A3G18H500-04SR3 [NXP]

RF Power Field-Effect Transistor;
A3G18H500-04SR3
型号: A3G18H500-04SR3
厂家: NXP    NXP
描述:

RF Power Field-Effect Transistor

文件: 总16页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: A3G18H500--04S  
Rev. 0, 05/2017  
NXP Semiconductors  
Technical Data  
RF Power GaN Transistor  
This 107 W asymmetrical Doherty RF power GaN transistor is designed for  
cellular base station applications requiring very wide instantaneous bandwidth  
capability covering the frequency range of 1805 to 1880 MHz.  
A3G18H500--04SR3  
This part is characterized and performance is guaranteed for applications  
operating in the 1805 to 1880 MHz band. There is no guarantee of performance  
when this part is used in applications designed outside of these frequencies.  
1805–1880 MHz, 107 W AVG., 48 V  
AIRFAST RF POWER GaN  
TRANSISTOR  
1800 MHz  
Typical Doherty Single--Carrier W--CDMA Performance: VDD = 48 Vdc,  
DQA = 200 mA, VGSB = –5 Vdc, Pout = 107 W Avg., Input Signal  
PAR = 9.9 dB @ 0.01% Probability on CCDF.  
I
G
η
Output PAR  
(dB)  
ACPR  
(dBc)  
ps  
D
Frequency  
1805 MHz  
1840 MHz  
1880 MHz  
(dB)  
15.3  
15.4  
15.4  
(%)  
58.4  
57.7  
57.7  
7.1  
7.0  
6.7  
–31.9  
–33.2  
–33.8  
NI--780S--4L  
Features  
High terminal impedances for optimal broadband performance  
Advanced high performance in--package Doherty  
Able to withstand extremely high output VSWR and broadband operating  
conditions  
Carrier  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
RF /V  
inB GSB  
RF /V  
outB DSB  
Peaking  
(Top View)  
Figure 1. Pin Connections  
© 2017NXPB.V.
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
125  
Unit  
Vdc  
Vdc  
Vdc  
mA  
°C  
Drain--Source Voltage  
Gate--Source Voltage  
Operating Voltage  
V
DSS  
V
–8, 0  
GS  
DD  
V
0 to +55  
25  
Maximum Forward Gate Current @ T = 25°C  
I
GMAX  
C
Storage Temperature Range  
T
stg  
65 to +150  
55 to +150  
55 to +225  
275  
Case Operating Temperature Range  
Operating Junction Temperature Range  
T
C
°C  
T
J
°C  
(1)  
Absolute Maximum Junction Temperature  
T
MAX  
°C  
Table 2. Thermal Characteristics  
Characteristic  
Symbol  
(IR)  
Value  
Unit  
(2)  
Thermal Resistance by Infrared Measurement, Active Die Surface--to--Case  
R
0.60  
°C/W  
θ
JC  
Case Temperature 76°C, P = 94.2 W  
D
(3)  
Thermal Resistance by Finite Element Analysis, Junction--to--Case  
R
θ
JC  
(FEA)  
1.02  
°C/W  
Case Temperature 76°C, P = 94.2 W  
D
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
1B  
Human Body Model (per JESD22--A114)  
Charge Device Model (per JESD22--C101)  
C3  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Off Characteristics  
Drain--Source Breakdown Voltage  
V
Vdc  
(BR)DSS  
(V = –8 Vdc, I = 24.3 mAdc)  
Carrier  
Peaking  
150  
150  
GS  
D
(V = –8 Vdc, I = 35.1 mAdc)  
GS  
D
On Characteristics -- Side A, Carrier  
Gate Threshold Voltage  
V
–3.8  
–3.6  
–7.5  
–3.0  
–3.0  
–2.3  
–2.3  
Vdc  
Vdc  
GS(th)  
(V = 10 Vdc, I = 24.3 mAdc)  
DS  
D
Gate Quiescent Voltage  
(V = 48 Vdc, I = 200 mAdc, Measured in Functional Test)  
V
GSA(Q)  
DD  
D
Gate--Source Leakage Current  
(V = 0 Vdc, V = –5 Vdc)  
I
mAdc  
GSS  
DS  
GS  
On Characteristics -- Side B, Peaking  
Gate Threshold Voltage  
V
–3.8  
–7.7  
–3.3  
–2.3  
Vdc  
GS(th)  
(V = 10 Vdc, I = 20 mAdc)  
DS  
D
Gate--Source Leakage Current  
(V = 0 Vdc, V = –5 Vdc)  
I
mAdc  
GSS  
DS  
GS  
1. Functional operation above 225°C has not been characterized and is not implied. Operation at T  
(275°C) reduces median time to failure  
MAX  
by an order of magnitude; operation beyond T  
could cause permanent damage.  
MAX  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.  
3. R  
(FEA) must be used for purposes related to reliability and limitations on maximum junction temperature. MTTF may be estimated by  
θ
JC  
[A + B/(T + 273)]  
the expression MTTF (hours) = 10  
, where T is the junction temperature in degrees Celsius, A = –10.3 and B = 8260.  
4. Each side of device measured separately.  
(continued)  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
2
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1,2)  
Functional Tests  
(In NXP Doherty Test Fixture, 50 ohm system) V = 48 Vdc, I  
= 200 mA, V  
= –5 Vdc, P = 107 W Avg.,  
DD  
DQA  
GSB  
out  
f = 1840 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured  
in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. [See note on correct biasing sequence.]  
Power Gain  
G
14.5  
53.0  
6.3  
15.4  
57.7  
7.0  
17.5  
dB  
%
ps  
D
Drain Efficiency  
η
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF  
Adjacent Channel Power Ratio  
PAR  
dB  
dBc  
ACPR  
–33.2  
–29.0  
Load Mismatch (In NXP Test Fixture, 50 ohm system) I  
= 200 mA, V  
= –5 Vdc, f = 1840 MHz, 12 μsec(on), 10% Duty Cycle  
GSB  
DQA  
VSWR 10:1 at 55 Vdc, 575 W Pulsed CW Output Power  
No Device Degradation  
(3 dB Input Overdrive from 417 W Pulsed CW Rated Power)  
(2)  
Typical Performance  
(In NXP Doherty Test Fixture, 50 ohm system) V = 48 Vdc, I  
= 200 mA, V  
= –5 Vdc, 1805–1880 MHz  
GSB  
DD  
DQA  
Bandwidth  
(3)  
P
@ 3 dB Compression Point  
P3dB  
537  
W
out  
AM/PM  
(Maximum value measured at the P3dB compression point across  
Φ
–15  
°
the 1805–1880 MHz bandwidth)  
VBW Resonance Point  
VBW  
200  
MHz  
res  
(IMD Third Order Intermodulation Inflection Point)  
Gain Flatness in 75 MHz Bandwidth @ P = 107 W Avg.  
G
0.3  
dB  
out  
F
Gain Variation over Temperature  
G  
0.009  
dB/°C  
(–30°C to +85°C)  
Output Power Variation over Temperature  
P1dB  
0.004  
dB/°C  
(–30°C to +85°C)  
Table 5. Ordering Information  
Device  
Tape and Reel Information  
R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel  
Package  
A3G18H500--04SR3  
NI--780S--4L  
1. Part internally input matched.  
2. Measurements made with device in an asymmetrical Doherty configuration.  
3. P3dB = P + 7.0 dB where P is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors  
Turning the device ON  
1. Set V to –5 V  
GS  
2. Turn on V to nominal supply voltage (48 V)  
DS  
3. Increase V until I current is attained  
GS  
DS  
4. Apply RF input power to desired level  
Turning the device OFF  
1. Turn RF power off  
2. Reduce V down to –5 V  
GS  
3. Reduce V down to 0 V (Adequate time must be allowed  
DS  
for V to reduce to 0 V to prevent severe damage to device.)  
DS  
4. Turn off V  
GS  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
3
V
V
DDA  
C15  
GGA  
A3G18H500--04S  
Rev. 3  
C27  
C28  
C8  
C22  
C13  
C16  
C25 C26  
C12  
C1  
R1  
C2  
C21  
C18  
C19  
C
P
R3  
C7  
Z1  
C20  
C6  
C5  
C4  
R2  
C3  
C17  
C23  
C24  
C10  
C11  
C9  
C30  
C29  
V
D96809  
V
GGB  
C14  
DDB  
Figure 2. A3G18H500--04SR3 Test Circuit Component Layout  
Table 6. A3G18H500--04SR3 Test Circuit Component Designations and Values  
Part  
Description  
10 pF Chip Capacitor  
Part Number  
Manufacturer  
C1, C2  
GQM2195C2E100JB12  
ATC100B100GT500XT  
GQM2195C2E150JB12  
GQM2195C2ER90BB12  
GQM2195C2ER80BB12  
GQM2195C2ER60BB12  
MCGPR63V477M13X26-RH  
C3225X7S1H106K  
Murata  
C3, C16, C17  
C4, C19  
C5  
10 pF Chip Capacitor  
ATC  
15 pF Chip Capacitor  
Murata  
Murata  
Murata  
Murata  
Multicomp  
TDK  
0.9 pF Chip Capacitor  
0.8 pF Chip Capacitor  
0.6 pF Chip Capacitor  
470 μF, 63 V Electrolytic Capacitor  
10 μF Chip Capacitor  
C6  
C7, C21  
C8, C9  
C10, C11, C12, C13, C22,  
C23, C24, C25, C26  
C14, C15, C27, C28, C29, C30  
10 μF Chip Capacitor  
C5750X7S2A106M  
ATC100B3R0BT500XT  
GQM2195C2E1R3BB12  
CRCW08053R30FKEA  
C8A50Z4A  
TDK  
C18  
C20  
R1, R2  
R3  
3 pF Chip Capacitor  
ATC  
1.3 pF Chip Capacitor  
Murata  
Vishay  
Anaren  
Anaren  
MTL  
3.3 Ω, 1/4 W Chip Resistor  
50 Ω, 8 W Termination Chip Resistor  
1800-2200 MHz Band, 90°, 2 dB Directional Coupler  
Z1  
X3C20F1-02S  
PCB  
Rogers RO4350B, 0.020, ε = 3.66  
D96809  
r
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
4
TYPICAL CHARACTERISTICS — 1805–1880 MHz  
60  
59  
58  
16.4  
16.2  
V
= 48 Vdc, P = 107 W (Avg.), I  
= 200 mA, V  
= –5 Vdc  
DD  
out  
DQA  
GSB  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
16.0  
15.8  
15.6  
η
D
57  
56  
G
ps  
–2.4  
–2.6  
–31  
–32  
–33  
–34  
–35  
–36  
15.4  
15.2  
ACPR  
–2.8  
–3.0  
15.0  
14.8  
14.6  
14.4  
PARC  
–3.2  
–3.4  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
1760 1780 1800 1820  
1840 1860 1880 1900 1920  
f, FREQUENCY (MHz)  
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 107 Watts Avg.  
–10  
V
DD  
= 48 Vdc, P = 10 W (PEP), I  
= 200 mA  
out  
DQA  
V
GSB  
= –5 Vdc, Two--Tone Measurements  
(f1 + f2)/2 = Center Frequency of 1840 MHz  
–20  
–30  
–40  
–50  
–60  
IM3--U  
IM3--L  
IM5--U  
IM5--L  
IM7--L  
IM7--U  
1
10  
TWO--TONE SPACING (MHz)  
100  
500  
Figure 4. Intermodulation Distortion Products  
versus Two--Tone Spacing  
–15  
–20  
–25  
–30  
80  
70  
60  
50  
40  
30  
20  
17.0  
16.5  
16.0  
15.5  
15.0  
1
0
V
= 48 Vdc, I  
= 200 mA, V  
= –5 Vdc, f = 1840 MHz  
GSB  
DD  
DQA  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
–1  
–2  
–3  
–4  
–5  
η
D
–1 dB = 51.4 W  
G
ps  
ACPR  
–2 dB = 82.0 W  
–35  
–40  
–45  
PARC  
–3 dB = 108.0 W  
14.5  
14.0  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
20  
40  
60  
80  
100  
120  
140  
P
, OUTPUT POWER (WATTS)  
out  
Figure 5. Output Peak--to--Average Ratio  
Compression (PARC) versus Output Power  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
5
TYPICAL CHARACTERISTICS — 1805–1880 MHz  
0
65  
55  
20  
18  
16  
14  
12  
10  
8
V
= 48 Vdc, I  
= 200 mA, V  
= –5 Vdc  
DD  
DQA  
GSB  
Single--Carrier W--CDMA  
3.84 MHz Channel Bandwidth  
–10  
–20  
–30  
–40  
–50  
–60  
G
ps  
45  
35  
25  
15  
1840 MHz 1880 MHz  
1805 MHz  
ACPR  
1805 MHz  
1840 MHz  
1880 MHz  
1880 MHz  
1840 MHz  
1805 MHz  
η
D
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
10 100  
, OUTPUT POWER (WATTS) AVG.  
5
500  
1
P
out  
Figure 6. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
24  
V
P
= 48 Vdc  
= 0 dBm  
DD  
in  
21  
18  
15  
12  
9
I
V
= 200 mA  
= –5 Vdc  
DQA  
GSB  
Gain  
6
1350 1450 1550 1650 1750 1850 1950 2050 2150  
f, FREQUENCY (MHz)  
Figure 7. Broadband Frequency Response  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
6
Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning  
V
= 48 Vdc, I  
= 250 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle  
DD  
DQA  
Max Output Power  
P1dB  
(1)  
Z
η
AM/PM  
(°)  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
60.6  
58.6  
58.1  
Gain (dB)  
17.9  
(dBm)  
53.3  
(W)  
215  
210  
(MHz)  
1805  
1840  
1880  
2.56 – j6.80  
3.18 – j7.25  
3.88 – j7.65  
2.88 + j6.46  
4.22 – j7.66  
4.33 – j8.32  
4.43 – j8.45  
–9  
–9  
–9  
3.29 + j6.72  
3.69 + j6.85  
17.8  
53.2  
17.8  
53.0  
201  
Max Output Power  
P3dB  
(2)  
Z
()  
η
AM/PM  
(°)  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
65.1  
63.9  
62.5  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1840  
1880  
2.56 – j6.80  
2.63 + j6.74  
5.40 – j8.08  
5.30 – j8.38  
5.88 – j9.20  
16.2  
54.2  
265  
–11  
–12  
–12  
3.18 – j7.25  
3.88 – j7.65  
3.01 + j7.11  
3.52 + j7.35  
16.2  
16.2  
54.1  
54.0  
256  
251  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 8. Carrier Side Load Pull Performance — Maximum Efficiency Tuning  
V
= 48 Vdc, I  
= 250 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle  
DD  
DQA  
Max Drain Efficiency  
P1dB  
(1)  
Z
η
AM/PM  
(°)  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
71.3  
70.5  
68.1  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1840  
1880  
2.56 – j6.80  
3.18 – j7.25  
3.88 – j7.65  
2.52 + j6.98  
3.66 – j4.40  
3.39 – j4.12  
3.61 – j4.65  
19.4  
51.8  
151  
–23  
–26  
–25  
2.81 + j7.53  
3.38 + j7.76  
19.6  
19.5  
51.0  
51.1  
126  
130  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
η
AM/PM  
(°)  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
75.4  
74.3  
72.2  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1840  
1880  
2.56 – j6.80  
2.23 + j7.22  
3.93 – j4.40  
4.03 – j4.47  
4.53 – j5.02  
17.5  
52.6  
181  
–29  
–29  
–27  
3.18 – j7.25  
3.88 – j7.65  
2.63 + j7.72  
3.25 + j8.11  
17.6  
17.7  
52.4  
52.5  
175  
176  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
7
P1dB – TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 1840 MHz  
–2  
–4  
–6  
–2  
49  
54  
49.5  
50  
–4  
–6  
50.5  
E
E
70  
56  
51  
51.5  
52  
68  
58  
66  
60  
64  
62  
–8  
–8  
P
P
52.5  
53  
–10  
–10  
4
6
4
6
2
8
10  
2
8
10  
REAL ()  
REAL ()  
Figure 9. P1dB Load Pull Efficiency Contours (%)  
Figure 8. P1dB Load Pull Output Power Contours (dBm)  
–2  
–2  
–4  
–6  
21  
–24  
–22  
–20  
20.5  
–18  
–4  
E
E
20  
–16  
–14  
–6  
–8  
19.5  
–12  
–10  
19  
–8  
P
P
18.5  
–8  
17  
18  
17.5  
–10  
–10  
4
6
4
6
2
8
10  
2
8
10  
REAL ()  
REAL ()  
Figure 10. P1dB Load Pull Gain Contours (dB)  
Figure 11. P1dB Load Pull AM/PM Contours (°)  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
8
P3dB – TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 1840 MHz  
–2  
–4  
–6  
–2  
51  
51.5  
50.5  
52  
50  
–4  
–6  
74  
52.5  
72  
E
E
70  
68  
66  
53  
52.5  
53.5  
–8  
–8  
P
P
53  
64  
54  
62  
60  
58  
53.5  
–10  
–10  
4
6
4
6
2
8
10  
2
8
10  
REAL ()  
REAL ()  
Figure 12. P3dB Load Pull Output Power Contours (dBm)  
Figure 13. P3dB Load Pull Efficiency Contours (%)  
–2  
–2  
–4  
–6  
19  
–28  
–26  
–24  
18.5  
–4  
E
E
–22  
18  
–20  
–18  
–6  
17.5  
–16  
17  
–14  
–12  
–8  
–8  
P
P
16.5  
15  
15.5  
16  
–10  
–10  
4
6
4
6
2
8
10  
2
8
10  
REAL ()  
REAL ()  
Figure 14. P3dB Load Pull Gain Contours (dB)  
Figure 15. P3dB Load Pull AM/PM Contours (°)  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
9
Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning  
V
= 48 Vdc, V  
= 3.1 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle  
DD  
GSB  
Max Output Power  
P1dB  
(1)  
Z
η
AM/PM  
(°)  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
54.5  
54.3  
53.2  
Gain (dB)  
17.7  
(dBm)  
54.8  
(W)  
302  
297  
(MHz)  
1805  
1840  
1880  
1.66 – j6.38  
1.51 + j6.91  
1.79 – j4.63  
2.06 – j4.97  
2.01 – j5.25  
–13  
–13  
–13  
2.64 – j7.07  
2.30 – j7.54  
2.11 + j7.34  
2.13 + j7.92  
17.8  
54.7  
17.8  
54.6  
292  
Max Output Power  
P3dB  
(2)  
Z
()  
η
AM/PM  
(°)  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
58.7  
56.4  
56.8  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1840  
1880  
1.66 – j6.38  
1.37 + j6.95  
2.61 – j5.42  
2.86 – j5.78  
2.87 – j5.92  
16.0  
56.0  
398  
–13  
–13  
–13  
2.64 – j7.07  
2.30 – j7.54  
2.02 + j7.47  
2.02 + j8.07  
15.9  
16.1  
55.8  
55.6  
378  
365  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 10. Peaking Side Load Pull Performance — Maximum Efficiency Tuning  
V
= 48 Vdc, V  
= 3.1 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle  
DD  
GSB  
Max Drain Efficiency  
P1dB  
(1)  
Z
η
AM/PM  
(°)  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
63.1  
63.8  
62.0  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1840  
1880  
1.66 – j6.38  
1.46 + j7.24  
1.79 – j3.09  
2.02 – j3.16  
2.04 – j3.54  
19.3  
53.1  
203  
–25  
–25  
–24  
2.64 – j7.07  
2.30 – j7.54  
2.04 + j7.76  
2.06 + j8.33  
19.3  
19.5  
53.0  
53.1  
200  
203  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
η
AM/PM  
(°)  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
69.4  
68.9  
67.1  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1840  
1880  
1.66 – j6.38  
1.38 + j7.43  
2.15 – j2.96  
2.37 – j3.17  
2.52 – j3.41  
17.7  
53.9  
247  
–32  
–30  
–30  
2.64 – j7.07  
2.30 – j7.54  
1.93 + j8.02  
2.01 + j8.60  
17.6  
17.9  
54.1  
54.0  
256  
250  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
10  
P1dB – TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 1840 MHz  
–2  
–3  
–4  
–5  
–6  
–2  
50.5  
48  
50  
51  
51.5  
–3  
E
E
52  
52.5  
53  
62  
52  
–4  
–5  
–6  
60  
54  
58  
P
P
56  
53.5  
4
54  
53.5  
54  
54.5  
2
3
2
3
1
5
1
4
5
REAL ()  
REAL ()  
Figure 16. P1dB Load Pull Output Power Contours (dBm)  
Figure 17. P1dB Load Pull Efficiency Contours (%)  
–2  
–2  
–3  
–4  
–5  
–6  
20.5  
–28  
–26  
–24  
–22  
–3  
E
E
20  
–20  
–18  
–16  
–4  
–5  
–6  
19.5  
–14  
19  
P
P
–12  
18.5  
16.5  
18  
17  
2
17.5  
3
2
3
1
4
5
1
4
5
REAL ()  
REAL ()  
Figure 18. P1dB Load Pull Gain Contours (dB)  
Figure 19. P1dB Load Pull AM/PM Contours (°)  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
11  
P3dB – TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 1840 MHz  
–2  
–3  
–4  
–5  
–6  
–7  
–2  
53  
52.5  
E
66  
64  
58  
68  
52  
53.5  
62  
–3  
–4  
–5  
–6  
–7  
54  
E
60  
54  
54.5  
58  
54.5  
55  
P
56  
P
55  
54  
55.5  
2
3
2
3
REAL ()  
1
4
5
6
1
4
5
6
REAL ()  
Figure 20. P3dB Load Pull Output Power Contours (dBm)  
Figure 21. P3dB Load Pull Efficiency Contours (%)  
–2  
–2  
–3  
–4  
–5  
–6  
–7  
–28  
–26  
–24  
18.5  
18  
–3  
–4  
–5  
–6  
–7  
E
–22  
–20  
E
17.5  
–18  
–16  
17  
5
–14  
–12  
P
P
16.5  
16  
14.5  
2
15.5  
15  
3
2
3
1
4
6
1
4
5
6
REAL ()  
REAL ()  
Figure 23. P3dB Load Pull AM/PM Contours (°)  
Figure 22. P3dB Load Pull Gain Contours (dB)  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
12  
PACKAGE DIMENSIONS  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
13  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
14  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
.s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.nxp.com/RF  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
May 2017  
Initial release of data sheet  
A3G18H500--04SR3  
RF Device Data  
NXP Semiconductors  
15  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the information  
in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All operating  
parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. NXP does not convey any license under its patent rights  
nor the rights of others. NXP sells products pursuant to standard terms and conditions of  
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, and Airfast are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners.  
E 2017 NXP B.V.  
Document Number: A3G18H500--04S  
Rev. 0, 05/2017  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY