935362769528 [NXP]

RISC Microcontroller;
935362769528
型号: 935362769528
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总97页 (文件大小:1118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
MKW36A512  
Data Sheet: Technical Data  
Rev. 7, 09/2019  
MKW36A/35A/34A Data Sheet  
MKW36A512VHT4  
An ultra low power, highly integrated Bluetooth® Low  
Energy 5.0 wireless microcontroller  
MKW36A512VFP4  
MKW36A512VFT4  
MKW35A512VFP4  
MKW35A512VFT4  
MKW34A512VFT4  
48 LQFN  
48 "Wettable" HVQFN  
7x7 mm Pitch 0.5 mm 7x7 mm Pitch 0.5 mm  
40 "Wettable" HVQFN  
6x6 mm Pitch 0.5 mm  
Multi-Standard Radio  
System peripherals  
• 2.4 GHz Bluetooth Low Energy (Bluetooth LE) version  
5.0 compliant supporting up to 8 simultaneous  
hardware connections  
• Nine MCU low-power modes to provide power  
optimization based on application requirements  
• DC-DC Converter supporting Buck and Bypass  
operating modes  
• Generic FSK modulation  
• Data Rate: 250, 500 and 1000 kbps  
• Modulations: GFSK BT = 0.3, 0.5, and 0.7;  
FSK/MSK  
• Direct memory access (DMA) Controller  
• Computer operating properly (COP) watchdog  
• Serial wire debug (SWD) Interface and Micro Trace  
buffer  
• Modulation Index: 0.32, 0.5, 0.7, and 1.0  
• Typical Receiver Sensitivity (Bluetooth LE 1 Mbps) =  
-95 dBm  
• Bit Manipulation Engine (BME)  
Analog Modules  
• Typical Receiver Sensitivity (250 kbps GFSK-BT=0.5,  
h=0.5) = -99 dBm  
• Programmable Transmitter Output Power: -30 dBm to  
+3.5 dBm  
• 16-bit Analog-to-Digital Converter (ADC)  
• 6-bit High Speed Analog Comparator (CMP)  
• 1.2 V voltage reference (VREF)  
• Low external component counts for low cost application  
• On-chip balun with single ended bidirectional RF port  
Timers  
• 16-bit low-power timer (LPTMR)  
• 3 Timer/PWM Modules(TPM): One 4 channel TPM  
and two 2 channel TPMs  
• Programmable Interrupt Timer (PIT)  
• Real-Time Clock (RTC)  
MCU and Memories  
• 256 KB program flash memory plus 256 KB FlexNVM  
on KW36A/34A  
• 8 KB FlexRAM supporting EEPROM emulation on  
KW36A/34A  
• 512 KB program flash memory on KW35A  
• Up to 48 MHz Arm® Cortex®-M0+ core  
• On-chip 64 KB SRAM  
Communication interfaces  
• 2 serial peripheral interface (SPI) modules  
• 2 inter-integrated circuit (I2C) modules  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Low Power Consumption  
• Low Power UART (LPUART) module with LIN  
support (2x LPUART on KW36A)  
• Carrier Modulator Timer (CMT)  
• Transceiver current (DC-DC buck mode, 3.6 V supply)  
• Typical Rx Current: 6.3 mA  
• Typical Tx current: 5.7 mA (0 dBm output)  
• Low Power Mode (VLLS0) Current: 258 nA  
• FlexCAN module (with CAN FD support up to 3.2  
Mbps baudrate) on KW36A  
Clocks  
Security  
• 26 and 32 MHz supported for Bluetooth LE and  
Generic FSK modes  
• 32.768 kHz Crystal Oscillator  
• AES-128 Hardware Accelerator (AESA)  
• True Random Number Generator (TRNG)  
• Advanced flash security on Program Flash  
• 80-bit unique identification number per chip  
• 40-bit unique media access control (MAC) sub-  
address  
Operating Characteristics  
• Voltage range: 1.71 V to 3.6 V  
• Ambient temperature range: –40 to 105 °C  
• AEC Q100 Grade 2 Automotive Qualification  
• LE Secure Connections  
Human-machine interface  
• General-purpose input/output  
Orderable parts details  
Top Line  
Marking  
CAN  
FD  
2nd UART with  
FlexRAM Package  
LIN  
Device  
Qualification  
MKW36A512VHT4 (F)M36A  
Auto  
Y
Y
Y
Y
Y
7X7 mm 48-pin LQFN  
MKW36A512VFT4 MW36A512V4 Auto  
MKW36A512VFP4 M36A9V4 Auto  
MKW35A512VFT4 MW35A512V4 Auto  
MKW35A512VFP4 M35A9V4 Auto  
Y
Y
N
N
N
7X7 mm 48-pin "Wettable"  
HVQFN  
Y
N
N
N
Y
N
N
Y
6X6 mm 40-pin "Wettable"  
HVQFN  
7X7 mm 48-pin "Wettable"  
HVQFN  
6X6 mm 40-pin "Wettable"  
HVQFN  
MKW34A512VFT4 MW34A512V4 Auto  
7X7 mm 48-pin "Wettable"  
HVQFN  
Related Resources  
Description  
Type  
Resource  
Product  
Selector  
The Product Selector lets you find the right Kinetis part for your design.  
W-Series Product Selector  
Fact Sheet  
The Fact Sheet gives overview of the product key features and its uses. KW36-35-34 Fact Sheet  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
MKW36A512RM1  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
This document.  
Chip Errata  
The chip mask set Errata provides additional or corrective information for KINETIS_W_1N41U1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
• 40-pin "Wettable" HVQFN  
(6x6): 98ASA01025D1  
2
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Related Resources  
Description  
Type  
Resource  
• 48-pin LQFN (7x7):  
98ASA00694D1  
• 48-pin "Wettable" HVQFN  
(7x7): 98ASA01307D1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
3
NXP Semiconductors  
Table of Contents  
1
2
Introduction........................................................................... 5  
6.5 Peripheral operating requirements and behaviors.........45  
6.5.1 Core modules.................................................... 45  
6.5.2 System modules................................................46  
6.5.3 Clock modules...................................................47  
6.5.4 Memories and memory interfaces..................... 50  
6.5.5 Security and integrity modules.......................... 53  
6.5.6 Analog............................................................... 53  
6.5.7 Timers................................................................61  
6.5.8 Communication interfaces................................. 61  
6.5.9 Human-machine interfaces (HMI)......................66  
6.6 DC-DC Converter Operating Requirements.................. 66  
6.7 Ratings...........................................................................68  
6.7.1 Thermal handling ratings...................................68  
6.7.2 Moisture handling ratings.................................. 69  
6.7.3 ESD handling ratings.........................................69  
6.7.4 Voltage and current operating ratings............... 69  
Pin Diagrams and Pin Assignments......................................70  
7.1 KW36A Signal Multiplexing and Pin Assignments.........70  
7.2 KW36A Pinouts..............................................................73  
7.3 KW35A Signal Multiplexing and Pin Assignments.........75  
7.4 KW35A Pinouts..............................................................78  
7.5 KW34A Signal Multiplexing and Pin Assignments.........80  
7.6 KW34A Pinouts..............................................................83  
7.7 Module Signal Description Tables................................. 84  
7.7.1 Core Modules.................................................... 84  
7.7.2 Radio Modules...................................................85  
7.7.3 System Modules................................................86  
7.7.4 Clock Modules...................................................87  
7.7.5 Analog Modules.................................................87  
7.7.6 Timer Modules...................................................88  
7.7.7 Communication Interfaces.................................89  
7.7.8 Human-Machine Interfaces(HMI)...................... 90  
Package Information............................................................. 91  
8.1 Obtaining package dimensions......................................91  
Part identification...................................................................91  
9.1 Description.....................................................................91  
9.2 Format........................................................................... 92  
9.3 Fields............................................................................. 92  
9.4 Example.........................................................................92  
Feature Descriptions.............................................................6  
2.1 Block Diagram............................................................... 6  
2.2 Radio features............................................................... 7  
2.3 Microcontroller features................................................. 8  
2.4 System features.............................................................10  
2.5 Peripheral features........................................................ 12  
2.6 Security Features...........................................................16  
Transceiver Description........................................................ 17  
3.1 Key Specifications......................................................... 18  
3.2 Channel Map Frequency Plans .................................... 18  
3.2.1 Channel Plan for Bluetooth Low Energy............18  
3.2.2 Other Channel Plans ........................................ 20  
3.3 Transceiver Functions................................................... 20  
Transceiver Electrical Characteristics...................................20  
4.1 Radio operating conditions............................................ 21  
4.2 Receiver Feature Summary...........................................21  
4.3 Transmit and PLL Feature Summary.............................23  
System and Power Management..........................................26  
5.1 Power Management.......................................................26  
5.1.1 DC-DC Converter.............................................. 27  
5.2 Modes of Operation....................................................... 27  
5.2.1 Power modes.....................................................27  
KW36A/35A/34A Electrical Characteristics...........................29  
6.1 AC electrical characteristics...........................................29  
6.2 Nonswitching electrical specifications............................30  
6.2.1 Voltage and current operating requirements..... 30  
6.2.2 LVD and POR operating requirements..............31  
6.2.3 Voltage and current operating behaviors...........32  
6.2.4 Power mode transition operating behaviors...... 33  
6.2.5 Power consumption operating behaviors.......... 34  
6.2.6 Diagram: Typical IDD_RUN operating behavior39  
6.2.7 SoC Power Consumption.................................. 41  
6.2.8 Designing with radiated emissions in mind........42  
6.2.9 Capacitance attributes.......................................42  
6.3 Switching electrical specifications..................................42  
6.3.1 Device clock specifications................................42  
6.3.2 General switching specifications....................... 43  
6.4 Thermal specifications...................................................44  
6.4.1 Thermal operating requirements....................... 44  
6.4.2 Thermal attributes..............................................44  
3
4
5
7
6
8
9
10 Revision History.................................................................... 93  
4
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Introduction  
1 Introduction  
The KW36A/35A/34A wireless microcontrollers (MCU), which includes the KW36A,  
KW35A, and KW34A families of devices, are highly integrated single-chip devices  
that enable Bluetooth Low Energy (Bluetooth LE) and Generic FSK connectivity for  
automotive embedded systems. To meet the stringent requirements of automotive  
applications, the KW36A/35A/34A is fully AEC Q100 Grade 2 Automotive  
Qualified. The target applications center on wirelessly bridging the embedded world  
with mobile devices to enhance the human interface experience, share embedded data  
between devices and the cloud and enable wireless firmware updates. Leading the  
automotive applications is the Digital Key, where a smartphone can be used by the  
owner as an alternative to the key FOB for unlocking and personalizing the driving  
experience. For a car sharing experience, the owner can provide selective, temporary  
authorization for access to the car allowing the authorized person to unlock, start and  
operate the car using their mobile device using Bluetooth LE.  
The KW36A/35A/34A Wireless MCU integrates an Arm® Cortex®-M0+ CPU with  
up to 512 KB flash and 64 KB SRAM and a 2.4 GHz radio that supports Bluetooth LE  
5.0 and Generic FSK modulations. The Bluetooth LE radio supports up to 8  
simultaneous connections in any master/slave combination. The Medical Body Area  
Network (MBAN) frequencies from 2.36 to 2.4 GHz are also supported enabling  
wearable or implantable wireless medical devices.  
The KW36A includes an integrated FlexCAN module enabling seamless integration  
into a cars in-vehicle CAN communication network. The FlexCAN module can  
support CAN’s flexible data-rate (CAN FD) protocol for increased bandwidth and  
lower latency required by many automotive applications.  
The KW36A/35A/34A devices can be used as a "BlackBox" modem in order to add  
Bluetooth LE or Generic FSK connectivity to an existing host MCU or MPU  
(microprocessor), or may be used as a standalone smart wireless sensor with  
embedded application where no host controller is required.  
The RF circuit of the KW36A/35A/34A is optimized to require very few external  
components, achieving the smallest RF footprint possible on a printed circuit board.  
Extremely long battery life is achieved through the efficiency of code execution in the  
Cortex-M0+ CPU core and the multiple low power operating modes of the  
KW36A/35A/34A. For power critical applications, an integrated DC-DC converter  
enables operation from a single coin cell or Li-ion battery with a significant reduction  
of peak receive and transmit current consumption.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
5
NXP Semiconductors  
Feature Descriptions  
2 Feature Descriptions  
This section provides a simplified block diagram and highlights the KW36A/35A/34A  
features.  
2.1 Block Diagram  
Arm Cortex M0+ Core  
32K Osc  
32M Osc  
IRC  
MCG  
DMA MUX  
4ch DMA  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
4 MHz  
DWT  
MTB  
IRC  
32 kHz  
FLL  
IOPORT  
Unified Bus  
AHBLite  
AHBLite  
M2A  
M0  
Crossbar-Lite Switch (AXBS)  
S2  
S0  
S1  
SIM  
ADC  
BME  
PIT  
I2C x2  
GPIO  
Flash  
Controller  
64 KByte  
SRAM  
LTC(AESA)  
TRNG  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART x2  
SPI x2  
Flash  
AIPS-Lite  
256 KB  
FlexNVM  
256 KB  
FlexRAM  
8 KB  
Radio  
IPS  
APB  
VREF  
VDCDC_IN  
IPS  
DCDC  
CMT  
FlexCAN  
Figure 1. KW36 Detailed Block Diagram  
6
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Feature Descriptions  
Arm Cortex M0+ Core  
32K Osc  
32M Osc  
IRC  
MCG  
DMA MUX  
4ch DMA  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
4 MHz  
DWT  
MTB  
IRC  
32 kHz  
FLL  
IOPORT  
Unified Bus  
AHBLite  
AHBLite  
M2A  
M0  
Crossbar-Lite Switch (AXBS)  
S2  
S0  
S1  
SIM  
ADC  
BME  
PIT  
I2C x2  
GPIO  
Flash  
Controller  
64 KByte  
SRAM  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART  
SPI x2  
LTC(AESA)  
TRNG  
Flash  
AIPS-Lite  
512 KB  
Prg Acc RAM  
8 KB  
Radio  
IPS  
VREF  
APB  
VDCDC_IN  
DCDC  
CMT  
IPS  
Figure 2. KW35 Detailed Block Diagram  
Arm Cortex M0+ Core  
32K Osc  
32M Osc  
IRC  
MCG  
DMA MUX  
4ch DMA  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
4 MHz  
DWT  
MTB  
IRC  
32 kHz  
FLL  
IOPORT  
Unified Bus  
AHBLite  
AHBLite  
M2A  
M0  
Crossbar-Lite Switch (AXBS)  
S2  
S0  
S1  
SIM  
ADC  
BME  
PIT  
I2C x2  
GPIO  
Flash  
Controller  
64 KByte  
SRAM  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART  
SPI x2  
LTC(AESA)  
TRNG  
Flash  
AIPS-Lite  
256 KB  
FlexNVM  
256 KB  
Radio  
FlexRAM  
8 KB  
IPS  
VREF  
APB  
VDCDC_IN  
DCDC  
CMT  
IPS  
Figure 3. KW34 Detailed Block Diagram  
2.2 Radio features  
Operating frequencies:  
• 2.4 GHz ISM band (2400-2483.5 MHz)  
• Medical Body Area Network (MBAN) 2360-2400 MHz  
Supported standards:  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
7
NXP Semiconductors  
Feature Descriptions  
• Bluetooth Low Energy Version 5.0 compliant radio  
• Generic FSK modulation supporting data rates up to 1 Mbps  
• Support for up to 8 simultaneous Bluetooth LE hardware connections in any  
master, slave combination  
• Bluetooth LE Application Profiles  
Receiver performance:  
• Receive sensitivity of up to -95 dBm for Bluetooth LE  
• Receive sensitivity of up to -99 dBm for a 250 kbps GFSK mode with a modulation  
index of 0.5. Receive sensitivity in Generic FSK modes depends on mode selection  
and data rate.  
Other features:  
• Programmable transmit output power from -30 dBm to +3.5 dBm  
• 26 MHz and 32 MHz crystals supported for Bluetooth LE and Generic FSK modes  
• Bluetooth Low Energy version 5.0 Link Layer hardware with 1 Mbps PHY support  
• Hardware acceleration for Generic FSK packet processing  
• Generic FSK modulation at 250, 500 and 1000 kbps  
• Supports 8 simultaneous Bluetooth LE connections in any master/slave  
combination  
• Enhanced Bluetooth LE automatic deep sleep modes (DSM) supporting Slave  
Latency  
• Up to 26 devices supported by whitelist in hardware  
• Up to 8 private resolvable addresses supported in hardware  
• Supports DMA capture of IQ data with sampling rate of up to 2 MHz, when using a  
32 MHz crystal  
• Integrated on-chip balun  
• Single ended bidirectional RF port shared by transmit and receive  
• Low external component count  
• Supports transceiver range extension using external PA and/or LNA  
2.3 Microcontroller features  
Arm Cortex-M0+ CPU  
• Up to 48 MHz CPU  
• As compared to Cortex-M0, the Cortex-M0+ uses an optimized 2-stage pipeline  
microarchitecture for reduced power consumption and improved architectural  
performance (cycles per instruction)  
8
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Feature Descriptions  
• Supports up to 32 interrupt request sources  
• Binary compatible instruction set architecture with the Cortex-M0 core  
• Thumb instruction set combines high code density with 32-bit performance  
• Serial Wire Debug (SWD) reduces the number of pins required for debugging  
• Micro Trace Buffer (MTB) provides lightweight program trace capabilities using  
system RAM as the destination memory  
Nested Vectored Interrupt Controller (NVIC)  
• 32 vectored interrupts, 4 programmable priority levels  
• Includes a single non-maskable interrupt  
Wake-up Interrupt Controller (WIC)  
• Supports interrupt handling when system clocking is disabled in low power  
modes  
• Takes over and emulates the NVIC behavior when correctly primed by the NVIC  
on entry to very-deep-sleep  
• A rudimentary interrupt masking system with no prioritization logic signals for  
wake-up as soon as a non-masked interrupt is detected  
Debug Controller  
• Two-wire Serial Wire Debug (SWD) interface  
• Hardware breakpoint unit for 2 code addresses  
• Hardware watchpoint unit for 2 data items  
• Micro Trace Buffer for program tracing  
On-Chip Memory  
• Up to 512 KB Flash  
• KW36A/34A contains 256 KB program flash with ECC and 256 KB  
FlexNVM.  
• KW35A contains 512 KB program flash with ECC.  
• Flash implemented as two equal blocks each of 256 KB block. Code can  
execute or read from one block while the other block is being erased or  
programmed on KW35A only.  
• Firmware distribution protection. Program flash can be marked execute-only  
on a per-sector (8 KB) basis to prevent firmware contents from being read by  
third parties.  
• 64 KB SRAM  
• KW36A/34A contains 8 KB FlexRAM.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
9
NXP Semiconductors  
Feature Descriptions  
• KW35A contains 8 KB program acceleration RAM.  
• Security circuitry to prevent unauthorized access to RAM and flash contents  
through the debugger  
2.4 System features  
Power Management Control Unit (PMC)  
• Programmable power saving modes  
• Available wake-up from power saving modes via internal and external sources  
• Integrated Power-on Reset (POR)  
• Integrated Low Voltage Detect (LVD) with reset (brownout) capability  
• Selectable LVD trip points  
• Programmable Low Voltage Warning (LVW) interrupt capability  
• Individual peripheral clocks can be gated off to reduce current consumption  
• Internal Buffered bandgap reference voltage  
• Factory programmed trim for bandgap and LVD  
• 1 kHz Low Power Oscillator (LPO)  
DC-DC Converters  
• Internal switched mode power supply supporting Buck and Bypass operating  
modes  
• Buck operation supports external voltage sources of 2.1 V to 3.6 V  
• When DC-DC is not used, the device supports an external voltage range of 1.5 V to  
3.6 V (1.5 - 3.6 V on VDD_RF1, VDD_RF2, VDD_XTAL and  
VDD_1P5OUT_PMCIN pins. 1.71 - 3.6 V on VDD_0, VDD_1 and VDDA pins)  
• An external inductor is required to support the Buck mode  
Direct Memory Access (DMA) Controller  
• All data movement via dual-address transfers: read from source, write to  
destination  
• Programmable source and destination addresses and transfer size  
• Support for enhanced addressing modes  
• 4-channel implementation that performs complex data transfers with minimal  
intervention from a host processor  
• Internal data buffer, used as temporary storage to support 16- and 32-byte transfers  
• Connections to the crossbar switch for bus mastering the data movement  
• Transfer control descriptor (TCD) organized to support two-deep, nested transfer  
operations  
10  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Feature Descriptions  
• 32-byte TCD stored in local memory for each channel  
• An inner data transfer loop defined by a minor byte transfer count  
• An outer data transfer loop defined by a major iteration count  
• Channel activation via one of three methods:  
• Explicit software initiation  
• Initiation via a channel-to-channel linking mechanism for continuous  
transfers  
• Peripheral-paced hardware requests, one per channel  
• Fixed-priority and round-robin channel arbitration  
• Channel completion reported via optional interrupt requests  
• One interrupt per channel, optionally asserted at completion of major iteration  
count  
• Optional error terminations per channel and logically summed together to form  
one error interrupt to the interrupt controller  
• Optional support for scatter/gather DMA processing  
• Support for complex data structures  
DMA Channel Multiplexer (DMA MUX)  
• 4 independently selectable DMA channel routers  
• 2 periodic trigger sources available  
• Each channel router can be assigned to 1 of the peripheral DMA sources  
COP Watchdog Module  
• Independent clock source input (independent from CPU/bus clock)  
• Choice between two clock sources  
• LPO oscillator  
• Bus clock  
System Clocks  
• Both 26 MHz and 32 MHz crystal reference oscillator supported for Bluetooth LE  
and Generic FSK modes  
• MCU can derive its clock either from the crystal reference oscillator or the  
frequency locked loop (FLL)1  
• 32.768 kHz crystal reference oscillator used to maintain precise Bluetooth Low  
Energy timing in low power modes  
• Multipurpose Clock Generator (MCG)  
• Internal reference clocks — Can be used as a clock source for other on-chip  
peripherals  
1. Clock options can have restrictions based on the chosen SoC configuration.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
11  
NXP Semiconductors  
Feature Descriptions  
• On-chip RC oscillator range of 31.25 kHz to 39.0625 kHz with 2% accuracy  
across full temperature range  
• On-chip 4 MHz oscillator with 5% accuracy across full temperature range  
• Frequency-locked loop (FLL) controlled by internal or external reference  
• 20 MHz to 48 MHz FLL output  
Unique Identifiers  
• 80-bit Unique ID represents a unique identifier for each chip  
• 40-bit unique Media Access Control (MAC) address, which can be used to build a  
unique 48-bit Bluetooth Low Energy MAC address  
2.5 Peripheral features  
16-bit Analog-to-Digital Converter (ADC)  
• Linear successive approximation algorithm with 16-bit resolution  
• Output formatted in differential-ended 16-, 13-, 11-, and 9-bit mode  
• Output formatted in single-ended 16-, 12-, 10-, and 8-bit mode  
• Single or continuous conversion  
• Configurable sample time and conversion speed / power  
• Conversion rates in 16-bit mode with no averaging up to ~500Ksamples/sec  
• Input clock selection  
• Operation in low power modes for lower noise operation  
• Asynchronous clock source for lower noise operation  
• Selectable asynchronous hardware conversion trigger  
• Automatic compare with interrupt for less-than, or greater than, or equal to  
programmable value  
• Temperature sensor  
• Battery voltage measurement  
• Hardware average function  
• Selectable voltage reverence  
• Self-calibration mode  
High-Speed Analog Comparator (CMP)  
• 6-bit DAC programmable reference generator output  
• Up to eight selectable comparator inputs; each input can be compared with any  
input by any polarity sequence  
• Selectable interrupt on rising edge, falling edge, or either rising or falling edges of  
comparator output  
• Two performance modes:  
12  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Feature Descriptions  
• Shorter propagation delay at the expense of higher power  
• Low power, with longer propagation delay  
• Operational in all MCU power modes except VLLS0 mode  
Voltage Reference(VREF1)  
• Programmable trim register with 0.5 mV steps, automatically loaded with factory  
trimmed value upon reset  
• Programmable buffer mode selection:  
• Off  
• Bandgap enabled/standby (output buffer disabled)  
• High power buffer mode (output buffer enabled)  
• 1.2 V output at room temperature  
• VREF_OUT output signal  
Low Power Timer (LPTMR)  
• One channel  
• Operation as timer or pulse counter  
• Selectable clock for prescaler/glitch filter  
• 1 kHz internal LPO  
• External low power crystal oscillator  
• Internal reference clock  
• Configurable glitch filter or prescaler  
• Interrupt generated on timer compare  
• Hardware trigger generated on timer compare  
• Functional in all power modes  
Timer/PWM (TPM)  
• TPM0: 4 channels, TPM1 and TPM2: 2 channels each  
• Selectable source clock  
• Programmable prescaler  
• 16-bit counter supporting free-running or initial/final value, and counting is up or  
up-down  
• Input capture, output compare, and edge-aligned and center-aligned PWM modes  
• Input capture and output compare modes  
• Generation of hardware triggers  
• TPM1 and TPM2: Quadrature decoder with input filters  
• Global time base mode shares single time base across multiple TPM instances  
Programmable Interrupt Timer (PIT)  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
13  
NXP Semiconductors  
Feature Descriptions  
• Up to 2 interrupt timers for triggering ADC conversions  
• 32-bit counter resolution  
• Clocked by bus clock frequency  
Real-Time Clock (RTC)  
• 32-bit seconds counter with 32-bit alarm  
• Can be invalidated on detection of tamper detect  
• 16-bit prescaler with compensation  
• Register write protection  
• Hard Lock requires MCU POR to enable write access  
• Soft lock requires POR or software reset to enable write/read access  
• Capable of waking up the system from low power modes  
Inter-Integrated Circuit (I2C)  
• Two channels  
• Compatible with I2C bus standard and SMBus Specification Version 2 features  
• Up to 400 kHz operation  
• Multi-master operation  
• Software programmable for one of 64 different serial clock frequencies  
• Programmable slave address and glitch input filter  
• Interrupt driven byte-by-byte data transfer  
• Arbitration lost interrupt with automatic mode switching from master to slave  
• Calling address identification interrupt  
• Bus busy detection broadcast and 10-bit address extension  
• Address matching causes wake-up when processor is in low power mode  
LPUART  
• One channel (2 channels on KW36A)  
• Full-duplex operation  
• Standard mark/space non-return-to-zero (NRZ) format  
• 13-bit baud rate selection with fractional divide of 32  
• Programmable 8-bit or 9-bit data format  
• Programmable 1 or 2 stop bits  
• Separately enabled transmitter and receiver  
• Programmable transmitter output polarity  
• Programmable receive input polarity  
• 13-bit break character option  
• 11-bit break character detection option  
• Two receiver wakeup methods:  
14  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Feature Descriptions  
• Idle line wakeup  
• Address mark wakeup  
• Address match feature in receiver to reduce address mark wakeup ISR overhead  
• Interrupt or DMA driven operation  
• Receiver framing error detection  
• Hardware parity generation and checking  
• Configurable oversampling ratio to support from 1/4 to 1/32 bit-time noise  
detection  
• Operation in low power modes  
• Hardware Flow Control RTS\CTS  
• Functional in Stop/VLPS modes  
• Break detect supporting LIN  
Serial Peripheral Interface (SPI)  
• Two independent SPI channels  
• Master and slave mode  
• Full-duplex, three-wire synchronous transfers  
• Programmable transmit bit rate  
• Double-buffered transmit and receive data registers  
• Serial clock phase and polarity options  
• Slave select output  
• Control of SPI operation during wait mode  
• Selectable MSB-first or LSB-first shifting  
• Support for both transmit and receive by DMA  
Carrier Modulator Timer (CMT)  
• Four modes of operation  
• Time; with independent control of high and low times  
• Baseband  
• Frequency shift key (FSK)  
• Direct software control of CMT_IRO signal  
• Extended space operation in time, baseband, and FSK modes  
• Selectable input clock divider  
• Interrupt on end of cycle  
• Ability to disable CMT_IRO signal and use as timer interrupt  
General Purpose Input/Output (GPIO)  
• Hysteresis and configurable pull up device on all input pins  
• Independent pin value register to read logic level on digital pin  
• All GPIO pins can generate IRQ and wakeup events  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
15  
NXP Semiconductors  
Feature Descriptions  
• Configurable drive strength on some output pins  
• GPIO can be configured to function as a interrupt driven keyboard scanning matrix  
• In the 48-pin package there are a total of 25 digital pins  
• In the 40-pin package there are a total of 18 digital pins  
FlexCAN (for KW36A only)  
• Full implementation of the CAN with Flexible Data Rate (CAN FD) protocol  
specification and CAN protocol specification, Version 2.0 B  
• Flexible Message Buffers (MBs); there are total 32 MBs of 8 bytes data length  
each, configurable as Rx or Tx, all supporting standard and extended messages  
• Programmable clock source to the CAN Protocol Interface, either peripheral clock  
or oscillator clock  
• Capability to select priority between mailboxes and Rx FIFO during matching  
process  
• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either  
128 extended, 256 standard, or 512 partial (8 bit) IDs, with up to 32 individual  
masking capability  
2.6 Security Features  
Advanced Encryption Standard Accelerator(AES-128 Accelerator)  
The advanced encryption standard accelerator (AESA) module is a standalone hardware  
coprocessor capable of accelerating the 128-bit advanced encryption standard (AES)  
cryptographic algorithms.  
The AESA engine supports the following cryptographic features.  
LTC includes the following features:  
• Cryptographic authentication  
• Message authentication codes (MAC)  
• Cipher-based MAC (AES-CMAC)  
• Extended cipher block chaining message authentication code (AES-  
XCBC-MAC)  
• Auto padding  
• Integrity Check Value(ICV) checking  
• Authenticated encryption algorithms  
• Counter with CBC-MAC (AES-CCM)  
• Symmetric key block ciphers  
16  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Transceiver Description  
• AES (128-bit keys)  
• Cipher modes:  
• AES-128 modes  
• Electronic codebook (ECB)  
• Cipher block chaining (CBC)  
• Counter (CTR)  
• Secure scan  
True Random Number Generator (TRNG)  
True Random Number Generator (TRNG) is a hardware accelerator module that  
constitutes a high-quality entropy source.  
• TRNG generates a 512-bit (4x 128-bit) entropy as needed by an entropy-  
consuming module, such as a deterministic random number generator.  
• TRNG output can be read and used by a deterministic pseudo-random number  
generator (PRNG) implemented in software.  
• TRNG-PRNG combination achieves NIST compliant true randomness and  
cryptographic-strength random numbers using the TRNG output as the entropy  
source.  
• A fully FIPS 180 compliant solution can be realized using the TRNG together  
with a FIPS compliant deterministic random number generator and the SoC-level  
security.  
Flash Memory Protection  
The on-chip flash memory controller enables the following useful features:  
• Program flash protection scheme prevents accidental program or erase of stored  
data.  
• Automated, built-in, program and erase algorithms with verify.  
• Read access to one program flash block is possible while programming or erasing  
data in the other program flash block.  
3 Transceiver Description  
• Direct Conversion Receiver (Zero IF)  
• Constant Envelope Transmitter  
• 2.36 GHz to 2.483 GHz PLL Range  
• Low Transmit and Receive Current Consumption  
• Low BOM  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
17  
NXP Semiconductors  
Transceiver Description  
3.1 Key Specifications  
KW36A/35A/34A meets or exceeds all Bluetooth Low Energy version 5.0 performance  
specifications. The key specification for the KW36A/35A/34A are:  
Frequency Band:  
• ISM Band: 2400 to 2483.5 MHz  
• MBAN Band: 2360 to 2400 MHz  
Bluetooth Low Energy version 5.0 modulation scheme:  
• Symbol rate: 1000 kbps  
• Modulation: GFSK  
• Receiver sensitivity: -95 dBm, typical  
• Programmable transmitter output power: -30 dBm to +3.5 dBm  
Generic FSK modulation scheme:  
• Symbol rate: 250, 500 and 1000 kbps  
• Modulation(s): GFSK (modulation index = 0.32, 0.5, 0.7 and 1.0, BT =0.3, 0.5, and  
0.7), FSK and MSK  
• Receiver Sensitivity: Mode and data rate dependent. -99 dBm typical for GFSK  
(r=250 kbps, BT = 0.5, h = 0.5)  
3.2 Channel Map Frequency Plans  
3.2.1 Channel Plan for Bluetooth Low Energy  
This section describes the frequency plan / channels associated with 2.4GHz ISM and  
MBAN bands for Bluetooth Low Energy.  
2.4 GHz ISM Channel numbering:  
• Fc=2402 + k * 2 MHz, k=0,.........,39.  
MBAN Channel numbering:  
• Fc=2360 + k in MHz, for k=0,.....,39  
18  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Transceiver Description  
where k is the channel number.  
Table 1. 2.4 GHz ISM and MBAN frequency plan and channel designations  
2.4 GHz ISM1  
MBAN2  
2.4GHz ISM + MBAN  
Channel  
Channel  
Freq (MHz)  
2402  
2404  
2406  
2408  
2410  
2412  
2414  
2416  
2418  
2420  
2422  
2424  
2426  
2428  
2430  
2432  
2434  
2436  
2438  
2440  
2442  
2444  
2446  
2448  
2450  
2452  
2454  
2456  
2458  
2460  
2462  
2464  
2466  
2468  
2470  
Channel  
0
Freq (MHz)  
2360  
2361  
2362  
2363  
2364  
2365  
2366  
2367  
2368  
2369  
2370  
2371  
2372  
2373  
2374  
2375  
2376  
2377  
2378  
2379  
2380  
2381  
2382  
2383  
2384  
2385  
2386  
2387  
2388  
2389  
2390  
2391  
2392  
2393  
2394  
Freq (MHz)  
2390  
2391  
2392  
2393  
2394  
2395  
2396  
2397  
2398  
2402  
2404  
2406  
2408  
2410  
2412  
2414  
2416  
2418  
2420  
2422  
2424  
2426  
2428  
2430  
2432  
2434  
2436  
2438  
2440  
2442  
2444  
2446  
2448  
2450  
2452  
0
28  
29  
30  
31  
32  
33  
34  
35  
36  
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
19  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 1. 2.4 GHz ISM and MBAN frequency plan and channel designations (continued)  
2.4 GHz ISM1  
MBAN2  
2.4GHz ISM + MBAN  
Channel  
Freq (MHz)  
2472  
Channel  
Freq (MHz)  
2395  
Channel  
Freq (MHz)  
2454  
35  
36  
37  
38  
39  
35  
36  
37  
38  
39  
26  
27  
37  
38  
39  
2474  
2396  
2456  
2476  
2397  
2476  
2478  
2398  
2478  
2480  
2399  
2480  
1. ISM frequency of operation spans from 2400.0 MHz to 2483.5 MHz  
2. Per FCC guideline rules, Bluetooth Low Energy single mode operation is allowed in these channels.  
3.2.2 Other Channel Plans  
The RF synthesizer can be configured to use any channel frequency between 2.36 and  
2.487 GHz.  
3.3 Transceiver Functions  
Receive  
The receiver architecture is Zero IF (ZIF) where the received signal after passing  
through RF front end is down-converted to a baseband signal. The signal is filtered and  
amplified before it is fed to analog-to-digital converter. The digital signal is then  
decimated to a baseband clock frequency before it is digitally processed, demodulated  
and passed on to packet processing/link-layer processing.  
Transmit  
The transmitter transmits GFSK/FSK modulation having power and channel selection  
adjustment per user application. After the channel of operation is determined, coarse  
and fine tuning is executed within the Frac-N PLL to engage signal lock. After signal  
lock is established, the modulated buffered signal is then routed to a multi-stage  
amplifier for transmission.  
4 Transceiver Electrical Characteristics  
20  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Transceiver Electrical Characteristics  
4.1 Radio operating conditions  
Table 2. Radio operating conditions  
Characteristic  
Symbol  
fin  
Min  
2.360  
-40  
Typ  
Max  
2.480  
105  
Unit  
GHz  
°C  
Input Frequency  
Ambient Temperature Range  
Maximum RF Input Power  
TA  
25  
Pmax  
fref  
10  
dBm  
Crystal Reference Oscillator Frequency  
26 MHz or 32 MHz  
1
1. The recommended crystal accuracy is 40 ppm including initial accuracy, mechanical, temperature and aging factors.  
4.2 Receiver Feature Summary  
Table 3. Top Level Receiver Specifications (TA=25°C, nominal process unless otherwise  
noted)  
Characteristic1  
Symbol  
Ipdn  
Min.  
Typ.  
200  
6.3  
Max.  
1000  
Unit  
nA  
Supply current power down on VDD_RFx supplies  
Supply current Rx On with DC-DC converter enable  
(Buck; VDCDC_IN = 3.6 V) , 2  
IRxon  
mA  
Supply current Rx On with DC-DC converter disabled  
(Bypass) 2  
IRxon  
17.2  
mA  
Input RF Frequency  
fin  
2.360  
2.4835  
GHz  
dBm  
dBm  
dB  
GFSK Rx Sensitivity(250 kbps GFSK-BT=0.5, h=0.5)  
Bluetooth LE Rx Sensitivity 3  
SENSGFSK  
SENSBLE  
NFHG  
-99  
-95  
7.5  
Noise Figure for maximum gain mode @ typical  
sensitivity  
Receiver Signal Strength Indicator Range4  
Receiver Signal Strength Indicator Resolution  
Typical RSSI variation over frequency  
Typical RSSI variation over temperature  
Narrowband RSSI accuracy6  
RSSIRange  
RSSIRes  
-100  
1
55  
2
dBm  
dB  
-2  
-7  
dB  
-2  
2
dB  
RSSIAcc  
-3  
3
dB  
Bluetooth LE Co-channel Interference (Wanted signal at  
-67 dBm , BER <0.1%. Measurement resolution 1  
MHz).  
dB  
Adjacent/Alternate Channel Performance7  
Bluetooth LE Adjacent +/- 1 MHz Interference offset  
(Wanted signal at -67 dBm , BER <0.1%. Measurement  
resolution 1 MHz.)  
SELBLE, 1 MHz  
2
dB  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
21  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 3. Top Level Receiver Specifications (TA=25°C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Bluetooth LE Adjacent +/- 2 MHz Interference offset  
(Wanted signal at -67 dBm , BER <0.1%. Measurement  
resolution 1 MHz.)  
SELBLE, 2 MHz  
43  
dB  
Bluetooth LE Alternate +/-3 MHz Interference offset  
(Wanted signal at -67 dBm, BER <0.1%. Measurement  
resolution 1 MHz.)  
SELBLE, 3 MHz  
50  
50  
dB  
dB  
Bluetooth LE Alternate ≥ +/-4 MHz Interference offset  
(Wanted signal at -67 dBm, BER <0.1%. Measurement  
resolution 1 MHz.)  
SELBLE, 4+ MHz  
Intermodulation Performance  
Bluetooth LE Intermodulation with continuous wave  
interferer at 3 MHz and modulated interferer is at  
MHz (Wanted signal at -67 dBm , BER<0.1%.)  
-23  
-24  
dBm  
dBm  
6
Bluetooth LE Intermodulation with continuous wave  
interferer at 5 MHz and modulated interferer is at 10  
MHz (Wanted signal at -67 dBm , BER<0.1%.)  
Blocking Performance  
Bluetooth LE Out of band blocking from 30 MHz to 1000  
MHz and 4000 MHz to 5000 MHz (Wanted signal at -67  
dBm , BER<0.1%. Interferer continuous wave signal.)8  
-2  
dBm  
dBm  
Bluetooth LE Out of band blocking from 1000 MHz to  
2000 MHz and 3000 MHz to 4000 MHz (Wanted signal  
at -67 dBm , BER<0.1%. Interferer continuous wave  
signal.)  
-8.4  
Bluetooth LE Out of band blocking from 2001 MHz to  
2339 MHz and 2484 MHz to 2999 MHz (Wanted signal  
at -67 dBm , BER<0.1%. Interferer continuous wave  
signal.)9  
-17  
dBm  
Bluetooth LE Out of band blocking from 5000 MHz to  
12750 MHz (Wanted signal at -67 dBm , BER<0.1%.  
Interferer continuous wave signal.)9  
10  
dBm  
dBc  
Spurious Emission < 1.6 MHz offset (Measured with  
100 kHz resolution and average detector. Device  
transmit on RF channel with center frequency fc and  
spurious power measured in 1 MHz at RF frequency f),  
where |f-fc|< 1.6 MHz  
-54  
Spurious Emission > 2.5 MHz offset (Measured with  
100 kHz resolution and average detector. Device  
transmit on RF channel with center frequency fc and  
spurious power measured in 1 MHz at RF frequency f),  
where |f-fc|> 2.5 MHz10  
-70  
dBc  
1. All the RX parameters are measured at the KW36A/35A/34A RF pins.  
2. Transceiver power consumption.  
3. Measured at 0.1% BER using 37 byte long packets in maximum gain mode and nominal conditions.  
4. Narrow-band RSSI mode.  
5. With RSSI_CTRL_0.RSSI_ADJ field calibrated to account for antenna to RF input losses.  
6. With one point calibration over frequency and temperature.  
22  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Transceiver Electrical Characteristics  
7. Bluetooth LE adjacent and alternate selectivity performance is measured with modulated interference signals.  
8. Exceptions allowed for carrier frequency sub harmonics.  
9. Exceptions allowed for carrier frequency harmonics.  
10. Exceptions allowed for twice the reference clock frequency(fref) multiples.  
Table 4. Receiver Specifications with Generic FSK Modulations  
Adjacent/Alternate Channel Selectivity (dB)1  
Modulation  
Type  
Data  
Rate  
(kbps)  
Channel  
BW (kHz) Sensitivity signal  
Typical  
Desired Interferer Interferer Interferer Interferer  
Co-  
channel  
at -/+1*  
channel  
BW  
at -/+ 2*  
channel  
BW  
at -/+ 3*  
channel  
BW  
at -/+ 4*  
channel  
BW  
(dBm)  
level  
(dBm)  
offset  
offset  
offset  
offset  
GFSK BT =  
0.5, h=0.5  
1000  
500  
2000  
1000  
500  
-95  
-97  
-99  
-89  
-92  
-93  
-97  
-98  
-99  
-91  
-93  
-95  
-96  
-97  
-99  
-96  
-97  
-99  
-96  
-97  
-98  
-67  
-85  
-85  
-67  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
43  
40  
30  
10  
22  
20  
45  
40  
30  
40  
35  
30  
44  
40  
30  
43  
43  
35  
45  
40  
35  
50  
50  
40  
38  
31  
25  
50  
50  
40  
46  
46  
40  
53  
50  
40  
53  
50  
45  
55  
45  
45  
55  
55  
50  
42  
37  
30  
57  
55  
50  
53  
50  
40  
57  
55  
50  
60  
60  
55  
55  
50  
45  
50  
55  
50  
47  
42  
34  
60  
55  
50  
55  
53  
50  
60  
55  
50  
63  
60  
55  
59  
50  
50  
-7  
-7  
250  
-7  
GFSK, BT =  
0.5, h=0.3  
1000  
500  
1000  
800  
-10  
-10  
-13  
-7  
250  
500  
GFSK, BT =  
0.5, h=0.7  
1000  
500  
2000  
1000  
600  
-7  
250  
-7  
GMSK  
BT=0.3  
1000  
500  
1600  
800  
-8  
-7  
250  
500  
-7  
GMSK, BT = 1000  
2000  
1000  
600  
-7  
0.7  
500  
-7  
250  
-7  
Generic  
MSK  
1000  
500  
3000  
1600  
800  
-7  
-8  
250  
-7  
GFSK  
BT=0.5, h=1  
1000  
500  
3000  
1400  
800  
-8  
-8  
250  
-8  
1. Selectivity measured with an unmodulated blocker except for GFSK BT=0.5, h=0.5 1mbps and GFSK BT=0.5, h=0.32  
1mbps. The desired signal is set at -85 dBm.  
4.3 Transmit and PLL Feature Summary  
• Supports constant envelope modulation of 2.4 GHz ISM and 2.36 GHz MBAN  
frequency bands  
• Fast PLL Lock time: < 25 µs  
• Reference Frequency:  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
23  
NXP Semiconductors  
Transceiver Electrical Characteristics  
• 26 MHz and 32 MHz crystals supported for Bluetooth LE and Generic FSK  
modes  
Table 5. Top level Transmitter Specifications (TA=25°C, nominal process unless otherwise  
noted)  
Characteristic1  
Symbol  
Ipdn  
Min.  
Typ.  
200  
5.7  
Max.  
Unit  
nA  
Supply current power down on VDD_RFx supplies  
Supply current Tx On with PRF = 0dBm and DC-DC  
converter enabled (Buck; VDDDCDC_in = 3.6 V) , 2  
ITxone  
mA  
Supply current Tx On with PRF = 0 dBm and DC-DC  
converter disabled (Bypass) 2  
ITxond  
16  
mA  
Output Frequency  
fin  
2.360  
+3.5  
-30  
34  
2.4835  
GHz  
dBm  
dBm  
dB  
Maximum RF Output power 3  
Minimum RF Output power 3  
RF Output power control range  
Bluetooth LE TX Output Spectrum 20dB BW  
PRF,max  
PRF,min  
PRFCR  
TXBWBLE  
Δf1avg,BLE  
1.0  
MHz  
kHz  
Bluetooth LE average frequency deviation using a  
00001111 modulation sequence  
250  
220  
Bluetooth LE average frequency deviation using a  
01010101 modulation sequence  
Δf2avg,BLE  
kHz  
Bluetooth LE RMS FSK Error  
FSKerr BLE  
,
3%  
3
Bluetooth LE Maximum Deviation of the Center  
Frequency4  
Fcdev,BLE  
kHz  
dBm  
dBm  
Bluetooth LE Adjacent Channel Transmit Power at 2  
MHz offset5  
PRF2MHz,BLE  
PRF3MHz,BLE  
-55  
-59  
Bluetooth LE Adjacent Channel Transmit Power at >= 3  
MHz offset5  
Bluetooth LE Frequency Hopping Support  
YES  
-46  
2nd Harmonic of Transmit Carrier Frequency (Pout  
=
TXH2  
TXH3  
dBm/MHz  
dBm/MHz  
, 6  
PRF,max  
)
3rd Harmonic of Transmit Carrier Frequency (Pout  
=
-58  
6
PRF,max  
)
1. All the TX parameters are measured at test hardware SMA connector.  
2. Transceiver power consumption.  
3. Measured at the KW36A/35A/34A RF pins.  
4. Maximum drift of carrier frequency of the PLL during a Bluetooth LE packet with a nominal 32 MHz reference crystal.  
5. Measured at Pout = 5dBm and recommended TX match.  
6. Harmonic levels based on recommended 2 component match. Transmit harmonic levels depend on the quality of  
matching components. Additional harmonic margin using a 3rd matching component (1x shunt capacitor) is possible.  
Transmit PA driver output as a function of the PA_POWER[5:0] field when measured  
at the IC pins is as follows:  
24  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Figure 4. TX Pout (dBm) as function TX-PA Power Code at RF pins  
Table 6. Transmit Output Power as a function of PA_POWER[5:0]  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = -40 °C  
-30.1  
-24.0  
-17.9  
-14.5  
-12.0  
-10.1  
-8.5  
T = 25 °C  
-31.1  
-25.0  
-19.0  
-15.6  
-13.1  
-11.2  
-9.6  
T = 105 °C  
-32.6  
-26.4  
-20.4  
-17.0  
-14.5  
-12.6  
-11.0  
-9.7  
1
2
4
6
8
10  
12  
14  
-7.2  
-8.3  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
25  
NXP Semiconductors  
System and Power Management  
Table 6. Transmit Output Power as a function of PA_POWER[5:0] (continued)  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = -40 °C  
-6.1  
-5.1  
-4.2  
-3.4  
-2.7  
-2.0  
-1.4  
-0.8  
-0.3  
0.2  
T = 25 °C  
-7.2  
-6.2  
-5.3  
-4.5  
-3.8  
-3.1  
-2.5  
-1.9  
-1.4  
-1.0  
-0.5  
-0.1  
0.3  
T = 105 °C  
-8.6  
-7.6  
-6.7  
-5.9  
-5.2  
-4.5  
-3.9  
-3.3  
-2.8  
-2.4  
-1.9  
-1.5  
-1.1  
-0.7  
-0.3  
0.0  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
0.6  
1.1  
1.5  
1.9  
0.7  
2.2  
1.1  
2.6  
1.4  
2.9  
1.8  
0.3  
3.2  
2.1  
0.6  
3.5  
2.4  
0.9  
3.7  
2.6  
1.2  
3.9  
2.9  
1.5  
4.2  
3.1  
1.7  
4.4  
3.3  
1.9  
4.5  
3.5  
2.1  
1. TX continuous wave power output at the RF pins with the recommended matching components mounted on PCB.  
5 System and Power Management  
5.1 Power Management  
The KW36A/35A/34A includes internal power management features that can be used to  
control the power usage. The power management of the KW36A/35A/34A includes  
power management controller (PMC) and a DC-DC converter which can operate in a  
buck or bypass configuration. The PMC is designed such that the RF radio will remain  
26  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
System and Power Management  
in state-retention while the core is in various stop modes. It can make sure the device  
can stay in low current consumption mode while the RF radio can wakeup quick  
enough for communication.  
5.1.1 DC-DC Converter  
The features of the DC-DC converter include the following:  
• Single inductor, multiple outputs.  
• Buck mode (pin selectable; CFG=VDCDC_IN).  
• Continuous or pulsed operation (hardware/software configurable).  
• Power switch input to allow external control of power up, and to select DCDC  
bypass mode in which all the SoC power supplies (see Table 3) are externally  
provided.  
• Output signal to indicate power stable. Purpose is for the rest of the chip to be  
used as a POR.  
• Scaled battery output voltage suitable for SAR ADC utilization.  
• Internal oscillator for support when the reference oscillator is not present.  
5.2 Modes of Operation  
The Arm Cortex-M0+ core in the KW36A/35A/34A has three primary modes of  
operation: Run, Wait, and Stop modes. For each run mode, there is a corresponding  
wait and stop mode. Wait modes are similar to Arm sleep modes. Stop modes are  
similar to Arm deep sleep modes. The very low power run (VLPR) operation mode  
can drastically reduce runtime power when the maximum bus frequency is not  
required to handle the application needs.  
The WFI instruction invokes both wait and stop modes. The primary modes are  
augmented in a number of ways to provide lower power based on application needs.  
5.2.1 Power modes  
The power management controller (PMC) provides multiple power options to allow  
the user to optimize power consumption for the level of functionality needed.  
Depending on the stop requirements of the user application, a variety of stop modes  
are available that provide state retention, partial power down or full power down of  
certain logic and/or memory. I/O states are held in all modes of operation. The  
following table compares the various power modes available.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
27  
NXP Semiconductors  
System and Power Management  
For each run mode there is a corresponding wait and stop mode. Wait modes are similar  
to Arm sleep modes. Stop modes (VLPS, STOP) are similar to Arm sleep deep mode.  
The very low power run (VLPR) operating mode can drastically reduce runtime power  
when the maximum bus frequency is not required to handle the application needs.  
The three primary modes of operation are run, wait and stop. The WFI instruction  
invokes either wait or stop depending on the SLEEPDEEP bit in Cortex-M0+ System  
Control Register. The primary modes are augmented in a number of ways to provide  
lower power based on application needs.  
Table 7. Power modes (At 25 deg C)  
Power mode  
Description  
CPU  
Radio  
recovery  
method  
Normal Run (all  
Allows maximum performance of chip.  
Radio can be active  
peripherals clock off)  
Normal Wait - via WFI Allows peripherals to function, while allowing CPU to  
go to sleep reducing power.  
Interrupt  
Interrupt  
Interrupt  
Normal Stop - via  
WFI  
Places chip in static state. Lowest power mode that  
retains all registers while maintaining LVD protection.  
PStop2 (Partial Stop Core and system clocks are gated. Bus clock  
2)  
remains active. Masters and slaves clocked by bus  
clock remain in Run or VLPRun mode. The clock  
generators in MCG and the on-chip regulator in the  
PMC also remain in Run or VLPRun mode.  
PStop1 (Partial Stop Core, system clocks and bus clock are gated. All bus  
Interrupt  
1)  
masters and slaves enter Stop mode. The clock  
generators in MCG and the on-chip regulator in the  
PMC also remain in Run or VLPRun mode.  
VLPR (Very Low  
Power Run) (all  
peripherals off)  
Reduced frequency (1 MHz) Flash access mode,  
regulator in low power mode, LVD off. Internal  
oscillator can provide low power 4 MHz source for  
core. (Values @2 MHz core/ 1 MHz bus and flash,  
module off, execution from flash).  
Radio operation is possible  
only when DC-DC is  
configured for continuous  
mode.1 However, there may  
be insufficient MIPS with a 4  
MHz MCU to support much in  
the way of radio operation.  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPR/W  
VLPW (Very Low  
Similar to VLPR, with CPU in sleep to further reduce  
Interrupt  
Interrupt  
Power Wait) - via WFI power. (Values @4 MHz core/ 1 MHz bus, module  
(all peripherals off)  
off)  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPR/W  
VLPS (Very Low  
Places MCU in static state with LVD operation off.  
Power Stop) via WFI Lowest power mode with ADC and all pin interrupts  
functional. LPTMR, RTC, CMP can be operational.  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPS.  
Table continues on the next page...  
28  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 7. Power modes (At 25 deg C) (continued)  
Power mode  
Description  
CPU  
Radio  
recovery  
method  
LLS3 (Low Leakage State retention power mode. LLWU, LPTMR, RTC,  
Wakeup  
Interrupt  
Radio SOG is in state  
retention in LLSx. The  
Bluetooth LE/Generic FSK  
DSM2 logic can be active  
using the 32 kHz clock  
Stop)  
CMP can be operational. All of the radio Sea of  
Gates(SOG) logic is in state retention.  
LLS2 (Low Leakage State retention power mode. LLWU, LPTMR, RTC,  
Wakeup  
Interrupt  
Stop)  
CMP can be operational. 16 KB or 32 KB of  
programmable RAM can be powered on. All of the  
radio SOG logic is in state retention.  
VLLS3 (Very Low  
Leakage Stop3)  
Full SRAM retention. LLWU, LPTMR, RTC, CMP can  
be operational. All of the radio SOG logic is in state  
retention.  
Wakeup  
Reset  
Radio SOG is in state  
retention in VLLS3/2. The  
Bluetooth LE/Generic FSK  
DSM logic can be active  
using the 32 kHz clock.  
VLLS2 (Very Low  
Leakage Stop2)  
Partial SRAM retention. 16 KB or 32 KB of  
programmable RAM can be powered on. LLWU,  
LPTMR, RTC, CMP can be operational. All of the  
radio SOG logic is in state retention.  
Wakeup  
Reset  
VLLS1 (Very Low  
Leakage Stop1) with file remains powered for customer-critical data.  
RTC + 32 kHz OSC  
All SRAM powered off. The 32-byte system register  
Wakeup  
Reset  
Radio operation not  
supported. The Radio SOG is  
power-gated in VLLS1. Radio  
state is lost at VLLS1 and  
lower power states.  
LLWU, LPTMR, RTC, CMP can be operational.  
Radio logic is power gated.  
VLLS1 (Very Low  
Leakage Stop1) with file remains powered for customer-critical data.  
All SRAM powered off. The 32-byte system register  
Wakeup  
Reset  
LPTMR + LPO  
LLWU, LPTMR, RTC, CMP can be operational.  
VLLS0 (Very Low  
Leakage Stop0) with  
Brown-out Detection  
VLLS0 is not supported with DC-DC  
Wakeup  
Reset  
Radio operation not  
supported. The Radio digital  
is power-gated in VLLS0.  
The 32-byte system register file remains powered for  
customer-critical data. Disable all analog modules in  
PMC and retains I/O state and DGO state. LPO  
disabled, POR brown-out detection enabled, Pin  
interrupt only. Radio logic is power gated.  
VLLS0 (Very Low  
Leakage Stop0)  
without Brown-out  
Detection  
VLLS0 is not supported with DC-DC buck  
configuration but is supported with bypass  
configuration  
Wakeup  
Reset  
The 32-byte system register file remains powered for  
customer-critical data. Disable all analog modules in  
PMC and retains I/O state and DGO state. LPO  
disabled, POR brown-out detection disabled, Pin  
interrupt only. Radio logic is power gated.  
1. Biasing is disabled, but the Flash is in a low power mode for VLPx, so this configuration can realize some power  
savings over use of Run/Wait/Stop.  
2. DSM refers to Radio's deep sleep mode. DSM does not refer to the Arm sleep deep mode.  
6 KW36A/35A/34A Electrical Characteristics  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
29  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
6.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 5. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
6.2 Nonswitching electrical specifications  
6.2.1 Voltage and current operating requirements  
Table 8. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
0.35 × VDD  
V
Table continues on the next page...  
30  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
KW36A/35A/34A Electrical Characteristics  
Table 8. Voltage and current operating requirements (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V  
Min.  
Max.  
Unit  
Notes  
0.3 × VDD  
V
• 1.7 V ≤ VDD ≤ 2.7 V  
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
6.2.2 LVD and POR operating requirements  
Table 9. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
60  
2.78  
2.88  
2.98  
3.08  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
mV  
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
V
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
1.74  
1.84  
1.94  
1.80  
1.90  
2.00  
1.86  
1.96  
2.06  
V
V
V
• Level 2 falling (LVWV = 01)  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
31  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 9. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
VLVW4L • Level 3 falling (LVWV = 10)  
Min.  
Typ.  
Max.  
Unit  
Notes  
2.04  
2.10  
2.16  
V
• Level 4 falling (LVWV = 11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
40  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
6.2.3 Voltage and current operating behaviors  
Table 10. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA  
VOH  
Output high voltage — High drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
500  
mA  
nA  
Input leakage current (per pin) for full temperature  
range  
3
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
5
μA  
μA  
3
3
Input leakage current (total all pins) for full  
temperature range  
RPU  
Internal pullup resistors  
20  
50  
kΩ  
4
32  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
KW36A/35A/34A Electrical Characteristics  
1. PTB0-1 and PTC0-3, PTC6, PTC7, PTC17, PTC18 I/O have both high drive and normal drive capability selected by  
the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. The reset pin only contains an active pull-up device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
3. Measured at VDD = 3.6 V.  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
.
6.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• FEI clock mode  
POR and VLLSxRUN recovery use FEI clock mode at the default CPU and system  
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.  
Table 11. Power mode transition operating behaviors  
Symbol  
Description  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.8 V to execution of the first instruction across the  
operating temperature range of the chip.  
300  
μs  
1
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
169.0  
168.9  
97.3  
97.3  
6.3  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
• VLPS RUN  
• STOP RUN  
6.2  
6.2  
1. Normal boot (FTFA_FOPT[LPBOOT]=11). When the DC-DC converter is in bypass mode, TPOR will not meet the  
300µs spec when 1) VDD_1P5 < 1.6V at 25°C and 125°C. 2) 1.5V ≤ VDD_1P5 ≤ 1.8V. For the bypass mode special  
case where VDD_1P5 = VDD_1P8, TPOR did not meet the 300µs maximum spec when the supply slew rate  
<=100V/s.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
33  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
6.2.5 Power consumption operating behaviors  
Table 12. Power consumption operating behaviors - Bypass Mode  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
1
IDDA  
Analog supply current  
See note  
mA  
IDD_RUNCO_C Run mode current in compute operation - 48 MHz  
2, 3  
core / 24 MHz flash / bus disabled, LPTMR running  
M
using LPO clock at 1kHz, CoreMark benchmark code  
executing from flash at 3.0 V  
6.80  
4.05  
8.41  
4.98  
mA  
mA  
IDD_RUNCO Run mode current in compute operation - 48 MHz  
core / 24 MHz flash / bus clock disabled, code of  
while(1) loop executing from flash at 3.0 V  
3, 4  
3, 4  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks disabled, code of while(1)  
loop executing from flash at 3.0 V  
5.00  
6.01  
mA  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks enabled, code of while(1)  
loop executing from flash at 3.0 V  
3, 4, 5  
6.48  
6.77  
7.13  
6.70  
6.96  
7.90  
mA  
mA  
mA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_WAIT Wait mode current - core disabled / 48 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
4
4
3.07  
2.29  
4.31  
3.15  
mA  
mA  
IDD_WAIT Wait mode current - core disabled / 24 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking option  
- core and system disabled / 10.5 MHz bus at 3.0 V  
4
6
2.32  
3.11  
mA  
μA  
IDD_VLPRCO_ Very-low-power run mode current in compute  
766.9  
1538  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
CM  
disabled, LPTMR running using LPO clock at 1 kHz  
reference clock, CoreMark benchmark code  
executing from flash at 3.0 V  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
disabled, code of while(1) loop executing from flash  
at 3.0 V  
7
158.45  
377  
410  
μA  
μA  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks disabled,  
7
5, 7  
7
185.26  
240.96  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks enabled,  
805.3  
552.8  
μA  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPW Very-low-power wait mode current - core disabled / 4 133.95  
MHz system / 0.8 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at 3.0 V  
Table continues on the next page...  
34  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 12. Power consumption operating behaviors - Bypass Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_STOP Stop mode current at 3.0 V  
at 25 °C  
at 70 °C  
at 105 °C  
204.98  
291.89  
599.46  
308.3  
872.5  
1662  
μA  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at Bypass  
mode(3.0 V),  
6.4  
30.64  
157  
18  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
76.6  
328  
IDD_LLS3  
Low-leakage stop mode 3 current at Bypass  
mode(3.0 V),  
2.57  
11.76  
50.92  
4.31  
26.07  
105.4  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_LLS2  
Low-leakage stop mode 2 current at Bypass  
mode(3.0 V),  
2.35  
9.74  
3.30  
21.40  
80.23  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
42.34  
IDD_VLLS3 Very-low-leakage stop mode 3 current at Bypass  
mode(3.0 V),  
2.13  
10.78  
46.70  
3.3  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
22.97  
83.54  
IDD_VLLS2 Very-low-leakage stop mode 2 current at Bypass  
mode(3.0 V),  
1.84  
7.88  
2.40  
15.19  
57.85  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
34.76  
IDD_VLLS1 Very-low-leakage stop mode 1 current at Bypass  
mode(3.0 V),  
851.45  
3.57  
1027.8  
6.28  
nA  
μA  
μA  
at 25°C  
at 70°C  
at 105°C  
17.62  
23.06  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
433.00  
3.15  
720.3  
6.14  
23.2  
nA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
17.2  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
35  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 12. Power consumption operating behaviors - Bypass Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V  
8
258.12  
2.97  
516.43  
5.81  
nA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
16.9  
22.4  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG configured for FEI mode. CoreMark benchmark compiled using IAR 7.70 with optimization level high, optimized for  
balanced.  
3. Radio is off.  
4. MCG configured for FEI mode.  
5. Incremental current consumption from peripheral activity is not included.  
6. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 7.70 with optimization level high, optimized  
for balanced.  
7. MCG configured for BLPI mode.  
8. No brownout.  
Table 13. Power consumption operating behaviors - Buck Mode1  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
2
IDDA  
Analog supply current  
See note  
mA  
IDD_RUNCO Run mode current in compute operation - 48 MHz  
core / 24 MHz flash / bus clock disabled, code of  
while(1) loop executing from flash at 3.0 V  
3, 4  
3.51  
4.00  
mA  
mA  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks disabled, code of while(1)  
loop executing from flash at 3.0 V  
3, 4  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks enabled, code of while(1)  
loop executing from flash at 3.0 V  
3, 4, 5  
5.81  
5.92  
6.36  
mA  
mA  
mA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_WAIT Wait mode current - core disabled / 48 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
3
3
2.97  
2.51  
mA  
mA  
IDD_WAIT Wait mode current - core disabled / 24 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking option  
- core and system disabled / 10.5 MHz bus at 3.0 V  
3
6
2.33  
mA  
μA  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
disabled, code of while(1) loop executing from flash  
at 3.0 V  
101.75  
Table continues on the next page...  
36  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 13. Power consumption operating behaviors - Buck Mode1 (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks disabled,  
6
132.17  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks enabled,  
5, 6  
6
167.65  
μA  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPW Very-low-power wait mode current - core disabled / 4 105.72  
MHz system / 0.8 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
at 25 °C  
at 70 °C  
at 105 °C  
1.43  
1.56  
1.99  
2.32  
4.35  
4.68  
mA  
mA  
mA  
IDD_VLPS Very-low-power stop mode current at Buck mode(3.0  
V),  
7
7
7
7
7
7
4.18  
44.30  
218.64  
14.98  
110  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
446  
IDD_LLS3  
Low-leakage stop mode 3 current at Buck mode(3.0  
V),  
2.64  
15.27  
81.93  
4.89  
25.51  
104.35  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_LLS2  
Low-leakage stop mode 2 current at Buck mode(3.0  
V),  
2.46  
10.14  
63.49  
3.80  
21.14  
80.21  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_VLLS3 Very-low-leakage stop mode 3 current at Buck  
mode(3.0 V),  
2.03  
12.44  
62.23  
3.28  
23.8  
83.9  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_VLLS2 Very-low-leakage stop mode 2 current at Buck  
mode(3.0 V),  
1.79  
8.87  
2.43  
16.7  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
49.39  
62.94  
IDD_VLLS1 Very-low-leakage stop mode 1 current at Buck  
mode(3.0 V),  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
37  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 13. Power consumption operating behaviors - Buck Mode1  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
at 25 °C  
0.830  
1.07  
μA  
at 70 °C  
4.95  
10.67  
36.14  
μA  
μA  
at 105 °C  
27.51  
1. The device was configured in buck mode auto-start to perform the measurements. The DCDC_IN was powered with 3.0  
V. VDD_1P8OUT was configured to output 1.8 V and VDD_1P5OUT_PMCIN was configured to output 1.5 V.  
2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
3. MCG configured for FEI mode.  
4. Radio is off.  
5. Incremental current consumption from peripheral activity is not included.  
6. MCG configured for BLPI mode.  
7. DCDC configured in pulsed mode.  
Table 14. Low power mode peripheral adders — typical value (Bypass Mode)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 4 MHz IRC enabled.  
46  
46  
47  
47  
47  
µA  
IIREFSTEN32KHz  
32 kHz internal reference clock (IRC)  
adder. Measured by entering STOP mode  
with the 32 kHz IRC enabled.  
88  
91  
90  
89  
88  
µA  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of the RTC bits. Measured by  
entering all modes with the crystal  
enabled.  
1.4  
1.6  
2.7  
1.8  
2.6  
22  
1.3  
1.5  
1.9  
1.4  
1.7  
19  
1.6  
1.9  
2.9  
1.7  
2.8  
20  
2.4  
4.2  
7.7  
4.1  
7.6  
21  
4.1  
7.7  
15  
VLLS1  
VLLS2  
VLLS3  
LLS2  
μA  
8
15.2  
21  
LLS3  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare. Includes  
6-bit DAC power consumption.  
µA  
µA  
IRTC  
RTC peripheral adder measured by placing  
the device in VLLS1 mode with external 32  
kHz crystal enabled by means of the  
1.4  
1.3  
1.6  
2.4  
4.3  
RTC_CR[OSCE] bit and the RTC ALARM  
set for 1 minute. Includes ERCLK32K (32  
kHz external crystal) power consumption.  
ILPUART  
LPUART peripheral adder measured by  
placing the device in STOP or VLPS mode  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
38  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 14. Low power mode peripheral adders — typical value (Bypass Mode) (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
with selected clock source waiting for RX  
data at 115200 baud rate. Includes  
selected clock source power consumption.  
53  
54  
54  
54  
54  
µA  
MCGIRCLK (4 MHz internal reference  
clock)  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
30  
30  
30  
85  
100  
nA  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS mode  
with selected clock source configured for  
output compare generating 100 Hz clock  
signal. No load is placed on the I/O  
generating the clock signal. Includes  
selected clock source and I/O switching  
currents.  
58  
76  
59  
82  
59  
85  
59  
87  
59  
87  
µA  
µA  
µA  
MCGIRCLK (4 MHz internal reference  
clock)  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, LLS, or VLLSx  
mode.  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS mode.  
ADC is configured for low-power mode  
using the internal clock and continuous  
conversions.  
331  
327  
327  
327  
328  
6.2.6 Diagram: Typical IDD_RUN operating behavior  
The following data was measured from previous devices with same MCU core (Arm®  
Cortex-M0+) under these conditions:  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
39  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
NOTE  
The results in the following graphs are obtained using the  
device in Bypass mode.  
Figure 6. Run mode supply current vs. core frequency  
40  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
KW36A/35A/34A Electrical Characteristics  
Figure 7. VLPR mode current vs. core frequency  
6.2.7 SoC Power Consumption  
Full KW36A/35A/34A system-on-chip (SoC) power consumption is a function of the  
many configurations possible for the MCU platform and its peripherals including the  
2.4 GHz radio and the DC-DC converter. A few measured SoC configurations are as  
follows:  
Table 15. SoC Power Consumption  
MCU State  
Flash State  
Radio State  
DCDC State  
Typical  
Average IC  
current  
Unit  
STOP  
STOP  
STOP  
Doze  
Doze  
Doze  
Rx  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
8.5  
7.8  
9.2  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
41  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 15. SoC Power Consumption (continued)  
MCU State  
Flash State  
Radio State  
DCDC State  
Typical  
Average IC  
current  
Unit  
RUN  
RUN  
RUN  
Enabled  
Enabled  
Enabled  
Rx  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
10.4  
9.9  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
11.7  
STOP  
STOP  
STOP  
Doze  
Doze  
Doze  
Rx  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
17.3  
15.9  
18.3  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
RUN  
RUN  
RUN  
Enabled  
Enabled  
Enabled  
Rx  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
21.5  
19.9  
22.4  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
6.2.8 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com  
2. Perform a keyword search for “EMC design.”  
6.2.9 Capacitance attributes  
Table 16. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
6.3 Switching electrical specifications  
42  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
6.3.1 Device clock specifications  
Table 17. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
LPTMR clock2  
1
24  
16  
16  
8
External reference clock  
fLPTMR_ERCLK LPTMR external reference clock  
fTPM  
TPM asynchronous clock  
fLPUART0  
LPUART0 asynchronous clock  
12  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
6.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO,  
LPUART, CAN (for KW36A only), CMT and I2C signals.  
Table 18. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock cycles  
1, 2  
NMI_b pin interrupt pulse width (analog filter enabled) —  
Asynchronous path  
200  
20  
ns  
ns  
ns  
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External RESET_b input pulse width (digital glitch filter  
disabled)  
100  
Port rise and fall time(high drive strength)  
• Slew enabled  
4, 5  
25  
16  
ns  
ns  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
43  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 18. General switching specifications (continued)  
Description  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew disabled  
Min.  
Max.  
Unit  
Notes  
8
ns  
6
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
Port rise and fall time(low drive strength)  
6, 7  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew disabled  
24  
16  
10  
6
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
ns  
ns  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry in run modes.  
2. The greater of synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized.  
4. PTB0, PTB1, PTC0, PTC1, PTC2, PTC3, PTC6, PTC7, PTC17, PTC18.  
5. 75 pF load.  
6. Ports A, B, and C.  
7. 25 pF load.  
6.4 Thermal specifications  
6.4.1 Thermal operating requirements  
Table 19. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
44  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
6.4.2 Thermal attributes  
Table 20. Thermal attributes  
Board type  
Four-layer (2s2p)  
Symbol  
Description  
48-pin  
LQFN  
40-pin  
"Wettable"  
HVQFN  
48-pin  
"Wettable"  
HVQFN  
Unit  
°C/W  
°C/W  
Notes  
1, 2  
RθJA  
Thermal resistance, junction  
to ambient (natural  
convection)  
48.3  
0.5  
19.2  
21.6  
ΨJT  
Thermal characterization  
parameter, junction to  
package top (natural  
convection)  
0.1  
0.2  
1, 3  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
construction.  
2. Determined according to JEDEC Standard JESD51-2A.  
3. Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2A.  
The thermal characterization parameter (ΨJT) can be used to determine the junction  
temperature with a measurement of the temperature at the top of the package case  
using the following equation:  
TJ = TT + ΨJT x chip power dissipation  
where TT is the thermocouple temperature at the top of the package.  
6.5 Peripheral operating requirements and behaviors  
6.5.1 Core modules  
6.5.1.1 SWD electricals  
Table 21. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
45  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 21. SWD full voltage range electricals (continued)  
Symbol  
J4  
Description  
Min.  
10  
0
Max.  
3
Unit  
ns  
SWD_CLK rise and fall times  
J9  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
ns  
J10  
J11  
J12  
ns  
5
32  
ns  
ns  
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 8. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 9. Serial wire data timing  
6.5.2 System modules  
There are no specifications necessary for the device's system modules.  
46  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
6.5.3 Clock modules  
6.5.3.1 MCG specifications  
Table 22. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using C3[SCTRIM] and C4[SCFTRIM]  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.4  
3
%fdco  
%fdco  
1, 2  
1, 2  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70 °C  
1.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
3
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage —  
factory trimmed at nominal VDD and 25 °C  
+1/-2  
%fintf_ft  
2
fintf_t  
Internal reference frequency (fast clock) —  
user trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
ffll_ref  
fdco  
DCO output  
Low range (DRS = 00)  
20.97  
MHz  
3, 4  
5, 6  
frequency range  
640 × ffll_ref  
Mid range (DRS = 01)  
1280 × ffll_ref  
40  
41.94  
23.99  
47.97  
180  
48  
1
MHz  
MHz  
MHz  
ps  
fdco_t_DMX3 DCO output  
Low range (DRS = 00)  
732 × ffll_ref  
frequency  
2
Mid range (DRS = 01)  
1464 × ffll_ref  
Jcyc_fll  
FLL period jitter  
• fVCO = 48 MHz  
7
8
tfll_acquire FLL target frequency acquisition time  
ms  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
47  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft  
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.  
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature must be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
6.5.3.2 Reference Oscillator Specification  
The KW36A/35A/34A has been designed to meet targeted standard specifications for  
frequency error over the life of the part, which includes the temperature, mechanical  
and aging effects.  
The table below lists the recommended crystal specifications. Note that these are  
recommendations only and deviation may be allowed. However, deviations may result  
in degraded RF performance or possibly a failure to meet RF protocol certification  
standards. Designers must ensure that the crystal(s) they use will meet the requirements  
of their application.  
Table 23. Recommended Crystal and Oscillator Specification  
Symbol  
Description  
F0 = 32.0 MHz  
F0 = 26.0 MHz  
Unit  
Notes  
Min  
Typ  
Max  
Min  
Typ  
Max  
TA  
Operating  
-40  
105  
-40  
105  
°C  
1
Temperature  
Crystal initial  
frequency  
tolerance  
-10  
10  
25  
-10  
-25  
10  
24  
ppm  
2,3  
2,4  
Crystal frequency -25  
stability and aging  
ppm  
Oscillator variation -12  
15  
50  
-12  
-50  
16  
50  
ppm  
ppm  
5
6
Total reference  
oscillator tolerance  
for Bluetooth LE  
applications  
-50  
CL  
Load capacitance  
7
10  
13  
7
10  
13  
pF  
pF  
fF  
2, 7  
2,7  
2,7  
C0  
Shunt capacitance 0.469  
0.67  
2.05  
0.871  
2.665  
0.42  
1.435  
0.6  
2.05  
0.78  
2.665  
Cm1  
Motional  
1.435  
capacitance  
Lm1  
Motional  
8.47  
12.1  
15.73  
12.81  
18.3  
23.79  
mH  
2,7  
inductance  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
48  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 23. Recommended Crystal and Oscillator Specification (continued)  
Symbol  
Description  
F0 = 32.0 MHz  
F0 = 26.0 MHz  
Unit  
Notes  
Min  
Typ  
Max  
Min  
Typ  
Max  
Rm1  
ESR  
Pd  
Motional  
resistance  
25  
50  
35  
10  
50  
Ohms  
Ohms  
uW  
2
Equivalent series  
resistance  
60  
60  
2,8  
2
Maximum crystal  
drive  
10  
200  
200  
TS  
Trim sensitivity  
6.30  
9.00  
500  
11.70  
6.39  
9.12  
500  
11.86  
ppm/pF 2,7  
μs  
TOSC  
Oscillator Startup  
Time  
9
1. Full temperature range of this device. A reduced range can be chosen to meet application needs.  
2. Recommended crystal specification.  
3. Measured at 25°C.  
4. Combination of frequency stability variation over desired temperature range and frequency variation due to aging over  
desired lifetime of system.  
5. Variation due to temperature, process, and aging of MCU.  
6. Sum of crystal initial frequency tolerance, crystal frequency stability and aging, oscillator variation, and PCB  
manufacturing variation must not exceed this value.  
7. Typical is target. 30% tolerances shown.  
8. ESR = Rm1 * (1 + [C0/CL])^2.  
9. Time from oscillator enable to clock ready. Dependent on the complete hardware configuration of the oscillator.  
Figure 10. Crystal Electrical Model  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
49  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
6.5.3.3 32 kHz Oscillator Frequency Specifications  
Table 24. 32 kHz Crystal and Oscillator Specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
Crystal  
32.768  
kHz  
frequency  
TA  
Operating  
temperature  
-40  
105  
500  
°C  
1
Total crystal  
frequency  
tolerance  
-500  
ppm  
2,3  
CL  
Load  
capacitance  
12.5  
pF  
2
2
ESR  
Equivalent  
series  
80  
kOhms  
resistance  
tstart  
Crystal start-up  
time  
1000  
32.768  
ms  
kHz  
V
4
5
6
fec_extal32  
vec_extal32  
External input  
clock frequency  
External input  
0.7  
VDD  
clock amplitude  
1. Full temperature range of this device. A reduced range can be chosen to meet application needs.  
2. Recommended crystal specification.  
3. Sum of crystal initial frequency tolerance, crystal frequency stability, and aging tolerances given by crystal vendor.  
4. Time from oscillator enable to clock stable. Dependent on the complete hardware configuration of the oscillator.  
5. External oscillator connected to EXTAL32K. XTAL32K must be unconnected.  
6. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VDD.  
6.5.4 Memories and memory interfaces  
6.5.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
6.5.4.1.1 Flash timing specifications — commands  
Table 25. Flash command timing specifications  
Symbol Description1  
Read 1s Block execution time  
• 256 KB program/data flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk256k  
2
ms  
trd1sec2k Read 1s Section execution time (2 KB flash)  
tpgmchk Program Check execution time  
75  
95  
μs  
μs  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
50  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 25. Flash command timing specifications (continued)  
Symbol Description1  
trdrsrc Read Resource execution time  
tpgm8  
Min.  
Typ.  
Max.  
40  
Unit  
μs  
Notes  
Program Phrase execution time  
Erase Flash Block execution time  
• 256 KB program/data flash  
90  
225  
μs  
2
2
tersblk256k  
tersscr  
125  
2125  
ms  
Erase Flash Sector execution time  
12  
10  
130  
ms  
ms  
tpgmsec2k Program Section execution time (2 KB flash)  
Read 1s All Blocks execution time  
trd1allx  
trd1alln  
• FlexNVM devices  
3.5  
3.5  
ms  
ms  
• Program flash only devices  
trdonce  
Read Once execution time  
90  
30  
μs  
μs  
tpgmonce Program Once execution time  
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
Swap Control execution time  
• control code 0x01  
262  
4380  
35  
ms  
μs  
2
2
262  
4380  
ms  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
tswapx10  
280  
100  
100  
μs  
μs  
μs  
μs  
μs  
• control code 0x02  
235  
235  
35  
• control code 0x04  
• control code 0x08  
• control code 0x10  
100  
235  
Program Partition for EEPROM execution time  
• 32 KB EEPROM backup  
tpgmpart32k  
tpgmpart256k  
252  
262  
ms  
ms  
• 256 KB EEPROM backup  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram256k  
115  
0.8  
μs  
ms  
ms  
• 32 KB EEPROM backup  
• 256 KB EEPROM backup  
1.2  
4.5  
6.1  
Byte-write to FlexRAM execution time:  
• 32 KB EEPROM backup  
3
teewr8b32k  
385  
1700  
3800  
μs  
μs  
teewr8b256k  
• 256 KB EEPROM backup  
1015  
16-bit write to FlexRAM execution time:  
• 32 KB EEPROM backup  
3
teewr16b32k  
teewr16b256k  
385  
1700  
μs  
μs  
• 256 KB EEPROM backup  
1015  
360  
3800  
2000  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
μs  
3
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
51  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 25. Flash command timing specifications (continued)  
Symbol Description1  
32-bit write to FlexRAM execution time:  
Min.  
Typ.  
Max.  
Unit  
Notes  
3
teewr32b32k  
teewr32b256k  
• 32 KB EEPROM backup  
• 256 KB EEPROM backup  
630  
2000  
4100  
μs  
μs  
1890  
1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external  
clocks).  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. 1st time EERAM writes after a Reset or SETRAM command may incur additional overhead for EEE cleanup, resulting in  
up to 2x the times shown.  
NOTE  
Under certain circumstances maximum times for writes to  
FlexRAM may be exceeded. In this case the user or  
application may wait, or assert reset to the FTFE module to  
stop the operation.  
6.5.4.1.2 Reliability specifications  
Table 26. NVM reliability specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Program and Data Flash  
tnvmret1k Data retention after up to 1 K cycles  
nnvmcyc Cycling endurance  
20  
years  
1
2
1 K  
cycles  
FlexRAM as Emulated EEPROM  
5
tnvmretee Data retention  
Write endurance  
nnvmwree16  
years  
1, 3  
4, 5, 6  
• EEPROM backup to FlexRAM used ratio = 16  
100 K  
1.6 M  
writes  
writes  
nnvmwree256  
• EEPROM backup to FlexRAM used ratio =  
256  
1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.  
2. Program and Erase are supported across product temperature specification. Cycling endurance is per flash sector.  
3. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.  
4. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product  
temperature specification. Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.  
5. For usage of any EEE driver other than the FlexMemory feature, the endurance specification will fall back to the Data  
Flash endurance value of 1K.  
6. FlexMemory calculator tool is available on the NXP web site for help in estimating the maximum write endurance  
achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM  
reliability specifications section of the data sheet. This calculator only applies to the Kinetis FlexMemory feature.  
52  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
6.5.4.1.3 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set  
size can be set to any of several non-zero values.  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that  
can be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout  
the entire lifetime of a given application.  
6.5.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.5.6 Analog  
6.5.6.1 ADC electrical specifications  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications. The following specification is defined with the DC-DC converter  
operating in Bypass mode.  
6.5.6.1.1 16-bit ADC operating conditions  
Table 27. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
3
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
0
VREFH  
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
3
Input voltage  
• 16-bit differential mode  
• All other modes  
VSSA  
VSSA  
31/32 ×  
VREFH  
VREFH  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
53  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 27. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
• 16-bit mode  
Min.  
Typ.1  
Max.  
10  
Unit  
Notes  
CADIN  
Input  
8
4
pF  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
5
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
4
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
5
5
6
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
kS/s  
kS/s  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to  
VSSA  
.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
54  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
Pad  
leakage  
ZAS  
CHANNEL SELECT  
CIRCUIT  
ADC SAR  
ENGINE  
RADIN  
RAS  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
RADIN  
CADIN  
Figure 11. ADC input impedance equivalency diagram  
6.5.6.1.2 16-bit ADC electrical characteristics  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC=1, ADHSC=0  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
2.4  
4.0  
5.2  
6.2  
MHz tADACK =  
1/fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
DNL Differential non-  
linearity  
• 12-bit mode; Buck  
Mode6  
• 12-bit mode; Bypass  
Mode  
0.7  
0.5  
–1.1 to +1.9  
–1.1 to +1.9  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
55  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
INL  
Integral non-  
linearity  
• 12-bit mode; Buck  
Mode6  
1.0  
–2.7 to +1.9  
LSB4  
5
• 12-bit mode; Bypass  
Mode  
0.6  
–2.7 to +1.9  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4 VADIN  
VDDA  
=
5
Quantization error  
LSB4  
0.5  
ENOB Effective number of 16-bit differential mode; Buck  
7
bits  
Mode6  
12  
12.75  
11.75  
bits  
• Avg = 32  
• Avg = 4  
11.25  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
• Avg = 4  
11  
11.5  
10.5  
9.5  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
• Avg = 4  
12.5  
13  
12  
11.25  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
• Avg = 4  
11  
10  
11.75  
10.5  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
6.02 × ENOB + 1.76  
dB  
THD Total harmonic  
distortion  
16-bit differential mode; Buck  
Mode6  
8
• Avg = 32  
-90  
-88  
dB  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
-89  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
-87  
Table continues on the next page...  
56  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
KW36A/35A/34A Electrical Characteristics  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
Signal-to-noise  
SINAD  
See ENOB  
6.02 × ENOB + 1.76  
dB  
plus distortion  
SFDR Spurious free  
dynamic range  
distortion  
16-bit differential mode; Buck  
Mode6  
8
• Avg = 32  
85  
85  
89  
87  
dB  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
87  
85  
94  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
88  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(see  
Voltage  
and  
current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.67  
706  
1.74  
716  
1.81  
726  
mV/°  
C
9
VTEMP25 Temp sensor  
voltage  
25 °C  
mV  
9
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
.
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N.  
5. ADC conversion clock < 16 MHz, maximum hardware averaging (AVGE = %1, AVGS = %11).  
6. VREFH = Output of Voltage Reference(VREF).  
7. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
8. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
9. ADC conversion clock < 3 MHz.  
6.5.6.2 Voltage reference electrical specifications  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
57  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 29. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Min.  
Max.  
Unit  
V
Notes  
Supply voltage  
Temperature  
1.71  
3.6  
-40 to 105  
100  
°C  
nF  
CL  
Output load capacitance  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range  
of the device.  
Table 30. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.190  
1.1950  
1.2  
V
1
nominal VDDA and temperature=25°C  
Vout  
Voltage reference output with user trim at  
nominal VDDA and temperature=25°C  
1.1945  
1.1950  
1.1955  
V
1
Vstep  
Vtdrift  
Voltage reference trim step  
0.5  
mV  
mV  
1
1
Temperature drift (Vmax -Vmin across the full  
temperature range)  
20  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
Low-power buffer current  
High-power buffer current  
1
1
Ihp  
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
2
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 31. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
70  
°C  
Table 32. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vtdrift  
Temperature drift (Vmax -Vmin across the limited  
temperature range)  
15  
mV  
58  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
KW36A/35A/34A Electrical Characteristics  
6.5.6.3 CMP and 6-bit DAC electrical specifications  
Table 33. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
59  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
60  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
6.5.7 Timers  
See General switching specifications.  
6.5.8 Communication interfaces  
6.5.8.1 CAN switching specifications  
See General switching specifications.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
61  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
6.5.8.2 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. See the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 34. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
12  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-2  
8.5  
ns  
ns  
ns  
ns  
16.2  
0
1. The delay is programmable in SPIx_CTARn[PCSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
SPI_PCSn  
DS1  
DS3  
DS2  
DS4  
SPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
SPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
SPI_SOUT  
Figure 14. DSPI classic SPI timing — master mode  
Table 35. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
6
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
MHz  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
62  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 35. Slave mode DSPI timing (limited voltage range) (continued)  
Num  
DS9  
Description  
DSPI_SCK input cycle time  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
DSPI_SCK to DSPI_SOUT valid  
0
21.4  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
2.6  
7.0  
14  
14  
SPI_SS  
DS10  
DS9  
SPI_SCK  
(POL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
SPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
SPI_SIN  
Figure 15. DSPI classic SPI timing — slave mode  
6.5.8.3 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. See  
the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 36. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
12  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
2 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
Table continues on the next page...  
ns  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
63  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 36. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
Notes  
DS3  
DSPI_PCSn valid to DSPI_SCK delay  
(tBUS x 2) −  
4
ns  
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
3
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-1.2  
23.3  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PCSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
SPI_PCSn  
DS1  
DS3  
DS2  
DS4  
SPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
SPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
SPI_SOUT  
Figure 16. DSPI classic SPI timing — master mode  
Table 37. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
Frequency of operation  
6
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
29.1  
ns  
ns  
3.2  
7.0  
ns  
ns  
25  
25  
ns  
ns  
64  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
KW36A/35A/34A Electrical Characteristics  
SPI_SS  
DS10  
DS9  
SPI_SCK  
(POL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
Last data  
SPI_SOUT  
Data  
Data  
DS13  
First data  
SPI_SIN  
Figure 17. DSPI classic SPI timing — slave mode  
6.5.8.4 Inter-Integrated Circuit Interface (I2C) timing  
Table 38. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum  
Minimum Maximum  
SCL Clock Frequency  
fSCL  
0
4
100  
0
400  
kHz  
µs  
Hold time (repeated) START condition. tHD; STA  
After this period, the first clock pulse is  
generated.  
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
01  
2504  
3.452  
03  
1002, 5  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.91  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
6
5
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and  
SCL lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF.  
4. Set-up time in slave-transmitter mode is 1 IP Bus clock period, if the TX FIFO is empty.  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
65  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is  
released.  
6. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 18. Timing definition for fast and standard mode devices on the I2C bus  
6.5.8.5 LPUART  
See General switching specifications.  
6.5.9 Human-machine interfaces (HMI)  
6.5.9.1 GPIO  
The maximum input voltage on PTC0/1/2/3 is VDD+0.3V. For rest of the GPIO  
specification, see General switching specifications.  
6.6 DC-DC Converter Operating Requirements  
Table 39. DC-DC Converter operating conditions  
Characteristic  
Symbol  
VDDRF1  
VDDRF2, VDDRF3  
Min  
Typ  
Max  
Unit  
Bypass Mode Supply Voltage (RF and Analog)  
,
1.425  
3.6  
Vdc  
Bypass Mode Supply Voltage (Digital)  
VDDX, VDCDC_IN  
VDDA  
,
1.71  
2.1  
3.6  
3.6  
Vdc  
Vdc  
Buck Mode Supply Voltage 1, 2  
DCDC Inductor  
Value  
VDCDC_IN  
10  
<0.2  
26  
<0.5  
μH  
ESR  
Ohms  
MHz  
DCDC internal oscillator  
DCDCInt_Osc  
66  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
1. In Buck mode, DC-DC converter needs 2.1 V minimum to start, the supply can drop to 1.8V after DC-DC converter  
settles.  
2. In Buck mode, DC-DC converter will generate 1.8V at VDD_1P8OUT and 1.5V at VDD_1P5OUT_PMCIN pins.  
VDD_1P8OUT should supply to VDD1, VDD2 and VDDA. VDD_1P5OUT_PMCIN should supply to VDD_RF1 and  
VDD_RF2. VDDXTAL can be either supplied by 1.5V or 1.8V.  
Table 40. DC-DC Converter Specifications  
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
DC-DC Converter Output  
Power  
Total power output of Pdcdc_out  
1p8V and 1p5V  
1251  
mW  
Switching Frequency2  
DCDC_FREQ  
DCDC  
reference  
MHz  
frequency  
divided by 16  
3
Half FET Threshold  
Double FET Threshold  
Buck Mode  
I_half_FET  
5
mA  
mA  
I_double_FET  
40  
DC-DC Conversion Efficiency  
DCDC_EFF_buck  
VDD_1P8_buck  
90%  
1.71  
min(VDCD Vdc  
C_IN_buc  
1.8V Output Voltage  
k, 3.5)4, 5  
VDD_1P8 = 1.8V,  
VDC_1P5 = 1.5V  
IDD_1P8_buck1  
IDD_1P8_buck2  
45  
mA  
mA  
1.8V Output Current6, 7  
VDD_1P8 = 3.0V,  
VDC_1P5 = 1.5V  
27  
1.5V Output Voltage  
1.5V Output Current6, 9  
Consumed by Radio VDD_1P5_buck  
IDD_1P5_buck  
1.425  
1.58  
1.65  
30  
Vdc  
mA  
μs  
DCDC Transition Operating  
Behavior  
LSSRun  
t_DCDCbuck_LSS➔  
50  
RUN  
DCDC Turn on Time  
TDCDC_ON  
2.210  
3.11  
ms  
DCDC Settling Time for  
increasing voltage  
TDCDC_SETTLE_buck  
ms/V  
DCDC Settling Time for  
decreasing voltage  
C = capacitance  
attached to the  
DCDC V1P8 output  
rail.  
TDCDC_SETTLE_buck  
(C*(V1-  
V2)/I2  
s
V1 = the initial output  
voltage of the DCDC  
V2 = the final output  
voltage of the DCDC  
I2 = the load on the  
DCDC output  
expressed in  
Amperes.  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
67  
NXP Semiconductors  
KW36A/35A/34A Electrical Characteristics  
Table 40. DC-DC Converter Specifications (continued)  
Characteristics  
VDD_1P8 ripple  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Typical ripple based VDD_1P8ripple  
on NXP  
30  
mV  
recommended  
hardware  
configuration and  
typical loading (MCU  
only; no extra loads  
placed on DCDC  
outputs)  
VDD_1P5 ripple  
Typical ripple based VDD_1P5ripple  
on NXP  
30  
mV  
recommended  
hardware  
configuration and  
typical loading (MCU  
only; no extra loads  
placed on DCDC  
outputs)  
1. This is the steady state DC output power. Excessive transient current load from external device will cause 1p8V and 1P5  
output voltage unregulated temporary.  
2. This is the frequency that will be observed at LN and LP pins.  
3. DCDC reference frequency is derived from the RF oscillator or the DCDC internal oscillator.  
4. The voltage output level can be controlled by programming DCDC_VDD1P8CTRL_TRG field in DCDC_REG3.  
5. In Buck mode, the maximum VDD_1P8 output is the minimum of either VDCDC_IN_BUCK minus 50 mV or 3.5 V. For  
example, if VDCDC_IN = 2.1 V, maximum VDD_1P8 is 2.05 V. If VDCDC_IN = 3.6 V, maximum VDD_1P8 is 3.5 V.  
6. The output current specification in buck mode represents the maximum current the DC-DC converter can deliver. The  
KW36A/35A/34A radio and MCU blocks current consumption is not excluded. Note that the maximum output power of  
the DC-DC converter is 125mW. The available supply current for external device depends on the energy consumed by  
the internal peripherals in KW36A/35A/34A.  
7. When using DC-DC in low power mode (pulsed mode), current load must be less than 1mA.  
8. User needs to program DCDC_VDD1P5CTRL_TRG_BUCK field in DCDC_REG3 register to ensure that a worst case  
minimum of 1.425V is available as VDD_1P5_buck for radio operation. VDD_1P5 must not be programmed higher than  
VDD_1P8.  
9. 1.5V is intended to supply power to KW36A/35A/34A. It is not designed to supply power to an external device.  
10. Turn on time is measured from the application of power (to DCDC_IN) till the DCDC_REG0[DCDC_STS_DC_OK] bit is  
set. Code execution may begin before the DCDC_REG0[DCDC_STS_DC_OK] bit is set. The full device specification is  
not guaranteed until the bit sets.  
6.7 Ratings  
6.7.1 Thermal handling ratings  
Table 41. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
68  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
KW36A/35A/34A Electrical Characteristics  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.7.2 Moisture handling ratings  
Table 42. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.7.3 ESD handling ratings  
Table 43. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
6.7.4 Voltage and current operating ratings  
Table 44. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
GND  
VDD + 0.3  
VDCDC  
V
V
VIO_DCDC  
IO pins in the DCDC voltage domain (DCDC_CFG and  
PSWITCH)  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
69  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
7 Pin Diagrams and Pin Assignments  
7.1 KW36A Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control and Interrupt Module  
is used to select the functionality for each GPIO pin. ALT0 is reserved for analog  
functions on some GPIO pins. ALT1 – ALT9 are assigned to the available digital  
functions on each GPIO pin. GPIO pins with a default of “disabled” are high impedance  
after reset – their input and output buffers are disabled.  
40  
48  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett "Wett  
able" able"  
HVQ  
FN  
HVQ  
FN  
4
4
5
PTA16  
PTA17  
PTA18  
PTA19  
DISABLED  
DISABLED  
DISABLED  
PTA16/  
LLWU_P4  
SPI1_  
SOUT  
LPUART1_  
RTS_b  
TPM0_  
CH0  
5
PTA17/  
LLWU_P5  
SPI1_SIN  
LPUART1_ CAN0_TX  
RX  
TPM_  
CLKIN1  
6
6
PTA18/  
LLWU_P6  
SPI1_SCK  
LPUART1_ CAN0_RX  
TX  
TPM2_  
CH0  
7
7
ADC0_SE5 ADC0_SE5 PTA19/  
SPI1_  
PCS0  
LPUART1_  
CTS_b  
TPM2_  
CH1  
LLWU_P7  
24  
24  
ADC0_DP0 ADC0_  
DP0/  
ADC0_  
DP0/  
CMP0_IN0 CMP0_IN0  
25  
41  
25  
41  
ADC0_  
DM0  
ADC0_  
DM0/  
CMP0_IN1 CMP0_IN1  
ADC0_  
DM0/  
PTC5  
DISABLED  
PTC5/  
LLWU_  
P13/  
LPTMR0_  
ALT2  
LPUART0_ TPM1_  
RTS_b CH1  
BSM_CLK  
RF_NOT_  
ALLOWED  
42  
43  
42  
43  
PTC6  
DISABLED  
DISABLED  
PTC6/  
LLWU_  
P14/  
RF_  
RFOSC_  
EN  
I2C1_SCL  
I2C1_SDA  
LPUART0_ TPM2_  
RX CH0  
BSM_  
FRAME  
PTC7  
PTC7/  
LLWU_P15 PCS2  
SPI0_  
LPUART0_ TPM2_  
TX CH1  
BSM_  
DATA  
70  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
Pin Diagrams and Pin Assignments  
40  
48  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett "Wett  
able" able"  
HVQ  
FN  
HVQ  
FN  
1
48  
48  
PTC19  
DISABLED  
PTC19/  
LLWU_P3/  
RF_  
SPI0_  
PCS0  
I2C0_SCL  
LPUART0_ BSM_CLK  
CTS_b  
LPUART1_  
CTS_b  
EARLY_  
WARNING  
2
3
4
1
2
3
1
2
3
PTA0  
SWD_DIO  
SWD_CLK  
RESET_b  
PSWITCH  
PTA0  
PTA1  
PTA2  
SPI0_  
PCS1  
TPM1_  
CH0  
SWD_DIO  
SWD_CLK  
RESET_b  
PTA1  
SPI1_  
PCS0  
TPM1_  
CH1  
PTA2  
TPM0_  
CH3  
5
6
8
9
8
9
PSWITCH  
PSWITCH  
DCDC_  
CFG  
DCDC_  
CFG  
DCDC_  
CFG  
7
8
9
9
10  
11  
13  
VDCDC_IN VDCDC_IN VDCDC_IN  
10  
11  
DCDC_LP  
DCDC_LP  
DCDC_LP  
DCDC_  
GND  
DCDC_  
GND  
DCDC_  
GND  
10  
11  
12  
13  
12  
14  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P8OUT  
1P8OUT  
1P8OUT  
12  
13  
14  
15  
DCDC_LN  
DCDC_LN  
DCDC_LN  
15  
VDD_  
VDD_  
VDD_  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
14  
16  
16  
PTB0  
DISABLED  
PTB0/  
LLWU_P8/  
RF_  
RFOSC_  
EN  
I2C0_SCL  
CMP0_  
OUT  
TPM0_  
CH1  
CLKOUT  
CAN0_TX  
CAN0_RX  
15  
16  
17  
17  
18  
19  
17  
18  
19  
PTB1  
PTB2  
PTB3  
ADC0_  
SE1/  
ADC0_  
SE1/  
PTB1/  
RF_  
DTM_RX  
I2C0_SDA  
DTM_TX  
LPTMR0_  
ALT1  
TPM0_  
CH2  
CMT_IRO  
CMP0_IN5 CMP0_IN5 PRIORITY  
ADC0_  
SE3/  
ADC0_  
SE3/  
PTB2/  
RF_NOT_  
TPM1_  
CH0  
CMP0_IN3 CMP0_IN3 ALLOWED  
ADC0_  
SE2/  
ADC0_  
SE2/  
PTB3/  
ERCLK32K RTS_b  
LPUART1_  
CLKOUT  
TPM1_  
CH1  
RTC_  
CLKOUT  
CMP0_IN4 CMP0_IN4  
VDD_0 VDD_0  
EXTAL32K EXTAL32K PTB16  
18  
19  
20  
21  
20  
21  
VDD_0  
PTB16  
LPUART1_ I2C1_SCL  
RX  
TPM2_  
CH0  
20  
22  
22  
PTB17  
XTAL32K  
XTAL32K  
PTB17  
LPUART1_ I2C1_SDA  
TX  
TPM2_  
CH1  
BSM_CLK  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
71  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
40  
48  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett "Wett  
able" able"  
HVQ  
FN  
HVQ  
FN  
21  
23  
23  
PTB18  
NMI_b  
ADC0_  
SE4/  
PTB18  
LPUART1_ I2C1_SCL  
CTS_b  
TPM_  
CLKIN0  
TPM0_  
CH0  
NMI_b  
CMP0_IN2  
22  
23  
26  
27  
26  
27  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFH/  
VREF_  
OUT  
VREFH/  
VREF_  
OUT  
VREFH/  
VREF_  
OUT  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
VDDA  
VDDA  
VDDA  
XTAL_OUT XTAL_OUT XTAL_OUT  
EXTAL  
XTAL  
EXTAL  
EXTAL  
XTAL  
XTAL  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
GANT  
GANT  
GANT  
VDD_RF2  
VDD_RF1  
PTC1  
VDD_RF2  
VDD_RF1  
DISABLED  
VDD_RF2  
VDD_RF1  
PTC1/  
RF_  
I2C0_SDA  
LPUART0_ TPM0_  
RTS_b CH2  
SPI1_SCK  
BSM_CLK  
EARLY_  
WARNING  
34  
35  
36  
38  
39  
40  
38  
39  
40  
PTC2  
PTC3  
PTC4  
DISABLED  
DISABLED  
DISABLED  
PTC2/  
LLWU_P10 SWITCH  
TX_  
I2C1_SCL  
I2C1_SDA  
TX  
EXTRG_IN LPUART0_ TPM1_  
CTS_b CH0  
LPUART0_ CMT_IRO  
RX  
DTM_RX  
DTM_TX  
SPI1_  
SOUT  
BSM_  
FRAME  
PTC3/ RX_  
LLWU_P11 SWITCH  
LPUART0_ TPM0_  
SPI1_SIN  
CAN0_TX  
CAN0_RX  
CH1  
PTC4/  
LLWU_  
P12/  
BSM_  
DATA  
SPI1_  
PCS0  
BLE_RF_  
ACTIVE  
37  
38  
44  
45  
44  
45  
VDD_1  
PTC16  
VDD_1  
VDD_1  
DISABLED  
PTC16/  
LLWU_P0/  
RF_  
SPI0_SCK  
I2C0_SDA  
I2C1_SCL  
I2C1_SDA  
LPUART0_ TPM0_  
RTS_b CH3  
LPUART1_  
RTS_b  
STATUS  
39  
46  
46  
47  
PTC17  
PTC18  
DISABLED  
PTC17/  
SPI0_  
SOUT  
LPUART0_ BSM_  
RX FRAME  
DTM_RX  
DTM_TX  
LPUART1_  
RX  
LLWU_P1/  
RF_EXT_  
OSC_EN  
40  
41  
47  
49  
DISABLED  
NA  
PTC18/  
LLWU_P2  
SPI0_SIN  
LPUART0_ BSM_  
TX DATA  
LPUART1_  
TX  
49-64 Ground  
72  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
Pin Diagrams and Pin Assignments  
7.2 KW36A Pinouts  
KW36A device pinouts are shown in the figures below.  
GANT  
30  
PTC19  
PTA0  
1
2
41  
ANT  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VDD_RF3  
XTAL  
PTA1  
3
PTA2  
4
EXTAL  
PSWITCH  
DCDC_CFG  
VDCDC_IN  
DCDC_LP  
DCDC_GND  
DCDC_LN  
5
XTAL_OUT  
VDDA  
6
7
VREFH/VREF_OUT  
VREFL/VSSA  
PTB18  
8
9
10  
*pin 41 is ground  
Figure 19. 40-pin "Wettable" HVQFN pinout diagram  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
73  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
VDD_RF1  
VDD_RF2  
GANT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTA0  
PTA1  
1
2
PTA2  
3
49  
53  
57  
61  
50  
54  
58  
62  
51  
55  
59  
63  
52  
56  
60  
64  
ANT  
PTA16  
4
VDD_RF3  
XTAL  
PTA17  
5
PTA18  
6
PTA19  
EXTAL  
7
PSWITCH  
DCDC_CFG  
VDCDC_IN  
DCDC_LP  
DCDC_LN  
XTAL_OUT  
VDDA  
8
9
VREFH/VREF_OUT  
VREFL/VSSA  
ADC0_DM0  
10  
11  
12  
*pin 49 - 64 are ground  
Figure 20. 48-pin LQFN pinout diagram  
74  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
Pin Diagrams and Pin Assignments  
VDD_RF1  
VDD_RF2  
GANT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTA0  
1
2
PTA1  
49  
PTA2  
PTA16  
3
ANT  
4
VDD_RF3  
XTAL  
PTA17  
5
PTA18  
6
PTA19  
EXTAL  
7
PSWITCH  
XTAL_OUT  
VDDA  
8
DCDC_CFG/VDCDC_IN  
9
DCDC_LP  
DCDC_GND  
DCDC_LN  
VREFH/VREF_OUT  
VREFL/VSSA  
ADC0_DM0  
10  
11  
12  
*pin 49 is ground  
Figure 21. 48-pin "Wettable" HVQFN pinout diagram  
7.3 KW35A Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control and Interrupt  
Module is used to select the functionality for each GPIO pin. ALT0 is reserved for  
analog functions on some GPIO pins. ALT1 – ALT9 are assigned to the available  
digital functions on each GPIO pin. GPIO pins with a default of “disabled” are high  
impedance after reset – their input and output buffers are disabled.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
75  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
40  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett "Wett  
able" able"  
HVQ  
FN  
HVQ  
FN  
4
PTA16  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE5  
PTA16/  
LLWU_P4  
SPI1_SOUT  
SPI1_SIN  
TPM0_CH0  
5
PTA17  
PTA17/  
LLWU_P5  
TPM_  
CLKIN1  
6
PTA18  
PTA18/  
LLWU_P6  
SPI1_SCK  
SPI1_PCS0  
TPM2_CH0  
7
PTA19  
ADC0_SE5  
PTA19/  
LLWU_P7  
TPM2_CH1  
24  
25  
ADC0_DP0  
ADC0_DP0/ ADC0_DP0/  
CMP0_IN0  
CMP0_IN0  
ADC0_DM0 ADC0_  
DM0/  
ADC0_  
DM0/  
CMP0_IN1  
CMP0_IN1  
41  
42  
PTC5  
DISABLED  
PTC5/  
LPTMR0_  
ALT2  
LPUART0_  
RTS_b  
TPM1_CH1  
TPM2_CH0  
BSM_CLK  
LLWU_P13/  
RF_NOT_  
ALLOWED  
PTC6  
DISABLED  
PTC6/  
LLWU_P14/  
RF_  
I2C1_SCL  
LPUART0_  
RX  
BSM_  
FRAME  
RFOSC_EN  
1
43  
48  
PTC7  
DISABLED  
DISABLED  
PTC7/  
LLWU_P15  
SPI0_PCS2 I2C1_SDA  
SPI0_PCS0 I2C0_SCL  
LPUART0_  
TX  
TPM2_CH1  
BSM_CLK  
BSM_DATA  
PTC19  
PTC19/  
LLWU_P3/  
RF_  
LPUART0_  
CTS_b  
EARLY_  
WARNING  
2
3
4
5
6
1
2
3
8
9
PTA0  
SWD_DIO  
SWD_CLK  
RESET_b  
PSWITCH  
PTA0  
PTA1  
PTA2  
SPI0_PCS1  
SPI1_PCS0  
TPM1_CH0  
TPM1_CH1  
TPM0_CH3  
SWD_DIO  
SWD_CLK  
RESET_b  
PTA1  
PTA2  
PSWITCH  
PSWITCH  
DCDC_  
CFG  
DCDC_  
CFG  
DCDC_  
CFG  
7
8
9
9
VDCDC_IN  
DCDC_LP  
VDCDC_IN  
DCDC_LP  
VDCDC_IN  
DCDC_LP  
10  
11  
DCDC_  
GND  
DCDC_  
GND  
DCDC_  
GND  
10  
11  
12  
13  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P8OUT  
1P8OUT  
1P8OUT  
12  
14  
DCDC_LN  
DCDC_LN  
DCDC_LN  
76  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
Pin Diagrams and Pin Assignments  
40  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett "Wett  
able" able"  
HVQ  
FN  
HVQ  
FN  
13  
14  
15  
16  
VDD_  
1P5OUT_  
PMCIN  
VDD_  
1P5OUT_  
PMCIN  
VDD_  
1P5OUT_  
PMCIN  
PTB0  
DISABLED  
PTB0/  
I2C0_SCL  
CMP0_OUT TPM0_CH1  
CLKOUT  
LLWU_P8/  
RF_  
RFOSC_EN  
15  
16  
17  
17  
18  
19  
PTB1  
PTB2  
PTB3  
ADC0_SE1/ ADC0_SE1/ PTB1/  
DTM_RX  
I2C0_SDA  
DTM_TX  
LPTMR0_  
ALT1  
TPM0_CH2  
TPM1_CH0  
TPM1_CH1  
CMT_IRO  
CMP0_IN5  
CMP0_IN5  
RF_  
PRIORITY  
ADC0_SE3/ ADC0_SE3/ PTB2/  
CMP0_IN3  
CMP0_IN3  
RF_NOT_  
ALLOWED  
ADC0_SE2/ ADC0_SE2/ PTB3/  
CLKOUT  
RTC_  
CMP0_IN4  
CMP0_IN4  
ERCLK32K  
CLKOUT  
18  
19  
20  
21  
20  
21  
22  
23  
VDD_0  
PTB16  
PTB17  
PTB18  
VDD_0  
VDD_0  
EXTAL32K  
XTAL32K  
NMI_b  
EXTAL32K  
XTAL32K  
PTB16  
PTB17  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
TPM2_CH0  
TPM2_CH1  
TPM0_CH0  
BSM_CLK  
NMI_b  
ADC0_SE4/ PTB18  
CMP0_IN2  
TPM_  
CLKIN0  
22  
23  
26  
27  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFH/  
VREFH/  
VREFH/  
VREF_OUT VREF_OUT VREF_OUT  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
VDDA  
VDDA  
VDDA  
XTAL_OUT  
EXTAL  
XTAL  
XTAL_OUT  
EXTAL  
XTAL_OUT  
EXTAL  
XTAL  
XTAL  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
GANT  
GANT  
GANT  
VDD_RF2  
VDD_RF1  
PTC1  
VDD_RF2  
VDD_RF1  
DISABLED  
VDD_RF2  
VDD_RF1  
PTC1/  
RF_  
I2C0_SDA  
LPUART0_  
RTS_b  
TPM0_CH2  
SPI1_SCK  
BSM_CLK  
EARLY_  
WARNING  
34  
35  
36  
38  
39  
40  
PTC2  
PTC3  
PTC4  
DISABLED  
DISABLED  
DISABLED  
PTC2/  
LLWU_P10  
TX_  
SWITCH  
I2C1_SCL  
I2C1_SDA  
EXTRG_IN  
LPUART0_  
RX  
CMT_IRO  
DTM_RX  
DTM_TX  
SPI1_SOUT BSM_  
FRAME  
PTC3/  
LLWU_P11  
RX_  
SWITCH  
LPUART0_  
TX  
TPM0_CH1  
TPM1_CH0  
SPI1_SIN  
PTC4/  
LLWU_P12/  
LPUART0_  
CTS_b  
BSM_DATA SPI1_PCS0  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
77  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
40  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett "Wett  
able" able"  
HVQ  
FN  
HVQ  
FN  
BLE_RF_  
ACTIVE  
37  
38  
44  
45  
VDD_1  
PTC16  
VDD_1  
VDD_1  
DISABLED  
PTC16/  
LLWU_P0/  
RF_  
SPI0_SCK  
I2C0_SDA  
LPUART0_  
RTS_b  
TPM0_CH3  
STATUS  
39  
46  
PTC17  
DISABLED  
PTC17/  
SPI0_SOUT I2C1_SCL  
LPUART0_  
RX  
BSM_  
FRAME  
DTM_RX  
DTM_TX  
LLWU_P1/  
RF_EXT_  
OSC_EN  
40  
41  
47  
49  
PTC18  
Ground  
DISABLED  
NA  
PTC18/  
LLWU_P2  
SPI0_SIN  
I2C1_SDA  
LPUART0_  
TX  
BSM_DATA  
7.4 KW35A Pinouts  
KW35A device pinouts are shown in the figures below.  
78  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
GANT  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PTC19  
PTA0  
1
2
41  
ANT  
VDD_RF3  
XTAL  
PTA1  
3
PTA2  
4
EXTAL  
PSWITCH  
DCDC_CFG  
VDCDC_IN  
DCDC_LP  
DCDC_GND  
DCDC_LN  
5
XTAL_OUT  
VDDA  
6
7
VREFH/VREF_OUT  
VREFL/VSSA  
PTB18  
8
9
10  
*pin 41 is ground  
Figure 22. 40-pin "Wettable" HVQFN pinout diagram  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
79  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
VDD_RF1  
VDD_RF2  
GANT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTA0  
PTA1  
1
2
49  
PTA2  
3
ANT  
PTA16  
4
VDD_RF3  
XTAL  
PTA17  
5
PTA18  
6
PTA19  
EXTAL  
7
PSWITCH  
XTAL_OUT  
VDDA  
8
9
DCDC_CFG/VDCDC_IN  
DCDC_LP  
VREFH/VREF_OUT  
VREFL/VSSA  
ADC0_DM0  
10  
11  
12  
DCDC_GND  
DCDC_LN  
*pin 49 is ground  
Figure 23. 48-pin "Wettable" HVQFN pinout diagram  
7.5 KW34A Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control and Interrupt Module  
is used to select the functionality for each GPIO pin. ALT0 is reserved for analog  
functions on some GPIO pins. ALT1 – ALT9 are assigned to the available digital  
functions on each GPIO pin. GPIO pins with a default of “disabled” are high impedance  
after reset – their input and output buffers are disabled.  
80  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
1
2
3
4
PTA0  
PTA1  
PTA2  
PTA16  
SWD_DIO  
SWD_CLK  
RESET_b  
DISABLED  
PTA0  
SPI0_PCS1  
SPI1_PCS0  
TPM1_CH0  
TPM1_CH1  
TPM0_CH3  
TPM0_CH0  
SWD_DIO  
SWD_CLK  
RESET_b  
PTA1  
PTA2  
PTA16/  
LLWU_P4  
SPI1_SOUT  
SPI1_SIN  
5
6
7
PTA17  
DISABLED  
DISABLED  
ADC0_SE5  
PSWITCH  
PTA17/  
LLWU_P5  
TPM_  
CLKIN1  
PTA18  
PTA18/  
LLWU_P6  
SPI1_SCK  
SPI1_PCS0  
TPM2_CH0  
PTA19  
ADC0_SE5  
PSWITCH  
PTA19/  
LLWU_P7  
TPM2_CH1  
8
9
PSWITCH  
DCDC_  
CFG/  
DCDC_  
CFG/  
DCDC_  
CFG/  
VDCDC_IN  
VDCDC_IN  
VDCDC_IN  
10  
11  
12  
13  
DCDC_LP  
DCDC_LP  
DCDC_LP  
DCDC_GND DCDC_GND DCDC_GND  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P8OUT  
1P8OUT  
1P8OUT  
14  
15  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
16  
PTB0  
DISABLED  
PTB0/  
I2C0_SCL  
CMP0_OUT TPM0_CH1  
CLKOUT  
LLWU_P8/  
RF_  
RFOSC_EN  
17  
18  
19  
PTB1  
PTB2  
PTB3  
ADC0_SE1/ ADC0_SE1/ PTB1/  
DTM_RX  
I2C0_SDA  
DTM_TX  
LPTMR0_  
ALT1  
TPM0_CH2  
TPM1_CH0  
TPM1_CH1  
CMT_IRO  
CMP0_IN5  
CMP0_IN5  
RF_  
PRIORITY  
ADC0_SE3/ ADC0_SE3/ PTB2/  
CMP0_IN3  
CMP0_IN3  
RF_NOT_  
ALLOWED  
ADC0_SE2/ ADC0_SE2/ PTB3/  
CLKOUT  
RTC_  
CMP0_IN4  
CMP0_IN4  
ERCLK32K  
CLKOUT  
20  
21  
22  
23  
VDD_0  
PTB16  
PTB17  
PTB18  
VDD_0  
VDD_0  
EXTAL32K  
XTAL32K  
NMI_b  
EXTAL32K  
XTAL32K  
PTB16  
PTB17  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
TPM2_CH0  
TPM2_CH1  
TPM0_CH0  
BSM_CLK  
NMI_b  
ADC0_SE4/ PTB18  
CMP0_IN2  
TPM_  
CLKIN0  
24  
ADC0_DP0  
ADC0_DP0/ ADC0_DP0/  
CMP0_IN0 CMP0_IN0  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
81  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
25  
26  
27  
ADC0_DM0  
ADC0_DM0/ ADC0_DM0/  
CMP0_IN1  
CMP0_IN1  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFH/  
VREFH/  
VREFH/  
VREF_OUT  
VREF_OUT  
VREF_OUT  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
VDDA  
VDDA  
VDDA  
XTAL_OUT  
EXTAL  
XTAL  
XTAL_OUT  
EXTAL  
XTAL_OUT  
EXTAL  
XTAL  
XTAL  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
GANT  
GANT  
GANT  
VDD_RF2  
VDD_RF1  
PTC1  
VDD_RF2  
VDD_RF1  
DISABLED  
VDD_RF2  
VDD_RF1  
PTC1/  
RF_EARLY_  
WARNING  
I2C0_SDA  
LPUART0_  
RTS_b  
TPM0_CH2  
SPI1_SCK  
BSM_CLK  
38  
39  
40  
PTC2  
PTC3  
PTC4  
DISABLED  
DISABLED  
DISABLED  
PTC2/  
LLWU_P10  
TX_  
SWITCH  
I2C1_SCL  
I2C1_SDA  
EXTRG_IN  
LPUART0_  
RX  
CMT_IRO  
DTM_RX  
DTM_TX  
SPI1_SOUT BSM_  
FRAME  
PTC3/  
LLWU_P11  
RX_  
SWITCH  
LPUART0_  
TX  
TPM0_CH1  
TPM1_CH0  
SPI1_SIN  
PTC4/  
LPUART0_  
CTS_b  
BSM_DATA SPI1_PCS0  
BSM_CLK  
LLWU_P12/  
BLE_RF_  
ACTIVE  
41  
42  
43  
PTC5  
PTC6  
PTC7  
DISABLED  
DISABLED  
DISABLED  
PTC5/  
LPTMR0_  
ALT2  
LPUART0_  
RTS_b  
TPM1_CH1  
TPM2_CH0  
LLWU_P13/  
RF_NOT_  
ALLOWED  
PTC6/  
LLWU_P14/  
RF_  
I2C1_SCL  
LPUART0_  
RX  
BSM_  
FRAME  
RFOSC_EN  
PTC7/  
LLWU_P15  
SPI0_PCS2  
SPI0_SCK  
I2C1_SDA  
I2C0_SDA  
LPUART0_  
TX  
TPM2_CH1  
TPM0_CH3  
BSM_DATA  
44  
45  
VDD_1  
PTC16  
VDD_1  
VDD_1  
DISABLED  
PTC16/  
LLWU_P0/  
RF_  
LPUART0_  
RTS_b  
STATUS  
46  
PTC17  
DISABLED  
PTC17/  
LLWU_P1/  
SPI0_SOUT I2C1_SCL  
LPUART0_  
RX  
BSM_  
FRAME  
DTM_RX  
82  
NXP Semiconductors  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
Pin Diagrams and Pin Assignments  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
RF_EXT_  
OSC_EN  
47  
48  
PTC18  
PTC19  
DISABLED  
DISABLED  
PTC18/  
LLWU_P2  
SPI0_SIN  
I2C1_SDA  
I2C0_SCL  
LPUART0_  
TX  
BSM_DATA  
BSM_CLK  
DTM_TX  
PTC19/  
SPI0_PCS0  
LPUART0_  
CTS_b  
LLWU_P3/  
RF_EARLY_  
WARNING  
49  
Ground  
NA  
7.6 KW34A Pinouts  
KW34A device pinouts are shown in the figure below.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
83  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
VDD_RF1  
VDD_RF2  
GANT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTA0  
1
2
PTA1  
49  
PTA2  
PTA16  
3
ANT  
4
VDD_RF3  
XTAL  
PTA17  
5
PTA18  
6
PTA19  
EXTAL  
7
PSWITCH  
XTAL_OUT  
VDDA  
8
DCDC_CFG/VDCDC_IN  
9
DCDC_LP  
DCDC_GND  
DCDC_LN  
VREFH/VREF_OUT  
VREFL/VSSA  
ADC0_DM0  
10  
11  
12  
*pin 49 is ground  
Figure 24. 48-pin "Wettable" HVQFN pinout diagram  
7.7 Module Signal Description Tables  
The following sections correlate the chip-level signal name with the signal name used in  
the module's chapter. They also briefly describe the signal function and direction.  
84  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
7.7.1 Core Modules  
This section contains tables describing the core module signal descriptions.  
Table 45. SWD Module Signal Descriptions  
SoC Signal Name  
SWD_DIO  
Module Signal Name  
SWD_DIO  
Description  
I/O  
Serial Wire Debug Data  
Input/Output1  
Serial Wire Clock2  
I/O  
I
SWD_CLK  
SWD_CLK  
1. Pulled up internally by default  
2. Pulled down internally by default  
7.7.2 Radio Modules  
This section contains tables describing the radio signals.  
Table 46. Radio Module Signal Descriptions  
Module Signal Name  
ANT  
Pin Direction  
Pin Name  
Pin Description  
O
O
ANT  
Antenna  
BLE_RF_ACTIVE  
BLE_RF_ACTIVE  
An output which is asserted prior to any Radio  
event and remains asserted for the duration of the  
event.  
BSM_CLK  
O
BSM_CLK  
Bit Streaming Mode (BSM) clock signal. 1 MHz bit  
rate clock. BSM_DATA and BSM_FRAME are  
synchronized to BSM_CLK. External device should  
capture BSM_FRAME and BSM_DATA on rising  
edge of BSM_CLK.  
BSM_DATA  
O
O
BSM_DATA  
Serial Bluetooth LE packet bit stream, LSB-first.  
Valid on rising edge of BSM_CLK.  
BSM_FRAME  
BSM_FRAME  
Framing signal to indicate the start of reception.  
Active high.  
DTM_RX  
DTM_TX  
GANT  
I
DTM_RX  
DTM_TX  
GANT  
Direct Test Mode Receive  
Direct Test Mode Transmit  
Antenna ground  
O
I
RF_STATUS  
O
RF_STATUS  
An output which indicates when the Radio is in an  
RX or TX event; software can also control this  
signal directly.  
RF_PRIORITY  
O
RF_PRIORITY  
An output which indicates to the external WiFi  
device that the Radio event is a high priority and it  
needs access to the 2.4GHz antenna.  
RF_EARLY_WARNING O  
RF_EARLY_WARNING Bluetooth LE LL generated signal which can be  
used to wake an external sensor to make a  
measurement before a Bluetooth LE event.  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
85  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 46. Radio Module Signal Descriptions (continued)  
Module Signal Name  
Pin Direction  
Pin Name  
Pin Description  
RF_NOT_ALLOWED  
I
I
RF_NOT_ALLOWED  
External signal which causes the internal Radio to  
cease radio activity.  
RF_TX_CONF  
RF_TX_CONF  
Signal from an external Radio which indicates the  
availability of the 2.4GHz antenna to the internal  
Radio.  
NOTE: This is a GPIO, not a dedicated PIN.  
RX_SWITCH  
TX_SWITCH  
O
O
RX_SWITCH  
TX_SWITCH  
Front End Module receive mode signal.  
Front End Module transmit mode signal.  
Table 47. Radio Module Miscellaneous Pin Descriptions  
Pin Name  
Pad Direction  
Pin Name  
Pin Description  
RF_INT_OSC_EN  
I
RF_RFOSC_EN  
External request to turn on the Radio's internal RF  
oscillator.  
RF_EXT_OSC_EN  
O
RF_EXT_OSC_EN  
Internal request to turn on an External oscillator for  
use by the internal Radio. The request can also be  
from the SoC if it is using the RF oscillator as its  
clock.  
7.7.3 System Modules  
This section contains tables describing the system signals.  
Table 48. System Module Signal Descriptions  
SoC Signal Name  
NMI_b  
Module Signal Name  
Description  
Non-maskable interrupt  
Reset bidirectional signal  
Power supply  
I/O  
I
RESET_b  
I/O  
VDD_[1:0]  
Ground  
VDD  
I
VSS  
Ground  
I
VDD_RF[3:1]  
VDCDC_IN  
VDD_1P8OUT  
VDD_RF  
VDCDC_IN  
VDD_1P8  
Radio power supply  
VDCDC_IN  
I
I
DCDC 1.8 V Regulated  
Output / Input in bypass  
I/O  
VDD_1P5OUT_PMCIN  
VDD_1P5/VDD_PMC  
DCDC 1.5 V Regulated  
I/O  
Output / PMC Input in bypass  
PSWITCH  
DCDC_CFG  
DCDC_LP  
DCDC_LN  
PSWITCH  
DCDC_CFG  
DCDC_LP  
DCDC_LN  
DCDC enable switch  
I
I
DCDC switch mode select  
DCDC inductor input positive I/O  
DCDC inductor input negative I/O  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
86  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 48. System Module Signal Descriptions (continued)  
SoC Signal Name  
DCDC_GND  
Module Signal Name  
DCDC_GND  
Description  
DCDC ground  
I/O  
I
Table 49. LLWU Module Signal Descriptions  
SoC Signal Name  
LLWU_P[15:0]  
Module Signal Name  
LLWU_P[15:0]  
Description  
Wakeup inputs  
I/O  
I
7.7.4 Clock Modules  
This section contains tables for Clock signal descriptions.  
Table 50. Clock Module Signal Descriptions  
SoC Signal Name  
EXTAL  
Module Signal Name  
EXTAL  
Description  
I/O  
26 MHz/32 MHz External  
clock/Oscillator input  
I
XTAL  
XTAL  
26 MHz/32 MHz Oscillator  
input  
I
XTAL_OUT  
XTAL_OUT_EN  
EXTAL32K  
XTAL_OUT  
XTAL_OUT_ENABLE  
EXTAL32K  
26 MHz/32 MHz Clock  
output  
O
I
26 MHz/32 MHz Clock  
output enable for XTAL_OUT  
32 kHz External clock/  
Oscillator input  
I
XTAL32K  
CLKOUT  
XTAL32K  
CLKOUT  
32 kHz Oscillator input  
Internal clocks monitor  
I
O
7.7.5 Analog Modules  
This section contains tables for Analog signal descriptions.  
Table 51. ADC0 Signal Descriptions  
SoC Signal Name  
ADC0_DM0  
Module Signal Name  
DADM0  
Description  
I/O  
ADC Channel 0 Differential  
Input Negative  
I
I
ADC0_DP0  
DADP0  
ADC Channel 0 Differential  
Input Positive  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
87  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 51. ADC0 Signal Descriptions (continued)  
SoC Signal Name  
ADC0_SE[5:1]  
Module Signal Name  
AD[5:1]  
Description  
I/O  
ADC Channel 0 Single-  
ended Input n  
I
I
VREFH  
VREFSH  
Voltage Reference Select  
High  
VDDA  
VSSA  
VDDA  
VSSA  
Analog Power Supply  
Analog Ground  
I
I
Table 52. CMP0 Signal Descriptions  
SoC Signal Name  
Module Signal Name  
IN[5:0]  
CMP0  
Description  
Analog voltage inputs  
Comparator output  
I/O  
CMP0_IN[5:0]  
CMP0_OUT  
I
O
Table 53. VREF Signal Descriptions  
SoC Signal Name  
VREF_OUT  
Module Signal Name  
VREF_OUT  
Description  
I/O  
Internally generated voltage  
reference output  
O
7.7.6 Timer Modules  
This section contains tables describing timer module signals.  
Table 54. TPM0 Module Signal Descriptions  
SoC Signal Name  
TPM_CLKIN[1:0]  
TPM0_CH[3:0]  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[3:0]  
Description  
External clock  
TPM channel  
I/O  
I/O  
I
I/O  
Table 55. TPM1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[1:0]  
Description  
External clock  
TPM channel  
TPM_CLKIN[1:0]  
TPM1_CH[1:0]  
I
I/O  
88  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 56. TPM2 Module Signal Descriptions  
SoC Signal Name  
TPM_CLKIN[1:0]  
TPM2_CH[1:0]  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[1:0]  
Description  
External clock  
TPM channel  
I/O  
I
I/O  
Table 57. LPTMR0 Module Signal Descriptions  
SoC Signal Name  
LPTMR0_ALT[2:1]  
Module Signal Name  
Description  
I/O  
I/O  
LPTMR0_ALT[2:1]  
Pulse counter input pin  
I
Table 58. RTC Module Signal Descriptions  
SoC Signal Name  
RTC_CLKOUT  
Module Signal Name  
RTC_CLKOUT  
Description  
1 Hz square-wave output  
O
7.7.7 Communication Interfaces  
This section contains tables for the signal descriptions for the communication  
modules.  
Table 59. SPI0 Module Signal Descriptions  
SoC Signal Name  
SPI0_PCS0  
Module Signal Name  
PCS0/SS  
Description  
Chip Select/Slave Select  
Chip Select  
I/O  
I/O  
O
SPI0_PCS[2:1]  
SPI0_SCK  
PCS[2:1]  
SCK  
Serial Clock  
I/O  
I
SPI0_SIN  
SIN  
Data In  
SPI0_SOUT  
SOUT  
Data Out  
O
Table 60. SPI1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SPI1_PCS0  
Description  
Chip Select/Slave Select  
Serial Clock  
I/O  
SPI1_PCS0  
SPI1_SCK  
SPI1_SIN  
I/O  
I/O  
I
SCK  
SIN  
Data In  
SPI1_SOUT  
SOUT  
Data Out  
O
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
89  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 61. I2C0 Module Signal Descriptions  
SoC Signal Name  
I2C0_SCL  
I2C0_SDA  
Module Signal Name  
SCL  
SDA  
Description  
I2C serial clock line  
I2C serial data line  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Table 62. I2C1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SCL  
SDA  
Description  
I2C serial clock line  
I2C serial data line  
I2C1_SCL  
I2C1_SDA  
I/O  
I/O  
Table 63. CAN0 Signal Descriptions (KW36 only)  
SoC Signal Name  
Module Signal Name  
CAN RX  
CAN TX  
Description  
CAN Receive Pin  
CAN Transmit Pin  
CAN0_RX  
CAN0_TX  
I
O
Table 64. LPUART0 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
LPUART CTS  
Description  
Clear To Send  
LPUART0_CTS_b  
LPUART0_RTS_b  
LPUART0_RX  
I
LPUART RTS  
LPUART RxD  
LPUART TxD  
Request To Send  
Receive Data  
Transmit Data1  
O
I
LPUART0_TX  
I/O  
1. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or  
transmit direction is configured for receive data  
Table 65. LPUART1 Module Signal Descriptions (KW36 only)  
SoC Signal Name  
LPUART1_CTS_b  
Module Signal Name  
LPUART CTS  
Description  
Clear To Send  
I/O  
I
LPUART1_RTS_b  
LPUART1_RX  
LPUART1_TX  
LPUART RTS  
LPUART RxD  
LPUART TxD  
Request To Send  
Receive Data  
Transmit Data1  
O
I
I/O  
1. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or  
transmit direction is configured for receive data  
90  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Package Information  
7.7.8 Human-Machine Interfaces(HMI)  
This section contains tables describing the HMI signals.  
Table 66. GPIO Module Signal Descriptions  
SoC Signal Name  
PTA[19:16][2:0]  
Module Signal Name  
Description  
I/O  
PORTA19-16, 2-0  
General Purpose Input/  
Output  
I/O  
I/O  
I/O  
PTB[18:16][3:0]  
PTC[19:16][7:1]  
PORTB18-16, 3-0  
PORTC19-16, 7-1  
General Purpose Input/  
Output  
General Purpose Input/  
Output  
8 Package Information  
8.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
Table 67. Packaging Dimensions  
If you want the drawing for this package  
40-pin "Wettable" HVQFN (6x6)  
Then use this document number  
98ASA01025D  
48-pin LQFN (7x7)  
98ASA00694D  
98ASA01307D  
48-pin "Wettable" HVQFN (7x7)  
9 Part identification  
9.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
91  
NXP Semiconductors  
Part identification  
9.2 Format  
Part numbers for this device have the following format:  
Q KW## A FFF R T PP CC N  
9.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 68. Part number fields descriptions  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KW##  
Kinetis Wireless family  
• KW34  
• KW35  
• KW36  
A
Key attribute  
• A = Automotive Qualification  
• 512 = 512 KB  
FFF  
T
Program flash memory size  
Temperature range (°C)  
• V = –40 to 105  
• C = –40 to 85  
PP  
Package identifier  
• HT = 48 LQFN (7 mm x 7 mm)  
• FP = 40 "Wettable" HVQFN (6 mm x 6 mm)  
• FT = 48 "Wettable" HVQFN (7 mm x 7 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• (Blank) = Tray  
• R = Tape and reel  
9.4 Example  
This is an example part number:  
MKW36A512VFT4  
92  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Revision History  
10 Revision History  
Table 69. Revision History  
Rev. No.  
Date  
Substantial Changes  
Rev 7  
09/2019  
• Removed flash access control feature from Security Features.  
• Added the following footnote to Table 13 : "The device was configured in buck mode auto-  
start to perform the measurements. The DCDC_IN was powered with 3.0 V.  
VDD_1P8OUT was configured to output 1.8 V and VDD_1P5OUT_PMCIN was configured  
to output 1.5 V."  
• Added the following footnote to VLPS, LLSx and VLLSx modes: "DCDC configured in  
pulsed mode." in Table 13.  
• Added thermal attributes for 48-pin "Wettable" HVQFN package, and replaced standard  
JESD51-2 with JESD51-2A in the footnotes in Thermal attributes.  
• Removed "Flash timing specifications – program and erase" and "Flash high voltage  
current behaviors" tables.  
• Added DCDC internal oscillator row in Table 39.  
• Updated Table 40 as follows:  
• In Switching Frequency row, updated the Typical value to DCDC reference  
frequency divided by 16 and added the following footnote to it: "DCDC reference  
frequency is derived from the RF oscillator or the DCDC internal oscillator".  
• Added VDD_1P8 ripple and VDD_1P5 ripple rows.  
• Updated introductory text beginning "The Port Control and Interrupt Module is used to  
select the functionality for...." in KW36A Signal Multiplexing and Pin Assignments. Same  
update done for KW35A and KW34A as well.  
• Updated "DEFAULT" column to correct "DISABLED" status of PTA19, PTB1/2/3 pin  
names in KW36/35/34 pinouts.  
Rev 7  
Draft B  
04/2019  
• Added "Top Line Marking" column to the Orderable parts details table.  
• Removed "Galois counter mode (AES-GCM)" and "DES modes" features of LTC from  
Security Features.  
• Removed "Logic Input Voltage Low/High" rows from Table 2.  
• Removed the following footnote from Table 12 : "Supported through the connectivity  
software in its pre-defined Deep Sleep Modes.".  
• Updated Typical value of IDD_RUN at 70 °C to 5.92 in Table 13.  
• Added "48-pin Wettable HVQFN" column to Thermal attributes.  
• Corrected name of vec_xtal32 to vec_extal32 in 32 kHz Oscillator Frequency Specifications.  
• Updated minimum and maximum values of "1.5V Output Voltage" in Table 40. Also  
specified the condition as "Consumed by radio".  
• Corrected location of ground pins in 48-pin LQFN pinout diagram - Figure 20.  
• Removed CAN0 and LPUART1 references from KW34A Signal Multiplexing and Pin  
Assignments.  
Rev 7  
Draft A  
11/2018  
• Added following part numbers: MKW36A512VFT4, MKW35A512VFT4, and  
MKW34A512VFT4  
• Added 48 "Wettable" QFN package details including pin diagrams and assignments.  
• Changed 40-pin "Wettable" QFN and 48-pin "Wettable" QFN to 40-pin "Wettable" HVQFN  
and 48-pin "Wettable" HVQFN throughout.  
• Applied new NXP Brand Guidelines for Bluetooth Low Energy.Removed references of  
BLE and replaced with Bluetooth LE.  
• Added the following footnote in Table 6 : "TX continuous wave power output at the RF  
pins with the recommended matching components mounted on PCB.".  
• Corrected maximum value of VDD_1P8 output in the footnote 6, in Table 42. DC-DC  
Converter Specifications, from 3 V to 3.5 V.  
• Removed silicon revision (R) field from Table 68. Part number fields descriptions.  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
93  
NXP Semiconductors  
Revision History  
Table 69. Revision History (continued)  
Rev. No.  
Date  
09/2018  
Substantial Changes  
Rev 6  
• Changed ARM to Arm and applied registered trademark to Cortex on first instance.  
• Updated Related Resources table for Web release.  
• Updated Introduction section to remove industrial details.  
• Added space between value and unit throughout.  
• Removed SPI Clock Rate row from Radio Operating Conditions.  
• Added figure title to Figure 3 in the topic Transmit and PLL Feature Summary.  
• Updated max values of IDD_STOP, IDD_LLS3/LLS2, IDD_VLLS0 (POR PO = ) in Table  
12  
• Updated Table 23 and Table 24.  
• Updated Table 25 - Flash command timing specifications.  
• Updated Table 26 - NVM reliability specifications.  
• Backpage was also updated.  
Rev 5  
07/2018  
• Updated title of the document to 'MKW36A/35A Data Sheet' from 'MKW35A/36A Data  
Sheet'.  
• Updated SoC name KW35A with KW36A/35A throughout.  
• Replaced QFN with "Wettable" QFN throughout  
• Added package drawings on front page and updated features under Multi-Standard Radio  
section as follows: Modulation index: added 1.0 to the list.  
• Updated Typical Rx Current and Typical Tx current values to 6.3 mA and 5.7 mA  
respectively.  
• Updated Low Power Mode (VLLS0) Current value to 258 nA from 182 nA.  
• Replaced column name "Tier" with "Qualification" in this table.  
• Updated Introduction section.  
• Removed Radio version number "V2.1" from Block Diagram.  
• Updated Radio features, Microcontroller features, and System features.  
• Appended "(Zero IF)" to Direct Conversion Receiver in Transceiver Description.  
• Edited Key Specifications.  
• Updated Receiver Sensitivity to -99 from -100 dBm in Radio features. Also added support  
of 1 Mbps PHY to BLE link Layer hardware.  
• Updated typical and minimum values in Table 3. Also updated footnote 7 to "BLE adjacent  
and alternate selectivity performance is measured with modulated interference signals.".  
• In Table 4 :  
• updated and added receiver specifications with GFSK modulations, and  
• updated footnote as follows: "Selectivity measured with an unmodulated blocker  
except for GFSK BT=0.5, h=0.5 1mbps and GFSK BT=0.5, h=0.32 1mbps. The  
desired signal is set at -85 dBm."  
.
• Updated typical and maximum values in Table 5. Also updated footnote for TXH2 and  
TXH3 symbols as follows: "Harmonic Levels based on recommended 2 component match.  
Transmit harmonic levels depend on the quality of matching components. Additional  
harmonic margin using a 3rd matching component (1x shunt capacitor) is possible."  
• Updated typical and maximum values in Table 12 and Table 13.  
• Updated typical values in Table 15. Also added specifications of STOP and RUN modes of  
radio state Tx (at +3.5 dBm).  
• Updated 48-pin LQFN and 40-pin QFN values in Thermal attributes table. Removed  
thermal metrics and kept thermal attributes RθJA and ΨJT. Also updated notes and added  
information about how to use the thermal characterization parameter, ΨJT.  
• Added following text in Reference Oscillator Specification : "The table below shows the  
recommended crystal specifications. Note that these are recommendations.....". Also  
updated 32M/26M typical values of Oscillator Startup Time to 500 μs.  
• Updated typical and maximum values in Table 1  
• Updated minimum, typical and maximum value of Temp sensor slope in Table 28  
• Updated Table 1.  
Table continues on the next page...  
94  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
Revision History  
Table 69. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Added a footnote under Buck Mode Supply Voltage in Table 39.  
• Corrected spec name of Buck mode in DC-DC configuration to VDCDC_IN from VDDDCDC_IN  
throughout.  
• In Table 40,  
• added a footnote for maximum value of DC-DC Converter Output Power,  
• updated footnote example corresponding to '1.8V Output Voltage',  
• updated maximum value in '1.8V Output Voltage' from "min(VDCDC_IN_buck, 3)" to  
"min(VDCDC_IN_buck, 3.5)",  
• added VDD_1P8 = 1.8V and VDD_1P5 = 1.5V conditions in 1.8V Output Current,  
and  
• added the following information to the footnote corresponding to '1.5V Output  
Voltage': "VDD_1P5 must not be programmed higher than VDD_1P8."  
• Added VIO_DCDC row in Voltage and current operating ratings.  
• Removed 48-pin LQFN pinout diagram and signal names from KW35A Signal Multiplexing  
and Pin Assignments. Also updated signal name at pin 17 and pin 19 of 40 "Wettable"  
QFN and 48 LQFN in ALT1 functionality to PTB3/ERCLK32K in KW36A Signal  
Multiplexing and Pin Assignments and KW35A Signal Multiplexing and Pin Assignments.  
Rev 4  
10/2017  
• BLE version 4.2 updated to 5.0.  
• Updated maximum value of voltage range to 3.6 V.  
• Updated Generic FSK modulation BT and receiver sensitivity from -100 dBm to -99 dBm.  
• Added support of up to 26 devices by Whitelist and 8 private resolvable addresses in  
hardware in the section Radio features.  
• Updated number of GPIO digital pins in the 48-pin package to 25 in Peripheral features.  
• Updated note text in Radio operating conditions as follows: "The recommended crystal  
accuracy is 40 ppm including initial accuracy, mechanical, temperature and aging  
factors."  
• Updated maximum values in Power mode transition operating behaviors.  
• Updated Typical values in Table 12 and Table 13.Also added the following note to the  
tables for Run mode: "Radio is off".  
• Minor updates in introductory text of Reference Oscillator Specification section. Also  
updated typical value of TOSC to 680 μs in .  
• Added 32 kHz Oscillator Frequency Specifications section.  
• Updated Table 40 section.  
• Added the following parameters: Switching Frequency, Half FET Threshold, Double  
FET Threshold, DC-DC Conversion Efficiency, DCDC Settling Time for increasing  
voltage and DCDC Settling Time for decreasing voltage.  
• Updated Typ. value of the 'DCDC Turn on Time' parameter and added a footnote.  
Rev 3  
Rev 2  
06/2017  
03/2017  
Updated Typical values in Table 12 and Table 13.  
• Modified structure of the document to include orderable part numbers and Related  
Resources table after the features list.  
• Specified all supported part numbers on the front page.  
• Specified the baudrate supported by FlexCAN in the features list.  
• Updated value of minimum input voltage to 1.71 V and output voltage to 1.8 V from 2.7 V.  
Also updated minimum voltage value in DCDC buck mode to 2.1 V from 2.7 V.  
• Changed RSSI Range maximum value to 5 dBm in Table 3 and added the following  
footnote: "With RSSI_CTRL_0.RSSI_ADJ field calibrated to account for antenna to RF  
input losses.".  
• Added Table 6 to show mapping relationship between TX_POWER and DBM. Also added  
the corresponding graph.  
• Added DCDC Inductor specifications in Table 39.  
• Updated Table 40 :  
• Removed repetitive fields from the table.  
Table continues on the next page...  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
95  
NXP Semiconductors  
Revision History  
Table 69. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Specified Typ. value of "DCDC Transition Operating Behavior" as 50 us.  
• Updated footnote 3 as follows: "In Buck mode, the maximum VDD_1P8 output is the  
minimum of either VDCDC_IN_BUCK minus 50 mV or 3 V. For example, if  
VDCDC_IN = 1.85 V, maximum VDD_1P8 is 1.8 V. If VDCDC_IN = 4.2 V, maximum  
VDD_1P8 is 3 V.".  
• Replaced Laminate QFN with LQFN throughout.  
• Added radio signals in Table 46.  
• Added document numbers of the supported package drawings in Table 67.  
• Added Part identification section.  
Rev 1  
01/2017  
• Updated maximum supply voltage from 4.2 to 4.25 V.  
• Corrected MBAN Channel numbering in Channel Plan for Bluetooth Low Energy.  
• Corrected "Radio" description for VLLS1 and VLLS0 power modes in Table 7.  
• Updated Section 9 Pin Diagrams and Pin Assignments.  
• Corrected pin name from VDD_1P45OUT_PMCIN to VDD_1P5OUT_PMCIN  
• Added ground pads in the pin diagrams  
• Put Typ. values as TBDs in Table 13, Power consumption operating behaviors - Buck  
Mode.  
• Added the following note in Diagram: Typical IDD_RUN operating behavior : "The results  
in the following graphs are obtained using the device in Bypass mode."  
• Put Typ. values as TBDs in Table 15, SoC Power Consumption.  
• Added TOSC row in , Reference Crystal Specification.  
• Added DCDC Transition Operating Behavior and DCDC Turn on Time in Table 40, DC-DC  
Converter Specifications.  
• Added the following note in Table 46 for the RF_TX_CONF pin: "This is a GPIO, not a  
dedicated PIN."  
Rev 0  
11/2016  
Initial Internal Release  
96  
MKW36A/35A/34A Data Sheet, Rev. 7, 09/2019  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, CWare, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, eIQ,  
Immersiv3D, EdgeLock, and EdgeScale are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11,  
Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,  
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,  
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered  
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology  
may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and  
Power.org word marks and the Power and Power.org logos and related marks are trademarks and  
service marks licensed by Power.org.  
© 2016-2019 NXP B.V.  
Document Number MKW36A512  
Revision 7, 09/2019  

相关型号:

935362771557

RISC Microcontroller
NXP

935362973528

RISC Microcontroller
NXP

935363183528

Wide Band Low Power Amplifier
NXP

935363184528

Wide Band Low Power Amplifier
NXP

935363292557

RISC Microcontroller
NXP

935363578557

Multifunction Peripheral
NXP

935363894557

Multifunction Peripheral
NXP

935363896557

Multifunction Peripheral
NXP

935363899125

Switching Controller
NXP

935363899147

Switching Controller
NXP

935368003128

RF Power Field-Effect Transistor
NXP

935368153574

Microcontroller
NXP