface  
The TDM interface includes the following features:  
Independent receive and transmit with dedicated data, clock and frame sync line  
Separate or shared RCK and TCK whose source can be either internal or external  
Glueless interface to E1/T1 frames and MVIP, SCAS, and H.110 buses  
Up to 128 time slots, where each slot can be programmed to be active or inactive  
8- or 16-bit word widths  
The TDM Transmitter Sync Signal (TFS), Transmitter Clock Signal (TCK) and Receiver Clock  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
4
Freescale Semiconductor  
MPC8315E Features  
Signal (RCK) can be configured as either input or output  
Frame sync and data signals can be programmed to be sampled either on the rising edge or on the  
falling edge of the clock  
Frame sync can be programmed as active low or active high  
Selectable delay (0–3 bits) between the Frame Sync signal and the beginning of the frame  
MSB or LSB first support  
2.7  
USB Dual-Role Controller  
The USB controller includes the following features:  
Designed to comply with USB Specification, Rev. 2.0  
Supports operation as a stand-alone USB device  
— Supports one upstream facing port  
— Supports three programmable USB endpoints  
Supports operation as a stand-alone USB host controller  
— Supports USB root hub with one downstream-facing port  
— Enhanced host controller interface (EHCI) compatible  
Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation.  
Low-speed operation is supported only in host mode.  
Supports UTMI+ low pin interface (ULPI) or on-chip USB-2.0 full-speed/high-speed PHY  
Supports USB on-the-go mode, which includes both device and host functionality, when using an  
external ULPI PHY  
2.8  
Dual PCI Express Interfaces  
The PCI Express interfaces have the following features:  
PCI Express 1.0a compatible  
x1 link width  
Selectable operation as root complex or endpoint  
Both 32- and 64-bit addressing  
128-byte maximum payload size  
Support for MSI and INTx interrupt messages  
Virtual channel 0 only  
Selectable Traffic Class  
Full 64-bit decode with 32-bit wide windows  
Dedicated descriptor based DMA engine per interface with separate read and write channels  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
5
MPC8315E Features  
2.9  
Dual Serial ATA (SATA) Controllers  
The SATA controllers have the following features:  
Designed to comply with Serial ATA Rev 2.5 Specification  
ATAPI 6+  
Spread spectrum clocking on receive  
Asynchronous notification  
Hot plug including asynchronous signal recovery  
Link power management  
Native command queuing  
Staggered spin-up and port multiplier support  
SATA 1.5 and 3.0 Gbps operation  
Interrupt driven  
Power management support  
Error handling and diagnostic features  
— Far end/near end loopback  
— Failed CRC error reporting  
— Increased ALIGN insertion rates  
— Scrambling and CONT override  
2.10 Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)  
The eTSECs include the following features:  
Two SGMII/RGMII/MII/RMII/RTBI interfaces  
Two controllers designed to comply with IEEE Std 802.3™, IEEE 802.3u™, IEEE 802.3x™,  
IEEE 802.3z™, IEEE 802.3au™, IEEE 802.3ab™, and IEEE Std 1588™  
Support for Wake-on-Magic Packet™, a method to bring the device from standby to full operating  
mode  
MII management interface for external PHY control and status.  
2.11 Integrated Programmable Interrupt Controller (IPIC)  
The integrated programmable interrupt controller (IPIC) provides a flexible solution for general-purpose  
interrupt control. The IPIC programming model is compatible with the MPC8260 interrupt controller and  
supports external and internal discrete interrupt sources. Interrupts can also be redirected to an external  
interrupt controller.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
6
Freescale Semiconductor  
MPC8315E Features  
2.12 Power Management Controller (PMC)  
The MPC8315E supports a range of power management states that significantly lower power consumption  
under the control of the power management controller. The PMC includes the following features:  
Provides power management when the device is used in both PCI host and agent modes  
PCI Power Management 1.2 D0, D1, D2, D3hot, and D3cold states  
PME generation in PCI agent mode, PME detection in PCI host mode  
Wake-up from Ethernet (magic packet), USB, GPIO, and PCI (PME input as host) while in the D1,  
D2 and D3hot states  
A new low-power standby power management state called D3warm  
— The PMC, one Ethernet port, and the GTM block remain powered via a split power supply  
controlled through an external power switch  
— Wake-up events include Ethernet (magic packet), GTM, GPIO, or IRQ inputs and cause the  
device to transition back to normal operation  
— PCI agent mode is not be supported in D3warm state  
PCI Express-based PME events are not supported  
2.13 Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) allows the MPC8315E to exchange data between other PowerQUICC  
family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time  
clocks, A/D converters, and ISDN devices.  
The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface  
(receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an  
independent baud-rate generator, and a control unit.  
2
2.14 DMA Controller, I C, DUART, Enhanced Local Bus Controller  
(eLBC), and Timers  
The integrated four-channel DMA controller includes the following features:  
Allows chaining (both extended and direct) through local memory-mapped chain descriptors  
(accessible by local masters)  
Misaligned transfer capability for source/destination address  
Supports external DREQ, DACK and DONE signals  
2
There is one I C controller. This synchronous, multi-master buses can be connected to additional devices  
for expansion and system development.  
The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550  
programming models. 16-byte FIFOs are supported for both the transmitter and the receiver.  
The eLBC port allows connections with a wide variety of external DSPs and ASICs. Three separate state  
machines share the same external pins and can be programmed separately to access different types of  
devices. The general-purpose chip select machine (GPCM) controls accesses to asynchronous devices  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
7
Electrical Characteristics  
using a simple handshake protocol. The three user programmable machines (UPMs) can be programmed  
to interface to synchronous devices or custom ASIC interfaces. Each chip select can be configured so that  
the associated chip interface can be controlled by the GPCM or UPM controller. Both may exist in the  
same system. The local bus can operate at up to 66 MHz.  
The system timers include the following features: periodic interrupt timer, real time clock, software  
watchdog timer, and two general-purpose timer blocks.  
3 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the  
MPC8315E, which is currently targeted to these specifications. Some of these specifications are  
independent of the I/O cell, but they are included for complete reference. These are not purely I/O buffer  
design specifications.  
3.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
3.1.1  
Absolute Maximum Ratings  
This table provides the absolute maximum ratings.  
1
Table 1. Absolute Maximum Ratings  
Characteristic  
Symbol  
Max Value  
Unit  
Note  
Core supply voltage  
PLL supply voltage  
VDD  
–0.3 to 1.26  
–0.3 to 1.26  
–0.3 to 2.7  
–0.3 to 1.9  
–0.3 to 3.6  
V
V
V
V
V
7
AVDD  
GVDD  
GVDD  
NVDD  
DDR1 DRAM I/O supply voltage  
DDR2 DRAM I/O supply voltage  
PCI, local bus, DUART, system control and power  
management, I2C, Ethernet management, 1588 timer and  
JTAG I/O voltage  
USB, and eTSEC I/O voltage  
LVDD  
–0.3 to 2.75 or  
–0.3 to 3.6  
V
6, 8  
PHY voltage  
USB PHY  
USB_PLL_PWR1  
–0.3 to 1.26  
–0.3 to 3.6  
V
V
USB_PLL_PWR3,  
USB_VDDA_BIAS,  
VDDA  
SERDES PHY  
SATA PHY  
XCOREVDD,  
XPADVDD,  
SDAVDD  
–0.3 to 1.26  
–0.3 to 1.26  
–0.3 to 3.6  
V
V
V
SATA_VDD,  
VDD1IO,  
VDD1ANA  
VDD33PLL,  
VDD33ANA  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
8
Electrical Characteristics  
1
Table 1. Absolute Maximum Ratings (continued)  
Characteristic  
Symbol  
Max Value  
Unit  
Note  
Input voltage  
DDR DRAM signals  
DDR DRAM reference  
eTSEC signals  
MVIN  
MVREF  
LVIN  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD + 0.3)  
–0.3 to (LVDD + 0.3)  
–0.3 to (NVDD + 0.3)  
V
V
V
V
2, 4  
2, 4  
3, 4  
3, 4  
Local bus, DUART, SYS_CLK_IN, system  
control and power management, I2C, and  
JTAG signals  
NVIN  
PCI  
NVIN  
NVIN  
TSTG  
–0.3 to (NVDD + 0.3)  
–0.3 to (NVDD + 0.3)  
–55 to150  
V
V
5
3, 4  
SATA_CLKIN  
Storage temperature range  
C  
Note:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
3. Caution: (N,L)VIN must not exceed (N,L)VDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms  
during power-on reset and power-down sequences.  
4. (M,N,L)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.  
5. NVIN on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as  
shown in Figure 2.  
6. The max value of supply voltage should be selected based on the RGMII mode.  
7. NVDD means NVDD1_OFF, NVDD1_ON, NVDD2_OFF, NVDD2_ON, NVDD3_OFF, NVDD4_OFF  
8. LVDD means LVDD1_OFF and LVDD2_ON  
3.1.2  
Power Supply Voltage Specification  
This table provides the recommended operating conditions for theMPC8315E. Note that the values in this  
table are the recommended and tested operating conditions. Proper device operation outside of these  
conditions is not guaranteed.  
Table 2. Recommended Operating Conditions  
Recommended  
Value1  
Status in D3  
Warm mode  
Characteristic  
Symbol  
Unit  
Note  
SerDes internal digital power  
XCOREVDD  
XCOREVSS  
XPADVDD  
1.0 ± 50 mv  
0.0  
V
V
V
V
V
V
V
V
V
V
Switched Off  
SerDes internal digital power  
SerDes I/O digital power  
1.0 ± 50 mv  
0.0  
Switched Off  
SerDes I/O digital power  
XPADVSS  
SerDes analog power for PLL  
SDAVDD  
1.0 ± 50 mv  
0.0  
Switched Off  
SerDes analog power for PLL  
SDAVSS  
Dedicated 3.3 V analog power for USB PLL  
Dedicated 1.0 Vanalog power for USB PLL  
Dedicated analog ground for USB PLL  
Dedicated USB power for USB bias circuit  
USB_PLL_PWR3  
USB_PLL_PWR1  
USB_PLL_GND  
USB_VDDA_BIAS  
3.3 ± 165mv  
1.0 ± 50 mv  
0.0  
Switched Off  
Switched Off  
3.3 ± 300 mv  
Switched Off  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
9
Electrical Characteristics  
Table 2. Recommended Operating Conditions (continued)  
Recommended  
Status in D3  
Warm mode  
Characteristic  
Symbol  
Unit  
Note  
Value1  
Dedicated USB ground for USB bias circuit  
Dedicated power for USB transceiver  
Dedicated ground for USB transceiver  
SATA digital power  
USB_VSSA_BIAS  
USB_VDDA  
USB_VSSA  
SATA_VDD  
SATA_VSS  
VDD1IO  
0.0  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
6
3.3 ± 300 mv  
0.0  
Switched Off  
1.0 ± 50 mv  
0.0  
Switched Off  
SATA digital ground  
SATA analog I/O power  
1.0 ± 50 mv  
0.0  
Switched Off  
SATA analog I/O ground  
VSS1IO  
SATA core analog power  
VDD1ANA  
VSS1ANA  
VDD33PLL  
VDD33ANA  
VSSRESREF  
VDD  
1.0 ± 50 mv  
0.0  
Switched Off  
SATA analog ground  
SATA analog power PLL  
3.3 ± 165 mv  
3.3 ± 165 mv  
0.0  
Switched Off  
Switched Off  
SATA 3.3 analog power  
SATA reference analog ground  
Core supply voltage  
1.0 ± 50 mv  
1.0 ± 50 mv  
1.0 ± 50 mv  
1.0 ± 50 mv  
Switched Off  
Switched On  
Switched Off  
Switched On  
Switched Off  
Core supply voltage  
VDDC  
Analog power for e300 core APLL  
Analog power for system APLL  
DDR and DDR2 DRAM I/O voltage  
AVDD1  
AVDD2  
6
GVDD  
2.5 ± 200 mv  
1.8 ± 100 mv  
Differential reference voltage for DDR and DDR2  
controller  
MVREF  
GVDD /2  
V
Switched Off  
Standard I/O voltage  
Standard I/O voltage  
Standard I/O voltage  
Standard I/O voltage  
Standard I/O voltage  
Standard I/O voltage  
eTSEC/USBdr I/O supply  
NVDD1_ON  
NVDD2_ON  
NVDD1_OFF  
NVDD2_OFF  
NVDD3_OFF  
NVDD4_OFF  
LVDD1_OFF  
3.3 ± 300 mv  
3.3 ± 300 mv  
3.3 ± 300 mv  
3.3 ± 300 mv  
3.3 ± 300 mv  
3.3 ± 300 mv  
V
V
V
V
V
V
V
Switched On  
Switched On  
Switched Off  
Switched Off  
Switched Off  
Switched Off  
Switched Off  
1
1
2
2
2
2
2.5 ± 125 mv  
3.3 ± 300 mv  
eTSEC I/O supply  
LVDD2_ON  
VSS  
2.5 ± 125 mv  
3.3 ± 300 mv  
V
Switched On  
Analog and digital ground  
Junction temperature range  
0.0  
V
3
0 to105  
C  
T /T  
A
J
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
10  
Electrical Characteristics  
Table 2. Recommended Operating Conditions (continued)  
Recommended  
Status in D3  
Note  
Characteristic  
Symbol  
Unit  
Value1  
Warm mode  
Note:  
1. The NVDDx_ON are static power supplies and can be connected together.  
2. The NVDDx_OFF are switchable power supplies and can be connected together.  
3. Minimum Temperature is specified with TA;maximum temperature is specified with TJ.  
4. All Power rails must be connected and power applied to the MPC8315 even if the IP interfaces are not used.  
5. All I/O pins should be interfaced with peripherals operating at same voltage level.  
6. This voltage is the input to the filter discussed in Section 26.2, “PLL Power Supply Filtering” and not necessarily the voltage  
at the AVDD pin.  
7. All 1V power supplies should be derived from the same source.  
This figure shows the undershoot and overshoot voltages at the interfaces of the MPC8315E.  
G/L/NVDD + 20%  
G/L/NVDD + 5%  
G/L/NVDD  
VIH  
GND  
GND – 0.3 V  
VIL  
GND – 0.7 V  
Not to Exceed 10%  
1
of tinterface  
Note:  
1. tinterface refers to the clock period associated with the bus clock interface.  
Figure 2. Overshoot/Undershoot Voltage for GVDD/NVDD/LVDD  
3.1.3  
Output Driver Characteristics  
This table provides information on the characteristics of the output driver strengths. The values are  
preliminary estimates.  
Table 3. Output Drive Capability  
Output  
Impedance ()  
Supply  
Voltage  
Driver Type  
Local bus interface utilities signals  
PCI signals  
42  
25  
18  
18  
NVDD = 3.3 V  
DDR signal1  
GVDD = 2.5 V  
GVDD = 1.8 V  
DDR2 signal 1  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
11  
Electrical Characteristics  
Table 3. Output Drive Capability (continued)  
Output  
Driver Type  
Supply  
Voltage  
Impedance ()  
DUART, system control, I2C, JTAG,SPI  
42  
42  
42  
NVDD = 3.3 V  
NVDD = 3.3 V  
GPIO signals  
eTSEC  
LVDD = 3.3 V / 2.5 V  
1
Output Impedance can also be adjusted through configurable options in DDR  
Control Driver Register (DDRCDR). See the MPC8315E PowerQUICC II Pro  
Integrated Host Processor Family Reference Manual.  
3.2  
Power Sequencing  
The MPC8315E does not require the core supply voltage (VDD and VDDC) and I/O supply voltages  
(GVDD, LVDDx_ON, LVDDx_OFF, NVDDx_ON and NVDDx_OFF) to be applied in any particular  
order. During the power ramp up, before the power supplies are stable, if the I/O voltages are supplied  
before the core voltage, there may be a period of time when all input and output pins be actively driven  
and cause contention and/or excessive current. In order to avoid actively driving the I/O pins and to  
eliminate excessive current draw, apply the continuous core voltage (VDDC) before the continuous I/O  
voltages (LVDDx_ON and NVDDx_ON) and switchable core voltage (VDD) before the switchable I/O  
voltages (GVDD, LVDDx_OFF, and NVDDx_OFF). PORESET should be asserted before the continuous  
power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply  
must rise to 90% of its nominal value before the I/O supplies reach 0.7 V, see Figure 3. Once all the power  
supplies are stable, wait for a minimum of 32 clock cycles before negating PORESET.  
The I/O power supply ramp-up slew rate should be slower than 4V/100 s, this requirement is for ESD  
circuit.  
This figure shows the power-up sequencing for switchable and continuous supplies.  
V
Switchable I/O Voltage  
V
Continuous I/O Voltage  
Switchable Core Voltage (VDD)  
0.7 V  
Continuous Core Voltage  
0.7 V  
90%  
90%  
t
t
Power sequence for switchable power supplies  
Power sequence for continuous power supplies  
Figure 3. Power-Up Sequencing  
When switching from normal mode to D3 warm (standby) mode, first turn off the switchable I/O voltage  
supply and then turn off the switchable core voltage supply. Similarly, when switching from D3 warm  
(standby) mode to normal mode, first turn on the switchable core voltage supply and then turn on the  
switchable I/O voltage supply.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
12  
Freescale Semiconductor  
Electrical Characteristics  
CAUTION  
When the device is in D3 warm (standby) mode, all external voltage  
supplies applied to any I/O pins, with the exception of wake-up pins, must  
be turned off. Applying supplied external voltage to any I/O pins, except the  
wake up pins, while the device is in D3 warm standby mode may cause  
permanent damage to the device.  
An example of the power-up sequence is shown in Figure 4 when implemented along with low power D3  
warm mode.  
Switchable I/O Voltage  
Continuous I/O Voltage  
(GVDD, LVDDx_OFF, NVDDx_OFF)  
V
(LVDDx_ON, NVDDx_ON)  
Continuous Core Voltage  
VDDC  
Switchable Core Voltage  
(VDD)  
90%  
t
0
PORESET  
tSYS_CLK_IN / tPCI_SYNC_IN >= 32 clock  
Figure 4. Power Up Sequencing Example with Low power D3 Warm Mode  
The switchable and continuous supplies can be combined when the D3 warm mode is not used.  
The SATA power supplies VDD33PLL and VDD33ANA should go high after NVDD3_OFF supply and  
go low before NVDD3_OFF supply. The NVDD3_OFF voltage levels should not drop below the  
VDD33PLL, VDD33ANA voltages at any time.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
13  
Power Characteristics  
This figure shows the SATA power supplies.  
Voltage  
NVDD3_OFF  
t Š 0  
NVDD3_OFF  
VDD33_PLL &  
VDD33_ANA  
Time  
Figure 5. SATA Power Supplies  
4 Power Characteristics  
This table shows the estimated typical power dissipation for this family of devices.  
Table 4. MPC8315E Power Dissipation  
(Does not include I/O power dissipation)  
Core Frequency (MHz)  
CSB Frequency (MHz)  
Typical 1,3  
Maximum 1,2  
Unit  
266  
333  
400  
133  
133  
133  
1.116  
1.142  
1.167  
1.646  
1.665  
1.690  
W
W
W
Note:  
1. The values do not include I/O supply power, but do include core, AVDD, USB PLL, digital SerDes power, and  
SATA PHY power.  
2. Maximum power is based on a voltage of Vdd = 1.05V, a junction temperature of Tj = 105°C, and an artificial  
smoker test.  
3. Typical power is based on a voltage of Vdd = 1.05V, and an artificial smoker test running at room temperature.  
This table shows the estimated typical I/O power dissipation for this family of devices.  
Table 5. MPC8315E Power Dissipation  
SATA_VDD, XCOREVDD,  
LVDD1_OFF/ LVDD2 VDD33PLL,  
GVDD GVDD NVDD  
(1.8 V) (2.5 V) (3.3 V)  
VDD1IO,  
VDD1ANA  
(1.0V)  
XPADVDD,  
SDAVDD  
(1.0V)  
Interface  
Frequency  
LVDD2_ON  
(3.3V)  
_ON VDD33ANA  
Unit  
(3.3V)  
(3.3V)  
DDR 1  
Rs = 22  
Rt = 50  
266MHz,  
32 bits  
0.323  
0.291  
W
W
200MHz,  
32 bits  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
14  
Clock Input Timing  
Table 5. MPC8315E Power Dissipation (continued)  
SATA_VDD, XCOREVDD,  
LVDD1_OFF/ LVDD2 VDD33PLL,  
GVDD GVDD NVDD  
(1.8 V) (2.5 V) (3.3 V)  
VDD1IO,  
VDD1ANA  
(1.0V)  
XPADVDD,  
SDAVDD  
Interface  
Frequency  
LVDD2_ON  
(3.3V)  
_ON VDD33ANA  
Unit  
(3.3V)  
(3.3V)  
(1.0V)  
DDR 2  
Rs = 22  
Rt = 75  
266MHz, 0.246  
32 bits  
W
W
200MHz, 0.225  
32bits  
PCI I/O  
load = 50pF  
33 MHz  
66 MHz  
66 MHz  
50 MHz  
0.120  
0.249  
W
W
W
W
W
W
Local bus I/O  
load = 20pF  
0.056  
0.040  
eTSEC I/O MII, 25MHz  
load = 20pF  
0.008  
0.078  
RGMII,  
Multiple by  
125MHz  
number of  
(3.3V)  
interface  
RGMII,  
125MHz  
(2.5V)  
0.044  
0.078  
W
W
used  
USBDR  
Controller  
60 MHz  
(ULPI mode)  
load =20pF  
USBDR+  
480 MHz  
0.274  
W
Internal PHY  
(UTMI mode)  
PCI Express  
two x1lane  
2.5 GHz  
3.0 GHz  
0.021  
0.206  
0.190  
W
W
W
SATA two  
ports  
Other I/O  
0.015  
5 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the MPC8315E.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
15  
Clock Input Timing  
5.1  
DC Electrical Characteristics  
This table provides the clock input (SYS_CLK_IN/PCI_SYNC_IN) DC timing specifications for the  
MPC8315E.  
Table 6. SYS_CLK_IN DC Electrical Characteristics  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
IIN  
IIN  
IIN  
IIN  
IIN  
IIN  
2.4  
-0.3  
NVDD + 0.3  
0.4  
V
Input low voltage  
V
SYS_CLK_IN input current  
SYS_XTAL_IN input current  
PCI_SYNC_IN input current  
RTC_CLK input current  
USB_CLK_IN input current  
USB_XTAL_IN input current  
SATA_CLK_IN input current  
0 V VIN NVDD  
0 V VIN NVDD  
0 V VIN NVDD  
0 V VIN NVDD  
0 V VIN NVDD  
0 V VIN NVDD  
0 V VIN NVDD  
±10  
A  
A  
A  
A  
A  
A  
A  
±40  
±10  
±10  
±10  
±40  
±10  
5.2  
AC Electrical Characteristics  
The primary clock source for the MPC8315E can be one of two inputs, SYS_CLK_IN or PCI_CLK,  
depending on whether the device is configured in PCI host or PCI agent mode. This table provides the  
clock input (SYS_CLK_IN/PCI_CLK) AC timing specifications for the MPC8315E.  
Table 7. SYS_CLK_IN AC Timing Specifications  
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
SYS_CLK_IN/PCI_CLK frequency  
SYS_CLK_IN/PCI_CLK cycle time  
SYS_CLK_IN rise and fall time  
PCI_CLK rise and fall time  
SYS_CLK_IN/PCI_CLK duty cycle  
SYS_CLK_IN/PCI_CLK jitter  
Note:  
fSYS_CLK_IN  
tSYS_CLK_IN  
KH, tKL  
24  
15  
0.6  
0.6  
40  
0.8  
66.67  
41.6  
4
MHz  
ns  
1, 6, 7  
6
t
ns  
2, 6  
2
tPCH, tPCL  
KHK/tSYS_CLK_IN  
1.2  
ns  
t
60  
%
3, 6  
4, 5, 6  
±150  
ps  
1. Caution: The system, core, and security block must not exceed their respective maximum or minimum operating  
frequencies.  
2. Rise and fall times for SYS_CLK_IN/PCI_CLK are specified at 20% to 80% of signal swing.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The SYS_CLK_IN/PCI_CLK driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be set  
low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.  
6. The parameter names PCI_CLK and PCI_SYNC_IN are used interchangeably in this document.  
7. Spread spectrum is allowed up to 1% down-spread at 33kHz.(max. rate).  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
16  
Freescale Semiconductor  
RESET Initialization  
6 RESET Initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and  
electrical requirements of the MPC8315E.  
6.1  
RESET DC Electrical Characteristics  
This table provides the DC electrical characteristics for the RESET pins of the MPC8315E.  
Table 8. RESET Pins DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
–0.3  
NVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
±5  
IIN  
0 V  VIN  NVDD  
IOH = –8.0 mA  
IOL = 8.0 mA  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
6.2  
RESET AC Electrical Characteristics  
This table provides the reset initialization AC timing specifications of the MPC8315E.  
Table 9. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Note  
Required assertion time of HRESET to activate reset flow  
32  
32  
tPCI_SYNC_IN  
tSYS_CLK_IN  
1
2
Required assertion time of PORESET with stable clock applied to SYS_CLK_IN  
when the device is in PCI host mode  
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN  
when the device is in PCI agent mode  
32  
tPCI_SYNC_IN  
1
HRESET assertion (output)  
512  
4
tPCI_SYNC_IN  
tSYS_CLK_IN  
1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3] and  
CFG_SYS_CLKIN_DIV) with respect to negation of PORESET when the device is  
in PCI host mode  
2, 4  
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3] and  
CFG_SYS_CLKIN_DIV) with respect to negation of PORESET when the device is  
in PCI agent mode  
4
tPCI_SYNC_IN  
1
Input hold time for POR configuration signals with respect to negation of HRESET  
0
4
ns  
ns  
3
Time for the device to turn off POR configuration signals with respect to the  
assertion of HRESET  
Time for the device to turn on POR config signals with respect to the negation of  
HRESET  
1
tPCI_SYNC_IN  
1, 3  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
17  
DDR and DDR2 SDRAM  
Note:  
Table 9. RESET Initialization Timing Specifications (continued)  
1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary  
clock is applied to the SYS_CLK_IN input, and PCI_SYNC_IN period depends on the value of CFG_SYS_CLKIN_DIV.  
2. tSYS_CLK_IN is the clock period of the input clock applied to SYS_CLK_IN. It is only valid when the device is in PCI host mode.  
3. POR configuration signals consists of CFG_RESET_SOURCE[0:3] and CFG_SYS_CLKIN_DIV.  
4. The parameter names CFG_SYS_CLKIN_DIV and CFG_CLKIN_DIV are used interchangeably in this document.  
This table provides the PLL lock times.  
Table 10. PLL Lock Times  
Parameter/Condition  
System PLL lock times  
Min  
Max  
Unit  
Note  
100  
100  
100  
100  
100  
s  
s  
s  
s  
s  
e300 core PLL lock times  
SerDes (SGMII/PCI Exp Phy) PLL lock times  
USB phy PLL lock times  
SATA phy PLL lock times  
7 DDR and DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the  
MPC8315E. Note that DDR SDRAM is GVDD(typ) = 2.5 V and DDR2 SDRAM is GVDD(typ) = 1.8 V.  
7.1 DDR and DDR2 SDRAM DC Electrical Characteristics  
This table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the  
MPC8315E when GVDD(typ) = 1.8 V.  
Table 11. DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Note  
GVDD  
MVREF  
VTT  
1.7  
0.49 GVDD  
MVREF – 0.04  
MVREF+ 0.125  
–0.3  
1.9  
0.51 GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.125  
9.9  
V
V
1
2
I/O reference voltage  
I/O termination voltage  
Input high voltage  
V
3
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
IOZ  
–9.9  
A  
mA  
Output high current (VOUT = 1.420 V,  
GVDD= 1.7V)  
IOH  
–13.4  
Output low current (VOUT = 0.280 V)  
IOL  
13.4  
mA  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
18  
DDR and DDR2 SDRAM  
Table 11. DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V (continued)  
Parameter/Condition Symbol Min Max Unit  
Note  
Note:  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed ±2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF.  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD.  
This table provides the DDR2 capacitance when GVDD(typ) = 1.8 V.  
Table 12. DDR2 SDRAM Capacitance for GVDD(typ) = 1.8 V  
Parameter/Condition  
Input/output capacitance: DQ, DQS  
Symbol  
Min  
Max  
Unit  
Note  
CIO  
6
8
pF  
pF  
1
1
Delta input/output capacitance: DQ, DQS  
CDIO  
0.5  
Note:  
1. This parameter is sampled. GVDD = 1.8 V ± 0.090 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
This table provides the recommended operating conditions for the DDR SDRAM component(s) of the  
MPC8315E when GVDD(typ) = 2.5 V.  
Table 13. DDR SDRAM DC Electrical Characteristics for GVDD(typ) = 2.5 V  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Note  
GVDD  
MVREF  
VTT  
2.3  
0.49 GVDD  
MVREF – 0.04  
MVREF + 0.15  
–0.3  
2.7  
V
V
1
2
I/O reference voltage  
I/O termination voltage  
Input high voltage  
0.51 GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.15  
–9.9  
V
3
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
IOZ  
–9.9  
A  
mA  
Output high current (VOUT = 1.95 V,  
GVDD = 2.3V)  
IOH  
–16.2  
Output low current (VOUT = 0.35 V)  
IOL  
16.2  
mA  
Note:  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed ±2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF.  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD.  
This table provides the DDR capacitance when GVDD(typ) = 2.5 V.  
Table 14. DDR SDRAM Capacitance for GVDD(typ) = 2.5 V Interface  
Parameter/Condition  
Input/output capacitance: DQ,DQS  
Symbol  
Min  
Max  
Unit  
Note  
CIO  
6
8
pF  
1
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
19  
DDR and DDR2 SDRAM  
Table 14. DDR SDRAM Capacitance for GVDD(typ) = 2.5 V Interface  
Delta input/output capacitance: DQ, DQS  
CDIO  
0.5  
pF  
1
Note:  
1. This parameter is sampled. GVDD = 2.5 V ± 0.125 V, f = 1 MHz, TA = 25C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
This table provides the current draw characteristics for MV  
.
REF  
Table 15. Current Draw Characteristics for MV  
REF  
Parameter / Condition  
Current draw for MVREF  
Note:  
1. The voltage regulator for MVREF must be able to supply up to 500 A current.  
Symbol  
Min  
Max  
Unit  
Note  
IMVREF  
500  
A  
1
7.2  
DDR and DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.  
7.2.1  
DDR and DDR2 SDRAM Input AC Timing Specifications  
This table lists the input AC timing specifications for the DDR2 SDRAM (GVDD(typ) = 1.8 V).  
Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface  
At recommended operating conditions with GVDD of 1.8V ± 100 mV  
Parameter  
AC input low voltage  
AC input high voltage  
Symbol  
Min  
Max  
Unit  
Note  
VIL  
MVREF – 0.45  
V
V
VIH  
MVREF + 0.45  
This table lists the input AC timing specifications for the DDR SDRAM when GVDD(typ)=2.5 V.  
Table 17. DDR SDRAM Input AC Timing Specifications for 2.5 V Interface  
At recommended operating conditions with GVDD of 2.5V ± 200 mV  
Parameter  
AC input low voltage  
AC input high voltage  
Symbol  
Min  
Max  
Unit  
Note  
VIL  
MVREF – 0.51  
V
V
VIH  
MVREF + 0.51  
The following two tables list the input AC timing specifications for the DDR SDRAM interface.  
Table 18. DDR2 SDRAM Input AC Timing Specifications  
At recommended operating conditions with GVDD of (1.8 V± 100 mV)  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Controller Skew for MDQS—MDQ  
tCISKEW  
ps  
1, 2, 3  
266 MHz  
200 MHz  
–875  
–1250  
875  
1250  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
20  
DDR and DDR2 SDRAM  
Table 18. DDR2 SDRAM Input AC Timing Specifications  
At recommended operating conditions with GVDD of (1.8 V± 100 mV)  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Note:  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit to  
be captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW.This can be  
determined by the following equation: tDISKEW =+/–(T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is  
the absolute value of tCISKEW  
.
3. Memory controller ODT value of 150 is recommended.  
Table 19. DDR SDRAM Input AC Timing Specifications  
At recommended operating conditions with GVDD of (2.5V ± 200 mV)  
Parameter  
Symbol  
tCISKEW  
Min  
Max  
Unit  
Note  
Controller Skew for MDQS—MDQ  
ps  
1, 2  
266 MHz  
200 MHz  
–750  
–1250  
750  
1250  
Note:  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit to  
be captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be  
determined by the following equation: tDISKEW =+/–(T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the  
absolute value of tCISKEW  
.
This figure shows the DDR SDRAM input AC timing for the tolerated MDQS to MDQ skew (t  
)
DISKEW  
MCK[n]  
MCK[n]  
tMCK  
MDQS[n]  
MDQ[x]  
D0  
D1  
tDISKEW  
tDISKEW  
Figure 6. Timing Diagram for t  
DISKEW  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
21  
DDR and DDR2 SDRAM  
7.2.2  
DDR and DDR2 SDRAM Output AC Timing Specifications  
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications  
At recommended operating conditions  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
MCK[n] cycle time at MCK[n]/MCK[n] crossing  
ADDR/CMD output setup with respect to MCK  
tMCK  
7.5  
10  
ns  
ns  
2
3
tDDKHAS  
266 MHz  
200 MHz  
2.9  
3.5  
ADDR/CMD output hold with respect to MCK  
MCS[n] output setup with respect to MCK  
MCS[n] output hold with respect to MCK  
MCK to MDQS Skew  
tDDKHAX  
tDDKHCS  
tDDKHCX  
ns  
ns  
ns  
3
3
3
266 MHz  
200 MHz  
3.15  
4.20  
266 MHz  
200 MHz  
3.15  
4.20  
266 MHz  
200 MHz  
3.15  
4.20  
tDDKHMH  
tDDKHDS,  
–0.6  
0.6  
ns  
ps  
4
5
MDQ//MDM output setup with respect to MDQS  
266 MHz tDDKLDS  
200 MHz  
900  
1000  
MDQ//MDM output hold with respect to MDQS  
tDDKHDX,  
266 MHz tDDKLDX  
200 MHz  
ps  
5
1100  
1200  
MDQS preamble start  
MDQS epilogue end  
Note:  
tDDKHMP –0.5 tMCK – 0.6 –0.5 tMCK + 0.6  
tDDKHME –0.6 0.6  
ns  
ns  
6
6
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs  
(A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.  
4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing  
(DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through  
control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust  
in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the  
same adjustment value. See the MPC8315E PowerQUICC II Pro Integrated Host Processor Family Reference Manual for a  
description and understanding of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (),  
or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that tDDKHMP follows the  
symbol conventions described in note 1.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
22  
Freescale Semiconductor  
DDR and DDR2 SDRAM  
This figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement  
(t ).  
DDKHMH  
MCK  
MCK  
tMCK  
tDDKHMH(max) = 0.6 ns  
MDQS  
MDQS  
tDDKHMH(min) = –0.6 ns  
Figure 7. Timing Diagram for t  
DDKHMH  
This figure shows the DDR and DDR2 SDRAM output timing diagram.  
MCK  
MCK  
tMCK  
tDDKHAS, tDDKHCS  
tDDKHAX, tDDKHCX  
ADDR/CMD  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
MDQS[n]  
MDQ[x]  
tDDKHME  
tDDKHDS  
tDDKLDS  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 8. DDR and DDR2 SDRAM Output Timing Diagram  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
23  
DUART  
This figure provides the AC test load for the DDR bus.  
GVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 9. DDR AC Test Load  
8 DUART  
This section describes the DC and AC electrical specifications for the DUART interface.  
8.1  
DUART DC Electrical Characteristics  
This table lists the DC electrical characteristics for the DUART interface.  
Table 21. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
VIH  
VIL  
2.1  
NVDD + 0.3  
V
V
Low-level input voltage NVDD  
–0.3  
0.8  
High-level output voltage, IOH = –100 A  
Low-level output voltage, IOL = 100 A  
Input current (0 V VIN NVDD)  
VOH  
VOL  
IIN  
NVDD – 0.2  
V
0.2  
± 5  
V
A  
8.2  
DUART AC Electrical Specifications  
This table lists the AC timing parameters for the DUART interface.  
Table 22. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Note  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
Note:  
256  
> 1,000,000  
16  
baud  
baud  
1
2
1. Actual attainable baud rate is limited by the latency of interrupt processing.  
2. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the  
start bit. Subsequent bit values are sampled each sixteenth sample.  
9 Ethernet: Three-Speed Ethernet, MII Management  
This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII  
management.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
24  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
9.1  
eTSEC (10/100/1000 Mbps)—MII/RMII/RGMII/RTBI Electrical  
Characteristics  
The electrical characteristics specified here apply to all the media-independent interface (MII), reduced  
gigabit MII (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output  
(MDIO) and management data clock (MDC). The MII and RMII is defined for 3.3 V, while the RGMII,  
and RTBI can operate at 2.5 V. The RGMII and RTBI follow the Hewlett-Packard reduced pin-count  
interface for Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The  
electrical characteristics for MDIO and MDC are specified in Section 9.3, “Ethernet Management  
Interface Electrical Characteristics.”  
9.1.1  
MII, RMII, RGMII, and RTBI DC Electrical Characteristics  
All MII, RMII drivers and receivers comply with the DC parametric attributes specified in Table 23 for  
3.3-V operation and RGMII, RTBI drivers and receivers comply with the DC parametric attributes  
specified in Table 24. The RGMII and RTBI signals are based on a 2.5 V CMOS interface voltage as  
defined by JEDEC EIA/JESD8–5.  
NOTE  
eTSEC should be interfaced with peripheral operating at same voltage level.  
Table 23. MII/RMII (When Operating at 3.3 V) DC Electrical Characteristics  
Parameter  
Supply voltage 3.3 V  
Symbol  
Conditions  
Min  
Max  
Unit  
LVDD  
VOH  
VOL  
VIH  
VIL  
3.0  
2.40  
VSS  
2.1  
3.6  
LVDD + 0.3  
0.50  
V
V
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
IOH = –4.0 mA LVDD = Min  
IOL = 4.0 mA  
LVDD = Min  
V
LVDD + 0.3  
0.90  
V
–0.3  
V
IIH  
VIN 1 = LVDD  
VIN 1 = VSS  
40  
A  
A  
IIL  
–600  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics  
Parameters  
Supply voltage 2.5 V  
Symbol  
Conditions  
Min  
Max  
Unit  
LVDD  
VOH  
VOL  
VIH  
VIL  
2.37  
2.00  
2.63  
LVDD + 0.3  
0.40  
V
V
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
IOH = –1.0 mA LVDD = Min  
IOL = 1.0 mA  
LVDD = Min  
LVDD = Min  
LVDD =Min  
VSS– 0.3  
1.7  
V
LVDD + 0.3  
0.70  
V
–0.3  
V
IIH  
VIN 1 = LVDD  
VIN 1 = VSS  
15  
A  
A  
IIL  
–15  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
25  
Ethernet: Three-Speed Ethernet, MII Management  
Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics (continued)  
Parameters  
Symbol  
Conditions  
Min  
Max  
Unit  
Note:  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
9.2  
MII, RMII, RGMII, and RTBI AC Timing Specifications  
The AC timing specifications for MII, RMII, RGMII, and RTBI are presented in this section.  
9.2.1  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
9.2.1.1  
MII Transmit AC Timing Specifications  
This table provides the MII transmit AC timing specifications.  
Table 25. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD of 3.3 V ± 300 mv.  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
TX_CLK clock period 10 Mbps  
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
tMTX  
tMTX  
400  
40  
5
ns  
ns  
%
t
MTXH/tMTX  
tMTKHDX  
tMTXR  
35  
1
65  
15  
4.0  
4.0  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
TX_CLK data clock rise VIL(min) to VIH(max)  
TX_CLK data clock fall VIH(max) to VIL(min)  
Note:  
ns  
ns  
ns  
1.0  
1.0  
tMTXF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit  
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general,  
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional.  
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is  
used with the appropriate letter: R (rise) or F (fall).  
This figure shows the MII transmit AC timing diagram.  
tMTXR  
tMTX  
TX_CLK  
tMTXF  
tMTXH  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 10. MII Transmit AC Timing Diagram  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
26  
Ethernet: Three-Speed Ethernet, MII Management  
9.2.1.2  
MII Receive AC Timing Specifications  
This table provides the MII receive AC timing specifications.  
Table 26. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDD of 3.3 V ± 300 mv  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
RX_CLK clock period 10 Mbps  
RX_CLK clock period 100 Mbps  
RX_CLK duty cycle  
tMRX  
tMRX  
400  
40  
ns  
ns  
%
tMRXH/tMRX  
tMRDVKH  
tMRDXKH  
tMRXR  
35  
65  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise VIL(min) to VIH(max)  
RX_CLK clock fall time VIH(max) to VIL(min)  
Note:  
10.0  
10.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
tMRXF  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII  
receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock  
reference (K) going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the  
time data input signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time.  
Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a  
particular functional. For example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times,  
the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm  
This figure provides the AC test load for eTSEC.  
LVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 11. eTSEC AC Test Load  
This figure shows the MII receive AC timing diagram.  
tMRXR  
tMRX  
RX_CLK  
tMRXH  
tMRXF  
Valid Data  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKH  
Figure 12. MII Receive AC Timing Diagram RMII AC Timing Specifications  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
27  
Ethernet: Three-Speed Ethernet, MII Management  
9.2.2  
RMII AC Timing Specifications  
This section describes the RMII transmit and receive AC timing specifications.  
9.2.2.1  
RMII Transmit AC Timing Specifications  
This section describes the RMII transmit and receive AC timing specifications. This table provides the  
RMII transmit AC timing specifications.  
Table 27. RMII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD of 3.3 V ± 300 mv  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
REF_CLK clock  
tRMX  
RMXH/tRMX  
tRMTKHDX  
tRMXR  
35  
2
20  
65  
ns  
%
REF_CLK duty cycle  
t
REF_CLK to RMII data TXD[1:0], TX_EN delay  
REF_CLK data clock rise VIL(min) to VIH(max)  
REF_CLK data clock fall VIH(max) to VIL(min)  
Note:  
10  
ns  
ns  
ns  
1.0  
1.0  
4.0  
4.0  
tRMXF  
1. The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state) (reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMTKHDX symbolizes RMII  
transmit timing (RMT) for the time tRMX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in  
general, the clock reference symbol representation is based on two to three letters representing the clock of a particular  
functional. For example, the subscript of tRMX represents the RMII(RM) reference (X) clock. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
This figure shows the RMII transmit AC timing diagram.  
tRMXR  
tRMX  
REF_CLK  
tRMXH  
tRMXF  
TXD[1:0]  
TX_EN  
tRMTKHDX  
Figure 13. RMII Transmit AC Timing Diagram  
9.2.2.2  
RMII Receive AC Timing Specifications  
This table provides the RMII receive AC timing specifications.  
Table 28. RMII Receive AC Timing Specifications  
At recommended operating conditions with LVDD of 3.3 V ± 300 mv  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
REF_CLK clock period  
REF_CLK duty cycle  
tRMX  
20  
ns  
%
tRMXH/tRMX  
35  
65  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
28  
Ethernet: Three-Speed Ethernet, MII Management  
Table 28. RMII Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDD of 3.3 V ± 300 mv  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK  
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK  
REF_CLK clock rise VIL(min) to VIH(max)  
REF_CLK clock fall time VIH(max) to VIL(min)  
Note:  
tRMRDVKH  
tRMRDXKH  
tRMXR  
4.0  
2.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
tRMXF  
1. The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state) (reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMRDVKH symbolizes RMII  
receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the tRMX clock  
reference (K) going to the high (H) state or setup time. Also, tRMRDXKL symbolizes RMII receive timing (RMR) with respect to  
the time data input signals (D) went invalid (X) relative to the tRMX clock reference (K) going to the low (L) state or hold time.  
Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular  
functional. For example, the subscript of tRMX represents the RMII (RM) reference (X) clock. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
This figure provides the AC test load.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 14. AC Test Load  
This figure shows the RMII receive AC timing diagram.  
tRMX  
tRMXR  
REF_CLK  
tRMXF  
Valid Data  
tRMXH  
RXD[1:0]  
CRS_DV  
RX_ER  
tRMRDVKH  
tRMRDXKH  
Figure 15. RMII Receive AC Timing Diagram  
9.2.3  
RGMII and RTBI AC Timing Specifications  
This table presents the RGMII and RTBI AC timing specifications.  
Table 29. RGMII and RTBI AC Timing Specifications  
At recommended operating conditions (see Table 2)  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
Data to clock output skew (at transmitter)  
Data to clock input skew (at receiver) 2  
tSKRGT  
tSKRGT  
–0.6  
1.0  
0.6  
2.6  
ns  
ns  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
29  
Ethernet: Three-Speed Ethernet, MII Management  
Table 29. RGMII and RTBI AC Timing Specifications (continued)  
At recommended operating conditions (see Table 2)  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
Clock cycle duration 3  
tRGT  
tRGTH/tRGT  
tRGTH/tRGT  
tRGTR  
7.2  
45  
40  
8.0  
50  
50  
8.8  
55  
ns  
%
Duty cycle for 1000Base-T 4, 5  
Duty cycle for 10BASE-T and 100BASE-TX 3, 5  
Rise time (20%–80%)  
60  
%
0.75  
0.75  
ns  
ns  
ns  
%
Fall time (20%–80%)  
tRGTF  
6
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
Note:  
tG12  
8.0  
tG125H/tG125  
47  
53  
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII  
and RTBI timing. For example, the subscript of tRGT represents the RTBI (T) receive (RX) clock. Note also that the notation for rise  
(R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew  
(SK) followed by the clock that is being skewed (RGT).  
2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to  
the associated clock signal.  
3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as  
the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned between.  
5. Duty cycle reference is LVDD/2.  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention. GTX_CLK  
supply voltage is fixed at 3.3V inside the chip. If PHY supplies a 2.5 V Clock signal on this input, set TSCOMOBI bit of System I/O  
configuration register (SICRH) as 1. See the MPC8315E PowerQUICC II Pro Integrated Host Processor Family Reference Manual.  
7. The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
30  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.  
tRGT  
tRGTH  
GTX_CLK  
(At Transmitter)  
tSKRGT  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
tSKRGT  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
tSKRGT  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
tSKRGT  
RX_CLK  
(At Controller)  
Figure 16. RGMII and RTBI AC Timing and Multiplexing Diagrams  
9.3  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals management data  
input/output (MDIO) and management data clock (MDC). The electrical characteristics for MII, RMII,  
RGMII, and RTBI are specified in Section 9.1, “eTSEC (10/100/1000 Mbps)—MII/RMII/RGMII/RTBI  
Electrical Characteristics.”  
9.3.1  
MII Management DC Electrical Characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics  
for MDIO and MDC are provided in this table.  
Table 30. MII Management DC Electrical Characteristics Powered at 3.3 V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
NVDD  
VOH  
VOL  
VIH  
3.0  
2.10  
VSS  
2.00  
3.6  
NVDD + 0.3  
0.50  
V
V
IOH = –1.0 mA NVDD = Min  
IOL = 1.0 mA  
NVDD = Min  
V
V
VIL  
0.80  
V
Input high current  
IIH  
NVDD = Max VIN 1 = 2.1 V  
40  
A  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
31  
Ethernet: Three-Speed Ethernet, MII Management  
Table 30. MII Management DC Electrical Characteristics Powered at 3.3 V (continued)  
Parameter  
Input low current  
Note:  
1. The symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.  
Symbol  
Conditions  
Min  
Max  
Unit  
IIL  
NVDD = Max VIN = 0.5 V  
–600  
A  
9.3.2  
MII Management AC Electrical Specifications  
This table provides the MII management AC timing specifications.  
Table 31. MII Management AC Timing Specifications  
At recommended operating conditions with NVDD is 3.3 V ± 300 mv  
Parameter/Condition  
MDC frequency  
Symbol 1  
Min  
Typ  
Max  
Unit  
Note  
fMDC  
tMDC  
32  
10  
5
2.5  
400  
MHz  
ns  
2
MDC period  
3
MDC clock pulse width high  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
tMDCH  
ns  
tMDKHDX  
tMDDVKH  
tMDDXKH  
tMDCR  
170  
ns  
ns  
0
ns  
10  
10  
ns  
MDC fall time  
tMDHF  
ns  
Note:  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes  
management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data  
hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the  
valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 133 MHz, the maximum frequency is 4.16 MHz and  
the minimum frequency is 0.593 MHz).  
3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 133 MHz, the delay is 60 ns).  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
32  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
This figure shows the MII management AC timing diagram.  
tMDC  
tMDCR  
MDC  
tMDCF  
tMDCH  
MDIO  
(Input)  
tMDDVKH  
tMDDXKH  
MDIO  
(Output)  
tMDKHDX  
Figure 17. MII Management Interface Timing Diagram  
9.4  
1588 Timer Specifications  
This section describes the DC and AC electrical specifications for the 1588 timer.  
9.4.1  
1588 Timer DC Specifications  
This table provides the 1588 timer DC specifications.  
Table 32. GPIO DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Output high voltage  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
V
V
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
NVDD + 0.3  
0.8  
V
V
0 V VIN NVDD  
± 5  
A  
9.4.2  
1588 Timer AC Specifications  
This table provides the 1588 timer AC specifications.  
Table 33. 1588 Timer AC Specifications  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Timer clock cycle time  
tTMRCK  
tTMRCKS  
tTMRCKH  
tGCLKNV  
tTMRAL  
0
70  
6
MHz  
1
Input setup to timer clock  
Input hold from timer clock  
Output clock to output valid  
Timer alarm to output valid  
0
2, 3  
2, 3  
ns  
2
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
33  
Ethernet: Three-Speed Ethernet, MII Management  
Table 33. 1588 Timer AC Specifications (continued)  
Parameter Symbol Min Max  
Unit  
Note  
Note:  
1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected.  
2. Asynchronous signals.  
3. Inputs need to be stable at least one TMR clock.  
9.5  
SGMII Interface Electrical Characteristics  
Each SGMII port features a 4-wire AC-Coupled serial link from the dedicated SerDes interface of  
MPC8315E as shown in Figure 18, where C is the external (on board) AC-Coupled capacitor. Each  
TX  
output pin of the SerDes transmitter differential pair features 50-output impedance. Each input of the  
SerDes receiver differential pair features 50-on-die termination to XCOREVSS. The reference circuit  
of the SerDes transmitter and receiver is shown in Figure 49.  
When an eTSEC port is configured to operate in SGMII mode, the parallel interface’s output signals of  
this eTSEC port can be left floating. The input signals should be terminated based on the guidelines  
described in Section 26.4, “Connection Recommendations,” as long as such termination does not violate  
the desired POR configuration requirement on these pins, if applicable.  
When operating in SGMII mode, the TSEC_GTX_CLK125 clock is not required for this port. Instead,  
SerDes reference clock is required on SD_REF_CLK and SD_REF_CLK pins.  
9.5.1  
DC Requirements for SGMII SD_REF_CLK and SD_REF_CLK  
The characteristics and DC requirements of the separate SerDes reference clock are described in  
Section 15, “High-Speed Serial Interfaces (HSSI).”  
9.5.2  
AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK  
This table lists the SGMII SerDes reference clock AC requirements. Please note that SD_REF_CLK and  
SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock  
source.  
Table 34. SD_REF_CLK and SD_REF_CLK AC Requirements  
Symbol  
Parameter Description  
Min Typical Max Unit  
Note  
tREF  
REFCLK cycle time  
8
ns  
ps  
tREFCJ REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent  
REFCLK cycles  
100  
tREFPJ Phase jitter. Deviation in edge location with respect to mean edge location –50  
50  
ps  
9.5.3  
SGMII Transmitter and Receiver DC Electrical Characteristics  
Table 35 and Table 36 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical  
characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD_TX[n] and  
SD_TX[n]) as depicted in Figure 17.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
34  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
Table 35. SGMII DC Transmitter Electrical Characteristics  
Parameter  
Supply Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
XCOREVDD  
VOH  
0.95  
1.0  
1.05  
V
1
Output high voltage  
Output low voltage  
Output ringing  
XCOREVDD-Typ/2+ mV  
|VOD -max/2  
|
VOL  
XCOREVDD-Typ/2-  
mV  
1
|VOD -max/2  
|
VRING  
10  
%
323  
500  
725  
Equalization  
setting: 1.0x  
296  
269  
243  
215  
189  
162  
459  
417  
376  
333  
292  
250  
665  
604  
545  
483  
424  
362  
Equalization  
setting: 1.09x  
Equalization  
setting: 1.2x  
Output differential voltage2, 3, 5  
Equalization  
setting: 1.33x  
|VOD  
|
mV  
Equalization  
setting: 1.5x  
Equalization  
setting: 1.71x  
Equalization  
setting: 2.0x  
Output offset voltage  
VOS  
RO  
425  
40  
500  
575  
60  
10  
25  
25  
40  
mV  
1, 4  
Output impedance (single-ended)  
Mismatch in a pair  
RO  
|VOD  
VOS  
%
Change in VOD between “0” and “1”  
Change in VOS between “0” and “1”  
Output current on short to GND  
Note:  
|
mV  
mV  
mA  
ISA, ISB  
1. This will not align to DC-coupled SGMII. XCOREVDD-Typ=1.0V.  
2. |VOD| = |VTXn - VTXn|. |VOD| is also referred as output differential peak voltage. VTX-DIFFp-p = 2*|VOD .  
|
3. The |VOD| value shown in the table assumes the following transmit equalization setting in the TXEQA (for SerDes lane A) or  
TXEQE (for SerDes lane E) bit field of MPC8315E’s SerDes Control Register 0:  
The LSbits (bit [1:3]) of the above bit field is set based on the equalization setting shown in table.  
4. VOS is also referred to as output common mode voltage.  
5. The |VOD| value shown in the Typ column is based on the condition of XCOREVDD-Typ=1.0V, no common mode offset variation  
(VOS = 500 mV), SerDes transmitter is terminated with 100-differential load between TX[n] and TX[n].  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
35  
Ethernet: Three-Speed Ethernet, MII Management  
TXn  
RXm  
RXm  
50   
CTX  
50   
50   
Receiver  
Transmitter  
50   
CTX  
TXn  
RXn  
MPC8315E SGMII  
SerDes Interface  
CTX  
TXm  
50   
50   
50   
Receiver  
Transmitter  
50   
CTX  
RXn  
TXm  
Figure 18. 4-Wire AC-Coupled SGMII Serial Link Connection Example  
MPC8315E SGMII  
SerDes Interface  
TXn  
50   
50  
50  
Transmitter  
Vos  
VOD  
50   
TXn  
Figure 19. SGMII Transmitter DC Measurement Circuit  
Table 36. SGMII DC Receiver Electrical Characteristics  
Parameter  
Supply Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
XCOREVDD  
0.95  
1.0  
N/A  
1.05  
V
1
DC Input voltage range  
Input differential voltage  
EQ = 0  
EQ = 1  
EQ = 0  
EQ = 1  
VRX_DIFFp-p  
100  
175  
30  
1200  
mV  
2, 4  
Loss of signal threshold  
VLOS  
100  
175  
mV  
3, 4  
65  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
36  
Ethernet: Three-Speed Ethernet, MII Management  
Table 36. SGMII DC Receiver Electrical Characteristics (continued)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Input AC common mode voltage  
VCM_ACp-p  
ZRX_DIFF  
ZRX_CM  
80  
20  
100  
100  
120  
35  
mV  
5
Receiver differential input impedance  
Receiver common mode input  
impedance  
Common mode input voltage  
VCM  
Vxcorevss  
V
6
Note:  
1. Input must be externally AC-coupled.  
2. VRX_DIFFp-p is also referred to as peak to peak input differential voltage  
3. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in PCI Express. Refer to PCI  
Express Differential Receiver (RX) Input Specifications section for further explanation.  
4. The EQ shown in the table refers to the RXEQA or RXEQE bit field of MPC8315E’s SerDes Control Register 0.  
5. VCM_ACp-p is also referred to as peak to peak AC common mode voltage.  
6. On-chip termination to XCOREVSS.  
9.5.4  
SGMII AC Timing Specifications  
This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver  
characteristics are measured at the transmitter outputs (TX[n] and TX[n]) or at the receiver inputs (RX[n]  
and RX[n]) as depicted in Figure 21 respectively.  
9.5.4.1  
SGMII Transmit AC Timing Specifications  
This table provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.  
Table 37. SGMII Transmit AC Timing Specifications  
At recommended operating conditions with XCOREVDD = 1.0V ± 5%.  
Parameter  
Deterministic Jitter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
JD  
JT  
0.17  
0.35  
UI p-p  
UI p-p  
ps  
Total Jitter  
Unit Interval  
UI  
799.92  
50  
800  
800.08  
120  
VOD fall time (80%-20%)  
tfall  
trise  
ps  
VOD rise time (20%-80%)  
50  
120  
ps  
Note:  
1. Each UI is 800 ps ± 100 ppm.  
9.5.4.2  
SGMII Receive AC Timing Specifications  
This table provides the SGMII receive AC timing specifications. Source synchronous clocking is not  
supported. Clock is recovered from the data. Figure 20 shows the SGMII Receiver Input Compliance  
Mask eye diagram.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
37  
Ethernet: Three-Speed Ethernet, MII Management  
Table 38. SGMII Receive AC Timing Specifications  
At recommended operating conditions with XCOREVDD = 1.0V ± 5%.  
Parameter  
Deterministic Jitter Tolerance  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
JD  
JDR  
JSIN  
JT  
0.37  
0.55  
0.1  
UI p-p  
UI p-p  
UI p-p  
UI p-p  
1
1
Combined Deterministic and Random Jitter Tolerance  
Sinusoidal Jitter Tolerance  
Total Jitter Tolerance  
1
0.65  
1
Bit Error Ratio  
BER  
UI  
10-12  
800.08  
200  
2
Unit Interval  
799.92  
5
800  
ps  
AC Coupling Capacitor  
CTX  
nF  
3
Note:  
1. Measured at receiver.  
2. Each UI is 800 ps ± 100 ppm.  
3. The external AC coupling capacitor is required. It’s recommended to be placed near the device transmitter outputs.  
4. Refer to RapidIOTM 1x/4x LP Serial Physical Layer Specification for interpretation of jitter specifications.  
VRX_DIFFp-p-max/2  
VRX_DIFFp-p-min/2  
0
V  
/2  
RX_DIFFp-p-min  
VRX_DIFFp-p-max/2  
1
0
0.275  
0.4  
0.6  
0.725  
Time (UI)  
Figure 20. SGMII Receiver Input Compliance Mask  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
38  
USB  
Figure 21. SGMII AC Test/Measurement Load  
10 USB  
10.1 USB Dual-Role Controllers  
This section provides the AC and DC electrical specifications for the USB-ULPI interface.  
10.1.1 USB DC Electrical Characteristics  
This table lists the DC electrical characteristics for the USB interface.  
Table 39. USB DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
2
–0.3  
LVDD + 0.3  
V
V
0.8  
±5  
IIN  
A  
V
High-level output voltage, IOH = –100 A  
Low-level output voltage, IOL = 100 A  
Note:  
VOH  
VOL  
LVDD – 0.2  
0.2  
V
1. The symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.  
10.1.2 USB AC Electrical Specifications  
This table lists the general timing parameters of the USB-ULPI interface.  
Table 40. USB General Timing Parameters  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
USB clock cycle time  
tUSCK  
tUSIVKH  
tUSIXKH  
15  
4
ns  
ns  
ns  
1, 2  
1, 4  
1, 4  
Input setup to USB clock—all inputs  
Input hold to USB clock—all inputs  
1
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
39  
USB  
Table 40. USB General Timing Parameters (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
USB clock to output valid—all outputs  
Output hold from USB clock—all outputs  
Note:  
tUSKHOV  
tUSKHOX  
1
9
ns  
ns  
1
1
1. The symbols used for timing specifications follow the pattern of t(First two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes USB timing  
(US) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, tUSKHOX  
symbolizes USB timing (US) for the us clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or  
output hold time.  
2. All timings are in reference to USB clock.  
3. All signals are measured from NVDD/2 of the rising edge of USB clock to 0.4 NVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through  
the component pin is less than or equal to the leakage current specification.  
Figure 22 and Figure 23 provide the AC test load and signals for the USB, respectively.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 22. USB AC Test Load  
USBDR_CLK  
Input Signals  
tUSIXKH  
tUSIVKH  
tUSKHOX  
tUSKHOV  
Output Signals  
Figure 23. USB Signals  
10.2 On-Chip USB PHY  
This section provides the AC and DC electrical specifications for the USB PHY interface of the  
MPC8315E.  
For details refer to Tables 7-7 through 7-10, and Table 7-14 in the USB 2.0 Specifications document, and  
the pull-up/down resistors ECN updates, all available at www.usb.org.  
This table provides the USB clock input (USB_CLK_IN) DC timing specifications.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
40  
Freescale Semiconductor  
Local Bus  
Table 41. USB_CLK_IN DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
VIH  
VIL  
2.7  
NVDD + 0.3  
0.4  
V
V
–0.3  
This table provides the USB clock input (USB_CLK_IN) AC timing specifications.  
Table 42. USB_CLK_IN AC Timing Specifications  
Parameter/Condition  
Conditions  
Symbol  
Min  
Typical  
Max  
Unit  
Frequency range  
fUSB_CLK_IN  
tCLK_TOL  
24  
0
MHz  
%
Clock frequency tolerance  
–0.005  
0.005  
Reference clock duty cycle  
Measured at 1.6 V  
tCLK_DUTY  
tCLK_PJ  
40  
50  
60  
%
Total input jitter/Time interval Peak to peak value measured with a second  
200  
ps  
error  
order high-pass filter of 500 KHz bandwidth  
11 Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface of the  
MPC8315E.  
11.1 Local Bus DC Electrical Characteristics  
This table provides the DC electrical characteristics for the local bus interface.  
Table 43. DC Electrical Characteristics (when Operating at 3.3 V)  
Parameter  
Symbol  
Min  
Max  
Unit  
Output high voltage (NVDD = min, IOH = –2 mA)  
Output low voltage (NVDD = min, IOL = 2 mA)  
Input high voltage  
VOH  
VOL  
VIH  
VIL  
NVDD – 0.2  
0.2  
V
V
2
NVDD + 0.3  
0.8  
V
Input low voltage  
–0.3  
V
Input high current (VIN = 0 V or VIN = NVDD)  
IIN  
±5  
A  
11.2 Local Bus AC Electrical Specifications  
This table describes the general timing parameters of the local bus interface of the MPC8315E.  
Table 44. Local Bus General Timing Parameters  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
Local bus cycle time  
Input setup to local bus clock  
tLBK  
15  
7
ns  
ns  
2
tLBIVKH  
3, 4  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
41  
Local Bus  
Table 44. Local Bus General Timing Parameters (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
Input hold from local bus clock  
tLBIXKH  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
tLBKHOV  
tLBKHOZ  
tLALEHOV  
1.0  
1.5  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3, 4  
5
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock to output valid  
6
2.5  
7
3
Local bus clock to output high impedance for LAD  
LALE output rise to LCLK negative edge  
Note:  
4
8
3.0  
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional  
block)(signal)(state)(reference)(state) for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For  
example, tLBIXKH1 symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock  
reference (K) goes high (H), in this case for clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock  
reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of  
LCLK0 (for all other inputs).  
3. All signals are measured from NVDD/2 of the rising/falling edge of LCLK0 to 0.4 NVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. tLBOTOT1 should be used when RCWH[LALE] is not set and the load on LALE output pin is at least 10pF less than the load  
on LAD output pins.  
6. tLBOTOT2 should be used when RCWH[LALE] is set and the load on LALE output pin is at least 10pF less than the load on  
LAD output pins.  
7. tLBOTOT3 should be used when RCWH[LALE] is set and the load on LALE output pin equals to the load on LAD output pins.  
8. For active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the  
component pin is less than or equal to the leakage current specification.  
This figure provides the AC test load for the local bus.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 24. Local Bus AC Test Load  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
42  
Local Bus  
Figure 25 through Figure 27 show the local bus signals.  
LCLK[n]  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]  
tLBIXKH  
tLBIVKH  
Input Signal:  
LGTA  
tLBIXKH  
tLBKHOV  
Output Signals:  
LBCTL/LBCKE/LOE/  
tLBKHOZ  
tLBKHOV  
Output Signals:  
LAD[0:15]  
tLBOTOT  
t
LALEHOV  
LALE  
Figure 25. Local Bus Signals, Nonspecial Signals Only  
LCLK  
T1  
T3  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 26. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
43  
JTAG  
LCLK  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 27. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4  
12 JTAG  
This section describes the DC and AC electrical specifications for the IEEE Std 1149.1™ (JTAG)  
interface.  
12.1 JTAG DC Electrical Characteristics  
This table provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface.  
Table 45. JTAG Interface DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
2.1  
–0.3  
NVDD + 0.3  
V
V
0.8  
±5  
IIN  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
44  
JTAG  
12.2 JTAG AC Timing Specifications  
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface. This table  
provides the JTAG AC timing specifications as defined in Figure 29 through Figure 32.  
1
Table 46. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)  
At recommended operating conditions (see Table 2)  
Parameter  
Symbol 2  
Min  
Max  
Unit  
Note  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
fJTG  
t JTG  
0
33.3  
2
MHz  
ns  
3
30  
15  
0
tJTKHKL  
tJTGR, tJTGF  
tTRST  
ns  
ns  
25  
ns  
Input setup times:  
ns  
4
Boundary-scan data  
tJTDVKH  
tJTIVKH  
4
4
TMS, TDI  
Input hold times:  
Valid times:  
ns  
ns  
ns  
ns  
4
5
Boundary-scan data  
TMS, TDI  
tJTDXKH  
tJTIXKH  
10  
10  
Boundary-scan data  
TDO  
tJTKLDV  
tJTKLOV  
2
2
11  
11  
Output hold times:  
5
Boundary-scan data  
TDO  
tJTKLDX  
tJTKLOX  
2
2
JTAG external clock to output high impedance:  
Boundary-scan data  
TDO  
5, 6  
tJTKLDZ  
tJTKLOZ  
2
2
19  
9
Note:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.  
The output timings are measured at the pins. All output timings assume a purely resistive 50-load (see Table 28).  
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device  
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K)  
going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals  
(D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock reference  
symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the  
latter convention is used with the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to tTCLK  
.
5. Non-JTAG signal output timing with respect to tTCLK  
.
6. Guaranteed by design and characterization.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
45  
JTAG  
This figure provides the AC test load for TDO and the boundary-scan outputs of the MPC8315E.  
Z0 = 50   
NVDD/2  
Output  
RL = 50   
Figure 28. AC Test Load for the JTAG Interface  
This figure provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
tJTKHKL  
VM  
VM  
tJTGR  
tJTGF  
tJTG  
VM = Midpoint Voltage (NVDD/2)  
Figure 29. JTAG Clock Input Timing Diagram  
This figure provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (NVDD/2)  
Figure 30. TRST Timing Diagram  
This figure provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Output Data Valid  
Boundary  
Data Outputs  
VM = Midpoint Voltage (NVDD/2)  
Figure 31. Boundary-Scan Timing Diagram  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
46  
I2C  
This figure provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTIVKH  
tJTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
tJTKLOV  
tJTKLOX  
Output Data Valid  
tJTKLOZ  
Output Data Valid  
VM = Midpoint Voltage (NVDD/2)  
TDO  
Figure 32. Test Access Port Timing Diagram  
13 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface of the MPC8315E.  
2
13.1 I C DC Electrical Characteristics  
2
This table provides the DC electrical characteristics for the I C interface.  
2
Table 47. I C DC Electrical Characteristics  
At recommended operating conditions with NVDD of 3.3 V ± 300 mv  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage level  
Input low voltage level  
Low level output voltage  
High level output voltage  
VIH  
VIL  
0.7 NVDD  
–0.3  
NVDD + 0.3  
0.3 NVDD  
0.2 NVDD  
NVDD + 0.3  
250  
V
V
1
VOL  
VOH  
0
V
0.8 NVDD  
20 + 0.1 CB  
V
2
Output fall time from VIH(min) to VIL(max) with a bus  
capacitance from 10 to 400 pF  
t
ns  
I2KLKV  
Pulse width of spikes which must be suppressed by the input  
filter  
tI2KHKL  
0
50  
ns  
3
Capacitance for each I/O pin  
Input current (0 V VIN NVDD)  
Note:  
CI  
10  
pF  
4
IIN  
± 5  
A  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. CB = capacitance of one bus line in pF.  
3. See the MPC8315E PowerQUICC II Pro Integrated Host Processor Family Reference Manual for information on the digital  
filter used.  
4. I/O pins obstruct the SDA and SCL lines if NVDD is switched off.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
47  
I2C  
2
13.2 I C AC Electrical Specifications  
2
This table provides the AC timing parameters for the I C interface.  
2
Table 48. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 47)  
Parameter  
Symbol 1  
fI2C  
tI2CL  
Min  
Max  
Unit  
SCL clock frequency  
0
400  
kHz  
s  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
0.6  
0.6  
tI2CH  
s  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
s  
Hold time (repeated) START condition (after this period, the first clock pulse is  
generated)  
s  
Data setup time  
tI2DVKH  
tI2DXKL  
100  
ns  
Data hold time:  
s  
CBUS compatible masters  
I2C bus devices  
0 2  
0.9 3  
4
Fall time of both SDA and SCL signals  
t
0.6  
300  
ns  
s  
s  
V
I2CF  
Setup time for STOP condition  
t
I2PVKH  
tI2KHDX  
Bus free time between a STOP and START condition  
Noise margin at the LOW level for each connected device (including hysteresis)  
Noise margin at the HIGH level for each connected device (including hysteresis)  
Note:  
1.3  
VNL  
VNH  
0.1 NVDD  
0.2 NVDD  
V
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing  
(I2) with respect to the time data input signals (D) reach the valid state (V) relative to the tI2C clock reference (K) going to  
the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the start  
condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH  
symbolizes I2C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative  
to the tI2C clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used  
with the appropriate letter: R (rise) or F (fall).  
2. MPC8315E provides a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
3. The maximum tI2DVKH has to be met only if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
4. MPC8315E does not follow the I2C-BUS Specifications version 2.1 regarding the tI2CF AC parameter.  
2
This figure provides the AC test load for the I C.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
2
Figure 33. I C AC Test Load  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
48  
PCI  
2
This figure shows the AC timing diagram for the I C bus.  
SDA  
tI2CF  
tI2CL  
tI2DVKH  
tI2KHKL  
tI2CF  
tI2SXKL  
tI2CR  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL  
S
Sr  
P
S
2
Figure 34. I C Bus AC Timing Diagram  
14 PCI  
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8315E.  
14.1 PCI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the PCI interface.  
1
Table 49. PCI DC Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
VIH  
VIL  
VOUT VOH (min) or  
VOUT VOL (max)  
0.5 x NVDD  
–0.5  
NVDD + 0.3  
0.3 NVDD  
V
V
V
VOH  
NVDD = min,  
0.9 x NVDD  
IOH = –500 A  
Low-level output voltage  
VOL  
IIN  
NVDD = min,  
IOL = 1500 A  
0.1 x NVDD  
± 10  
V
Input current  
0 V VIN NVDD  
A  
Note:  
1. The symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.  
14.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus. Note that the PCI_CLK or  
PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8315E is configured  
as a host or agent device. This table shows the PCI AC timing specifications at 66 MHz.  
.
Table 50. PCI AC Timing Specifications at 66 MHz  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
Clock to output valid  
tPCKHOV  
tPCKHOX  
tPCKHOZ  
tPCIVKH  
1
6.0  
ns  
ns  
ns  
ns  
2
Output hold from clock  
2
Clock to output high impedance  
Input setup to clock  
3.3  
14  
2, 3  
2, 4  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
49  
PCI  
Table 50. PCI AC Timing Specifications at 66 MHz (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
Input hold from clock  
tPCIXKH  
0
ns  
2, 4  
Note:  
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH  
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the  
PCI_SYNC_IN clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC)  
with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
This table shows the PCI AC Timing Specifications at 33 MHz.  
Table 51. PCI AC Timing Specifications at 33 MHz  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
Clock to output valid  
tPCKHOV  
tPCKHOX  
tPCKHOZ  
tPCIVKH  
tPCIXKH  
2
11  
14  
ns  
ns  
ns  
ns  
ns  
2
Output hold from clock  
2
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Note:  
4.0  
0
2, 3  
2, 4  
2, 4  
1. Note that the symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH  
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the  
PCI_SYNC_IN clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC)  
with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
This figure provides the AC test load for PCI.  
NVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 35. PCI AC Test Load  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
50  
High-Speed Serial Interfaces (HSSI)  
This figure shows the PCI input AC timing conditions.  
CLK  
tPCIVKH  
tPCIXKH  
Input  
Figure 36. PCI Input AC Timing Measurement Conditions  
This figure shows the PCI output AC timing conditions.  
CLK  
tPCKHOV  
tPCKHOX  
Output Delay  
tPCKHOZ  
High-Impedance  
Output  
Figure 37. PCI Output AC Timing Measurement Condition  
15 High-Speed Serial Interfaces (HSSI)  
This section describes the common portion of SerDes DC electrical specifications, which is the DC  
requirement for SerDes Reference Clocks. The SerDes data lane’s transmitter and receiver reference  
circuits are also shown.  
15.1 Signal Terms Definition  
The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms  
used in the description and specification of differential signals.  
Figure 38 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for  
description. The figure shows waveform for either a transmitter output (TXn and TXn) or a receiver input  
(RXn and RXn). Each signal swings between A Volts and B Volts where A > B.  
Using this waveform, the definitions are as follows. To simplify illustration, the following definitions  
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling  
environment.  
1. Single-Ended Swing  
The transmitter output signals and the receiver input signals TXn, TXn, RXn and RXn each have  
a peak-to-peak swing of A – B Volts. This is also referred as each signal wire’s Single-Ended  
Swing.  
2. Differential Output Voltage, V (or Differential Output Swing):  
OD  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
51  
High-Speed Serial Interfaces (HSSI)  
The Differential Output Voltage (or Swing) of the transmitter, V , is defined as the difference of  
OD  
the two complimentary output voltages: V  
negative.  
– V  
The V value can be either positive or  
TXn  
TXn. OD  
3. Differential Input Voltage, V (or Differential Input Swing):  
ID  
The Differential Input Voltage (or Swing) of the receiver, V , is defined as the difference of the  
ID  
two complimentary input voltages: V  
– V  
The V value can be either positive or negative.  
RXn  
RXn. ID  
4. Differential Peak Voltage, V  
DIFFp  
The peak value of the differential transmitter output signal or the differential receiver input signal  
is defined as Differential Peak Voltage, V = |A – B| Volts.  
DIFFp  
5. Differential Peak-to-Peak, V  
DIFFp-p  
Because the differential output signal of the transmitter and the differential input signal of the  
receiver each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential  
transmitter output signal or the differential receiver input signal is defined as Differential  
Peak-to-Peak Voltage, V  
= 2*V  
= 2 * |(A - B)| Volts, which is twice of differential  
DIFFp-p  
DIFFp  
swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak  
voltage can also be calculated as V  
= 2*|V |.  
TX-DIFFp-p  
OD  
6. Differential Waveform  
The differential waveform is constructed by subtracting the inverting signal (TXn, for example)  
from the non-inverting signal (TXn, for example) within a differential pair. There is only one signal  
trace curve in a differential waveform. The voltage represented in the differential waveform is not  
referenced to ground. Refer to Figure 47 as an example for differential waveform.  
7. Common Mode Voltage, V  
cm  
The Common Mode Voltage is equal to one half of the sum of the voltages between each conductor  
of a balanced interchange circuit and ground. In this example, for SerDes output, V = (V  
cm_out  
TXn  
+ V  
)/2 = (A + B) / 2, which is the arithmetic mean of the two complimentary output voltages  
TXn  
within a differential pair. In a system, the common mode voltage may often differ from one  
component’s output to the other’s input. Sometimes, it may be even different between the receiver  
input and driver output circuits within the same component. It’s also referred as the DC offset in  
some occasion.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
52  
Freescale Semiconductor  
High-Speed Serial Interfaces (HSSI)  
TXn or RXn  
TXn or RXn  
A Volts  
B Volts  
Vcm = (A + B) / 2  
Differential Swing, VID or VOD = A - B  
Differential Peak Voltage, VDIFFp = |A - B|  
Differential Peak-Peak Voltage, VDIFFpp = 2*VDIFFp (not shown)  
Figure 38. Differential Voltage Definitions for Transmitter or Receiver  
To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic)  
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing  
that goes between 2.5V and 2.0V. Using these values, the peak-to-peak voltage swing of each signal (TD  
or TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since  
the differential signaling environment is fully symmetrical, the transmitter output’s differential swing  
(V ) has the same amplitude as each signal’s single-ended swing. The differential output signal ranges  
OD  
between 500 mV and –500 mV, in other words, V is 500 mV in one phase and –500 mV in the other  
OD  
phase. The peak differential voltage (V  
is 1000 mV p-p.  
) is 500 mV. The peak-to-peak differential voltage (V  
)
DIFFp  
DIFFp-p  
15.2 SerDes Reference Clocks  
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by  
the corresponding SerDes lanes. The SerDes reference clocks input is SD_REF_CLK and SD_REF_CLK  
for PCI Express and SGMII interface.  
The following sections describe the SerDes reference clock requirements and some application  
information.  
15.2.1 SerDes Reference Clock Receiver Characteristics  
Figure 39 shows a receiver reference diagram of the SerDes reference clocks.  
The supply voltage requirements for XCOREVDD are specified in Table 1 and Table 2.  
SerDes Reference Clock Receiver Reference Circuit Structure  
— The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown  
in Figure 39. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-  
termination to XCOREVSS followed by on-chip AC-coupling.  
— The external reference clock driver must be able to drive this termination.  
— The SerDes reference clock input can be either differential or single-ended. Refer to the  
Differential Mode and Single-ended Mode description below for further detailed requirements.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
53  
High-Speed Serial Interfaces (HSSI)  
The maximum average current requirement that also determines the common mode voltage range  
— When the SerDes reference clock differential inputs are DC coupled externally with the clock  
driver chip, the maximum average current allowed for each input pin is 8mA. In this case, the  
exact common mode input voltage is not critical as long as it is within the range allowed by the  
maximum average current of 8 mA (refer to the following bullet for more detail), since the  
input is AC-coupled on-chip.  
— This current limitation sets the maximum common mode input voltage to be less than 0.4V  
(0.4V/50 = 8mA) while the minimum common mode input level is 0.1V above XCOREVSS.  
For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output  
driven by its current source from 0mA to 16mA (0-0.8V), such that each phase of the  
differential input has a single-ended swing from 0V to 800mV with the common mode voltage  
at 400mV.  
— If the device driving the SD_REF_CLK and SD_REF_CLK inputs cannot drive 50 ohms to  
XCOREVSS DC, or it exceeds the maximum input current limitations, then it must be  
AC-coupled off-chip.  
The input amplitude requirement  
— This requirement is described in detail in the following sections.  
50   
SD_REF_CLK  
Input  
Amp  
SD_REF_CLK  
50   
Figure 39. Receiver of SerDes Reference Clocks  
15.2.2 DC Level Requirement for SerDes Reference Clocks  
The DC level requirement for the MPC8315E SerDes reference clock inputs is different depending on the  
signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described  
below.  
Differential Mode  
— The input amplitude of the differential clock must be between 400mV and 1600mV differential  
peak-peak (or between 200mV and 800mV differential peak). In other words, each signal wire  
of the differential pair must have a single-ended swing less than 800mV and greater than  
200mV. This requirement is the same for both external DC-coupled or AC-coupled connection.  
— For external DC-coupled connection, as described in section 15.2.1, the maximum average  
current requirements sets the requirement for average voltage (common mode voltage) to be  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
54  
Freescale Semiconductor  
High-Speed Serial Interfaces (HSSI)  
between 100 mV and 400 mV. Figure 40 shows the SerDes reference clock input requirement  
for DC-coupled connection scheme.  
— For external AC-coupled connection, there is no common mode voltage requirement for the  
clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver  
and the SerDes reference clock receiver operate in different command mode voltages. The  
SerDes reference clock receiver in this connection scheme has its common mode voltage set to  
XCOREVSS. Each signal wire of the differential inputs is allowed to swing below and above  
the common mode voltage (XCOREVSS). Figure 41 shows the SerDes reference clock input  
requirement for AC-coupled connection scheme.  
Single-ended Mode  
— The reference clock can also be single-ended. The SD_REF_CLK input amplitude  
(single-ended swing) must be between 400mV and 800mV peak-peak (from Vmin to Vmax)  
with SD_REF_CLK either left unconnected or tied to ground.  
— The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 42 shows  
the SerDes reference clock input requirement for single-ended signaling mode.  
— To meet the input amplitude requirement, the reference clock inputs might need to be DC or  
AC-coupled externally. For the best noise performance, the reference of the clock could be DC  
or AC-coupled into the unused phase (SD_REF_CLK) through the same source impedance as  
the clock input (SD_REF_CLK) in use.  
200 mV < Input Amplitude or Differential Peak < 800 mV  
SD_REF_CLK  
Vmax < 800 mV  
100 mV < Vcm < 400 mV  
Vmin > 0 V  
SD_REF_CLK  
Figure 40. Differential Reference Clock Input DC Requirements (External DC-Coupled)  
200 mV < Input Amplitude or Differential Peak < 800 mV  
SD_REF_CLK  
Vmax < Vcm + 400 mV  
Vcm  
Vmin > Vcm – 400 mV  
SD_REF_CLK  
Figure 41. Differential Reference Clock Input DC Requirements (External AC-Coupled)  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
55  
High-Speed Serial Interfaces (HSSI)  
400 mV < SD_REF_CLK Input Amplitude < 800 mV  
SD_REF_CLK  
SD_REF_CLK  
0 V  
Figure 42. Single-Ended Reference Clock Input DC Requirements  
15.2.3 Interfacing With Other Differential Signaling Levels  
With on-chip termination to XCOREVSS, the differential reference clocks inputs are HCSL (High-Speed  
Current Steering Logic) compatible DC-coupled.  
Many other low voltage differential type outputs like LVDS (Low Voltage Differential Signaling) can be  
used but may need to be AC-coupled due to the limited common mode input range allowed (100 to 400  
mV) for DC-coupled connection.  
LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock  
driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to  
AC-coupling.  
NOTE  
Figure 43Figure 46 are for conceptual reference only. Due to the fact that  
clock driver chip's internal structure, output impedance and termination  
requirements are different between various clock driver chip manufacturers,  
it’s very possible that the clock circuit reference designs provided by clock  
driver chip vendor are different from what is shown below. They might also  
vary from one vendor to the other. Therefore, Freescale Semiconductor can  
neither provide the optimal clock driver reference circuits, nor guarantee the  
correctness of the following clock driver connection reference circuits. The  
system designer is recommended to contact the selected clock driver chip  
vendor for the optimal reference circuits with the MPC8315E SerDes  
reference clock receiver requirement provided in this document.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
56  
Freescale Semiconductor  
High-Speed Serial Interfaces (HSSI)  
This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It  
assumes that the DC levels of the clock driver chip is compatible with MPC8315E SerDes reference clock  
input’s DC requirement.  
MPC8315E  
HCSL CLK Driver Chip  
50   
SD_REF_CLK  
CLK_Out  
33   
33   
SerDes Refer.  
CLK Receiver  
100 differential PWB trace  
Clock Driver  
CLK_Out  
SD_REF_CLK  
50   
Clock driver vendor dependent  
source termination resistor  
Total 50 Assume clock driver’s  
output impedance is about 16   
Figure 43. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)  
This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver.  
Since LVDS clock driver’s common mode voltage is higher than the MPC8315E SerDes reference clock  
input’s allowed range (100 to 400mV), AC-coupled connection scheme must be used. It assumes the  
LVDS output driver features 50-termination resistor. It also assumes that the LVDS transmitter  
establishes its own common mode level without relying on the receiver or other external component.  
MPC8315E  
LVDS CLK Driver Chip  
50   
SD_REF_CLK  
10 nF  
CLK_Out  
SerDes Refer.  
CLK Receiver  
100 differential PWB trace  
Clock Driver  
CLK_Out  
SD_REF_CLK  
10 nF  
50   
Figure 44. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)  
Figure 45 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver.  
Since LVPECL driver’s DC levels (both common mode voltages and output swing) are incompatible with  
MPC8315E SerDes reference clock input’s DC requirement, AC-coupling has to be used. Figure 45  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
57  
High-Speed Serial Interfaces (HSSI)  
assumes that the LVPECL clock driver’s output impedance is 50R1 is used to DC-bias the LVPECL  
outputs prior to AC-coupling. Its value could be ranged from 140to 240depending on clock driver  
vendor’s requirement. R2 is used together with the SerDes reference clock receiver’s 50-termination  
resistor to attenuate the LVPECL output’s differential peak level such that it meets the MPC8315E SerDes  
reference clock’s differential input amplitude requirement (between 200mV and 800mV differential peak).  
For example, if the LVPECL output’s differential peak is 900mV and the desired SerDes reference clock  
input amplitude is selected as 600mV, the attenuation factor is 0.67, which requires R2 = 25Please  
consult clock driver chip manufacturer to verify whether this connection scheme is compatible with a  
particular clock driver chip.  
LVPECL CLK  
Driver Chip  
MPC8315E  
50   
SD_REF_CLK  
CLK_Out  
10 nF  
R2  
SerDes Refer.  
CLK Receiver  
R1  
R1  
100 differential PWB trace  
10 nF  
Clock Driver  
R2  
SD_REF_CLK  
CLK_Out  
50   
Figure 45. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)  
This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver.  
It assumes the DC levels of the clock driver are compatible with MPC8315E SerDes reference clock  
input’s DC requirement.  
Single-Ended  
CLK Driver Chip  
MPC8315E  
Total 50 Assume clock driver’s  
output impedance is about 16   
50   
SD_REF_CLK  
33   
Clock Driver  
CLK_Out  
SerDes Refer.  
CLK Receiver  
100 differential PWB trace  
SD_REF_CLK  
50  
50   
Figure 46. Single-Ended Connection (Reference Only)  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
58  
Freescale Semiconductor  
High-Speed Serial Interfaces (HSSI)  
15.2.4 AC Requirements for SerDes Reference Clocks  
The clock driver selected should provide a high quality reference clock with low phase noise and  
cycle-to-cycle jitter. Phase noise less than 100KHz can be tracked by the PLL and data recovery loops and  
is less of a problem. Phase noise above 15MHz is filtered by the PLL. The most problematic phase noise  
occurs in the 1-15MHz range. The source impedance of the clock driver should be 50 to match the  
transmission line and reduce reflections which are a source of noise to the system.  
This table describes some AC parameters common to SGMII and PCI Express protocols.  
Table 52. SerDes Reference Clock Common AC Parameters  
At recommended operating conditions with XCOREVDD= 1.0V ± 5%  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Rising Edge Rate  
Falling Edge Rate  
Rise Edge Rate  
1.0  
1.0  
+200  
4.0  
4.0  
V/ns  
V/ns  
mV  
mV  
%
2, 3  
2, 3  
2
Fall Edge Rate  
Differential Input High Voltage  
Differential Input Low Voltage  
VIH  
VIL  
–200  
20  
2
Rising edge rate (SDn_REF_CLK) to falling edge rate  
(SDn_REF_CLK) matching  
Rise-Fall  
Matching  
1, 4  
Note:  
1. Measurement taken from single ended waveform.  
2. Measurement taken from differential waveform.  
3. Measured from -200 mV to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK).  
The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is  
centered on the differential zero crossing. See Figure 47.  
4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a  
200 mV window centered on the median cross point where SDn_REF_CLK rising meets SDn_REF_CLK falling. The  
median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The  
Rise Edge Rate of SDn_REF_CLK should be compared to the Fall Edge Rate of SDn_REF_CLK, the maximum allowed  
difference should not exceed 20% of the slowest edge rate. See Figure 48.  
VIH  
VIL  
=
=
+200  
0.0 V  
–200  
SDn_REF_CL  
K
minus  
Figure 47. Differential Measurement Points for Rise and Fall Time  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
59  
High-Speed Serial Interfaces (HSSI)  
SDn_REF_CLK  
SDn_REF_CLK  
SDn_REF_CLK  
SDn_REF_CLK  
Figure 48. Single-Ended Measurement Points for Rise and Fall Time Matching  
The other detailed AC requirements of the SerDes Reference Clocks is defined by each interface protocol  
based on application usage. Refer to the following sections for detailed information:  
Section 9.5.2, “AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK”  
Section 16.2, “AC Requirements for PCI Express SerDes Clocks”  
15.2.4.1 Spread Spectrum Clock  
SD_REF_CLK/SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread  
spectrum clock source.  
15.3 SerDes Transmitter and Receiver Reference Circuits  
This figure shows the reference circuits for SerDes data lane’s transmitter and receiver.  
RXn  
TXn  
50   
50   
50   
50   
Receiver  
Transmitter  
TXn  
RXn  
Figure 49. SerDes Transmitter and Receiver Reference Circuits  
The DC and AC specification of SerDes data lanes are defined in each interface protocol section below  
(PCI Express or SGMII) in this document based on the application usage:  
Section 9.5, “SGMII Interface Electrical Characteristics”  
Section 16, “PCI Express”  
Note that external AC Coupling capacitor is required for the above two serial transmission protocols with  
the capacitor value defined in specification of each protocol section.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
60  
Freescale Semiconductor  
PCI Express  
16 PCI Express  
This section describes the DC and AC electrical specifications for the PCI Express bus of the MPC8315E.  
16.1 DC Requirements for PCI Express SD_REF_CLK and  
SD_REF_CLK  
For more information, see Section 15.2, “SerDes Reference Clocks.”  
16.2 AC Requirements for PCI Express SerDes Clocks  
This table lists the PCI Express SerDes clock AC requirements.  
Table 53. SD_REF_CLK and SD_REF_CLK AC Requirements  
Symbol  
Parameter Description  
Min  
Typ Max Unit Note  
tREF  
REFCLK cycle time  
10  
ns  
ps  
tREFCJ REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent  
REFCLK cycles.  
100  
tREFPJ Phase jitter. Deviation in edge location with respect to mean edge location.  
–50  
50  
ps  
16.3 Clocking Dependencies  
The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm)  
of each other at all times. This is specified to allow bit rate clock sources with a ±300 ppm tolerance.  
16.4 Physical Layer Specifications  
Following is a summary of the specifications for the physical layer of PCI Express on this device. For  
further details as well as the specifications of the transport and data link layer please use the PCI Express  
Base Specification, Rev. 1.0a.  
16.4.1 Differential Transmitter (TX) Output  
This table defines the specifications for the differential output at all transmitters (TXs). The parameters are  
specified at the component pins.  
Table 54. Differential Transmitter (TX) Output Specifications  
Parameter  
Unit interval  
Symbol  
Comments  
Min  
Typical  
Max  
Unit  
Note  
UI  
Each UI is 400 ps ± 300 ppm. UI does not 399.88  
account for Spread Spectrum Clock  
dictated variations.  
400  
400.12  
ps  
1
Differential peak-to-peak  
output voltage  
VTX-DIFFp-p  
VTX-DIFFp-p = 2*|VTX-D+ - VTX-D-  
|
0.8  
1.2  
V
2
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
61  
PCI Express  
Parameter  
Table 54. Differential Transmitter (TX) Output Specifications (continued)  
Symbol  
Comments  
Min  
Typical  
Max  
Unit  
Note  
De-Emphasized  
differential output voltage  
(ratio)  
VTX-DE-RATIO  
Ratio of the VTX-DIFFp-p of the second and –3.0  
following bits after a transition divided by  
the VTX-DIFFp-p of the first bit after a  
transition.  
–3.5  
-4.0  
dB  
2
Minimum TX eye width  
TTX-EYE  
The maximum Transmitter jitter can be  
derived as TTX-MAX-JITTER = 1 - UTX-EYE  
0.3 UI.  
0.70  
UI  
UI  
2, 3  
2, 3  
=
Maximum time between  
the jitter median and  
maximum deviation from  
the median  
TTX-EYE-MEDIAN-to- Jitter is defined as the measurement  
0.15  
variation of the crossing points  
MAX-JITTER  
(VTX-DIFFp-p = 0 V) in relation to a  
recovered TX UI. A recovered TX UI is  
calculated over 3500 consecutive unit  
intervals of sample data. Jitter is  
measured using all edges of the 250  
consecutive UI in the center of the 3500 UI  
used for calculating the TX UI.  
D+/D- TX output rise/fall  
time  
TTX-RISE, TTX-FALL  
0.125  
UI  
2, 5  
2
RMS AC peak common  
mode output voltage  
VTX-CM-ACp  
VTX-CM-ACp = RMS(|VTXD+ + VTXD-|/2 -  
20  
mV  
VTX-CM-DC  
)
VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D-|/2  
Absolute delta of DC  
common mode voltage  
during L0 and electrical  
idle  
VTX-CM-DC- ACTIVE- |VTX-CM-DC (during L0) - VTX-CM-Idle-DC  
0
100  
25  
mV  
2
(During Electrical Idle)|<=100 mV  
VTX-CM-DC = DC(avg) of |VTX-D+ + VTX-D-|/2  
[L0]  
IDLE-DELTA  
VTX-CM-Idle-DC = DC(avg) of |VTX-D+  
VTX-D-|/2 [Electrical Idle]  
+
Absolute delta of DC  
common mode between  
D+ and D–  
VTX-CM-DC-LINE-DELTA |VTX-CM-DC-D+ - VTX-CM-DC-D-| <= 25 mV  
VTX-CM-DC-D+ = DC(avg) of |VTX-D+  
VTX-CM-DC-D- = DC(avg) of |VTX-D-  
0
mV  
2
|
|
Electrical idle differential  
peak output voltage  
VTX-IDLE-DIFFp  
VTX-IDLE-DIFFp = |VTX-IDLE-D+ -VTX-IDLE-D-  
<= 20 mV  
|
0
20  
mV  
mV  
2
6
Amount of voltage change  
allowed during receiver  
detection  
VTX-RCV-DETECT  
The total amount of voltage change that a  
transmitter can apply to sense whether a  
low impedance Receiver is present.  
600  
TX DC common mode  
voltage  
VTX-DC-CM  
The allowed DC Common Mode voltage  
under any conditions.  
50  
3.6  
90  
V
6
TX short circuit current  
limit  
ITX-SHORT  
The total current the Transmitter can  
provide when shorted to its ground  
mA  
UI  
Minimum time spent in  
electrical idle  
TTX-IDLE-MIN  
Minimum time a Transmitter must be in  
Electrical Idle Utilized by the Receiver to  
start looking for an Electrical Idle Exit after  
successfully receiving an Electrical Idle  
ordered set  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
62  
PCI Express  
Table 54. Differential Transmitter (TX) Output Specifications (continued)  
Parameter  
Symbol  
Comments  
Min  
Typical  
Max  
Unit  
Note  
Maximum time to  
transition to a valid  
electrical idle after  
sending an electrical idle  
ordered set  
TTX-IDLE-SET-TO-IDLE After sending an Electrical Idle ordered  
set, the Transmitter must meet all  
20  
UI  
Electrical Idle Specifications within this  
time. This is considered a debounce time  
for the Transmitter to meet Electrical Idle  
after transitioning from L0.  
Maximum time to  
TTX-IDLE-TO-DIFF-DATA Maximum time to meet all TX  
specifications when transitioning from  
Electrical Idle to sending differential data.  
This is considered a debounce time for the  
TX to meet all TX specifications after  
leaving Electrical Idle  
20  
UI  
transition to valid TX  
specificationsafterleaving  
an electrical idle condition  
Differential return loss  
RLTX-DIFF  
RLTX-CM  
Measured over 50 MHz to 1.25 GHz.  
Measured over 50 MHz to 1.25 GHz.  
12  
6
dB  
dB  
4
4
Common mode return  
loss  
DC differential TX  
impedance  
ZTX-DIFF-DC  
TX DC Differential mode Low Impedance  
80  
40  
75  
100  
120  
8
Transmitter DC  
impedance  
ZTX-DC  
Required TX D+ as well as D- DC  
Impedance during all states  
Lane-to-Lane output skew  
LTX-SKEW  
Static skew between any two Transmitter  
Lanes within a single Link  
500 + 2  
UI  
ps  
nF  
AC coupling capacitor  
CTX  
All Transmitters shall be AC coupled. The  
AC coupling is required either within the  
media or within the transmitting  
component itself.  
200  
Crosslink random timeout  
Tcrosslink  
This random timeout helps resolve  
conflicts in crosslink configuration by  
eventually resulting in only one  
0
1
ms  
7
Downstream and one Upstream Port.  
Note:  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 52 and measured over any 250  
consecutive TX UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 50.)  
3. A TTX-EYE = 0.70 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.30 UI for the transmitter  
collected over any 250 consecutive TX UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total TX jitter budget  
collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes  
the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.  
4. The transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode return loss  
greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid  
input levels. The reference impedance for return loss measurements is 50 to ground for both the D+ and D– line (that is, as measured  
by a vector network analyzer with 50-probes, see Figure 52). Note that the series capacitors, CTX, is optional for the return loss  
measurement.  
5. Measured between 20%–80% at transmitter package pins into a test load as shown in Figure 52 for both VTX-D+ and VTX-D-  
6. See Section 4.3.1.8 of the PCI Express Base Specifications, Rev 1.0a.  
.
7. See Section 4.2.6.3 of the PCI Express Base Specifications, Rev 1.0a.  
8. MPC8315E SerDes transmitter does not have CTX built-in. An external AC Coupling capacitor is required  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
63  
PCI Express  
16.4.2 Transmitter Compliance Eye Diagrams  
The TX eye diagram in Figure 50 is specified using the passive compliance/test measurement load (see  
Figure 52) in place of any real PCI Express interconnect + RX component. There are two eye diagrams  
that must be met for the transmitter. Both diagrams must be aligned in time using the jitter median to locate  
the center of the eye diagram. The different eye diagrams differ in voltage depending on whether it is a  
transition bit or a de-emphasized bit. The exact reduced voltage level of the de-emphasized bit is always  
relative to the transition bit.  
The eye diagram must be valid for any 250 consecutive UIs.  
A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is  
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX  
UI.  
NOTE  
It is recommended that the recovered TX UI be calculated using all edges in  
the 3500 consecutive UI interval with a fit algorithm using a minimization  
merit function (that is, least squares and median deviation fits).  
VTX-DIFF = 0 mV  
VTX-DIFF = 0 mV  
(D+ D– Crossing Point)  
(D+ D– Crossing Point)  
[Transition Bit]  
TX-DIFFp-p-MIN = 800 mV  
V
[De-emphasized Bit]  
566 mV (3 dB) >= VTX-DIFFp-p-MIN >= 505 mV (4 dB)  
0.7 UI = UI – 0.3 UI(JTX-TOTAL-MAX  
[Transition Bit]  
)
VTX-DIFFp-p-MIN = 800 mV  
Figure 50. Minimum Transmitter Timing and Voltage Output Compliance Specifications  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
64  
PCI Express  
16.4.3 Differential Receiver (RX) Input Specifications  
This table defines the specifications for the differential input at all receivers (RXs). The parameters are  
specified at the component pins.  
Table 55. Differential Receiver (RX) Input Specifications  
Parameter  
Unit interval  
Symbol  
Comments  
Min  
Typical  
Max  
Unit Note  
UI  
Each UI is 400 ps ± 300 ppm. UI 399.88  
does not account for Spread  
Spectrum Clock dictated  
variations.  
400  
400.12  
ps  
1
Differential peak-to-peak  
output voltage  
VRX-DIFFp-p  
VRX-DIFFp-p = 2*|VRX-D+ - VRX-D-  
|
0.175  
1.200  
V
2
Minimum receiver eye width  
TRX-EYE  
The maximum interconnect  
0.4  
UI  
2, 3  
media and Transmitter jitter that  
can be tolerated by the Receiver  
can be derived as  
TRX-MAX-JITTER = 1 - URX-EYE  
=
0.6 UI.  
Maximum time between the TRX-EYE-MEDIAN-to-MAX-JI Jitter is defined as the  
0.3  
UI  
2, 3, 7  
jitter median and maximum  
deviation from the median.  
measurement variation of the  
TTER  
crossing points (VRX-DIFFp-p = 0  
V) in relation to a recovered TX  
UI. A recovered TX UI is  
calculated over 3500  
consecutive unit intervals of  
sample data. Jitter is measured  
using all edges of the 250  
consecutive UI in the center of  
the 3500 UI used for calculating  
the TX UI.  
AC peak common mode  
input voltage  
VRX-CM-ACp  
RLRX-DIFF  
RLRX-CM  
VRX-CM-ACp = |VRXD+ + VRXD-|/2  
- VRX-CM-DC  
15  
6
150  
mV  
dB  
dB  
2
4
4
VRX-CM-DC = DC(avg) of |VRX-D+  
VRX-D-|/2  
+
Differential return loss  
Measured over 50 MHz to 1.25  
GHz with the D+ and D- lines  
biased at +300 mV and -300 mV,  
respectively.  
Common mode return loss  
Measured over 50 MHz to 1.25  
GHz with the D+ and D- lines  
biased at 0 V.  
DC differential input  
impedance  
ZRX-DIFF-DC  
RX DC differential mode  
impedance.  
80  
40  
100  
50  
120  
60  
5
DC Input Impedance  
ZRX-DC  
Required RX D+ as well as D-  
DC Impedance (50 ± 20%  
tolerance).  
2, 5  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
65  
PCI Express  
Table 55. Differential Receiver (RX) Input Specifications (continued)  
Parameter  
Symbol  
Comments  
Min  
Typical  
Max  
Unit Note  
Powered down DC input  
impedance  
ZRX-HIGH-IMP-DC  
Required RX D+ as well as D-  
DC Impedance when the  
Receiver terminations do not  
have power.  
200 k  
6
Electrical idle detect  
threshold  
VRX-IDLE-DET-DIFFp-p VPEEIDT = 2*|VRX-D+ -VRX-D-  
|
65  
175  
10  
mV  
ms  
Measured at the package pins of  
the Receiver  
Unexpected Electrical Idle  
Enter Detect Threshold  
Integration Time  
TRX-IDLE-DET-DIFF-  
An unexpected Electrical Idle  
(Vrx-diffp-p <  
ENTERTIME  
Vrx-idle-det-diffp-p) must be  
recognized no longer than  
Trx-idle-det-diff-entertime to  
signal an unexpected idle  
condition.  
Total Skew  
LRX-SKEW  
Skew across all lanes on a Link.  
This includes variation in the  
length of SKP ordered set (e.g.  
COM and one to five SKP  
20  
ns  
Symbols) at the RX as well as  
any delay differences arising  
from the interconnect itself.  
Note:  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 52 should be used as the  
RX device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 51). If the clocks to the  
RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as a  
reference for the eye diagram.  
3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect  
collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median  
and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive TX UIs.  
It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of  
jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the RX and TX are not  
derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as the reference for the eye  
diagram.  
4. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 300  
mV and the D– line biased to –300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) over a  
frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference  
impedance for return loss measurements for is 50 to ground for both the D+ and D– line (that is, as measured by a vector network  
analyzer with 50-probes, see Figure 52). Note that the series capacitors, CTX, is optional for the return loss measurement.  
5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is  
a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.  
6. The RX DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure  
that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300  
mV above the RX ground.  
7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm  
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
66  
Freescale Semiconductor  
PCI Express  
16.5 Receiver Compliance Eye Diagrams  
The RX eye diagram in Figure 51 is specified using the passive compliance/test measurement load (see  
Figure 52) in place of any real PCI Express RX component. In general, the minimum receiver eye diagram  
measured with the compliance/test measurement load (see Figure 52) is larger than the minimum receiver  
eye diagram measured over a range of systems at the input receiver of any real PCI Express component.  
The degraded eye diagram at the input Receiver is due to traces internal to the package as well as silicon  
parasitic characteristics which cause the real PCI Express component to vary in impedance from the  
compliance/test measurement load. The input receiver eye diagram is implementation specific and is not  
specified. RX component designer should provide additional margin to adequately compensate for the  
degraded minimum Receiver eye diagram (shown in Figure 51) expected at the input receiver based on an  
adequate combination of system simulations and the return loss measured looking into the RX package  
and silicon. The RX eye diagram must be aligned in time using the jitter median to locate the center of the  
eye diagram.  
The eye diagram must be valid for any 250 consecutive UIs.  
A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is  
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX  
UI.  
NOTE  
The reference impedance for return loss measurements is 50 to ground for  
both the D+ and D- line (that is, as measured by a Vector Network Analyzer  
with 50 probes—see Figure 52). Note that the series capacitors,  
C
, are optional for the return loss measurement.  
PEACCTX  
VRX-DIFF = 0 mV  
VRX-DIFF = 0 mV  
(D+ D– Crossing Point)  
(D+ D– Crossing Point)  
VRX-DIFFp-p-MIN > 175 mV  
0.4 UI = TRX-EYE-MIN  
Figure 51. Minimum Receiver Eye Timing and Voltage Compliance Specification  
16.5.1 Compliance Test and Measurement Load  
The AC timing and voltage parameters must be verified at the measurement point, as specified within  
0.2 inches of the package pins, into a test/measurement load shown in Figure 52.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
67  
Serial ATA (SATA)  
NOTE  
The allowance of the measurement point to be within 0.2 inches of the  
package pins is meant to acknowledge that package/board routing may  
benefit from D+ and D– not being exactly matched in length at the package  
pin boundary.  
Figure 52. Compliance Test/Measurement Load  
17 Serial ATA (SATA)  
The serial ATA (SATA) of the MPC8315E is designed to comply with Serial ATA 2.5 Specification. Note  
that the external cabled applications or long backplane applications (Gen1x & Gen2x) are not supported.  
17.1 Requirements for SATA REF_CLK  
The reference clock for MPC8315E is a single ended input clock required for the SATA Interface  
operation. The AC requirements for the SATA reference clock are listed in the this table.  
Table 56. Reference Clock Input Requirements  
Parameter  
Frequency range  
Symbol  
Conditions  
Min  
Typical  
Max  
Unit  
Note  
tCLK_REF  
50  
75  
150  
MHz  
1
Clock frequency tolerance  
Input High Voltage  
tCLK_TOL  
VCLK_INHI  
VCLK_INLo  
-350  
2.0  
0
+350  
ppm  
V
Input Low Voltage  
0.7  
V
Reference clock rise and fall time  
Reference clock duty cycle  
tCLK_RISE  
tCLK_FALL nominal amplitude  
/
20% to 80% of  
2
ns  
%
tCLK_DUTY Measured at 1.6V  
40  
50  
60  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
68  
Serial ATA (SATA)  
Table 56. Reference Clock Input Requirements (continued)  
Parameter  
Symbol  
Conditions  
Min  
Typical  
Max  
Unit  
Note  
Total reference clock jitter, phase noise  
integration from 100 Hz to 3 MHz  
tCLK_PJ  
peak to peak jitter  
at refClk input  
100  
ps  
Note:  
1. Only 50/75/100/125/150 MHz have been tested, other in between values will not work correctly with the rest of the system.  
TH  
Ref_CLK  
TL  
Figure 53. Reference Clock Timing Waveform  
17.2 SATA AC Electrical Characteristics  
This table provides the general AC parameters for the SATA interface.  
Table 57. SATA AC Electrical Characteristics  
Parameter  
Channel Speed  
Symbol  
Min  
Typical  
Max  
Units  
Note  
1.5G  
3.0G  
tCH_SPEED  
1.5  
3.0  
Gbps  
Unit Interval  
1.5G  
3.0G  
TUI  
666.4333  
333.3333  
ps  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
69  
Timers  
17.3 Out-of-Band (OOB) Electrical Characteristics  
This table provides the out-of-band (OOB) electrical characteristics for the SATA interface of the  
MPC8315.  
Table 59. Out-of-Band (OOB) Electrical Characteristics  
Parameter  
Symbol  
Min  
Typical  
Max  
Units  
Note  
OOB Signal Detection Threshold  
1.5G  
3.0G  
VSATA_OOBDETE  
TSATA_UIOOB  
50  
75  
100  
125  
200  
200  
mVp-p  
ps  
UI During OOB Signaling  
666.67  
COMINIT/ COMRESET and  
COMWAKE Transmit Burst Length  
TSATA_UIOOBTXB  
160  
UI  
COMINIT/ COMRESET Transmit Gap TSATA_UIOOBTXGap  
Length  
480  
UI  
COMWAKE Transmit Gap Length  
TSATA_UIOOBTX  
160  
UI  
WakeGap  
18 Timers  
This section describes the DC and AC electrical specifications for the timers of the MPC8315E.  
18.1 Timers DC Electrical Characteristics  
This table provides the DC electrical characteristics for the timers pins, including TIN, TOUT, TGATE,  
and RTC_CLK.  
Table 60. Timers DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
0.8  
V
V
0 V VIN NVDD  
± 5  
A  
18.2 Timers AC Timing Specifications  
This table provides the timers input and output AC timing specifications.  
Table 61. Timers Input AC Timing Specifications  
Characteristic  
Timers inputs—minimum pulse width  
Symbol 1  
Min  
Unit  
tTIWID  
20  
ns  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
70  
GPIO  
Table 61. Timers Input AC Timing Specifications  
Symbol 1  
Characteristic  
Min  
Unit  
Note:  
1. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any  
external synchronous logic. Timers input are required to be valid for at least tTIWID ns to ensure proper operation.  
This figure provides the AC test load for the Timers.  
NVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 54. Timers AC Test Load  
19 GPIO  
This section describes the DC and AC electrical specifications for the GPIO of the MPC8315E.  
19.1 GPIO DC Electrical Characteristics  
This table provides the DC electrical characteristics for the GPIO.  
Table 62. GPIO DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
0.8  
V
V
0 V VIN NVDD  
± 5  
A  
19.2 GPIO AC Timing Specifications  
This table provides the GPIO input and output AC timing specifications.  
Table 63. GPIO Input AC Timing Specifications  
Symbol 1  
tPIWID  
Characteristic  
GPIO inputs—minimum pulse width  
Note:  
Min  
Unit  
20  
ns  
1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any  
external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
71  
IPIC  
This figure provides the AC test load for the GPIO.  
NVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 55. GPIO AC Test Load  
20 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins of the  
MPC8315E.  
20.1 IPIC DC Electrical Characteristics  
This table provides the DC electrical characteristics for the external interrupt pins.  
Table 64. IPIC DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
2.1  
–0.3  
NVDD + 0.3  
V
V
0.8  
±5  
IIN  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
20.2 IPIC AC Timing Specifications  
This table provides the IPIC input and output AC timing specifications.  
Table 65. IPIC Input AC Timing Specifications  
Characteristic  
Symbol 1  
Min  
Unit  
IPIC inputs—minimum pulse width  
tPIWID  
20  
ns  
Note:  
1. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any  
external synchronous logic. IPIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when  
working in edge triggered mode.  
21 SPI  
This section describes the DC and AC electrical specifications for the SPI of the MPC8315E.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
72  
Freescale Semiconductor  
SPI  
21.1 SPI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the SPI.  
Table 66. SPI DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
2.1  
–0.3  
NVDD + 0.3  
V
V
0.8  
±5  
IIN  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
21.2 SPI AC Timing Specifications  
This table and provide the SPI input and output AC timing specifications.  
1
Table 67. SPI AC Timing Specifications  
Characteristic  
Symbol 2  
Min  
Max  
Unit  
SPI outputs valid—master mode (internal clock) delay  
SPI outputs hold—master mode (internal clock) delay  
SPI outputs valid—slave mode (external clock) delay  
SPI outputs hold—slave mode (external clock) delay  
SPI inputs—master mode (internal clock) input setup time  
SPI inputs—master mode (internal clock)input hold time  
SPI inputs—slave mode (external clock) input setup time  
SPI inputs—slave mode (external clock) input hold time  
Note:  
tNIKHOV  
tNIKHOX  
tNEKHOV  
tNEKHOX  
tNIIVKH  
0.5  
2
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8.5  
6
tNIIXKH  
0
tNEIVKH  
tNEIXKH  
4
2
1. Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOX symbolizes the internal  
timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).  
This figure provides the AC test load for the SPI.  
NVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 56. SPI AC Test Load  
Figure 57 and Figure 58 represent the AC timing from Table 67. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
73  
TDM  
This figure shows the SPI timing in slave mode (external clock).  
SPICLK (Input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 57. SPI AC Timing in Slave Mode (External Clock) Diagram  
This figure shows the SPI timing in master mode (internal clock).  
SPICLK (Output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 58. SPI AC Timing in Master Mode (Internal Clock) Diagram  
22 TDM  
This section describes the DC and AC electrical specifications for the TDM of the MPC8315E.  
22.1 TDM DC Electrical Characteristics  
This table provides the DC electrical characteristics TDM.  
Table 68. TDM DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
0.8  
V
V
0 V VIN NVDD  
± 5  
A  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
74  
TDM  
22.2 TDM AC Electrical Characteristics  
This table provides the TDM AC timing specifications.  
Table 69. TDM AC Timing specifications  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
TDMxRCK/TDMxTCK  
tDM  
20.0  
8.0  
8.0  
1.0  
1.0  
3.0  
3.5  
2.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TDMxRCK/TDMxTCK high pulse width  
TDMxRCK/TDMxTCK low pulse width  
TDMxRCK/TDMxTCK rise time (20% to 80%)  
TDMxRCK/TDMxTCK fall time (80% to 20%)  
TDM all input setup time  
tDM_HIGH  
tDM_LOW  
tDMKH  
4.0  
4.0  
tDMKL  
tDMIVKH  
TDMxRD hold time  
tDMRDIXKH  
tDMFSIXKH  
tDM_OUTAC  
tDMTKHOV  
tDMTKHOX  
tDM_OUTHI  
tDMFSKHOV  
tDMFSKHOX  
TDMxTFS/TDMxRFS input hold time  
TDMxTCK High to TDMxTD output active  
TDMxTCK High to TDMxTD output valid  
TDMxTD hold time  
14.0  
2.0  
TDMxTCK High to TDMxTD output high impedance  
TDMxTFS/TDMxRFS output valid  
TDMxTFS/TDMxRFS output hold time  
Note:  
10.0  
13.5  
2.5  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTDMIVKH symbolizes TDM timing  
(DM) with respect to the time the input signals (I) reach the valid state (V) relative to the TDM Clock, tTC, reference (K) going to  
the high (H) state or setup time. Also, output signals (O), hold (X).  
2. Output values are based on 30 pF capacitive load.  
3. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge  
they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. TDMxTCK and TDMxRCK  
are shown using the rising edge.  
This figure shows the TDM receive signal timing.  
tDM  
tDM_HIGH  
tDM_LOW  
TDMxRCK  
tDMRDIXKH  
tDMIVKH  
TDMxRD  
tDMFSIXKH  
tDMIVKH  
TDMxRFS  
tDMFSKHOV  
tDMFSKHOX  
TDMxRFS (output)  
Figure 59. TDM Receive Signals  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
75  
Package and Pin Listings  
This figure shows the TDM transmit signal timing.  
tDM  
tDM_HIGH  
tDM_LOW  
tDM_OUTHI  
tDMTKHOX  
TDMxTCK  
tDMTKHOV  
tDM_OUTAC  
TDMxTD  
TDMxRCK  
tDMFSKHOV  
tDMFSKHOX  
TDMxTFS (output)  
tDMFSIXKH  
tDMIVKH  
TDMxTFS (input)  
Figure 60. TDM Transmit Signals  
23 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8315E is available in  
a thermally enhanced plastic ball grid array (TEPBGA II), see Section 23.1, “Package Parameters for the  
MPC8315E TEPBGA II,” and Section 23.2, “Mechanical Dimensions of the TEPBGA II,” for information  
on the TEPBGA II.  
23.1 Package Parameters for the MPC8315E TEPBGA II  
The package parameters are as provided in the following list. The package type is 29 mm 29 mm,  
TEPBGA II.  
Package outline  
Interconnects  
29 mm 29 mm  
620  
Pitch  
1 mm  
Module height (typical)  
Solder balls  
2.23 mm  
96.5 Sn/3.5 Ag (VR package)  
Ball diameter (typical)  
0.6 mm  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
76  
Package and Pin Listings  
23.2 Mechanical Dimensions of the TEPBGA II  
This figure shows the mechanical dimensions andbottom surface nomenclature of the 620-pin TEPBGA II  
package.  
Notes:  
1. All dimensions are in millimeters.  
2. Dimensions and tolerances per ASME Y14.5M-1994.  
3. Maximum solder ball diameter measured parallel to datum A.  
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
Figure 61. Mechanical Dimensions and Bottom Surface Nomenclature of the TEPBGA II  
23.3 Pinout Listings  
This table provides the pin-out listing for the TEPBGA II package.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
77  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
DDR Memory Controller Interface  
MEMC_MDQ[0]  
MEMC_MDQ[1]  
MEMC_MDQ[2]  
MEMC_MDQ[3]  
MEMC_MDQ[4]  
MEMC_MDQ[5]  
MEMC_MDQ[6]  
MEMC_MDQ[7]  
MEMC_MDQ[8]  
MEMC_MDQ[9]  
MEMC_MDQ[10]  
MEMC_MDQ[11]  
MEMC_MDQ[12]  
MEMC_MDQ[13]  
MEMC_MDQ[14]  
MEMC_MDQ[15]  
MEMC_MDQ[16]  
MEMC_MDQ[17]  
MEMC_MDQ[18]  
MEMC_MDQ[19]  
MEMC_MDQ[20]  
MEMC_MDQ[21]  
MEMC_MDQ[22]  
MEMC_MDQ[23]  
MEMC_MDQ[24]  
MEMC_MDQ[25]  
MEMC_MDQ[26]  
MEMC_MDQ[27]  
MEMC_MDQ[28]  
MEMC_MDQ[29]  
MEMC_MDQ[30]  
MEMC_MDQ[31]  
MEMC_MDM0  
AF16  
AE17  
AH17  
AG17  
AG18  
AH18  
AD18  
AF19  
AH19  
AD19  
AG20  
AH20  
AH21  
AE21  
AH22  
AD21  
AG10  
AH9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
AH8  
AD11  
AH7  
AG7  
AF8  
AD10  
AE9  
AH6  
AH5  
AG6  
AH4  
AE6  
AD8  
AF5  
AE18  
AE20  
AE10  
MEMC_MDM1  
O
MEMC_MDM2  
O
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
78  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Note  
Signal  
Package Pin Number  
Pin Type  
Supply  
MEMC_MDM3  
MEMC_MDQS[0]  
MEMC_MDQS[1]  
MEMC_MDQS[2]  
MEMC_MDQS[3]  
MEMC_MBA[0]  
MEMC_MBA[1]  
MEMC_MBA[2]  
MEMC_MA0  
AF6  
AF17  
AG21  
AG9  
O
I/O  
I/O  
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
3
AF7  
AH16  
AH15  
AG15  
AD15  
AE15  
AH14  
AG14  
AF14  
AE14  
AH13  
AH12  
AF13  
AD13  
AG12  
AH11  
AH10  
AE12  
AF11  
AE5  
MEMC_MA1  
MEMC_MA2  
MEMC_MA3  
MEMC_MA4  
MEMC_MA5  
MEMC_MA6  
MEMC_MA7  
MEMC_MA8  
MEMC_MA9  
MEMC_MA10  
MEMC_MA11  
MEMC_MA12  
MEMC_MA13  
MEMC_MA14  
MEMC_MWE  
MEMC_MRAS  
MEMC_MCAS  
MEMC_MCS[0]  
MEMC_MCS[1]  
MEMC_MCKE  
MEMC_MCK[0]  
MEMC_MCK[0]  
MEMC_MCK[1]  
MEMC_MCK[1]  
MEMC_MODT[0]  
MEMC_MODT[1]  
MEMC_MVREF  
AD7  
AG4  
AH3  
AD5  
AE4  
AF4  
AF3  
AF1  
AE1  
AE3  
AD4  
AD12  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
79  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
Local Bus Controller Interface  
LAD0  
AB28  
AB27  
AC28  
AA24  
AC27  
AD28  
AB25  
AC26  
AD27  
AB24  
AE28  
AE27  
AE26  
AF28  
AC24  
AD25  
V24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
12  
12  
12  
12  
12  
12  
12  
11  
LAD1  
LAD2  
LAD3  
LAD4  
LAD5  
LAD6  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
LAD15  
LA16  
LA17  
V25  
O
LA18  
W26  
O
LA19  
W28  
O
LA20  
U24  
O
LA21  
W24  
O
LA22  
Y28  
O
LA23  
AH23  
AH24  
AG23  
AD22  
AF25  
AG24  
AF24  
AE23  
AG26  
AH26  
AF26  
Y27  
O
LA24  
O
LA25  
O
LCS[0]  
LCS[1]  
LCS[2]  
LCS[3]  
LWE[0] /LFWE/LBS  
LWE[1]  
LBCTL  
LALE  
O
O
O
O
O
O
O
O
LGPL0/LFCLE  
O
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
80  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Note  
Signal  
Package Pin Number  
Pin Type  
Supply  
LGPL1/LFALE  
LGPL2/LFRE/LOE  
LGPL3/LFWP  
AA28  
Y25  
O
O
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
NVDD3_OFF  
12  
2
Y24  
O
LGPL4/LGTA/LUPWAIT/LFRB  
AA26  
AF22  
AH25  
AD24  
I/O  
O
LGPL5  
LCLK0  
LCLK1  
12  
11  
11  
O
O
DUART  
UART_SOUT1/MSRCID0 (DDR  
ID)/LSRCID0  
C15  
O
NVDD2_OFF  
UART_SIN1/MSRCID1 (DDR ID)/LSRCID1  
B16  
D16  
I/O  
I/O  
NVDD2_OFF  
NVDD2_OFF  
UART_CTS[1]/MSRCID2 (DDR  
ID)/LSRCID2  
UART_RTS[1]/MSRCID3 (DDR  
ID)/LSRCID3  
B17  
A16  
O
O
NVDD2_OFF  
NVDD2_OFF  
UART_SOUT2/MSRCID4 (DDR  
ID)/LSRCID4  
UART_SIN2/MDVAL (DDR ID)/LDVAL  
UART_CTS[2]  
C16  
A17  
A18  
I/O  
I
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
UART_RTS[2]  
O
I2C interface  
IIC_SDA/CKSTOP_OUT  
IIC_SCL/CKSTOP_IN  
N1  
N2  
I/O  
I/O  
NVDD4_OFF  
NVDD4_OFF  
2
2
Interrupts  
MCP_OUT  
W1  
Y3  
O
NVDD1_OFF  
NVDD1_OFF  
NVDD1_ON  
NVDD1_ON  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
2
IRQ[0]/MCP_IN  
IRQ[1]  
I
E1  
I
IRQ[2]  
A7  
I
IRQ[3]  
AA1  
Y5  
I
IRQ[4]  
I
I
IRQ[5]/CORE_SRESET_IN  
IRQ[6] /CKSTOP_OUT  
IRQ[7]/CKSTOP_IN  
AA2  
AA4  
AA5  
I/O  
I
Configuration  
CFG_CLKIN_DIV  
EXT_PWR_CTRL  
PMC_PWR_OK  
A5  
D3  
D4  
I
O
I
NVDD1_ON  
NVDD1_ON  
12  
12  
12  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
81  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
JTAG  
Pin Type  
Note  
TCK  
E5  
B4  
C4  
C3  
C2  
I
I
NVDD1_ON  
NVDD1_ON  
NVDD1_ON  
NVDD1_ON  
NVDD1_ON  
4
TDI  
TDO  
TMS  
TRST  
O
I
3
4
I
4
TDM  
GPIO_18/TDM_RCK  
GPIO_20/TDM_RD  
GPIO_19/TDM_RFS  
GPIO_21/TDM_TCK  
GPIO_23/TDM_TD  
GPIO_22/TDM_TFS  
AB1  
AC1  
AB3  
AB5  
AC3  
AC2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
SATA  
PINRXMINUSA  
PINRXMINUSB  
PINRXPLUSA  
PINRXPLUSB  
PINTXMINUSA  
PINTXMINUSB  
PINTXPLUSA  
PINTXPLUSB  
SATA_ANAVIZ  
SATA_CLK_IN  
SATA_VDD  
N28  
U28  
M28  
T28  
M25  
P26  
N25  
R26  
U26  
V27  
N27  
U23  
M27  
V28  
T26  
T25  
U27  
T27  
I
I
VDD1IO  
VDD1IO  
VDD1IO  
VDD1IO  
VDD1IO  
VDD1IO  
VDD1IO  
VDD1IO  
10  
I
I
O
O
O
O
O
I
NVDD3_OFF  
I
SATA_VDD  
I
SATA_VSS  
I
SATA_VSS  
I
VSSRESREF  
RESREF  
I
I
VDD33ANA  
I
VDD33PLL  
I
TEST  
D6  
TEST_MODE  
I
NVDD1_ON  
6
DEBUG  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
82  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Note  
Signal  
Package Pin Number  
Pin Type  
Supply  
QUIESCE  
B5  
O
NVDD1_ON  
System Control  
HRESET  
B6  
A6  
I/O  
I
NVDD1_ON  
NVDD1_ON  
1
PORESET  
Clocks  
SYS_XTAL_IN  
SYS_XTAL_OUT  
SYS_CLK_IN  
USB_XTAL_IN  
USB_XTAL_OUT  
USB_CLK_IN  
PCI_SYNC_OUT  
RTC_CLK  
L27  
J28  
K28  
A15  
B14  
B15  
J27  
K26  
K27  
I
O
I
NVDD2_ON  
NVDD2_ON  
NVDD2_ON  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_ON  
NVDD2_ON  
NVDD2_ON  
3
I
O
I
O
I
PCI_SYNC_IN  
I
MISC  
AVDD1  
AVDD2  
THERM0  
AC15  
M23  
L25  
I
7
I
I
NVDD2_ON  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
DMA_DACK0/GPIO_13  
DMA_DREQ0/GPIO_12  
DMA_DONE0/GPIO_14  
NC, No Connect  
AC4  
AD1  
AD2  
A2  
I/O  
I/O  
I/O  
NC, No Connect  
U25  
PCI  
PCI_INTA  
B18  
A20  
J25  
O
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
PCI_RESET_OUT  
PCI_AD[0]  
PCI_AD[1]  
PCI_AD[2]  
PCI_AD[3]  
PCI_AD[4]  
PCI_AD[5]  
PCI_AD[6]  
PCI_AD[7]  
PCI_AD[8]  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J24  
K24  
H27  
H28  
H26  
G27  
G28  
F26  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
83  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
PCI_AD[9]  
F28  
G25  
F27  
E27  
E28  
D28  
D27  
B25  
D24  
B26  
C24  
A26  
E20  
A23  
C22  
E19  
A22  
C20  
B21  
D19  
A19  
A21  
B19  
H24  
C27  
A25  
E21  
G24  
C28  
A24  
D25  
D23  
E22  
D26  
C25  
D21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
5
PCI_AD[10]  
PCI_AD[11]  
PCI_AD[12]  
PCI_AD[13]  
PCI_AD[14]  
PCI_AD[15]  
PCI_AD[16]  
PCI_AD[17]  
PCI_AD[18]  
PCI_AD[19]  
PCI_AD[20]  
PCI_AD[21]  
PCI_AD[22]  
PCI_AD[23]  
PCI_AD[24]  
PCI_AD[25]  
PCI_AD[26]  
PCI_AD[27]  
PCI_AD[28]  
PCI_AD[29]  
PCI_AD[30]  
PCI_AD[31]  
PCI_C/BE[0]  
PCI_C/BE[1]  
PCI_C/BE[2]  
PCI_C/BE[3]  
PCI_PAR  
PCI_FRAME  
PCI_TRDY  
PCI_IRDY  
5
5
PCI_STOP  
PCI_DEVSEL  
PCI_IDSEL  
PCI_SERR  
PCI_PERR  
5
5
5
I/O  
I/O  
5
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
84  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Note  
Signal  
Package Pin Number  
Pin Type  
Supply  
PCI_REQ0  
E18  
C18  
E17  
B20  
D17  
E15  
L24  
E23  
F24  
E25  
B23  
I/O  
I
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
NVDD2_OFF  
2
PCI_REQ1/CPCI_HS_ES  
PCI_REQ2  
I
PCI_GNT0  
I/O  
O
O
I
PCI_GNT1/CPCI_HS_LED  
PCI_GNT2/CPCI_HS_ENUM  
M66EN  
PCI_CLK0  
O
O
O
I/O  
PCI_CLK1  
PCI_CLK2  
PCI_PME  
ETSEC1/_USBULPI  
GPIO_24/TSEC1_COL/USBDR_TXDRXD0  
GPIO_25/TSEC1_CRS/USBDR_TXDRXD1  
TSEC1_GTX_CLK/USBDR_TXDRXD2  
TSEC1_RX_CLK/USBDR_TXDRXD3  
TSCE1_RX_DV/USBDR_TXDRXD4  
TSEC1_RXD[3]/USBDR_TXDRXD5  
TSEC1_RXD[2]/USBDR_TXDRXD6  
J1  
H1  
K5  
J4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LVDD1_OFF  
LVDD1_OFF  
LVDD1_OFF  
LVDD1_OFF  
LVDD1_OFF  
LVDD1_OFF  
LVDD1_OFF  
LVDD1_OFF  
3
J2  
G1  
H3  
J5  
TSEC1_RXD[1]/USBDR_TXDRXD7/TSEC  
_TMR_CLK  
TSEC1_RXD[0]/USBDR_NXT/TSEC_TMR  
_TRIG1  
H2  
H5  
I
I
LVDD1_OFF  
LVDD1_OFF  
TSEC1_RX_ER/USBDR_DIR/TSEC_TMR_  
TRIG2  
TSEC1_TX_CLK/USBDR_CLK  
G2  
F3  
I
LVDD1_OFF  
LVDD1_OFF  
GPIO_28/TSEC1_TXD[3]/TSEC_TMR_GC  
LK  
I/O  
GPIO_29/TSEC1_TXD[2]/TSEC_TMR_PP1  
GPIO_30/TSEC1_TXD[1]/TSEC_TMR_PP2  
F2  
F1  
G4  
I/O  
I/O  
O
LVDD1_OFF  
LVDD1_OFF  
LVDD1_OFF  
12  
TSEC1_TXD[0]/USBDR_STP/  
TSEC_TMR_PP3  
GPIO_31/TSEC1_TX_EN/TSEC_TMR_AL  
ARM1  
F4  
I/O  
LVDD1_OFF  
TSEC1_TX_ER/TSEC_TMR_ALARM2  
TSEC_GTX_CLK125  
G5  
D1  
E3  
E2  
O
I
LVDD1_OFF  
NVDD1_ON  
NVDD1_ON  
NVDD1_ON  
9
TSEC_MDC/LB_POR_CFG_BOOT_ECC  
TSEC_MDIO  
I/O  
I/O  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
85  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
ETSEC2  
Pin Type  
Note  
GPIO_26/TSEC2_COL  
GPIO_27/TSEC2_CRS  
TSEC2_GTX_CLK  
A8  
E9  
I/O  
I/O  
O
I
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
LVDD2_ON  
B10  
B8  
TSEC2_RX_CLK  
TSCE2_RX_DV  
C9  
I
TSEC2_RXD[3]  
C10  
D10  
A9  
I
TSEC2_RXD[2]  
I
TSEC2_RXD[1]  
I
TSEC2_RXD[0]  
B9  
I
TSEC2_RX_ER  
A10  
D8  
I
TSEC2_TX_CLK  
I
TSEC2_TXD[3]/CFG_RESET_SOURCE[0]  
TSEC2_TXD[2]/CFG_RESET_SOURCE[1]  
TSEC2_TXD[1]/CFG_RESET_SOURCE[2]  
TSEC2_TXD[0]/CFG_RESET_SOURCE[3]  
TSEC2_TX_EN  
D11  
C7  
I/O  
I/O  
I/O  
I/O  
O
O
E8  
B7  
D12  
B11  
TSEC2_TX_ER  
SGMII / PCI Express PHY  
TXA  
P4  
N4  
R1  
P1  
U4  
V4  
U1  
V1  
N3  
R4  
R5  
T2  
V5  
T3  
T4  
T5  
O
O
I
XPADVDD  
XPADVDD  
XCOREVDD  
XCOREVDD  
XPADVDD  
XPADVDD  
XCOREVDD  
XCOREVDD  
XCOREVDD  
XCOREVDD  
XCOREVDD  
TXA  
RXA  
RXA  
I
TXB  
O
O
I
TXB  
RXB  
RXB  
I
SD_IMP_CAL_RX  
SD_REF_CLK  
SD_REF_CLK  
SD_PLL_TPD  
SD_IMP_CAL_TX  
SDAVDD  
SD_PLL_TPA_ANA  
SDAVSS  
I
I
I
O
I
XPADVDD  
I
O
I
USB Phy  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
86  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Note  
Signal  
Package Pin Number  
Pin Type  
Supply  
USB_DP  
A11  
A12  
C12  
A14  
D14  
A13  
D13  
B13  
E14  
C14  
E13  
E12  
I/O  
USB_VDDA  
8
USB_DM  
I/O  
USB_VDDA  
USB_VBUS  
USB_TPA  
I
O
I
USB_RBIAS  
USB_PLL_PWR3  
I
USB_PLL_GND0 & USB_PLL_GND1  
USB_PLL_PWR1  
USB_VSSA_BIAS  
USB_VDDA_BIAS  
USB_VSSA  
I
I
I
I
I
USB_VDDA  
I
GPIO  
GPIO_0/DMA_DREQ1/GTM1_TOUT1  
C5  
A4  
I/O  
I/O  
NVDD1_ON  
NVDD1_ON  
GPIO_1/DMA_DACK1/GTM1_TIN2/GTM2_  
TIN1  
GPIO_2/DMA_DONE1/GTM1_TGATE2/GT  
M2_TGATE1  
K3  
I/O  
NVDD4_OFF  
GPIO_3/GTM1_TIN3/GTM2_TIN4  
K1  
K2  
L5  
L3  
L1  
M1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NVDD4_OFF  
NVDD4_OFF  
NVDD4_OFF  
NVDD4_OFF  
NVDD4_OFF  
NVDD4_OFF  
GPIO_4/GTM1_TGATE3/GTM2_TGATE4  
GPIO_5/GTM1_TOUT3/GTM2_TOUT1  
GPIO_6/GTM1_TIN4/GTM2_TIN3  
GPIO_7/GTM1_TGATE4/GTM2_TGATE3  
GPIO_8/USBDR_DRIVE_VBUS/GTM1_TI  
N1/GTM2_TIN2  
GPIO_9/USBDR_PWRFAULT/GTM1_TGAT  
E1/GTM2_TGATE2  
M2  
M5  
M4  
I/O  
I/O  
I/O  
NVDD4_OFF  
NVDD4_OFF  
NVDD4_OFF  
GPIO_10/USBDR_PCTL0/GTM1_TOUT2/  
GTM2_TOUT1  
GPIO_11/USBDR_PCTL1/GTM1_TOUT4/  
GTM2_TOUT3  
SPI  
SPIMOSI/GPIO_15  
SPIMISO/GPIO_16  
SPICLK  
W3  
W4  
Y1  
I/O  
I/O  
I/O  
I/O  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
NVDD1_OFF  
SPISEL/GPIO_17  
W2  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
87  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
Power and Ground Supplies  
GVDD  
Y11, Y12, Y14, Y15, Y17, AC8, AC11,  
AC14, AC17, AD6, AD9, AD17, AE8,  
AE13, AE19, AF10, AF15, AF21, AG2,  
AG3, AG8, AG13, AG19, AH2  
I
LVDD1_OFF  
LVDD2_ON  
NVDD1_OFF  
H6, J3, L6, L9, M9  
I
I
I
C11, D9, E10, F11, J12  
U9, V9, W10, Y4, Y6,  
AA3, AB4  
NVDD1_ON  
NVDD2_OFF  
B1, B2, C1, D5, E7, F5, F9, J11, K10  
I
I
B22, B27, C19, E16, F15, F18, F21, F25,  
H25, J17, J18, J23, L20, M20  
NVDD2_ON  
NVDD3_OFF  
L26, N19  
I
I
U20, V20, V23, V26, W19, Y18, Y26,  
AA23, AA25, AC20, AC25, AD23, AE25,  
AG25, AG27  
NVDD4_OFF  
VDD  
K4, L2, M6, N10  
I
I
J15, K15, K16, K17, K18, K19, L10, L19,  
M10, T10, U10, U19, V10, V19, W11, W12,  
W13, W14, W15, W16, W17, W18  
VDD1ANA  
VDD1IO  
VDDC  
P23, R23, T19  
I
I
I
M26, N26, P28, R28  
J14, K11, K12, K13,  
K14, M19  
VSS  
A3, A27, B3, B12, B24, B28, C6, C8, C13,  
C17, C21, C23, C26, D2, D7, D15, D18,  
D20, D22, E4, E6, E11, E24, E26, F8, F12,  
F14, F17, F20, G3, G26, H4, H23, J6, J26,  
K25, L4, L11, L12, L13, L14, L15, L16, L17,  
L18, L23, L28, M3, M11, M12, M13, M14,  
M15, M16, M17, M18, N5, N11, N12, N13,  
N14, N15, N16, N17, N18, P6, P11, P12,  
P13, P14, P15, P16, P17, P18, R6, R11,  
R12, R13, R14, R15, R16, R17, R18, T11,  
T12, T13, T14, T15, T16, T17, T18, U5, U6,  
U11, U12, U13, U14, U15, U16, U17, U18,  
V6, V11, V12, V13, V14, V15, V16, V17,  
V18, W5, W25, W27, Y2, Y23, AA6, AA27,  
AB2, AB26, AC5, AC9, AC12, AC18, AC21,  
AD3, AD14, AD16, AD20, AD26, AE2,  
AE7, AE11, AE16, AE22, AE24, AF2, AF9,  
AF12, AF18, AF20, AF23, AF27, AG1,  
AG5, AG11, AG16, AG22, AG28, AH27  
I
VSS1ANA  
P24, R19, R20, R24  
I
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
88  
Package and Pin Listings  
Table 70. MPC8315E TEPBGA II Pinout Listing (continued)  
Power  
Note  
Signal  
Package Pin Number  
Pin Type  
Supply  
VSS1IO  
M24, N24, P19, P20, P25, P27, R25, R27,  
T24  
I
XCOREVDD  
XCOREVSS  
XPADVDD  
XPADVSS  
Note:  
P2, P10, R2, T1  
R3, R10, U2, V2  
P3, R9, U3  
I
I
I
I
P5, P9, V3  
1. This pin is an open drain signal. A weak pull-up resistor (1 k) should be placed on this pin to NVDD.  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 k) should be placed on this pin to NVDD.  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.  
6. This pin must always be tied to VSS.  
7. Thermal sensitive resistor.  
8. This pin should be connected to USB_VSSA_BIAS through 10K precision resistor.  
9. The LB_POR_CFG_BOOT_ECC functionality for this pin is only available in MPC8315E revision 1.1 and later. The  
LB_POR_CFG_BOOT_ECC is sampled only during the PORESET negation. This pin with an internal pull down resistor enables  
the ECC by default. To disable the ECC an external strong pull up resistor or a tristate buffer is needed.  
10.This pin should be connected to an external 2.7 K ±1% resistor connected to VSS. The resistor should be placed as close as  
possible to the input.  
11.This pin has a weak internal pull-down.  
12.This pin has a weak internal pull-up.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
89  
Clocking  
24 Clocking  
This figure shows the internal distribution of clocks within the MPC8315E.  
e300c3 core  
MPC8315E  
core_clk  
Core PLL  
x M1  
USB Mac  
TDM  
/n  
USB PHY  
PLL  
to DDR  
memory  
controller  
mux  
DDR  
DDR  
Memory  
Device  
MEMC_MCK  
MEMC_MCK  
Clock  
USB_CLK_IN  
USB_XTAL_IN  
csb_clk  
Divider  
/2  
ddr_clk  
lbc_clk  
x L2  
Crystal  
Clock  
Unit  
Local Bus  
Memory  
Device  
/n  
LCLK[0:1]  
System  
PLL  
/1,/2  
USB_XTAL_OUT  
To local bus  
LBC  
Clock  
Divider  
CFG_CLKIN  
_DIV  
csb_clk to rest  
of the device  
PCI_CLK/  
PCI_SYNC_IN  
SYS_CLK_IN  
SYS_XTAL_IN  
1
0
PCI_SYNC_OUT  
PCI Clock  
Divider (2)  
Crystal  
3
PCI_CLK_OUT[0:2]  
SYS_XTAL_OUT  
RTC  
PCI Express  
eTSEC  
GTX_CLK125  
Protocol  
Converter  
Protocol  
Converter  
125-MHz source  
RTC_CLK (32 kHz)  
Sys Ref  
PCVTR Mux  
SATA Controller  
SD_REF_CLK  
SD_REF_CLK  
+
-
SerDes PHY  
SATA PHY  
PLL  
PLL  
SATA_CLK_IN  
125/100 MHz  
50/75/100/  
125/150 MHz  
1
Multiplication factor M = 1, 1.5, 2, 2.5, and 3. Value is decided by RCWLR[COREPLL].  
Multiplication factor L = 2, 3, 4 and 5. Value is decided by RCWLR[SPMF].  
2
Figure 62. MPC8315E Clock Subsystem  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
90  
Clocking  
The primary clock source can be one of two inputs, SYS_CLK_IN or PCI_CLK, depending on whether  
the device is configured in PCI host or PCI agent mode. When the device is configured as a PCI host  
device, SYS_CLK_IN is its primary input clock. SYS_CLK_IN feeds the PCI clock divider (2) and the  
multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_SYS_CLKIN_DIV configuration  
input selects whether SYS_CLK_IN or SYS_CLK_IN/2 is driven out on the PCI_SYNC_OUT signal.  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to  
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,  
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device  
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured  
as a PCI agent device the SYS_CLK_IN signal should be tied to GND.  
As shown in Figure 62, the primary clock input (frequency) is multiplied up by the system phase-locked  
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the  
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbiu_clk).  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following  
equation:  
csb_clk = {PCI_SYNC_IN × (1 + ~ CFG_SYS_CLKIN_DIV)} × SPMF  
In PCI host mode, PCI_SYNC_IN × (1 + ~ CFG_SYS_CLKIN_DIV) is the SYS_CLK_IN frequency.  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up  
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL  
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL)  
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset,  
Clocking, and Initialization,” in the MPC8315E PowerQUICC II Pro Integrated Host Processor Family  
Reference Manual for more information on the clock subsystem.  
The internal ddr_clk frequency is determined by the following equation:  
ddr_clk = csb_clk × (1 + RCWL[DDRCM])  
Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider  
(2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate  
is the same frequency as ddr_clk.  
The internal lbiu_clk frequency is determined by the following equation:  
lbiu_clk = csb_clk × (1 + RCWL[LBCM])  
Note that lbiu_clk is not the external local bus frequency; lbiu_clk passes through the LBIU clock divider  
to create the external local bus clock outputs (LCLK[0:1]). The LBIU clock divider ratio is controlled by  
LCRR[CLKDIV].  
In addition, some of the internal units may be required to be shut off or operate at lower frequency than  
the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped  
register after the device comes out of reset. Table 71 specifies which units have a configurable clock  
frequency.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
91  
Clocking  
Table 71. Configurable Clock Units  
Default Frequency  
Unit  
Options  
eTSEC1  
eTSEC2  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk  
Security Core, I2C, SAP, TPR  
USB DR  
PCI and DMA complex  
PCI Express  
Off, csb_clk  
Serial ATA  
Off, csb_clk, csb_clk/2, csb_clk/3  
This table provides the operating frequencies for the TEPBGA II under recommended operating  
conditions (see Table 2).  
Table 72. Operating Frequencies for TEPBGA II  
Characteristic1  
Max Operating Frequency  
Unit  
e300 core frequency (core_clk)  
400  
133  
133  
66  
MHz  
MHz  
MHz  
MHz  
MHz  
Coherent system bus frequency (csb_clk)  
DDR1/2 memory bus frequency (MCK)2  
Local bus frequency (LCLKn)3  
PCI input frequency (SYS_CLK_IN or PCI_CLK)  
Note:  
24-66  
1. The SYS_CLK_IN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting csb_clk,  
MCK, LCLK[0:1], and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies.  
2. The DDR data rate is 2x the DDR memory bus frequency.  
3. The local bus frequency is 1/2, 1/4, or 1/8 of the lbiu_clk frequency (depending on LCRR[CLKDIV]) which is in turn 1x or 2x the  
csb_clk frequency (depending on RCWL[LBCM]).  
24.1 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] parameter. Table 73 shows the multiplication factor  
encodings for the system PLL.  
NOTE  
If RCWL[DDRCM] and RCWL[LBCM] are both cleared, the system PLL  
VCO frequency = (CSB frequency) (System PLL VCO Divider).  
If either RCWL[DDRCM] or RCWL[LBCM] are set, the system PLL VCO  
frequency = 2 (CSB frequency) (System PLL VCO Divider).  
The VCO divider needs to be set properly so that the System PLL VCO  
frequency is in the range of 450–750 MHz.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
92  
Freescale Semiconductor  
Clocking  
Table 73. System PLL Multiplication Factors  
System PLL  
RCWL[SPMF]  
Multiplication Factor  
0000  
0001  
Reserved  
Reserved  
2  
0010  
0011  
3  
0100  
4  
0101  
5  
0110–1111  
Reserved  
As described in Section 24, “Clocking,” The LBCM, DDRCM, and SPMF parameters in the reset  
configuration word low and the CFG_SYS_CLKIN_DIV configuration input signal select the ratio  
between the primary clock input (SYS_CLK_IN or PCI_CLK) and the internal coherent system bus clock  
(csb_clk). Table 74 and Table 75 shows the expected frequency values for the CSB frequency for select  
csb_clk to SYS_CLK_IN/PCI_SYNC_IN ratios.  
Table 74. CSB Frequency Options for Host Mode  
Input Clock  
csb_clk :  
Frequency (MHz)2  
CFG_SYS_CLKIN_DIV  
SPMF  
Input Clock  
at Reset1  
Ratio 2  
24  
33.33  
66.67  
High/Low 3  
High/Low  
High/Low  
High/Low  
0010  
0011  
0100  
0101  
2:1  
3:1  
4:1  
5:1  
133  
100  
133  
96  
120  
1
2
3
CFG_SYS_CLKIN_DIV select the ratio between SYS_CLK_IN and PCI_SYNC_OUT.  
SYS_CLK_IN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
In the Host mode it does not matter if the value is High or Low.  
Table 75. CSB Frequency Options for Agent Mode  
Input Clock  
csb_clk :  
frequency (MHz)2  
CFG_SYS_CLKIN_DIV  
SPMF  
Input Clock  
at Reset1  
Ratio 2  
25  
33.33  
66.67  
High  
High  
High  
High  
0010  
0011  
0100  
0101  
2: 1  
3: 1  
4: 1  
5: 1  
133  
100  
133  
120  
1
2
CFG_SYS_CLKIN_DIV doubles csb_clk if set low.  
SYS_CLK_IN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
93  
Clocking  
24.2 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). Table 76 shows the encodings for RCWL[COREPLL]. COREPLL values that are  
not listed in Table 76 should be considered as reserved.  
NOTE  
Core VCO frequency = core frequency VCO divider  
VCO divider has to be set properly so that the core VCO frequency is in the  
range of 400–800 MHz.  
Table 76. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk : csb_clk Ratio  
VCO Divider1  
0–1  
nn  
2–5  
6
0000  
0
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk clocks core directly) (PLL off, csb_clk clocks core directly)  
11  
00  
01  
00  
01  
00  
01  
00  
01  
00  
01  
nnnn  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0011  
0011  
n
0
0
1
1
0
0
1
1
0
0
N/A  
1:1  
N/A  
2
1:1  
4
1.5:1  
1.5:1  
2:1  
2
4
2
2:1  
4
2.5:1  
2.5:1  
3:1  
2
4
2
3:1  
4
1
Core VCO frequency = core frequency VCO divider.  
24.3 Suggested PLL Configurations  
To simplify the PLL configurations, the MPC8315E might be separated into two clock domains. The first  
domain contain the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and  
has the csb_clk as its input clock. The clock domains are independent, and each of their PLLs are  
configured separately. Both of the domains has one common input clock. Table 77 shows suggested PLL  
configurations for 33, 25, and 66 MHz input clocks.  
Table 77. Suggested PLL Configurations  
Conf. No.  
SPMF  
Core\PLL Input Clock Frequency (MHz) CSB Frequency (MHz) Core Frequency (MHz)  
1
3
4
5
0100  
0010  
0100  
0101  
0000100  
0000100  
0000101  
0000101  
33.33  
66.67  
33.33  
25  
133.33  
133.33  
133.33  
125  
266.66  
266.66  
333.33  
312.5  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
94  
Thermal  
Table 77. Suggested PLL Configurations  
Core\PLL Input Clock Frequency (MHz) CSB Frequency (MHz) Core Frequency (MHz)  
Conf. No.  
SPMF  
6
7
8
9
0010  
0101  
0100  
0010  
0000101  
0000110  
0000110  
0000110  
66.67  
25  
133.33  
125  
333.33  
375  
33.33  
66.67  
133.33  
133.33  
400  
400  
25 Thermal  
This section describes the thermal specifications of the MPC8315E.  
25.1 Thermal Characteristics  
This table provides the package thermal characteristics for the 620 29 29 mm TEPBGA II.  
Table 78. Package Thermal Characteristics for TEPBGA II  
Characteristic  
Board type  
Symbol  
Value  
Unit  
Note  
Junction to ambient natural convection  
Junction to ambient natural convection  
Junction to ambient (@200 ft/min)  
Junction to ambient (@200 ft/min)  
Junction to board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
RJA  
RJA  
RJMA  
RJMA  
RJB  
RJC  
JT  
23  
16  
18  
13  
8
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 2, 3  
1, 3  
1, 3  
4
Junction to case  
6
5
Junction to package top  
Natural convection  
6
6
Note:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
95  
Thermal  
25.2 Thermal Management Information  
For the following sections, P = (VDD I ) + P where P is the power dissipation of the I/O drivers.  
D
DD  
I/O  
I/O  
25.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
TJ = TA + (RJA PD)  
where:  
TJ = junction temperature (C)  
TA = ambient temperature for the package (C)  
RJA = junction to ambient thermal resistance (C/W)  
PD = power dissipation in the package (W)  
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. As a general statement, the value obtained on a single layer board is  
appropriate for a tightly packed printed circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
Test cases have demonstrated that errors of a factor of two (in the quantity T - T ) are possible.  
J
A
25.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction to ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
(edge) of the package is approximately the same as the local air temperature near the device. Specifying  
the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
TJ = TB + (RJB PD)  
where:  
TJ = junction temperature (C)  
TB = board temperature at the package perimeter (C)  
RJB = junction to board thermal resistance (C/W) per JESD51-8  
PD = power dissipation in the package (W)  
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
96  
Freescale Semiconductor  
Thermal  
25.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the  
Thermal Characterization Parameter () can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
TJ = TT + (JT PD)  
where:  
TJ = junction temperature (C)  
TT = thermocouple temperature on top of package (C)  
JT = junction to ambient thermal resistance (C/W)  
PD = power dissipation in the package (W)  
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
25.2.4 Heat Sinks and Junction-to-Case Thermal Resistance  
In some application environments, a heat sink is required to provide the necessary thermal management of  
the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case  
thermal resistance and a case to ambient thermal resistance:  
RJA = RJC + RCA  
where:  
RJA = junction to ambient thermal resistance (C/W)  
RJC = junction to case thermal resistance (C/W)  
RCA = case to ambient thermal resistance (C/W)  
Ris device related and cannot be influenced by the user. The user controls the thermal environment to  
JC  
change the case to ambient thermal resistance, R. For instance, the user can change the size of the heat  
CA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been  
simulated with a few commercially available heat sinks. The heat sink choice is determined by the  
application environment (temperature, air flow, adjacent component power dissipation) and the physical  
space available. Because there is not a standard application environment, a standard heat sink is not  
required.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
97  
Thermal  
Table 79. Heat Sinks and Junction-to-Case Thermal Resistance of MPC8315E TEPBGA II  
29 29 mm TEBGA II  
Heat Sink Assuming Thermal Grease  
Air Flow  
Junction-to-Ambient  
Thermal Resistance  
AAVID 30 x 30 x 9.4 mm Pin Fin  
AAVID 30 x 30 x 9.4 mm Pin Fin  
AAVID 30 x 30 x 9.4 mm Pin Fin  
AAVID 30 x 30 x 9.4 mm Pin Fin  
AAVID 35 x 31 x 23 mm Pin Fin  
AAVID 35 x 31 x 23 mm Pin Fin  
AAVID 35 x 31 x 23 mm Pin Fin  
AAVID 35 x 31 x 23 mm Pin Fin  
AAVID 43 x 41 x 16.5 mm Pin Fin  
AAVID 43 x 41 x 16.5 mm Pin Fin  
AAVID 43 x 41 x 16.5 mm Pin Fin  
AAVID 43 x 41 x 16.5 mm Pin Fin  
Wakefield, 53 x 53 x 25 mm Pin Fin  
Wakefield, 53 x 53 x 25 mm Pin Fin  
Wakefield, 53 x 53 x 25 mm Pin Fin  
Wakefield, 53 x 53 x 25 mm Pin Fin  
Natural Convection  
0.5 m/s  
14.4  
11.4  
10.1  
8.9  
1 m/s  
2 m/s  
Natural Convection  
0.5 m/s  
12.3  
9.3  
1 m/s  
8.5  
2 m/s  
7.9  
Natural Convection  
0.5 m/s  
12.5  
9.7  
1 m/s  
8.5  
2 m/s  
7.7  
Natural Convection  
0.5 m/s  
10.9  
8.5  
1 m/s  
7.5  
2 m/s  
7.1  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling and the convection cooling of the  
air moving through the application. Simplified thermal models of the packages can be assembled using the  
junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More  
detailed thermal models can be made available on request.  
Heat sink vendors include the following list:  
Aavid Thermalloy  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
603-224-9988  
408-749-7601  
Alpha Novatech  
473 Sapena Ct. #12  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC) 818-842-7277  
413 North Moss St.  
Burbank, CA 91502  
Internet: www.ctscorp.com  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
98  
Freescale Semiconductor  
Thermal  
Millennium Electronics (MEI)  
Loroco Sites  
671 East Brokaw Road  
San Jose, CA 95112  
408-436-8770  
800-522-6752  
603-635-2800  
Internet: www.mei-thermal.com  
Tyco Electronics  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105  
Internet: www.tycoelectronics.com  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
77 Dragon Ct.  
Woburn, MA 01801  
Internet: www.chomerics.com  
781-935-4850  
800-248-2481  
Dow-Corning Corporation  
Corporate Center  
PO BOX 994  
Midland, MI 48686-0994  
Internet: www.dowcorning.com  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
Phoenix, AZ 85044  
888-642-7674  
800-347-4572  
Internet: www.microsi.com  
The Bergquist Company  
18930 West 78th St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
25.3 Heat Sink Attachment  
When attaching heat sinks to these devices, an interface material is required. The best method is to use  
thermal grease and a spring clip. The spring clip should connect to the printed circuit board, either to the  
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would  
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint  
lifetime of the package. Recommended maximum force on the top of the package is 10 lb force (45  
Newtons). If an adhesive attachment is planned, the adhesive should be intended for attachment to painted  
or plastic surfaces and its performance verified under the application requirements.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
99  
System Design Information  
25.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink temperature and  
then back calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction to case  
thermal resistance.  
T = T + (Rx P )  
J
C
JC  
D
Where  
T is the case temperature of the package  
C
Ris the junction-to-case thermal resistance  
JC  
P is the power dissipation  
D
26 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC8315E.  
26.1 System Clocking  
The MPC8315E includes two PLLs.  
1. The platform PLL (AVDD2) generates the platform clock from the externally supplied  
SYS_CLK_IN input. The frequency ratio between the platform and SYS_CLK_IN is selected  
using the platform PLL ratio configuration bits as described in Section 24.1, “System PLL  
Configuration.”  
2. The e300 Core PLL (AVDD1) generates the core clock as a slave to the platform clock. The  
frequency ratio between the e300 core clock and the platform clock is selected using the e300  
PLL ratio configuration bits as described in Section 24.2, “Core PLL Configuration.”  
26.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins  
(AVDD1,AVDD2 respectively). The AV level should always be equivalent to VDD, and preferably  
DD  
these voltages are derived directly from VDD through a low frequency filter scheme such as the following.  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide independent filter circuits as illustrated in Figure 63, one to each of the AV pins. By providing  
DD  
independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is  
reduced.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
100  
Freescale Semiconductor  
System Design Information  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz  
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
DD  
pin, which is on the periphery of package, without the inductance of vias. Note that the RC filter results in  
lower voltage level on AVDD. This does not imply that the DC specification can be relaxed.  
This figure shows the PLL power supply filter circuit.  
10  
VDD  
AVDD (or L2AVDD)  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
GND  
Figure 63. PLL Power Supply Filter Circuit  
26.3 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the device can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the MPC8315E system, and the  
MPC8315E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that  
the system designer place at least one decoupling capacitor at each VDD, NVDD, GVDD, and LVDD pins  
of the device. These decoupling capacitors should receive their power from separate VDD, NVDD,  
GVDD, LVDD, and GND power planes in the PCB, utilizing thick and short traces to minimize  
inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others  
may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the VDD, NVDD, GVDD, and LVDD planes, to enable quick recharging of the smaller chip  
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the  
quick response time necessary. They should also be connected to the power and ground planes through two  
vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo  
OSCON).  
26.4 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level. Unused active low inputs should be tied to NVDD, GVDD, or LVDD as required. Unused active  
high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
101  
System Design Information  
Power and ground connections must be made to all external VDD, GVDD, LVDD, NVDD, and GND pins  
of the device.  
26.5 Output Buffer DC Impedance  
The MPC8315E drivers are characterized over process, voltage, and temperature. For all buses, the driver  
2
is a push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to NVDD  
0
or GND. Then, the value of each resistor is varied until the pad voltage is NVDD/2 (see Figure 64). The  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open) and R is trimmed until the voltage at the pad equals  
P
NVDD/2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to  
P
P
N
each other in value. Then, Z = (R + R )/2.  
0
P
N
NVDD  
RN  
SW2  
SW1  
Pad  
Data  
RP  
OGND  
Figure 64. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = (1/(1/R + 1/R )) I  
. Solving for the output impedance gives R  
=
2
1
2
source  
source  
R
(V /V – 1). The drive current is then I  
= V /R  
.
term  
1
2
source  
1
source  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
102  
Ordering Information  
This table summarizes the signal impedance targets. The driver impedance are targeted at minimum VDD,  
nominal NVDD, 105C.  
Table 80. Impedance Characteristics  
Local Bus, Ethernet,  
PCI Signals  
(not including PCI  
Output Clocks)  
PCI Output Clocks  
(including  
PCI_SYNC_OUT)  
DUART, Control,  
Configuration, Power  
Management  
Impedance  
DDR DRAM Symbol  
Unit  
R
R
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
42 Target  
42 Target  
NA  
20 Target  
20 Target  
NA  
Z0  
Z0  
N
P
Differential  
ZDIFF  
Note: Nominal supply voltages. See Table 1, Tj = 105C.  
26.6 Configuration Pin Multiplexing  
The MPC8315E provides the user with power-on configuration options that can be set through the use of  
external pull-up or pull-down resistors of 4.7 kon certain output pins (see customer visible configuration  
pins). These pins are generally used as output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is  
disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections  
to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should  
minimize the disruption of signal quality or speed for output pins thus configured.  
26.7 Pull-Up Resistor Requirements  
The MPC8315E requires high resistance pull-up resistors (10 kis recommended) on open drain type pins  
2
including I C pins and EPIC interrupt pins.  
For more information on required pull up resistors and the connections required for JTAG interface, see  
AN3438, MPC8315 Design Checklist  
27 Ordering Information  
Ordering information for the parts fully covered by this specification document is provided in  
Section 27.1, “Part Numbers Fully Addressed by this Document.”  
27.1 Part Numbers Fully Addressed by this Document  
This table provides the Freescale part numbering nomenclature for the MPC8315E. Note that the  
individual part numbers correspond to a maximum processor core frequency. For available frequencies,  
contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
103  
Ordering Information  
also includes an application modifier which may specify special application conditions. Each part number  
also contains a revision code which refers to the die mask revision number.  
Table 81. Part Numbering Nomenclature  
MPC  
8315  
VR  
AG  
D
A
E
C
Product  
Code  
Part  
Identifier  
Encryption  
Acceleration  
Temperature  
Range 3  
e300 Core  
DDR  
Frequency  
Revision  
Level  
Package 1  
Frequency 2  
MPC  
8315  
Blank = Not  
included  
Blank = 0 to 105C  
C = –40 to 105C  
VR= Pb  
Free  
AD = 266 MHz D = 266 MHz Contact  
AF = 333 MHz  
local  
E = included  
TEPBGA II AG = 400 MHz  
Freescale  
sales office  
Note:  
1. See Section 23, “Package and Pin Listings,for more information on available package types.  
2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification  
support all core frequencies. Additionally, parts addressed by electric may support other maximum core frequencies.  
3. Contact your local Freescale field applications engineer (FAE).  
This table shows the SVR settings by device and package type.  
Table 82. SVR Settings  
Device  
MPC8315E  
Package  
SVR (Rev 1.0)  
SVR (Rev 1.1)  
SVR (Rev 1.2)  
TEPBGA II  
TEPBGA II  
0x80B4_0010  
0x80B5_0010  
0x80B4_0011  
0x80B5_0011  
0x80B4_0012  
0x80B5_0012  
MPC8315  
Note:  
1. PVR = 8085_0020 for all devices and revisions in this table.  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
104  
Revision History  
28 Revision History  
This table summarizes a revision history for this document.  
Table 83. Revision History  
Revision  
Date  
Substantive Change(s)  
2
11/2011  
• In Table 70:  
Corrected Note 11 to pull down.  
Note 10 added to RESREF pin. Removed all other instances of Note 10.  
Added pull up information.  
1
11/2011  
• Added Notes 4, 5, 6, and 7 in Table 2.  
• In Table 6:  
Decoupled PCI_CLK and SYS_CLK_IN rise and fall times.  
Relaxed maximum rise/fall time of SYS_CLK_IN from 1.2 ns to 4 ns.  
Modified Note 2.  
Updated SYS_CLK_IN/PCI_CLK frequency from 66 MHz to 66.67 MHz.  
• Added Note 4 to Table 9.  
• Added a note stating “eTSEC should be interfaced with peripheral operating at same voltage level.”  
in Section 9.1.1, “MII, RMII, RGMII, and RTBI DC Electrical Characteristics.”  
• Added a note in Table 26 stating “The frequency of RX_CLK should not exceed the TX_CLK by  
more than 300 ppm."  
• Added a note in Table 29 stating “The frequency of RX_CLK should not exceed the GTX_CLK125  
by more than 300 ppm  
• In Table 42, changed min/max values of tCLK_TOL from 0.05 to 0.005.  
• Added t  
parameter to Table 44  
LALEHOV  
• Replaced 50 with 50 in Section 16.5, “Receiver Compliance Eye Diagrams.”  
• In Table 70:  
Added Pull up and Pull down information.  
Removed Note 2 from TSEC_MDIO.  
• Removed configuration 2 from Table 77.  
• Removed Preliminary from Section 25, “Thermal.”  
• Removed MDIO signal from Section 26.7, “Pull-Up Resistor Requirements” as this signal is not  
open drain.  
• Replaced LCCR with LCRR throughout.  
• Replaced SYS_CLKIN with SYS_CLK_IN throughout.  
• Replaced all LBIUCM with LBCM.  
• Replaced all SYS_CR_CLK_IN and SYS_CR_CLK_OUT with SYS_XTAL_IN and  
SYS_XTAL_OUT, respectively. Replaced all USB_CR_CLK_IN and USB_CR_CLK_OUT with  
USB_XTAL_IN and USB_XTAL_OUT, respectively.  
• Added rise/fall time spec for TDM CLK  
0
05/2009  
Initial public release  
MPC8315E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2  
Freescale Semiconductor  
105  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Semiconductor was negligent regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorIQ is a trademark of  
Freescale Semiconductor, Inc. All other product or service names are the  
property of their respective owners. The Power Architecture and Power.org  
word marks and the Power and Power.org logos and related marks are  
trademarks and service marks licensed by Power.org.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
1-800 441-2447 or  
© 2011 Freescale Semiconductor, Inc.  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Document Number: MPC8315EEC  
Rev. 2  
11/2011  

相关型号:

935324286557

Multifunction Peripheral
NXP

935324297557

Microcontroller
NXP

935324354557

Microcontroller
NXP

935324358557

RISC Microprocessor
NXP

935324452528

Microcontroller
NXP

935324452557

Microcontroller
NXP

935324461518

Microcontroller
NXP

935324461574

Microcontroller
NXP

935324463518

RISC Microcontroller
NXP

935324463557

RISC Microcontroller
NXP

935324465557

RISC Microcontroller
NXP

935324485557

Microprocessor
NXP