935346451557 [NXP]

RISC Microcontroller;
935346451557
型号: 935346451557
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总98页 (文件大小:1037K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MPC5746R  
Rev. 6, 06/2017  
NXP Semiconductors  
Data Sheet: Technical Data  
MPC5746R  
SPC5746R Microcontroller  
Data Sheet  
Features  
• For functional characteristics, see the MPC5746R  
Microcontroller Reference Manual.  
• This document provides electrical specifications, pin  
assignments, and package diagrams for the MPC5746R  
series of microcontroller units (MCUs).  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Table of Contents  
1
Introduction........................................................................................3  
17.2 Flash memory Array Integrity and Margin Read  
1.1 Block diagram......................................................................... 3  
Package pinouts and signal descriptions............................................5  
Absolute maximum ratings................................................................ 6  
Electromagnetic Compatibility (EMC)..............................................7  
Electrostatic discharge (ESD)............................................................ 7  
Operating conditions.......................................................................... 8  
DC electrical specifications................................................................11  
I/O pad specification.......................................................................... 12  
8.1 Input pad specifications...........................................................12  
8.2 Output pad specifications........................................................15  
8.3 I/O pad current specifications................................................. 17  
Reset pad (PORST, RESET) electrical characteristics...................... 18  
specifications...........................................................................55  
17.3 Flash memory module life specifications................................55  
17.4 Data retention vs program/erase cycles...................................56  
17.5 Flash memory AC timing specifications.................................57  
17.6 Flash read wait state and address pipeline control settings.....58  
18 AC specifications............................................................................... 58  
18.1 Debug and calibration interface timing...................................58  
2
3
4
5
6
7
8
18.1.1  
18.1.2  
18.1.3  
JTAG interface timing............................................ 58  
Nexus interface timing............................................61  
Aurora LVDS interface timing............................... 63  
18.2 DSPI timing with CMOS and LVDS...................................... 65  
9
18.2.1  
DSPI master mode full duplex timing with CMOS  
and LVDS pads.......................................................66  
DSPI CMOS slave mode........................................ 78  
10 Oscillator and FMPLL....................................................................... 22  
11 ADC modules.....................................................................................26  
11.1 ADC input description............................................................ 26  
11.2 SAR ADC................................................................................26  
11.3 S/D ADC................................................................................. 29  
12 Temperature sensor............................................................................ 39  
13 LVDS fast asynchronous serial transmission (LFAST) pad  
18.2.2  
18.3 FEC timing.............................................................................. 80  
18.3.1  
18.3.2  
18.3.3  
18.3.4  
18.3.5  
MII-lite receive signal timing (RXD[3:0],  
RX_DV, RX_ER, and RX_CLK)...........................80  
MII-lite transmit signal timing (TXD[3:0],  
TX_EN, TX_ER, TX_CLK)...................................81  
MII-lite async inputs signal timing (CRS and  
COL)....................................................................... 82  
MII-lite serial management channel timing  
electrical characteristics..................................................................... 40  
13.1 LFAST interface timing diagrams...........................................40  
13.2 LFAST and MSC /DSPI LVDS interface electrical  
characteristics..........................................................................42  
(MDIO and MDC).................................................. 82  
RMII serial management channel timing (MDIO  
and MDC)............................................................... 83  
RMII receive signal timing (RXD[1:0], CRS_DV)84  
RMII transmit signal timing (TXD[1:0], TX_EN). 85  
14 LFAST PLL electrical characteristics................................................45  
15 Aurora LVDS electrical characteristics............................................. 46  
16 Power management PMC POR LVD sequencing..............................47  
16.1 Power management electrical characteristics..........................47  
18.3.6  
18.3.7  
16.1.1  
16.1.2  
16.1.3  
16.1.4  
16.1.5  
16.1.6  
Recommended power transistors............................ 47  
Power management integration.............................. 48  
Regulator example for the NJD2873 transistor...... 50  
Regulator example for the 2SCR574d transistor.... 51  
Device voltage monitoring......................................51  
Power up/down sequencing.................................... 53  
18.4 UART timings.........................................................................86  
18.5 eMIOS timing..........................................................................86  
19 Obtaining package dimensions.......................................................... 86  
20 Thermal characteristics...................................................................... 87  
20.1 General notes for specifications at maximum junction  
temperature..............................................................................89  
17 Flash memory specifications..............................................................54  
17.1 Flash memory program and erase specifications.................... 54  
21 Ordering information......................................................................... 90  
22 Revision history................................................................................. 91  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
2
NXP Semiconductors  
Introduction  
1 Introduction  
The MPC5746R family of 32-bit microcontrollers is the latest achievement in integrated  
automotive application controllers. It belongs to an expanding range of automotive-  
focused products designed for flexibility to support a variety of applications. The  
advanced and cost-efficient host processor core of the MPC5746R automotive controller  
family complies with the Power Architecture embedded category. It operates at speeds as  
high as 200 MHz and offers high-performance processing optimized for low power  
consumption. It capitalizes on the available development infrastructure of current Power  
Architecture devices and is supported with software drivers, operating systems, and  
configuration code to assist with users' implementations. This section contains detailed  
information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications.  
Note  
Within this document, VDD_HV_IO refers to supply pins VDD_HV_IO_MAIN  
,
VDD_HV_IO_JTAG, VDD_HV_IO_FEC, and VDD_HV_IO_MSC  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
3
Introduction  
1.1 Block diagram  
Computational Shell - Fast Domain 200MHz  
Double INTC  
MPC5746R  
Nexus  
Aurora  
JTAGM JTAGC  
DCI  
SPU  
Router  
Safety Lake  
SWT_1  
STM_1  
SWT_0  
STM_0  
E200 z425 - 200 MHz  
Main Core_0  
E200 z424 - 200 MHz  
Checker Core_0s  
E200 z425 - 200 MHz  
Main Core_1  
Nexus3p  
Nexus3p  
DSP  
Nexus RWA  
DSP  
Delay  
RCCU  
Delayed Lock-step  
with Redundnacy  
Checkers  
Scalar  
SP-FPU  
Scalar  
Scalar  
DSP  
VLE  
VLE  
VLE  
SP-FPU  
SP-FPU  
I -Mem ctrl  
I-Cache ctrl  
I -Mem ctrl  
I-Cache ctrl  
I -Mem ctrl  
I-Cache ctrl  
16kB  
IMEM  
16kB  
IMEM  
Delay  
RCCU  
8kB - 2way  
8kB - 2way  
D -Mem ctrl  
D -Mem ctrl  
D -Mem ctrl  
32kB  
DMEM  
Concentrator  
w/ E2E Ecc  
50 MHz  
Nexus Data  
Concentrator  
w/ E2E Ecc  
100 MHz  
32kB  
DMEM  
Delay  
RCCU  
Core Memory Protection Unit (CMPU)  
BIU with E2E ECC  
Core Memory Protection Unit (CMPU)  
BIU with E2E ECC  
Core Memory Protection Unit (CMPU)  
BIU with E2E ECC  
Nexus Data Trace  
Trace  
Instruction  
32 ADD  
64 DATA  
Instruction  
32 ADD  
64 DATA  
32 ADD  
32 DATA  
32 ADD  
32 DATA  
Load/ 32 ADD  
64 DATA  
Safety Lake  
Load/ 32 ADD  
64 DATA  
Store  
Store  
Slow MC2 ross Bar Switch (AMBA 2.0 v6 AHB) - 32 bit - 100 MHzM3  
M1  
M2  
Fast Cross Bar SwitchM(3AMBA 2.0 v6MA0 HB) - 64 Mb1it - 200 MHz  
M4  
S7  
S0  
System Memory Protection Unit (SMPU_1)  
System Memory Protection Unit (SMPU_0)  
S3  
S2  
S3  
S2  
S1  
S4  
S0  
32 ADD  
64 DATA  
32 ADD  
64 DATA  
32 ADD  
64 DATA  
Intelligent  
Bridging  
Bus gasket  
SRAM Ctrl  
w/ E2E Ecc  
Decorated  
access  
FLASH Controller  
Dual Ported  
Incl. Set-Associative  
Prefetch Buffers  
w/ E2E Ecc  
AIPS PBridge_0  
E2E Ecc  
Decorate Storage  
50MHz  
AIPS PBridge_1  
E2E Ecc  
Decorate Storage  
50MHz  
Overlay  
Backdoor  
for  
system  
RAM  
32 ADD  
32 DATA  
32 ADD  
32 DATA  
256 Page Line  
2 stage Pipeline  
SRAM  
224KB  
Buddy  
Device  
Interface  
Calibration  
Bus  
Overlay  
Peripheral  
Cluster A  
Peripheral  
Cluster B  
RAM  
16kB  
Flash  
4MB  
Standby  
SRAM  
32KB  
EEPROM  
256k  
Standby  
Regulator  
Standby  
Supply  
NVM (Single Module)  
Peripherals allocation to the bridges is  
based on safety and pinout  
requirements  
Peripheral Domain - 50 MHz  
Figure 1. Core block diagram  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
4
NXP Semiconductors  
Package pinouts and signal descriptions  
LINFlex_M0  
LINFlex_2  
LINFlex_0  
FlexCAN_2  
FlexCAN_0  
PMC  
DSPI_M0  
DSPI_4  
DSPI_2  
DSPI_0  
DECFILTER_0  
PIT_RTI  
ATX  
PCU  
DECFILTER_1  
BAR  
MEMU  
JTAGM  
SSCM  
STCU2  
PASS  
JDC  
CFLASH  
LFAST  
TDM  
ADC_SD_2  
Zipwire  
SIUL2  
ADC_SD_0  
ADC_SAR_2  
ADC_SAR_0  
SENT_0  
DMAMUX_3  
FlexCAN_3  
FlexCAN_1  
CRC_1  
ME  
CGM  
BCTU  
DTS  
PLLs  
XOSC  
RCOSC  
RGM  
CRC_0  
REACM  
CMU  
FCCU  
eMIOS_1  
DSPI_M1  
DSPI_3  
eTPU_0 Reg.  
eTPU_0 Code.  
RAM  
eTPU_0 Par.  
RAM  
PIT  
eMIOS_0  
DMAMUX_0  
DMAMUX_1  
DMAMUX_2  
WKPU  
DSPI_1  
IGF  
EIM  
SENT_1  
LINFlex_M1  
LINFlex_3  
LINFlex_1  
ADC_SD_1  
ADC_SAR_3  
ADC_SAR_1  
FEC  
eDMA  
3x SWT  
2x STM  
INTC  
PBRIDGE_1  
SEMA4  
PFLASH  
PCM  
PRAM  
2 x SMPU  
2x XBIC  
2x XBAR  
PBRIDGE_0  
Figure 2. Peripherals allocation  
2 Package pinouts and signal descriptions  
For package pinouts and signal descriptions, refer to the Reference Manual.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
5
Absolute maximum ratings  
3 Absolute maximum ratings  
Functional operating conditions are given in the DC electrical specifications. Absolute  
maximum voltages are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond listed maxima may affect device reliability or cause permanent  
damage to the device.  
Table 1. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Max  
1000k  
1.5  
Cycle  
Lifetime power cycles  
V
V
V
V
V
VDD_LV  
1.2 V core supply voltage 2, 3, 4  
Emulation module voltage2, 3, 4  
I/O supply voltage5  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
VDD_LV_BD  
1.5  
VDD_HV_IO_MAIN  
VDD_HV_IO_JTAG  
VDD_HV_IO_FEC  
6.0  
Crystal oscillator and JTAG supply  
FEC supply voltage  
Reference to VSS  
6.0  
Not using Ethernet Reference to  
VSS  
6.0  
VDD_HV_IO_MSC  
VDD_HV_PMC  
MSC supply voltage  
Reference to VSS  
–0.3  
–0.3  
6.0  
6.0  
V
V
Power Management Controller supply  
voltage 6  
VDD_HV_FLA  
VDDSTBY  
Decoupling pin for flash regulator6  
RAM standby supply voltage6  
S/D ADC ground voltage  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
V
V
V
V
V
V
V
V
V
V
6.0  
0.3  
0.3  
6.0  
6.0  
0.3  
0.3  
6.0  
6.0  
1.5  
VSS_HV_ADV_SD  
VSS_HV_ADV_SAR  
VDD_HV_ADV_SAR  
VDD_HV_ADV_SD  
VSS_HV_ADR_SD  
VSS_HV_ADR_SAR  
VDD_HV_ADR_SAR  
VDD_HV_ADR_SD  
VDD_LV_BD - VDD_LV  
Reference to VSS  
Reference to VSS  
Reference to VSS_HV_ADV_SAR  
Reference to VSS_HV_ADV_SD  
Reference to VSS  
Reference to VSS  
Reference to VSS_HV_ADR_SAR  
Reference to VSS_HV_ADR_SD  
SAR ADC ground voltage  
SAR ADC supply voltage  
S/D ADC supply voltage  
S/D ADC ground reference  
SAR ADC ground reference  
SAR ADC alternate reference  
S/D ADC alternate reference  
Emulation module supply differential to 1.2  
V core supply  
VSS – VSS_HV_ADR_SAR VSS_HV_ADR_SAR differential voltage  
VSS – VSS_HV_ADR_SD VSS_HV_ADR_SD differential voltage  
VSS – VSS_HV_ADV_SAR VSS_HV_ADV_SAR differential voltage  
VSS – VSS_HV_ADV_SD VSS_HV_ADV_SD differential voltage  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.3  
0.3  
0.3  
0.3  
6.0  
V
V
V
V
V
VIN  
I/O input voltage range7  
, 8, 9  
Relative to VSS_HV_IO  
8, 9  
Relative to VDD_HV_IO  
0.3  
5
IINJD  
Maximum DC injection current for digital  
pad  
Per pin, applies to all digital pins  
–5  
mA  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
6
NXP Semiconductors  
Electromagnetic Compatibility (EMC)  
Table 1. Absolute maximum ratings (continued)  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Max  
IINJA  
Maximum DC injection current for analog Per pin, applies to all analog pins  
pad  
–5  
5
mA  
10, 11  
IMAXSEG  
Maximum current per I/O segment  
–120  
–55  
120  
175  
mA  
°C  
TSTG  
STORAGE  
TSDR  
Storage temperature range and non-  
operating times  
Maximum storage time, assembled part  
programmed in ECU  
Maximum solder temperature12  
No supply; storage temperature  
in range –40 °C to 60 °C  
20  
yrs  
°C  
260  
Pb-free package  
Moisture sensitivity level13  
MSL  
3
1. Voltage is referenced to VSS unless otherwise noted.  
2. Allowed 1.45 – 1.5 V for 60 seconds cumulative time at maximum TJ = 150 °C, remaining time as defined in note -1 and  
note -1.  
3. Allowed 1.375 – 1.45 V for 10 hours cumulative time at maximum TJ = 150 °C, remaining time as defined in note -1.  
4. 1.32 – 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.275 V at  
maximum TJ = 150 °C.  
5. Allowed 5.5 – 6.0 V for 10 hours cumulative time at maximum TJ = 150 °C, remaining time at or below 5.0 V +10%.  
6. Allowed 3.6 – 4.5 V for 10 hours cumulative time at maximum TJ = 150 °C, remaining time at or below 3.3 V +10%. This is  
an internally regulated supply. Values given are for reference only.  
7. The maximum input voltage on an I/O pin tracks with the associated I/P supply maximum. For the injection current  
condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin  
to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3V can be used for nominal  
calculations.  
8. Relative value can be exceeded, if design measures are taken to ensure injection current limitation (parameters IINJD and  
IINJA).  
9. VDD_HV_IO/VSS_HV_IO refers to supply pins and corresponding grounds: VDD_HV_IO_MAIN, VDD_HV_IO_JTAG, VDD_HV_IO_FEC  
VDD_HV_IO_MSC  
,
.
10. Sum of all controller pins (including both digital and analog) must not exceed 200 mA. A VDD_HV_IO power segment is  
defined as one or more GPIO pins located between two VDD_HV_IO supply pins.  
11. The average current values given in the "I/O pad current specifications" section should be used to calculate total I/O  
segment current.  
12. Solder profile per IPC/JEDEC J-STD-020D.  
13. Moisture sensitivity per JEDEC test method A112.  
4 Electromagnetic Compatibility (EMC)  
EMC measurements to IC-level IEC standards are available from NXP on request.  
5 Electrostatic discharge (ESD)  
The following table describes the ESD ratings of the device.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
7
Operating conditions  
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for  
Automotive Grade Integrated Circuits.  
Device failure is defined as: "If after exposure to ESD pulses, the device does not meet  
the device specification requirements, which includes the complete DC parametric and  
functional testing at room temperature and hot temperature. Maximum DC parametrics  
variation within 10% of maximum specification."  
Table 2. ESD ratings  
Parameter  
Conditions  
All pins  
Value  
2000  
500  
Unit  
V
ESD for Human Body Model (HBM)1  
ESD for field induced Charged Device Model (CDM)2  
All pins  
V
1. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing  
2. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level  
6 Operating conditions  
The following table describes the operating conditions for the device, and for which all  
specifications in the data sheet are valid, except where explicitly noted.  
The device operating conditions must not be exceeded in order to guarantee proper  
operation and reliability.  
NOTE  
All power supplies need to be powered up to ensure normal  
operation of the device.  
Table 3. Device operating conditions  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Frequency  
TJ -40 °C to 150 °C  
Temperature  
fSYS  
Device operating frequency1  
200  
MHz  
TJ  
Operating temperature range -  
junction  
–40.0  
–40.0  
150.0  
125.0  
°C  
°C  
TA (TL to TH)  
Operating temperature range -  
ambient  
Voltage  
LVD/HVD enabled  
LVD/HVD disabled4, 5, 6  
VDD_LV  
External core supply voltage2, 3  
I/O supply voltage 7  
1.2  
1.18  
3.5  
1.32  
1.38  
5.5  
V
V
VDD_HV_IO_MAIN  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
8
NXP Semiconductors  
Operating conditions  
Table 3. Device operating conditions (continued)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
3.5  
3.0  
3.5  
3.0  
3.5  
3.0  
3.5  
Typ  
Max  
5.5  
3.6  
5.5  
3.6  
5.5  
3.6  
5.5  
VDD_HV_IO_FEC  
FEC I/O supply voltage8  
5 V range  
V
V
V
V
3.3 V range  
5 V range  
VDD_HV_IO_MSC  
MSC I/O supply voltage9  
JTAG I/O supply voltage11  
3.3 V range  
5 V range  
10  
VDD_HV_IO_JTAG  
3.3 V range  
Full functionality  
12  
VDD_HV_PMC  
Power Management Controller  
(PMC) supply voltage  
13  
VDDSTBY  
RAM standby supply voltage14  
1.3  
5.9  
0.9  
V
V
V
VSTBY_BO  
Standby RAM brownout voltage  
VDD_LV_STBY_SW  
Standby RAM switch VDD_LV voltage  
threshold  
S/D ADC supply voltage15, 16  
0.95  
VDD_HV_ADV_SD  
VDD_HV_ADV_SAR  
4.5  
3.0  
5.5  
5.5  
V
V
SAR ADC supply voltage  
17  
VDD_HV_ADR_SD  
S/D ADC reference  
3.0  
5.5  
25  
V
VDD_HV_ADR_SD  
S/D ADC reference differential  
voltage  
mV  
VDD_HV_ADV_SD  
VSS_HV_ADR_SD  
VSS_HV_ADV_SD  
VSS_HV_ADR_SD differential voltage  
–25  
25  
mV  
VDD_HV_ADR_SAR  
SAR ADC reference  
3.0  
5.5  
25  
V
VDD_HV_ADR_SAR  
VDD_HV_ADV_SAR  
SAR ADC reference differential  
voltage  
mV  
VSS_HV_ADR_SAR  
VSS_HV_ADV_SAR  
VSS_HV_ADR_SAR differential voltage  
–25  
25  
mV  
VSS_HV_ADV_SD – VSS VSS_HV_ADV_SD differential voltage  
VSS_HV_ADV_SAR – VSS VSS_HV_ADV_SAR differential voltage  
–25  
–25  
25  
25  
mV  
mV  
VRAMP_VDD_LV  
Slew rate on power supply pins  
(VDD_LV)  
Ramp up  
Ramp down  
Ramp up  
Ramp down  
0.069  
0.0345  
0.148  
0.125  
100 V/ms  
100  
VRAMP_VDD_HV_IO_MAIN, Slew rate on power supply pins  
100 V/ms  
100  
VRAMP_VDD_HV_PMC  
(VDD_HV_IO_MAIN,  
VDD_HV_PMC)  
Injection current  
IIC  
DC injection current (per pin)18, 19, 20 Digital pins and analog pins  
–3.0  
–80  
3.0  
80  
mA  
mA  
IMAXSEG  
Maximum current per power  
segment21, 22  
1. Maximum operating frequency is applicable to the computational cores and platform for the device.  
2. Core voltage as measured on device pin to guarantee published silicon performance.  
3. During power ramp, voltage measured on silicon might be lower. maximum performance is not guaranteed, but correct  
silicon operation is guaranteed. See power management and reset management for description.  
4. Maximum core voltage is not permitted for entire product life. See absolute maximum rating.  
5. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor  
externally supply voltage may result in erroneous operation of the device.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
9
Operating conditions  
6. This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the  
reset sequence, and the LVD/HVD are active until that point.  
7. The pad are operative till 3.0V full performance. The IRC oscillator is supplied by this pin and it is setting the min voltage  
limit.  
8. FEC will be used only in 3.3V mode. In 5V mode the segment is a general IO segment with the same characteristics of  
IO_MAIN.  
9. MSC will be used only in 3.3V mode. In 5V mode the segment is a general IO segment with the same characteristics of  
IO_MAIN.  
10. If XOSC is enabled via DCF_UTEST_Miscellaneous[XOSC_EN], VDD_HV_IO_JTAG must be within the operating range  
before RESET pin is released.  
11. JTAG will be used only in 3.3V mode. In 5V mode the segment is a general IO segment with the same characteristics of  
IO_MAIN.  
12. The startup of flash regulator and memory initialization immediately after Phase0 of reset sequence could cause a drop of  
the PMC supply. No LVD event will be generated as during this time the LVD monitors are not enabled.  
13. VDDSTBY supply must be present before and after power up/down of the device supplies and the ramp rate should be less  
than 33.3 kV/s.  
14. RAM retention is not guaranteed below 1.3 V, but no effect on RAM operation for voltages below 1.3 V when VDD_LV is  
above the minimum value.  
15. For supply voltages between 3.6V and 4.5V there will be no guaranteed precision of ADC (accuracy/linearity). ADC will  
recover to a fully functional state when the voltage rises above 4.5V.  
16. VDD_HV_ADV_SD must be higher or equal than the VDD_HV_ADV_SAR supply to guarantee full performance. It is recommended  
to connect the VDD_HV_ADV_SD to VDD_HV_ADV_SAR at board level.  
17. Temperature Sensor and its associated Band-Gap reference are supplied by this pin. The temperature sensor  
performance is guaranteed only between 4.5 V and 5.5 V.  
18. Full device lifetime without performance degradation.  
19. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the  
absolute maximum ratings table for maximum input current for reliability requirements.  
20. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is  
above the supply rail, current will be injected through the clamp diode to the supply rail. For external RC network  
calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature. For more  
information, see the device characterization report.  
21. Sum of all controller pins (including both digital and analog) must not exceed 200 mA. A VDD_HV_IO power segment is  
defined as one or more GPIO pins located between two VDD_HV_IO supply pins.  
22. The average current values given in the "I/O pad current specifications" section should be used to calculate total I/O  
segment current.  
Table 4. Emulation (buddy) device operating conditions  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Frequency  
Standard JTAG 1149.1/1149.7 frequency  
High-speed debug frequency  
Data trace frequency  
50  
MHz  
320 MHz  
1250 MHz  
Temperature  
TJ_BD  
Device junction operating temperature range  
Ambient operating temperature range  
Packaged devices –40.0  
Packaged devices –40.0  
150.0 °C  
125.0 °C  
TA _BD  
Voltage  
VDD_LV_BD Buddy core supply voltage  
1.18  
3.0  
1.32  
5.5  
V
V
VDD_HV_IO_B Buddy I/O supply voltage  
D
VRAMP_BD Buddy slew rate on power supply pins  
500 V/ms  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
10  
NXP Semiconductors  
DC electrical specifications  
7 DC electrical specifications  
The following table describes the DC electrical specifications.  
Table 5. DC electrical specifications  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
IDD_LV  
Maximum operating  
current on the VDD_LV  
supply 1  
MPC5746R/  
MPC5745R  
700  
mA  
MPC5743R/  
MPC5742R  
610  
40  
IDD_LV_PE  
Operating current on the  
VDD_LV supply for flash  
program/erase  
mA  
mA  
IDD_HV_PMC  
Operating current on the Flash read  
40  
70  
35  
10  
40  
VDD_HV_PMC supply2  
Flash P/E  
PMC only  
Operating current on the Flash read  
VDD_HV_PMC supply  
(internal core reg  
bypassed)  
mA  
Flash P/E  
IVRCCTRL  
Core regulator DC current  
25  
575  
55  
mA  
µA  
output on VRC_CTRL pin  
IDDSTBY_ON  
32 KB RAM Standby  
Leakage Current  
VDDSTBY @1.3 V to  
5.9 V, TJ = 150 °C  
(standby regulator on,  
VDDSTBY @1.3 V to  
5.9 V, TA = 40 °C  
RAM not operational)3, 4, 5  
VDDSTBY @1.3 V to  
5.9 V, TA = 85 °C  
65  
IDDSTBY_REG  
IDD_LV_BD  
32 KB RAM Standby  
Regulator Current 6  
VDDSTBY @1.2 V to  
5.9 V, Tj = 150 °C  
50  
µA  
BD Debug/Emulation low TJ = 150 °C  
voltage supply operating  
250  
mA  
VDD_LV_BD = 1.32  
V
current7  
IDD_HV_IO_BD  
Debug/Emulation high  
voltage supply operating  
current (Aurora + JTAG/  
LFAST)  
TJ = 150 °C  
130  
mA  
IBG  
Bandgap reference  
current consumption  
600  
120  
µA  
IDD_BD_STBY  
BD Debug/Emulation low TJ = 150 °C  
voltage supply standby  
current  
mA  
VDD_LV_BD = 1.32  
V
IVDDA  
VDDA supply current  
16  
25  
mA  
1. Value is derived from a typical application at 200MHz, Core 0 Data and Instruction Cache On, Core 1 in Lockstep mode,  
typical usage for SARADC, SDADC, DMA, eTPU, eMIOS, CAN, MSC, SPI, SENT, PIT, and Flash reads.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
11  
I/O pad specification  
2. This value is considering the use of the internal core regulator with an external ballast with the minimum value of hFE of 60.  
3. Data is retained for full TB range of -40 °C to 125 °C. RAM supply switch to the standby regulator occurs when the VDD_LV  
supply falls below 0.95V.  
4. VDDSTBY may be supplied with a non-regulated power supply, but the absolute maximum voltage on VDDSTBY given in the  
absolute maximum ratings table must be observed.  
5. The maximum value for IDDSTBY_ON is also valid when switching from the core supply to the standby supply, and when  
powering up the device and switching the RAM supply back to VDD_LV  
6. When the VDDSTBY pin is powered, the standby RAM regulator current is present on the pin, regardless if the device is in  
standby mode or not. No current is present on the pin when VDDSTBY pin is set to 0V, disabling the standby regulator.  
7. Worst case usage (data trace, data overlay, full Aurora utilization).  
8 I/O pad specification  
The following table describes the different pad type configurations.  
Table 6. I/O pad specification descriptions  
Pad type  
Description  
General-purpose I/O pad  
General-purpose I/O pads with four selectable output slew  
rate settings. The GPIO pads have CMOS input threshold  
levels.  
LVDS pads  
Low Voltage Differential Signal interface pads  
Input only pads  
These pads, which ensure low input leakage, are associated  
with the ADC channels. The digital inputs of these pads have  
CMOS, and TTL input threshold levels.  
Note  
Each I/O pin on the device supports specific drive  
configurations. See the signal description table in the device  
reference manual for the available drive configurations for each  
I/O pin.  
8.1 Input pad specifications  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
12  
NXP Semiconductors  
I/O pad specification  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
V
INTERNAL  
(SIUL register)  
Figure 3. I/O input DC electrical characteristics definition  
Table 7. I/O input DC electrical characteristics  
Symbol  
Parameter1  
Conditions  
Value2  
Unit  
Max  
Min  
Typ  
VIHTTL  
TTL input high level  
TTL input low level  
3.0 V < VDD_HV_IO < 5.5 V  
3.0 V < VDD_HV_IO < 5.5 V  
2.0  
VDD_HV_IO  
0.3  
+
V
VILTTL  
VSS -0.3  
0.3  
0.6  
1003  
V
VHYSTTL  
TTL level input hysteresis 3.0 V < VDD_HV_IO < 5.5 V  
V
VDRFTTTL TTL Input VIL/VIH  
temperature drift  
mV  
VIHCMOS_H CMOS input high level  
(with hysteresis)  
3.0 V < VDD_HV_IO < 5.5 V  
0.65 *  
VDD_HV_IO  
VDD_HV_IO  
+ 0.3  
V
VIHCMOS  
CMOS input high level  
(without hysteresis)  
3.0 V < VDD_HV_IO < 5.5 V  
0.55 *  
VDD_HV_IO  
VDD_HV_IO  
0.3  
+
V
V
VILCMOS_H CMOS input low level (with 3.0 V < VDD_HV_IO < 5.5 V  
hysteresis)  
VSS -0.3  
0.35 *  
VDD_HV_IO  
0.4 *  
VILCMOS  
CMOS input low level  
(without hysteresis)  
3.0 V < VDD_HV_IO < 5.5 V  
3.0 V < VDD_HV_IO < 5.5 V  
VSS -0.3  
V
VDD_HV_IO  
VHYSCMOS CMOS input hysteresis  
0.1 *  
V
VDD_HV_IO  
VDRFTCMO CMOS Input VIL/VIH  
1003  
mV  
S
temperature drift  
INPUT CHARACTERISTICS4  
ILKG Digital input leakage  
GPIO pins  
-1.0  
1.0  
8
µA  
pF  
VSS < VIN < VDD_HV_IO  
GPIO and Input pins  
CIN  
Input capacitance  
1. Supported input levels vary according to pad types. Pad type "pad_sr_hv" supports only the CMOS input level, while pad  
type "pad_isatww_st_hv" supports TTL and CMOS levels. Refer to the IO spreadsheet attached to the Reference Manual  
for the pad type of each pin.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
13  
I/O pad specification  
2. TTL level input specifications apply to the digital inputs on the analog input pins, and not the GPIO pins on the device.  
3. In a 1 ms period, assuming stable voltage and a temperature variation of 30 ꢀ°C, VIL/VIH shift is within 50 mV. For  
SENT requirement, refer to Note in the "I/O pad current specifications" section.  
4. For LFAST, microsecond bus, and LVDS input characteristics, refer to dedicated communication module chapters.  
The following table provides the current specifications for the GPIO pad weak pull-up  
and pull-down.  
Table 8. GPIO Pull-Up/Down DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Value  
Typ  
Unit  
Min  
Max  
|IWPU|  
Weak pull-up current  
absolute value1  
Vin = VIH = 0.65 * VDD_HV_IO  
4.5V < VDD_HV_IO < 5.5V  
3.0V < VDD_HV_IO < 3.6V  
Vin = VIL = 0.35 * VDD_HV_IO  
4.5V < VDD_HV_IO < 5.5V  
3.0V < VDD_HV_IO < 3.6V  
Vin = VIL = 1.1V (TTL)  
µA  
30  
18  
120  
80  
4.5V < VDD_HV_IO < 5.5V  
Vin = VIH = 0.65 * VDD_HV_IO  
4.5V < VDD_HV_IO < 5.5V  
3.0V < VDD_HV_IO < 3.6V  
Vin = VIL = 0.35 * VDD_HV_IO  
4.5V < VDD_HV_IO < 5.5V  
3.0V < VDD_HV_IO < 3.6V  
Vin = VIL = 0.9V (TTL)  
130  
|IWPD|  
Weak pull-down current  
absolute value  
µA  
120  
80  
30  
18  
4.5V < VDD_HV_IO < 5.5V  
16  
1. Weak pull-up/down is enabled within tWK_PU = 1 µs after internal/external reset has been asserted. Output voltage will  
depend on the amount of capacitance connected to the pin.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
14  
NXP Semiconductors  
I/O pad specification  
t
t
WK_PU  
WK_PU  
V
DD_HV_IO  
V
DD_POR  
RESET  
(INTERNAL)  
pull-up  
enabled  
YES  
NO  
(1)  
PAD  
(1)  
(1)  
POWER-UP  
Application defined  
RESET  
Application defined  
POWER-DOWN  
1
Actual PAD slopes will depend on external capacitances and VDD_HV_IO supply.  
Figure 4. Weak pull-up electrical characteristics definition  
Analog input leakage and pull up/down information is located in the ADC input  
description section.  
8.2 Output pad specifications  
The following figure provides the description of output DC electrical characteristics.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
15  
I/O pad specification  
V
INTERNAL  
(SIUL2 register)  
V
HYS  
t
PD  
t
PD  
t
V
SKEW20-80  
out  
90%  
80%  
50%  
20%  
10%  
t
R20-80  
t
F20-80  
t
R10-90  
t
F10-90  
t
t
(max) = MAX(t  
;t  
)
TR  
R10-90 F10-90  
t
t
(max) = MAX(t  
;t  
)
TR20-80  
R20-80 F20-80  
(min) = MIN(t  
;t  
)
TR  
R10-90 F10-90  
(min) = MIN(t  
;t  
)
TR20-80  
R20-80 F20-80  
t
= t  
-tF20-80  
SKEW20-80  
R20-80  
Figure 5. I/O output DC electrical characteristics definition  
Table 9. GPIO pad output buffer electrical characteristics  
Symbol  
Parameter  
Conditions  
Value 1, 2  
Unit  
Min  
0.8 *  
VDD_H  
V_IO  
Typ  
Max  
VOH  
GPIO pad output high voltage 4.5V < VDD_HV_IO < 5.0V  
MSCR[OERC] = 11, IOH = 38mA  
MSCR[OERC] = 10, IOH = 19mA  
MSCR[OERC] = 01, IOH = 10mA  
MSCR[OERC] = 00, IOH = 5mA  
V
3.0V < VDD_HV_IO < 3.6V  
0.8 *  
VDD_H  
V_IO  
MSCR[OERC] = 11, IOH = 19mA  
MSCR[OERC] = 10, IOH = 10mA  
MSCR[OERC] = 01, IOH = 7mA  
MSCR[OERC] = 00, IOH = 5mA  
VOL  
GPIO pad output low voltage 4.5V < VDD_HV_IO < 5.0V  
MSCR[OERC] = 11, IOL = 48mA  
MSCR[OERC] = 10, IOL = 24mA  
MSCR[OERC] = 01, IOL = 12mA  
Table continues on the next page...  
0.2 *  
VDD_H  
V_IO  
V
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
16  
NXP Semiconductors  
I/O pad specification  
Table 9. GPIO pad output buffer electrical characteristics (continued)  
Symbol  
Parameter  
Conditions  
Value 1, 2  
Unit  
Min  
Typ  
Max  
MSCR[OERC] = 00, IOL = 6mA  
3.0V < VDD_HV_IO < 3.6V  
0.2 *  
VDD_H  
V_IO  
MSCR[OERC] = 11, IOL = 24mA  
MSCR[OERC] = 10, IOL = 12mA  
MSCR[OERC] = 01, IOL = 9mA  
MSCR[OERC] = 00, IOL = 6mA  
tR_F  
GPIO pad output transition  
time (rise/fall)  
MSCR[OERC] = 11  
CL = 25pF  
1.5  
3
ns  
ns  
%
CL = 50pF  
CL = 50pF  
CL = 50pF  
CL = 50pF  
CL = 25pF  
CL = 50pF  
CL = 50pF  
CL = 50pF  
CL = 50pF  
MSCR[OERC] = 10  
MSCR[OERC] = 01  
MSCR[OERC] = 00  
6.5  
25  
40  
6
tPD  
GPIO pad output propagation MSCR[OERC] = 11  
delay time  
7.5  
11.5  
45  
75  
10  
MSCR[OERC] = 10  
MSCR[OERC] = 01  
MSCR[OERC] = 00  
|tSKEW_W  
|
Difference between rise and  
fall time  
-
1. All GPIO pad output specifications are valid for 3.0V < VDD_HV_IO < 5.5V, except where explicitly stated.  
2. All values need to be confirmed during device validation.  
8.3 I/O pad current specifications  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is  
associated to a VDD_HV_IO/VSS_HV_IO supply pair.  
The following tables provides I/O consumption figures.  
Table 10. I/O current consumption at VDD_HV_IO = 3.6 V  
Cell  
VDD_HV_IO  
(V)  
Load (pF)  
Period1 (ns)  
MSCR[OERC] Idde AVG (mA) Idde RMS (mA)  
pad_sr_hv  
3.63  
25  
50  
12  
15  
39  
16  
23  
66  
90  
11  
10  
01  
13  
16  
20  
8
37  
36  
44  
20  
21  
37  
4
200  
25  
50  
9
200  
50  
12  
1.4  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
17  
Reset pad (PORST, RESET) electrical characteristics  
Table 10. I/O current consumption at VDD_HV_IO = 3.6 V (continued)  
Cell  
VDD_HV_IO  
(V)  
Load (pF)  
Period1 (ns)  
MSCR[OERC] Idde AVG (mA) Idde RMS (mA)  
200  
50  
130  
150  
200  
3
1.6  
4
9
4
00  
200  
11  
Table 11. I/O current consumption at VDD_HV_IO = 5.5 V  
Cell  
VDD_HV_IO  
(V)  
Load (pF)  
Period1 (ns)  
MSCR[OERC] Idde AVG (mA) Idde RMS (mA)  
pad_sr_hv  
5.5  
25  
50  
9
10.2  
26  
11  
10  
37  
42  
46  
25  
21  
26  
6
83  
89  
92  
53  
44  
49  
14  
35  
9
200  
25  
10.5  
16  
50  
200  
50  
44  
54  
01  
00  
200  
50  
80  
15  
4
80  
200  
130  
9
22  
In order to ensure device reliability, the average current of the I/O on a single segment  
should remain below the IMAXSEG value given in the table "Absolute maximum ratings".  
In order to ensure device functionality, the sum of the dynamic and static current of the  
I/O on a single segment should remain below the IMAXSEG value given in the table  
"Device operating conditions".  
Note  
The MPC5746R I/O Signal Description and Input Multiplexing  
Tables are contained in a Microsoft Excel workbook file  
attached to the Reference Manual.  
9 Reset pad (PORST, RESET) electrical characteristics  
The device implements a dedicated bidirectional reset pin (PORST).  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
18  
NXP Semiconductors  
Reset pad (PORST, RESET) electrical characteristics  
NOTE  
PORST pin does not require active control. It is possible to  
implement an external pull-up to ensure correct reset exit  
sequence. Recommended value is 4.7 kohm.  
PORST can optionally be connected to an external power-on  
supply circuitry.  
No restrictions exist on reset signal slew rate apart from  
absolute maximum rating compliance.  
V
DD  
V
DDMIN  
V
DDPOR  
PORST  
V
IH  
V
IL  
device start-up phase  
PORST undriven  
device reset by  
internal power-on reset  
device reset  
forced by external circuitry  
PORST driven low  
by internal power-on reset  
Figure 6. Start-up reset requirements  
The following figure describes device behavior depending on supply signal on PORST:  
1. PORST low pulse amplitude is too low—it is filtered by input buffer hysteresis.  
Device remains in current state.  
2. PORST low pulse duration is too short—it is filtered by a low pass filter. Device  
remains in current state.  
3. PORST low pulse is generating a reset:  
• a) PORST low but initially filtered during at least WFRST. Device remains  
initially in current state.  
• b) PORST potentially filtered until WNFRST. Device state is unknown. It may  
either be reset or remains in current state depending on extra condition  
(temperature, voltage, device).  
• c) PORST asserted for longer than WNFRST. Device is under reset.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
19  
Reset pad (PORST, RESET) electrical characteristics  
VPORST  
V
DD  
V
IH  
V
HYS  
V
IL  
internal  
reset  
filtered by  
hyst er esi s  
filtered by  
lowp ass filter  
unknown reset  
state  
filtered by  
lowp ass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
3b  
1
2
3a  
3c  
Figure 7. Noise filtering on reset signal  
Table 12. Reset electrical characteristics  
Symbol Parameter  
Conditions  
Value1  
Typ  
Unit  
Min  
Max  
VIH Reset Input high level TTL  
VIL Reset Input low level TTL  
3.5 V < VDD_HV_IO < 5.5 V  
2.0  
VDD_HV_IO  
0.3  
+
+
V
V
3.5 V < VDD_HV_IO < 3.6 V  
4.5 V < VDD_HV_IO < 5.5 V  
3.5 V < VDD_HV_IO < 5.5 V  
VSS - 0.3  
VSS - 0.3  
300  
0.6  
0.8  
VHYS  
Reset  
Input hysteresis TTL  
Input high level CMOS  
Input low level CMOS  
Input hysteresis CMOS  
mV  
V
VIH  
PORST  
3.5 V < VDD_HV_IO < 5.5 V  
3.5 V < VDD_HV_IO < 5.5 V  
3.5 V < VDD_HV_IO < 5.5 V  
0.65 *  
VDD_HV_IO  
VDD_HV_IO  
0.3  
VIL  
PORST  
VSS - 0.3  
0.35 *  
VDD_HV_IO  
V
VHYS  
0.1 *  
VDD_HV_IO  
mV  
V
PORST  
VDD_POR Minimum supply for strong pulldown  
activation  
1.2  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
20  
NXP Semiconductors  
Reset pad (PORST, RESET) electrical characteristics  
Table 12. Reset electrical characteristics (continued)  
Symbol Parameter  
Conditions  
Value1  
Typ  
Unit  
Min  
Max  
IOL_R  
Strong pull-down current2  
Device under power-on reset  
VOL = 0.35 * VDD_HV_IO  
14  
mA  
3.5 V < VDD_HV_IO < 3.6 V  
Device under power-on reset  
VOL = 0.35 * VDD_HV_IO  
35  
30  
18  
30  
18  
4.5 V < VDD_HV_IO < 5.5 V  
|IWPU  
Reset  
|
Weak pull-up current absolute value RESET pin  
μA  
VIN = VIH = 0.65 * VDD_HV_IO  
4.5 V < VDD_HV_IO < 5.5 V  
RESET pin  
VIN = VIH = 0.65 * VDD_HV_IO  
3.5 V < VDD_HV_IO < 3.6 V  
RESET pin  
120  
80  
120  
80  
VIN = VIL = 0.35 * VDD_HV_IO  
4.5 V < VDD_HV_IO < 5.5 V  
RESET pin  
VIN = VIL = 0.35 * VDD_HV_IO  
3.5 V < VDD_HV_IO < 3.6 V  
PORST pin  
|IWPD  
PORST value  
|
Weak pull-down current absolute  
μA  
VIN = VIH = 0.65 * VDD_HV_IO  
4.5 V < VDD_HV_IO < 5.5 V  
PORST pin  
VIN = VIH = 0.65 * VDD_HV_IO  
3.5 V < VDD_HV_IO < 3.6 V  
PORST pin  
VIN = VIL = 0.35 * VDD_HV_IO  
4.5 V < VDD_HV_IO < 5.5 V  
PORST pin  
VIN = VIL = 0.35 * VDD_HV_IO  
3.5 V < VDD_HV_IO < 3.6 V  
WFRST  
PORST and RESET input filtered  
pulse  
500  
ns  
ns  
WNFRST PORST and RESET input not  
filtered pulse  
2000  
WFNMI  
ESR1 input filtered pulse  
20  
ns  
ns  
WNFNMI  
ESR1 input not filtered pulse  
400  
1. An external 4.7 KOhm pull-up resistor is recommended to be used with the PORST and RESET pins for fast negation of  
the signals.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
21  
Oscillator and FMPLL  
2. Strong pull-down is enabled during power up / phase0 on both pads but after that a weak pull-down is enabled on PORST  
and a weak pull-up is enabled on RESET.  
10 Oscillator and FMPLL  
Two on-chip PLLs, the peripheral clock and reference PLL (PLL0), and the frequency  
modulated system PLL (PLL1) generate the system and auxiliary clocks from the  
external oscillator.  
PLL0_PHI0  
RCOSC  
PLL0  
PLL0_PHI1  
XOSC  
PLL1_PHI0  
PLL1  
Figure 8. PLL integration  
Table 13. PLL0 electrical characteristics  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Min  
Unit  
Max  
40  
fPLL0IN  
PLL0 input clock1  
PLL0 input clock duty cycle1  
8
40  
MHz  
%
ΔPLL0IN  
60  
fPLL0VCO PLL0 VCO frequency  
fPLL0PHI0 PLL0 output clock PHI0  
tPLL0LOCK PLL0 lock time  
600  
4.762  
1250  
400  
110  
3002  
MHz  
MHz  
µs  
|
Δ
PLL0_PHI1 single period jitter  
fPLL0IN = 20 MHz (resonator)  
fPLL0PHI1 = 40 MHz, 6-  
sigma  
ps  
|
PLL0PHI1SPJ  
ΔPLL0LTJ PLL0 output long term jitter2  
10 periods accumulated  
jitter (80 MHz frequency),  
6-sigma pk-pk  
–250  
–300  
–650  
250  
300  
650  
ps  
ps  
ps  
fPLL0IN = 20 MHz (resonator), VCO  
frequency = 800 MHz  
16 periods accumulated  
jitter (50 MHz frequency),  
6-sigma pk-pk  
long term jitter  
(< 1MHz frequency), 6-  
sigma pk-pk  
IPLL0  
PLL0 consumption  
FINE LOCK state  
5
mA  
1. PLL0IN clock retrieved directly from either internal RCOSC or external FXOSC clock. Input characteristics are granted  
when using internal RCOSC or external oscillator is used in functional mode.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
22  
NXP Semiconductors  
Oscillator and FMPLL  
2. VDD_LV noise due to application in the range VDD_LV = 1.25V (+/-5%) with frequency below PLL bandwidth (40 KHz) will be  
filtered.  
Table 14. FMPLL1 electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
38  
Typ  
Max  
78  
fPLL1IN  
PLL1 input clock1  
PLL1 input clock duty cycle1  
MHz  
%
ΔPLL1IN  
35  
65  
fPLL1VCO PLL1 VCO frequency  
fPLL1PHI0 PLL1 output clock PHI0  
tPLL1LOCK PLL1 lock time  
600  
4.762  
1250  
200  
100  
250  
2
MHz  
MHz  
µs  
fPLL1MOD PLL1 modulation frequency  
kHz  
%
|δ PLL1MOD| PLL1 modulation depth (when enabled) Center spread  
0.25  
0.5  
Down spread  
4
5002  
%
|
PLL1_PHI0 single period peak to peak fPLL1PHI0 = 200 MHz, 6-  
ps  
Δ
jitter  
sigma pk-pk  
|
PLL1PHI0SPJ  
IPLL1  
PLL1 consumption  
FINE LOCK state  
6
mA  
1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when  
using internal PLL0 or external oscillator is used in functional mode.  
2. 1.25V +/-5%, application noise below 40kHz at VDD_LV pin - no frequency modulation  
All oscillator specifications are valid for VDD_HV_IO_JTAG = 3.0 V to 5.5 V.  
Table 15. XOSC External Oscillator electrical specifications  
Value  
Max  
Unit  
Symbol  
Parameter  
Conditions  
Min  
4
fXTAL  
Crystal Frequency Range1  
8
MHz  
>8  
20  
40  
16MHz < freq < 40MHz (at present, freq =  
20M and 40M have been validated, but still  
needs to be carried out for freq = 16MHz)  
>20  
tcst  
trec  
Crystal start-up time2, 3  
Crystal recovery time4  
EXTAL input high voltage5  
(External Reference)  
TJ = 150 °C, 20 MHz ≤ f ≤ 40 MHz  
5
ms  
ms  
V
0.5  
VIHEXT  
VREF = 0.28 * VDD_HV_IO_JTAG  
VREF  
+ 0.6  
VILEXT  
EXTAL input low voltage  
(External Reference)  
VREF = 0.28 * VDD_HV_IO_JTAG  
VREF  
0.6  
-
V
CS_EXTAL  
Total on-chip stray capacitance  
on EXTAL pin6  
BGA  
QFP  
BGA  
QFP  
4.75  
5.25  
4.75  
5.25  
3
5.25  
5.75  
5.25  
5.75  
13  
pF  
CS_XTAL  
Total on-chip stray capacitance  
on XTAL pin6  
pF  
gm  
Oscillator Transconductance  
TJ = -40 °C to 150  
°C  
fXTAL ≤ 8 MHz  
fXTAL ≤ 20 MHz  
mA/V  
9
35  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
23  
Oscillator and FMPLL  
Table 15. XOSC External Oscillator electrical specifications  
(continued)  
Value  
Max  
Unit  
Symbol  
Parameter  
Conditions  
Min  
12  
fXTAL ≤ 40 MHz  
43  
VEXTAL  
IXTAL  
Oscillation Amplitude on the  
EXTAL pin after startup7  
XTAL current7,8  
TJ = –40 °C to 150  
0.5  
1.6  
V
°C  
TJ = –40 °C to 150  
°C  
14  
mA  
1. The range is selectable by UTEST miscellaneous DCF clients XOSC_LF_EN and XOSC_EN_40MHZ.  
2. This value is determined by the crystal manufacturer and board design.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal recovery time is the time for the oscillator to settle to the correct frequency after adjustment of the integrated load  
capacitor value.  
5. This parameter is guaranteed by design rather than 100% tested.  
6. See crystal manufacturer's specification for recommended load capacitor (CL) values.The external oscillator requires  
external load capacitors when operating from 8 MHz to 16 MHz. Account for on-chip stray capacitance (CS_EXTAL/CS_XTAL  
and PCB capacitance when selecting a load capacitor value. When operating at 20 MHz/40 MHz, the integrated load  
)
capacitor value is selected via S/W to match the crystal manufacturer's specification, while accounting for on-chip and PCB  
capacitance. The capacitance on “EXTAL” and “XTAL” by internal capacitance array is controlled by the XOSC LOAD CAP  
SEL field of the UTEST Miscellaneous DCF client. See the DCF Records chapter of the Reference Manual.  
7. Amplitude on the EXTAL pin after startup is determined by the ALC block, i.e., the Automatic Level Control Circuit. The  
function of the ALC is to provide high drive current during oscillator startup, but reduce current after oscillation in order to  
reduce power, distortion, and RFI, and to avoid overdriving the crystal. The operating point of the ALC is dependent on the  
crystal value and loading conditions.  
8. IXTAL is the oscillator bias current out on the XTAL pin with both EXTAL and XTAL pins grounded. This is the maximum  
current during startup of the oscillator. The current after oscillation is typically in the 2-3 mA range and is dependant on the  
load and series resistance of the crystal. Test circuit is shown in the figure below.  
Table 16. Selectable load capacitance  
load_cap_sel[4:0] from DCF record  
Capacitance on EXTAL (CEXTAL)/XTAL (CXTAL)  
, 1, 2 (pF)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
1.0  
2.0  
2.9  
3.8  
4.8  
5.7  
6.6  
7.5  
8.5  
9.4  
10.3  
11.2  
12.2  
13.1  
14.0  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
24  
NXP Semiconductors  
Oscillator and FMPLL  
Table 16. Selectable load capacitance (continued)  
load_cap_sel[4:0] from DCF record  
01111  
10000-11111  
Capacitance on EXTAL (CEXTAL)/XTAL (CXTAL  
15.0  
N/A  
)
, 1, 2 (pF)  
1. Values are determined from simulation across process corners and voltage and temperature variation. Capacitance values  
vary 12% across process, 0.25% across voltage, and no variation across temperature.  
2. Values in this table do not include the internal stray capacitances Cxtal/Cextal  
.
V
DDOSC  
Bias  
Current  
ALC  
IXTAL  
XTAL  
EXTAL  
Comparator  
A
OFF  
VSSOSC  
V
VSS  
Conditions  
EXTAL=0 V  
Z = R + j L  
V
V
XTAL=0 V  
Tester  
ALC INACTIVE  
PCB  
GND  
Figure 9. Test circuit  
Table 17. Internal RC Oscillator electrical specifications  
Value  
Typ  
16  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
fTarget  
IRCOSC target frequency  
MHz  
%
δfvar_noT  
IRC frequency variation without  
temperature compensation  
T < 150 °C  
–8  
8
δfvar_T  
IRC frequency variation with  
temperature compensation  
T < 150 °C  
–3  
–1  
3
1
%
%
δfvar_SW  
IRC software trimming accuracy  
Trimming  
temperature  
δfTRIM  
IRC software trimming step  
+40/-48  
5
kHz  
µs  
Tstart_noT  
Startup time to reach within fvar_noT  
Factory trimming  
already applied  
Tstart_T  
Startup time to reach within fvar_T  
Factory trimming  
already applied  
120  
µs  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
25  
ADC modules  
Table 17. Internal RC Oscillator electrical specifications (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
IAVDD5  
Current consumption on 5 V power  
supply  
After Tstart_T  
400  
µA  
IDVDD12  
Current consumption on 1.2 V power  
supply  
After Tstart_T  
175  
µA  
11 ADC modules  
This device's analog sub-system contains a total of four independent 12-bit Successive  
Approximation (SAR) ADCs and three independent 16-bit Sigma-Delta (S/D) ADCs.  
11.1 ADC input description  
The following table provides the current specifications for the analog input pad weak  
pull-up and pull-down, and the resistance for the analog input bias/diagnostic pull up/  
down.  
Table 18. Analog Input Leakage and Pull-Up/Down DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Value  
Typ  
Unit  
Min  
-200  
Max  
200  
ILK_AD  
Analog input leakage  
current  
Input channel off  
4.5V < VDD_HV_IO < 5.5V  
VSS_HV_ADV_SAR < VIN  
VDD_HV_ADV_SAR  
VSS_HV_ADV_SD < VIN < VDD_HV_ADV_SD  
200KΩ  
nA  
<
RPUPD  
Analog input bias/  
diagnostic pull up/down  
resistance  
130  
65  
200  
100  
5
280  
140  
8.8  
5
KΩ  
3.0V < VDD_HV_IO < 5.5V  
100KΩ  
3.0V < VDD_HV_IO < 5.5V  
5KΩ  
1.4  
3.0V < VDD_HV_IO < 5.5V  
3.0V < VDD_HV_IO < 5.5V  
ΔPUPD  
RPUPD pull up/down  
resistance mismatch  
%
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
26  
NXP Semiconductors  
ADC modules  
11.2 SAR ADC  
The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-  
Digital Converter.  
Offset Error OSE Gain Error GE  
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
1 LSB ideal =(VrefH-VrefL)/ 4096 =  
3.3V/ 4096 = 0.806 mV  
Total Unadjusted Error  
TUE = +/- 6 LSB = +/- 4.84mV  
code out7  
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer  
curve  
(5)  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4089 4090 4091 4092 4093 4094 4095  
Vin(A) (LSBideal  
)
Offset Error OSE  
Figure 10. ADC characteristics and error definitions  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
27  
ADC modules  
11.2.1 Input equivalent circuit and ADC conversion characteristics  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD_HV_IO  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
S
F
L
SW1  
AD  
C
V
C
C
P1  
C
S
A
F
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 11. Input equivalent circuit  
Table 19. ADC conversion characteristics  
Symbol  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
, 2  
fCK  
ADC Clock frequency (depends  
on ADC configuration) (The duty  
cycle depends on AD_CK3  
frequency.)  
20  
80  
MHz  
fs  
Sampling frequency  
Sample time4  
Conversion time5  
250  
700  
3
1.00  
MHz  
ns  
ns  
pF  
pF  
pF  
kΩ  
Ω
tsample  
tconv  
80 MHz  
, 6  
CS  
ADC input sampling capacitance —  
5
6
CP1  
ADC input pin capacitance 1  
ADC input pin capacitance 2  
5
6
CP2  
0.8  
0.3  
875  
825  
6
RSW1  
Internal resistance of analog  
source  
VREF range = 4.5 to 5.5 V  
VREF range = 3.0 to 3.6 V —  
6
RAD  
Internal resistance of analog  
source  
Ω
INL  
Integral non-linearity  
Differential non-linearity  
Offset error  
–2  
–1  
–6  
–6  
2
1
LSB  
LSB  
LSB  
LSB  
nA  
DNL  
OFS7  
GNE7  
6
Gain error  
6
Input (double ADC Max leakage  
channel)  
150 °C  
300  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
28  
NXP Semiconductors  
ADC modules  
Table 19. ADC conversion characteristics (continued)  
Symbol  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
SNR  
Signal-to-noise ratio  
VREF = 3.3 V, Fin ≤ 125  
kHz  
66  
dB  
SNR  
Signal-to-noise ratio  
VREF = 5.0 V, Fin ≤ 125  
kHz  
68  
dB  
THD  
ENOB8  
Total harmonic distortion  
Effective number of bits  
Signal-to-noise and distortion  
@ 125 kHz  
65  
70  
dB  
bits  
dB  
Fin < 125 kHz  
10.5  
(6.02*ENOB)+1.76  
SINAD  
Fin < 125 kHz  
TUEIS1WINJ  
Total unadjusted error for  
IS1WINJ  
Without current injection  
–6  
–6  
6
6
LSB  
TUEIS1WWINJ  
IDD_VDDA  
Total unadjusted error for  
IS1WWINJ  
Without current injection  
LSB  
mA  
μA  
V
Maximum operating current on  
VDDA  
Tj = 150C VDD_LV_COR  
= 1.32 V  
3.7  
5
IDD_VDDR  
Maximum operating current on  
VREF  
Tj = 150C VDD_LV_COR  
= 1.32 V  
150  
600  
1.236  
, 9  
10  
VBG_REF  
Band gap reference for self test Trimmed,  
INPSAMP=0xFF  
1.164  
1. VDD_HV_IO = 3.3 V -5%,+10%, TJ = –40 to +150 °C, unless otherwise specified, and analog input voltage from VAGND to  
VAREF  
2. SAR ADC performance is not guaranteed when IRC is used as clock source for PLL0 to generate SAR ADC clock.  
3. AD_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.  
4. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the  
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample  
clock tsample depend on programming.  
5. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to  
load the result register with the conversion result.  
6. See the above figure.  
7. Subject to change with additional -40°C characterization on final silicon version.  
8. Below 4.5V, ENOB - 9.5b, THD- 60dB at Fin= 125KHz  
9. Band gap reference only applies to Cut 2 silicon.  
10. Minimum and maximum values are typical +/-3%  
NOTE  
• For spec complaint operation, do not expose clock sources,  
including crystal oscillator, IRC, PLL0, and PLL1 on the  
CLKOUT pads while the SAR ADC is converting.  
• The ADC performance specifications are not guaranteed if  
two or more ADCs simultaneously sample the same shared  
channel.  
11.3 S/D ADC  
The SD ADCs are Sigma Delta 16-bit analog-to-digital converters with 333 Ksps  
maximum output rate.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
29  
ADC modules  
Functional operating conditions are given in the DC electrical specifications. Absolute  
maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the listed maxima may affect device reliability or cause  
permanent damage to the device.  
Table 20. SDn ADC electrical specification  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
VIN  
ADC input signal  
0
VDD_HV_  
V
ADV_SD  
1
VIN_PK2PK  
Input range peak to  
peak  
Single ended.  
V
VDD_HV_ADR_SD/GAIN  
VINM = VSS_HV_ADR_SD  
Single ended.  
2
VIN_PK2PK = VINP  
, 3  
VINM  
VINM = 0.5*VDD_HV_ADR_SD  
GAIN = 1  
0.5*VDD_HV_ADR_SD  
Single ended.  
VINM = 0.5*VDD_HV_ADR_SD  
GAIN = 2,4,8,16  
Differential  
VDD_HV_ADR_SD/GAIN  
VDD_HV_ADR_SD/GAIN  
0 < VIN < VDD_HV_IO_MAIN  
TJ < 150 °C  
fADCD_M  
fADCD_S  
S/D clock frequency  
Conversion rate  
4
14.4  
16  
MHz  
ksps  
TJ < 150 °C  
24  
333  
256  
Oversampling ratio  
Internal modulator  
RESOLUTION S/D register resolution 2's complement notation  
164  
bit  
GAIN  
ADC gain  
Defined through ADC_SD[PGA] register.  
Only integer power of 2 are valid gain.  
1
16  
1
|δGAIN  
|
Absolute value of the  
ADC gain error5  
Before calibration (applies to gain  
settings =1)  
After calibration6  
%
%
0.1  
Δ VDD_HV_ADR_SD < 5%  
Δ VDD_HV_ADV_SD < 10%  
TJ < 50 °C  
After calibration6  
0.2  
20  
%
Δ VDD_HV_ADR_SD < 5%  
Δ VDD_HV_ADV_SD < 10%  
TJ < 150 °C  
VOFFSET  
Conversion offset  
Before calibration  
10*  
mV  
(applies to all gain settings – 1, 2, 4, 8,  
16)  
(1+1/  
gain)  
After calibration6  
Signal to noise ratio in 4.5 < VDD_HV_ADV_SD < 5.57  
5
mV  
dB  
, 7  
SNRDIFF150  
78  
differential mode 150  
VDD_HV_ADR_D = VDD_HV_ADV_D  
ksps output rate  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
30  
NXP Semiconductors  
ADC modules  
Unit  
Table 20. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
GAIN = 1  
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
75  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
72  
69  
65  
72  
69  
66  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 4  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
7
SNRDIFF333  
Signal to noise ratio in 4.5 < VDD_HV_ADV_SD < 5.57  
differential mode 333  
dB  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 1  
=
ksps output rate  
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 4  
=
TJ < 150 °C  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
31  
ADC modules  
Symbol  
Table 20. SDn ADC electrical specification (continued)  
Value  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
4.5 < VDD_HV_ADV_SD < 5.57  
63  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
60  
72  
69  
66  
63  
55  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
7
SNRSE150  
Signal to noise ratio in 4.5 < VDD_HV_ADV_SD < 5.57  
single ended mode 150  
dB  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 1  
=
ksps output rate  
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 4  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_DS  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
32  
NXP Semiconductors  
ADC modules  
Table 20. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
THDDIFF150  
Total Harmonic  
Distortion in differential  
mode 150 ksps output  
rate  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 1  
65  
dB  
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
68  
74  
80  
80  
65  
68  
74  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 4  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
THDDIFF333  
Total Harmonic  
Distortion in differential  
mode 333 ksps output  
rate  
dB  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 1  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
Table continues on the next page...  
=
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
33  
ADC modules  
Symbol  
Table 20. SDn ADC electrical specification (continued)  
Value  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
GAIN = 4  
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
80  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
77  
68  
68  
68  
68  
68  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
THDSE150  
Total Harmonic  
Distortion in single  
ended mode 150 ksps  
output rate  
dB  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 1  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 4  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_DS  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
34  
NXP Semiconductors  
ADC modules  
Table 20. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
SINADDIFF150 Signal to Noise  
Distortion Ratio in  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_D = VDD_HV_ADV_D  
GAIN = 1  
72  
dB  
differential mode 150  
ksps output rate  
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
72  
69  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 4  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
68.8  
64.8  
66  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
SINADDIFF333 Signal to Noise  
Distortion Ratio in  
dB  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 1  
=
differential mode 333  
ksps output rate  
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
66  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
Table continues on the next page...  
63  
=
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
35  
ADC modules  
Symbol  
Table 20. SDn ADC electrical specification (continued)  
Value  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
GAIN = 4  
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
62  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
59  
66  
66  
63  
62  
54  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
SINADSE150  
Signal to Noise  
dB  
Distortion Ratio in single  
ended mode 150 ksps  
output rate  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 1  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 2  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 4  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
GAIN = 8  
=
TJ < 150 °C  
4.5 < VDD_HV_ADV_SD < 5.57  
VDD_HV_ADR_DS  
VDD_HV_ADV_SD  
GAIN = 16  
=
TJ < 150 °C  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
36  
NXP Semiconductors  
ADC modules  
Table 20. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
SFDR  
Spurious free dynamic Any GAIN  
range  
60  
dB  
ZDIFF  
Differential input  
impedance8, 9  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 16  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 16  
1000  
600  
300  
200  
200  
1400  
1000  
700  
500  
500  
110  
–12  
1250  
800  
400  
250  
250  
1800  
1300  
950  
650  
650  
144  
1500  
1000  
500  
kΩ  
300  
300  
ZCM  
Common Mode input  
impedance9, 10  
2200  
1600  
1150  
800  
kΩ  
800  
RBIAS  
Bare bias resistance  
180  
kΩ  
%
ΔVINTCM  
Common Mode input  
reference voltage11  
+12  
VBIAS  
Bias voltage  
VDD_  
HV_  
V
ADR_S  
D/2  
δVBIAS  
Bias voltage accuracy  
–2.5  
55  
+2.5  
%
CMRR  
Common mode  
rejection ratio  
dB  
Anti-aliasing filter  
External series resistance  
Filter capacitances  
0.333 * fADCD_S  
220  
–1  
20  
1
kΩ  
pF  
%
δRIPPLE  
Pass band ripple 12  
Stop band attenuation  
[0.5 * fADCD_S  
1.0 * fADCD_S]  
[1.0 * fADCD_S  
1.5 * fADCD_S]  
[1.5 * fADCD_S  
,
,
,
,
40  
dB  
45  
50  
55  
2.0 * fADCD_S  
[2.0 * fADCD_S  
2.5 * fADCD_S  
]
]
[2.5 * fADCD_S, fADCD_M/2]  
Within pass band – Tclk is fADCD_M / 2  
OSR = 24  
60  
δGROUP  
Group delay  
235.5  
275  
Tclk  
OSR = 28  
OSR = 32  
314.5  
354  
OSR = 36  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
37  
ADC modules  
Symbol  
Table 20. SDn ADC electrical specification (continued)  
Value  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
393.5  
433  
OSR = 40  
OSR = 44  
OSR = 48  
472.5  
551.5  
630.5  
709.5  
696  
OSR = 56  
OSR = 64  
OSR = 72  
OSR = 75  
OSR = 80  
788.5  
867.5  
946.5  
1104.5  
1262.5  
1420.5  
1578.5  
1736.5  
1894.5  
2210.5  
2526.5  
+0.5/  
OSR = 88  
OSR = 96  
OSR = 112  
OSR = 128  
OSR = 144  
OSR = 160  
OSR = 176  
OSR = 192  
OSR = 224  
OSR = 256  
Distortion within pass band  
–0.5/  
fADCD_S  
fADCD_S  
fHIGH  
High pass filter 3dB  
frequency  
Enabled  
10e-5*  
fADCD_S  
tSTARTUP  
tLATENCY  
Start-up time from  
power down state  
100  
µs  
Latency between input HPF = ON  
data and converted data  
δGROUP  
+
when input mux does  
fADCD_S  
note change13  
HPF = OFF  
δGROUP  
tSETTLING  
Settling time after mux Analog inputs are muxed  
change  
2*δ  
GROUP  
+
HPF = ON  
3*fADCD_  
S
HPF = OFF  
2*δ  
GROUP  
+
2*fADCD_  
S
tODRECOVERY  
Overdrive recovery time After input comes within range from  
saturation  
2*δ  
GROUP  
fADCD_S  
+
HPF = ON  
HPF = OFF  
2*δ  
GROUP  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
38  
NXP Semiconductors  
Temperature sensor  
Table 20. SDn ADC electrical specification (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Max  
Min  
Typ  
CS_D  
S/D ADC sampling  
capacitance after  
sampling switch14  
GAIN = 1, 2, 4, 8  
75*GAI  
N
fF  
GAIN = 16  
600  
3.5  
8
fF  
IBIAS  
Bias consumption  
At least 1 ADCD enabled  
ADCD enabled  
mA  
mA  
IADV_D  
ADCD supply  
consumption  
2.5  
ΣIADR_D  
Reference current for  
one SDADC  
ADCD enabled  
10  
50  
µA  
1. For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and the  
signal will only be 'clipped'.  
2. VINP is the input voltage applied to the positive terminal of the SD ADC.  
3. VINM is the input voltage applied to the negative terminal of the SD ADC.  
4. For Gain=16, SDADC Resolution is 15 bit.  
5. Offset and gain error due to temperature drift can occur in either direction (+/-) for each of the SDADCs on the device.  
6. Calibration of gain is possible when gain = 1. Offset Calibration should be done with respect to 0.5*VDD_HV_ADR_SD for  
differential "differential mode" and single ended mode with negative input=0.5*VDD_HV_ADR_SD ". Offset Calibration should  
be done with respect to 0 for "single ended mode with negative input=0". Both Offset and Gain Calibration is guaranteed  
for +/-5% variation of VDD_HV_ADR_SD, +/-10% variation of VDD_HV_ADV_SD, +/-50 C temperature variation.  
7. S/D ADC is functional in the range 3.6V < VDD_HV_ADV_SD < 4.5V and 3.0V < VDD_HV_ADR_SD < 4.5 V, SNR paramter  
degrades by 9 dB.  
8. Input impedance in differential mode ZIN = ZDIFF  
9. Input impedance given at fADCD_M = 16 MHz. Impedance is inversely proportional to SDADC clock frequency. ZDIFF  
(fADCD_M) = (16 MHz / fADCD_M) * ZDIFF, ZCM (fADCD_M) = (16 MHz / fADCD_M) * ZCM  
10. Input impedance in single-ended mode ZIN = (2 * ZDIFF * ZCM) / (ZDIFF + ZCM  
.
)
11. VINTCM is the Common Mode input reference voltage for the SDADC. It has a nominal value of (VRH_SD - VRL_SD) / 2.  
12. The 1% passband ripple specification is equivalent to 20 * log10 (0.99) = 0.873 dB.  
13. Propagation of the information from the pin to the register CDR[CDATA] and flags SFR[DFEF], SFR[DFFF] is given by the  
different modules that need to be crossed: delta/sigma filters, high pass filter, fifo module, clock domain synchronizers.  
The time elapsed between data availability at pin and internal S/D module registers is given by the following formula:  
REGISTER LATENCY = tLATENCY + 0.5/fADCD_S + 2 (~+1)/fADCD_M + 2(~+1)fPBRIDGEx_CLK where fADCD_S is  
the frequency of the sampling clock, fADCD_M is the frequency of the modulator, and fPBRIDGEx_CLK is the frequency  
of the peripheral bridge clock feeds to the ADC S/D module. The (~+1) symbol refers to the number of clock cycles  
uncertainty (from 0 to 1 clock cycle) to be added due to resynchronization of the signal during clock domain crossing.  
Some further latency may be added by the target module (core, DMA, interrupt) controller to process the data received  
from the ADC S/D module.  
14. This capacitance does not include pin capacitance, that can be considered together with external capacitance, before  
sampling switch.  
12 Temperature sensor  
The following table describes the temperature sensor electrical characteristics.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
39  
LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics  
Table 21. Temperature sensor electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Junction temperature monitoring  
range  
–40  
150  
°C  
TSENS  
TACC  
Sensitivity  
Accuracy  
5.18  
7
mV/°C  
°C  
–7  
13 LVDS fast asynchronous serial transmission (LFAST) pad  
electrical characteristics  
The LFAST pad electrical characteristics apply to both the LFAST and high-speed debug  
serial interfaces on the device. The same LVDS pad is used for the Microsecond Channel  
(MSC) and DSPI LVDS interfaces, with different characteristics given in the following  
tables.  
13.1 LFAST interface timing diagrams  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
40  
NXP Semiconductors  
LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics  
Signal excursions above this level NOT allowed  
1743 mV  
Max. common mode input at RX  
1600 mV  
VOD  
I
I
Maximum Differential Voltage  
285 mV p-p (LFAST)  
400 mV p-p (MSC/DSPI)  
Minimum Data Bit Time  
Opening =  
0.55 * T (LFAST)  
0.50 * T (MSC/SIPI)  
"No-Go" Area  
VOS = 1.2 V +/- 10%  
TX common mode  
VOD  
I
I
Minimum Differential  
Voltage =  
100 mV p-p (LFAST)  
150 mV p-p (MSC/SIPI)  
Data Bit Period  
T = 1 / FDATA  
Min. common mode input at RX  
150 mV  
0 V  
Signal excursions below this level NOT allowed  
Figure 12. LFAST timing definition  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
41  
LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics  
H
Ifast_pwr_down  
L
t
PD2NM_TX  
Data Valid  
Differential TX  
Data Lines  
pad_p/pad_n  
Figure 13. Power-down exit time  
VIH  
Differential TX  
Data Lines  
90%  
10%  
pad_p/pad_n  
V
IL  
tfall  
trise  
Figure 14. Rise/fall time  
13.2 LFAST and MSC /DSPI LVDS interface electrical  
characteristics  
The following table contains the electrical characteristics for the LFAST interface.  
The LVDS pad electrical characteristics in this table apply to both the LFAST and High-  
speed Debug (HSD) LVDS pad, and the MSC/DSPI LVDS pad except where noted in the  
conditions.  
All LVDS pad electrical characteristics are valid from -40 °C to 150 °C.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
42  
NXP Semiconductors  
LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics  
Table 22. LVDS pad startup and receiver electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
tPD2NM_TX Transmitter startup time (power  
down to normal mode)1  
0.4  
0.55  
µs  
tSM2NM_TX Transmitter startup time (sleep  
mode to normal mode)2  
Not applicable to the MSC/  
DSPI LVDS pad  
0.2  
20  
20  
0.5  
40  
µs  
ns  
tPD2NM_RX Receiver startup time (power down  
to normal mode)3  
tPD2SM_RX Receiver startup time (power down Not applicable to the MSC/  
50  
ns  
to sleep mode)4  
DSPI LVDS pad  
ILVDS_BIAS LVDS bias current consumption  
Tx or Rx enabled  
0.95  
mA  
TRANSMISSION LINE CHARACTERISTICS (PCB Track)  
Z0  
Transmission line characteristic  
impedance  
47.5  
50  
52.5  
105  
ZDIFF  
Transmission line differential  
impedance  
95  
100  
RECEIVER  
VICOM  
|ΔVI|  
VHYS  
RIN  
Common mode voltage  
Differential input voltage  
Input hysteresis  
0.155  
100  
25  
1.66  
V
mV  
mV  
Terminating resistance  
VDD_HV_IO = 5.0 V 10%  
80  
100  
115  
3.5  
120  
150  
6.0  
0.5  
VDD_HV_IO = 3.3 V 10%  
80  
CIN  
Differential input capacitance7  
pF  
mA  
ILVDS_RX  
Receiver DC current consumption  
Enabled  
1. Total transmitter startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_TX + 2 peripheral bridge clock  
periods. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal  
capacitance values.  
2. Total transmitter startup time from sleep mode to normal mode is tSM2NM_TX + 2 peripheral bridge clock periods. Bias block  
remains enabled in sleep mode. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40  
°C to 150 °C.  
3. Total receiver startup time from power down to normal mode is tSTRT_BIAS + tPD2NM_RX + 2 peripheral bridge clock periods.  
4. Total receiver startup time from power down to sleep mode is tPD2SM_RX + 2 peripheral bridge clock periods. Bias block  
remains enabled in sleep mode.  
5. Absolute min = 0.15 V – (285 mV/2) = 0 V  
6. Absolute max = 1.6 V + (285 mV/2) = 1.743 V  
7. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions.  
Table 23. LFAST transmitter electrical characteristics  
Value  
Symbol Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
320  
1.32  
285  
1.5  
fDATA  
VOS  
Data rate  
Mbps  
V
Common mode voltage  
1.08  
100  
0.26  
|VOD  
tTR  
|
Differential output voltage swing (terminated)1, 2  
Rise/Fall time (10%–90% of swing) 3, 4  
200  
mV  
ns  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
43  
LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics  
Table 23. LFAST transmitter electrical characteristics (continued)  
Value  
Symbol Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
10.0  
8.5  
CL  
External lumped differential load capacitance1  
VDD_HV_IO = 4.5 V  
VDD_HV_IO = 3.0 V  
Enabled  
pF  
ILVDS_TX Transmitter DC current consumption  
3.2  
mA  
1. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in the  
figure below.  
2. Valid for maximum external load CL.  
3. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance  
values.  
4. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40 °C to 150 °C.  
The MSC and DSPI LVDS pad electrical characteristics are based on the application  
circuit and typical worst case internal capacitance values given in Figure 14.  
All MSC and DSPI LVDS pad electrical characteristics are valid from -40 °C to 150 °C.  
Table 24. MSC/DSPI LVDS transmitter electrical characteristics  
Value  
Symbol Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Data Rate  
fDATA  
VOS  
Data rate  
1.08  
150  
0.8  
80  
1.32  
400  
5.7  
40  
Mbps  
V
Common mode voltage  
|
|
Differential output voltage swing (terminated)1, 2  
Rise/Fall time (10%–90% of swing) 3, 4  
External lumped differential load capacitance3  
200  
mV  
ns  
VOD  
tTR  
CL  
VDD_HV_IO = 4.5 V  
VDD_HV_IO = 3.0 V  
Enabled  
pF  
30  
ILVDS_TX Transmitter DC current consumption  
4.0  
mA  
1. Valid for maximum data rate fDATA. Value given is the capacitance on each terminal of the differential pair, as shown in the  
figure below.  
2. Valid for maximum external load CL.  
3. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance  
values.  
4. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40 °C to 150 °C.  
NOTE  
For optimum LVDS performance, it is recommended to set the  
neighbouring GPIO pads to use Weak Drive.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
44  
NXP Semiconductors  
LFAST PLL electrical characteristics  
bond  
pad  
GPIO Driver  
CL  
1pF  
2.5pF  
100 Ω  
termination  
LVDS Driver  
GPIO Driver  
bond  
pad  
CL  
1pF  
2.5pF  
Die  
Package  
PCB  
Figure 15. LVDS pad external load diagram  
14 LFAST PLL electrical characteristics  
The following table contains the electrical characteristics for the LFAST PLL.  
The specifications in this table apply to both the interprocessor bus and debug LFAST  
interfaces.  
Table 25. LFAST PLL electrical characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
10  
–1  
45  
Nominal  
Max  
26  
fRF_REF  
PLL reference clock frequency  
MHz  
%
ERRREF PLL reference clock frequency error  
1
DCREF  
PN  
PLL reference clock duty cycle  
55  
%
Integrated phase noise (single side band)  
fRF_REF = 20 MHz  
fRF_REF = 10 MHz  
–58  
–64  
dBc  
6401  
fVCO  
PLL VCO frequency  
PLL phase lock2  
MHz  
µs  
tLOCK  
40  
ΔPERREF Input reference clock single period jitter  
Single period,  
fRF_REF = 10 MHz  
300  
ps  
(peak to peak)  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
45  
Aurora LVDS electrical characteristics  
Table 25. LFAST PLL electrical characteristics  
(continued)  
Value  
Nominal  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
Long term,  
fRF_REF = 10 MHz  
–500  
500  
ps  
ΔPEREYE Output Eye Jitter (peak to peak)3  
550  
ps  
1. The 640 MHz frequency is achieved with a 10 MHz or 20 MHz reference clock. With a 26 MHz reference, the VCO  
frequency is 624 MHz.  
2. The time from the PLL enable bit register write to the start of phase locks is maximum 2 clock cycles of the peripheral  
bridge clock that is connected to the PLL on the device.  
3. Measured at the transmitter output across a 100 Ohm termination resistor on a device evaluation board. Refer to the figure  
below.  
Data Bit Period, T  
TX+  
TX-  
Eye Jitter  
Eye Jitter  
Figure 16. LFAST output 'eye' diagram  
15 Aurora LVDS electrical characteristics  
The following table describes the Aurora LVDS electrical characteristics.  
All Aurora electrical characteristics are valid from -40 °C to 150 °C.  
All specifications valid for maximum transmit data rate FTX.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
46  
NXP Semiconductors  
Power management PMC POR LVD sequencing  
Table 26. Aurora LVDS electrical characteristics  
Value1  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
Transmitter  
FTX  
Transmit Data Rate  
1.25  
800  
Gbps  
mV  
|VOD_LVDS  
|
Differential output voltage swing  
(terminated)2  
400  
600  
tTR_LVDS Rise/Fall time (10%–90% of swing)  
60  
81  
100  
ps  
RTV_L  
TLoss  
Differential Terminating resistance  
120  
1003  
Transmission Line Loss due to loading  
effects  
dB  
Transmission line characteristics (PCB track)  
LLINE  
ZLINE  
CAC  
Transmission line length  
45  
50  
20  
55  
cm  
Transmission line characteristic impedance  
External AC Coupling Capacitance  
Values are nominal, valid  
up to 50%  
100  
270  
pF  
Receiver  
FRX  
Receive Data Rate  
200  
81  
1.25  
1000  
120  
GHz  
mV  
|ΔVI_L  
|
Differential input voltage  
Terminating resistance  
RRV_L  
VDD_HV_IO_BD = 5V 10%  
100  
1. All specifications valid for maximum transmit data rate FTX  
2. The minimum value of 400 mV is only valid for differential resistance (RV_L) = 99 ohm to 101 ohm. The differential output  
voltage swing tracks with the value of RV_L  
.
.
3. Transimission line loss maximum value is specified for the maximum drive level of the Aurora transmit pad.  
16 Power management PMC POR LVD sequencing  
16.1 Power management electrical characteristics  
The power management module monitors the different power supplies. It also generates  
the internal supplies that are required for correct device functionality. The power  
management is supplied by the VDD_HV_PMC supply.  
16.1.1 Recommended power transistors  
The following NPN transistors are recommended for use with the on-chip voltage  
regulator controller: ON SemiconductorTM NJD2873. The collector of the external  
transistor is preferably connected to the same voltage supply source as the VDD_HV_PMC  
pin.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
47  
Power management PMC POR LVD sequencing  
The following table describes the characteristics of the power transistors.  
Table 27. Recommended operating characteristics  
Symbol  
hFE  
Parameter  
Value  
60-550  
1.60  
2.0  
Unit  
W
DC current gain (Beta)  
PD  
Absolute minimum power dissipation  
Maximum DC collector current  
Collector to emitter saturation voltage  
Base to emitter voltage  
ICMaxDC  
VCESAT  
VBE  
A
300  
mV  
V
0.95  
2.5  
VC  
Minimum voltage at transistor collector  
V
16.1.2 Power management integration  
In order to ensure correct functionality of the device, it is recommended to follow the  
integration scheme shown below.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
48  
NXP Semiconductors  
Power management PMC POR LVD sequencing  
CHV_PMC  
CHV_FLA  
VDD_HV_IO  
VSS  
VDD_LV  
VSS  
RAINIER  
2
1
n x CHV_IO  
CLV  
1
2
One capacitance near each VDD_LV pin  
One capacitance near each VDD_HV pin  
Figure 17. Recommended supply pin circuits  
The following table describes the supply stability capacitances required on the device for  
proper operation.  
Table 28. Device power supply integration  
Value1  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
CLV  
Minimum VDD_LV external bulk capacitance,  
4.7  
µF  
2, 3  
CHV_PMC Minimum VDD_HV_PMC external bulk  
capacitance 2, 4  
4.7  
4.7  
µF  
µF  
CHV_IO  
Minimum VDD_HV_IO external  
capacitance2  
CHV_FLA Minimum VDD_HV_FLA external capacitance, 5  
2.0  
µF  
µF  
CHV_ADC_SA Minimum VDD_HV_ADV_SAR external  
10  
capacitance, 6  
R
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
49  
Power management PMC POR LVD sequencing  
Table 28. Device power supply integration (continued)  
Value1  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
CHV_ADC_SD Minimum VDD_HV_ADV_SD external  
capacitance, 7  
1
2.2  
µF  
1. See the above figure for capacitor integration.  
2. Recommended X7R or X5R ceramic low ESR capacitors, 15% variation over process, voltage, temperature, and aging.  
3. Each VDD_LV pin requires both a 47nF and 0.01µF capacitor for high-frequency bypass and EMC requirements. Remaining  
capacitance to meet minimum CLV requirement should be placed near the emitter of NPN ballast (if using internal  
regulation mode), or it should be evenly distributed across VDD_LV pins (if using external regulation mode).  
4. Each VDD_HV_PMC pin requires both a 47nF and 0.01µF capacitor for high-frequency bypass and EMC requirements.  
5. The recommended flash regulator composition capacitor is 1.5µF typical X7R or X5R, with -50% and +35% as min and  
max. This puts the min cap at 0.75 µF.  
6. For noise filtering it is recommended to add high frequency bypass capacitors of three each 0.1 µF and three each 1nF  
between VDD_HV_ADV_SAR and VSS_HV_ADV_SAR. These capacitors need to be placed very close to the MCU pins/balls to  
have minimum PCB routing between pin/ball and the capacitors.  
7. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 µF between VDD_HV_ADV_SD and  
VSS_HV_ADV_SD  
.
16.1.3 Regulator example for the NJD2873 transistor  
VDD_HV_PMC  
The bypass transistor  
VRC_CTL  
MUST be operated out  
of saturation region.  
MCU  
VDD_LV  
C1  
Mandatory decoupling capacitor  
network  
VSS  
VRC_CTL capacitor: may or  
may not be required  
Figure 18. Regulator example  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
50  
NXP Semiconductors  
Power management PMC POR LVD sequencing  
16.1.4 Regulator example for the 2SCR574d transistor  
3.3V or Vcollector  
Cc= 4u, 14u  
ESR= 15m, 150m  
VDDIO  
Lb= 50n, 100n  
--  
+
Beta= 120, 360  
Vrctl  
Vref  
Cb= 0.6u, 1.4u  
ESR= 15m, 150m  
Cl= 4u, 14u  
ESR= 15m, 150m  
Vdd_core  
ILoad  
Figure 19. Regulator example  
16.1.5 Device voltage monitoring  
The LVD/HVDs for the device and their levels are given in the following table. Voltage  
monitoring threshold definition is provided in the following figure.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
51  
Power management PMC POR LVD sequencing  
V
DD_xxx  
V
V
HVD(rise)  
HVD(fall)  
V
V
LVD(rise)  
LVD(fall)  
t
t
VDRELEASE  
VDASSERT  
HVD TRIGGER  
(INTERNAL)  
t
t
VDASSERT  
VDRELEASE  
LVD TRIGGER  
(INTERNAL)  
Figure 20. Voltage monitor threshold definition  
For VDD_LV levels, a maximum of 30 mV IR drop is incurred from the pin to all sinks on  
the die. For other LVD, the IR drop is estimated by multiplying the supply current by 0.5  
ohm.  
LVD is released after tVDRELEASE temporization when upper threshold is crossed, LVD is  
asserted tVDASSERT after detection when lower threshold is crossed.  
HVD is released after tVDRELEASE temporization when lower threshold is crossed, HVD  
is asserted tVDASSERT after detection when upper threshold is crossed.  
Table 29. Voltage monitor electrical characteristics  
Configuration  
Value  
Trim Mas Pow Min Typ Max  
Symbol  
Parameter  
Conditions  
Unit  
bits  
k
. Up  
Opt.  
POR085_c1 LV internal supply power on  
reset  
Rising voltage (power up)  
N/A No Enab 870 920 970 mV  
.
Falling voltage (power down)  
850 900 950  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
52  
NXP Semiconductors  
Power management PMC POR LVD sequencing  
Table 29. Voltage monitor electrical characteristics (continued)  
Configuration  
Value  
Trim Mas Pow Min Typ Max  
Symbol  
Parameter  
Conditions  
Unit  
bits  
k
. Up  
Opt.  
POR098_c LV internal supply power on  
reset  
Rising voltage (power up)  
N/A No Enab 960 1010 1060 mV  
.
Falling voltage (power down)  
940 990 1040  
LVD_core_ LV internal2 supply low voltage Rising voltage (trimmed)  
hot monitoring  
6bit  
No Enab 1146 1169 1193 mV  
.
Falling voltage (trimmed)  
LVD_core_ LV external3 supply low voltage Rising voltage  
1146 1169 1193  
6bit Yes Disa 1161 1185 1208 mV  
cold  
monitoring  
b.  
Falling voltage  
Rising voltage  
Falling voltage  
1161 1185 1208  
HVD_core LV internal cold supply high  
voltage monitoring  
6bit Yes Disa 1353 1395 1438 mV  
b.  
1343 1385 1438  
LVD_HV HV internal supply low voltage Rising voltage (trimmed)  
6bit  
No Enab 3300 3400 3500 mV  
monitoring  
.
Falling voltage (trimmed)  
3270 3370 3470  
HVD_HV HV internal supply high voltage Rising voltage  
6bit Yes Disa 5530 5700 5870 mV  
monitoring  
b.  
Falling voltage  
5500 5670 5840  
LVD_IO Main IO and RC oscillator  
supply voltage monitoring  
Rising voltage (trimmed)  
Falling voltage (trimmed)  
Rising voltage  
6bit  
No Enab 3300 3400 3500 mV  
.
3270 3370 3470  
LVD_SAR SAR ADC supply low voltage  
monitoring  
6bit Yes Disa 2820 2910 3000 mV  
b.  
Falling voltage  
2790 2880 2970  
tVDASSERT Voltage detector threshold  
crossing assertion  
0.1  
2.0  
µs  
µs  
tVDRELEASE Voltage detector threshold  
crossing de-assertion  
5
20  
1. POR085_c and POR096_c threshold are untrimmed value, before the completion of the power-up sequence. All other  
LVD/HVD thresholds are provided after trimming.  
2. LV internal supply levels are measured on device internal supply grid after internal voltage drop.  
3. LV external supply levels are measured on the die size of the package bond wire after package voltage drop.  
16.1.6 Power up/down sequencing  
The following shows the constraints and relationships for the different power supplies.  
VDD_STDBY=0 VDD_LV=0 VDD_HV_PMC=0 VDD_HV_IO_MAIN=0 VDD_HV_IO_JTAG=0 VDD_HV_IO_FEC=0 VDD_HV_IO_MSC=0 VDD_HV_ADR_SD=0  
VDD_HV_ADV_SD=0 VDD_HV_ADR_SAR=0 VDD_HV_ADV_SAR=0  
VDD_STDBY  
VDD_LV  
VDD_HV_PMC  
VDD_HV_IO_MAIN  
VDD_HV_IO_JTAG  
VDD_HV_IO_FEC  
VDD_HV_IO_MSC  
VDD_HV_ADR_SD  
VDD_HV_ADV_SD  
VDD_HV_ADR_SAR  
VDD_HV_ADV_SAR  
Amps  
Amps  
2mA  
Figure 21. Device supply relation during power-up/power-down sequence  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
53  
Flash memory specifications  
Each column indicates that the corresponding supply is 0 and the other supplies are UP.  
For example, the "Amps" cell in the "VDD_HV_ADV_SD=0" column shows that when  
VDD_HV_ADR_SD supply is 0 and all other supplies are UP, this supply has a current in  
Amp flowing into VDD_HV_ADR_SD  
.
17 Flash memory specifications  
17.1 Flash memory program and erase specifications  
NOTE  
All timing, voltage, and current numbers specified in this  
section are defined for a single embedded flash memory within  
an SoC, and represent average currents for given supplies and  
operations.  
Table 30 shows the estimated Program/Erase times.  
Table 30. Flash memory program and erase specifications  
Symbol  
Characteristic1  
Typ2  
Factory  
Field Update  
Unit  
Programming3, 4  
Initial  
Max  
Initial  
Max, Full  
Temp  
Typical  
End of  
Life5  
Lifetime Max6  
20°C ≤TA -40°C ≤TJ -40°C ≤TJ ≤ 1,000 ≤ 250,000  
≤30°C ≤150°C ≤150°C cycles cycles  
tdwpgm  
Doubleword (64 bits) program time 43  
100 150 55 500  
μs  
tppgm  
Page (256 bits) program time  
73  
200  
800  
300  
108  
396  
500  
μs  
μs  
tqppgm  
Quad-page (1024 bits) program  
time  
268  
1,200  
2,000  
t16kers  
16 KB Block erase time  
16 KB Block program time  
32 KB Block erase time  
32 KB Block program time  
64 KB Block erase time  
64 KB Block program time  
256 KB Block erase time  
256 KB Block program time  
168  
34  
290  
45  
320  
50  
250  
40  
1,000  
1,000  
1,200  
1,200  
1,600  
1,600  
4,000  
4,000  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
t16kpgm  
t32kers  
t32kpgm  
t64kers  
217  
69  
360  
100  
490  
180  
1,520  
720  
390  
110  
590  
210  
2,030  
880  
310  
90  
315  
138  
884  
552  
420  
170  
1,080  
650  
t64kpgm  
t256kers  
t256kpgm  
1. Program times are actual hardware programming times and do not include software overhead. Block program times  
assume quad-page programming.  
2. Typical program and erase times represent the median performance and assume nominal supply values and operation at  
25 °C. Typical program and erase times may be used for throughput calculations.  
3. Conditions: ≤ 150 cycles, nominal voltage.  
4. Plant Programing times provide guidance for timeout limits used in the factory.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
54  
NXP Semiconductors  
Flash memory specifications  
5. Typical End of Life program and erase times represent the median performance and assume nominal supply values.  
Typical End of Life program and erase values may be used for throughput calculations.  
6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage.  
17.2 Flash memory Array Integrity and Margin Read  
specifications  
Table 31. Flash memory Array Integrity and Margin Read specifications  
Symbol  
Characteristic  
Min  
Typical  
Max1  
Units  
2
tai16kseq  
Array Integrity time for sequential sequence on 16 KB block.  
512 x  
Tperiod x  
Nread  
tai32kseq  
Array Integrity time for sequential sequence on 32 KB block.  
Array Integrity time for sequential sequence on 64 KB block.  
Array Integrity time for sequential sequence on 256 KB block.  
1024 x  
Tperiod x  
Nread  
tai64kseq  
2048 x  
Tperiod x  
Nread  
8192 x  
Tperiod x  
Nread  
tai256kseq  
tmr16kseq  
tmr32kseq  
tmr64kseq  
tmr256kseq  
Margin Read time for sequential sequence on 16 KB block.  
Margin Read time for sequential sequence on 32 KB block.  
Margin Read time for sequential sequence on 64 KB block.  
Margin Read time for sequential sequence on 256 KB block.  
73.81  
128.43  
237.65  
893.01  
110.7  
192.6  
μs  
μs  
μs  
μs  
356.5  
1,339.5  
1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The  
equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and  
Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires  
6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the  
address pipeline set to 2, Nread would equal 4 (or 6 - 2).)  
2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the  
equation, the results of the equation are also unit accurate.  
17.3 Flash memory module life specifications  
Table 32. Flash memory module life specifications  
Symbol  
Characteristic  
Conditions  
Min  
Typical  
Units  
P/E  
Array P/E  
cycles  
Number of program/erase cycles per block  
for 16 KB, 32 KB and 64 KB blocks.1  
250,000  
cycles  
Number of program/erase cycles per block  
for 256 KB blocks.2  
1,000  
250,000  
P/E  
cycles  
Data  
retention  
Minimum data retention.  
Blocks with 0 - 1,000 P/E 50  
cycles.  
Years  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
55  
Flash memory specifications  
Table 32. Flash memory module life specifications (continued)  
Symbol  
Characteristic  
Conditions  
Min  
Typical  
Units  
Blocks with 100,000 P/E  
cycles.  
20  
10  
Years  
Blocks with 250,000 P/E  
cycles.  
Years  
1. Program and erase supported across standard temperature specs.  
2. Program and erase supported across standard temperature specs.  
17.4 Data retention vs program/erase cycles  
Graphically, Data Retention versus Program/Erase Cycles can be represented by the  
following figure. The spec window represents qualified limits. The extrapolated dotted  
line demonstrates technology capability, however is beyond the qualification limits.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
56  
NXP Semiconductors  
Flash memory specifications  
17.5 Flash memory AC timing specifications  
Table 33. Flash memory AC timing specifications  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tpsus  
Time from setting the MCR-PSUS bit until MCR-DONE bit is set  
to a 1.  
9.4  
11.5  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tesus  
Time from setting the MCR-ESUS bit until MCR-DONE bit is set  
to a 1.  
16  
20.8  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tres  
Time from clearing the MCR-ESUS or PSUS bit with EHV = 1  
until DONE goes low.  
16  
100  
ns  
ns  
μs  
tdone  
tdones  
Time from 0 to 1 transition on the MCR-EHV bit initiating a  
program/erase until the MCR-DONE bit is cleared.  
5
Time from 1 to 0 transition on the MCR-EHV bit aborting a  
program/erase until the MCR-DONE bit is set to a 1.  
20.8  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tdrcv  
Time to recover once exiting low power mode.  
16  
45  
μs  
plus seven  
system  
clock  
plus seven  
system  
clock  
periods.  
periods  
taistart  
Time from 0 to 1 transition of UT0-AIE initiating a Margin Read  
or Array Integrity until the UT0-AID bit is cleared. This time also  
applies to the resuming from a suspend or breakpoint by  
clearing AISUS or clearing NAIBP  
5
ns  
ns  
taistop  
Time from 1 to 0 transition of UT0-AIE initiating an Array  
Integrity abort until the UT0-AID bit is set. This time also applies  
to the UT0-AISUS to UT0-AID setting in the event of a Array  
Integrity suspend request.  
80  
plus fifteen  
system  
clock  
periods  
tmrstop  
Time from 1 to 0 transition of UT0-AIE initiating a Margin Read  
abort until the UT0-AID bit is set. This time also applies to the  
UT0-AISUS to UT0-AID setting in the event of a Margin Read  
suspend request.  
10.36  
20.42  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
57  
AC specifications  
17.6 Flash read wait state and address pipeline control settings  
Table 34 describes the recommended RWSC and APC settings at various operating  
frequencies based on specified intrinsic flash access times of the C55FMC array at 150  
°C.  
Table 34. Flash Read Wait State and Address Pipeline Control Guidelines  
Flash read latency on mini-  
cache miss (# of fSYS clock  
periods)  
Flash read latency on mini-  
cache hit (# of fSYS clock  
periods)  
Operating Frequency  
fSYS  
RWSC  
APC  
30 MHz  
100 MHz  
133 MHz  
167 MHz  
200 MHz  
0
2
3
4
5
0
1
1
1
2
3
5
6
7
8
1
1
1
1
1
18 AC specifications  
18.1 Debug and calibration interface timing  
18.1.1 JTAG interface timing  
These specifications apply to JTAG boundary scan only. See Table 36 for functional  
specifications.  
Table 35. JTAG pin AC electrical characteristics  
Value  
#
Symbol  
Characteristic  
Unit  
Min  
100  
40  
5
Max  
1
2
3
4
5
6
tJCYC  
tJDC  
TCK cycle time  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width  
TCK rise and fall times  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
60  
3
tTCKRISE  
tTMSS, tTDIS  
tTMSH, tTDIH  
tTDOV  
5
161  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
58  
NXP Semiconductors  
AC specifications  
Table 35. JTAG pin AC electrical characteristics (continued)  
Value  
#
Symbol  
Characteristic  
Unit  
Max  
Min  
7
tTDOI  
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
TCK low to TDO data invalid  
0
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
TCK low to TDO high impedance  
9
JCOMP assertion time  
100  
40  
10  
11  
12  
13  
14  
15  
JCOMP setup time to TCK low  
TCK falling edge to output valid  
6002  
600  
600  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
15  
15  
1. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
2. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.  
TCK  
2
3
2
1
3
Figure 22. JTAG test clock input timing  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
59  
AC specifications  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 23. JTAG test access port timing  
TCK  
10  
JCOMP  
9
Figure 24. JTAG JCOMP timing  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
60  
NXP Semiconductors  
AC specifications  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 25. JTAG boundary scan timing  
18.1.2 Nexus interface timing  
Nexus timing specified for the whole VDD_LV and VDD_HV_IO dynamic, TA = TL to TH,  
and maximum loading per pad type as specified in the I/O section of the data sheet.  
Table 36. Nexus debug port timing  
Value  
Unit  
#
Symbol  
Characteristic  
Min  
4
Max  
, 1  
1
2
3
4
tEVTIPW  
tEVTOPW  
tTCYC  
EVTI Pulse Width  
EVTO Pulse Width  
TCK cycle time  
Absolute minimum TCK cycle time4 (TDO sampled on posedge of  
TCK)  
tCYC  
40  
ns  
tCYC  
ns  
1
42, 3  
405  
tTCYC  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
61  
AC specifications  
Table 36. Nexus debug port timing (continued)  
Value  
Unit  
#
Symbol  
Characteristic  
Min  
Max  
Absolute minimum TCK cycle time6 (TDO sampled on negedge of  
TCK)  
205  
5
6
tNTDIS  
tNTDIH  
tNTMSS  
tNTMSH  
TDI data setup time  
5
5
16  
ns  
ns  
ns  
ns  
ns  
ns  
TDI data hold time  
7
TMS data setup time  
5
8
TMS data hold time  
TDO propagation delay from falling edge of TCK7  
5
9
10  
TDO hold time with respect to TCK falling edge (minimum TDO  
propagation delay)  
2.25  
1. tCYC is system clock period.  
2. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less  
than the maximum functional capability of the design (system frequency / 4) depending on the actual peripheral frequency  
being used. To ensure proper operation TCK frequency should be set to the peripheral frequency divided by a number  
greater than or equal to that specified here.  
3. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the Absolute  
minimum TCK period specification.  
4. This value is TDO propagation time 36ns + 4ns setup time to sampling edge.  
5. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the  
design (system frequency / 4) depending on the actual system frequency being used.  
6. This value is TDO propagation time 16ns + 4ns setup time to sampling edge.  
7. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
Figure 26. Nexus output timing  
TCK  
EVTI  
EVTO  
3
Figure 27. Nexus event trigger and test clock timings  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
62  
NXP Semiconductors  
AC specifications  
TCK  
5
7
6
8
TMS, TDI  
9
10  
TDO  
Figure 28. Nexus TDI, TMS, TDO timing  
18.1.3 Aurora LVDS interface timing  
Table 37. Aurora LVDS interface timing specifications  
Value  
Typ  
Symbol  
Parameter  
Unit  
Max  
Min  
Data Rate  
STARTUP  
Data rate  
1250  
Mbps  
tSTRT_BIAS  
tSTRT_TX  
tSTRT_RX  
Bias startup time1  
Transmitter startup time2  
Receiver startup time3  
5
5
4
µs  
µs  
µs  
1. Startup time is defined as the time taken by LVDS current reference block for settling bias current after its pwr_down  
(power down) has been deasserted. LVDS functionality is guaranteed only after the startup time.  
2. Startup time is defined as the time taken by LVDS transmitter for settling after its pwr_down (power down) has been  
deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality is  
guaranteed only after the startup time.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
63  
AC specifications  
3. Startup time is defined as the time taken by LVDS receiver for settling after its pwr_down (power down) has been  
deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality is  
guaranteed only after the startup time.  
18.1.3.1 Aurora debug port timing  
Table 38. Aurora debug port timing  
Value  
#
Symbol  
Parameter  
Unit  
Min  
625  
Max  
1200  
400  
55  
1
1a  
2
tREFCLK  
tMCYC  
tRCDC  
JRC  
Reference clock frequency  
Reference clock rise/fall time  
Reference clock duty cycle  
Reference clock jitter  
MHz  
ps  
45  
%
3
40  
ps  
4
tSTABILITY  
BER  
JD  
Reference clock stability  
Bit error rate  
50  
PPM  
5
10-12  
0.17  
0.35  
20  
6
Transmit lane deterministic jitter  
Transmit lane total jitter  
Differential output skew  
Lane to lane output skew  
Aurora lane unit interval1  
OUI  
OUI  
ps  
7
JT  
8
SO  
9
SMO  
1000  
1600  
800  
ps  
10  
OUI  
625 Mbps  
1.25Gbps  
1600  
800  
ps  
ps  
1.  
100 PPM  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
64  
NXP Semiconductors  
AC specifications  
1
2
2
CLOCKREF  
Zero Crossover  
CLOCKREF  
1a  
1a  
1a  
1a  
8
8
8
Tx Data  
Ideal Zero Crossover  
Tx Data  
Tx Data [n]  
Zero Crossover  
Tx Data [n+1]  
Zero Crossover  
Tx Data [m]  
Zero Crossover  
9
9
Figure 29. Aurora timings  
18.2 DSPI timing with CMOS and LVDS  
DSPI in TSB mode with LVDS pads can be used to implement Micro Second Channel  
bus protocol.  
DSPI channel frequency support is shown in Table 39. Timing specifications are shown  
in Table 40, Table 41, Table 42, Table 43, Table 44.  
Table 39. DSPI channel frequency support  
Max usable frequency  
DSPI use mode  
(MHz)1,2  
CMOS (Master mode)  
Full duplex – Classic timing (Table 40)  
17  
30  
30  
30  
40  
Full duplex – Modified timing (Table 41)  
Output only mode (SCK/SOUT/PCS) (Table 40 and Table 41)  
Output only mode TSB mode (SCK/SOUT/PCS) (Table 44)  
Full duplex – Modified timing (Table 42)  
LVDS (Master mode)  
NXP Semiconductors  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
65  
AC specifications  
1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.  
2. Maximum usable frequency does not take into account external device propagation delay.  
18.2.1 DSPI master mode full duplex timing with CMOS and LVDS  
pads  
The values presented in these sections are target values. A complete performance  
characterization of the pads (in all configuration combinations) is required before the  
final specifications can be released.  
18.2.1.1 DSPI CMOS master mode – classic timing  
All output timing is worst case and includes the mismatching of rise and fall times of the  
output pads.  
NOTE  
In Table 40, all output timing is worst case and includes the  
mismatching of rise and fall times of the output pads.  
Table 40. DSPI CMOS master classic timing (full duplex and output only) - MTFE = 0, CPHA  
= 0 or 1  
#
Symbol  
Characteristic  
Condition  
Pad drive2  
Load (CL)  
Value1  
Unit  
Min  
Max  
1
tSCK  
SCK cycle time  
SCK drive strength  
Very strong  
Strong  
25 pF  
33.0  
80.0  
ns  
50 pF  
50 pF  
Medium  
200.0  
2
tCSC  
PCS to SCK delay  
SCK and PCS drive strength  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
(N3 x tSYS, 4) - 16  
(N3 x tSYS, 4) - 16  
(N3 x tSYS, 4) - 16  
(N3 x tSYS, 4) - 29  
ns  
Medium  
PCS medium and PCS = 50 pF  
SCK strong  
SCK = 50 pF  
3
tASC  
After SCK delay  
SCK and PCS drive strength  
Very strong  
PCS = 0 pF  
SCK = 50 pF  
PCS = 0 pF  
SCK = 50 pF  
PCS = 0 pF  
SCK = 50 pF  
(M5 x tSYS4) - 35  
(M5 x tSYS, 4) - 35  
(M5 x tSYS, 4) - 35  
(M5 x tSYS, 4) - 35  
ns  
Strong  
Medium  
PCS medium and PCS = 0 pF  
SCK strong  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
66  
NXP Semiconductors  
AC specifications  
Table 40. DSPI CMOS master classic timing (full duplex and output only) - MTFE = 0, CPHA  
= 0 or 1 (continued)  
#
Symbol  
Characteristic  
Condition  
Value1  
Unit  
Pad drive2  
Load (CL)  
Min  
Max  
SCK = 50 pF  
4
tSDC  
SCK duty cycle6  
SCK drive strength  
Very strong  
Strong  
0 to 50 pF  
0 to 50 pF  
0 to 50 pF  
1/2tSCK - 2  
1/2tSCK - 2  
1/2tSCK - 5  
1/2tSCK + 2  
1/2tSCK + 2  
1/2tSCK + 5  
ns  
Medium  
PCS strobe timing  
5
tPCSC  
PCSx to PCSS time, PCS and PCSS drive strength  
7
Strong  
25 pF  
13.0  
13.0  
ns  
ns  
6
tPASC  
PCSS to PCSx time7 PCS and PCSS drive strength  
Strong  
25 pF  
SIN setup time  
tSUI  
7
SIN setup time to  
SCK8  
SCK drive strength  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
25.0  
31.0  
52.0  
ns  
ns  
ns  
ns  
Medium  
SIN hold time  
tHI  
8
SIN hold time from  
SCK8  
SCK drive strength  
Very strong  
Strong  
0 pF  
0 pF  
0 pF  
-1.0  
-1.0  
-1.0  
Medium  
SOUT data valid time (after SCK edge)  
9
tSUO  
SOUT data valid time SOUT and SCK drive strength  
from SCK9  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7.0  
8.0  
Medium  
16.0  
SOUT data hold time (after SCK edge)  
10 tHO  
SOUT data hold time SOUT and SCK drive strength  
after SCK9  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
-7.7  
-11.0  
-15.0  
Medium  
1. All timing values for output signals in this table are measured to 50% of the output voltage.  
2. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may  
cause incorrect operation.  
3. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable  
using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous  
SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same  
edge of DSPI_CLKn).  
4. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10  
ns).  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
67  
AC specifications  
5. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable  
using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK  
clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge  
of DSPI_CLKn).  
6. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide  
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
7. PCSx and PCSS using same pad configuration.  
8. Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL voltage thresholds.  
9. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
tCSC  
tASC  
PCSx  
tSCK  
tSDC  
SCK Output  
(CPOL = 0)  
tSDC  
SCK Output  
(CPOL = 1)  
tSUI  
tHI  
First Data  
First Data  
SIN  
Data  
LastData  
tSUO  
tHO  
Data  
Last Data  
SOUT  
Figure 30. DSPI CMOS master mode – classic timing, CPHA = 0  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
68  
NXP Semiconductors  
AC specifications  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
tSUI  
tHI  
Data  
Fist Data  
LastData  
SIN  
tSUO  
tHO  
Data  
SOUT  
Last Data  
Fist Data  
Figure 31. DSPI CMOS master mode – classic timing, CPHA = 1  
tPCSC  
tPASC  
PCSS  
PCSx  
Figure 32. DSPI PCS strobe (PCSS) timing (master mode)  
18.2.1.2 DSPI CMOS master mode – modified timing  
All output timing is worst case and includes the mismatching of rise and fall times of the  
output pads.  
NOTE  
In Table 41, all output timing is worst case and includes the  
mismatching of rise and fall times of the output pads.  
Table 41. DSPI CMOS master modified timing (full duplex and output only) - MTFE = 1,  
CPHA = 0 or 1  
#
Symbol  
Characteristic  
Condition  
Pad drive2  
Load (CL)  
Value1  
Unit  
Min  
Max  
1
tSCK  
SCK cycle time  
SCK drive strength  
Very strong  
Strong  
25 pF  
50 pF  
33.0  
80.0  
ns  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
69  
AC specifications  
Table 41. DSPI CMOS master modified timing (full duplex and output only) - MTFE = 1,  
CPHA = 0 or 1 (continued)  
#
Symbol  
Characteristic  
Condition  
Pad drive2  
Load (CL)  
Medium 50 pF  
SCK and PCS drive strength  
Value1  
Unit  
Min  
Max  
200.0  
2
tCSC  
PCS to SCK delay  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
(N3 x tSYS, 4) - 16  
(N3 x tSYS, 4) - 16  
(N3 x tSYS, 4) - 16  
(N3 x tSYS, 4) - 29  
ns  
Medium  
PCS medium and PCS = 50 pF  
SCK strong  
SCK = 50 pF  
3
tASC  
After SCK delay  
SCK and PCS drive strength  
Very strong  
PCS = 0 pF  
SCK = 50 pF  
PCS = 0 pF  
SCK = 50 pF  
PCS = 0 pF  
SCK = 50 pF  
(M5 x tSYS4) - 35  
(M5 x tSYS, 4) - 35  
(M5 x tSYS, 4) - 35  
(M5 x tSYS, 4) - 35  
ns  
Strong  
Medium  
PCS medium and PCS = 0 pF  
SCK strong  
SCK = 50 pF  
4
tSDC  
SCK duty cycle6  
SCK drive strength  
Very strong  
Strong  
0 to 50 pF  
0 to 50 pF  
0 to 50 pF  
1/2tSCK - 2  
1/2tSCK - 2  
1/2tSCK - 5  
1/2tSCK + 2  
1/2tSCK + 2  
1/2tSCK + 5  
ns  
Medium  
PCS strobe timing  
5
tPCSC  
PCSx to PCSS time, PCS and PCSS drive strength  
7
Strong  
25 pF  
13.0  
13.0  
ns  
ns  
6
tPASC  
PCSS to PCSx time7 PCS and PCSS drive strength  
Strong  
25 pF  
SIN setup time  
tSUI  
7
SIN setup time to  
SCK  
SCK drive strength  
Very strong  
Strong  
4
25 pF  
50 pF  
50 pF  
25 - (P9 x tSYS  
31 - (P9 x tSYS  
52 - (P9 x tSYS  
)
ns  
ns  
CPHA = 08  
, 4  
)
, 4  
Medium  
)
SIN setup time to  
SCK  
SCK drive strength  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
25.0  
31.0  
52.0  
CPHA = 18  
Medium  
SIN hold time  
8
tHI  
SIN hold time from  
SCK  
SCK drive strength  
Very strong  
, 3  
0 pF  
-1 + (P8 x tSYS  
)
ns  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
70  
NXP Semiconductors  
AC specifications  
Table 41. DSPI CMOS master modified timing (full duplex and output only) - MTFE = 1,  
CPHA = 0 or 1 (continued)  
#
Symbol  
Characteristic  
Condition  
Pad drive2  
Load (CL)  
Value1  
Unit  
Min  
Max  
CPHA = 09  
, 3  
Strong  
0 pF  
0 pF  
-1 + (P8 x tSYS  
-1 + (P8 x tSYS  
)
)
, 3  
Medium  
SIN hold time from  
SCK CPHA = 19  
SCK drive strength  
Very strong  
Strong  
0 pF  
0 pF  
0 pF  
-1.0  
-1.0  
-1.0  
ns  
Medium  
SOUT data valid time (after SCK edge)  
9
tSUO  
SOUT data valid time SOUT and SCK drive strength  
from SCK  
4
4
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7.0 + tSYS  
8.0 + tSYS  
ns  
ns  
CPHA = 09  
4
Medium  
16.0 + tSYS  
SOUT data valid time SOUT and SCK drive strength  
from SCK  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7.0  
8.0  
CPHA = 19  
Medium  
16.0  
SOUT data hold time (after SCK edge)  
10 tHO  
SOUT data hold time SOUT and SCK drive strength  
after SCK  
4
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
-7.7 + tSYS  
ns  
ns  
CPHA = 010  
4
-11.0 + tSYS  
-15.0 + tSYS  
4
Medium  
SOUT data hold time SOUT and SCK drive strength  
after SCK  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
-7.7  
-11.0  
-15.0  
CPHA = 110  
Medium  
1. All timing values for output signals in this table are measured to 50% of the output voltage.  
2. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may  
cause incorrect operation.  
3. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable  
using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous  
SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same  
edge of DSPI_CLKn).  
4. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10  
ns).  
5. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable  
using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK  
clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge  
of DSPI_CLKn).  
6. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide  
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
7. PCSx and PCSS using same pad configuration.  
8. Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL voltage thresholds.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
71  
AC specifications  
9. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using  
DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set  
to 1.  
10. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
tCSC  
tASC  
PCSx  
tSCK  
tSDC  
SCK Output  
(CPOL = 0)  
tSDC  
SCK Output  
(CPOL = 1)  
tSUI  
tHI  
First Data  
First Data  
LastData  
SIN  
Data  
tSUO  
tHO  
Data  
Last Data  
SOUT  
Figure 33. DSPI CMOS master mode – modified timing, CPHA = 0  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
tHI  
tSUI  
tHI  
Data  
First Data  
SIN  
LastData  
tSUO  
tHO  
Data  
SOUT  
Last Data  
First Data  
Figure 34. DSPI CMOS master mode – modified timing, CPHA = 1  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
72  
NXP Semiconductors  
AC specifications  
tPCSC  
tPASC  
PCSS  
PCSx  
Figure 35. DSPI PCS strobe (PCSS) timing (master mode)1  
18.2.1.3 DSPI LVDS master mode – modified timing  
Table 42. DSPI LVDS master timing - full duplex - modified transfer format (MTFE = 1),  
CPHA = 0 or 1  
#
Symbol  
Characteristic  
Condition  
Pad drive  
Value1  
Unit  
Load  
Min  
Max  
1
tSCK  
SCK cycle time  
LVDS  
15 pF  
30.0  
ns  
to 25 pF  
differential  
2
3
tCSC  
PCS to SCK delay  
(LVDS SCK)  
PCS drive strength  
Very strong  
Strong  
25 pF  
(N2 x tSYS, 3) - 10  
(N2 x tSYS, 3) - 10  
(N2 x tSYS, 3) - 32  
(M4 x tSYS3) - 8  
ns  
ns  
ns  
ns  
50 pF  
Medium  
50 pF  
tASC  
After SCK delay  
(LVDS SCK)  
Very strong  
PCS = 0 pF  
SCK = 25 pF  
PCS = 0 pF  
SCK = 25 pF  
PCS = 0 pF  
SCK = 25 pF  
15 pF  
Strong  
Medium  
LVDS  
(M4 x tSYS, 3) - 8  
(M4 x tSYS, 3) - 8  
1/2tSCK - 2  
ns  
ns  
ns  
4
7
tSDC  
SCK duty cycle5  
SIN setup time  
1/2tSCK + 2  
to 25 pF  
differential  
tSUI  
SIN setup time to  
SCK  
SCK drive strength  
LVDS  
3
15 pF  
23 - (P7 x tSYS  
)
ns  
ns  
CPHA = 06  
to 25 pF  
differential  
SIN setup time to  
SCK  
SCK drive strength  
LVDS  
15 pF  
23  
CPHA = 16  
to 25 pF  
differential  
8
tHI  
SIN Hold Time  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
73  
AC specifications  
Table 42. DSPI LVDS master timing - full duplex - modified transfer format (MTFE = 1),  
CPHA = 0 or 1 (continued)  
#
Symbol  
Characteristic  
Condition  
Pad drive  
Value1  
Unit  
Load  
Min  
Max  
SIN hold time from  
SCK  
SCK drive strength  
LVDS  
, 3  
0 pF differential  
-1 + (P7 x tSYS  
)
ns  
CPHA = 06  
SIN hold time from  
SCK  
SCK drive strength  
LVDS  
0 pF differential  
-1  
ns  
ns  
CPHA = 16  
9
tSUO  
SOUT data valid time (after SCK edge)  
SOUT data valid time SOUT and SCK drive strength  
from SCK  
3
LVDS  
15 pF  
7.0 + tSYS  
CPHA = 08  
to 25 pF  
differential  
SOUT data valid time SOUT and SCK drive strength  
from SCK  
LVDS  
15 pF  
7.0  
ns  
CPHA = 18  
to 25 pF  
differential  
10 tHO  
SOUT data hold time (after SCK edge)  
SOUT data hold time SOUT and SCK drive strength  
after SCK  
3
LVDS  
15 pF  
-7.5 + tSYS  
ns  
ns  
CPHA = 08  
to 25 pF  
differential  
SOUT data hold time SOUT and SCK drive strength  
after SCK  
LVDS  
15 pF  
-7.5  
CPHA = 18  
to 25 pF  
differential  
1. All timing values for output signals in this table are measured to 50% of the output voltage.  
2. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable  
using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous  
SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same  
edge of DSPI_CLKn).  
3. tSYS is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10  
ns).  
4. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable  
using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK  
clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge  
of DSPI_CLKn).  
5. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide  
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
6. Input timing assumes an input slew rate of 1 ns (10% - 90%) and LVDS differential voltage = 100 mV.  
7. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using  
DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set  
to 1.  
8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
74  
NXP Semiconductors  
AC specifications  
tCSC  
tASC  
PCSx  
tSCK  
tSDC  
SCK Output  
(CPOL = 0)  
tSDC  
SCK Output  
(CPOL = 1)  
tSUI  
tHI  
First Data  
First Data  
SIN  
Data  
LastData  
tSUO  
tHO  
Data  
Last Data  
SOUT  
Figure 36. DSPI LVDS master mode – modified timing, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
tHI  
tSUI  
tHI  
Data  
First Data  
Last Data  
SIN  
tSUO  
tHO  
Data  
SOUT  
Last Data  
First Data  
Figure 37. DSPI LVDS master mode – modified timing, CPHA = 1  
18.2.1.4 DSPI master mode – output only  
For Table 43 :  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
75  
AC specifications  
• All DSPI timing specifications apply to pins when using LVDS pads for SCK and  
SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may  
degrade for weaker output drivers.  
• TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.  
Table 43. DSPI LVDS master timing - output only - timed serial bus mode TSB = 1 or ITSB =  
1, CPOL = 0 or 1, continuous SCK clock  
#
Symbol  
Characteristic  
Condition  
Pad drive  
LVDS  
Value  
Unit  
Load  
Min  
Max  
1
tSCK  
SCK cycle time  
15 pF  
25.0  
ns  
to 50 pF  
differential  
25 pF  
2
3
4
tCSV  
tCSH  
tSDC  
PCS valid after SCK1 Very strong  
6.0  
6.0  
ns  
ns  
Strong  
50 pF  
(SCK with 50 pF  
differential load cap.)  
PCS hold after SCK1 Very strong  
0 pF  
0 pF  
-4.0  
-4.0  
ns  
ns  
Strong  
(SCK with 50 pF  
differential load cap.)  
SCK duty cycle  
LVDS  
15 pF  
1/2tSCK - 2  
1/2tSCK + 2  
ns  
ns  
ns  
(SCK with 50 pF  
differential load cap.)  
to 50 pF  
differential  
SOUT data valid time (after SCK edge)  
5
tSUO  
SOUT data valid time SOUT and SCK drive strength  
from SCK2  
LVDS  
15 pF  
3.5  
to 50 pF  
differential  
SOUT data hold time (after SCK edge)  
6
tHO  
SOUT data hold time SOUT and SCK drive strength  
after SCK2  
LVDS  
15 pF  
-3.5  
to 50 pF  
differential  
1. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This  
timing value is due to pad delays and signal propagation delays.  
2. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
For Table 44 :  
• TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.  
• All output timing is worst case and includes the mismatching of rise and fall times of  
the output pads.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
76  
NXP Semiconductors  
AC specifications  
Table 44. DSPI CMOS master timing - output only - timed serial bus mode TSB = 1 or ITSB =  
1, CPOL = 0 or 1, continuous SCK clock  
#
Symbol  
Characteristic  
Condition  
Pad drive2  
Load (CL)  
Value1  
Unit  
Min  
Max  
1
tSCK  
SCK cycle time  
SCK drive strength  
Very strong  
Strong  
25 pF  
33.0  
80.0  
ns  
50 pF  
ns  
ns  
Medium  
50 pF  
200.0  
2
tCSV  
PCS valid after SCK3 SCK and PCS drive strength  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7
8
ns  
ns  
ns  
ns  
Medium  
16  
29  
PCS medium and PCS = 50 pF  
SCK strong  
SCK = 50 pF  
3
tCSH  
PCS hold after SCK3 SCK and PCS drive strength  
Very strong  
PCS = 0 pF  
SCK = 50 pF  
PCS = 0 pF  
SCK = 50 pF  
PCS = 0 pF  
SCK = 50 pF  
-14  
-14  
-33  
-35  
ns  
ns  
ns  
ns  
Strong  
Medium  
PCS medium and PCS = 0 pF  
SCK strong  
SCK = 50 pF  
4
tSDC  
SCK duty cycle4  
SCK drive strength  
Very strong  
Strong  
0 to 50 pF  
0 to 50 pF  
0 to 50 pF  
1/2tSCK - 2  
1/2tSCK - 2  
1/2tSCK - 5  
1/2tSCK + 2  
1/2tSCK + 2  
1/2tSCK + 5  
ns  
ns  
ns  
Medium  
SOUT data valid time (after SCK edge)  
9
tSUO  
SOUT data valid time SOUT and SCK drive strength  
from SCK  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
7.0  
8.0  
ns  
ns  
ns  
CPHA = 1, 5  
Medium  
16.0  
SOUT data hold time (after SCK edge)  
10 tHO  
SOUT data hold time SOUT and SCK drive strength  
after SCK CPHA = 15  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
-7.7  
-11.0  
-15.0  
ns  
ns  
ns  
Medium  
1. All timing values for output signals in this table are measured to 50% of the output voltage.  
2. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may  
cause incorrect operation.  
3. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This  
timing value is due to pad delays and signal propagation delays.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
77  
AC specifications  
4. tSDC is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide  
ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.  
5. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same  
value.  
PCSx  
tCSV  
tSCK  
tSDC  
tCSH  
SCK Output  
(CPOL = 0)  
tSUO  
tHO  
First Data  
Last Data  
SOUT  
Data  
Figure 38. DSPI LVDS and CMOS master timing – output only – modified transfer format  
MTFE = 1, CHPA = 1  
18.2.2 DSPI CMOS slave mode  
NOTE  
DSPI slave operation is only supported for a single master and  
single slave on the device. Timing is valid for that case only.  
Table 45. DSPI CMOS slave timing - Modified Transfer Format (MTFE = 0/1)  
#
Symbol  
Characteristic1  
Condition  
Pad drive  
Value  
Unit  
Load  
Min  
62  
16  
16  
30  
Max  
50  
50  
60  
5
1
tSCK  
SCK Cycle Time  
SS to SCK Delay  
SCK to SS Delay  
SCK Duty Cycle  
ns  
2
3
4
5
tCSC  
tASC  
tSDC  
tA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Slave Access Time2 Very strong  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
Strong  
(SS active to SOUT  
driven)  
Medium  
6
9
tDIS  
Slave SOUT Disable Very strong  
Time2  
Strong  
5
(SS inactive to SOUT  
High-Z or invalid)  
Medium  
10  
tSUI  
Data Setup Time for  
Inputs  
10  
ns  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
78  
NXP Semiconductors  
AC specifications  
Table 45. DSPI CMOS slave timing - Modified Transfer Format (MTFE = 0/1) (continued)  
#
Symbol  
Characteristic1  
Condition  
Pad drive  
Value  
Unit  
Load  
Min  
Max  
10 tHI  
Data Hold Time for  
Inputs  
10  
ns  
11 tSUO  
SOUT Valid Time2  
Very strong  
Strong  
25 pF  
50 pF  
50 pF  
25 pF  
50 pF  
50 pF  
30  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
(after SCK edge)  
Medium  
Very strong  
Strong  
12 tHO  
SOUT Hold Time2  
(after SCK edge)  
2.5  
2.5  
2.5  
Medium  
1. Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL / Automotive voltage thresholds.  
2. All timing values for output signals in this table, are measured to 50% of the output voltage. All output timing is worst case  
and includes the mismatching of rise and fall times of the output pads.  
tASC  
tCSC  
S S  
tSCK  
S C K In p u t  
tSDC  
(C P O L = 0 )  
tSDC  
S C K In p u t  
(C P O L = 1 )  
tSUO  
tHO  
tA  
tDIS  
F irst D a ta  
D a ta  
D a ta  
L a st D a ta  
S O U T  
S IN  
tSUI  
tHI  
L a st D a ta  
F irst D a ta  
Figure 39. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 0  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
79  
AC specifications  
S S  
S C K In p u t  
(C P O L = 0 )  
S C K In p u t  
(C P O L = 1 )  
tSUO  
tA  
tDIS  
tHO  
L a st D a ta  
F irst D a ta  
D a ta  
D a ta  
S O U T  
S IN  
tSUI  
tHI  
F irst D a ta  
L a st D a ta  
Figure 40. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 1  
18.3 FEC timing  
The FEC supports the 10/100 Mbps MII, 10/100 Mbps MII-lite, and the 10 Mbps-only 7-  
wire interface.  
18.3.1 MII-lite receive signal timing (RXD[3:0], RX_DV, RX_ER, and  
RX_CLK)  
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%.  
There is no minimum frequency requirement. The system clock frequency must be at  
least equal to or greater than the RX_CLK frequency.  
All timing specifications are referenced from RX_CLK = 1.4 V to the valid input levels.  
Table 46. MII-lite receive signal timing  
Value  
Unit  
Spec  
Characteristic  
Min  
5
Max  
M1  
M2  
M3  
M4  
RXD[3:0], RX_DV, RX_ER to RX_CLK setup  
RX_CLK to RXD[3:0], RX_DV, RX_ER hold  
RX_CLK pulse width high  
ns  
5
ns  
35%  
35%  
65%  
65%  
RX_CLK period  
RX_CLK period  
RX_CLK pulse width low  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
80  
NXP Semiconductors  
AC specifications  
M3  
RX_CLK (input)  
M4  
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
M2  
M1  
Figure 41. MII-lite receive signal timing diagram  
18.3.2 MII-lite transmit signal timing (TXD[3:0], TX_EN, TX_ER,  
TX_CLK)  
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz  
+1%. There is no minimum frequency requirement. The system clock frequency must be  
at least equal to or greater than the TX_CLK frequency.  
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from  
either the rising or falling edge of TX_CLK, and the timing is the same in either case.  
This options allows the use of non-compliant MII PHYs.  
All timing specifications are referenced from TX_CLK = 1.4 V to the valid output levels.  
Table 47. MII-lite transmit signal timing  
Value1  
Unit  
Spec  
Characteristic  
Min  
5
Max  
M5  
M6  
M7  
M8  
TX_CLK to TXD[3:0], TX_EN, TX_ER invalid  
TX_CLK to TXD[3:0], TX_EN, TX_ER valid  
TX_CLK pulse width high  
ns  
25  
ns  
35%  
35%  
65%  
65%  
TX_CLK period  
TX_CLK period  
TX_CLK pulse width low  
1. Output parameters are valid for CL = 25 pF, where CL is the external load to the device. The internal package capacitance  
is accounted for, and does not need to be subtracted from the 25 pF value.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
81  
AC specifications  
M7  
TX_CLK (input)  
M5  
M8  
TXD[3:0] (outputs)  
TX_EN  
TX_ER  
M6  
Figure 42. MII-lite transmit signal timing diagram  
18.3.3 MII-lite async inputs signal timing (CRS and COL)  
Table 48. MII-lite async inputs signal timing  
Value  
Unit  
Spec  
Characteristic  
Min  
Max  
M9  
CRS, COL minimum pulse width  
1.5  
TX_CLK period  
CRS, COL  
M9  
Figure 43. MII-lite async inputs timing diagram  
18.3.4 MII-lite serial management channel timing (MDIO and MDC)  
The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.  
NOTE  
All timing specifications are referenced from MDC = 1.4 V  
(TTL levels) to the valid input and output levels, 0.8 V and 2.0  
V (TTL levels). For 5 V operation, timing is referenced from  
MDC = 50% to 2.2 V/3.5 V input and output levels.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
82  
NXP Semiconductors  
AC specifications  
Table 49. MII-lite serial management channel timing  
Value  
Unit  
Spec  
Characteristic  
Min  
Max  
M10  
MDC falling edge to MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11  
M12  
M13  
M14  
M15  
MDC falling edge to MDIO output valid (max prop delay)  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
MDC pulse width high  
10  
25  
ns  
ns  
0
ns  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
MDC pulse width low  
M14  
M15  
MDC (output)  
M10  
MDIO (output)  
MDIO (input)  
M11  
M12  
M13  
Figure 44. MII-lite serial management channel timing diagram  
18.3.5 RMII serial management channel timing (MDIO and MDC)  
The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.  
Table 50. RMII serial management channel timing  
Value  
Unit  
Spec  
Characteristic  
Min  
Max  
M10  
MDC falling edge to  
MDIO output invalid  
(minimum propagation  
delay)  
0
ns  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
83  
AC specifications  
Table 50. RMII serial management channel timing (continued)  
Value  
Unit  
Spec  
Characteristic  
Min  
Max  
M11  
MDC falling edge to  
MDIO output valid (max  
prop delay)  
25  
ns  
M12  
M13  
MDIO (input) to MDC  
rising edge setup  
10  
0
ns  
ns  
MDIO (input) to MDC  
rising edge hold  
M14  
M15  
MDC pulse width high  
MDC pulse width low  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
M14  
M15  
MDC (output)  
M10  
MDIO (output)  
MDIO (input)  
M11  
M12  
M13  
Figure 45. RMII-lite serial management channel timing diagram  
18.3.6 RMII receive signal timing (RXD[1:0], CRS_DV)  
The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%.  
There is no minimum frequency requirement. The system clock frequency must be at  
least equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK  
frequency.  
All timing specifications are referenced from REF_CLK = 1.4 V to the valid input levels.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
84  
NXP Semiconductors  
AC specifications  
Unit  
Table 51. RMII receive signal timing  
Value  
Spec  
Characteristic  
Min  
4
Max  
R1  
R2  
R3  
R4  
RXD[1:0], CRS_DV to REF_CLK setup  
REF_CLK to RXD[1:0], CRS_DV hold  
REF_CLK pulse width high  
ns  
2
ns  
35%  
35%  
65%  
65%  
REF_CLK period  
REF_CLK period  
REF_CLK pulse width low  
R3  
REF_CLK (input)  
R4  
RXD[1:0] (inputs)  
CRS_DV  
R1  
R2  
Figure 46. RMII receive signal timing diagram  
18.3.7 RMII transmit signal timing (TXD[1:0], TX_EN)  
The transmitter functions correctly up to a REF_CLK maximum frequency of 50 MHz +  
1%. There is no minimum frequency requirement. The system clock frequency must be at  
least equal to or greater than the TX_CLK frequency, which is half that of the REF_CLK  
frequency.  
The transmit outputs (TXD[1:0], TX_EN) can be programmed to transition from either  
the rising or falling edge of REF_CLK, and the timing is the same in either case. This  
options allows the use of non-compliant RMII PHYs.  
All timing specifications are referenced from REF_CLK = 1.4 V to the valid output  
levels.  
Table 52. RMII transmit signal timing  
Value  
Unit  
Spec  
Characteristic  
Min  
2
Max  
R5  
R6  
R7  
R8  
REF_CLK to TXD[1:0], TX_EN invalid  
REF_CLK to TXD[1:0], TX_EN valid  
REF_CLK pulse width high  
ns  
16  
ns  
35%  
35%  
65%  
65%  
REF_CLK period  
REF_CLK period  
REF_CLK pulse width low  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
85  
Obtaining package dimensions  
R7  
REF_CLK (input)  
R5  
R8  
TXD[1:0] (outputs)  
TX_EN  
R6  
Figure 47. RMII transmit signal timing diagram  
18.4 UART timings  
UART channel frequency support is shown in the following table.  
Table 53. UART frequency support  
LINFlexD clock frequency  
LIN_CLK (MHz)  
Oversampling rate  
Voting scheme  
Max usable frequency  
(Mbaud)  
80  
16  
8
3:1 majority voting  
5
10  
6
Limited voting on one sample  
with configurable sampling  
point  
13.33  
16  
5
4
20  
18.5 eMIOS timing  
Table 54. eMIOS timing  
Symbol  
Characteristic  
Condition  
Min.  
Max.  
Unit  
Value  
Value  
tMIPW  
eMIOS Input Pulse Width  
eMIOS_CLK = 100 MHz  
2
cycles  
19 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to http://www.nxp.com and perform a keyword search for  
the drawing's document number.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
86  
NXP Semiconductors  
Thermal characteristics  
If you want the drawing for this package  
LQFP 144 PD  
Then use this document number  
98ASS23177W  
LQFP 176 PD  
98ASS23479W  
98ASA00468D  
98ASA00261D  
MAPBGA 252 PD  
MAPBGA 292 ED  
20 Thermal characteristics  
The following tables describe the thermal characteristics of the device.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal  
resistance, mounting side (board) temperature, ambient temperature, air flow, power  
dissipation or other components on the board, and board thermal resistance.  
Table 56. Thermal characteristics for the 144-pin LQFP package  
Rating  
Conditions  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
Symbol  
RθJA  
Value  
41.3  
33.0  
32.4  
26.7  
21.5  
7.0  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Ambient Natural Convection 1, 2  
Junction to Ambient Natural Convection1, 2, 3  
Junction to Ambient (@200 ft/min)1, 3  
Junction to Ambient (@200 ft/min)1, 3  
Junction to Board4  
RθJA  
RθJMA  
RθJMA  
RθJB  
Junction to Case 5  
Junction to Package Top6  
Junction to Package Lead7  
RθJC  
ψJT  
Natural Convection  
Natural Convection  
0.25  
16.5  
ψJB  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12.  
Table 57. Thermal characteristics for the 176-pin LQFP package  
Rating  
Conditions  
Symbol  
RθJA  
Value  
49.9  
Unit  
°C/W  
°C/W  
Junction to Ambient Natural Convection 1, 2  
Junction to Ambient Natural Convection1, 2, 3  
Single layer board (1s)  
Four layer board (2s2p)  
RθJA  
33.8  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
87  
Thermal characteristics  
Table 57. Thermal characteristics for the 176-pin LQFP package (continued)  
Rating  
Conditions  
Single layer board (1s)  
Four layer board (2s2p)  
Symbol  
RθJMA  
RθJMA  
RθJB  
Value  
37.8  
28.2  
21.0  
7.8  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Ambient (@200 ft/min)1, 3  
Junction to Ambient (@200 ft/min)1, 3  
Junction to Board4  
Junction to Case5  
Junction to Package Top6  
Junction to Package Lead7  
RθJC  
Natural Convection  
Natural Convection  
ψJT  
0.3  
ψJB  
13.0  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12.  
Table 58. Thermal characteristics for the 252-pin MAPBGA package with full solder balls  
Rating  
Conditions  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
Symbol  
RθJA  
Value  
43.0  
26.5  
33.2  
22.2  
12.5  
6.3  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Ambient Natural Convection 1, 2  
Junction to Ambient Natural Convection1, 2, 3  
Junction to Ambient (@200 ft/min)1, 3  
Junction to Ambient (@200 ft/min)1, 3  
Junction to Board4  
RθJA  
RθJMA  
RθJMA  
RθJB  
Junction to Case5  
Junction to Package Top6  
Junction to Package Lead7  
RθJC  
ψJT  
Natural Convection  
Natural Convection  
0.3  
ψJB  
8.7  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
88  
NXP Semiconductors  
Thermal characteristics  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12.  
Table 59. Thermal characteristics for the 252-pin MAPBGA package 16 removed balls: 12  
central, 4 corner peripheral  
Rating  
Conditions  
Symbol  
RθJA  
Value  
23.8  
15.9  
4.8  
Unit  
°C/W  
°C/W  
°C/W  
Junction to Ambient Natural Convection1, 2, 3  
Junction to Board4  
Four layer board (2s2p)  
Four layer board (2s2p)  
Natural Convection  
RθJB  
Junction to Package Lead5  
ψJB  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12.  
20.1 General notes for specifications at maximum junction  
temperature  
An estimation of the chip junction temperature, TJ, can be obtained from this equation:  
TJ = TA + (RθJA × PD)  
where:  
• TA = ambient temperature for the package (°C)  
• RθJA = junction to ambient thermal resistance (°C/W)  
• PD = power dissipation in the package (W)  
The junction to ambient thermal resistance is an industry standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values in  
common usage: the value determined on a single layer board and the value obtained on a  
board with two planes. For packages such as the PBGA, these values can be different by  
a factor of two. Which value is closer to the application depends on the power dissipated  
by other components on the board. The value obtained on a single layer board is  
appropriate for the tightly packed printed circuit board. The value obtained on the board  
with the internal planes is usually appropriate if the board has low power dissipation and  
the components are well separated.  
When a heat sink is used, the thermal resistance is expressed in the following equation as  
the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:  
RθJA = RθJC + RθCA  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
89  
Ordering information  
where:  
• RθJA = junction to ambient thermal resistance (°C/W)  
• RθJC = junction to case thermal resistance (°C/W)  
• RθCA = case to ambient thermal resistance (°C/W)  
RθJC is device related and cannot be influenced by the user. The user controls the thermal  
environment to change the case to ambient thermal resistance, RθCA. For instance, the  
user can change the size of the heat sink, the air flow around the device, the interface  
material, the mounting arrangement on printed circuit board, or change the thermal  
dissipation on the printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks  
are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the  
junction temperature with a measurement of the temperature at the top center of the  
package case using this equation:  
TJ = TT + (ΨJT × PD)  
where:  
• TT = thermocouple temperature on top of the package (°C)  
ΨJT = thermal characterization parameter (°C/W)  
• PD = power dissipation in the package (W)  
The thermal characterization parameter is measured per JESD51-2 specification using a  
40 gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
21 Ordering information  
Table 60. Ordering information  
Part Number  
SPC5746RK1MMT5  
SPC5746RK1MLU3  
SPC5745RK1MMT5  
SPC5745RK1MLU3  
SPC5743RK1MLU5  
SPC5743RK1MLQ5  
PPC5746R2K1MMZ5A  
Device Type  
Sample PD1  
Sample PD  
Sample PD  
Sample PD  
Sample PD  
Sample PD  
Sample ED2  
Flash/SRAM  
4M / 256 KB  
4M/256KB  
Emulation RAM  
Package  
252 MAPBGA  
176 LQFP  
Frequency  
200 MHz  
150 MHz  
200 MHz  
150 MHz  
200 MHz  
200 MHz  
200 MHz  
-
-
3M/192KB  
-
252 MAPBGA  
176 LQFP  
3M / 192 KB  
2M / 128KB  
2M / 128 KB  
4M / 256 KB  
-
-
-
176 LQFP  
144 LQFP  
1 MB  
292 MAPBGA  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
90  
NXP Semiconductors  
Revision history  
1. "PD" refers to a production device, orderable in quantity.  
2. “ED" refers to an emulation device, orderable in limited quantities. An emulation device (ED) is for use during system  
development only and is not to be used in production. An ED is a Production PD chip combined with a companion chip to  
form an Emulation and Debug Device (ED) and includes additional RAM memory and debug features. EDs are provided  
“as is" without warranty of any kind. In the event of a suspected ED failure, NXP agrees to exchange the suspected failing  
ED from the customer at no additional charge, however NXP will not analyze ED returns.  
22 Revision history  
Table 61. Revision history  
Revision  
Date  
Description of changes  
1
2
05/2013 Initial release.  
12/2014 Overall:  
• Editorial changes.  
• Removed the Classification columns in spec tables and removed statements that values need  
to be characterized.  
• In footnotes changed cross references to figures to static text.  
In section Block diagram :  
• In Figure 1, changed "AIPS Bridge 0/1" to "AIPS PBridge_0/1".  
• In Figure 2 :  
• Changed figure title (was “Peripherals block diagram”).  
• Changed "BAF" to "BAR".  
• Added PBRIDGE_1, EIM, XBAR, and PBRIDGE_0.  
In section Introduction, removed section "Parameter classification".  
In section Absolute maximum ratings, Table 1 :  
• VDD_HV_IO_FEC spec: removed row for "Using Ethernet Reference to VSS" condition.  
• Corrected "VIDD_HV_IO_MSC" to "VDD_HV_IO_MSC".  
• Add parameter IIOMAX.  
• Deleted IMAXSEG parameter.  
In section Operating conditions :  
• Deleted sentence "The ranges in this table are design targets...".  
• Added a NOTE that all power supplies need to be powered up.  
• In Table 3 :  
• Removed VDD_HV_FLA.  
• Changed minimum voltage of VDD_HV_ADV_SD.  
• Modified footnote for S/D ADC supply voltage.  
• Modified footnote for SAR ADC supply voltage.  
• Modified VRAMP spec to two separate specs for "VRAMP_VDD_LV" and  
"VRAMP_VDD_HV_IO_MAIN, VRAMP_VDD_HV_PMC".  
In section DC electrical specifications :  
• Removed the statement that the ranges are design targets.  
• In Table 5 :  
• Modified IDD_LV to show specs depending on device model. Modified footnote.  
• Removed the “PMC only” row of the IDD_HV_PMC “internal core reg bypassed” spec.  
• Removed IDD_MAIN_CORE_AC.  
• Removed IDD_LKSTP_AC.  
• Changed IDDSTBY_ON value at 40 °C.  
• Changed IDDSTBY_REG parameter to "32 KB RAM Standby Regulator Current" (was  
"Standby Leakage Current"); changed condition to "VDDSTBY @1.2 V to 5.9 V, Tj =  
150C" (was "VDDSTBY @1.3 V...")  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
91  
Revision history  
Table 61. Revision history  
Revision  
Date  
Description of changes  
• Removed IDDOFF.  
• Added IDD_BD_STBY.  
• Added IVDDA.  
In section Input pad specifications :  
• In Table 7 :  
• Added footnote that supported input levels vary according to pad types.  
• Corrected VILTTL Min and Max values.  
• Corrected VIHAUTO, VILCMOS_H and VILCMOS Min value.  
• In Table 8 :  
• Modified |IWPU| Min values for condition Vin = VIH = 0.65 * VDD_HV_IO.  
• Modified |IWPD| Min values for condition Vin = VIL = 0.35 * VDD_HV_IO.  
• Removed the "Analog Input Leakeage and Pull-Up/Down DC electrical characteristics" table  
and the preceding introductory paragraph to be moved to the ADC input description section.  
In section Output pad specifications, Table 9, changed VOH and VOL specs to two separate specs  
for 3V pads and 5V pads respectively. Corrected VOH Min and VOL Max values.  
In section I/O pad current specifications :  
• Added I/O Current Consumption tables.  
• Modified NOTE on Excel file attached to the Reference Manual.  
Added section Reset pad (PORST, RESET) electrical characteristics.  
In section Oscillator and FMPLL :  
• In Table 13, removed PLL0_PHI0 single period jitter row.  
• In Table 15 :  
• Modified footnote for CS_EXTAL and CS_XTAL.  
• Modified gm (Oscillator Transconductance) spec.  
• Removed VHYS.  
In section ADC modules, revised the subsection structure and titles:  
• Added section ADC input description with content moved from the "Input pad specifications"  
section.  
• Section "Input impedance and ADC accuracy" renamed to Input equivalent circuit and ADC  
conversion characteristics with all content except Figure 11 and Table 19 removed.  
• Removed erroneous section "SAR ADC electrical specification".  
In section SAR ADC, Table 19 :  
• Added footnote ("SAR ADC performance is not guaranteed...") to fCK symbol.  
• Changed tsample specification min value to 250 ns (was 275).  
• Added footnote to OFS and GNE. Changed OFS and GNE min and max values.  
• Removed "Input (singe ADC channel)".  
• Removed injection row for "Input (double ADC channel)".  
• SNR, THD, SINAD, and ENOB specifications: changed frequency condition to 50 kHz (was  
125 kHz).  
• Changed SNR Min values.  
• Added footnote to ENOB.  
• Added IDD_VDDA, IDD_VDDR, and VBG_REF parameters.  
In section S/D ADC, Table 20 :  
• For VIN_PK2PK parameter second and third rows, changed VSS in Conditions to VDD  
• For fADCD_M specification, removed sampling frequency footnote from parameter.  
• Added footnote to RESOLUTION value.  
.
• For |δGAIN| specification added footnote to parameter and added new row with more detailed  
"After calibration" conditions.  
• Moved footnote "S/D ADC is functional in the range..." from the ZIN to the SNR parameters.  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
92  
NXP Semiconductors  
Revision history  
Table 61. Revision history  
Revision  
Date  
Description of changes  
• Changed all instances of “4.0 < VDD_HV_ADV_SD < 5.5” in the Conditions column to “4.5 <  
VDD_HV_ADV_SD < 5.5”. Modified voltage range in its footnote.  
• Changed SNRSE150, GAIN = 16 condition min value to 55 dB (was 60).  
• Changed SINADSE150, GAIN = 16 condition min value to 54 dB (was 59).  
• Unit for SINADDIFF150, SINADDIFF333 and SINADSE150 changed from dBFs to dB.  
• For ZIN specification, revised parameter footnote.  
• Added CMRR to symbol column for Common mode rejection ratio specification. Changed min  
value to 55 dB.  
• For δGROUP specification, revised maximum values for OSR = 24 to OSR = 256 conditions.  
• Revised entire row for tLATENCY, tSETTLING, and tODRECOVERY specifications. Footnote added to  
tLATENCY parameter.  
• Added IBIAS specification.  
• Changed IADV_D and ΣIADR_D values.  
In section Temperature sensor, Table 21 :  
• Changed TACC values.  
• Removed ITEMP_SENS spec item.  
In section LFAST interface timing diagrams, Figure 12, "|ΔVOD|" changed to "|VOD|".  
In section LFAST and MSC /DSPI LVDS interface electrical characteristics, Table 24, the max.  
value for Rise/ Fall time specs changed from 4.0 to 5.7 ns.  
In section LFAST PLL electrical characteristics, Table 25, ΔPEREYE specification, changed Nominal  
value to 550 (was blank) and Max value to blank (was 400).  
In section Recommended power transistors, Table 27, added the specification for VC.  
In section Power management integration :  
• In Figure 17 :  
• Changed "n x CLV" to "CLV".  
• Changed CHV_ADC_S to CHV_ADC_SAR  
• In Table 28 :  
.
• Changed the first footnote for CHV_PMC to have the same footnote number as the first  
footnote for CLV as they were identical.  
• Modified Minimum VDD_HV_ADV_SAR external capacitance and associated footnote.  
Added section Regulator example for the NJD2873 transistor.  
Added section Regulator example for the 2SCR574d transistor.  
In section Device voltage monitoring, Table 29 :  
• Updated following specs:  
• LVD_core_hot  
• LVD_core_cold  
• HVD_core  
• LVD_HV  
• HVD_HV  
• LVD_IO  
• LVD_SAR  
• Removed following specs:  
• LVD_FLASH  
• HVD_FLASH  
• LVD_MSC_3V3  
• LVD_MSC_5V0  
• LVD_FEC_5V0  
• LVD_JTAG  
• HVD_SAR  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
93  
Revision history  
Table 61. Revision history  
Revision  
Date  
Description of changes  
• LVD_SD  
• HVD_SD  
• Corrected Voltage detector threshold crossing assertion Unit.  
In section Flash memory program and erase specifications, Table 30 :  
• Removed parenthetical phrase from table title.  
• Made overall updates to spec values.  
• Removed footnote 7.  
In section Flash memory Array Integrity and Margin Read specifications, Table 31 :  
• Removed parenthetical phrase from table title.  
• Made overall updates to spec values.  
In section Flash memory module life specifications, Table 32, removed parenthetical phrase from  
table title.  
In section Flash memory AC timing specifications, Table 33, removed parenthetical phrase from  
table title.  
Added section Flash read wait state and address pipeline control settings.  
In section Power management integration, Table 28, changed the footnotes for tTCYC Min values to  
have the same footnote number as they were identical.  
In section DSPI timing with CMOS and LVDS, Table 39, LVDS (Master mode) specification:  
changed Max usuable frequency to 40 MHz (was 33 MHz).  
In section DSPI CMOS master mode – classic timing :  
• Added NOTE.  
• In Table 40, changed PCS strobe timing values.  
In section DSPI CMOS master mode – modified timing :  
• Added NOTE.  
• In Table 41, changed PCS strobe timing values.  
In section DSPI LVDS master mode – modified timing, Table 42, changed significant digits for some  
values.  
In section DSPI master mode – output only :  
• Modified format paragraphs leading the tables. Removed NOTE.  
• In Table 43, changed the tCSV strong drive value and tHO LVDS value.  
• In Table 44, changed significant digits for some values.  
In section FEC timing, corrected the title of MII-lite and RMII serial management channel timing  
subsections.  
In section MII-lite transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK), Table 47, modified  
footnote for output parameters.  
In section RMII serial management channel timing (MDIO and MDC), added Note on reference for  
timing specifications.  
In section RMII transmit signal timing (TXD[1:0], TX_EN), Table 52, modified R6 max value.  
In section UART timings, Table 53, removed 100 MHz specification.  
"Package drawings" section renamed to Obtaining package dimensions, with package drawing  
document numbers to search at the Freescale website. Drawings removed from this document.  
In section Thermal characteristics :  
• Added table for 144 LQFP.  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
94  
NXP Semiconductors  
Revision history  
Table 61. Revision history (continued)  
Revision  
Date  
Description of changes  
• Moved table for 176 LQFP before 252 MAPBGA and updated table.  
• Replaced table for 252 MAPBGA with two separate tables for package with full solder balls  
and package with 16 removed balls.  
In section Ordering information, replaced the table.  
3
09/2015 On the cover page:  
• Changed doctype from "Data Sheet: Product Preview" to "Data Sheet: Technical Data" at the  
upper left corner.  
• Changed statement on status of doc at the bottom of the page.  
Removed "Preliminary" and "Non-Disclosure Agreement required" from footers on each page.  
In section Electromagnetic Compatibility (EMC) removed content of entire section and replaced it  
with statement: "EMC measurements to IC-level IEC standards are available from Freescale on  
request."  
In section Operating conditions :  
• In Table 3  
• For VDD_HV_PMC, removed the two footnotes.  
• For VDDSTBY, added statement on ramp rate to footnote.  
• For VSTBY_BO, removed Min value and added Max value.  
In section DC electrical specifications :  
• In Table 5 :  
• IDD_LV spec:  
• MPC5746R/MPC5745R Max value changed to 700 mA.  
• MPC5743R/MPC5742R Max value changed to 610 mA.  
• IDDSTBY_ON TA=40°C and TA=85°C values updated.  
• IVDDA values updated.  
In section I/O pad specification, Table 6 Description for Input only pads, removed reference to  
"Automotive" input.  
In section Input pad specifications, Table 7 removed VIHAUTO, VILAUTO, VHYSAUTO, and  
VDRFTAUTO specs and references to "Automotive" input in footnotes.  
In section Output pad specifications :  
• In Table 9, removed footnote for tR_F spec Parameter about transition time maximum value  
approximation formula.  
In section Reset pad (PORST, RESET) electrical characteristics :  
• In Table 12 :  
• Changed specs for VIH, VIL, and VHYS to VIH Reset, VIL Reset, and VHYS Reset  
respectively.  
• Added specs for VIH PORST, VIL PORST, VHYS PORST.  
• Generally added Conditions and updated spec values. In the Conditions column,  
changed all instances of "3.0 V" to "3.5 V".  
In section Oscillator and FMPLL :  
• In Table 13, for ΔPLL0LTJ spec, modified long term jitter Min and Max values.  
• In Table 16, values updated.  
• In Table 17, added spec for dfTRIM (IRC software trimming step).  
In section ADC input description :  
• In Table 18 :  
• RPUPD 5KΩ spec Max value changed to 8.8KΩ.  
In section Input equivalent circuit and ADC conversion characteristics :  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
95  
Revision history  
Table 61. Revision history (continued)  
Revision  
Date  
Description of changes  
• In Table 19 :  
• In the SNR, THD, SINAD, and ENOB rows Conditions, changed "50 kHz" to "125 kHz".  
Modified footnote to ENOB  
• In IDD_VDDA and IDD_VDDR rows, modified values.  
• In VBG_REF row's Conditions, added "INPSAMP=0xFF"  
• Added NOTE "For spec complaint operation, do not expose clock sources, including crystal  
oscillator, IRC, PLL0, and PLL1 on the CLKOUT pads while the SAR ADC is converting."  
• Added NOTE: "The ADC performance specifications are not guaranteed if two or more ADCs  
simultaneously sample the same shared channel".  
In section S/D ADC :  
• In Table 20 :  
• For THDDIFF333 GAIN = 16, updated Min value.  
• For IADV_D, updated Max value.  
In section LFAST and MSC /DSPI LVDS interface electrical characteristics :  
• After table Table 24 added NOTE "For optimum LVDS performance, it is recommended to set  
the neighbouring GPIO pads to use Weak Drive".  
In section Device voltage monitoring :  
• In Table 29 :  
• For LVD_core_hot, LVD_HV, and LVD_IO specs, removed the untrimmed Rising  
voltage and Falling voltage rows.  
• For LVD_core_hot, changed Mask Opt. value to "No".  
In section Regulator example for the 2SCR574d transistor, figure "Regulator example", changed “5V  
or Vcollector” to “3.3V or Vcollector”.  
In section DSPI CMOS master mode – classic timing, Table 40 :  
• Changed tSDC spec's Condition SCK drive strength from "0 pF" to "0 to 50 pF".  
• In tSUI and tHI specs' footnote, removed reference to "Automotive" thresholds.  
In section DSPI CMOS master mode – modified timing, Table 41 :  
• Changed tSDC spec's Condition SCK drive strength from "0 pF" to "0 to 50 pF".  
• In tSUI and tHI specs' footnote, removed reference to "Automotive" thresholds.  
In section DSPI master mode – output only, Table 44, changed tSDC spec's Condition SCK drive  
strength from "0 pF" to "0 to 50 pF".  
Added section eMIOS timing.  
In section Ordering information, Table 60 :  
• Updated Part Numbers.  
• Updated Emulation device footnote.  
4
03/2016 In section Block diagram, Figure 2 :  
• "DECIM" changed to "DECFILTER".  
• "SIPI" changed to "Zipwire".  
• I/O lines added to Zipwire, SIUL2, REACM, eTPU, eMIOS, IGF, and XOSC.  
In section Absolute maximum ratings table "Absolute maximum ratings", removed IIOMAX spec and  
added IMAXSEG spec.  
In section Operating conditions table "Device operating conditions":  
• For the FEC I/O supply voltage, MSC I/O supply voltage, and JTAG I/O supply voltage specs,  
removed the LVD enabled/disabled distinction.  
• Added footnote to IMAXSEG  
.
In section I/O pad current specifications :  
Table continues on the next page...  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
96  
NXP Semiconductors  
Revision history  
Table 61. Revision history (continued)  
Revision  
Date  
Description of changes  
• Modified the descriptions in the two paragraphs after the tables.  
• Removed the third paragraph after the tables and the first Note.  
Added section DSPI CMOS slave mode.  
In section Ordering information table "Ordering Information", changed Part Numbers for the 176  
LQFP PD and the ED.  
5
10/2016 Editorial updates.  
In section Operating conditions table "Device operating conditions" added foootnote to  
VDD_HV_IO_JTAG  
In section Input pad specifications table "I/O input DC electrical characteristics" for ILKG added  
condition "VSS < VIN < VDD_HV_IO*  
.
"
In section ADC input description table "Analog Input Leakage and Pull-Up/Down DC electrical  
characteristics" for ILK_AD added conditions "VSS_HV_ADV_SAR < VIN < VDD_HV_ADV_SAR" and  
"VSS_HV_ADV_SD < VIN < VDD_HV_ADV_SD".  
In section Recommended power transistors table "Recommended operating characteristics" for  
ICMaxDC changed the parameter from "Minimum peak collector current" to "Maximum DC collector  
current".  
In section SAR ADC table "ADC conversion characteristics":  
• Removed the condition for tsample  
• Removed the Min and added the formula (6.02*ENOB) + 1.76 for SINAD.  
• Changed the Min value from 650 to 700 for tconv  
.
.
In section S/D ADC table "SDn ADC electrical specification":  
• Removed ZIN specification  
• Added ZDIFF, ZCM, and ΔVINTCM specifications  
• For RBIAS  
:
• Changed Parameter description from "Bias resistance" to "Bare bias resistance"  
• Changed Min from 100 kΩ to 110 kΩ  
• Changed Typ from 125 kΩ to 144 kΩ  
• Changed Max from 160 kΩ to 180 kΩ  
In section Flash memory AC timing specifications table "Flash memory AC timing specifications" for  
tpsus  
:
• Changed Typical from 7 μs plus four system clock periods to 9.4 μs plus four system clock  
periods  
• Changed Max from 9.1 μs plus four system clock periods to 11.5 μs plus four system clock  
periods  
6
05/2017 Changed Freescale to NXP throughout the datasheet.  
In Ordering information added rows for SPC5746RK1MLU3, SPC5745RK1MMT5 and  
SPC5743RK1MLU5.  
In Table 3 added footnote in VDD_HV_PMC  
In Table 28 for the rowset CHV_FLA changed the Minimum and Typical values.  
SPC5746R Microcontroller Data Sheet, Rev. 6, 06/2017  
NXP Semiconductors  
97  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2013–2017 NXP B.V.  
Document Number MPC5746R  
Revision 6, 06/2017  

相关型号:

935346773557

RISC Microcontroller
NXP

935346774528

RISC Microcontroller
NXP

935346774557

RISC Microcontroller
NXP

935347031518

RISC Microcontroller
NXP

935347031557

RISC Microcontroller
NXP

935347049557

RISC Microcontroller
NXP

935347051528

RISC Microcontroller
NXP

935347051557

RISC Microcontroller
NXP

935347053528

RISC Microcontroller
NXP

935347054528

RISC Microcontroller
NXP

935347054557

RISC Microcontroller
NXP

935347055528

RISC Microcontroller
NXP