AC01 [NXP]

Cemented wirewound resistors; 水泥线绕电阻器
AC01
型号: AC01
厂家: NXP    NXP
描述:

Cemented wirewound resistors
水泥线绕电阻器

电阻器 线绕电阻器
文件: 总24页 (文件大小:402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BCcomponents  
DATA SHEET  
AC0 1/0 3 /0 4 /0 5 /0 7 /10 /15 /2 0  
Ce m e nt e d wire wou nd re s is t ors  
Product specification  
2000 Oct 20  
Supersedes data of 17th November 1998  
File under BCcomponents, BC08  
BCcomponents  
Product specification  
Ce m e n t e d w ir e w o u n d r e s is t o r s AC0 1/0 3 /0 4 /0 5 /0 7 /10 /15 /2 0  
FEATURES  
DESCRIPTION  
The resistor is coated with a green  
silicon cement which is not resistant to  
aggressive fluxes. The coating is  
non-flammable, will not drip even at  
high overloads and is resistant to most  
commonly used cleaning solvents, in  
accordance with “MIL-STD-202E,  
method 215” and “IEC 60068-2-45”.  
High power dissipation in  
small volume  
The resistor element is a resistive wire  
which is wound in a single layer on a  
ceramic rod. Metal caps are pressed  
over the ends of the rod.  
The ends of the resistance wire and the  
leads are connected to the caps by  
welding. Tinned copper-clad iron  
leads with poor heat conductivity are  
employed permitting the use of  
relatively short leads to obtain stable  
mounting without overheating the  
solder joint.  
High pulse load handling  
capabilities.  
APPLICATIONS  
Ballast switching  
Shunt in small electric motors  
Power supplies.  
QUICK REFERENCE DATA  
VALUE  
AC05 AC07  
0.1 0.68 0.82 1.2 Ω  
to to to to  
DESCRIPTION  
AC01  
AC03  
AC04  
AC10  
AC15  
AC20  
Resistance range  
0.1 Ω  
to  
0.1 Ω  
to  
0.1 Ω  
to  
0.1 Ω  
to  
2.4 k5.1 k6.8 k10 k15 k27 k39 k56 kΩ  
Resistance tolerance  
±5%; E24 series  
350 °C  
Maximum permissible body temperature  
Rated dissipation at Tamb = 40 °C  
Rated dissipation at Tamb = 70 °C  
Climatic category (IEC 60 068)  
Basic specification  
1 W  
3 W  
4 W  
5 W  
7 W  
10 W  
15 W  
20 W  
0.9 W 2.5 W 3.5 W 4.7 W 5.8 W 8.4 W 12.5 W 16 W  
40/200/56  
IEC 60115-1  
Stability after:  
load, 1000 hours  
R/R max.: ±5% + 0.1 Ω  
R/R max.: ±1% + 0.05 Ω  
R/R max.: ±2% + 0.1 Ω  
climatic tests  
short time overload  
2000 Oct 20  
2
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
ORDERING INFORMATION  
Table 1 Ordering code indicating resistor type and packaging  
ORDERING CODE 23.. ... .....  
LOOSE IN BOX  
STRAIGHT LEADS  
100 units  
BANDOLIER IN AMMOPACK  
STRAIGHT LEADS  
TY PE  
RADIAL  
2 500 units  
500 units  
1 000 units  
AC01  
06 328 90...(2)  
06 328 33...  
AC03(1)  
AC04(1)  
AC05(1)  
AC07(1)  
AC10  
22 329 03...  
22 329 04...  
22 329 05...  
22 329 07...  
22 329 10...  
AC15  
22 329 15...  
22 329 20...  
AC20  
Notes  
1. Products with bent leads and loose in box, are available on request.  
2. Last 3 digits available on request.  
Ordering code (12NC)  
Table 2 Last digit of 12NC  
ORDERING EXAMPLE  
The resistors have a 12-digit  
ordering code starting with 23  
The ordering code of an AC01 resistor,  
value 47 , supplied in ammopack of  
1000 units is: 2306 328 33479.  
RESISTANCE  
DECADE  
LAST DIGIT  
The subsequent 7 digits indicate the  
resistor type and packaging;  
see Table 1.  
0.1 to 0.91 Ω  
1 to 9.1 Ω  
7
8
9
1
2
3
Product specifications deviating  
from the standard values are available  
on request.  
10 to 91 Ω  
The remaining 3 digits indicate the  
resistance value:  
100 to 910 Ω  
1 to 9.1 kΩ  
10 to 56 kΩ  
The first 2 digits indicate the  
resistance value.  
The last digit indicates the  
resistance decade in accordance  
with Table 2.  
2000 Oct 20  
3
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
FUNCTIONAL DESCRIPTION  
Product characterization  
Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of ±5%.  
The values of the E24 series are in accordance with IEC publication 60063.  
Limiting values  
LIMITING POWER  
(1)  
LIMITING VOLTAGE  
(W)  
TYP E  
(V)  
Tamb = 40 °C  
Tamb = 70 °C  
AC01  
AC03  
AC04  
AC05  
AC07  
AC10  
AC15  
AC20  
1
3
0.9  
2.5  
4
3.5  
5
4.7  
V =  
Pn × R  
7
5.8  
10  
15  
20  
8.4  
12.5  
16.0  
Note  
1. The maximum voltage that may be continuously applied to the resistor element, see IEC publication 60266.  
The maximum permissible hot-spot temperature is 350 °C.  
DERATING  
The power that the resistor can dissipate depends on the operating temperature; see Fig.1.  
100  
90  
MRA574  
P
max  
(%)  
50  
0
o
40  
0
40  
70  
200  
T
( C)  
amb  
Fig.1 Maximum dissipation (Pmax) as a function of the ambient temperature (Tamb).  
2000 Oct 20  
4
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
PULSE LOADING CAPABILITIES  
How to generate the maximum allowed pulse-load from the graphs composed for wirewound resistors of the AC-types.  
Single pulse condition; see Fig.3  
Repetitive pulse condition; see Fig.2  
1. If the applied pulse energy in Joules or Wattseconds is  
known and also the R-value to be used in the  
With these graphs we can determine the allowed  
pulse-energy in Watts depending on the impulse- time ti and  
the repetition time tp of the pulses. The parameter is the  
Resistance Value. If the pulse shape is known (impulse-time  
ti and repetition time tp), draw a line vertically from the  
X-axis at the mentioned ti to the line of the involved R-value.  
From the intersection the horizontal line to the Y- axis  
indicates the maximum allowed pulse-load at a certain tp/ti.  
If the vertical line from the X-axis crosses the applied tp/ti  
before reaching the R-line, this tp/ti line gives the maximum  
allowed pulse-energy at the Y-axis. If the applied  
application; take the R-value on the X-axis and go  
vertically to the curved line. From this point go  
horizontally to the Y-axis, this point gives the maimum  
allowed pulse energy in Joules/ohm or Wattsec./ohm.  
By multiplying this figure with -value in use gives the  
maximum allowed pulse-energy in Joules or Wattsec. If  
this figure is higher than the applied pulse-energy the  
application is allowed. Otherwise take one of the other  
graphs belonging to AC-types with higher Pn.  
2. If, contrary to the information above, the applied  
peak-voltage and impulse times ti are known. Calculate  
the pulse-energy (Ep) in Joules or Wattsec. by the use of  
the following formula:  
pulse-energy is known (in Watts) and the impulse-time ti  
also, draw a line horizontally from the Y-axis to the crossing  
with the pulse-line (ti) and find the possible R-value needed  
in this application. The horizontal tp/ti lines give the  
maximum allowed pulse-load till they reach the R-line, that  
point indicates the maximum allowed impulse-time ti at the  
horizontal axis.  
Vp2  
---------  
Ep =  
× ti (Vp = peak voltage; ti = impulse-time)  
R
By dividing this result with the Rn-value of the R in use,  
gives the value Wattsec./ohm on the Y-axis. Draw a line  
horizontally to the curved line and at the intersection  
the vertical line to the X-axis gives the maximum  
allowed Rn-value to be used in the application. If this  
Rn-value is higher than the R-value to be used in the  
application, the application is allowed. If not, take one  
of the other graphs belonging to AC-types with higher Pn  
or change the Rn-value to be used.  
2000 Oct 20  
5
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB370  
4
10  
ˆ
P
max  
(W)  
3
tp/ti = 1000  
10  
tp/ti = 200  
tp/ti = 50  
2
10  
10  
tp/ti = 10  
tp/ti = 2  
0.1  
1 Ω  
10 Ω  
100 Ω  
2 kΩ  
1
1  
10  
4  
3  
2  
1  
10  
10  
10  
10  
1
t
(s)  
i
AC01  
ˆ
Fig.2 Pulse on a regular basis; maximum permissible peak pulse power (Pmax) as  
a function of pulse duration (ti).  
CCB371  
2
10  
pulse  
energy  
(Ws/Ω)  
10  
1
1  
10  
2  
10  
3  
4  
10  
10  
1  
2
3
4
10  
1
10  
10  
10  
10  
R
()  
n
AC01  
Fig.3 Pulse capability; Ws as a function of Rn.  
2000 Oct 20  
6
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB372  
1500  
ˆ
V
max  
(V)  
1000  
500  
0
10  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
t
(s)  
i
AC01  
ˆ
Fig.4 Pulse on a regular basis; maximum permissible peak pulse voltage (Vmax) as  
a function of pulse duration (ti).  
CCB373  
4
3
2
10  
ˆ
P
max  
tp/ti = 1000  
(W)  
10  
tp/ti = 200  
tp/ti = 50  
10  
tp/ti = 10  
tp/ti = 2  
0.1 Ω  
10  
1 Ω  
10 Ω  
110 Ω  
4.7 kΩ  
1
1  
10  
4  
3  
2  
1  
10  
10  
10  
10  
1
t
(s)  
i
AC03  
ˆ
Fig.5 Pulse on a regular basis; maximum permissible peak pulse power (Pmax) as  
a function of pulse duration (ti).  
2000 Oct 20  
7
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB374  
3
10  
pulse  
energy  
(Ws/Ω)  
2
10  
10  
1
1  
10  
2  
10  
3  
10  
4  
10  
1  
2
3
4
10  
1
10  
10  
10  
10  
R
()  
n
AC03  
Fig.6 Pulse capability; Ws as a function of Rn.  
CCB375  
2000  
ˆ
V
max  
(V)  
1500  
1000  
500  
0
10  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
t
(s)  
i
AC03  
ˆ
Fig.7 Pulse on a regular basis; maximum permissible peak pulse voltage (Vmax) as  
a function of pulse duration (ti).  
2000 Oct 20  
8
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB376  
4
10  
tp/ti = 1000  
ˆ
P
max  
(W)  
3
10  
tp/ti = 200  
tp/ti = 50  
2
10  
tp/ti = 10  
tp/ti = 2  
0.1 Ω  
1 Ω  
10  
10 Ω  
100 Ω  
6.8 kΩ  
1
1  
10  
4  
3  
2  
1  
10  
10  
10  
10  
1
t
(s)  
i
AC04  
ˆ
Fig.8 Pulse on a regular basis; maximum permissible peak pulse power (Pmax) as  
a function of pulse duration (ti).  
CCB377  
3
2
10  
pulse  
energy  
(Ws/Ω)  
10  
10  
1
1  
10  
2  
3  
10  
10  
4  
10  
1  
2
3
4
10  
1
10  
10  
10  
10  
R
()  
n
AC04  
Fig.9 Pulse capability; Ws as a function of Rn.  
2000 Oct 20  
9
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB378  
2500  
ˆ
V
max  
(V)  
2000  
1500  
1000  
500  
0
10  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
t
(s)  
i
AC04  
ˆ
Fig.10 Pulse on a regular basis; maximum permissible peak pulse voltage (Vmax) as  
a function of pulse duration (ti).  
CCB379  
4
3
2
10  
tp/ti = 1000  
ˆ
P
max  
(W)  
tp/ti = 200  
tp/ti = 50  
10  
10  
tp/ti = 10  
tp/ti = 2  
0.1 Ω  
1.1 Ω  
11 Ω  
100 Ω  
8.2 kΩ  
10  
1
1  
10  
4  
3  
2  
1  
10  
10  
10  
10  
1
t
(s)  
i
AC05  
ˆ
Fig.11 Pulse on a regular basis; maximum permissible peak pulse power (Pmax) as  
a function of pulse duration (ti).  
2000 Oct 20  
10  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB380  
3
10  
pulse  
energy  
(Ws/Ω)  
2
10  
10  
1
1  
10  
2  
10  
3  
10  
4  
10  
1  
2
3
4
10  
1
10  
10  
10  
10  
R
()  
n
AC05  
Fig.12 Pulse capability; Ws as a function of Rn.  
CCB381  
2500  
ˆ
V
max  
(V)  
2000  
1500  
1000  
500  
0
10  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
t
(s)  
i
AC05  
ˆ
Fig.13 Pulse on a regular basis; maximum permissible peak pulse voltage (Vmax) as  
a function of pulse duration (ti).  
2000 Oct 20  
11  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB382  
4
10  
tp/ti = 1000  
P
max  
(W)  
tp/ti = 200  
tp/ti = 50  
3
10  
2
10  
tp/ti = 10  
tp/ti = 2  
0.1 Ω  
1 Ω  
11 Ω  
100 Ω  
15 kΩ  
10  
1
4  
3  
2  
1  
10  
10  
10  
10  
1
t
(s)  
i
AC07  
ˆ
Fig.14 Pulse on a regular basis; maximum permissible peak pulse power (Pmax) as  
a function of pulse duration (ti).  
CCB383  
3
10  
pulse  
energy  
(Ws/Ω)  
2
10  
10  
1
1  
10  
2  
3  
10  
10  
4  
10  
1  
2
3
4
5
10  
1
10  
10  
10  
10  
10  
R
()  
n
AC07  
Fig.15 Pulse capability; Ws as a function of Rn.  
12  
2000 Oct 20  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB384  
5000  
ˆ
V
max  
(V)  
4000  
3000  
2000  
1000  
0
10  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
t
(s)  
i
AC07  
ˆ
Fig.16 Pulse on a regular basis; maximum permissible peak pulse voltage (Vmax) as  
a function of pulse duration (ti).  
CCB385  
5
4
10  
ˆ
P
max  
(W)  
tp/ti = 1000  
10  
tp/ti = 200  
tp/ti = 50  
3
2
10  
tp/ti = 10  
tp/ti = 2  
10  
0.22 Ω  
2.2 Ω  
33 Ω  
240 Ω  
15 kΩ  
10  
1
4  
3  
2  
1  
10  
10  
10  
10  
1
t
(s)  
i
AC10  
ˆ
Fig.17 Pulse on a regular basis; maximum permissible peak pulse power (Pmax) as  
a function of pulse duration (ti).  
2000 Oct 20  
13  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB386  
3
10  
pulse  
energy  
(Ws/Ω)  
2
10  
10  
1
1  
10  
2  
10  
3  
10  
4  
10  
1  
2
3
4
5
10  
1
10  
10  
10  
10  
10  
R
()  
n
AC10  
Fig.18 Pulse capability; Ws as a function of Rn.  
CCB387  
5000  
ˆ
V
max  
(V)  
4000  
3000  
2000  
1000  
0
10  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
t
(s)  
i
AC10  
ˆ
Fig.19 Pulse on a regular basis; maximum permissible peak pulse voltage (Vmax) as  
a function of pulse duration (ti).  
2000 Oct 20  
14  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB388  
5
10  
ˆ
P
max  
(W)  
tp/ti = 1000  
4
10  
tp/ti = 200  
tp/ti = 50  
3
10  
10  
tp/ti = 10  
tp/ti = 2  
0.33 Ω  
2
4.3 Ω  
33 Ω  
330 Ω  
39 kΩ  
10  
1
4  
3  
2  
1  
10  
10  
10  
10  
1
t
(s)  
i
AC15  
ˆ
Fig.20 Pulse on a regular basis; maximum permissible peak pulse power (Pmax) as  
a function of pulse duration (ti).  
CCB389  
3
2
10  
pulse  
energy  
(Ws/Ω)  
10  
10  
1
1  
10  
2  
3  
10  
10  
4  
10  
1  
2
3
4
5
10  
1
10  
10  
10  
10  
10  
R
()  
n
AC15  
Fig.21 Pulse capability; Ws as a function of Rn.  
15  
2000 Oct 20  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB390  
7000  
ˆ
V
max  
(V)  
6000  
5000  
4000  
3000  
2000  
1000  
0
10  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
t
(s)  
i
AC15  
ˆ
Fig.22 Pulse on a regular basis; maximum permissible peak pulse voltage (Vmax) as  
a function of pulse duration (ti).  
CCB391  
5
4
10  
ˆ
P
max  
(W)  
tp/ti = 1000  
10  
tp/ti = 200  
tp/ti = 50  
3
2
10  
tp/ti = 10  
tp/ti = 2  
0.47 Ω  
10  
5.1 Ω  
47 Ω  
470 Ω  
56 kΩ  
10  
1
4  
3  
2  
1  
10  
10  
10  
10  
1
t
(s)  
i
AC20  
ˆ
Fig.23 Pulse on a regular basis; maximum permissible peak pulse power (Pmax) as  
a function of pulse duration (ti).  
2000 Oct 20  
16  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
CCB392  
3
10  
pulse  
energy  
(Ws/Ω)  
2
10  
10  
1
1  
10  
2  
10  
3  
10  
4  
10  
1  
2
3
4
5
10  
1
10  
10  
10  
10  
10  
R
()  
n
AC20  
Fig.24 Pulse capability; Ws as a function of Rn.  
CCB393  
10000  
ˆ
V
max  
(V)  
8000  
6000  
4000  
2000  
0
10  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
1
t
(s)  
i
AC20  
ˆ
Fig.25 Pulse on a regular basis; maximum permissible peak pulse voltage (Vmax) as  
a function of pulse duration (ti).  
2000 Oct 20  
17  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
Application information  
MGB730  
350  
T at  
hot spot  
(K)  
300  
AC04  
AC05  
AC07  
AC15  
AC03  
AC10  
AC20  
250  
200  
150  
100  
50  
0
AC01  
0
4
8
12  
16  
20  
24  
P (W)  
Fig.26 Temperature rise of the resistor body as a function of the dissipation.  
MRA573  
MGB731  
25  
25  
lead  
length  
(mm)  
lead  
length  
(mm)  
T = 40 K  
50 K 60 K  
20  
15  
10  
20  
T = 10 K  
20 K  
30 K  
70 K  
80 K  
15  
10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
1
2
3
P (W)  
P (W)  
AC01  
AC03  
Fig.27 Lead length as a function of the dissipation  
with the temperature rise at the end of the  
lead (soldering spot) as a parameter.  
Fig.28 Lead length as a function of the dissipation  
with the temperature rise at the end of the  
lead (soldering spot) as a parameter.  
2000 Oct 20  
18  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
MGB732  
MGB733  
25  
25  
50 K 60 K  
50 K  
60 K  
70 K  
T = 40 K  
T = 40 K  
lead  
length  
(mm)  
lead  
length  
(mm)  
80 K  
20  
20  
70 K  
90 K  
15  
10  
15  
10  
80 K  
100 K  
0
1
2
3
4
0
1
2
3
4
5
P (W)  
P (W)  
AC04  
AC05  
Fig.29 Lead length as a function of the dissipation  
with the temperature rise at the end of the  
lead (soldering spot) as a parameter.  
Fig.30 Lead length as a function of the dissipation  
with the temperature rise at the end of the  
lead (soldering spot) as a parameter.  
MGB734  
MGB735  
25  
25  
T = 40 K  
50 K  
lead  
length  
(mm)  
T = 40 K  
50 K 60 K  
70 K  
lead  
length  
(mm)  
60 K  
70 K  
80 K  
80 K  
20  
20  
90 K  
15  
10  
15  
10  
0
2
4
6
8
0
5
10  
15  
20  
P (W)  
P (W)  
AC07  
AC10  
Fig.31 Lead length as a function of the dissipation  
with the temperature rise at the end of the  
lead (soldering spot) as a parameter.  
Fig.32 Lead length as a function of the dissipation  
with the temperature rise at the end of the  
lead (soldering spot) as a parameter.  
2000 Oct 20  
19  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
MGB737  
MGB736  
25  
25  
lead  
length  
(mm)  
lead  
length  
(mm)  
50 K 60 K 70 K  
T = 40 K  
T = 40 K  
50 K  
60 K 70 K  
20  
20  
15  
10  
15  
10  
0
5
10  
15  
20  
0
5
10  
15  
20  
P (W)  
P (W)  
AC15  
AC20  
Fig.33 Lead length as a function of the dissipation  
with the temperature rise at the end of the  
lead (soldering spot) as a parameter.  
Fig.34 Lead length as a function of the dissipation  
with the temperature rise at the end of the  
lead (soldering spot) as a parameter.  
MOUNTING  
The resistor is suitable for processing on cutting and bending machines. Ensure that the temperature rise of the resistor  
body does not affect nearby components or materials by conducted or convected heat. Figure 26 shows the hot-spot  
temperature rise of the resistor body as a function of dissipated power. Figures 27 to 34 show the lead length as a function  
of dissipated power and temperature rise.  
2000 Oct 20  
20  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
MECHANICAL DATA  
Mass per 100 units  
Outlines  
Table 3 Resistor type and relevant physical dimensions; see Figs 35 and 36  
D
L
S
B
MASS  
(g)  
d
b
h
P
TYPE  
TY PE MAX. MAX.  
(mm) (mm)  
MAX. MAX.  
(mm) (mm)  
(mm)  
(mm) (mm) (mm)  
AC01  
AC03  
AC04  
AC05  
AC07  
AC10  
AC15  
AC20  
55  
AC01  
AC03  
AC04  
AC05  
AC07  
AC10  
AC15  
AC20  
4.3  
5.5  
5.7  
7.5  
7.5  
8
10  
13  
17  
17  
25  
44  
51  
67  
110  
140  
10e  
220  
1.3  
8
2
1.2  
300  
0.8 ±0.03  
13e  
530  
840  
10  
10  
1090  
Marking  
The resistor is marked with the  
nominal resistance value, the  
tolerance on the resistance and the  
rated dissipation at Tamb = 40 °C.  
L
For values up to 910 , the R is used as  
the decimal point.  
O D  
Od  
For values of 1 kand upwards, the  
letter K is used as the decimal point for  
the kindication.  
MRA571  
For dimensions see Table 3.  
Fig.35 Type with straight leads.  
O D  
P
0.5  
2
h
0
L
1
0
O d  
5
2 min  
O B  
0.1  
MLB677  
P
4
b
0
P
S
MLB676  
Dimensions in mm.  
For dimensions see Table 3.  
Available on request for types: AC03, AC04, AC05 and AC07.  
Fig.36 Type with cropped and formed leads.  
2000 Oct 20  
21  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
P
1 ±0.5  
P1 ±0.5  
D
h + 2  
L
max  
+1  
0
4.5  
(1)  
b1  
b2  
d
S
B ±0.07  
JW29  
P
2 ±3  
Dimensions in mm.  
For dimensions see Table 4.  
0.8 to 1.4.  
Fig.37 Type with double kink.  
Table 4 Resistor type and relevant physical dimensions; see Fig.37  
L
MAX.  
(mm)  
S
D
(mm)  
b1  
(mm)  
b2  
(mm)  
h
P1  
(mm)  
P2  
(mm)  
B
(mm)  
TYPE  
LEAD STYLE  
MAX.  
(mm)  
(mm)  
AC03  
AC04  
AC05  
double kink  
large pitch  
0.8 ±0.03  
0.8 ±0.03  
10  
1.30  
1.65  
8
8
25.4  
22.0  
25.4  
20.0  
2
1.0  
+0.25/-0.20 +0.25/-0.20  
AC03  
AC04  
AC05  
double kink  
small pitch  
10  
1.30  
2.15  
2
1.0  
+0.25/-0.20 +0.25/-0.20  
2000 Oct 20  
22  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
TESTS AND REQUIREMENTS  
In Table 5 the tests and requirements are listed with  
reference to the relevant clauses of  
IEC publications 60115-1, 115-4 and 68; a short  
description of the test procedure is also given. In some  
instances deviations from the IEC recommendations were  
necessary for our method of specifying.  
Essentially all tests are carried out in accordance with the  
schedule of IEC publications 60115-1 and 60115-4,  
category 40/200/56 (rated temperature range 40 °C to  
+200 °C; damp heat, long term, 56 days). The testing also  
covers the requirements specified by EIA and EIAJ.  
All soldering tests are performed with mildly activated flux.  
The tests are carried out in accordance with IEC publication  
60 068, Recommended basic climatic and mechanical  
robustness testing procedure for electronic components”  
and under standard atmospheric conditions according to  
IEC 60 068-1, subclause 5.3.  
Table 5 Test procedures and requirements  
IEC  
IEC  
60068  
TEST  
METHOD  
60115-1  
CLAUSE  
TEST  
PROCEDURE  
REQUIREMENTS  
Tests in accordance with the schedule of IEC publication 60115-1  
4.15  
robustness of  
resistor body  
load 200 ±10 N  
no visible damage  
R/R max.: ±0.5% + 0.05 Ω  
load  
R = 6 mm  
MBB179  
4.16  
U
robustness of  
terminations:  
Ua  
Ub  
tensile all samples load 10 N; 10 s  
bending half  
load 5 N 90°, 180°, 90°  
number of samples  
Uc  
torsion other half of 2 × 180° in opposite directions  
no visible damage  
samples  
R/R max.: ±0.5% + 0.05 Ω  
4.17  
4.18  
Ta  
solderability  
2 s; 235 °C; flux 600  
good tinning; no damage  
Tb  
resistance to soldering thermal shock: 3 s; 350 °C;  
R/R max.: ±0.5% + 0.05 Ω  
heat  
2.5 mm from body  
4.19  
4.22  
14 (Na)  
Fc  
rapid change of  
temperature  
30 minutes at 40 °C and  
30 minutes at +200 °C; 5 cycles  
no visible damage  
R/R max.: ±1% + 0.05 Ω  
vibration  
frequency 10 to 500 Hz; displacement  
0.75 mm or acceleration 10 g;  
no damage  
R/R max.: ±0.5% + 0.05 Ω  
3 directions; total 6 hours (3 × 2 hours)  
4.20  
Eb  
bump  
4000 ±10 bumps; 390 m/s2  
no damage  
R/R max.: ±0.5% + 0.05 Ω  
2000 Oct 20  
23  
BCcomponents  
Product specification  
Ce m e nt e d wire wound re s is t ors  
AC0 1/0 3 /0 4 /0 5 /0 7/10 /15 /2 0  
IEC  
IEC  
60068  
TEST  
METHOD  
60115-1  
CLAUSE  
TEST  
PROCEDURE  
REQUIREMENTS  
4.23  
climatic sequence:  
dry heat  
4.23.2  
4.23.3  
Ba  
16 hours; 200 °C  
Db  
damp heat  
24 hours; 55 °C; 95 to 100% RH  
(accelerated)  
1
st cycle  
4.23.4  
4.23.5  
4.23.6  
Aa  
M
cold  
2 hours; 40 °C  
low air pressure  
1 hour; 8.5 kPa; 15 to 35 °C  
5 days; 55 °C; 95 to 100% RH  
Db  
damp heat  
R/R max.: ±1% + 0.05 Ω  
(accelerated)  
remaining cycles  
4.24.2  
3 (Ca)  
damp heat  
(steady state)  
56 days; 40 °C; 90 to 95% RH;  
dissipation 0.01 Pn  
no visible damage  
R/R max.: ±1% + 0.05 Ω  
4.8.4.2  
temperature  
coefficient  
at 20/40/20 °C, 20/200/20 °C:  
R < 10 Ω  
TC ≤ ±600 × 106/K  
R 10 Ω  
80 × 106 TC  
TC +140 × 106/K  
temperature rise  
horizontally mounted, loaded with Pn  
hot-spot temperature less  
than maximum body  
temperature  
4.13  
short time overload  
room temperature; dissipation 10 × Pn;  
5 s (voltage not more than  
1000 V/25 mm)  
R/R max.: ±2% + 0.1 Ω  
4.25.1  
4.25.1  
4.23.2  
endurance (at 40 °C) 1000 hours loaded with Pn;  
no visible damage  
R/R max.: ±5% + 0.1 Ω  
1.5 hours on and 0.5 hours off  
endurance (at 70 °C) 1000 hours loaded with 0.9Pn;  
no visible damage  
R/R max.: ±5% + 0.1 Ω  
1.5 hours on and 0.5 hours off  
27 (Ba)  
endurance at upper  
category temperature  
1000 hours; 200 °C; no load  
no visible damage  
R/R max.: ±5% + 0.1 Ω  
Other tests in accordance with IEC 60115 clauses and IEC 60 068 test method  
4.29  
4.18  
4.17  
45 (Xa)  
20 (Tb)  
20 (Tb)  
component solvent  
resistance  
70% 1.1.2 trichlorotrifluoroethane and  
30% isopropyl alcohol; H20  
no visible damage  
resistance to soldering 10 s; 260 ±5 °C; flux 600  
heat  
R/R max.: ±0.5% + 0.05 Ω  
solderability  
(after ageing)  
16 hours steam or 16 hours at 155 °C;  
2 ±0.5 s in solder at 235 ±5 °C;  
good tinning (95%  
covered); no damage  
flux 600  
4.5  
tolerance on  
resistance  
applied voltage (±10%):  
R < 10 : 0.1 V  
R Rnom: ±5% max.  
10 Ω ≤ R < 100 : 0.3 V  
100 Ω ≤ R < 1 k: 1 V  
1 kΩ ≤ R < 10 k: 3 V  
10 kΩ ≤ R 33 k: 10 V  
2000 Oct 20  
24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY