BF556B [NXP]

N-channel silicon junction field-effect transistors; N-沟道硅结型场效应晶体管
BF556B
型号: BF556B
厂家: NXP    NXP
描述:

N-channel silicon junction field-effect transistors
N-沟道硅结型场效应晶体管

晶体 小信号场效应晶体管 射频小信号场效应晶体管
文件: 总11页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DISCRETE SEMICONDUCTORS  
DATA SHEET  
BF556A; BF556B; BF556C  
N-channel silicon junction  
field-effect transistors  
Product specification  
1996 Jul 29  
Supersedes data of April 1995  
File under Discrete Semiconductors, SC07  
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
FEATURES  
Low leakage level (typ. 500 fA)  
High gain  
handbook, age  
2
1
Low cut-off voltage.  
d
g
s
APPLICATIONS  
Impedance converters in e.g. electret microphones and  
3
infra-red detectors  
Top view  
MAM036  
VHF amplifiers in oscillators and mixers.  
Marking codes:  
BF556A: M84.  
BF556B: M85.  
BF556C: M86.  
DESCRIPTION  
N-channel symmetrical silicon junction field-effect  
transistors in a SOT23 package.  
Fig.1 Simplified outline and symbol.  
PINNING - SOT23  
PIN  
1
SYMBOL  
DESCRIPTION  
source  
CAUTION  
s
d
g
The device is supplied in an antistatic package. The  
gate-source input must be protected against static  
discharge during transport or handling.  
2
drain  
gate‘  
3
QUICK REFERENCE DATA  
SYMBOL  
VDS  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
±30  
UNIT  
drain-source voltage (DC)  
gate-source cut-off voltage  
drain current  
V
VGSoff  
IDSS  
ID = 200 µA; VDS = 15 V  
0.5  
7.5  
V
VGS = 0; VDS = 15 V  
BF556A  
3
7
mA  
mA  
mA  
mW  
mS  
BF556B  
6
13  
18  
250  
BF556C  
11  
Ptot  
yfs  
total power dissipation  
forward transfer admittance  
up to Tamb = 25 °C  
VGS = 0; VDS = 15 V  
4.5  
1996 Jul 29  
2
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VDS  
PARAMETER  
drain-source voltage (DC)  
gate-source voltage  
CONDITIONS  
MIN.  
MAX.  
±30  
UNIT  
V
V
V
VGSO  
VGDO  
IG  
open drain  
30  
30  
10  
gate-drain voltage (DC)  
forward gate current (DC)  
total power dissipation  
storage temperature  
open source  
mA  
mW  
°C  
Ptot  
Tstg  
Tj  
up to Tamb = 25 °C; note 1  
250  
150  
150  
65  
operating junction temperature  
°C  
Note  
1. Device mounted on an FR4 printed-circuit board, maximum lead length 4 mm; mounting pad for the drain  
lead 10 mm2.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
Rth j-a  
thermal resistance from junction to ambient; note 1  
500  
K/W  
Note  
1. Device mounted on an FR4 printed-circuit board, maximum lead length 4 mm; mounting pad for the drain  
lead 10 mm2.  
STATIC CHARACTERISTICS  
Tj = 25 °C; unless otherwise specified.  
SYMBOL  
V(BR)GSS  
VGSoff  
PARAMETER  
CONDITIONS  
MIN.  
30  
TYP.  
MAX.  
UNIT  
gate-source breakdown voltage IG = 1 µA; VDS = 0  
V
V
gate-source cut-off voltage  
drain current  
ID = 200 µA; VDS = 15 V 0.5  
7.5  
IDSS  
VGS = 0; VDS = 15 V  
BF556A  
3
7
mA  
mA  
mA  
pA  
BF556B  
6
13  
BF556C  
11  
18  
IGSS  
yfs  
gate leakage current  
forward transfer admittance  
VGS = 20 V; VDS = 0  
VGS = 0; VDS = 15 V  
VGS = 0; VDS = 15 V  
0.5  
5000  
4.5  
mS  
µS  
yos  
common source output  
admittance  
40  
1996 Jul 29  
3
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
DYNAMIC CHARACTERISTICS  
T
amb = 25 °C; unless otherwise specified.  
SYMBOL PARAMETER  
input capacitance  
CONDITIONS  
TYP.  
1.7  
UNIT  
pF  
Cis  
Crs  
gis  
VDS = 15 V; VGS = 10 V; f = 1 MHz  
VDS = 15 V; VGS = 0; f = 1 MHz  
3
pF  
reverse transfer capacitance  
VDS = 15 V; VGS = 10 V; f = 1 MHz  
VDS = 15 V; VGS = 0; f = 1 MHz  
0.8  
0.9  
15  
300  
2
pF  
pF  
common source input conductance  
common source transfer conductance  
common source reverse conductance  
common source output conductance  
equivalent input noise voltage  
VDS = 10 V; ID = 1 mA; f = 100 MHz  
VDS = 10 V; ID = 1 mA; f = 450 MHz  
VDS = 10 V; ID = 1 mA; f = 100 MHz  
VDS = 10 V; ID = 1 mA; f = 450 MHz  
VDS = 10 V; ID = 1 mA; f = 100 MHz  
VDS = 10 V; ID = 1 mA; f = 450 MHz  
VDS = 10 V; ID = 1 mA; f = 100 MHz  
VDS = 10 V; ID = 1 mA; f = 450 MHz  
VDS = 10 V; ID = 1 mA; f = 100 Hz  
µS  
µS  
gfs  
grs  
gos  
Vn  
mS  
mS  
µS  
1.8  
6  
40  
30  
60  
40  
µS  
µS  
µS  
nV/Hz  
MRC156  
MRC154  
10  
20  
handbook, halfpage  
handbook, halfpage  
I
Y
DSS  
fs  
(mS)  
(mA)  
8
16  
6
4
2
0
12  
8
4
0
0
0
1
2
3
4
5
6
7
(V)  
1
2
3
4
5
6
7
V
GSoff  
V
(V)  
GSoff  
VDS = 15 V; ID = 1 µA.  
VDS = 15 V.  
Fig.3 Forward transfer admittance as a function  
of gate-source cut-off voltage; typical  
values.  
Fig.2 Drain current as a function of gate-source  
cut-off voltage; typical values.  
1996 Jul 29  
4
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
MRC153  
MRC155  
100  
300  
handbook, halfpage  
handbook, halfpage  
G
os  
(µS)  
R
DSon  
()  
80  
200  
60  
40  
20  
0
100  
0
0
0
2  
4  
6  
V
8  
(V)  
2
4
6
8
GSoff  
V
(V)  
GSoff  
VDS = 100 mV; VGS = 0.  
VDS = 15 V.  
Fig.4 Common-source output conductance as a  
function of gate-source cut-off voltage;  
typical values.  
Fig.5 Drain-source on-state resistance as a  
function of gate-source cut-off voltage;  
typical values.  
MRC145  
MRC146  
5
16  
handbook, halfpage  
V
= 0 V  
handbook, halfpage  
I
GS  
D
(mA)  
I
D
(mA)  
V
= 0 V  
GS  
4
3
2
1
0
12  
0.5 V  
1.0 V  
0.5 V  
1 V  
8
4
0
1.5 V  
2.0 V  
2.5 V  
0
4
8
12  
16  
0
4
8
12  
16  
V
(V)  
DS  
V
(V)  
DS  
Fig.6 Typical output characteristics; BF556A.  
Fig.7 Typical output characteristics; BF556B.  
1996 Jul 29  
5
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
MRC147  
MRC148  
25  
30  
handbook, halfpage  
handbook, halfpage  
I
D
(mA)  
I
D
V
= 0 V  
GS  
(mA)  
20  
BF556C  
BF556B  
20  
1 V  
15  
10  
5
2 V  
3 V  
10  
BF556A  
4 V  
5 V  
0
0
6  
0
4
8
12  
16  
4  
2  
0
V
(V)  
V
(V)  
GS  
DS  
VDS = 15 V.  
Fig.8 Typical output characteristics; BF556C.  
Fig.9 Typical input characteristics.  
MRC149  
MRC151  
3
2
10  
10  
handbook, halfpage  
I
handbook, halfpage  
D
I
(µA)  
G
I
= 10 mA  
D
2
(pA)  
10  
10  
1 mA  
BF556C BF556B  
BF556A  
10  
1
1  
I
GSS  
1  
10  
1  
10  
0.1 mA  
2  
10  
3  
2  
10  
10  
8  
6  
4  
2  
0
0
4
8
12  
16  
V
20  
(V)  
V
(V)  
GS  
DG  
VDS = 15 V.  
ID = 10 mA only for BF556B and BF556C.  
Fig.10 Drain current as a function of gate-source  
voltage; typical values.  
Fig.11 Gate current as a function of drain-gate  
voltage; typical values.  
1996 Jul 29  
6
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
MRC150  
MRC166  
3
10  
300  
handbook, halfpage  
I
GSS  
P
tot  
(mW)  
(pA)  
2
10  
200  
10  
1
100  
1  
10  
0
50  
0
50  
100  
150  
0
50  
100  
150  
o
T
( C)  
amb  
T (°C)  
j
VDS = 0; VGS = 20 V.  
Fig.12 Gate current as a function of junction  
temperature; typical values.  
Fig.13 Power derating curve.  
MRC134  
MRC140  
1
3
handbook, halfpage  
handbook, halfpage  
C
rs  
(pF)  
C
is  
0.8  
(pF)  
2
0.6  
0.4  
0.2  
0
1
0
–10  
–8  
–6  
–4  
–2  
0
–10  
–8  
–6  
–4  
–2  
0
V
(V)  
V
(V)  
GS  
GS  
VDS = 15 V.  
VDS = 15 V.  
Fig.14 Reverse transfer capacitance; typical values.  
1996 Jul 29  
Fig.15 Input capacitance; typical values.  
7
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
MRC142  
MRC141  
2
10  
10  
handbook, halfpage  
handbook, halfpage  
g
, b  
is is  
(mS)  
g
, b  
fs  
fs  
(mS)  
10  
g
fs  
b
is  
1
1
b  
fs  
g
is  
1  
10  
2  
1  
10  
10  
2
3
2
3
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS = 10 V; ID = 1 mA; Tamb = 25 °C.  
VDS = 10 V; ID = 1 mA; Tamb = 25 °C.  
Fig.16 Common-source input admittance; typical  
values.  
Fig.17 Common-source transfer admittance;  
typical values.  
MRC144  
MRC143  
10  
10  
handbook, halfpage  
handbook, halfpage  
b
, g  
rs rs  
b
, g  
os os  
(mS)  
(mS)  
b
rs  
1  
b
os  
1
1  
2  
3  
10  
10  
10  
1  
g
10  
10  
rs  
g
os  
2  
2
3
2
3
10  
10  
10  
10  
10  
10  
f (MHz)  
f (MHz)  
VDS = 10 V; ID = 1 mA; Tamb = 25 °C.  
VDS = 10 V; ID = 1 mA; Tamb = 25 °C.  
Fig.18 Common-source reverse admittance;  
typical values.  
Fig.19 Common-source output admittance;  
typical values.  
1996 Jul 29  
8
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
MRC278  
3
10  
handbook, halfpage  
V
n
(V)  
2
10  
10  
1
10  
2
3
4
5
10  
10  
10  
10  
f (Hz)  
VDS = 10 V; ID = 1 mA.  
Fig.20 Equivalent noise voltage as a function of  
frequency.  
1996 Jul 29  
9
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
PACKAGE OUTLINE  
3.0  
2.8  
B
1.9  
0.150  
0.090  
A
M
0.2  
0.55  
0.45  
0.95  
A
2
1
0.1  
max  
o
10  
max  
2.5  
max  
1.4  
1.2  
o
10  
max  
3
1.1  
max  
0.48  
0.38  
0.1 M A B  
o
MBC846  
30  
max  
TOP VIEW  
Dimensions in mm.  
Fig.21 SOT23.  
1996 Jul 29  
10  
Philips Semiconductors  
Productspecification  
N-channel silicon junction  
field-effect transistors  
BF556A; BF556B; BF556C  
DEFINITIONS  
Data Sheet Status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1996 Jul 29  
11  

相关型号:

BF556B,215

N-channel FET TO-236 3-Pin
NXP

BF556B-T

TRANSISTOR VHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-236AB, PLASTIC PACKAGE-3, FET RF Small Signal
NXP

BF556B-TAPE-13

TRANSISTOR VHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, FET RF Small Signal
NXP

BF556B-TAPE-7

TRANSISTOR VHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, FET RF Small Signal
NXP

BF556BT/R

TRANSISTOR VHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-236AB, PLASTIC PACKAGE-3, FET RF Small Signal
NXP

BF556C

N-channel silicon junction field-effect transistors
NXP

BF556C-TAPE-13

TRANSISTOR VHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, FET RF Small Signal
NXP

BF556C-TAPE-7

TRANSISTOR VHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, FET RF Small Signal
NXP

BF562

npn silicon rf transistor
INFINEON

BF568

PNP SILICON PLANAR TRANSISTOR
INFINEON

BF569

PNP Silicon RF Transistor (fOR OSCILLATORS, MIXERS AND SELF-OSCILLATING MIXER STAGES IN uhf tv TUNERS)
INFINEON

BF569

Silicon PNP Planar RF Transistor
VISHAY